| /* X86-64 specific support for ELF |
| Copyright (C) 2000-2016 Free Software Foundation, Inc. |
| Contributed by Jan Hubicka <jh@suse.cz>. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "bfdlink.h" |
| #include "libbfd.h" |
| #include "elf-bfd.h" |
| #include "elf-nacl.h" |
| #include "bfd_stdint.h" |
| #include "objalloc.h" |
| #include "hashtab.h" |
| #include "dwarf2.h" |
| #include "libiberty.h" |
| |
| #include "opcode/i386.h" |
| #include "elf/x86-64.h" |
| |
| #ifdef CORE_HEADER |
| #include <stdarg.h> |
| #include CORE_HEADER |
| #endif |
| |
| /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */ |
| #define MINUS_ONE (~ (bfd_vma) 0) |
| |
| /* Since both 32-bit and 64-bit x86-64 encode relocation type in the |
| identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get |
| relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE |
| since they are the same. */ |
| |
| #define ABI_64_P(abfd) \ |
| (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) |
| |
| /* The relocation "howto" table. Order of fields: |
| type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow, |
| special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */ |
| static reloc_howto_type x86_64_elf_howto_table[] = |
| { |
| HOWTO(R_X86_64_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000, |
| FALSE), |
| HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE, |
| FALSE), |
| HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff, |
| TRUE), |
| HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff, |
| FALSE), |
| HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff, |
| TRUE), |
| HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff, |
| FALSE), |
| HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff, |
| 0xffffffff, TRUE), |
| HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned, |
| bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff, |
| FALSE), |
| HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff, |
| FALSE), |
| HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE), |
| HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE), |
| HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE), |
| HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE), |
| HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff, |
| 0xffffffff, TRUE), |
| HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff, |
| 0xffffffff, TRUE), |
| HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff, |
| 0xffffffff, FALSE), |
| HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff, |
| 0xffffffff, TRUE), |
| HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff, |
| 0xffffffff, FALSE), |
| HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE, |
| TRUE), |
| HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_GOTOFF64", |
| FALSE, MINUS_ONE, MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_GOTPC32", |
| FALSE, 0xffffffff, 0xffffffff, TRUE), |
| HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE, |
| FALSE), |
| HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE, |
| MINUS_ONE, TRUE), |
| HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_GOTPC64", |
| FALSE, MINUS_ONE, MINUS_ONE, TRUE), |
| HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_SIZE32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned, |
| bfd_elf_generic_reloc, "R_X86_64_SIZE32", FALSE, 0xffffffff, 0xffffffff, |
| FALSE), |
| HOWTO(R_X86_64_SIZE64, 0, 4, 64, FALSE, 0, complain_overflow_unsigned, |
| bfd_elf_generic_reloc, "R_X86_64_SIZE64", FALSE, MINUS_ONE, MINUS_ONE, |
| FALSE), |
| HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0, |
| complain_overflow_bitfield, bfd_elf_generic_reloc, |
| "R_X86_64_GOTPC32_TLSDESC", |
| FALSE, 0xffffffff, 0xffffffff, TRUE), |
| HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0, |
| complain_overflow_dont, bfd_elf_generic_reloc, |
| "R_X86_64_TLSDESC_CALL", |
| FALSE, 0, 0, FALSE), |
| HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0, |
| complain_overflow_bitfield, bfd_elf_generic_reloc, |
| "R_X86_64_TLSDESC", |
| FALSE, MINUS_ONE, MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE, |
| MINUS_ONE, FALSE), |
| HOWTO(R_X86_64_PC32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_PC32_BND", FALSE, 0xffffffff, 0xffffffff, |
| TRUE), |
| HOWTO(R_X86_64_PLT32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_PLT32_BND", FALSE, 0xffffffff, 0xffffffff, |
| TRUE), |
| HOWTO(R_X86_64_GOTPCRELX, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_GOTPCRELX", FALSE, 0xffffffff, |
| 0xffffffff, TRUE), |
| HOWTO(R_X86_64_REX_GOTPCRELX, 0, 2, 32, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_X86_64_REX_GOTPCRELX", FALSE, 0xffffffff, |
| 0xffffffff, TRUE), |
| |
| /* We have a gap in the reloc numbers here. |
| R_X86_64_standard counts the number up to this point, and |
| R_X86_64_vt_offset is the value to subtract from a reloc type of |
| R_X86_64_GNU_VT* to form an index into this table. */ |
| #define R_X86_64_standard (R_X86_64_REX_GOTPCRELX + 1) |
| #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard) |
| |
| /* GNU extension to record C++ vtable hierarchy. */ |
| HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont, |
| NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE), |
| |
| /* GNU extension to record C++ vtable member usage. */ |
| HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont, |
| _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0, |
| FALSE), |
| |
| /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */ |
| HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff, |
| FALSE) |
| }; |
| |
| #define IS_X86_64_PCREL_TYPE(TYPE) \ |
| ( ((TYPE) == R_X86_64_PC8) \ |
| || ((TYPE) == R_X86_64_PC16) \ |
| || ((TYPE) == R_X86_64_PC32) \ |
| || ((TYPE) == R_X86_64_PC32_BND) \ |
| || ((TYPE) == R_X86_64_PC64)) |
| |
| /* Map BFD relocs to the x86_64 elf relocs. */ |
| struct elf_reloc_map |
| { |
| bfd_reloc_code_real_type bfd_reloc_val; |
| unsigned char elf_reloc_val; |
| }; |
| |
| static const struct elf_reloc_map x86_64_reloc_map[] = |
| { |
| { BFD_RELOC_NONE, R_X86_64_NONE, }, |
| { BFD_RELOC_64, R_X86_64_64, }, |
| { BFD_RELOC_32_PCREL, R_X86_64_PC32, }, |
| { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,}, |
| { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,}, |
| { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, }, |
| { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, }, |
| { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, }, |
| { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, }, |
| { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, }, |
| { BFD_RELOC_32, R_X86_64_32, }, |
| { BFD_RELOC_X86_64_32S, R_X86_64_32S, }, |
| { BFD_RELOC_16, R_X86_64_16, }, |
| { BFD_RELOC_16_PCREL, R_X86_64_PC16, }, |
| { BFD_RELOC_8, R_X86_64_8, }, |
| { BFD_RELOC_8_PCREL, R_X86_64_PC8, }, |
| { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, }, |
| { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, }, |
| { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, }, |
| { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, }, |
| { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, }, |
| { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, }, |
| { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, }, |
| { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, }, |
| { BFD_RELOC_64_PCREL, R_X86_64_PC64, }, |
| { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, }, |
| { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, }, |
| { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, }, |
| { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, }, |
| { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, }, |
| { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, }, |
| { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, }, |
| { BFD_RELOC_SIZE32, R_X86_64_SIZE32, }, |
| { BFD_RELOC_SIZE64, R_X86_64_SIZE64, }, |
| { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, }, |
| { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, }, |
| { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, }, |
| { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, }, |
| { BFD_RELOC_X86_64_PC32_BND, R_X86_64_PC32_BND, }, |
| { BFD_RELOC_X86_64_PLT32_BND, R_X86_64_PLT32_BND, }, |
| { BFD_RELOC_X86_64_GOTPCRELX, R_X86_64_GOTPCRELX, }, |
| { BFD_RELOC_X86_64_REX_GOTPCRELX, R_X86_64_REX_GOTPCRELX, }, |
| { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, }, |
| { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, }, |
| }; |
| |
| static reloc_howto_type * |
| elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type) |
| { |
| unsigned i; |
| |
| if (r_type == (unsigned int) R_X86_64_32) |
| { |
| if (ABI_64_P (abfd)) |
| i = r_type; |
| else |
| i = ARRAY_SIZE (x86_64_elf_howto_table) - 1; |
| } |
| else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT |
| || r_type >= (unsigned int) R_X86_64_max) |
| { |
| if (r_type >= (unsigned int) R_X86_64_standard) |
| { |
| (*_bfd_error_handler) (_("%B: invalid relocation type %d"), |
| abfd, (int) r_type); |
| r_type = R_X86_64_NONE; |
| } |
| i = r_type; |
| } |
| else |
| i = r_type - (unsigned int) R_X86_64_vt_offset; |
| BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type); |
| return &x86_64_elf_howto_table[i]; |
| } |
| |
| /* Given a BFD reloc type, return a HOWTO structure. */ |
| static reloc_howto_type * |
| elf_x86_64_reloc_type_lookup (bfd *abfd, |
| bfd_reloc_code_real_type code) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map); |
| i++) |
| { |
| if (x86_64_reloc_map[i].bfd_reloc_val == code) |
| return elf_x86_64_rtype_to_howto (abfd, |
| x86_64_reloc_map[i].elf_reloc_val); |
| } |
| return NULL; |
| } |
| |
| static reloc_howto_type * |
| elf_x86_64_reloc_name_lookup (bfd *abfd, |
| const char *r_name) |
| { |
| unsigned int i; |
| |
| if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0) |
| { |
| /* Get x32 R_X86_64_32. */ |
| reloc_howto_type *reloc |
| = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1]; |
| BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32); |
| return reloc; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++) |
| if (x86_64_elf_howto_table[i].name != NULL |
| && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0) |
| return &x86_64_elf_howto_table[i]; |
| |
| return NULL; |
| } |
| |
| /* Given an x86_64 ELF reloc type, fill in an arelent structure. */ |
| |
| static void |
| elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr, |
| Elf_Internal_Rela *dst) |
| { |
| unsigned r_type; |
| |
| r_type = ELF32_R_TYPE (dst->r_info); |
| cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type); |
| BFD_ASSERT (r_type == cache_ptr->howto->type); |
| } |
| |
| /* Support for core dump NOTE sections. */ |
| static bfd_boolean |
| elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
| { |
| int offset; |
| size_t size; |
| |
| switch (note->descsz) |
| { |
| default: |
| return FALSE; |
| |
| case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */ |
| /* pr_cursig */ |
| elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); |
| |
| /* pr_pid */ |
| elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); |
| |
| /* pr_reg */ |
| offset = 72; |
| size = 216; |
| |
| break; |
| |
| case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */ |
| /* pr_cursig */ |
| elf_tdata (abfd)->core->signal |
| = bfd_get_16 (abfd, note->descdata + 12); |
| |
| /* pr_pid */ |
| elf_tdata (abfd)->core->lwpid |
| = bfd_get_32 (abfd, note->descdata + 32); |
| |
| /* pr_reg */ |
| offset = 112; |
| size = 216; |
| |
| break; |
| } |
| |
| /* Make a ".reg/999" section. */ |
| return _bfd_elfcore_make_pseudosection (abfd, ".reg", |
| size, note->descpos + offset); |
| } |
| |
| static bfd_boolean |
| elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
| { |
| switch (note->descsz) |
| { |
| default: |
| return FALSE; |
| |
| case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */ |
| elf_tdata (abfd)->core->pid |
| = bfd_get_32 (abfd, note->descdata + 12); |
| elf_tdata (abfd)->core->program |
| = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); |
| elf_tdata (abfd)->core->command |
| = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); |
| break; |
| |
| case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */ |
| elf_tdata (abfd)->core->pid |
| = bfd_get_32 (abfd, note->descdata + 24); |
| elf_tdata (abfd)->core->program |
| = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16); |
| elf_tdata (abfd)->core->command |
| = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80); |
| } |
| |
| /* Note that for some reason, a spurious space is tacked |
| onto the end of the args in some (at least one anyway) |
| implementations, so strip it off if it exists. */ |
| |
| { |
| char *command = elf_tdata (abfd)->core->command; |
| int n = strlen (command); |
| |
| if (0 < n && command[n - 1] == ' ') |
| command[n - 1] = '\0'; |
| } |
| |
| return TRUE; |
| } |
| |
| #ifdef CORE_HEADER |
| static char * |
| elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz, |
| int note_type, ...) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| va_list ap; |
| const char *fname, *psargs; |
| long pid; |
| int cursig; |
| const void *gregs; |
| |
| switch (note_type) |
| { |
| default: |
| return NULL; |
| |
| case NT_PRPSINFO: |
| va_start (ap, note_type); |
| fname = va_arg (ap, const char *); |
| psargs = va_arg (ap, const char *); |
| va_end (ap); |
| |
| if (bed->s->elfclass == ELFCLASS32) |
| { |
| prpsinfo32_t data; |
| memset (&data, 0, sizeof (data)); |
| strncpy (data.pr_fname, fname, sizeof (data.pr_fname)); |
| strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs)); |
| return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type, |
| &data, sizeof (data)); |
| } |
| else |
| { |
| prpsinfo64_t data; |
| memset (&data, 0, sizeof (data)); |
| strncpy (data.pr_fname, fname, sizeof (data.pr_fname)); |
| strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs)); |
| return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type, |
| &data, sizeof (data)); |
| } |
| /* NOTREACHED */ |
| |
| case NT_PRSTATUS: |
| va_start (ap, note_type); |
| pid = va_arg (ap, long); |
| cursig = va_arg (ap, int); |
| gregs = va_arg (ap, const void *); |
| va_end (ap); |
| |
| if (bed->s->elfclass == ELFCLASS32) |
| { |
| if (bed->elf_machine_code == EM_X86_64) |
| { |
| prstatusx32_t prstat; |
| memset (&prstat, 0, sizeof (prstat)); |
| prstat.pr_pid = pid; |
| prstat.pr_cursig = cursig; |
| memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); |
| return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type, |
| &prstat, sizeof (prstat)); |
| } |
| else |
| { |
| prstatus32_t prstat; |
| memset (&prstat, 0, sizeof (prstat)); |
| prstat.pr_pid = pid; |
| prstat.pr_cursig = cursig; |
| memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); |
| return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type, |
| &prstat, sizeof (prstat)); |
| } |
| } |
| else |
| { |
| prstatus64_t prstat; |
| memset (&prstat, 0, sizeof (prstat)); |
| prstat.pr_pid = pid; |
| prstat.pr_cursig = cursig; |
| memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); |
| return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type, |
| &prstat, sizeof (prstat)); |
| } |
| } |
| /* NOTREACHED */ |
| } |
| #endif |
| |
| /* Functions for the x86-64 ELF linker. */ |
| |
| /* The name of the dynamic interpreter. This is put in the .interp |
| section. */ |
| |
| #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1" |
| #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1" |
| |
| /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid |
| copying dynamic variables from a shared lib into an app's dynbss |
| section, and instead use a dynamic relocation to point into the |
| shared lib. */ |
| #define ELIMINATE_COPY_RELOCS 1 |
| |
| /* The size in bytes of an entry in the global offset table. */ |
| |
| #define GOT_ENTRY_SIZE 8 |
| |
| /* The size in bytes of an entry in the procedure linkage table. */ |
| |
| #define PLT_ENTRY_SIZE 16 |
| |
| /* The first entry in a procedure linkage table looks like this. See the |
| SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */ |
| |
| static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] = |
| { |
| 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */ |
| 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */ |
| 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */ |
| }; |
| |
| /* Subsequent entries in a procedure linkage table look like this. */ |
| |
| static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] = |
| { |
| 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */ |
| 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */ |
| 0x68, /* pushq immediate */ |
| 0, 0, 0, 0, /* replaced with index into relocation table. */ |
| 0xe9, /* jmp relative */ |
| 0, 0, 0, 0 /* replaced with offset to start of .plt0. */ |
| }; |
| |
| /* The first entry in a procedure linkage table with BND relocations |
| like this. */ |
| |
| static const bfd_byte elf_x86_64_bnd_plt0_entry[PLT_ENTRY_SIZE] = |
| { |
| 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */ |
| 0xf2, 0xff, 0x25, 16, 0, 0, 0, /* bnd jmpq *GOT+16(%rip) */ |
| 0x0f, 0x1f, 0 /* nopl (%rax) */ |
| }; |
| |
| /* Subsequent entries for legacy branches in a procedure linkage table |
| with BND relocations look like this. */ |
| |
| static const bfd_byte elf_x86_64_legacy_plt_entry[PLT_ENTRY_SIZE] = |
| { |
| 0x68, 0, 0, 0, 0, /* pushq immediate */ |
| 0xe9, 0, 0, 0, 0, /* jmpq relative */ |
| 0x66, 0x0f, 0x1f, 0x44, 0, 0 /* nopw (%rax,%rax,1) */ |
| }; |
| |
| /* Subsequent entries for branches with BND prefx in a procedure linkage |
| table with BND relocations look like this. */ |
| |
| static const bfd_byte elf_x86_64_bnd_plt_entry[PLT_ENTRY_SIZE] = |
| { |
| 0x68, 0, 0, 0, 0, /* pushq immediate */ |
| 0xf2, 0xe9, 0, 0, 0, 0, /* bnd jmpq relative */ |
| 0x0f, 0x1f, 0x44, 0, 0 /* nopl 0(%rax,%rax,1) */ |
| }; |
| |
| /* Entries for legacy branches in the second procedure linkage table |
| look like this. */ |
| |
| static const bfd_byte elf_x86_64_legacy_plt2_entry[8] = |
| { |
| 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */ |
| 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */ |
| 0x66, 0x90 /* xchg %ax,%ax */ |
| }; |
| |
| /* Entries for branches with BND prefix in the second procedure linkage |
| table look like this. */ |
| |
| static const bfd_byte elf_x86_64_bnd_plt2_entry[8] = |
| { |
| 0xf2, 0xff, 0x25, /* bnd jmpq *name@GOTPC(%rip) */ |
| 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */ |
| 0x90 /* nop */ |
| }; |
| |
| /* .eh_frame covering the .plt section. */ |
| |
| static const bfd_byte elf_x86_64_eh_frame_plt[] = |
| { |
| #define PLT_CIE_LENGTH 20 |
| #define PLT_FDE_LENGTH 36 |
| #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8 |
| #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12 |
| PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */ |
| 0, 0, 0, 0, /* CIE ID */ |
| 1, /* CIE version */ |
| 'z', 'R', 0, /* Augmentation string */ |
| 1, /* Code alignment factor */ |
| 0x78, /* Data alignment factor */ |
| 16, /* Return address column */ |
| 1, /* Augmentation size */ |
| DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */ |
| DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */ |
| DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */ |
| DW_CFA_nop, DW_CFA_nop, |
| |
| PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */ |
| PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */ |
| 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */ |
| 0, 0, 0, 0, /* .plt size goes here */ |
| 0, /* Augmentation size */ |
| DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */ |
| DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */ |
| DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */ |
| DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */ |
| DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */ |
| 11, /* Block length */ |
| DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */ |
| DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */ |
| DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge, |
| DW_OP_lit3, DW_OP_shl, DW_OP_plus, |
| DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop |
| }; |
| |
| /* Architecture-specific backend data for x86-64. */ |
| |
| struct elf_x86_64_backend_data |
| { |
| /* Templates for the initial PLT entry and for subsequent entries. */ |
| const bfd_byte *plt0_entry; |
| const bfd_byte *plt_entry; |
| unsigned int plt_entry_size; /* Size of each PLT entry. */ |
| |
| /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */ |
| unsigned int plt0_got1_offset; |
| unsigned int plt0_got2_offset; |
| |
| /* Offset of the end of the PC-relative instruction containing |
| plt0_got2_offset. */ |
| unsigned int plt0_got2_insn_end; |
| |
| /* Offsets into plt_entry that are to be replaced with... */ |
| unsigned int plt_got_offset; /* ... address of this symbol in .got. */ |
| unsigned int plt_reloc_offset; /* ... offset into relocation table. */ |
| unsigned int plt_plt_offset; /* ... offset to start of .plt. */ |
| |
| /* Length of the PC-relative instruction containing plt_got_offset. */ |
| unsigned int plt_got_insn_size; |
| |
| /* Offset of the end of the PC-relative jump to plt0_entry. */ |
| unsigned int plt_plt_insn_end; |
| |
| /* Offset into plt_entry where the initial value of the GOT entry points. */ |
| unsigned int plt_lazy_offset; |
| |
| /* .eh_frame covering the .plt section. */ |
| const bfd_byte *eh_frame_plt; |
| unsigned int eh_frame_plt_size; |
| }; |
| |
| #define get_elf_x86_64_arch_data(bed) \ |
| ((const struct elf_x86_64_backend_data *) (bed)->arch_data) |
| |
| #define get_elf_x86_64_backend_data(abfd) \ |
| get_elf_x86_64_arch_data (get_elf_backend_data (abfd)) |
| |
| #define GET_PLT_ENTRY_SIZE(abfd) \ |
| get_elf_x86_64_backend_data (abfd)->plt_entry_size |
| |
| /* These are the standard parameters. */ |
| static const struct elf_x86_64_backend_data elf_x86_64_arch_bed = |
| { |
| elf_x86_64_plt0_entry, /* plt0_entry */ |
| elf_x86_64_plt_entry, /* plt_entry */ |
| sizeof (elf_x86_64_plt_entry), /* plt_entry_size */ |
| 2, /* plt0_got1_offset */ |
| 8, /* plt0_got2_offset */ |
| 12, /* plt0_got2_insn_end */ |
| 2, /* plt_got_offset */ |
| 7, /* plt_reloc_offset */ |
| 12, /* plt_plt_offset */ |
| 6, /* plt_got_insn_size */ |
| PLT_ENTRY_SIZE, /* plt_plt_insn_end */ |
| 6, /* plt_lazy_offset */ |
| elf_x86_64_eh_frame_plt, /* eh_frame_plt */ |
| sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */ |
| }; |
| |
| static const struct elf_x86_64_backend_data elf_x86_64_bnd_arch_bed = |
| { |
| elf_x86_64_bnd_plt0_entry, /* plt0_entry */ |
| elf_x86_64_bnd_plt_entry, /* plt_entry */ |
| sizeof (elf_x86_64_bnd_plt_entry), /* plt_entry_size */ |
| 2, /* plt0_got1_offset */ |
| 1+8, /* plt0_got2_offset */ |
| 1+12, /* plt0_got2_insn_end */ |
| 1+2, /* plt_got_offset */ |
| 1, /* plt_reloc_offset */ |
| 7, /* plt_plt_offset */ |
| 1+6, /* plt_got_insn_size */ |
| 11, /* plt_plt_insn_end */ |
| 0, /* plt_lazy_offset */ |
| elf_x86_64_eh_frame_plt, /* eh_frame_plt */ |
| sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */ |
| }; |
| |
| #define elf_backend_arch_data &elf_x86_64_arch_bed |
| |
| /* x86-64 ELF linker hash entry. */ |
| |
| struct elf_x86_64_link_hash_entry |
| { |
| struct elf_link_hash_entry elf; |
| |
| /* Track dynamic relocs copied for this symbol. */ |
| struct elf_dyn_relocs *dyn_relocs; |
| |
| #define GOT_UNKNOWN 0 |
| #define GOT_NORMAL 1 |
| #define GOT_TLS_GD 2 |
| #define GOT_TLS_IE 3 |
| #define GOT_TLS_GDESC 4 |
| #define GOT_TLS_GD_BOTH_P(type) \ |
| ((type) == (GOT_TLS_GD | GOT_TLS_GDESC)) |
| #define GOT_TLS_GD_P(type) \ |
| ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type)) |
| #define GOT_TLS_GDESC_P(type) \ |
| ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type)) |
| #define GOT_TLS_GD_ANY_P(type) \ |
| (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type)) |
| unsigned char tls_type; |
| |
| /* TRUE if a weak symbol with a real definition needs a copy reloc. |
| When there is a weak symbol with a real definition, the processor |
| independent code will have arranged for us to see the real |
| definition first. We need to copy the needs_copy bit from the |
| real definition and check it when allowing copy reloc in PIE. */ |
| unsigned int needs_copy : 1; |
| |
| /* TRUE if symbol has at least one BND relocation. */ |
| unsigned int has_bnd_reloc : 1; |
| |
| /* Reference count of C/C++ function pointer relocations in read-write |
| section which can be resolved at run-time. */ |
| bfd_signed_vma func_pointer_refcount; |
| |
| /* Information about the GOT PLT entry. Filled when there are both |
| GOT and PLT relocations against the same function. */ |
| union gotplt_union plt_got; |
| |
| /* Information about the second PLT entry. Filled when has_bnd_reloc is |
| set. */ |
| union gotplt_union plt_bnd; |
| |
| /* Offset of the GOTPLT entry reserved for the TLS descriptor, |
| starting at the end of the jump table. */ |
| bfd_vma tlsdesc_got; |
| }; |
| |
| #define elf_x86_64_hash_entry(ent) \ |
| ((struct elf_x86_64_link_hash_entry *)(ent)) |
| |
| struct elf_x86_64_obj_tdata |
| { |
| struct elf_obj_tdata root; |
| |
| /* tls_type for each local got entry. */ |
| char *local_got_tls_type; |
| |
| /* GOTPLT entries for TLS descriptors. */ |
| bfd_vma *local_tlsdesc_gotent; |
| }; |
| |
| #define elf_x86_64_tdata(abfd) \ |
| ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any) |
| |
| #define elf_x86_64_local_got_tls_type(abfd) \ |
| (elf_x86_64_tdata (abfd)->local_got_tls_type) |
| |
| #define elf_x86_64_local_tlsdesc_gotent(abfd) \ |
| (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent) |
| |
| #define is_x86_64_elf(bfd) \ |
| (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ |
| && elf_tdata (bfd) != NULL \ |
| && elf_object_id (bfd) == X86_64_ELF_DATA) |
| |
| static bfd_boolean |
| elf_x86_64_mkobject (bfd *abfd) |
| { |
| return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata), |
| X86_64_ELF_DATA); |
| } |
| |
| /* x86-64 ELF linker hash table. */ |
| |
| struct elf_x86_64_link_hash_table |
| { |
| struct elf_link_hash_table elf; |
| |
| /* Short-cuts to get to dynamic linker sections. */ |
| asection *sdynbss; |
| asection *srelbss; |
| asection *plt_eh_frame; |
| asection *plt_bnd; |
| asection *plt_got; |
| |
| union |
| { |
| bfd_signed_vma refcount; |
| bfd_vma offset; |
| } tls_ld_got; |
| |
| /* The amount of space used by the jump slots in the GOT. */ |
| bfd_vma sgotplt_jump_table_size; |
| |
| /* Small local sym cache. */ |
| struct sym_cache sym_cache; |
| |
| bfd_vma (*r_info) (bfd_vma, bfd_vma); |
| bfd_vma (*r_sym) (bfd_vma); |
| unsigned int pointer_r_type; |
| const char *dynamic_interpreter; |
| int dynamic_interpreter_size; |
| |
| /* _TLS_MODULE_BASE_ symbol. */ |
| struct bfd_link_hash_entry *tls_module_base; |
| |
| /* Used by local STT_GNU_IFUNC symbols. */ |
| htab_t loc_hash_table; |
| void * loc_hash_memory; |
| |
| /* The offset into splt of the PLT entry for the TLS descriptor |
| resolver. Special values are 0, if not necessary (or not found |
| to be necessary yet), and -1 if needed but not determined |
| yet. */ |
| bfd_vma tlsdesc_plt; |
| /* The offset into sgot of the GOT entry used by the PLT entry |
| above. */ |
| bfd_vma tlsdesc_got; |
| |
| /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */ |
| bfd_vma next_jump_slot_index; |
| /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */ |
| bfd_vma next_irelative_index; |
| }; |
| |
| /* Get the x86-64 ELF linker hash table from a link_info structure. */ |
| |
| #define elf_x86_64_hash_table(p) \ |
| (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ |
| == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL) |
| |
| #define elf_x86_64_compute_jump_table_size(htab) \ |
| ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE) |
| |
| /* Create an entry in an x86-64 ELF linker hash table. */ |
| |
| static struct bfd_hash_entry * |
| elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, |
| const char *string) |
| { |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (entry == NULL) |
| { |
| entry = (struct bfd_hash_entry *) |
| bfd_hash_allocate (table, |
| sizeof (struct elf_x86_64_link_hash_entry)); |
| if (entry == NULL) |
| return entry; |
| } |
| |
| /* Call the allocation method of the superclass. */ |
| entry = _bfd_elf_link_hash_newfunc (entry, table, string); |
| if (entry != NULL) |
| { |
| struct elf_x86_64_link_hash_entry *eh; |
| |
| eh = (struct elf_x86_64_link_hash_entry *) entry; |
| eh->dyn_relocs = NULL; |
| eh->tls_type = GOT_UNKNOWN; |
| eh->needs_copy = 0; |
| eh->has_bnd_reloc = 0; |
| eh->func_pointer_refcount = 0; |
| eh->plt_bnd.offset = (bfd_vma) -1; |
| eh->plt_got.offset = (bfd_vma) -1; |
| eh->tlsdesc_got = (bfd_vma) -1; |
| } |
| |
| return entry; |
| } |
| |
| /* Compute a hash of a local hash entry. We use elf_link_hash_entry |
| for local symbol so that we can handle local STT_GNU_IFUNC symbols |
| as global symbol. We reuse indx and dynstr_index for local symbol |
| hash since they aren't used by global symbols in this backend. */ |
| |
| static hashval_t |
| elf_x86_64_local_htab_hash (const void *ptr) |
| { |
| struct elf_link_hash_entry *h |
| = (struct elf_link_hash_entry *) ptr; |
| return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index); |
| } |
| |
| /* Compare local hash entries. */ |
| |
| static int |
| elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2) |
| { |
| struct elf_link_hash_entry *h1 |
| = (struct elf_link_hash_entry *) ptr1; |
| struct elf_link_hash_entry *h2 |
| = (struct elf_link_hash_entry *) ptr2; |
| |
| return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index; |
| } |
| |
| /* Find and/or create a hash entry for local symbol. */ |
| |
| static struct elf_link_hash_entry * |
| elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab, |
| bfd *abfd, const Elf_Internal_Rela *rel, |
| bfd_boolean create) |
| { |
| struct elf_x86_64_link_hash_entry e, *ret; |
| asection *sec = abfd->sections; |
| hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id, |
| htab->r_sym (rel->r_info)); |
| void **slot; |
| |
| e.elf.indx = sec->id; |
| e.elf.dynstr_index = htab->r_sym (rel->r_info); |
| slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h, |
| create ? INSERT : NO_INSERT); |
| |
| if (!slot) |
| return NULL; |
| |
| if (*slot) |
| { |
| ret = (struct elf_x86_64_link_hash_entry *) *slot; |
| return &ret->elf; |
| } |
| |
| ret = (struct elf_x86_64_link_hash_entry *) |
| objalloc_alloc ((struct objalloc *) htab->loc_hash_memory, |
| sizeof (struct elf_x86_64_link_hash_entry)); |
| if (ret) |
| { |
| memset (ret, 0, sizeof (*ret)); |
| ret->elf.indx = sec->id; |
| ret->elf.dynstr_index = htab->r_sym (rel->r_info); |
| ret->elf.dynindx = -1; |
| ret->func_pointer_refcount = 0; |
| ret->plt_got.offset = (bfd_vma) -1; |
| *slot = ret; |
| } |
| return &ret->elf; |
| } |
| |
| /* Destroy an X86-64 ELF linker hash table. */ |
| |
| static void |
| elf_x86_64_link_hash_table_free (bfd *obfd) |
| { |
| struct elf_x86_64_link_hash_table *htab |
| = (struct elf_x86_64_link_hash_table *) obfd->link.hash; |
| |
| if (htab->loc_hash_table) |
| htab_delete (htab->loc_hash_table); |
| if (htab->loc_hash_memory) |
| objalloc_free ((struct objalloc *) htab->loc_hash_memory); |
| _bfd_elf_link_hash_table_free (obfd); |
| } |
| |
| /* Create an X86-64 ELF linker hash table. */ |
| |
| static struct bfd_link_hash_table * |
| elf_x86_64_link_hash_table_create (bfd *abfd) |
| { |
| struct elf_x86_64_link_hash_table *ret; |
| bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table); |
| |
| ret = (struct elf_x86_64_link_hash_table *) bfd_zmalloc (amt); |
| if (ret == NULL) |
| return NULL; |
| |
| if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, |
| elf_x86_64_link_hash_newfunc, |
| sizeof (struct elf_x86_64_link_hash_entry), |
| X86_64_ELF_DATA)) |
| { |
| free (ret); |
| return NULL; |
| } |
| |
| if (ABI_64_P (abfd)) |
| { |
| ret->r_info = elf64_r_info; |
| ret->r_sym = elf64_r_sym; |
| ret->pointer_r_type = R_X86_64_64; |
| ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER; |
| ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER; |
| } |
| else |
| { |
| ret->r_info = elf32_r_info; |
| ret->r_sym = elf32_r_sym; |
| ret->pointer_r_type = R_X86_64_32; |
| ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER; |
| ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER; |
| } |
| |
| ret->loc_hash_table = htab_try_create (1024, |
| elf_x86_64_local_htab_hash, |
| elf_x86_64_local_htab_eq, |
| NULL); |
| ret->loc_hash_memory = objalloc_create (); |
| if (!ret->loc_hash_table || !ret->loc_hash_memory) |
| { |
| elf_x86_64_link_hash_table_free (abfd); |
| return NULL; |
| } |
| ret->elf.root.hash_table_free = elf_x86_64_link_hash_table_free; |
| |
| return &ret->elf.root; |
| } |
| |
| /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and |
| .rela.bss sections in DYNOBJ, and set up shortcuts to them in our |
| hash table. */ |
| |
| static bfd_boolean |
| elf_x86_64_create_dynamic_sections (bfd *dynobj, |
| struct bfd_link_info *info) |
| { |
| struct elf_x86_64_link_hash_table *htab; |
| |
| if (!_bfd_elf_create_dynamic_sections (dynobj, info)) |
| return FALSE; |
| |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss"); |
| if (!htab->sdynbss) |
| abort (); |
| |
| if (bfd_link_executable (info)) |
| { |
| /* Always allow copy relocs for building executables. */ |
| asection *s = bfd_get_linker_section (dynobj, ".rela.bss"); |
| if (s == NULL) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (dynobj); |
| s = bfd_make_section_anyway_with_flags (dynobj, |
| ".rela.bss", |
| (bed->dynamic_sec_flags |
| | SEC_READONLY)); |
| if (s == NULL |
| || ! bfd_set_section_alignment (dynobj, s, |
| bed->s->log_file_align)) |
| return FALSE; |
| } |
| htab->srelbss = s; |
| } |
| |
| if (!info->no_ld_generated_unwind_info |
| && htab->plt_eh_frame == NULL |
| && htab->elf.splt != NULL) |
| { |
| flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY |
| | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED); |
| htab->plt_eh_frame |
| = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags); |
| if (htab->plt_eh_frame == NULL |
| || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3)) |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
| |
| static void |
| elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *dir, |
| struct elf_link_hash_entry *ind) |
| { |
| struct elf_x86_64_link_hash_entry *edir, *eind; |
| |
| edir = (struct elf_x86_64_link_hash_entry *) dir; |
| eind = (struct elf_x86_64_link_hash_entry *) ind; |
| |
| if (!edir->has_bnd_reloc) |
| edir->has_bnd_reloc = eind->has_bnd_reloc; |
| |
| if (eind->dyn_relocs != NULL) |
| { |
| if (edir->dyn_relocs != NULL) |
| { |
| struct elf_dyn_relocs **pp; |
| struct elf_dyn_relocs *p; |
| |
| /* Add reloc counts against the indirect sym to the direct sym |
| list. Merge any entries against the same section. */ |
| for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| struct elf_dyn_relocs *q; |
| |
| for (q = edir->dyn_relocs; q != NULL; q = q->next) |
| if (q->sec == p->sec) |
| { |
| q->pc_count += p->pc_count; |
| q->count += p->count; |
| *pp = p->next; |
| break; |
| } |
| if (q == NULL) |
| pp = &p->next; |
| } |
| *pp = edir->dyn_relocs; |
| } |
| |
| edir->dyn_relocs = eind->dyn_relocs; |
| eind->dyn_relocs = NULL; |
| } |
| |
| if (ind->root.type == bfd_link_hash_indirect |
| && dir->got.refcount <= 0) |
| { |
| edir->tls_type = eind->tls_type; |
| eind->tls_type = GOT_UNKNOWN; |
| } |
| |
| if (ELIMINATE_COPY_RELOCS |
| && ind->root.type != bfd_link_hash_indirect |
| && dir->dynamic_adjusted) |
| { |
| /* If called to transfer flags for a weakdef during processing |
| of elf_adjust_dynamic_symbol, don't copy non_got_ref. |
| We clear it ourselves for ELIMINATE_COPY_RELOCS. */ |
| dir->ref_dynamic |= ind->ref_dynamic; |
| dir->ref_regular |= ind->ref_regular; |
| dir->ref_regular_nonweak |= ind->ref_regular_nonweak; |
| dir->needs_plt |= ind->needs_plt; |
| dir->pointer_equality_needed |= ind->pointer_equality_needed; |
| } |
| else |
| { |
| if (eind->func_pointer_refcount > 0) |
| { |
| edir->func_pointer_refcount += eind->func_pointer_refcount; |
| eind->func_pointer_refcount = 0; |
| } |
| |
| _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
| } |
| } |
| |
| static bfd_boolean |
| elf64_x86_64_elf_object_p (bfd *abfd) |
| { |
| /* Set the right machine number for an x86-64 elf64 file. */ |
| bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64); |
| return TRUE; |
| } |
| |
| static bfd_boolean |
| elf32_x86_64_elf_object_p (bfd *abfd) |
| { |
| /* Set the right machine number for an x86-64 elf32 file. */ |
| bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32); |
| return TRUE; |
| } |
| |
| /* Return TRUE if the TLS access code sequence support transition |
| from R_TYPE. */ |
| |
| static bfd_boolean |
| elf_x86_64_check_tls_transition (bfd *abfd, |
| struct bfd_link_info *info, |
| asection *sec, |
| bfd_byte *contents, |
| Elf_Internal_Shdr *symtab_hdr, |
| struct elf_link_hash_entry **sym_hashes, |
| unsigned int r_type, |
| const Elf_Internal_Rela *rel, |
| const Elf_Internal_Rela *relend) |
| { |
| unsigned int val; |
| unsigned long r_symndx; |
| bfd_boolean largepic = FALSE; |
| struct elf_link_hash_entry *h; |
| bfd_vma offset; |
| struct elf_x86_64_link_hash_table *htab; |
| |
| /* Get the section contents. */ |
| if (contents == NULL) |
| { |
| if (elf_section_data (sec)->this_hdr.contents != NULL) |
| contents = elf_section_data (sec)->this_hdr.contents; |
| else |
| { |
| /* FIXME: How to better handle error condition? */ |
| if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
| return FALSE; |
| |
| /* Cache the section contents for elf_link_input_bfd. */ |
| elf_section_data (sec)->this_hdr.contents = contents; |
| } |
| } |
| |
| htab = elf_x86_64_hash_table (info); |
| offset = rel->r_offset; |
| switch (r_type) |
| { |
| case R_X86_64_TLSGD: |
| case R_X86_64_TLSLD: |
| if ((rel + 1) >= relend) |
| return FALSE; |
| |
| if (r_type == R_X86_64_TLSGD) |
| { |
| /* Check transition from GD access model. For 64bit, only |
| .byte 0x66; leaq foo@tlsgd(%rip), %rdi |
| .word 0x6666; rex64; call __tls_get_addr |
| can transit to different access model. For 32bit, only |
| leaq foo@tlsgd(%rip), %rdi |
| .word 0x6666; rex64; call __tls_get_addr |
| can transit to different access model. For largepic |
| we also support: |
| leaq foo@tlsgd(%rip), %rdi |
| movabsq $__tls_get_addr@pltoff, %rax |
| addq $rbx, %rax |
| call *%rax. */ |
| |
| static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 }; |
| static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d }; |
| |
| if ((offset + 12) > sec->size) |
| return FALSE; |
| |
| if (memcmp (contents + offset + 4, call, 4) != 0) |
| { |
| if (!ABI_64_P (abfd) |
| || (offset + 19) > sec->size |
| || offset < 3 |
| || memcmp (contents + offset - 3, leaq + 1, 3) != 0 |
| || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0 |
| || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5) |
| != 0) |
| return FALSE; |
| largepic = TRUE; |
| } |
| else if (ABI_64_P (abfd)) |
| { |
| if (offset < 4 |
| || memcmp (contents + offset - 4, leaq, 4) != 0) |
| return FALSE; |
| } |
| else |
| { |
| if (offset < 3 |
| || memcmp (contents + offset - 3, leaq + 1, 3) != 0) |
| return FALSE; |
| } |
| } |
| else |
| { |
| /* Check transition from LD access model. Only |
| leaq foo@tlsld(%rip), %rdi; |
| call __tls_get_addr |
| can transit to different access model. For largepic |
| we also support: |
| leaq foo@tlsld(%rip), %rdi |
| movabsq $__tls_get_addr@pltoff, %rax |
| addq $rbx, %rax |
| call *%rax. */ |
| |
| static const unsigned char lea[] = { 0x48, 0x8d, 0x3d }; |
| |
| if (offset < 3 || (offset + 9) > sec->size) |
| return FALSE; |
| |
| if (memcmp (contents + offset - 3, lea, 3) != 0) |
| return FALSE; |
| |
| if (0xe8 != *(contents + offset + 4)) |
| { |
| if (!ABI_64_P (abfd) |
| || (offset + 19) > sec->size |
| || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0 |
| || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5) |
| != 0) |
| return FALSE; |
| largepic = TRUE; |
| } |
| } |
| |
| r_symndx = htab->r_sym (rel[1].r_info); |
| if (r_symndx < symtab_hdr->sh_info) |
| return FALSE; |
| |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| /* Use strncmp to check __tls_get_addr since __tls_get_addr |
| may be versioned. */ |
| return (h != NULL |
| && h->root.root.string != NULL |
| && (largepic |
| ? ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLTOFF64 |
| : (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32 |
| || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)) |
| && (strncmp (h->root.root.string, |
| "__tls_get_addr", 14) == 0)); |
| |
| case R_X86_64_GOTTPOFF: |
| /* Check transition from IE access model: |
| mov foo@gottpoff(%rip), %reg |
| add foo@gottpoff(%rip), %reg |
| */ |
| |
| /* Check REX prefix first. */ |
| if (offset >= 3 && (offset + 4) <= sec->size) |
| { |
| val = bfd_get_8 (abfd, contents + offset - 3); |
| if (val != 0x48 && val != 0x4c) |
| { |
| /* X32 may have 0x44 REX prefix or no REX prefix. */ |
| if (ABI_64_P (abfd)) |
| return FALSE; |
| } |
| } |
| else |
| { |
| /* X32 may not have any REX prefix. */ |
| if (ABI_64_P (abfd)) |
| return FALSE; |
| if (offset < 2 || (offset + 3) > sec->size) |
| return FALSE; |
| } |
| |
| val = bfd_get_8 (abfd, contents + offset - 2); |
| if (val != 0x8b && val != 0x03) |
| return FALSE; |
| |
| val = bfd_get_8 (abfd, contents + offset - 1); |
| return (val & 0xc7) == 5; |
| |
| case R_X86_64_GOTPC32_TLSDESC: |
| /* Check transition from GDesc access model: |
| leaq x@tlsdesc(%rip), %rax |
| |
| Make sure it's a leaq adding rip to a 32-bit offset |
| into any register, although it's probably almost always |
| going to be rax. */ |
| |
| if (offset < 3 || (offset + 4) > sec->size) |
| return FALSE; |
| |
| val = bfd_get_8 (abfd, contents + offset - 3); |
| if ((val & 0xfb) != 0x48) |
| return FALSE; |
| |
| if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d) |
| return FALSE; |
| |
| val = bfd_get_8 (abfd, contents + offset - 1); |
| return (val & 0xc7) == 0x05; |
| |
| case R_X86_64_TLSDESC_CALL: |
| /* Check transition from GDesc access model: |
| call *x@tlsdesc(%rax) |
| */ |
| if (offset + 2 <= sec->size) |
| { |
| /* Make sure that it's a call *x@tlsdesc(%rax). */ |
| static const unsigned char call[] = { 0xff, 0x10 }; |
| return memcmp (contents + offset, call, 2) == 0; |
| } |
| |
| return FALSE; |
| |
| default: |
| abort (); |
| } |
| } |
| |
| /* Return TRUE if the TLS access transition is OK or no transition |
| will be performed. Update R_TYPE if there is a transition. */ |
| |
| static bfd_boolean |
| elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd, |
| asection *sec, bfd_byte *contents, |
| Elf_Internal_Shdr *symtab_hdr, |
| struct elf_link_hash_entry **sym_hashes, |
| unsigned int *r_type, int tls_type, |
| const Elf_Internal_Rela *rel, |
| const Elf_Internal_Rela *relend, |
| struct elf_link_hash_entry *h, |
| unsigned long r_symndx) |
| { |
| unsigned int from_type = *r_type; |
| unsigned int to_type = from_type; |
| bfd_boolean check = TRUE; |
| |
| /* Skip TLS transition for functions. */ |
| if (h != NULL |
| && (h->type == STT_FUNC |
| || h->type == STT_GNU_IFUNC)) |
| return TRUE; |
| |
| switch (from_type) |
| { |
| case R_X86_64_TLSGD: |
| case R_X86_64_GOTPC32_TLSDESC: |
| case R_X86_64_TLSDESC_CALL: |
| case R_X86_64_GOTTPOFF: |
| if (bfd_link_executable (info)) |
| { |
| if (h == NULL) |
| to_type = R_X86_64_TPOFF32; |
| else |
| to_type = R_X86_64_GOTTPOFF; |
| } |
| |
| /* When we are called from elf_x86_64_relocate_section, |
| CONTENTS isn't NULL and there may be additional transitions |
| based on TLS_TYPE. */ |
| if (contents != NULL) |
| { |
| unsigned int new_to_type = to_type; |
| |
| if (bfd_link_executable (info) |
| && h != NULL |
| && h->dynindx == -1 |
| && tls_type == GOT_TLS_IE) |
| new_to_type = R_X86_64_TPOFF32; |
| |
| if (to_type == R_X86_64_TLSGD |
| || to_type == R_X86_64_GOTPC32_TLSDESC |
| || to_type == R_X86_64_TLSDESC_CALL) |
| { |
| if (tls_type == GOT_TLS_IE) |
| new_to_type = R_X86_64_GOTTPOFF; |
| } |
| |
| /* We checked the transition before when we were called from |
| elf_x86_64_check_relocs. We only want to check the new |
| transition which hasn't been checked before. */ |
| check = new_to_type != to_type && from_type == to_type; |
| to_type = new_to_type; |
| } |
| |
| break; |
| |
| case R_X86_64_TLSLD: |
| if (bfd_link_executable (info)) |
| to_type = R_X86_64_TPOFF32; |
| break; |
| |
| default: |
| return TRUE; |
| } |
| |
| /* Return TRUE if there is no transition. */ |
| if (from_type == to_type) |
| return TRUE; |
| |
| /* Check if the transition can be performed. */ |
| if (check |
| && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents, |
| symtab_hdr, sym_hashes, |
| from_type, rel, relend)) |
| { |
| reloc_howto_type *from, *to; |
| const char *name; |
| |
| from = elf_x86_64_rtype_to_howto (abfd, from_type); |
| to = elf_x86_64_rtype_to_howto (abfd, to_type); |
| |
| if (h) |
| name = h->root.root.string; |
| else |
| { |
| struct elf_x86_64_link_hash_table *htab; |
| |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| name = "*unknown*"; |
| else |
| { |
| Elf_Internal_Sym *isym; |
| |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL); |
| } |
| } |
| |
| (*_bfd_error_handler) |
| (_("%B: TLS transition from %s to %s against `%s' at 0x%lx " |
| "in section `%A' failed"), |
| abfd, sec, from->name, to->name, name, |
| (unsigned long) rel->r_offset); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| *r_type = to_type; |
| return TRUE; |
| } |
| |
| /* Rename some of the generic section flags to better document how they |
| are used here. */ |
| #define need_convert_load sec_flg0 |
| |
| /* Look through the relocs for a section during the first phase, and |
| calculate needed space in the global offset table, procedure |
| linkage table, and dynamic reloc sections. */ |
| |
| static bfd_boolean |
| elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info, |
| asection *sec, |
| const Elf_Internal_Rela *relocs) |
| { |
| struct elf_x86_64_link_hash_table *htab; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| const Elf_Internal_Rela *rel; |
| const Elf_Internal_Rela *rel_end; |
| asection *sreloc; |
| bfd_boolean use_plt_got; |
| |
| if (bfd_link_relocatable (info)) |
| return TRUE; |
| |
| BFD_ASSERT (is_x86_64_elf (abfd)); |
| |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| use_plt_got = get_elf_x86_64_backend_data (abfd) == &elf_x86_64_arch_bed; |
| |
| symtab_hdr = &elf_symtab_hdr (abfd); |
| sym_hashes = elf_sym_hashes (abfd); |
| |
| sreloc = NULL; |
| |
| rel_end = relocs + sec->reloc_count; |
| for (rel = relocs; rel < rel_end; rel++) |
| { |
| unsigned int r_type; |
| unsigned long r_symndx; |
| struct elf_link_hash_entry *h; |
| Elf_Internal_Sym *isym; |
| const char *name; |
| bfd_boolean size_reloc; |
| |
| r_symndx = htab->r_sym (rel->r_info); |
| r_type = ELF32_R_TYPE (rel->r_info); |
| |
| if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) |
| { |
| (*_bfd_error_handler) (_("%B: bad symbol index: %d"), |
| abfd, r_symndx); |
| return FALSE; |
| } |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| /* A local symbol. */ |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| return FALSE; |
| |
| /* Check relocation against local STT_GNU_IFUNC symbol. */ |
| if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) |
| { |
| h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, |
| TRUE); |
| if (h == NULL) |
| return FALSE; |
| |
| /* Fake a STT_GNU_IFUNC symbol. */ |
| h->type = STT_GNU_IFUNC; |
| h->def_regular = 1; |
| h->ref_regular = 1; |
| h->forced_local = 1; |
| h->root.type = bfd_link_hash_defined; |
| } |
| else |
| h = NULL; |
| } |
| else |
| { |
| isym = NULL; |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| |
| /* Check invalid x32 relocations. */ |
| if (!ABI_64_P (abfd)) |
| switch (r_type) |
| { |
| default: |
| break; |
| |
| case R_X86_64_DTPOFF64: |
| case R_X86_64_TPOFF64: |
| case R_X86_64_PC64: |
| case R_X86_64_GOTOFF64: |
| case R_X86_64_GOT64: |
| case R_X86_64_GOTPCREL64: |
| case R_X86_64_GOTPC64: |
| case R_X86_64_GOTPLT64: |
| case R_X86_64_PLTOFF64: |
| { |
| if (h) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, |
| NULL); |
| (*_bfd_error_handler) |
| (_("%B: relocation %s against symbol `%s' isn't " |
| "supported in x32 mode"), abfd, |
| x86_64_elf_howto_table[r_type].name, name); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| break; |
| } |
| |
| if (h != NULL) |
| { |
| /* Create the ifunc sections for static executables. If we |
| never see an indirect function symbol nor we are building |
| a static executable, those sections will be empty and |
| won't appear in output. */ |
| switch (r_type) |
| { |
| default: |
| break; |
| |
| case R_X86_64_PC32_BND: |
| case R_X86_64_PLT32_BND: |
| case R_X86_64_PC32: |
| case R_X86_64_PLT32: |
| case R_X86_64_32: |
| case R_X86_64_64: |
| /* MPX PLT is supported only if elf_x86_64_arch_bed |
| is used in 64-bit mode. */ |
| if (ABI_64_P (abfd) |
| && info->bndplt |
| && (get_elf_x86_64_backend_data (abfd) |
| == &elf_x86_64_arch_bed)) |
| { |
| elf_x86_64_hash_entry (h)->has_bnd_reloc = 1; |
| |
| /* Create the second PLT for Intel MPX support. */ |
| if (htab->plt_bnd == NULL) |
| { |
| unsigned int plt_bnd_align; |
| const struct elf_backend_data *bed; |
| |
| bed = get_elf_backend_data (info->output_bfd); |
| BFD_ASSERT (sizeof (elf_x86_64_bnd_plt2_entry) == 8 |
| && (sizeof (elf_x86_64_bnd_plt2_entry) |
| == sizeof (elf_x86_64_legacy_plt2_entry))); |
| plt_bnd_align = 3; |
| |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| htab->plt_bnd |
| = bfd_make_section_anyway_with_flags (htab->elf.dynobj, |
| ".plt.bnd", |
| (bed->dynamic_sec_flags |
| | SEC_ALLOC |
| | SEC_CODE |
| | SEC_LOAD |
| | SEC_READONLY)); |
| if (htab->plt_bnd == NULL |
| || !bfd_set_section_alignment (htab->elf.dynobj, |
| htab->plt_bnd, |
| plt_bnd_align)) |
| return FALSE; |
| } |
| } |
| |
| case R_X86_64_32S: |
| case R_X86_64_PC64: |
| case R_X86_64_GOTPCREL: |
| case R_X86_64_GOTPCRELX: |
| case R_X86_64_REX_GOTPCRELX: |
| case R_X86_64_GOTPCREL64: |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info)) |
| return FALSE; |
| break; |
| } |
| |
| /* It is referenced by a non-shared object. */ |
| h->ref_regular = 1; |
| h->root.non_ir_ref = 1; |
| |
| if (h->type == STT_GNU_IFUNC) |
| elf_tdata (info->output_bfd)->has_gnu_symbols |
| |= elf_gnu_symbol_ifunc; |
| } |
| |
| if (! elf_x86_64_tls_transition (info, abfd, sec, NULL, |
| symtab_hdr, sym_hashes, |
| &r_type, GOT_UNKNOWN, |
| rel, rel_end, h, r_symndx)) |
| return FALSE; |
| |
| switch (r_type) |
| { |
| case R_X86_64_TLSLD: |
| htab->tls_ld_got.refcount += 1; |
| goto create_got; |
| |
| case R_X86_64_TPOFF32: |
| if (!bfd_link_executable (info) && ABI_64_P (abfd)) |
| { |
| if (h) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, |
| NULL); |
| (*_bfd_error_handler) |
| (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), |
| abfd, |
| x86_64_elf_howto_table[r_type].name, name); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| break; |
| |
| case R_X86_64_GOTTPOFF: |
| if (!bfd_link_executable (info)) |
| info->flags |= DF_STATIC_TLS; |
| /* Fall through */ |
| |
| case R_X86_64_GOT32: |
| case R_X86_64_GOTPCREL: |
| case R_X86_64_GOTPCRELX: |
| case R_X86_64_REX_GOTPCRELX: |
| case R_X86_64_TLSGD: |
| case R_X86_64_GOT64: |
| case R_X86_64_GOTPCREL64: |
| case R_X86_64_GOTPLT64: |
| case R_X86_64_GOTPC32_TLSDESC: |
| case R_X86_64_TLSDESC_CALL: |
| /* This symbol requires a global offset table entry. */ |
| { |
| int tls_type, old_tls_type; |
| |
| switch (r_type) |
| { |
| default: tls_type = GOT_NORMAL; break; |
| case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break; |
| case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break; |
| case R_X86_64_GOTPC32_TLSDESC: |
| case R_X86_64_TLSDESC_CALL: |
| tls_type = GOT_TLS_GDESC; break; |
| } |
| |
| if (h != NULL) |
| { |
| h->got.refcount += 1; |
| old_tls_type = elf_x86_64_hash_entry (h)->tls_type; |
| } |
| else |
| { |
| bfd_signed_vma *local_got_refcounts; |
| |
| /* This is a global offset table entry for a local symbol. */ |
| local_got_refcounts = elf_local_got_refcounts (abfd); |
| if (local_got_refcounts == NULL) |
| { |
| bfd_size_type size; |
| |
| size = symtab_hdr->sh_info; |
| size *= sizeof (bfd_signed_vma) |
| + sizeof (bfd_vma) + sizeof (char); |
| local_got_refcounts = ((bfd_signed_vma *) |
| bfd_zalloc (abfd, size)); |
| if (local_got_refcounts == NULL) |
| return FALSE; |
| elf_local_got_refcounts (abfd) = local_got_refcounts; |
| elf_x86_64_local_tlsdesc_gotent (abfd) |
| = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info); |
| elf_x86_64_local_got_tls_type (abfd) |
| = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info); |
| } |
| local_got_refcounts[r_symndx] += 1; |
| old_tls_type |
| = elf_x86_64_local_got_tls_type (abfd) [r_symndx]; |
| } |
| |
| /* If a TLS symbol is accessed using IE at least once, |
| there is no point to use dynamic model for it. */ |
| if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN |
| && (! GOT_TLS_GD_ANY_P (old_tls_type) |
| || tls_type != GOT_TLS_IE)) |
| { |
| if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type)) |
| tls_type = old_tls_type; |
| else if (GOT_TLS_GD_ANY_P (old_tls_type) |
| && GOT_TLS_GD_ANY_P (tls_type)) |
| tls_type |= old_tls_type; |
| else |
| { |
| if (h) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (abfd, symtab_hdr, |
| isym, NULL); |
| (*_bfd_error_handler) |
| (_("%B: '%s' accessed both as normal and thread local symbol"), |
| abfd, name); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| } |
| |
| if (old_tls_type != tls_type) |
| { |
| if (h != NULL) |
| elf_x86_64_hash_entry (h)->tls_type = tls_type; |
| else |
| elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type; |
| } |
| } |
| /* Fall through */ |
| |
| case R_X86_64_GOTOFF64: |
| case R_X86_64_GOTPC32: |
| case R_X86_64_GOTPC64: |
| create_got: |
| if (htab->elf.sgot == NULL) |
| { |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| if (!_bfd_elf_create_got_section (htab->elf.dynobj, |
| info)) |
| return FALSE; |
| } |
| break; |
| |
| case R_X86_64_PLT32: |
| case R_X86_64_PLT32_BND: |
| /* This symbol requires a procedure linkage table entry. We |
| actually build the entry in adjust_dynamic_symbol, |
| because this might be a case of linking PIC code which is |
| never referenced by a dynamic object, in which case we |
| don't need to generate a procedure linkage table entry |
| after all. */ |
| |
| /* If this is a local symbol, we resolve it directly without |
| creating a procedure linkage table entry. */ |
| if (h == NULL) |
| continue; |
| |
| h->needs_plt = 1; |
| h->plt.refcount += 1; |
| break; |
| |
| case R_X86_64_PLTOFF64: |
| /* This tries to form the 'address' of a function relative |
| to GOT. For global symbols we need a PLT entry. */ |
| if (h != NULL) |
| { |
| h->needs_plt = 1; |
| h->plt.refcount += 1; |
| } |
| goto create_got; |
| |
| case R_X86_64_SIZE32: |
| case R_X86_64_SIZE64: |
| size_reloc = TRUE; |
| goto do_size; |
| |
| case R_X86_64_32: |
| if (!ABI_64_P (abfd)) |
| goto pointer; |
| case R_X86_64_8: |
| case R_X86_64_16: |
| case R_X86_64_32S: |
| /* Let's help debug shared library creation. These relocs |
| cannot be used in shared libs. Don't error out for |
| sections we don't care about, such as debug sections or |
| non-constant sections. */ |
| if (bfd_link_pic (info) |
| && (sec->flags & SEC_ALLOC) != 0 |
| && (sec->flags & SEC_READONLY) != 0) |
| { |
| if (h) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL); |
| (*_bfd_error_handler) |
| (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), |
| abfd, x86_64_elf_howto_table[r_type].name, name); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| /* Fall through. */ |
| |
| case R_X86_64_PC8: |
| case R_X86_64_PC16: |
| case R_X86_64_PC32: |
| case R_X86_64_PC32_BND: |
| case R_X86_64_PC64: |
| case R_X86_64_64: |
| pointer: |
| if (h != NULL && bfd_link_executable (info)) |
| { |
| /* If this reloc is in a read-only section, we might |
| need a copy reloc. We can't check reliably at this |
| stage whether the section is read-only, as input |
| sections have not yet been mapped to output sections. |
| Tentatively set the flag for now, and correct in |
| adjust_dynamic_symbol. */ |
| h->non_got_ref = 1; |
| |
| /* We may need a .plt entry if the function this reloc |
| refers to is in a shared lib. */ |
| h->plt.refcount += 1; |
| if (r_type == R_X86_64_PC32) |
| { |
| /* Since something like ".long foo - ." may be used |
| as pointer, make sure that PLT is used if foo is |
| a function defined in a shared library. */ |
| if ((sec->flags & SEC_CODE) == 0) |
| h->pointer_equality_needed = 1; |
| } |
| else if (r_type != R_X86_64_PC32_BND |
| && r_type != R_X86_64_PC64) |
| { |
| h->pointer_equality_needed = 1; |
| /* At run-time, R_X86_64_64 can be resolved for both |
| x86-64 and x32. But R_X86_64_32 and R_X86_64_32S |
| can only be resolved for x32. */ |
| if ((sec->flags & SEC_READONLY) == 0 |
| && (r_type == R_X86_64_64 |
| || (!ABI_64_P (abfd) |
| && (r_type == R_X86_64_32 |
| || r_type == R_X86_64_32S)))) |
| { |
| struct elf_x86_64_link_hash_entry *eh |
| = (struct elf_x86_64_link_hash_entry *) h; |
| eh->func_pointer_refcount += 1; |
| } |
| } |
| } |
| |
| size_reloc = FALSE; |
| do_size: |
| /* If we are creating a shared library, and this is a reloc |
| against a global symbol, or a non PC relative reloc |
| against a local symbol, then we need to copy the reloc |
| into the shared library. However, if we are linking with |
| -Bsymbolic, we do not need to copy a reloc against a |
| global symbol which is defined in an object we are |
| including in the link (i.e., DEF_REGULAR is set). At |
| this point we have not seen all the input files, so it is |
| possible that DEF_REGULAR is not set now but will be set |
| later (it is never cleared). In case of a weak definition, |
| DEF_REGULAR may be cleared later by a strong definition in |
| a shared library. We account for that possibility below by |
| storing information in the relocs_copied field of the hash |
| table entry. A similar situation occurs when creating |
| shared libraries and symbol visibility changes render the |
| symbol local. |
| |
| If on the other hand, we are creating an executable, we |
| may need to keep relocations for symbols satisfied by a |
| dynamic library if we manage to avoid copy relocs for the |
| symbol. */ |
| if ((bfd_link_pic (info) |
| && (sec->flags & SEC_ALLOC) != 0 |
| && (! IS_X86_64_PCREL_TYPE (r_type) |
| || (h != NULL |
| && (! SYMBOLIC_BIND (info, h) |
| || h->root.type == bfd_link_hash_defweak |
| || !h->def_regular)))) |
| || (ELIMINATE_COPY_RELOCS |
| && !bfd_link_pic (info) |
| && (sec->flags & SEC_ALLOC) != 0 |
| && h != NULL |
| && (h->root.type == bfd_link_hash_defweak |
| || !h->def_regular))) |
| { |
| struct elf_dyn_relocs *p; |
| struct elf_dyn_relocs **head; |
| |
| /* We must copy these reloc types into the output file. |
| Create a reloc section in dynobj and make room for |
| this reloc. */ |
| if (sreloc == NULL) |
| { |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| |
| sreloc = _bfd_elf_make_dynamic_reloc_section |
| (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2, |
| abfd, /*rela?*/ TRUE); |
| |
| if (sreloc == NULL) |
| return FALSE; |
| } |
| |
| /* If this is a global symbol, we count the number of |
| relocations we need for this symbol. */ |
| if (h != NULL) |
| { |
| head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs; |
| } |
| else |
| { |
| /* Track dynamic relocs needed for local syms too. |
| We really need local syms available to do this |
| easily. Oh well. */ |
| asection *s; |
| void **vpp; |
| |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| return FALSE; |
| |
| s = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| if (s == NULL) |
| s = sec; |
| |
| /* Beware of type punned pointers vs strict aliasing |
| rules. */ |
| vpp = &(elf_section_data (s)->local_dynrel); |
| head = (struct elf_dyn_relocs **)vpp; |
| } |
| |
| p = *head; |
| if (p == NULL || p->sec != sec) |
| { |
| bfd_size_type amt = sizeof *p; |
| |
| p = ((struct elf_dyn_relocs *) |
| bfd_alloc (htab->elf.dynobj, amt)); |
| if (p == NULL) |
| return FALSE; |
| p->next = *head; |
| *head = p; |
| p->sec = sec; |
| p->count = 0; |
| p->pc_count = 0; |
| } |
| |
| p->count += 1; |
| /* Count size relocation as PC-relative relocation. */ |
| if (IS_X86_64_PCREL_TYPE (r_type) || size_reloc) |
| p->pc_count += 1; |
| } |
| break; |
| |
| /* This relocation describes the C++ object vtable hierarchy. |
| Reconstruct it for later use during GC. */ |
| case R_X86_64_GNU_VTINHERIT: |
| if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| return FALSE; |
| break; |
| |
| /* This relocation describes which C++ vtable entries are actually |
| used. Record for later use during GC. */ |
| case R_X86_64_GNU_VTENTRY: |
| BFD_ASSERT (h != NULL); |
| if (h != NULL |
| && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
| return FALSE; |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (use_plt_got |
| && h != NULL |
| && h->plt.refcount > 0 |
| && (((info->flags & DF_BIND_NOW) && !h->pointer_equality_needed) |
| || h->got.refcount > 0) |
| && htab->plt_got == NULL) |
| { |
| /* Create the GOT procedure linkage table. */ |
| unsigned int plt_got_align; |
| const struct elf_backend_data *bed; |
| |
| bed = get_elf_backend_data (info->output_bfd); |
| BFD_ASSERT (sizeof (elf_x86_64_legacy_plt2_entry) == 8 |
| && (sizeof (elf_x86_64_bnd_plt2_entry) |
| == sizeof (elf_x86_64_legacy_plt2_entry))); |
| plt_got_align = 3; |
| |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| htab->plt_got |
| = bfd_make_section_anyway_with_flags (htab->elf.dynobj, |
| ".plt.got", |
| (bed->dynamic_sec_flags |
| | SEC_ALLOC |
| | SEC_CODE |
| | SEC_LOAD |
| | SEC_READONLY)); |
| if (htab->plt_got == NULL |
| || !bfd_set_section_alignment (htab->elf.dynobj, |
| htab->plt_got, |
| plt_got_align)) |
| return FALSE; |
| } |
| |
| if ((r_type == R_X86_64_GOTPCREL |
| || r_type == R_X86_64_GOTPCRELX |
| || r_type == R_X86_64_REX_GOTPCRELX) |
| && (h == NULL || h->type != STT_GNU_IFUNC)) |
| sec->need_convert_load = 1; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Return the section that should be marked against GC for a given |
| relocation. */ |
| |
| static asection * |
| elf_x86_64_gc_mark_hook (asection *sec, |
| struct bfd_link_info *info, |
| Elf_Internal_Rela *rel, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| if (h != NULL) |
| switch (ELF32_R_TYPE (rel->r_info)) |
| { |
| case R_X86_64_GNU_VTINHERIT: |
| case R_X86_64_GNU_VTENTRY: |
| return NULL; |
| } |
| |
| return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
| } |
| |
| /* Update the got entry reference counts for the section being removed. */ |
| |
| static bfd_boolean |
| elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info, |
| asection *sec, |
| const Elf_Internal_Rela *relocs) |
| { |
| struct elf_x86_64_link_hash_table *htab; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| bfd_signed_vma *local_got_refcounts; |
| const Elf_Internal_Rela *rel, *relend; |
| |
| if (bfd_link_relocatable (info)) |
| return TRUE; |
| |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| elf_section_data (sec)->local_dynrel = NULL; |
| |
| symtab_hdr = &elf_symtab_hdr (abfd); |
| sym_hashes = elf_sym_hashes (abfd); |
| local_got_refcounts = elf_local_got_refcounts (abfd); |
| |
| htab = elf_x86_64_hash_table (info); |
| relend = relocs + sec->reloc_count; |
| for (rel = relocs; rel < relend; rel++) |
| { |
| unsigned long r_symndx; |
| unsigned int r_type; |
| struct elf_link_hash_entry *h = NULL; |
| bfd_boolean pointer_reloc; |
| |
| r_symndx = htab->r_sym (rel->r_info); |
| if (r_symndx >= symtab_hdr->sh_info) |
| { |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| else |
| { |
| /* A local symbol. */ |
| Elf_Internal_Sym *isym; |
| |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| |
| /* Check relocation against local STT_GNU_IFUNC symbol. */ |
| if (isym != NULL |
| && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) |
| { |
| h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE); |
| if (h == NULL) |
| abort (); |
| } |
| } |
| |
| if (h) |
| { |
| struct elf_x86_64_link_hash_entry *eh; |
| struct elf_dyn_relocs **pp; |
| struct elf_dyn_relocs *p; |
| |
| eh = (struct elf_x86_64_link_hash_entry *) h; |
| |
| for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) |
| if (p->sec == sec) |
| { |
| /* Everything must go for SEC. */ |
| *pp = p->next; |
| break; |
| } |
| } |
| |
| r_type = ELF32_R_TYPE (rel->r_info); |
| if (! elf_x86_64_tls_transition (info, abfd, sec, NULL, |
| symtab_hdr, sym_hashes, |
| &r_type, GOT_UNKNOWN, |
| rel, relend, h, r_symndx)) |
| return FALSE; |
| |
| pointer_reloc = FALSE; |
| switch (r_type) |
| { |
| case R_X86_64_TLSLD: |
| if (htab->tls_ld_got.refcount > 0) |
| htab->tls_ld_got.refcount -= 1; |
| break; |
| |
| case R_X86_64_TLSGD: |
| case R_X86_64_GOTPC32_TLSDESC: |
| case R_X86_64_TLSDESC_CALL: |
| case R_X86_64_GOTTPOFF: |
| case R_X86_64_GOT32: |
| case R_X86_64_GOTPCREL: |
| case R_X86_64_GOTPCRELX: |
| case R_X86_64_REX_GOTPCRELX: |
| case R_X86_64_GOT64: |
| case R_X86_64_GOTPCREL64: |
| case R_X86_64_GOTPLT64: |
| if (h != NULL) |
| { |
| if (h->got.refcount > 0) |
| h->got.refcount -= 1; |
| if (h->type == STT_GNU_IFUNC) |
| { |
| if (h->plt.refcount > 0) |
| h->plt.refcount -= 1; |
| } |
| } |
| else if (local_got_refcounts != NULL) |
| { |
| if (local_got_refcounts[r_symndx] > 0) |
| local_got_refcounts[r_symndx] -= 1; |
| } |
| break; |
| |
| case R_X86_64_32: |
| case R_X86_64_32S: |
| pointer_reloc = !ABI_64_P (abfd); |
| goto pointer; |
| |
| case R_X86_64_64: |
| pointer_reloc = TRUE; |
| case R_X86_64_8: |
| case R_X86_64_16: |
| case R_X86_64_PC8: |
| case R_X86_64_PC16: |
| case R_X86_64_PC32: |
| case R_X86_64_PC32_BND: |
| case R_X86_64_PC64: |
| case R_X86_64_SIZE32: |
| case R_X86_64_SIZE64: |
| pointer: |
| if (bfd_link_pic (info) |
| && (h == NULL || h->type != STT_GNU_IFUNC)) |
| break; |
| /* Fall thru */ |
| |
| case R_X86_64_PLT32: |
| case R_X86_64_PLT32_BND: |
| case R_X86_64_PLTOFF64: |
| if (h != NULL) |
| { |
| if (h->plt.refcount > 0) |
| h->plt.refcount -= 1; |
| if (pointer_reloc && (sec->flags & SEC_READONLY) == 0) |
| { |
| struct elf_x86_64_link_hash_entry *eh |
| = (struct elf_x86_64_link_hash_entry *) h; |
| if (eh->func_pointer_refcount > 0) |
| eh->func_pointer_refcount -= 1; |
| } |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Adjust a symbol defined by a dynamic object and referenced by a |
| regular object. The current definition is in some section of the |
| dynamic object, but we're not including those sections. We have to |
| change the definition to something the rest of the link can |
| understand. */ |
| |
| static bfd_boolean |
| elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| struct elf_x86_64_link_hash_table *htab; |
| asection *s; |
| struct elf_x86_64_link_hash_entry *eh; |
| struct elf_dyn_relocs *p; |
| |
| /* STT_GNU_IFUNC symbol must go through PLT. */ |
| if (h->type == STT_GNU_IFUNC) |
| { |
| /* All local STT_GNU_IFUNC references must be treate as local |
| calls via local PLT. */ |
| if (h->ref_regular |
| && SYMBOL_CALLS_LOCAL (info, h)) |
| { |
| bfd_size_type pc_count = 0, count = 0; |
| struct elf_dyn_relocs **pp; |
| |
| eh = (struct elf_x86_64_link_hash_entry *) h; |
| for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| pc_count += p->pc_count; |
| p->count -= p->pc_count; |
| p->pc_count = 0; |
| count += p->count; |
| if (p->count == 0) |
| *pp = p->next; |
| else |
| pp = &p->next; |
| } |
| |
| if (pc_count || count) |
| { |
| h->needs_plt = 1; |
| h->non_got_ref = 1; |
| if (h->plt.refcount <= 0) |
| h->plt.refcount = 1; |
| else |
| h->plt.refcount += 1; |
| } |
| } |
| |
| if (h->plt.refcount <= 0) |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| return TRUE; |
| } |
| |
| /* If this is a function, put it in the procedure linkage table. We |
| will fill in the contents of the procedure linkage table later, |
| when we know the address of the .got section. */ |
| if (h->type == STT_FUNC |
| || h->needs_plt) |
| { |
| if (h->plt.refcount <= 0 |
| || SYMBOL_CALLS_LOCAL (info, h) |
| || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| && h->root.type == bfd_link_hash_undefweak)) |
| { |
| /* This case can occur if we saw a PLT32 reloc in an input |
| file, but the symbol was never referred to by a dynamic |
| object, or if all references were garbage collected. In |
| such a case, we don't actually need to build a procedure |
| linkage table, and we can just do a PC32 reloc instead. */ |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| |
| return TRUE; |
| } |
| else |
| /* It's possible that we incorrectly decided a .plt reloc was |
| needed for an R_X86_64_PC32 reloc to a non-function sym in |
| check_relocs. We can't decide accurately between function and |
| non-function syms in check-relocs; Objects loaded later in |
| the link may change h->type. So fix it now. */ |
| h->plt.offset = (bfd_vma) -1; |
| |
| /* If this is a weak symbol, and there is a real definition, the |
| processor independent code will have arranged for us to see the |
| real definition first, and we can just use the same value. */ |
| if (h->u.weakdef != NULL) |
| { |
| BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
| || h->u.weakdef->root.type == bfd_link_hash_defweak); |
| h->root.u.def.section = h->u.weakdef->root.u.def.section; |
| h->root.u.def.value = h->u.weakdef->root.u.def.value; |
| if (ELIMINATE_COPY_RELOCS || info->nocopyreloc) |
| { |
| eh = (struct elf_x86_64_link_hash_entry *) h; |
| h->non_got_ref = h->u.weakdef->non_got_ref; |
| eh->needs_copy = h->u.weakdef->needs_copy; |
| } |
| return TRUE; |
| } |
| |
| /* This is a reference to a symbol defined by a dynamic object which |
| is not a function. */ |
| |
| /* If we are creating a shared library, we must presume that the |
| only references to the symbol are via the global offset table. |
| For such cases we need not do anything here; the relocations will |
| be handled correctly by relocate_section. */ |
| if (!bfd_link_executable (info)) |
| return TRUE; |
| |
| /* If there are no references to this symbol that do not use the |
| GOT, we don't need to generate a copy reloc. */ |
| if (!h->non_got_ref) |
| return TRUE; |
| |
| /* If -z nocopyreloc was given, we won't generate them either. */ |
| if (info->nocopyreloc) |
| { |
| h->non_got_ref = 0; |
| return TRUE; |
| } |
| |
| if (ELIMINATE_COPY_RELOCS) |
| { |
| eh = (struct elf_x86_64_link_hash_entry *) h; |
| for (p = eh->dyn_relocs; p != NULL; p = p->next) |
| { |
| s = p->sec->output_section; |
| if (s != NULL && (s->flags & SEC_READONLY) != 0) |
| break; |
| } |
| |
| /* If we didn't find any dynamic relocs in read-only sections, then |
| we'll be keeping the dynamic relocs and avoiding the copy reloc. */ |
| if (p == NULL) |
| { |
| h->non_got_ref = 0; |
| return TRUE; |
| } |
| } |
| |
| /* We must allocate the symbol in our .dynbss section, which will |
| become part of the .bss section of the executable. There will be |
| an entry for this symbol in the .dynsym section. The dynamic |
| object will contain position independent code, so all references |
| from the dynamic object to this symbol will go through the global |
| offset table. The dynamic linker will use the .dynsym entry to |
| determine the address it must put in the global offset table, so |
| both the dynamic object and the regular object will refer to the |
| same memory location for the variable. */ |
| |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker |
| to copy the initial value out of the dynamic object and into the |
| runtime process image. */ |
| if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) |
| { |
| const struct elf_backend_data *bed; |
| bed = get_elf_backend_data (info->output_bfd); |
| htab->srelbss->size += bed->s->sizeof_rela; |
| h->needs_copy = 1; |
| } |
| |
| s = htab->sdynbss; |
| |
| return _bfd_elf_adjust_dynamic_copy (info, h, s); |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| dynamic relocs. */ |
| |
| static bfd_boolean |
| elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf) |
| { |
| struct bfd_link_info *info; |
| struct elf_x86_64_link_hash_table *htab; |
| struct elf_x86_64_link_hash_entry *eh; |
| struct elf_dyn_relocs *p; |
| const struct elf_backend_data *bed; |
| unsigned int plt_entry_size; |
| |
| if (h->root.type == bfd_link_hash_indirect) |
| return TRUE; |
| |
| eh = (struct elf_x86_64_link_hash_entry *) h; |
| |
| info = (struct bfd_link_info *) inf; |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| bed = get_elf_backend_data (info->output_bfd); |
| plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd); |
| |
| /* We can't use the GOT PLT if pointer equality is needed since |
| finish_dynamic_symbol won't clear symbol value and the dynamic |
| linker won't update the GOT slot. We will get into an infinite |
| loop at run-time. */ |
| if (htab->plt_got != NULL |
| && h->type != STT_GNU_IFUNC |
| && !h->pointer_equality_needed |
| && h->plt.refcount > 0 |
| && h->got.refcount > 0) |
| { |
| /* Don't use the regular PLT if there are both GOT and GOTPLT |
| reloctions. */ |
| h->plt.offset = (bfd_vma) -1; |
| |
| /* Use the GOT PLT. */ |
| eh->plt_got.refcount = 1; |
| } |
| |
| /* Clear the reference count of function pointer relocations if |
| symbol isn't a normal function. */ |
| if (h->type != STT_FUNC) |
| eh->func_pointer_refcount = 0; |
| |
| /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it |
| here if it is defined and referenced in a non-shared object. */ |
| if (h->type == STT_GNU_IFUNC |
| && h->def_regular) |
| { |
| if (_bfd_elf_allocate_ifunc_dyn_relocs (info, h, |
| &eh->dyn_relocs, |
| plt_entry_size, |
| plt_entry_size, |
| GOT_ENTRY_SIZE)) |
| { |
| asection *s = htab->plt_bnd; |
| if (h->plt.offset != (bfd_vma) -1 && s != NULL) |
| { |
| /* Use the .plt.bnd section if it is created. */ |
| eh->plt_bnd.offset = s->size; |
| |
| /* Make room for this entry in the .plt.bnd section. */ |
| s->size += sizeof (elf_x86_64_legacy_plt2_entry); |
| } |
| |
| return TRUE; |
| } |
| else |
| return FALSE; |
| } |
| /* Don't create the PLT entry if there are only function pointer |
| relocations which can be resolved at run-time. */ |
| else if (htab->elf.dynamic_sections_created |
| && (h->plt.refcount > eh->func_pointer_refcount |
| || eh->plt_got.refcount > 0)) |
| { |
| bfd_boolean use_plt_got; |
| |
| /* Clear the reference count of function pointer relocations |
| if PLT is used. */ |
| eh->func_pointer_refcount = 0; |
| |
| if ((info->flags & DF_BIND_NOW) && !h->pointer_equality_needed) |
| { |
| /* Don't use the regular PLT for DF_BIND_NOW. */ |
| h->plt.offset = (bfd_vma) -1; |
| |
| /* Use the GOT PLT. */ |
| h->got.refcount = 1; |
| eh->plt_got.refcount = 1; |
| } |
| |
| use_plt_got = eh->plt_got.refcount > 0; |
| |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| if (bfd_link_pic (info) |
| || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) |
| { |
| asection *s = htab->elf.splt; |
| asection *bnd_s = htab->plt_bnd; |
| asection *got_s = htab->plt_got; |
| |
| /* If this is the first .plt entry, make room for the special |
| first entry. The .plt section is used by prelink to undo |
| prelinking for dynamic relocations. */ |
| if (s->size == 0) |
| s->size = plt_entry_size; |
| |
| if (use_plt_got) |
| eh->plt_got.offset = got_s->size; |
| else |
| { |
| h->plt.offset = s->size; |
| if (bnd_s) |
| eh->plt_bnd.offset = bnd_s->size; |
| } |
| |
| /* If this symbol is not defined in a regular file, and we are |
| not generating a shared library, then set the symbol to this |
| location in the .plt. This is required to make function |
| pointers compare as equal between the normal executable and |
| the shared library. */ |
| if (! bfd_link_pic (info) |
| && !h->def_regular) |
| { |
| if (use_plt_got) |
| { |
| /* We need to make a call to the entry of the GOT PLT |
| instead of regular PLT entry. */ |
| h->root.u.def.section = got_s; |
| h->root.u.def.value = eh->plt_got.offset; |
| } |
| else |
| { |
| if (bnd_s) |
| { |
| /* We need to make a call to the entry of the second |
| PLT instead of regular PLT entry. */ |
| h->root.u.def.section = bnd_s; |
| h->root.u.def.value = eh->plt_bnd.offset; |
| } |
| else |
| { |
| h->root.u.def.section = s; |
| h->root.u.def.value = h->plt.offset; |
| } |
| } |
| } |
| |
| /* Make room for this entry. */ |
| if (use_plt_got) |
| got_s->size += sizeof (elf_x86_64_legacy_plt2_entry); |
| else |
| { |
| s->size += plt_entry_size; |
| if (bnd_s) |
| bnd_s->size += sizeof (elf_x86_64_legacy_plt2_entry); |
| |
| /* We also need to make an entry in the .got.plt section, |
| which will be placed in the .got section by the linker |
| script. */ |
| htab->elf.sgotplt->size += GOT_ENTRY_SIZE; |
| |
| /* We also need to make an entry in the .rela.plt |
| section. */ |
| htab->elf.srelplt->size += bed->s->sizeof_rela; |
| htab->elf.srelplt->reloc_count++; |
| } |
| } |
| else |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| } |
| else |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| |
| eh->tlsdesc_got = (bfd_vma) -1; |
| |
| /* If R_X86_64_GOTTPOFF symbol is now local to the binary, |
| make it a R_X86_64_TPOFF32 requiring no GOT entry. */ |
| if (h->got.refcount > 0 |
| && bfd_link_executable (info) |
| && h->dynindx == -1 |
| && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE) |
| { |
| h->got.offset = (bfd_vma) -1; |
| } |
| else if (h->got.refcount > 0) |
| { |
| asection *s; |
| bfd_boolean dyn; |
| int tls_type = elf_x86_64_hash_entry (h)->tls_type; |
| |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| if (GOT_TLS_GDESC_P (tls_type)) |
| { |
| eh->tlsdesc_got = htab->elf.sgotplt->size |
| - elf_x86_64_compute_jump_table_size (htab); |
| htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE; |
| h->got.offset = (bfd_vma) -2; |
| } |
| if (! GOT_TLS_GDESC_P (tls_type) |
| || GOT_TLS_GD_P (tls_type)) |
| { |
| s = htab->elf.sgot; |
| h->got.offset = s->size; |
| s->size += GOT_ENTRY_SIZE; |
| if (GOT_TLS_GD_P (tls_type)) |
| s->size += GOT_ENTRY_SIZE; |
| } |
| dyn = htab->elf.dynamic_sections_created; |
| /* R_X86_64_TLSGD needs one dynamic relocation if local symbol |
| and two if global. |
| R_X86_64_GOTTPOFF needs one dynamic relocation. */ |
| if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1) |
| || tls_type == GOT_TLS_IE) |
| htab->elf.srelgot->size += bed->s->sizeof_rela; |
| else if (GOT_TLS_GD_P (tls_type)) |
| htab->elf.srelgot->size += 2 * bed->s->sizeof_rela; |
| else if (! GOT_TLS_GDESC_P (tls_type) |
| && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak) |
| && (bfd_link_pic (info) |
| || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) |
| htab->elf.srelgot->size += bed->s->sizeof_rela; |
| if (GOT_TLS_GDESC_P (tls_type)) |
| { |
| htab->elf.srelplt->size += bed->s->sizeof_rela; |
| htab->tlsdesc_plt = (bfd_vma) -1; |
| } |
| } |
| else |
| h->got.offset = (bfd_vma) -1; |
| |
| if (eh->dyn_relocs == NULL) |
| return TRUE; |
| |
| /* In the shared -Bsymbolic case, discard space allocated for |
| dynamic pc-relative relocs against symbols which turn out to be |
| defined in regular objects. For the normal shared case, discard |
| space for pc-relative relocs that have become local due to symbol |
| visibility changes. */ |
| |
| if (bfd_link_pic (info)) |
| { |
| /* Relocs that use pc_count are those that appear on a call |
| insn, or certain REL relocs that can generated via assembly. |
| We want calls to protected symbols to resolve directly to the |
| function rather than going via the plt. If people want |
| function pointer comparisons to work as expected then they |
| should avoid writing weird assembly. */ |
| if (SYMBOL_CALLS_LOCAL (info, h)) |
| { |
| struct elf_dyn_relocs **pp; |
| |
| for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| p->count -= p->pc_count; |
| p->pc_count = 0; |
| if (p->count == 0) |
| *pp = p->next; |
| else |
| pp = &p->next; |
| } |
| } |
| |
| /* Also discard relocs on undefined weak syms with non-default |
| visibility. */ |
| if (eh->dyn_relocs != NULL) |
| { |
| if (h->root.type == bfd_link_hash_undefweak) |
| { |
| if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) |
| eh->dyn_relocs = NULL; |
| |
| /* Make sure undefined weak symbols are output as a dynamic |
| symbol in PIEs. */ |
| else if (h->dynindx == -1 |
| && ! h->forced_local |
| && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| /* For PIE, discard space for pc-relative relocs against |
| symbols which turn out to need copy relocs. */ |
| else if (bfd_link_executable (info) |
| && (h->needs_copy || eh->needs_copy) |
| && h->def_dynamic |
| && !h->def_regular) |
| { |
| struct elf_dyn_relocs **pp; |
| |
| for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| if (p->pc_count != 0) |
| *pp = p->next; |
| else |
| pp = &p->next; |
| } |
| } |
| } |
| } |
| else if (ELIMINATE_COPY_RELOCS) |
| { |
| /* For the non-shared case, discard space for relocs against |
| symbols which turn out to need copy relocs or are not |
| dynamic. Keep dynamic relocations for run-time function |
| pointer initialization. */ |
| |
| if ((!h->non_got_ref || eh->func_pointer_refcount > 0) |
| && ((h->def_dynamic |
| && !h->def_regular) |
| || (htab->elf.dynamic_sections_created |
| && (h->root.type == bfd_link_hash_undefweak |
| || h->root.type == bfd_link_hash_undefined)))) |
| { |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && ! h->forced_local |
| && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| |
| /* If that succeeded, we know we'll be keeping all the |
| relocs. */ |
| if (h->dynindx != -1) |
| goto keep; |
| } |
| |
| eh->dyn_relocs = NULL; |
| eh->func_pointer_refcount = 0; |
| |
| keep: ; |
| } |
| |
| /* Finally, allocate space. */ |
| for (p = eh->dyn_relocs; p != NULL; p = p->next) |
| { |
| asection * sreloc; |
| |
| sreloc = elf_section_data (p->sec)->sreloc; |
| |
| BFD_ASSERT (sreloc != NULL); |
| |
| sreloc->size += p->count * bed->s->sizeof_rela; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| local dynamic relocs. */ |
| |
| static bfd_boolean |
| elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf) |
| { |
| struct elf_link_hash_entry *h |
| = (struct elf_link_hash_entry *) *slot; |
| |
| if (h->type != STT_GNU_IFUNC |
| || !h->def_regular |
| || !h->ref_regular |
| || !h->forced_local |
| || h->root.type != bfd_link_hash_defined) |
| abort (); |
| |
| return elf_x86_64_allocate_dynrelocs (h, inf); |
| } |
| |
| /* Find any dynamic relocs that apply to read-only sections. */ |
| |
| static bfd_boolean |
| elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h, |
| void * inf) |
| { |
| struct elf_x86_64_link_hash_entry *eh; |
| struct elf_dyn_relocs *p; |
| |
| /* Skip local IFUNC symbols. */ |
| if (h->forced_local && h->type == STT_GNU_IFUNC) |
| return TRUE; |
| |
| eh = (struct elf_x86_64_link_hash_entry *) h; |
| for (p = eh->dyn_relocs; p != NULL; p = p->next) |
| { |
| asection *s = p->sec->output_section; |
| |
| if (s != NULL && (s->flags & SEC_READONLY) != 0) |
| { |
| struct bfd_link_info *info = (struct bfd_link_info *) inf; |
| |
| info->flags |= DF_TEXTREL; |
| |
| if ((info->warn_shared_textrel && bfd_link_pic (info)) |
| || info->error_textrel) |
| info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'\n"), |
| p->sec->owner, h->root.root.string, |
| p->sec); |
| |
| /* Not an error, just cut short the traversal. */ |
| return FALSE; |
| } |
| } |
| return TRUE; |
| } |
| |
| /* With the local symbol, foo, we convert |
| mov foo@GOTPCREL(%rip), %reg |
| to |
| lea foo(%rip), %reg |
| and convert |
| call/jmp *foo@GOTPCREL(%rip) |
| to |
| nop call foo/jmp foo nop |
| When PIC is false, convert |
| test %reg, foo@GOTPCREL(%rip) |
| to |
| test $foo, %reg |
| and convert |
| binop foo@GOTPCREL(%rip), %reg |
| to |
| binop $foo, %reg |
| where binop is one of adc, add, and, cmp, or, sbb, sub, xor |
| instructions. */ |
| |
| static bfd_boolean |
| elf_x86_64_convert_load (bfd *abfd, asection *sec, |
| struct bfd_link_info *link_info) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| Elf_Internal_Rela *internal_relocs; |
| Elf_Internal_Rela *irel, *irelend; |
| bfd_byte *contents; |
| struct elf_x86_64_link_hash_table *htab; |
| bfd_boolean changed_contents; |
| bfd_boolean changed_relocs; |
| bfd_signed_vma *local_got_refcounts; |
| bfd_vma maxpagesize; |
| |
| /* Don't even try to convert non-ELF outputs. */ |
| if (!is_elf_hash_table (link_info->hash)) |
| return FALSE; |
| |
| /* Nothing to do if there is no need or no output. */ |
| if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC) |
| || sec->need_convert_load == 0 |
| || bfd_is_abs_section (sec->output_section)) |
| return TRUE; |
| |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| |
| /* Load the relocations for this section. */ |
| internal_relocs = (_bfd_elf_link_read_relocs |
| (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, |
| link_info->keep_memory)); |
| if (internal_relocs == NULL) |
| return FALSE; |
| |
| htab = elf_x86_64_hash_table (link_info); |
| changed_contents = FALSE; |
| changed_relocs = FALSE; |
| local_got_refcounts = elf_local_got_refcounts (abfd); |
| maxpagesize = get_elf_backend_data (abfd)->maxpagesize; |
| |
| /* Get the section contents. */ |
| if (elf_section_data (sec)->this_hdr.contents != NULL) |
| contents = elf_section_data (sec)->this_hdr.contents; |
| else |
| { |
| if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
| goto error_return; |
| } |
| |
| irelend = internal_relocs + sec->reloc_count; |
| for (irel = internal_relocs; irel < irelend; irel++) |
| { |
| unsigned int r_type = ELF32_R_TYPE (irel->r_info); |
| unsigned int r_symndx = htab->r_sym (irel->r_info); |
| unsigned int indx; |
| struct elf_link_hash_entry *h; |
| asection *tsec; |
| char symtype; |
| bfd_vma toff, roff; |
| bfd_signed_vma raddend; |
| unsigned int opcode; |
| unsigned int modrm; |
| |
| if (r_type != R_X86_64_GOTPCREL |
| && r_type != R_X86_64_GOTPCRELX |
| && r_type != R_X86_64_REX_GOTPCRELX) |
| continue; |
| |
| roff = irel->r_offset; |
| if (roff < (r_type == R_X86_64_REX_GOTPCRELX ? 3 : 2)) |
| continue; |
| |
| raddend = irel->r_addend; |
| /* Addend for 32-bit PC-relative relocation must be -4. */ |
| if (raddend != -4) |
| continue; |
| |
| opcode = bfd_get_8 (abfd, contents + roff - 2); |
| |
| /* It is OK to convert mov to lea. */ |
| if (opcode != 0x8b) |
| { |
| /* Only convert R_X86_64_GOTPCRELX and R_X86_64_REX_GOTPCRELX |
| for mov call, jmp or one of adc, add, and, cmp, or, sbb, |
| sub, test, xor instructions. */ |
| if (r_type != R_X86_64_GOTPCRELX |
| && r_type != R_X86_64_REX_GOTPCRELX) |
| continue; |
| |
| /* It is OK to convert indirect branch to direct branch. */ |
| if (opcode != 0xff) |
| { |
| /* It is OK to convert adc, add, and, cmp, or, sbb, sub, |
| test, xor only when PIC is false. */ |
| if (bfd_link_pic (link_info)) |
| continue; |
| } |
| } |
| |
| /* Get the symbol referred to by the reloc. */ |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| Elf_Internal_Sym *isym; |
| |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| |
| symtype = ELF_ST_TYPE (isym->st_info); |
| |
| /* STT_GNU_IFUNC must keep GOTPCREL relocations and skip |
| relocation against undefined symbols. */ |
| if (symtype == STT_GNU_IFUNC || isym->st_shndx == SHN_UNDEF) |
| continue; |
| |
| if (isym->st_shndx == SHN_ABS) |
| tsec = bfd_abs_section_ptr; |
| else if (isym->st_shndx == SHN_COMMON) |
| tsec = bfd_com_section_ptr; |
| else if (isym->st_shndx == SHN_X86_64_LCOMMON) |
| tsec = &_bfd_elf_large_com_section; |
| else |
| tsec = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| |
| h = NULL; |
| toff = isym->st_value; |
| } |
| else |
| { |
| indx = r_symndx - symtab_hdr->sh_info; |
| h = elf_sym_hashes (abfd)[indx]; |
| BFD_ASSERT (h != NULL); |
| |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| /* STT_GNU_IFUNC must keep GOTPCREL relocations. We also |
| avoid optimizing GOTPCREL relocations againt _DYNAMIC |
| since ld.so may use its link-time address. */ |
| if ((h->def_regular |
| || h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && h->type != STT_GNU_IFUNC |
| && h != htab->elf.hdynamic |
| && SYMBOL_REFERENCES_LOCAL (link_info, h)) |
| { |
| /* bfd_link_hash_new or bfd_link_hash_undefined is |
| set by an assignment in a linker script in |
| bfd_elf_record_link_assignment. FIXME: If we |
| ever get a linker error due relocation overflow, |
| we will skip this optimization. */ |
| if (h->def_regular |
| && (h->root.type == bfd_link_hash_new |
| || h->root.type == bfd_link_hash_undefined)) |
| goto convert; |
| tsec = h->root.u.def.section; |
| toff = h->root.u.def.value; |
| symtype = h->type; |
| } |
| else |
| continue; |
| } |
| |
| if (tsec->sec_info_type == SEC_INFO_TYPE_MERGE) |
| { |
| /* At this stage in linking, no SEC_MERGE symbol has been |
| adjusted, so all references to such symbols need to be |
| passed through _bfd_merged_section_offset. (Later, in |
| relocate_section, all SEC_MERGE symbols *except* for |
| section symbols have been adjusted.) |
| |
| gas may reduce relocations against symbols in SEC_MERGE |
| sections to a relocation against the section symbol when |
| the original addend was zero. When the reloc is against |
| a section symbol we should include the addend in the |
| offset passed to _bfd_merged_section_offset, since the |
| location of interest is the original symbol. On the |
| other hand, an access to "sym+addend" where "sym" is not |
| a section symbol should not include the addend; Such an |
| access is presumed to be an offset from "sym"; The |
| location of interest is just "sym". */ |
| if (symtype == STT_SECTION) |
| toff += raddend; |
| |
| toff = _bfd_merged_section_offset (abfd, &tsec, |
| elf_section_data (tsec)->sec_info, |
| toff); |
| |
| if (symtype != STT_SECTION) |
| toff += raddend; |
| } |
| else |
| toff += raddend; |
| |
| /* Don't convert if R_X86_64_PC32 relocation overflows. */ |
| if (tsec->output_section == sec->output_section) |
| { |
| if ((toff - roff + 0x80000000) > 0xffffffff) |
| continue; |
| } |
| else |
| { |
| asection *asect; |
| bfd_size_type size; |
| |
| /* At this point, we don't know the load addresses of TSEC |
| section nor SEC section. We estimate the distrance between |
| SEC and TSEC. */ |
| size = 0; |
| for (asect = sec->output_section; |
| asect != NULL && asect != tsec->output_section; |
| asect = asect->next) |
| { |
| asection *i; |
| for (i = asect->output_section->map_head.s; |
| i != NULL; |
| i = i->map_head.s) |
| { |
| size = align_power (size, i->alignment_power); |
| size += i->size; |
| } |
| } |
| |
| /* Don't convert GOTPCREL relocations if TSEC isn't placed |
| after SEC. */ |
| if (asect == NULL) |
| continue; |
| |
| /* Take PT_GNU_RELRO segment into account by adding |
| maxpagesize. */ |
| if ((toff + size + maxpagesize - roff + 0x80000000) |
| > 0xffffffff) |
| continue; |
| } |
| |
| convert: |
| if (opcode == 0xff) |
| { |
| /* We have "call/jmp *foo@GOTPCREL(%rip)". */ |
| unsigned int nop; |
| unsigned int disp; |
| bfd_vma nop_offset; |
| |
| /* Convert R_X86_64_GOTPCRELX and R_X86_64_REX_GOTPCRELX to |
| R_X86_64_PC32. */ |
| modrm = bfd_get_8 (abfd, contents + roff - 1); |
| if (modrm == 0x25) |
| { |
| /* Convert to "jmp foo nop". */ |
| modrm = 0xe9; |
| nop = NOP_OPCODE; |
| nop_offset = irel->r_offset + 3; |
| disp = bfd_get_32 (abfd, contents + irel->r_offset); |
| irel->r_offset -= 1; |
| bfd_put_32 (abfd, disp, contents + irel->r_offset); |
| } |
| else |
| { |
| /* Convert to "nop call foo". ADDR_PREFIX_OPCODE |
| is a nop prefix. */ |
| modrm = 0xe8; |
| nop = link_info->call_nop_byte; |
| if (link_info->call_nop_as_suffix) |
| { |
| nop_offset = irel->r_offset + 3; |
| disp = bfd_get_32 (abfd, contents + irel->r_offset); |
| irel->r_offset -= 1; |
| bfd_put_32 (abfd, disp, contents + irel->r_offset); |
| } |
| else |
| nop_offset = irel->r_offset - 2; |
| } |
| bfd_put_8 (abfd, nop, contents + nop_offset); |
| bfd_put_8 (abfd, modrm, contents + irel->r_offset - 1); |
| r_type = R_X86_64_PC32; |
| } |
| else |
| { |
| if (opcode == 0x8b) |
| { |
| /* Convert "mov foo@GOTPCREL(%rip), %reg" to |
| "lea foo(%rip), %reg". */ |
| opcode = 0x8d; |
| r_type = R_X86_64_PC32; |
| } |
| else |
| { |
| modrm = bfd_get_8 (abfd, contents + roff - 1); |
| if (opcode == 0x85) |
| { |
| /* Convert "test %reg, foo@GOTPCREL(%rip)" to |
| "test $foo, %reg". */ |
| modrm = 0xc0 | (modrm & 0x38) >> 3; |
| opcode = 0xf7; |
| } |
| else |
| { |
| /* Convert "binop foo@GOTPCREL(%rip), %reg" to |
| "binop $foo, %reg". */ |
| modrm = 0xc0 | (modrm & 0x38) >> 3 | (opcode & 0x3c); |
| opcode = 0x81; |
| } |
| bfd_put_8 (abfd, modrm, contents + roff - 1); |
| |
| if (r_type == R_X86_64_REX_GOTPCRELX) |
| { |
| /* Move the R bit to the B bit in REX byte. */ |
| unsigned int rex = bfd_get_8 (abfd, contents + roff - 3); |
| rex = (rex & ~REX_R) | (rex & REX_R) >> 2; |
| bfd_put_8 (abfd, rex, contents + roff - 3); |
| } |
| /* No addend for R_X86_64_32S relocation. */ |
| irel->r_addend = 0; |
| r_type = R_X86_64_32S; |
| } |
| |
| bfd_put_8 (abfd, opcode, contents + roff - 2); |
| } |
| |
| irel->r_info = htab->r_info (r_symndx, r_type); |
| changed_contents = TRUE; |
| changed_relocs = TRUE; |
| |
| if (h) |
| { |
| if (h->got.refcount > 0) |
| h->got.refcount -= 1; |
| } |
| else |
| { |
| if (local_got_refcounts != NULL |
| && local_got_refcounts[r_symndx] > 0) |
| local_got_refcounts[r_symndx] -= 1; |
| } |
| } |
| |
| if (contents != NULL |
| && elf_section_data (sec)->this_hdr.contents != contents) |
| { |
| if (!changed_contents && !link_info->keep_memory) |
| free (contents); |
| else |
| { |
| /* Cache the section contents for elf_link_input_bfd. */ |
| elf_section_data (sec)->this_hdr.contents = contents; |
| } |
| } |
| |
| if (elf_section_data (sec)->relocs != internal_relocs) |
| { |
| if (!changed_relocs) |
| free (internal_relocs); |
| else |
| elf_section_data (sec)->relocs = internal_relocs; |
| } |
| |
| return TRUE; |
| |
| error_return: |
| if (contents != NULL |
| && elf_section_data (sec)->this_hdr.contents != contents) |
| free (contents); |
| if (internal_relocs != NULL |
| && elf_section_data (sec)->relocs != internal_relocs) |
| free (internal_relocs); |
| return FALSE; |
| } |
| |
| /* Set the sizes of the dynamic sections. */ |
| |
| static bfd_boolean |
| elf_x86_64_size_dynamic_sections (bfd *output_bfd, |
| struct bfd_link_info *info) |
| { |
| struct elf_x86_64_link_hash_table *htab; |
| bfd *dynobj; |
| asection *s; |
| bfd_boolean relocs; |
| bfd *ibfd; |
| const struct elf_backend_data *bed; |
| |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| bed = get_elf_backend_data (output_bfd); |
| |
| dynobj = htab->elf.dynobj; |
| if (dynobj == NULL) |
| abort (); |
| |
| if (htab->elf.dynamic_sections_created) |
| { |
| /* Set the contents of the .interp section to the interpreter. */ |
| if (bfd_link_executable (info) && !info->nointerp) |
| { |
| s = bfd_get_linker_section (dynobj, ".interp"); |
| if (s == NULL) |
| abort (); |
| s->size = htab->dynamic_interpreter_size; |
| s->contents = (unsigned char *) htab->dynamic_interpreter; |
| } |
| } |
| |
| /* Set up .got offsets for local syms, and space for local dynamic |
| relocs. */ |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| { |
| bfd_signed_vma *local_got; |
| bfd_signed_vma *end_local_got; |
| char *local_tls_type; |
| bfd_vma *local_tlsdesc_gotent; |
| bfd_size_type locsymcount; |
| Elf_Internal_Shdr *symtab_hdr; |
| asection *srel; |
| |
| if (! is_x86_64_elf (ibfd)) |
| continue; |
| |
| for (s = ibfd->sections; s != NULL; s = s->next) |
| { |
| struct elf_dyn_relocs *p; |
| |
| if (!elf_x86_64_convert_load (ibfd, s, info)) |
| return FALSE; |
| |
| for (p = (struct elf_dyn_relocs *) |
| (elf_section_data (s)->local_dynrel); |
| p != NULL; |
| p = p->next) |
| { |
| if (!bfd_is_abs_section (p->sec) |
| && bfd_is_abs_section (p->sec->output_section)) |
| { |
| /* Input section has been discarded, either because |
| it is a copy of a linkonce section or due to |
| linker script /DISCARD/, so we'll be discarding |
| the relocs too. */ |
| } |
| else if (p->count != 0) |
| { |
| srel = elf_section_data (p->sec)->sreloc; |
| srel->size += p->count * bed->s->sizeof_rela; |
| if ((p->sec->output_section->flags & SEC_READONLY) != 0 |
| && (info->flags & DF_TEXTREL) == 0) |
| { |
| info->flags |= DF_TEXTREL; |
| if ((info->warn_shared_textrel && bfd_link_pic (info)) |
| || info->error_textrel) |
| info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'\n"), |
| p->sec->owner, p->sec); |
| } |
| } |
| } |
| } |
| |
| local_got = elf_local_got_refcounts (ibfd); |
| if (!local_got) |
| continue; |
| |
| symtab_hdr = &elf_symtab_hdr (ibfd); |
| locsymcount = symtab_hdr->sh_info; |
| end_local_got = local_got + locsymcount; |
| local_tls_type = elf_x86_64_local_got_tls_type (ibfd); |
| local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd); |
| s = htab->elf.sgot; |
| srel = htab->elf.srelgot; |
| for (; local_got < end_local_got; |
| ++local_got, ++local_tls_type, ++local_tlsdesc_gotent) |
| { |
| *local_tlsdesc_gotent = (bfd_vma) -1; |
| if (*local_got > 0) |
| { |
| if (GOT_TLS_GDESC_P (*local_tls_type)) |
| { |
| *local_tlsdesc_gotent = htab->elf.sgotplt->size |
| - elf_x86_64_compute_jump_table_size (htab); |
| htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE; |
| *local_got = (bfd_vma) -2; |
| } |
| if (! GOT_TLS_GDESC_P (*local_tls_type) |
| || GOT_TLS_GD_P (*local_tls_type)) |
| { |
| *local_got = s->size; |
| s->size += GOT_ENTRY_SIZE; |
| if (GOT_TLS_GD_P (*local_tls_type)) |
| s->size += GOT_ENTRY_SIZE; |
| } |
| if (bfd_link_pic (info) |
| || GOT_TLS_GD_ANY_P (*local_tls_type) |
| || *local_tls_type == GOT_TLS_IE) |
| { |
| if (GOT_TLS_GDESC_P (*local_tls_type)) |
| { |
| htab->elf.srelplt->size |
| += bed->s->sizeof_rela; |
| htab->tlsdesc_plt = (bfd_vma) -1; |
| } |
| if (! GOT_TLS_GDESC_P (*local_tls_type) |
| || GOT_TLS_GD_P (*local_tls_type)) |
| srel->size += bed->s->sizeof_rela; |
| } |
| } |
| else |
| *local_got = (bfd_vma) -1; |
| } |
| } |
| |
| if (htab->tls_ld_got.refcount > 0) |
| { |
| /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD |
| relocs. */ |
| htab->tls_ld_got.offset = htab->elf.sgot->size; |
| htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE; |
| htab->elf.srelgot->size += bed->s->sizeof_rela; |
| } |
| else |
| htab->tls_ld_got.offset = -1; |
| |
| /* Allocate global sym .plt and .got entries, and space for global |
| sym dynamic relocs. */ |
| elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs, |
| info); |
| |
| /* Allocate .plt and .got entries, and space for local symbols. */ |
| htab_traverse (htab->loc_hash_table, |
| elf_x86_64_allocate_local_dynrelocs, |
| info); |
| |
| /* For every jump slot reserved in the sgotplt, reloc_count is |
| incremented. However, when we reserve space for TLS descriptors, |
| it's not incremented, so in order to compute the space reserved |
| for them, it suffices to multiply the reloc count by the jump |
| slot size. |
| |
| PR ld/13302: We start next_irelative_index at the end of .rela.plt |
| so that R_X86_64_IRELATIVE entries come last. */ |
| if (htab->elf.srelplt) |
| { |
| htab->sgotplt_jump_table_size |
| = elf_x86_64_compute_jump_table_size (htab); |
| htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1; |
| } |
| else if (htab->elf.irelplt) |
| htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1; |
| |
| if (htab->tlsdesc_plt) |
| { |
| /* If we're not using lazy TLS relocations, don't generate the |
| PLT and GOT entries they require. */ |
| if ((info->flags & DF_BIND_NOW)) |
| htab->tlsdesc_plt = 0; |
| else |
| { |
| htab->tlsdesc_got = htab->elf.sgot->size; |
| htab->elf.sgot->size += GOT_ENTRY_SIZE; |
| /* Reserve room for the initial entry. |
| FIXME: we could probably do away with it in this case. */ |
| if (htab->elf.splt->size == 0) |
| htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd); |
| htab->tlsdesc_plt = htab->elf.splt->size; |
| htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd); |
| } |
| } |
| |
| if (htab->elf.sgotplt) |
| { |
| /* Don't allocate .got.plt section if there are no GOT nor PLT |
| entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */ |
| if ((htab->elf.hgot == NULL |
| || !htab->elf.hgot->ref_regular_nonweak) |
| && (htab->elf.sgotplt->size |
| == get_elf_backend_data (output_bfd)->got_header_size) |
| && (htab->elf.splt == NULL |
| || htab->elf.splt->size == 0) |
| && (htab->elf.sgot == NULL |
| || htab->elf.sgot->size == 0) |
| && (htab->elf.iplt == NULL |
| || htab->elf.iplt->size == 0) |
| && (htab->elf.igotplt == NULL |
| || htab->elf.igotplt->size == 0)) |
| htab->elf.sgotplt->size = 0; |
| } |
| |
| if (htab->plt_eh_frame != NULL |
| && htab->elf.splt != NULL |
| && htab->elf.splt->size != 0 |
| && !bfd_is_abs_section (htab->elf.splt->output_section) |
| && _bfd_elf_eh_frame_present (info)) |
| { |
| const struct elf_x86_64_backend_data *arch_data |
| = get_elf_x86_64_arch_data (bed); |
| htab->plt_eh_frame->size = arch_data->eh_frame_plt_size; |
| } |
| |
| /* We now have determined the sizes of the various dynamic sections. |
| Allocate memory for them. */ |
| relocs = FALSE; |
| for (s = dynobj->sections; s != NULL; s = s->next) |
| { |
| if ((s->flags & SEC_LINKER_CREATED) == 0) |
| continue; |
| |
| if (s == htab->elf.splt |
| || s == htab->elf.sgot |
| || s == htab->elf.sgotplt |
| || s == htab->elf.iplt |
| || s == htab->elf.igotplt |
| || s == htab->plt_bnd |
| || s == htab->plt_got |
| || s == htab->plt_eh_frame |
| || s == htab->sdynbss) |
| { |
| /* Strip this section if we don't need it; see the |
| comment below. */ |
| } |
| else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela")) |
| { |
| if (s->size != 0 && s != htab->elf.srelplt) |
| relocs = TRUE; |
| |
| /* We use the reloc_count field as a counter if we need |
| to copy relocs into the output file. */ |
| if (s != htab->elf.srelplt) |
| s->reloc_count = 0; |
| } |
| else |
| { |
| /* It's not one of our sections, so don't allocate space. */ |
| continue; |
| } |
| |
| if (s->size == 0) |
| { |
| /* If we don't need this section, strip it from the |
| output file. This is mostly to handle .rela.bss and |
| .rela.plt. We must create both sections in |
| create_dynamic_sections, because they must be created |
| before the linker maps input sections to output |
| sections. The linker does that before |
| adjust_dynamic_symbol is called, and it is that |
| function which decides whether anything needs to go |
| into these sections. */ |
| |
| s->flags |= SEC_EXCLUDE; |
| continue; |
| } |
| |
| if ((s->flags & SEC_HAS_CONTENTS) == 0) |
| continue; |
| |
| /* Allocate memory for the section contents. We use bfd_zalloc |
| here in case unused entries are not reclaimed before the |
| section's contents are written out. This should not happen, |
| but this way if it does, we get a R_X86_64_NONE reloc instead |
| of garbage. */ |
| s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
| if (s->contents == NULL) |
| return FALSE; |
| } |
| |
| if (htab->plt_eh_frame != NULL |
| && htab->plt_eh_frame->contents != NULL) |
| { |
| const struct elf_x86_64_backend_data *arch_data |
| = get_elf_x86_64_arch_data (bed); |
| |
| memcpy (htab->plt_eh_frame->contents, |
| arch_data->eh_frame_plt, htab->plt_eh_frame->size); |
| bfd_put_32 (dynobj, htab->elf.splt->size, |
| htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET); |
| } |
| |
| if (htab->elf.dynamic_sections_created) |
| { |
| /* Add some entries to the .dynamic section. We fill in the |
| values later, in elf_x86_64_finish_dynamic_sections, but we |
| must add the entries now so that we get the correct size for |
| the .dynamic section. The DT_DEBUG entry is filled in by the |
| dynamic linker and used by the debugger. */ |
| #define add_dynamic_entry(TAG, VAL) \ |
| _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
| |
| if (bfd_link_executable (info)) |
| { |
| if (!add_dynamic_entry (DT_DEBUG, 0)) |
| return FALSE; |
| } |
| |
| if (htab->elf.splt->size != 0) |
| { |
| /* DT_PLTGOT is used by prelink even if there is no PLT |
| relocation. */ |
| if (!add_dynamic_entry (DT_PLTGOT, 0)) |
| return FALSE; |
| |
| if (htab->elf.srelplt->size != 0) |
| { |
| if (!add_dynamic_entry (DT_PLTRELSZ, 0) |
| || !add_dynamic_entry (DT_PLTREL, DT_RELA) |
| || !add_dynamic_entry (DT_JMPREL, 0)) |
| return FALSE; |
| } |
| |
| if (htab->tlsdesc_plt |
| && (!add_dynamic_entry (DT_TLSDESC_PLT, 0) |
| || !add_dynamic_entry (DT_TLSDESC_GOT, 0))) |
| return FALSE; |
| } |
| |
| if (relocs) |
| { |
| if (!add_dynamic_entry (DT_RELA, 0) |
| || !add_dynamic_entry (DT_RELASZ, 0) |
| || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela)) |
| return FALSE; |
| |
| /* If any dynamic relocs apply to a read-only section, |
| then we need a DT_TEXTREL entry. */ |
| if ((info->flags & DF_TEXTREL) == 0) |
| elf_link_hash_traverse (&htab->elf, |
| elf_x86_64_readonly_dynrelocs, |
| info); |
| |
| if ((info->flags & DF_TEXTREL) != 0) |
| { |
| if ((elf_tdata (output_bfd)->has_gnu_symbols |
| & elf_gnu_symbol_ifunc) == elf_gnu_symbol_ifunc) |
| { |
| info->callbacks->einfo |
| (_("%P%X: read-only segment has dynamic IFUNC relocations; recompile with -fPIC\n")); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| if (!add_dynamic_entry (DT_TEXTREL, 0)) |
| return FALSE; |
| } |
| } |
| } |
| #undef add_dynamic_entry |
| |
| return TRUE; |
| } |
| |
| static bfd_boolean |
| elf_x86_64_always_size_sections (bfd *output_bfd, |
| struct bfd_link_info *info) |
| { |
| asection *tls_sec = elf_hash_table (info)->tls_sec; |
| |
| if (tls_sec) |
| { |
| struct elf_link_hash_entry *tlsbase; |
| |
| tlsbase = elf_link_hash_lookup (elf_hash_table (info), |
| "_TLS_MODULE_BASE_", |
| FALSE, FALSE, FALSE); |
| |
| if (tlsbase && tlsbase->type == STT_TLS) |
| { |
| struct elf_x86_64_link_hash_table *htab; |
| struct bfd_link_hash_entry *bh = NULL; |
| const struct elf_backend_data *bed |
| = get_elf_backend_data (output_bfd); |
| |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| if (!(_bfd_generic_link_add_one_symbol |
| (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, |
| tls_sec, 0, NULL, FALSE, |
| bed->collect, &bh))) |
| return FALSE; |
| |
| htab->tls_module_base = bh; |
| |
| tlsbase = (struct elf_link_hash_entry *)bh; |
| tlsbase->def_regular = 1; |
| tlsbase->other = STV_HIDDEN; |
| tlsbase->root.linker_def = 1; |
| (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* _TLS_MODULE_BASE_ needs to be treated especially when linking |
| executables. Rather than setting it to the beginning of the TLS |
| section, we have to set it to the end. This function may be called |
| multiple times, it is idempotent. */ |
| |
| static void |
| elf_x86_64_set_tls_module_base (struct bfd_link_info *info) |
| { |
| struct elf_x86_64_link_hash_table *htab; |
| struct bfd_link_hash_entry *base; |
| |
| if (!bfd_link_executable (info)) |
| return; |
| |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| return; |
| |
| base = htab->tls_module_base; |
| if (base == NULL) |
| return; |
| |
| base->u.def.value = htab->elf.tls_size; |
| } |
| |
| /* Return the base VMA address which should be subtracted from real addresses |
| when resolving @dtpoff relocation. |
| This is PT_TLS segment p_vaddr. */ |
| |
| static bfd_vma |
| elf_x86_64_dtpoff_base (struct bfd_link_info *info) |
| { |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (elf_hash_table (info)->tls_sec == NULL) |
| return 0; |
| return elf_hash_table (info)->tls_sec->vma; |
| } |
| |
| /* Return the relocation value for @tpoff relocation |
| if STT_TLS virtual address is ADDRESS. */ |
| |
| static bfd_vma |
| elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address) |
| { |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd); |
| bfd_vma static_tls_size; |
| |
| /* If tls_segment is NULL, we should have signalled an error already. */ |
| if (htab->tls_sec == NULL) |
| return 0; |
| |
| /* Consider special static TLS alignment requirements. */ |
| static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment); |
| return address - static_tls_size - htab->tls_sec->vma; |
| } |
| |
| /* Is the instruction before OFFSET in CONTENTS a 32bit relative |
| branch? */ |
| |
| static bfd_boolean |
| is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset) |
| { |
| /* Opcode Instruction |
| 0xe8 call |
| 0xe9 jump |
| 0x0f 0x8x conditional jump */ |
| return ((offset > 0 |
| && (contents [offset - 1] == 0xe8 |
| || contents [offset - 1] == 0xe9)) |
| || (offset > 1 |
| && contents [offset - 2] == 0x0f |
| && (contents [offset - 1] & 0xf0) == 0x80)); |
| } |
| |
| /* Relocate an x86_64 ELF section. */ |
| |
| static bfd_boolean |
| elf_x86_64_relocate_section (bfd *output_bfd, |
| struct bfd_link_info *info, |
| bfd *input_bfd, |
| asection *input_section, |
| bfd_byte *contents, |
| Elf_Internal_Rela *relocs, |
| Elf_Internal_Sym *local_syms, |
| asection **local_sections) |
| { |
| struct elf_x86_64_link_hash_table *htab; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| bfd_vma *local_got_offsets; |
| bfd_vma *local_tlsdesc_gotents; |
| Elf_Internal_Rela *rel; |
| Elf_Internal_Rela *wrel; |
| Elf_Internal_Rela *relend; |
| const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd); |
| |
| BFD_ASSERT (is_x86_64_elf (input_bfd)); |
| |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| symtab_hdr = &elf_symtab_hdr (input_bfd); |
| sym_hashes = elf_sym_hashes (input_bfd); |
| local_got_offsets = elf_local_got_offsets (input_bfd); |
| local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd); |
| |
| elf_x86_64_set_tls_module_base (info); |
| |
| rel = wrel = relocs; |
| relend = relocs + input_section->reloc_count; |
| for (; rel < relend; wrel++, rel++) |
| { |
| unsigned int r_type; |
| reloc_howto_type *howto; |
| unsigned long r_symndx; |
| struct elf_link_hash_entry *h; |
| struct elf_x86_64_link_hash_entry *eh; |
| Elf_Internal_Sym *sym; |
| asection *sec; |
| bfd_vma off, offplt, plt_offset; |
| bfd_vma relocation; |
| bfd_boolean unresolved_reloc; |
| bfd_reloc_status_type r; |
| int tls_type; |
| asection *base_got, *resolved_plt; |
| bfd_vma st_size; |
| |
| r_type = ELF32_R_TYPE (rel->r_info); |
| if (r_type == (int) R_X86_64_GNU_VTINHERIT |
| || r_type == (int) R_X86_64_GNU_VTENTRY) |
| { |
| if (wrel != rel) |
| *wrel = *rel; |
| continue; |
| } |
| |
| if (r_type >= (int) R_X86_64_standard) |
| { |
| (*_bfd_error_handler) |
| (_("%B: unrecognized relocation (0x%x) in section `%A'"), |
| input_bfd, input_section, r_type); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| if (r_type != (int) R_X86_64_32 |
| || ABI_64_P (output_bfd)) |
| howto = x86_64_elf_howto_table + r_type; |
| else |
| howto = (x86_64_elf_howto_table |
| + ARRAY_SIZE (x86_64_elf_howto_table) - 1); |
| r_symndx = htab->r_sym (rel->r_info); |
| h = NULL; |
| sym = NULL; |
| sec = NULL; |
| unresolved_reloc = FALSE; |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| sym = local_syms + r_symndx; |
| sec = local_sections[r_symndx]; |
| |
| relocation = _bfd_elf_rela_local_sym (output_bfd, sym, |
| &sec, rel); |
| st_size = sym->st_size; |
| |
| /* Relocate against local STT_GNU_IFUNC symbol. */ |
| if (!bfd_link_relocatable (info) |
| && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC) |
| { |
| h = elf_x86_64_get_local_sym_hash (htab, input_bfd, |
| rel, FALSE); |
| if (h == NULL) |
| abort (); |
| |
| /* Set STT_GNU_IFUNC symbol value. */ |
| h->root.u.def.value = sym->st_value; |
| h->root.u.def.section = sec; |
| } |
| } |
| else |
| { |
| bfd_boolean warned ATTRIBUTE_UNUSED; |
| bfd_boolean ignored ATTRIBUTE_UNUSED; |
| |
| RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
| r_symndx, symtab_hdr, sym_hashes, |
| h, sec, relocation, |
| unresolved_reloc, warned, ignored); |
| st_size = h->size; |
| } |
| |
| if (sec != NULL && discarded_section (sec)) |
| { |
| _bfd_clear_contents (howto, input_bfd, input_section, |
| contents + rel->r_offset); |
| wrel->r_offset = rel->r_offset; |
| wrel->r_info = 0; |
| wrel->r_addend = 0; |
| |
| /* For ld -r, remove relocations in debug sections against |
| sections defined in discarded sections. Not done for |
| eh_frame editing code expects to be present. */ |
| if (bfd_link_relocatable (info) |
| && (input_section->flags & SEC_DEBUGGING)) |
| wrel--; |
| |
| continue; |
| } |
| |
| if (bfd_link_relocatable (info)) |
| { |
| if (wrel != rel) |
| *wrel = *rel; |
| continue; |
| } |
| |
| if (rel->r_addend == 0 && !ABI_64_P (output_bfd)) |
| { |
| if (r_type == R_X86_64_64) |
| { |
| /* For x32, treat R_X86_64_64 like R_X86_64_32 and |
| zero-extend it to 64bit if addend is zero. */ |
| r_type = R_X86_64_32; |
| memset (contents + rel->r_offset + 4, 0, 4); |
| } |
| else if (r_type == R_X86_64_SIZE64) |
| { |
| /* For x32, treat R_X86_64_SIZE64 like R_X86_64_SIZE32 and |
| zero-extend it to 64bit if addend is zero. */ |
| r_type = R_X86_64_SIZE32; |
| memset (contents + rel->r_offset + 4, 0, 4); |
| } |
| } |
| |
| eh = (struct elf_x86_64_link_hash_entry *) h; |
| |
| /* Since STT_GNU_IFUNC symbol must go through PLT, we handle |
| it here if it is defined in a non-shared object. */ |
| if (h != NULL |
| && h->type == STT_GNU_IFUNC |
| && h->def_regular) |
| { |
| bfd_vma plt_index; |
| const char *name; |
| |
| if ((input_section->flags & SEC_ALLOC) == 0) |
| { |
| /* Dynamic relocs are not propagated for SEC_DEBUGGING |
| sections because such sections are not SEC_ALLOC and |
| thus ld.so will not process them. */ |
| if ((input_section->flags & SEC_DEBUGGING) != 0) |
| continue; |
| abort (); |
| } |
| else if (h->plt.offset == (bfd_vma) -1) |
| abort (); |
| |
| /* STT_GNU_IFUNC symbol must go through PLT. */ |
| if (htab->elf.splt != NULL) |
| { |
| if (htab->plt_bnd != NULL) |
| { |
| resolved_plt = htab->plt_bnd; |
| plt_offset = eh->plt_bnd.offset; |
| } |
| else |
| { |
| resolved_plt = htab->elf.splt; |
| plt_offset = h->plt.offset; |
| } |
| } |
| else |
| { |
| resolved_plt = htab->elf.iplt; |
| plt_offset = h->plt.offset; |
| } |
| |
| relocation = (resolved_plt->output_section->vma |
| + resolved_plt->output_offset + plt_offset); |
| |
| switch (r_type) |
| { |
| default: |
| if (h->root.root.string) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, |
| NULL); |
| (*_bfd_error_handler) |
| (_("%B: relocation %s against STT_GNU_IFUNC " |
| "symbol `%s' isn't handled by %s"), input_bfd, |
| x86_64_elf_howto_table[r_type].name, |
| name, __FUNCTION__); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| |
| case R_X86_64_32S: |
| if (bfd_link_pic (info)) |
| abort (); |
| goto do_relocation; |
| |
| case R_X86_64_32: |
| if (ABI_64_P (output_bfd)) |
| goto do_relocation; |
| /* FALLTHROUGH */ |
| case R_X86_64_64: |
| if (rel->r_addend != 0) |
| { |
| if (h->root.root.string) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (input_bfd, symtab_hdr, |
| sym, NULL); |
| (*_bfd_error_handler) |
| (_("%B: relocation %s against STT_GNU_IFUNC " |
| "symbol `%s' has non-zero addend: %d"), |
| input_bfd, x86_64_elf_howto_table[r_type].name, |
| name, rel->r_addend); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| /* Generate dynamic relcoation only when there is a |
| non-GOT reference in a shared object. */ |
| if (bfd_link_pic (info) && h->non_got_ref) |
| { |
| Elf_Internal_Rela outrel; |
| asection *sreloc; |
| |
| /* Need a dynamic relocation to get the real function |
| address. */ |
| outrel.r_offset = _bfd_elf_section_offset (output_bfd, |
| info, |
| input_section, |
| rel->r_offset); |
| if (outrel.r_offset == (bfd_vma) -1 |
| || outrel.r_offset == (bfd_vma) -2) |
| abort (); |
| |
| outrel.r_offset += (input_section->output_section->vma |
| + input_section->output_offset); |
| |
| if (h->dynindx == -1 |
| || h->forced_local |
| || bfd_link_executable (info)) |
| { |
| /* This symbol is resolved locally. */ |
| outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE); |
| outrel.r_addend = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| } |
| else |
| { |
| outrel.r_info = htab->r_info (h->dynindx, r_type); |
| outrel.r_addend = 0; |
| } |
| |
| sreloc = htab->elf.irelifunc; |
| elf_append_rela (output_bfd, sreloc, &outrel); |
| |
| /* If this reloc is against an external symbol, we |
| do not want to fiddle with the addend. Otherwise, |
| we need to include the symbol value so that it |
| becomes an addend for the dynamic reloc. For an |
| internal symbol, we have updated addend. */ |
| continue; |
| } |
| /* FALLTHROUGH */ |
| case R_X86_64_PC32: |
| case R_X86_64_PC32_BND: |
| case R_X86_64_PC64: |
| case R_X86_64_PLT32: |
| case R_X86_64_PLT32_BND: |
| goto do_relocation; |
| |
| case R_X86_64_GOTPCREL: |
| case R_X86_64_GOTPCRELX: |
| case R_X86_64_REX_GOTPCRELX: |
| case R_X86_64_GOTPCREL64: |
| base_got = htab->elf.sgot; |
| off = h->got.offset; |
| |
| if (base_got == NULL) |
| abort (); |
| |
| if (off == (bfd_vma) -1) |
| { |
| /* We can't use h->got.offset here to save state, or |
| even just remember the offset, as finish_dynamic_symbol |
| would use that as offset into .got. */ |
| |
| if (htab->elf.splt != NULL) |
| { |
| plt_index = h->plt.offset / plt_entry_size - 1; |
| off = (plt_index + 3) * GOT_ENTRY_SIZE; |
| base_got = htab->elf.sgotplt; |
| } |
| else |
| { |
| plt_index = h->plt.offset / plt_entry_size; |
| off = plt_index * GOT_ENTRY_SIZE; |
| base_got = htab->elf.igotplt; |
| } |
| |
| if (h->dynindx == -1 |
| || h->forced_local |
| || info->symbolic) |
| { |
| /* This references the local defitionion. We must |
| initialize this entry in the global offset table. |
| Since the offset must always be a multiple of 8, |
| we use the least significant bit to record |
| whether we have initialized it already. |
| |
| When doing a dynamic link, we create a .rela.got |
| relocation entry to initialize the value. This |
| is done in the finish_dynamic_symbol routine. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| bfd_put_64 (output_bfd, relocation, |
| base_got->contents + off); |
| /* Note that this is harmless for the GOTPLT64 |
| case, as -1 | 1 still is -1. */ |
| h->got.offset |= 1; |
| } |
| } |
| } |
| |
| relocation = (base_got->output_section->vma |
| + base_got->output_offset + off); |
| |
| goto do_relocation; |
| } |
| } |
| |
| /* When generating a shared object, the relocations handled here are |
| copied into the output file to be resolved at run time. */ |
| switch (r_type) |
| { |
| case R_X86_64_GOT32: |
| case R_X86_64_GOT64: |
| /* Relocation is to the entry for this symbol in the global |
| offset table. */ |
| case R_X86_64_GOTPCREL: |
| case R_X86_64_GOTPCRELX: |
| case R_X86_64_REX_GOTPCRELX: |
| case R_X86_64_GOTPCREL64: |
| /* Use global offset table entry as symbol value. */ |
| case R_X86_64_GOTPLT64: |
| /* This is obsolete and treated the the same as GOT64. */ |
| base_got = htab->elf.sgot; |
| |
| if (htab->elf.sgot == NULL) |
| abort (); |
| |
| if (h != NULL) |
| { |
| bfd_boolean dyn; |
| |
| off = h->got.offset; |
| if (h->needs_plt |
| && h->plt.offset != (bfd_vma)-1 |
| && off == (bfd_vma)-1) |
| { |
| /* We can't use h->got.offset here to save |
| state, or even just remember the offset, as |
| finish_dynamic_symbol would use that as offset into |
| .got. */ |
| bfd_vma plt_index = h->plt.offset / plt_entry_size - 1; |
| off = (plt_index + 3) * GOT_ENTRY_SIZE; |
| base_got = htab->elf.sgotplt; |
| } |
| |
| dyn = htab->elf.dynamic_sections_created; |
| |
| if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) |
| || (bfd_link_pic (info) |
| && SYMBOL_REFERENCES_LOCAL (info, h)) |
| || (ELF_ST_VISIBILITY (h->other) |
| && h->root.type == bfd_link_hash_undefweak)) |
| { |
| /* This is actually a static link, or it is a -Bsymbolic |
| link and the symbol is defined locally, or the symbol |
| was forced to be local because of a version file. We |
| must initialize this entry in the global offset table. |
| Since the offset must always be a multiple of 8, we |
| use the least significant bit to record whether we |
| have initialized it already. |
| |
| When doing a dynamic link, we create a .rela.got |
| relocation entry to initialize the value. This is |
| done in the finish_dynamic_symbol routine. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| bfd_put_64 (output_bfd, relocation, |
| base_got->contents + off); |
| /* Note that this is harmless for the GOTPLT64 case, |
| as -1 | 1 still is -1. */ |
| h->got.offset |= 1; |
| } |
| } |
| else |
| unresolved_reloc = FALSE; |
| } |
| else |
| { |
| if (local_got_offsets == NULL) |
| abort (); |
| |
| off = local_got_offsets[r_symndx]; |
| |
| /* The offset must always be a multiple of 8. We use |
| the least significant bit to record whether we have |
| already generated the necessary reloc. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| bfd_put_64 (output_bfd, relocation, |
| base_got->contents + off); |
| |
| if (bfd_link_pic (info)) |
| { |
| asection *s; |
| Elf_Internal_Rela outrel; |
| |
| /* We need to generate a R_X86_64_RELATIVE reloc |
| for the dynamic linker. */ |
| s = htab->elf.srelgot; |
| if (s == NULL) |
| abort (); |
| |
| outrel.r_offset = (base_got->output_section->vma |
| + base_got->output_offset |
| + off); |
| outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE); |
| outrel.r_addend = relocation; |
| elf_append_rela (output_bfd, s, &outrel); |
| } |
| |
| local_got_offsets[r_symndx] |= 1; |
| } |
| } |
| |
| if (off >= (bfd_vma) -2) |
| abort (); |
| |
| relocation = base_got->output_section->vma |
| + base_got->output_offset + off; |
| if (r_type != R_X86_64_GOTPCREL |
| && r_type != R_X86_64_GOTPCRELX |
| && r_type != R_X86_64_REX_GOTPCRELX |
| && r_type != R_X86_64_GOTPCREL64) |
| relocation -= htab->elf.sgotplt->output_section->vma |
| - htab->elf.sgotplt->output_offset; |
| |
| break; |
| |
| case R_X86_64_GOTOFF64: |
| /* Relocation is relative to the start of the global offset |
| table. */ |
| |
| /* Check to make sure it isn't a protected function or data |
| symbol for shared library since it may not be local when |
| used as function address or with copy relocation. We also |
| need to make sure that a symbol is referenced locally. */ |
| if (bfd_link_pic (info) && h) |
| { |
| if (!h->def_regular) |
| { |
| const char *v; |
| |
| switch (ELF_ST_VISIBILITY (h->other)) |
| { |
| case STV_HIDDEN: |
| v = _("hidden symbol"); |
| break; |
| case STV_INTERNAL: |
| v = _("internal symbol"); |
| break; |
| case STV_PROTECTED: |
| v = _("protected symbol"); |
| break; |
| default: |
| v = _("symbol"); |
| break; |
| } |
| |
| (*_bfd_error_handler) |
| (_("%B: relocation R_X86_64_GOTOFF64 against undefined %s `%s' can not be used when making a shared object"), |
| input_bfd, v, h->root.root.string); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| else if (!bfd_link_executable (info) |
| && !SYMBOL_REFERENCES_LOCAL (info, h) |
| && (h->type == STT_FUNC |
| || h->type == STT_OBJECT) |
| && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) |
| { |
| (*_bfd_error_handler) |
| (_("%B: relocation R_X86_64_GOTOFF64 against protected %s `%s' can not be used when making a shared object"), |
| input_bfd, |
| h->type == STT_FUNC ? "function" : "data", |
| h->root.root.string); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| } |
| |
| /* Note that sgot is not involved in this |
| calculation. We always want the start of .got.plt. If we |
| defined _GLOBAL_OFFSET_TABLE_ in a different way, as is |
| permitted by the ABI, we might have to change this |
| calculation. */ |
| relocation -= htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset; |
| break; |
| |
| case R_X86_64_GOTPC32: |
| case R_X86_64_GOTPC64: |
| /* Use global offset table as symbol value. */ |
| relocation = htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset; |
| unresolved_reloc = FALSE; |
| break; |
| |
| case R_X86_64_PLTOFF64: |
| /* Relocation is PLT entry relative to GOT. For local |
| symbols it's the symbol itself relative to GOT. */ |
| if (h != NULL |
| /* See PLT32 handling. */ |
| && h->plt.offset != (bfd_vma) -1 |
| && htab->elf.splt != NULL) |
| { |
| if (htab->plt_bnd != NULL) |
| { |
| resolved_plt = htab->plt_bnd; |
| plt_offset = eh->plt_bnd.offset; |
| } |
| else |
| { |
| resolved_plt = htab->elf.splt; |
| plt_offset = h->plt.offset; |
| } |
| |
| relocation = (resolved_plt->output_section->vma |
| + resolved_plt->output_offset |
| + plt_offset); |
| unresolved_reloc = FALSE; |
| } |
| |
| relocation -= htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset; |
| break; |
| |
| case R_X86_64_PLT32: |
| case R_X86_64_PLT32_BND: |
| /* Relocation is to the entry for this symbol in the |
| procedure linkage table. */ |
| |
| /* Resolve a PLT32 reloc against a local symbol directly, |
| without using the procedure linkage table. */ |
| if (h == NULL) |
| break; |
| |
| if ((h->plt.offset == (bfd_vma) -1 |
| && eh->plt_got.offset == (bfd_vma) -1) |
| || htab->elf.splt == NULL) |
| { |
| /* We didn't make a PLT entry for this symbol. This |
| happens when statically linking PIC code, or when |
| using -Bsymbolic. */ |
| break; |
| } |
| |
| if (h->plt.offset != (bfd_vma) -1) |
| { |
| if (htab->plt_bnd != NULL) |
| { |
| resolved_plt = htab->plt_bnd; |
| plt_offset = eh->plt_bnd.offset; |
| } |
| else |
| { |
| resolved_plt = htab->elf.splt; |
| plt_offset = h->plt.offset; |
| } |
| } |
| else |
| { |
| /* Use the GOT PLT. */ |
| resolved_plt = htab->plt_got; |
| plt_offset = eh->plt_got.offset; |
| } |
| |
| relocation = (resolved_plt->output_section->vma |
| + resolved_plt->output_offset |
| + plt_offset); |
| unresolved_reloc = FALSE; |
| break; |
| |
| case R_X86_64_SIZE32: |
| case R_X86_64_SIZE64: |
| /* Set to symbol size. */ |
| relocation = st_size; |
| goto direct; |
| |
| case R_X86_64_PC8: |
| case R_X86_64_PC16: |
| case R_X86_64_PC32: |
| case R_X86_64_PC32_BND: |
| /* Don't complain about -fPIC if the symbol is undefined when |
| building executable. */ |
| if (bfd_link_pic (info) |
| && (input_section->flags & SEC_ALLOC) != 0 |
| && (input_section->flags & SEC_READONLY) != 0 |
| && h != NULL |
| && !(bfd_link_executable (info) |
| && h->root.type == bfd_link_hash_undefined)) |
| { |
| bfd_boolean fail = FALSE; |
| bfd_boolean branch |
| = ((r_type == R_X86_64_PC32 |
| || r_type == R_X86_64_PC32_BND) |
| && is_32bit_relative_branch (contents, rel->r_offset)); |
| |
| if (SYMBOL_REFERENCES_LOCAL (info, h)) |
| { |
| /* Symbol is referenced locally. Make sure it is |
| defined locally or for a branch. */ |
| fail = !h->def_regular && !branch; |
| } |
| else if (!(bfd_link_executable (info) |
| && (h->needs_copy || eh->needs_copy))) |
| { |
| /* Symbol doesn't need copy reloc and isn't referenced |
| locally. We only allow branch to symbol with |
| non-default visibility. */ |
| fail = (!branch |
| || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT); |
| } |
| |
| if (fail) |
| { |
| const char *fmt; |
| const char *v; |
| const char *pic = ""; |
| |
| switch (ELF_ST_VISIBILITY (h->other)) |
| { |
| case STV_HIDDEN: |
| v = _("hidden symbol"); |
| break; |
| case STV_INTERNAL: |
| v = _("internal symbol"); |
| break; |
| case STV_PROTECTED: |
| v = _("protected symbol"); |
| break; |
| default: |
| v = _("symbol"); |
| pic = _("; recompile with -fPIC"); |
| break; |
| } |
| |
| if (h->def_regular) |
| fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s"); |
| else |
| fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s"); |
| |
| (*_bfd_error_handler) (fmt, input_bfd, |
| x86_64_elf_howto_table[r_type].name, |
| v, h->root.root.string, pic); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| } |
| /* Fall through. */ |
| |
| case R_X86_64_8: |
| case R_X86_64_16: |
| case R_X86_64_32: |
| case R_X86_64_PC64: |
| case R_X86_64_64: |
| /* FIXME: The ABI says the linker should make sure the value is |
| the same when it's zeroextended to 64 bit. */ |
| |
| direct: |
| if ((input_section->flags & SEC_ALLOC) == 0) |
| break; |
| |
| /* Don't copy a pc-relative relocation into the output file |
| if the symbol needs copy reloc or the symbol is undefined |
| when building executable. Copy dynamic function pointer |
| relocations. */ |
| if ((bfd_link_pic (info) |
| && !(bfd_link_executable (info) |
| && h != NULL |
| && (h->needs_copy |
| || eh->needs_copy |
| || h->root.type == bfd_link_hash_undefined) |
| && IS_X86_64_PCREL_TYPE (r_type)) |
| && (h == NULL |
| || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak) |
| && ((! IS_X86_64_PCREL_TYPE (r_type) |
| && r_type != R_X86_64_SIZE32 |
| && r_type != R_X86_64_SIZE64) |
| || ! SYMBOL_CALLS_LOCAL (info, h))) |
| || (ELIMINATE_COPY_RELOCS |
| && !bfd_link_pic (info) |
| && h != NULL |
| && h->dynindx != -1 |
| && (!h->non_got_ref || eh->func_pointer_refcount > 0) |
| && ((h->def_dynamic |
| && !h->def_regular) |
| || h->root.type == bfd_link_hash_undefweak |
| || h->root.type == bfd_link_hash_undefined))) |
| { |
| Elf_Internal_Rela outrel; |
| bfd_boolean skip, relocate; |
| asection *sreloc; |
| |
| /* When generating a shared object, these relocations |
| are copied into the output file to be resolved at run |
| time. */ |
| skip = FALSE; |
| relocate = FALSE; |
| |
| outrel.r_offset = |
| _bfd_elf_section_offset (output_bfd, info, input_section, |
| rel->r_offset); |
| if (outrel.r_offset == (bfd_vma) -1) |
| skip = TRUE; |
| else if (outrel.r_offset == (bfd_vma) -2) |
| skip = TRUE, relocate = TRUE; |
| |
| outrel.r_offset += (input_section->output_section->vma |
| + input_section->output_offset); |
| |
| if (skip) |
| memset (&outrel, 0, sizeof outrel); |
| |
| /* h->dynindx may be -1 if this symbol was marked to |
| become local. */ |
| else if (h != NULL |
| && h->dynindx != -1 |
| && (IS_X86_64_PCREL_TYPE (r_type) |
| || ! bfd_link_pic (info) |
| || ! SYMBOLIC_BIND (info, h) |
| || ! h->def_regular)) |
| { |
| outrel.r_info = htab->r_info (h->dynindx, r_type); |
| outrel.r_addend = rel->r_addend; |
| } |
| else |
| { |
| /* This symbol is local, or marked to become local. */ |
| if (r_type == htab->pointer_r_type) |
| { |
| relocate = TRUE; |
| outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE); |
| outrel.r_addend = relocation + rel->r_addend; |
| } |
| else if (r_type == R_X86_64_64 |
| && !ABI_64_P (output_bfd)) |
| { |
| relocate = TRUE; |
| outrel.r_info = htab->r_info (0, |
| R_X86_64_RELATIVE64); |
| outrel.r_addend = relocation + rel->r_addend; |
| /* Check addend overflow. */ |
| if ((outrel.r_addend & 0x80000000) |
| != (rel->r_addend & 0x80000000)) |
| { |
| const char *name; |
| int addend = rel->r_addend; |
| if (h && h->root.root.string) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (input_bfd, symtab_hdr, |
| sym, NULL); |
| if (addend < 0) |
| (*_bfd_error_handler) |
| (_("%B: addend -0x%x in relocation %s against " |
| "symbol `%s' at 0x%lx in section `%A' is " |
| "out of range"), |
| input_bfd, input_section, addend, |
| x86_64_elf_howto_table[r_type].name, |
| name, (unsigned long) rel->r_offset); |
| else |
| (*_bfd_error_handler) |
| (_("%B: addend 0x%x in relocation %s against " |
| "symbol `%s' at 0x%lx in section `%A' is " |
| "out of range"), |
| input_bfd, input_section, addend, |
| x86_64_elf_howto_table[r_type].name, |
| name, (unsigned long) rel->r_offset); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| } |
| else |
| { |
| long sindx; |
| |
| if (bfd_is_abs_section (sec)) |
| sindx = 0; |
| else if (sec == NULL || sec->owner == NULL) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| else |
| { |
| asection *osec; |
| |
| /* We are turning this relocation into one |
| against a section symbol. It would be |
| proper to subtract the symbol's value, |
| osec->vma, from the emitted reloc addend, |
| but ld.so expects buggy relocs. */ |
| osec = sec->output_section; |
| sindx = elf_section_data (osec)->dynindx; |
| if (sindx == 0) |
| { |
| asection *oi = htab->elf.text_index_section; |
| sindx = elf_section_data (oi)->dynindx; |
| } |
| BFD_ASSERT (sindx != 0); |
| } |
| |
| outrel.r_info = htab->r_info (sindx, r_type); |
| outrel.r_addend = relocation + rel->r_addend; |
| } |
| } |
| |
| sreloc = elf_section_data (input_section)->sreloc; |
| |
| if (sreloc == NULL || sreloc->contents == NULL) |
| { |
| r = bfd_reloc_notsupported; |
| goto check_relocation_error; |
| } |
| |
| elf_append_rela (output_bfd, sreloc, &outrel); |
| |
| /* If this reloc is against an external symbol, we do |
| not want to fiddle with the addend. Otherwise, we |
| need to include the symbol value so that it becomes |
| an addend for the dynamic reloc. */ |
| if (! relocate) |
| continue; |
| } |
| |
| break; |
| |
| case R_X86_64_TLSGD: |
| case R_X86_64_GOTPC32_TLSDESC: |
| case R_X86_64_TLSDESC_CALL: |
| case R_X86_64_GOTTPOFF: |
| tls_type = GOT_UNKNOWN; |
| if (h == NULL && local_got_offsets) |
| tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx]; |
| else if (h != NULL) |
| tls_type = elf_x86_64_hash_entry (h)->tls_type; |
| |
| if (! elf_x86_64_tls_transition (info, input_bfd, |
| input_section, contents, |
| symtab_hdr, sym_hashes, |
| &r_type, tls_type, rel, |
| relend, h, r_symndx)) |
| return FALSE; |
| |
| if (r_type == R_X86_64_TPOFF32) |
| { |
| bfd_vma roff = rel->r_offset; |
| |
| BFD_ASSERT (! unresolved_reloc); |
| |
| if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD) |
| { |
| /* GD->LE transition. For 64bit, change |
| .byte 0x66; leaq foo@tlsgd(%rip), %rdi |
| .word 0x6666; rex64; call __tls_get_addr |
| into: |
| movq %fs:0, %rax |
| leaq foo@tpoff(%rax), %rax |
| For 32bit, change |
| leaq foo@tlsgd(%rip), %rdi |
| .word 0x6666; rex64; call __tls_get_addr |
| into: |
| movl %fs:0, %eax |
| leaq foo@tpoff(%rax), %rax |
| For largepic, change: |
| leaq foo@tlsgd(%rip), %rdi |
| movabsq $__tls_get_addr@pltoff, %rax |
| addq %rbx, %rax |
| call *%rax |
| into: |
| movq %fs:0, %rax |
| leaq foo@tpoff(%rax), %rax |
| nopw 0x0(%rax,%rax,1) */ |
| int largepic = 0; |
| if (ABI_64_P (output_bfd) |
| && contents[roff + 5] == (bfd_byte) '\xb8') |
| { |
| memcpy (contents + roff - 3, |
| "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80" |
| "\0\0\0\0\x66\x0f\x1f\x44\0", 22); |
| largepic = 1; |
| } |
| else if (ABI_64_P (output_bfd)) |
| memcpy (contents + roff - 4, |
| "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0", |
| 16); |
| else |
| memcpy (contents + roff - 3, |
| "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0", |
| 15); |
| bfd_put_32 (output_bfd, |
| elf_x86_64_tpoff (info, relocation), |
| contents + roff + 8 + largepic); |
| /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */ |
| rel++; |
| wrel++; |
| continue; |
| } |
| else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC) |
| { |
| /* GDesc -> LE transition. |
| It's originally something like: |
| leaq x@tlsdesc(%rip), %rax |
| |
| Change it to: |
| movl $x@tpoff, %rax. */ |
| |
| unsigned int val, type; |
| |
| type = bfd_get_8 (input_bfd, contents + roff - 3); |
| val = bfd_get_8 (input_bfd, contents + roff - 1); |
| bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1), |
| contents + roff - 3); |
| bfd_put_8 (output_bfd, 0xc7, contents + roff - 2); |
| bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7), |
| contents + roff - 1); |
| bfd_put_32 (output_bfd, |
| elf_x86_64_tpoff (info, relocation), |
| contents + roff); |
| continue; |
| } |
| else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL) |
| { |
| /* GDesc -> LE transition. |
| It's originally: |
| call *(%rax) |
| Turn it into: |
| xchg %ax,%ax. */ |
| bfd_put_8 (output_bfd, 0x66, contents + roff); |
| bfd_put_8 (output_bfd, 0x90, contents + roff + 1); |
| continue; |
| } |
| else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF) |
| { |
| /* IE->LE transition: |
| For 64bit, originally it can be one of: |
| movq foo@gottpoff(%rip), %reg |
| addq foo@gottpoff(%rip), %reg |
| We change it into: |
| movq $foo, %reg |
| leaq foo(%reg), %reg |
| addq $foo, %reg. |
| For 32bit, originally it can be one of: |
| movq foo@gottpoff(%rip), %reg |
| addl foo@gottpoff(%rip), %reg |
| We change it into: |
| movq $foo, %reg |
| leal foo(%reg), %reg |
| addl $foo, %reg. */ |
| |
| unsigned int val, type, reg; |
| |
| if (roff >= 3) |
| val = bfd_get_8 (input_bfd, contents + roff - 3); |
| else |
| val = 0; |
| type = bfd_get_8 (input_bfd, contents + roff - 2); |
| reg = bfd_get_8 (input_bfd, contents + roff - 1); |
| reg >>= 3; |
| if (type == 0x8b) |
| { |
| /* movq */ |
| if (val == 0x4c) |
| bfd_put_8 (output_bfd, 0x49, |
| contents + roff - 3); |
| else if (!ABI_64_P (output_bfd) && val == 0x44) |
| bfd_put_8 (output_bfd, 0x41, |
| contents + roff - 3); |
| bfd_put_8 (output_bfd, 0xc7, |
| contents + roff - 2); |
| bfd_put_8 (output_bfd, 0xc0 | reg, |
| contents + roff - 1); |
| } |
| else if (reg == 4) |
| { |
| /* addq/addl -> addq/addl - addressing with %rsp/%r12 |
| is special */ |
| if (val == 0x4c) |
| bfd_put_8 (output_bfd, 0x49, |
| contents + roff - 3); |
| else if (!ABI_64_P (output_bfd) && val == 0x44) |
| bfd_put_8 (output_bfd, 0x41, |
| contents + roff - 3); |
| bfd_put_8 (output_bfd, 0x81, |
| contents + roff - 2); |
| bfd_put_8 (output_bfd, 0xc0 | reg, |
| contents + roff - 1); |
| } |
| else |
| { |
| /* addq/addl -> leaq/leal */ |
| if (val == 0x4c) |
| bfd_put_8 (output_bfd, 0x4d, |
| contents + roff - 3); |
| else if (!ABI_64_P (output_bfd) && val == 0x44) |
| bfd_put_8 (output_bfd, 0x45, |
| contents + roff - 3); |
| bfd_put_8 (output_bfd, 0x8d, |
| contents + roff - 2); |
| bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3), |
| contents + roff - 1); |
| } |
| bfd_put_32 (output_bfd, |
| elf_x86_64_tpoff (info, relocation), |
| contents + roff); |
| continue; |
| } |
| else |
| BFD_ASSERT (FALSE); |
| } |
| |
| if (htab->elf.sgot == NULL) |
| abort (); |
| |
| if (h != NULL) |
| { |
| off = h->got.offset; |
| offplt = elf_x86_64_hash_entry (h)->tlsdesc_got; |
| } |
| else |
| { |
| if (local_got_offsets == NULL) |
| abort (); |
| |
| off = local_got_offsets[r_symndx]; |
| offplt = local_tlsdesc_gotents[r_symndx]; |
| } |
| |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| Elf_Internal_Rela outrel; |
| int dr_type, indx; |
| asection *sreloc; |
| |
| if (htab->elf.srelgot == NULL) |
| abort (); |
| |
| indx = h && h->dynindx != -1 ? h->dynindx : 0; |
| |
| if (GOT_TLS_GDESC_P (tls_type)) |
| { |
| outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC); |
| BFD_ASSERT (htab->sgotplt_jump_table_size + offplt |
| + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size); |
| outrel.r_offset = (htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset |
| + offplt |
| + htab->sgotplt_jump_table_size); |
| sreloc = htab->elf.srelplt; |
| if (indx == 0) |
| outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info); |
| else |
| outrel.r_addend = 0; |
| elf_append_rela (output_bfd, sreloc, &outrel); |
| } |
| |
| sreloc = htab->elf.srelgot; |
| |
| outrel.r_offset = (htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset + off); |
| |
| if (GOT_TLS_GD_P (tls_type)) |
| dr_type = R_X86_64_DTPMOD64; |
| else if (GOT_TLS_GDESC_P (tls_type)) |
| goto dr_done; |
| else |
| dr_type = R_X86_64_TPOFF64; |
| |
| bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off); |
| outrel.r_addend = 0; |
| if ((dr_type == R_X86_64_TPOFF64 |
| || dr_type == R_X86_64_TLSDESC) && indx == 0) |
| outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info); |
| outrel.r_info = htab->r_info (indx, dr_type); |
| |
| elf_append_rela (output_bfd, sreloc, &outrel); |
| |
| if (GOT_TLS_GD_P (tls_type)) |
| { |
| if (indx == 0) |
| { |
| BFD_ASSERT (! unresolved_reloc); |
| bfd_put_64 (output_bfd, |
| relocation - elf_x86_64_dtpoff_base (info), |
| htab->elf.sgot->contents + off + GOT_ENTRY_SIZE); |
| } |
| else |
| { |
| bfd_put_64 (output_bfd, 0, |
| htab->elf.sgot->contents + off + GOT_ENTRY_SIZE); |
| outrel.r_info = htab->r_info (indx, |
| R_X86_64_DTPOFF64); |
| outrel.r_offset += GOT_ENTRY_SIZE; |
| elf_append_rela (output_bfd, sreloc, |
| &outrel); |
| } |
| } |
| |
| dr_done: |
| if (h != NULL) |
| h->got.offset |= 1; |
| else |
| local_got_offsets[r_symndx] |= 1; |
| } |
| |
| if (off >= (bfd_vma) -2 |
| && ! GOT_TLS_GDESC_P (tls_type)) |
| abort (); |
| if (r_type == ELF32_R_TYPE (rel->r_info)) |
| { |
| if (r_type == R_X86_64_GOTPC32_TLSDESC |
| || r_type == R_X86_64_TLSDESC_CALL) |
| relocation = htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset |
| + offplt + htab->sgotplt_jump_table_size; |
| else |
| relocation = htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset + off; |
| unresolved_reloc = FALSE; |
| } |
| else |
| { |
| bfd_vma roff = rel->r_offset; |
| |
| if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD) |
| { |
| /* GD->IE transition. For 64bit, change |
| .byte 0x66; leaq foo@tlsgd(%rip), %rdi |
| .word 0x6666; rex64; call __tls_get_addr@plt |
| into: |
| movq %fs:0, %rax |
| addq foo@gottpoff(%rip), %rax |
| For 32bit, change |
| leaq foo@tlsgd(%rip), %rdi |
| .word 0x6666; rex64; call __tls_get_addr@plt |
| into: |
| movl %fs:0, %eax |
| addq foo@gottpoff(%rip), %rax |
| For largepic, change: |
| leaq foo@tlsgd(%rip), %rdi |
| movabsq $__tls_get_addr@pltoff, %rax |
| addq %rbx, %rax |
| call *%rax |
| into: |
| movq %fs:0, %rax |
| addq foo@gottpoff(%rax), %rax |
| nopw 0x0(%rax,%rax,1) */ |
| int largepic = 0; |
| if (ABI_64_P (output_bfd) |
| && contents[roff + 5] == (bfd_byte) '\xb8') |
| { |
| memcpy (contents + roff - 3, |
| "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05" |
| "\0\0\0\0\x66\x0f\x1f\x44\0", 22); |
| largepic = 1; |
| } |
| else if (ABI_64_P (output_bfd)) |
| memcpy (contents + roff - 4, |
| "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0", |
| 16); |
| else |
| memcpy (contents + roff - 3, |
| "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0", |
| 15); |
| |
| relocation = (htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset + off |
| - roff |
| - largepic |
| - input_section->output_section->vma |
| - input_section->output_offset |
| - 12); |
| bfd_put_32 (output_bfd, relocation, |
| contents + roff + 8 + largepic); |
| /* Skip R_X86_64_PLT32/R_X86_64_PLTOFF64. */ |
| rel++; |
| wrel++; |
| continue; |
| } |
| else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC) |
| { |
| /* GDesc -> IE transition. |
| It's originally something like: |
| leaq x@tlsdesc(%rip), %rax |
| |
| Change it to: |
| movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */ |
| |
| /* Now modify the instruction as appropriate. To |
| turn a leaq into a movq in the form we use it, it |
| suffices to change the second byte from 0x8d to |
| 0x8b. */ |
| bfd_put_8 (output_bfd, 0x8b, contents + roff - 2); |
| |
| bfd_put_32 (output_bfd, |
| htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset + off |
| - rel->r_offset |
| - input_section->output_section->vma |
| - input_section->output_offset |
| - 4, |
| contents + roff); |
| continue; |
| } |
| else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL) |
| { |
| /* GDesc -> IE transition. |
| It's originally: |
| call *(%rax) |
| |
| Change it to: |
| xchg %ax, %ax. */ |
| |
| bfd_put_8 (output_bfd, 0x66, contents + roff); |
| bfd_put_8 (output_bfd, 0x90, contents + roff + 1); |
| continue; |
| } |
| else |
| BFD_ASSERT (FALSE); |
| } |
| break; |
| |
| case R_X86_64_TLSLD: |
| if (! elf_x86_64_tls_transition (info, input_bfd, |
| input_section, contents, |
| symtab_hdr, sym_hashes, |
| &r_type, GOT_UNKNOWN, |
| rel, relend, h, r_symndx)) |
| return FALSE; |
| |
| if (r_type != R_X86_64_TLSLD) |
| { |
| /* LD->LE transition: |
| leaq foo@tlsld(%rip), %rdi; call __tls_get_addr. |
| For 64bit, we change it into: |
| .word 0x6666; .byte 0x66; movq %fs:0, %rax. |
| For 32bit, we change it into: |
| nopl 0x0(%rax); movl %fs:0, %eax. |
| For largepic, change: |
| leaq foo@tlsgd(%rip), %rdi |
| movabsq $__tls_get_addr@pltoff, %rax |
| addq %rbx, %rax |
| call *%rax |
| into: |
| data32 data32 data32 nopw %cs:0x0(%rax,%rax,1) |
| movq %fs:0, %eax */ |
| |
| BFD_ASSERT (r_type == R_X86_64_TPOFF32); |
| if (ABI_64_P (output_bfd) |
| && contents[rel->r_offset + 5] == (bfd_byte) '\xb8') |
| memcpy (contents + rel->r_offset - 3, |
| "\x66\x66\x66\x66\x2e\x0f\x1f\x84\0\0\0\0\0" |
| "\x64\x48\x8b\x04\x25\0\0\0", 22); |
| else if (ABI_64_P (output_bfd)) |
| memcpy (contents + rel->r_offset - 3, |
| "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12); |
| else |
| memcpy (contents + rel->r_offset - 3, |
| "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12); |
| /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */ |
| rel++; |
| wrel++; |
| continue; |
| } |
| |
| if (htab->elf.sgot == NULL) |
| abort (); |
| |
| off = htab->tls_ld_got.offset; |
| if (off & 1) |
| off &= ~1; |
| else |
| { |
| Elf_Internal_Rela outrel; |
| |
| if (htab->elf.srelgot == NULL) |
| abort (); |
| |
| outrel.r_offset = (htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset + off); |
| |
| bfd_put_64 (output_bfd, 0, |
| htab->elf.sgot->contents + off); |
| bfd_put_64 (output_bfd, 0, |
| htab->elf.sgot->contents + off + GOT_ENTRY_SIZE); |
| outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64); |
| outrel.r_addend = 0; |
| elf_append_rela (output_bfd, htab->elf.srelgot, |
| &outrel); |
| htab->tls_ld_got.offset |= 1; |
| } |
| relocation = htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset + off; |
| unresolved_reloc = FALSE; |
| break; |
| |
| case R_X86_64_DTPOFF32: |
| if (!bfd_link_executable (info) |
| || (input_section->flags & SEC_CODE) == 0) |
| relocation -= elf_x86_64_dtpoff_base (info); |
| else |
| relocation = elf_x86_64_tpoff (info, relocation); |
| break; |
| |
| case R_X86_64_TPOFF32: |
| case R_X86_64_TPOFF64: |
| BFD_ASSERT (bfd_link_executable (info)); |
| relocation = elf_x86_64_tpoff (info, relocation); |
| break; |
| |
| case R_X86_64_DTPOFF64: |
| BFD_ASSERT ((input_section->flags & SEC_CODE) == 0); |
| relocation -= elf_x86_64_dtpoff_base (info); |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Dynamic relocs are not propagated for SEC_DEBUGGING sections |
| because such sections are not SEC_ALLOC and thus ld.so will |
| not process them. */ |
| if (unresolved_reloc |
| && !((input_section->flags & SEC_DEBUGGING) != 0 |
| && h->def_dynamic) |
| && _bfd_elf_section_offset (output_bfd, info, input_section, |
| rel->r_offset) != (bfd_vma) -1) |
| { |
| (*_bfd_error_handler) |
| (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), |
| input_bfd, |
| input_section, |
| (long) rel->r_offset, |
| howto->name, |
| h->root.root.string); |
| return FALSE; |
| } |
| |
| do_relocation: |
| r = _bfd_final_link_relocate (howto, input_bfd, input_section, |
| contents, rel->r_offset, |
| relocation, rel->r_addend); |
| |
| check_relocation_error: |
| if (r != bfd_reloc_ok) |
| { |
| const char *name; |
| |
| if (h != NULL) |
| name = h->root.root.string; |
| else |
| { |
| name = bfd_elf_string_from_elf_section (input_bfd, |
| symtab_hdr->sh_link, |
| sym->st_name); |
| if (name == NULL) |
| return FALSE; |
| if (*name == '\0') |
| name = bfd_section_name (input_bfd, sec); |
| } |
| |
| if (r == bfd_reloc_overflow) |
| { |
| if (! ((*info->callbacks->reloc_overflow) |
| (info, (h ? &h->root : NULL), name, howto->name, |
| (bfd_vma) 0, input_bfd, input_section, |
| rel->r_offset))) |
| return FALSE; |
| } |
| else |
| { |
| (*_bfd_error_handler) |
| (_("%B(%A+0x%lx): reloc against `%s': error %d"), |
| input_bfd, input_section, |
| (long) rel->r_offset, name, (int) r); |
| return FALSE; |
| } |
| } |
| |
| if (wrel != rel) |
| *wrel = *rel; |
| } |
| |
| if (wrel != rel) |
| { |
| Elf_Internal_Shdr *rel_hdr; |
| size_t deleted = rel - wrel; |
| |
| rel_hdr = _bfd_elf_single_rel_hdr (input_section->output_section); |
| rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted; |
| if (rel_hdr->sh_size == 0) |
| { |
| /* It is too late to remove an empty reloc section. Leave |
| one NONE reloc. |
| ??? What is wrong with an empty section??? */ |
| rel_hdr->sh_size = rel_hdr->sh_entsize; |
| deleted -= 1; |
| } |
| rel_hdr = _bfd_elf_single_rel_hdr (input_section); |
| rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted; |
| input_section->reloc_count -= deleted; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Finish up dynamic symbol handling. We set the contents of various |
| dynamic sections here. */ |
| |
| static bfd_boolean |
| elf_x86_64_finish_dynamic_symbol (bfd *output_bfd, |
| struct bfd_link_info *info, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym ATTRIBUTE_UNUSED) |
| { |
| struct elf_x86_64_link_hash_table *htab; |
| const struct elf_x86_64_backend_data *abed; |
| bfd_boolean use_plt_bnd; |
| struct elf_x86_64_link_hash_entry *eh; |
| |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| /* Use MPX backend data in case of BND relocation. Use .plt_bnd |
| section only if there is .plt section. */ |
| use_plt_bnd = htab->elf.splt != NULL && htab->plt_bnd != NULL; |
| abed = (use_plt_bnd |
| ? &elf_x86_64_bnd_arch_bed |
| : get_elf_x86_64_backend_data (output_bfd)); |
| |
| eh = (struct elf_x86_64_link_hash_entry *) h; |
| |
| if (h->plt.offset != (bfd_vma) -1) |
| { |
| bfd_vma plt_index; |
| bfd_vma got_offset, plt_offset, plt_plt_offset, plt_got_offset; |
| bfd_vma plt_plt_insn_end, plt_got_insn_size; |
| Elf_Internal_Rela rela; |
| bfd_byte *loc; |
| asection *plt, *gotplt, *relplt, *resolved_plt; |
| const struct elf_backend_data *bed; |
| bfd_vma plt_got_pcrel_offset; |
| |
| /* When building a static executable, use .iplt, .igot.plt and |
| .rela.iplt sections for STT_GNU_IFUNC symbols. */ |
| if (htab->elf.splt != NULL) |
| { |
| plt = htab->elf.splt; |
| gotplt = htab->elf.sgotplt; |
| relplt = htab->elf.srelplt; |
| } |
| else |
| { |
| plt = htab->elf.iplt; |
| gotplt = htab->elf.igotplt; |
| relplt = htab->elf.irelplt; |
| } |
| |
| /* This symbol has an entry in the procedure linkage table. Set |
| it up. */ |
| if ((h->dynindx == -1 |
| && !((h->forced_local || bfd_link_executable (info)) |
| && h->def_regular |
| && h->type == STT_GNU_IFUNC)) |
| || plt == NULL |
| || gotplt == NULL |
| || relplt == NULL) |
| abort (); |
| |
| /* Get the index in the procedure linkage table which |
| corresponds to this symbol. This is the index of this symbol |
| in all the symbols for which we are making plt entries. The |
| first entry in the procedure linkage table is reserved. |
| |
| Get the offset into the .got table of the entry that |
| corresponds to this function. Each .got entry is GOT_ENTRY_SIZE |
| bytes. The first three are reserved for the dynamic linker. |
| |
| For static executables, we don't reserve anything. */ |
| |
| if (plt == htab->elf.splt) |
| { |
| got_offset = h->plt.offset / abed->plt_entry_size - 1; |
| got_offset = (got_offset + 3) * GOT_ENTRY_SIZE; |
| } |
| else |
| { |
| got_offset = h->plt.offset / abed->plt_entry_size; |
| got_offset = got_offset * GOT_ENTRY_SIZE; |
| } |
| |
| plt_plt_insn_end = abed->plt_plt_insn_end; |
| plt_plt_offset = abed->plt_plt_offset; |
| plt_got_insn_size = abed->plt_got_insn_size; |
| plt_got_offset = abed->plt_got_offset; |
| if (use_plt_bnd) |
| { |
| /* Use the second PLT with BND relocations. */ |
| const bfd_byte *plt_entry, *plt2_entry; |
| |
| if (eh->has_bnd_reloc) |
| { |
| plt_entry = elf_x86_64_bnd_plt_entry; |
| plt2_entry = elf_x86_64_bnd_plt2_entry; |
| } |
| else |
| { |
| plt_entry = elf_x86_64_legacy_plt_entry; |
| plt2_entry = elf_x86_64_legacy_plt2_entry; |
| |
| /* Subtract 1 since there is no BND prefix. */ |
| plt_plt_insn_end -= 1; |
| plt_plt_offset -= 1; |
| plt_got_insn_size -= 1; |
| plt_got_offset -= 1; |
| } |
| |
| BFD_ASSERT (sizeof (elf_x86_64_bnd_plt_entry) |
| == sizeof (elf_x86_64_legacy_plt_entry)); |
| |
| /* Fill in the entry in the procedure linkage table. */ |
| memcpy (plt->contents + h->plt.offset, |
| plt_entry, sizeof (elf_x86_64_legacy_plt_entry)); |
| /* Fill in the entry in the second PLT. */ |
| memcpy (htab->plt_bnd->contents + eh->plt_bnd.offset, |
| plt2_entry, sizeof (elf_x86_64_legacy_plt2_entry)); |
| |
| resolved_plt = htab->plt_bnd; |
| plt_offset = eh->plt_bnd.offset; |
| } |
| else |
| { |
| /* Fill in the entry in the procedure linkage table. */ |
| memcpy (plt->contents + h->plt.offset, abed->plt_entry, |
| abed->plt_entry_size); |
| |
| resolved_plt = plt; |
| plt_offset = h->plt.offset; |
| } |
| |
| /* Insert the relocation positions of the plt section. */ |
| |
| /* Put offset the PC-relative instruction referring to the GOT entry, |
| subtracting the size of that instruction. */ |
| plt_got_pcrel_offset = (gotplt->output_section->vma |
| + gotplt->output_offset |
| + got_offset |
| - resolved_plt->output_section->vma |
| - resolved_plt->output_offset |
| - plt_offset |
| - plt_got_insn_size); |
| |
| /* Check PC-relative offset overflow in PLT entry. */ |
| if ((plt_got_pcrel_offset + 0x80000000) > 0xffffffff) |
| info->callbacks->einfo (_("%F%B: PC-relative offset overflow in PLT entry for `%s'\n"), |
| output_bfd, h->root.root.string); |
| |
| bfd_put_32 (output_bfd, plt_got_pcrel_offset, |
| resolved_plt->contents + plt_offset + plt_got_offset); |
| |
| /* Fill in the entry in the global offset table, initially this |
| points to the second part of the PLT entry. */ |
| bfd_put_64 (output_bfd, (plt->output_section->vma |
| + plt->output_offset |
| + h->plt.offset + abed->plt_lazy_offset), |
| gotplt->contents + got_offset); |
| |
| /* Fill in the entry in the .rela.plt section. */ |
| rela.r_offset = (gotplt->output_section->vma |
| + gotplt->output_offset |
| + got_offset); |
| if (h->dynindx == -1 |
| || ((bfd_link_executable (info) |
| || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) |
| && h->def_regular |
| && h->type == STT_GNU_IFUNC)) |
| { |
| /* If an STT_GNU_IFUNC symbol is locally defined, generate |
| R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */ |
| rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE); |
| rela.r_addend = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| /* R_X86_64_IRELATIVE comes last. */ |
| plt_index = htab->next_irelative_index--; |
| } |
| else |
| { |
| rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT); |
| rela.r_addend = 0; |
| plt_index = htab->next_jump_slot_index++; |
| } |
| |
| /* Don't fill PLT entry for static executables. */ |
| if (plt == htab->elf.splt) |
| { |
| bfd_vma plt0_offset = h->plt.offset + plt_plt_insn_end; |
| |
| /* Put relocation index. */ |
| bfd_put_32 (output_bfd, plt_index, |
| plt->contents + h->plt.offset + abed->plt_reloc_offset); |
| |
| /* Put offset for jmp .PLT0 and check for overflow. We don't |
| check relocation index for overflow since branch displacement |
| will overflow first. */ |
| if (plt0_offset > 0x80000000) |
| info->callbacks->einfo (_("%F%B: branch displacement overflow in PLT entry for `%s'\n"), |
| output_bfd, h->root.root.string); |
| bfd_put_32 (output_bfd, - plt0_offset, |
| plt->contents + h->plt.offset + plt_plt_offset); |
| } |
| |
| bed = get_elf_backend_data (output_bfd); |
| loc = relplt->contents + plt_index * bed->s->sizeof_rela; |
| bed->s->swap_reloca_out (output_bfd, &rela, loc); |
| } |
| else if (eh->plt_got.offset != (bfd_vma) -1) |
| { |
| bfd_vma got_offset, plt_offset, plt_got_offset, plt_got_insn_size; |
| asection *plt, *got; |
| bfd_boolean got_after_plt; |
| int32_t got_pcrel_offset; |
| const bfd_byte *got_plt_entry; |
| |
| /* Set the entry in the GOT procedure linkage table. */ |
| plt = htab->plt_got; |
| got = htab->elf.sgot; |
| got_offset = h->got.offset; |
| |
| if (got_offset == (bfd_vma) -1 |
| || h->type == STT_GNU_IFUNC |
| || plt == NULL |
| || got == NULL) |
| abort (); |
| |
| /* Use the second PLT entry template for the GOT PLT since they |
| are the identical. */ |
| plt_got_insn_size = elf_x86_64_bnd_arch_bed.plt_got_insn_size; |
| plt_got_offset = elf_x86_64_bnd_arch_bed.plt_got_offset; |
| if (eh->has_bnd_reloc) |
| got_plt_entry = elf_x86_64_bnd_plt2_entry; |
| else |
| { |
| got_plt_entry = elf_x86_64_legacy_plt2_entry; |
| |
| /* Subtract 1 since there is no BND prefix. */ |
| plt_got_insn_size -= 1; |
| plt_got_offset -= 1; |
| } |
| |
| /* Fill in the entry in the GOT procedure linkage table. */ |
| plt_offset = eh->plt_got.offset; |
| memcpy (plt->contents + plt_offset, |
| got_plt_entry, sizeof (elf_x86_64_legacy_plt2_entry)); |
| |
| /* Put offset the PC-relative instruction referring to the GOT |
| entry, subtracting the size of that instruction. */ |
| got_pcrel_offset = (got->output_section->vma |
| + got->output_offset |
| + got_offset |
| - plt->output_section->vma |
| - plt->output_offset |
| - plt_offset |
| - plt_got_insn_size); |
| |
| /* Check PC-relative offset overflow in GOT PLT entry. */ |
| got_after_plt = got->output_section->vma > plt->output_section->vma; |
| if ((got_after_plt && got_pcrel_offset < 0) |
| || (!got_after_plt && got_pcrel_offset > 0)) |
| info->callbacks->einfo (_("%F%B: PC-relative offset overflow in GOT PLT entry for `%s'\n"), |
| output_bfd, h->root.root.string); |
| |
| bfd_put_32 (output_bfd, got_pcrel_offset, |
| plt->contents + plt_offset + plt_got_offset); |
| } |
| |
| if (!h->def_regular |
| && (h->plt.offset != (bfd_vma) -1 |
| || eh->plt_got.offset != (bfd_vma) -1)) |
| { |
| /* Mark the symbol as undefined, rather than as defined in |
| the .plt section. Leave the value if there were any |
| relocations where pointer equality matters (this is a clue |
| for the dynamic linker, to make function pointer |
| comparisons work between an application and shared |
| library), otherwise set it to zero. If a function is only |
| called from a binary, there is no need to slow down |
| shared libraries because of that. */ |
| sym->st_shndx = SHN_UNDEF; |
| if (!h->pointer_equality_needed) |
| sym->st_value = 0; |
| } |
| |
| if (h->got.offset != (bfd_vma) -1 |
| && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type) |
| && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE) |
| { |
| Elf_Internal_Rela rela; |
| |
| /* This symbol has an entry in the global offset table. Set it |
| up. */ |
| if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL) |
| abort (); |
| |
| rela.r_offset = (htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset |
| + (h->got.offset &~ (bfd_vma) 1)); |
| |
| /* If this is a static link, or it is a -Bsymbolic link and the |
| symbol is defined locally or was forced to be local because |
| of a version file, we just want to emit a RELATIVE reloc. |
| The entry in the global offset table will already have been |
| initialized in the relocate_section function. */ |
| if (h->def_regular |
| && h->type == STT_GNU_IFUNC) |
| { |
| if (bfd_link_pic (info)) |
| { |
| /* Generate R_X86_64_GLOB_DAT. */ |
| goto do_glob_dat; |
| } |
| else |
| { |
| asection *plt; |
| |
| if (!h->pointer_equality_needed) |
| abort (); |
| |
| /* For non-shared object, we can't use .got.plt, which |
| contains the real function addres if we need pointer |
| equality. We load the GOT entry with the PLT entry. */ |
| plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt; |
| bfd_put_64 (output_bfd, (plt->output_section->vma |
| + plt->output_offset |
| + h->plt.offset), |
| htab->elf.sgot->contents + h->got.offset); |
| return TRUE; |
| } |
| } |
| else if (bfd_link_pic (info) |
| && SYMBOL_REFERENCES_LOCAL (info, h)) |
| { |
| if (!h->def_regular) |
| return FALSE; |
| BFD_ASSERT((h->got.offset & 1) != 0); |
| rela.r_info = htab->r_info (0, R_X86_64_RELATIVE); |
| rela.r_addend = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| } |
| else |
| { |
| BFD_ASSERT((h->got.offset & 1) == 0); |
| do_glob_dat: |
| bfd_put_64 (output_bfd, (bfd_vma) 0, |
| htab->elf.sgot->contents + h->got.offset); |
| rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT); |
| rela.r_addend = 0; |
| } |
| |
| elf_append_rela (output_bfd, htab->elf.srelgot, &rela); |
| } |
| |
| if (h->needs_copy) |
| { |
| Elf_Internal_Rela rela; |
| |
| /* This symbol needs a copy reloc. Set it up. */ |
| |
| if (h->dynindx == -1 |
| || (h->root.type != bfd_link_hash_defined |
| && h->root.type != bfd_link_hash_defweak) |
| || htab->srelbss == NULL) |
| abort (); |
| |
| rela.r_offset = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY); |
| rela.r_addend = 0; |
| elf_append_rela (output_bfd, htab->srelbss, &rela); |
| } |
| |
| return TRUE; |
| } |
| |
| /* Finish up local dynamic symbol handling. We set the contents of |
| various dynamic sections here. */ |
| |
| static bfd_boolean |
| elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf) |
| { |
| struct elf_link_hash_entry *h |
| = (struct elf_link_hash_entry *) *slot; |
| struct bfd_link_info *info |
| = (struct bfd_link_info *) inf; |
| |
| return elf_x86_64_finish_dynamic_symbol (info->output_bfd, |
| info, h, NULL); |
| } |
| |
| /* Used to decide how to sort relocs in an optimal manner for the |
| dynamic linker, before writing them out. */ |
| |
| static enum elf_reloc_type_class |
| elf_x86_64_reloc_type_class (const struct bfd_link_info *info, |
| const asection *rel_sec ATTRIBUTE_UNUSED, |
| const Elf_Internal_Rela *rela) |
| { |
| bfd *abfd = info->output_bfd; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| struct elf_x86_64_link_hash_table *htab = elf_x86_64_hash_table (info); |
| unsigned long r_symndx = htab->r_sym (rela->r_info); |
| Elf_Internal_Sym sym; |
| |
| if (htab->elf.dynsym == NULL |
| || !bed->s->swap_symbol_in (abfd, |
| (htab->elf.dynsym->contents |
| + r_symndx * bed->s->sizeof_sym), |
| 0, &sym)) |
| abort (); |
| |
| /* Check relocation against STT_GNU_IFUNC symbol. */ |
| if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC) |
| return reloc_class_ifunc; |
| |
| switch ((int) ELF32_R_TYPE (rela->r_info)) |
| { |
| case R_X86_64_RELATIVE: |
| case R_X86_64_RELATIVE64: |
| return reloc_class_relative; |
| case R_X86_64_JUMP_SLOT: |
| return reloc_class_plt; |
| case R_X86_64_COPY: |
| return reloc_class_copy; |
| default: |
| return reloc_class_normal; |
| } |
| } |
| |
| /* Finish up the dynamic sections. */ |
| |
| static bfd_boolean |
| elf_x86_64_finish_dynamic_sections (bfd *output_bfd, |
| struct bfd_link_info *info) |
| { |
| struct elf_x86_64_link_hash_table *htab; |
| bfd *dynobj; |
| asection *sdyn; |
| const struct elf_x86_64_backend_data *abed; |
| |
| htab = elf_x86_64_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| /* Use MPX backend data in case of BND relocation. Use .plt_bnd |
| section only if there is .plt section. */ |
| abed = (htab->elf.splt != NULL && htab->plt_bnd != NULL |
| ? &elf_x86_64_bnd_arch_bed |
| : get_elf_x86_64_backend_data (output_bfd)); |
| |
| dynobj = htab->elf.dynobj; |
| sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
| |
| if (htab->elf.dynamic_sections_created) |
| { |
| bfd_byte *dyncon, *dynconend; |
| const struct elf_backend_data *bed; |
| bfd_size_type sizeof_dyn; |
| |
| if (sdyn == NULL || htab->elf.sgot == NULL) |
| abort (); |
| |
| bed = get_elf_backend_data (dynobj); |
| sizeof_dyn = bed->s->sizeof_dyn; |
| dyncon = sdyn->contents; |
| dynconend = sdyn->contents + sdyn->size; |
| for (; dyncon < dynconend; dyncon += sizeof_dyn) |
| { |
| Elf_Internal_Dyn dyn; |
| asection *s; |
| |
| (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn); |
| |
| switch (dyn.d_tag) |
| { |
| default: |
| continue; |
| |
| case DT_PLTGOT: |
| s = htab->elf.sgotplt; |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
| break; |
| |
| case DT_JMPREL: |
| dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma; |
| break; |
| |
| case DT_PLTRELSZ: |
| s = htab->elf.srelplt->output_section; |
| dyn.d_un.d_val = s->size; |
| break; |
| |
| case DT_RELASZ: |
| /* The procedure linkage table relocs (DT_JMPREL) should |
| not be included in the overall relocs (DT_RELA). |
| Therefore, we override the DT_RELASZ entry here to |
| make it not include the JMPREL relocs. Since the |
| linker script arranges for .rela.plt to follow all |
| other relocation sections, we don't have to worry |
| about changing the DT_RELA entry. */ |
| if (htab->elf.srelplt != NULL) |
| { |
| s = htab->elf.srelplt->output_section; |
| dyn.d_un.d_val -= s->size; |
| } |
| break; |
| |
| case DT_TLSDESC_PLT: |
| s = htab->elf.splt; |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset |
| + htab->tlsdesc_plt; |
| break; |
| |
| case DT_TLSDESC_GOT: |
| s = htab->elf.sgot; |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset |
| + htab->tlsdesc_got; |
| break; |
| } |
| |
| (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon); |
| } |
| |
| /* Fill in the special first entry in the procedure linkage table. */ |
| if (htab->elf.splt && htab->elf.splt->size > 0) |
| { |
| /* Fill in the first entry in the procedure linkage table. */ |
| memcpy (htab->elf.splt->contents, |
| abed->plt0_entry, abed->plt_entry_size); |
| /* Add offset for pushq GOT+8(%rip), since the instruction |
| uses 6 bytes subtract this value. */ |
| bfd_put_32 (output_bfd, |
| (htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset |
| + 8 |
| - htab->elf.splt->output_section->vma |
| - htab->elf.splt->output_offset |
| - 6), |
| htab->elf.splt->contents + abed->plt0_got1_offset); |
| /* Add offset for the PC-relative instruction accessing GOT+16, |
| subtracting the offset to the end of that instruction. */ |
| bfd_put_32 (output_bfd, |
| (htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset |
| + 16 |
| - htab->elf.splt->output_section->vma |
| - htab->elf.splt->output_offset |
| - abed->plt0_got2_insn_end), |
| htab->elf.splt->contents + abed->plt0_got2_offset); |
| |
| elf_section_data (htab->elf.splt->output_section) |
| ->this_hdr.sh_entsize = abed->plt_entry_size; |
| |
| if (htab->tlsdesc_plt) |
| { |
| bfd_put_64 (output_bfd, (bfd_vma) 0, |
| htab->elf.sgot->contents + htab->tlsdesc_got); |
| |
| memcpy (htab->elf.splt->contents + htab->tlsdesc_plt, |
| abed->plt0_entry, abed->plt_entry_size); |
| |
| /* Add offset for pushq GOT+8(%rip), since the |
| instruction uses 6 bytes subtract this value. */ |
| bfd_put_32 (output_bfd, |
| (htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset |
| + 8 |
| - htab->elf.splt->output_section->vma |
| - htab->elf.splt->output_offset |
| - htab->tlsdesc_plt |
| - 6), |
| htab->elf.splt->contents |
| + htab->tlsdesc_plt + abed->plt0_got1_offset); |
| /* Add offset for the PC-relative instruction accessing GOT+TDG, |
| where TGD stands for htab->tlsdesc_got, subtracting the offset |
| to the end of that instruction. */ |
| bfd_put_32 (output_bfd, |
| (htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset |
| + htab->tlsdesc_got |
| - htab->elf.splt->output_section->vma |
| - htab->elf.splt->output_offset |
| - htab->tlsdesc_plt |
| - abed->plt0_got2_insn_end), |
| htab->elf.splt->contents |
| + htab->tlsdesc_plt + abed->plt0_got2_offset); |
| } |
| } |
| } |
| |
| if (htab->plt_bnd != NULL) |
| elf_section_data (htab->plt_bnd->output_section) |
| ->this_hdr.sh_entsize = sizeof (elf_x86_64_bnd_plt2_entry); |
| |
| if (htab->elf.sgotplt) |
| { |
| if (bfd_is_abs_section (htab->elf.sgotplt->output_section)) |
| { |
| (*_bfd_error_handler) |
| (_("discarded output section: `%A'"), htab->elf.sgotplt); |
| return FALSE; |
| } |
| |
| /* Fill in the first three entries in the global offset table. */ |
| if (htab->elf.sgotplt->size > 0) |
| { |
| /* Set the first entry in the global offset table to the address of |
| the dynamic section. */ |
| if (sdyn == NULL) |
| bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents); |
| else |
| bfd_put_64 (output_bfd, |
| sdyn->output_section->vma + sdyn->output_offset, |
| htab->elf.sgotplt->contents); |
| /* Write GOT[1] and GOT[2], needed for the dynamic linker. */ |
| bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE); |
| bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2); |
| } |
| |
| elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize = |
| GOT_ENTRY_SIZE; |
| } |
| |
| /* Adjust .eh_frame for .plt section. */ |
| if (htab->plt_eh_frame != NULL |
| && htab->plt_eh_frame->contents != NULL) |
| { |
| if (htab->elf.splt != NULL |
| && htab->elf.splt->size != 0 |
| && (htab->elf.splt->flags & SEC_EXCLUDE) == 0 |
| && htab->elf.splt->output_section != NULL |
| && htab->plt_eh_frame->output_section != NULL) |
| { |
| bfd_vma plt_start = htab->elf.splt->output_section->vma; |
| bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma |
| + htab->plt_eh_frame->output_offset |
| + PLT_FDE_START_OFFSET; |
| bfd_put_signed_32 (dynobj, plt_start - eh_frame_start, |
| htab->plt_eh_frame->contents |
| + PLT_FDE_START_OFFSET); |
| } |
| if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME) |
| { |
| if (! _bfd_elf_write_section_eh_frame (output_bfd, info, |
| htab->plt_eh_frame, |
| htab->plt_eh_frame->contents)) |
| return FALSE; |
| } |
| } |
| |
| if (htab->elf.sgot && htab->elf.sgot->size > 0) |
| elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize |
| = GOT_ENTRY_SIZE; |
| |
| /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */ |
| htab_traverse (htab->loc_hash_table, |
| elf_x86_64_finish_local_dynamic_symbol, |
| info); |
| |
| return TRUE; |
| } |
| |
| /* Return an array of PLT entry symbol values. */ |
| |
| static bfd_vma * |
| elf_x86_64_get_plt_sym_val (bfd *abfd, asymbol **dynsyms, asection *plt, |
| asection *relplt) |
| { |
| bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); |
| arelent *p; |
| long count, i; |
| bfd_vma *plt_sym_val; |
| bfd_vma plt_offset; |
| bfd_byte *plt_contents; |
| const struct elf_x86_64_backend_data *bed; |
| Elf_Internal_Shdr *hdr; |
| asection *plt_bnd; |
| |
| /* Get the .plt section contents. PLT passed down may point to the |
| .plt.bnd section. Make sure that PLT always points to the .plt |
| section. */ |
| plt_bnd = bfd_get_section_by_name (abfd, ".plt.bnd"); |
| if (plt_bnd) |
| { |
| if (plt != plt_bnd) |
| abort (); |
| plt = bfd_get_section_by_name (abfd, ".plt"); |
| if (plt == NULL) |
| abort (); |
| bed = &elf_x86_64_bnd_arch_bed; |
| } |
| else |
| bed = get_elf_x86_64_backend_data (abfd); |
| |
| plt_contents = (bfd_byte *) bfd_malloc (plt->size); |
| if (plt_contents == NULL) |
| return NULL; |
| if (!bfd_get_section_contents (abfd, (asection *) plt, |
| plt_contents, 0, plt->size)) |
| { |
| bad_return: |
| free (plt_contents); |
| return NULL; |
| } |
| |
| slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; |
| if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE)) |
| goto bad_return; |
| |
| hdr = &elf_section_data (relplt)->this_hdr; |
| count = relplt->size / hdr->sh_entsize; |
| |
| plt_sym_val = (bfd_vma *) bfd_malloc (sizeof (bfd_vma) * count); |
| if (plt_sym_val == NULL) |
| goto bad_return; |
| |
| for (i = 0; i < count; i++) |
| plt_sym_val[i] = -1; |
| |
| plt_offset = bed->plt_entry_size; |
| p = relplt->relocation; |
| for (i = 0; i < count; i++, p++) |
| { |
| long reloc_index; |
| |
| /* Skip unknown relocation. */ |
| if (p->howto == NULL) |
| continue; |
| |
| if (p->howto->type != R_X86_64_JUMP_SLOT |
| && p->howto->type != R_X86_64_IRELATIVE) |
| continue; |
| |
| reloc_index = H_GET_32 (abfd, (plt_contents + plt_offset |
| + bed->plt_reloc_offset)); |
| if (reloc_index >= count) |
| abort (); |
| if (plt_bnd) |
| { |
| /* This is the index in .plt section. */ |
| long plt_index = plt_offset / bed->plt_entry_size; |
| /* Store VMA + the offset in .plt.bnd section. */ |
| plt_sym_val[reloc_index] = |
| (plt_bnd->vma |
| + (plt_index - 1) * sizeof (elf_x86_64_legacy_plt2_entry)); |
| } |
| else |
| plt_sym_val[reloc_index] = plt->vma + plt_offset; |
| plt_offset += bed->plt_entry_size; |
| |
| /* PR binutils/18437: Skip extra relocations in the .rela.plt |
| section. */ |
| if (plt_offset >= plt->size) |
| break; |
| } |
| |
| free (plt_contents); |
| |
| return plt_sym_val; |
| } |
| |
| /* Similar to _bfd_elf_get_synthetic_symtab, with .plt.bnd section |
| support. */ |
| |
| static long |
| elf_x86_64_get_synthetic_symtab (bfd *abfd, |
| long symcount, |
| asymbol **syms, |
| long dynsymcount, |
| asymbol **dynsyms, |
| asymbol **ret) |
| { |
| /* Pass the .plt.bnd section to _bfd_elf_ifunc_get_synthetic_symtab |
| as PLT if it exists. */ |
| asection *plt = bfd_get_section_by_name (abfd, ".plt.bnd"); |
| if (plt == NULL) |
| plt = bfd_get_section_by_name (abfd, ".plt"); |
| return _bfd_elf_ifunc_get_synthetic_symtab (abfd, symcount, syms, |
| dynsymcount, dynsyms, ret, |
| plt, |
| elf_x86_64_get_plt_sym_val); |
| } |
| |
| /* Handle an x86-64 specific section when reading an object file. This |
| is called when elfcode.h finds a section with an unknown type. */ |
| |
| static bfd_boolean |
| elf_x86_64_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr, |
| const char *name, int shindex) |
| { |
| if (hdr->sh_type != SHT_X86_64_UNWIND) |
| return FALSE; |
| |
| if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
| return FALSE; |
| |
| return TRUE; |
| } |
| |
| /* Hook called by the linker routine which adds symbols from an object |
| file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead |
| of .bss. */ |
| |
| static bfd_boolean |
| elf_x86_64_add_symbol_hook (bfd *abfd, |
| struct bfd_link_info *info, |
| Elf_Internal_Sym *sym, |
| const char **namep ATTRIBUTE_UNUSED, |
| flagword *flagsp ATTRIBUTE_UNUSED, |
| asection **secp, |
| bfd_vma *valp) |
| { |
| asection *lcomm; |
| |
| switch (sym->st_shndx) |
| { |
| case SHN_X86_64_LCOMMON: |
| lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON"); |
| if (lcomm == NULL) |
| { |
| lcomm = bfd_make_section_with_flags (abfd, |
| "LARGE_COMMON", |
| (SEC_ALLOC |
| | SEC_IS_COMMON |
| | SEC_LINKER_CREATED)); |
| if (lcomm == NULL) |
| return FALSE; |
| elf_section_flags (lcomm) |= SHF_X86_64_LARGE; |
| } |
| *secp = lcomm; |
| *valp = sym->st_size; |
| return TRUE; |
| } |
| |
| if (ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE |
| && (abfd->flags & DYNAMIC) == 0 |
| && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour) |
| elf_tdata (info->output_bfd)->has_gnu_symbols |
| |= elf_gnu_symbol_unique; |
| |
| return TRUE; |
| } |
| |
| |
| /* Given a BFD section, try to locate the corresponding ELF section |
| index. */ |
| |
| static bfd_boolean |
| elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, |
| asection *sec, int *index_return) |
| { |
| if (sec == &_bfd_elf_large_com_section) |
| { |
| *index_return = SHN_X86_64_LCOMMON; |
| return TRUE; |
| } |
| return FALSE; |
| } |
| |
| /* Process a symbol. */ |
| |
| static void |
| elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, |
| asymbol *asym) |
| { |
| elf_symbol_type *elfsym = (elf_symbol_type *) asym; |
| |
| switch (elfsym->internal_elf_sym.st_shndx) |
| { |
| case SHN_X86_64_LCOMMON: |
| asym->section = &_bfd_elf_large_com_section; |
| asym->value = elfsym->internal_elf_sym.st_size; |
| /* Common symbol doesn't set BSF_GLOBAL. */ |
| asym->flags &= ~BSF_GLOBAL; |
| break; |
| } |
| } |
| |
| static bfd_boolean |
| elf_x86_64_common_definition (Elf_Internal_Sym *sym) |
| { |
| return (sym->st_shndx == SHN_COMMON |
| || sym->st_shndx == SHN_X86_64_LCOMMON); |
| } |
| |
| static unsigned int |
| elf_x86_64_common_section_index (asection *sec) |
| { |
| if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0) |
| return SHN_COMMON; |
| else |
| return SHN_X86_64_LCOMMON; |
| } |
| |
| static asection * |
| elf_x86_64_common_section (asection *sec) |
| { |
| if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0) |
| return bfd_com_section_ptr; |
| else |
| return &_bfd_elf_large_com_section; |
| } |
| |
| static bfd_boolean |
| elf_x86_64_merge_symbol (struct elf_link_hash_entry *h, |
| const Elf_Internal_Sym *sym, |
| asection **psec, |
| bfd_boolean newdef, |
| bfd_boolean olddef, |
| bfd *oldbfd, |
| const asection *oldsec) |
| { |
| /* A normal common symbol and a large common symbol result in a |
| normal common symbol. We turn the large common symbol into a |
| normal one. */ |
| if (!olddef |
| && h->root.type == bfd_link_hash_common |
| && !newdef |
| && bfd_is_com_section (*psec) |
| && oldsec != *psec) |
| { |
| if (sym->st_shndx == SHN_COMMON |
| && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) != 0) |
| { |
| h->root.u.c.p->section |
| = bfd_make_section_old_way (oldbfd, "COMMON"); |
| h->root.u.c.p->section->flags = SEC_ALLOC; |
| } |
| else if (sym->st_shndx == SHN_X86_64_LCOMMON |
| && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) == 0) |
| *psec = bfd_com_section_ptr; |
| } |
| |
| return TRUE; |
| } |
| |
| static int |
| elf_x86_64_additional_program_headers (bfd *abfd, |
| struct bfd_link_info *info ATTRIBUTE_UNUSED) |
| { |
| asection *s; |
| int count = 0; |
| |
| /* Check to see if we need a large readonly segment. */ |
| s = bfd_get_section_by_name (abfd, ".lrodata"); |
| if (s && (s->flags & SEC_LOAD)) |
| count++; |
| |
| /* Check to see if we need a large data segment. Since .lbss sections |
| is placed right after the .bss section, there should be no need for |
| a large data segment just because of .lbss. */ |
| s = bfd_get_section_by_name (abfd, ".ldata"); |
| if (s && (s->flags & SEC_LOAD)) |
| count++; |
| |
| return count; |
| } |
| |
| /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ |
| |
| static bfd_boolean |
| elf_x86_64_hash_symbol (struct elf_link_hash_entry *h) |
| { |
| if (h->plt.offset != (bfd_vma) -1 |
| && !h->def_regular |
| && !h->pointer_equality_needed) |
| return FALSE; |
| |
| return _bfd_elf_hash_symbol (h); |
| } |
| |
| /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */ |
| |
| static bfd_boolean |
| elf_x86_64_relocs_compatible (const bfd_target *input, |
| const bfd_target *output) |
| { |
| return ((xvec_get_elf_backend_data (input)->s->elfclass |
| == xvec_get_elf_backend_data (output)->s->elfclass) |
| && _bfd_elf_relocs_compatible (input, output)); |
| } |
| |
| static const struct bfd_elf_special_section |
| elf_x86_64_special_sections[]= |
| { |
| { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE}, |
| { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE}, |
| { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE}, |
| { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE}, |
| { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE}, |
| { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE}, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| #define TARGET_LITTLE_SYM x86_64_elf64_vec |
| #define TARGET_LITTLE_NAME "elf64-x86-64" |
| #define ELF_ARCH bfd_arch_i386 |
| #define ELF_TARGET_ID X86_64_ELF_DATA |
| #define ELF_MACHINE_CODE EM_X86_64 |
| #define ELF_MAXPAGESIZE 0x200000 |
| #define ELF_MINPAGESIZE 0x1000 |
| #define ELF_COMMONPAGESIZE 0x1000 |
| |
| #define elf_backend_can_gc_sections 1 |
| #define elf_backend_can_refcount 1 |
| #define elf_backend_want_got_plt 1 |
| #define elf_backend_plt_readonly 1 |
| #define elf_backend_want_plt_sym 0 |
| #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3) |
| #define elf_backend_rela_normal 1 |
| #define elf_backend_plt_alignment 4 |
| #define elf_backend_extern_protected_data 1 |
| |
| #define elf_info_to_howto elf_x86_64_info_to_howto |
| |
| #define bfd_elf64_bfd_link_hash_table_create \ |
| elf_x86_64_link_hash_table_create |
| #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup |
| #define bfd_elf64_bfd_reloc_name_lookup \ |
| elf_x86_64_reloc_name_lookup |
| |
| #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol |
| #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible |
| #define elf_backend_check_relocs elf_x86_64_check_relocs |
| #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol |
| #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections |
| #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections |
| #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol |
| #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook |
| #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook |
| #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus |
| #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo |
| #ifdef CORE_HEADER |
| #define elf_backend_write_core_note elf_x86_64_write_core_note |
| #endif |
| #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class |
| #define elf_backend_relocate_section elf_x86_64_relocate_section |
| #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections |
| #define elf_backend_always_size_sections elf_x86_64_always_size_sections |
| #define elf_backend_init_index_section _bfd_elf_init_1_index_section |
| #define elf_backend_object_p elf64_x86_64_elf_object_p |
| #define bfd_elf64_mkobject elf_x86_64_mkobject |
| #define bfd_elf64_get_synthetic_symtab elf_x86_64_get_synthetic_symtab |
| |
| #define elf_backend_section_from_shdr \ |
| elf_x86_64_section_from_shdr |
| |
| #define elf_backend_section_from_bfd_section \ |
| elf_x86_64_elf_section_from_bfd_section |
| #define elf_backend_add_symbol_hook \ |
| elf_x86_64_add_symbol_hook |
| #define elf_backend_symbol_processing \ |
| elf_x86_64_symbol_processing |
| #define elf_backend_common_section_index \ |
| elf_x86_64_common_section_index |
| #define elf_backend_common_section \ |
| elf_x86_64_common_section |
| #define elf_backend_common_definition \ |
| elf_x86_64_common_definition |
| #define elf_backend_merge_symbol \ |
| elf_x86_64_merge_symbol |
| #define elf_backend_special_sections \ |
| elf_x86_64_special_sections |
| #define elf_backend_additional_program_headers \ |
| elf_x86_64_additional_program_headers |
| #define elf_backend_hash_symbol \ |
| elf_x86_64_hash_symbol |
| |
| #include "elf64-target.h" |
| |
| /* CloudABI support. */ |
| |
| #undef TARGET_LITTLE_SYM |
| #define TARGET_LITTLE_SYM x86_64_elf64_cloudabi_vec |
| #undef TARGET_LITTLE_NAME |
| #define TARGET_LITTLE_NAME "elf64-x86-64-cloudabi" |
| |
| #undef ELF_OSABI |
| #define ELF_OSABI ELFOSABI_CLOUDABI |
| |
| #undef elf64_bed |
| #define elf64_bed elf64_x86_64_cloudabi_bed |
| |
| #include "elf64-target.h" |
| |
| /* FreeBSD support. */ |
| |
| #undef TARGET_LITTLE_SYM |
| #define TARGET_LITTLE_SYM x86_64_elf64_fbsd_vec |
| #undef TARGET_LITTLE_NAME |
| #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd" |
| |
| #undef ELF_OSABI |
| #define ELF_OSABI ELFOSABI_FREEBSD |
| |
| #undef elf64_bed |
| #define elf64_bed elf64_x86_64_fbsd_bed |
| |
| #include "elf64-target.h" |
| |
| /* Solaris 2 support. */ |
| |
| #undef TARGET_LITTLE_SYM |
| #define TARGET_LITTLE_SYM x86_64_elf64_sol2_vec |
| #undef TARGET_LITTLE_NAME |
| #define TARGET_LITTLE_NAME "elf64-x86-64-sol2" |
| |
| /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE |
| objects won't be recognized. */ |
| #undef ELF_OSABI |
| |
| #undef elf64_bed |
| #define elf64_bed elf64_x86_64_sol2_bed |
| |
| /* The 64-bit static TLS arena size is rounded to the nearest 16-byte |
| boundary. */ |
| #undef elf_backend_static_tls_alignment |
| #define elf_backend_static_tls_alignment 16 |
| |
| /* The Solaris 2 ABI requires a plt symbol on all platforms. |
| |
| Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output |
| File, p.63. */ |
| #undef elf_backend_want_plt_sym |
| #define elf_backend_want_plt_sym 1 |
| |
| #include "elf64-target.h" |
| |
| /* Native Client support. */ |
| |
| static bfd_boolean |
| elf64_x86_64_nacl_elf_object_p (bfd *abfd) |
| { |
| /* Set the right machine number for a NaCl x86-64 ELF64 file. */ |
| bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64_nacl); |
| return TRUE; |
| } |
| |
| #undef TARGET_LITTLE_SYM |
| #define TARGET_LITTLE_SYM x86_64_elf64_nacl_vec |
| #undef TARGET_LITTLE_NAME |
| #define TARGET_LITTLE_NAME "elf64-x86-64-nacl" |
| #undef elf64_bed |
| #define elf64_bed elf64_x86_64_nacl_bed |
| |
| #undef ELF_MAXPAGESIZE |
| #undef ELF_MINPAGESIZE |
| #undef ELF_COMMONPAGESIZE |
| #define ELF_MAXPAGESIZE 0x10000 |
| #define ELF_MINPAGESIZE 0x10000 |
| #define ELF_COMMONPAGESIZE 0x10000 |
| |
| /* Restore defaults. */ |
| #undef ELF_OSABI |
| #undef elf_backend_static_tls_alignment |
| #undef elf_backend_want_plt_sym |
| #define elf_backend_want_plt_sym 0 |
| |
| /* NaCl uses substantially different PLT entries for the same effects. */ |
| |
| #undef elf_backend_plt_alignment |
| #define elf_backend_plt_alignment 5 |
| #define NACL_PLT_ENTRY_SIZE 64 |
| #define NACLMASK 0xe0 /* 32-byte alignment mask. */ |
| |
| static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] = |
| { |
| 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */ |
| 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */ |
| 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */ |
| 0x4d, 0x01, 0xfb, /* add %r15, %r11 */ |
| 0x41, 0xff, 0xe3, /* jmpq *%r11 */ |
| |
| /* 9-byte nop sequence to pad out to the next 32-byte boundary. */ |
| 0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw 0x0(%rax,%rax,1) */ |
| |
| /* 32 bytes of nop to pad out to the standard size. */ |
| 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */ |
| 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */ |
| 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */ |
| 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */ |
| 0x66, /* excess data32 prefix */ |
| 0x90 /* nop */ |
| }; |
| |
| static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] = |
| { |
| 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */ |
| 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */ |
| 0x4d, 0x01, 0xfb, /* add %r15, %r11 */ |
| 0x41, 0xff, 0xe3, /* jmpq *%r11 */ |
| |
| /* 15-byte nop sequence to pad out to the next 32-byte boundary. */ |
| 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */ |
| 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */ |
| |
| /* Lazy GOT entries point here (32-byte aligned). */ |
| 0x68, /* pushq immediate */ |
| 0, 0, 0, 0, /* replaced with index into relocation table. */ |
| 0xe9, /* jmp relative */ |
| 0, 0, 0, 0, /* replaced with offset to start of .plt0. */ |
| |
| /* 22 bytes of nop to pad out to the standard size. */ |
| 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */ |
| 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */ |
| 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */ |
| }; |
| |
| /* .eh_frame covering the .plt section. */ |
| |
| static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] = |
| { |
| #if (PLT_CIE_LENGTH != 20 \ |
| || PLT_FDE_LENGTH != 36 \ |
| || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \ |
| || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12) |
| # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!" |
| #endif |
| PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */ |
| 0, 0, 0, 0, /* CIE ID */ |
| 1, /* CIE version */ |
| 'z', 'R', 0, /* Augmentation string */ |
| 1, /* Code alignment factor */ |
| 0x78, /* Data alignment factor */ |
| 16, /* Return address column */ |
| 1, /* Augmentation size */ |
| DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */ |
| DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */ |
| DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */ |
| DW_CFA_nop, DW_CFA_nop, |
| |
| PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */ |
| PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */ |
| 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */ |
| 0, 0, 0, 0, /* .plt size goes here */ |
| 0, /* Augmentation size */ |
| DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */ |
| DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */ |
| DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */ |
| DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */ |
| DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */ |
| 13, /* Block length */ |
| DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */ |
| DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */ |
| DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge, |
| DW_OP_lit3, DW_OP_shl, DW_OP_plus, |
| DW_CFA_nop, DW_CFA_nop |
| }; |
| |
| static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed = |
| { |
| elf_x86_64_nacl_plt0_entry, /* plt0_entry */ |
| elf_x86_64_nacl_plt_entry, /* plt_entry */ |
| NACL_PLT_ENTRY_SIZE, /* plt_entry_size */ |
| 2, /* plt0_got1_offset */ |
| 9, /* plt0_got2_offset */ |
| 13, /* plt0_got2_insn_end */ |
| 3, /* plt_got_offset */ |
| 33, /* plt_reloc_offset */ |
| 38, /* plt_plt_offset */ |
| 7, /* plt_got_insn_size */ |
| 42, /* plt_plt_insn_end */ |
| 32, /* plt_lazy_offset */ |
| elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */ |
| sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */ |
| }; |
| |
| #undef elf_backend_arch_data |
| #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed |
| |
| #undef elf_backend_object_p |
| #define elf_backend_object_p elf64_x86_64_nacl_elf_object_p |
| #undef elf_backend_modify_segment_map |
| #define elf_backend_modify_segment_map nacl_modify_segment_map |
| #undef elf_backend_modify_program_headers |
| #define elf_backend_modify_program_headers nacl_modify_program_headers |
| #undef elf_backend_final_write_processing |
| #define elf_backend_final_write_processing nacl_final_write_processing |
| |
| #include "elf64-target.h" |
| |
| /* Native Client x32 support. */ |
| |
| static bfd_boolean |
| elf32_x86_64_nacl_elf_object_p (bfd *abfd) |
| { |
| /* Set the right machine number for a NaCl x86-64 ELF32 file. */ |
| bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32_nacl); |
| return TRUE; |
| } |
| |
| #undef TARGET_LITTLE_SYM |
| #define TARGET_LITTLE_SYM x86_64_elf32_nacl_vec |
| #undef TARGET_LITTLE_NAME |
| #define TARGET_LITTLE_NAME "elf32-x86-64-nacl" |
| #undef elf32_bed |
| #define elf32_bed elf32_x86_64_nacl_bed |
| |
| #define bfd_elf32_bfd_link_hash_table_create \ |
| elf_x86_64_link_hash_table_create |
| #define bfd_elf32_bfd_reloc_type_lookup \ |
| elf_x86_64_reloc_type_lookup |
| #define bfd_elf32_bfd_reloc_name_lookup \ |
| elf_x86_64_reloc_name_lookup |
| #define bfd_elf32_mkobject \ |
| elf_x86_64_mkobject |
| #define bfd_elf32_get_synthetic_symtab \ |
| elf_x86_64_get_synthetic_symtab |
| |
| #undef elf_backend_object_p |
| #define elf_backend_object_p \ |
| elf32_x86_64_nacl_elf_object_p |
| |
| #undef elf_backend_bfd_from_remote_memory |
| #define elf_backend_bfd_from_remote_memory \ |
| _bfd_elf32_bfd_from_remote_memory |
| |
| #undef elf_backend_size_info |
| #define elf_backend_size_info \ |
| _bfd_elf32_size_info |
| |
| #include "elf32-target.h" |
| |
| /* Restore defaults. */ |
| #undef elf_backend_object_p |
| #define elf_backend_object_p elf64_x86_64_elf_object_p |
| #undef elf_backend_bfd_from_remote_memory |
| #undef elf_backend_size_info |
| #undef elf_backend_modify_segment_map |
| #undef elf_backend_modify_program_headers |
| #undef elf_backend_final_write_processing |
| |
| /* Intel L1OM support. */ |
| |
| static bfd_boolean |
| elf64_l1om_elf_object_p (bfd *abfd) |
| { |
| /* Set the right machine number for an L1OM elf64 file. */ |
| bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om); |
| return TRUE; |
| } |
| |
| #undef TARGET_LITTLE_SYM |
| #define TARGET_LITTLE_SYM l1om_elf64_vec |
| #undef TARGET_LITTLE_NAME |
| #define TARGET_LITTLE_NAME "elf64-l1om" |
| #undef ELF_ARCH |
| #define ELF_ARCH bfd_arch_l1om |
| |
| #undef ELF_MACHINE_CODE |
| #define ELF_MACHINE_CODE EM_L1OM |
| |
| #undef ELF_OSABI |
| |
| #undef elf64_bed |
| #define elf64_bed elf64_l1om_bed |
| |
| #undef elf_backend_object_p |
| #define elf_backend_object_p elf64_l1om_elf_object_p |
| |
| /* Restore defaults. */ |
| #undef ELF_MAXPAGESIZE |
| #undef ELF_MINPAGESIZE |
| #undef ELF_COMMONPAGESIZE |
| #define ELF_MAXPAGESIZE 0x200000 |
| #define ELF_MINPAGESIZE 0x1000 |
| #define ELF_COMMONPAGESIZE 0x1000 |
| #undef elf_backend_plt_alignment |
| #define elf_backend_plt_alignment 4 |
| #undef elf_backend_arch_data |
| #define elf_backend_arch_data &elf_x86_64_arch_bed |
| |
| #include "elf64-target.h" |
| |
| /* FreeBSD L1OM support. */ |
| |
| #undef TARGET_LITTLE_SYM |
| #define TARGET_LITTLE_SYM l1om_elf64_fbsd_vec |
| #undef TARGET_LITTLE_NAME |
| #define TARGET_LITTLE_NAME "elf64-l1om-freebsd" |
| |
| #undef ELF_OSABI |
| #define ELF_OSABI ELFOSABI_FREEBSD |
| |
| #undef elf64_bed |
| #define elf64_bed elf64_l1om_fbsd_bed |
| |
| #include "elf64-target.h" |
| |
| /* Intel K1OM support. */ |
| |
| static bfd_boolean |
| elf64_k1om_elf_object_p (bfd *abfd) |
| { |
| /* Set the right machine number for an K1OM elf64 file. */ |
| bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om); |
| return TRUE; |
| } |
| |
| #undef TARGET_LITTLE_SYM |
| #define TARGET_LITTLE_SYM k1om_elf64_vec |
| #undef TARGET_LITTLE_NAME |
| #define TARGET_LITTLE_NAME "elf64-k1om" |
| #undef ELF_ARCH |
| #define ELF_ARCH bfd_arch_k1om |
| |
| #undef ELF_MACHINE_CODE |
| #define ELF_MACHINE_CODE EM_K1OM |
| |
| #undef ELF_OSABI |
| |
| #undef elf64_bed |
| #define elf64_bed elf64_k1om_bed |
| |
| #undef elf_backend_object_p |
| #define elf_backend_object_p elf64_k1om_elf_object_p |
| |
| #undef elf_backend_static_tls_alignment |
| |
| #undef elf_backend_want_plt_sym |
| #define elf_backend_want_plt_sym 0 |
| |
| #include "elf64-target.h" |
| |
| /* FreeBSD K1OM support. */ |
| |
| #undef TARGET_LITTLE_SYM |
| #define TARGET_LITTLE_SYM k1om_elf64_fbsd_vec |
| #undef TARGET_LITTLE_NAME |
| #define TARGET_LITTLE_NAME "elf64-k1om-freebsd" |
| |
| #undef ELF_OSABI |
| #define ELF_OSABI ELFOSABI_FREEBSD |
| |
| #undef elf64_bed |
| #define elf64_bed elf64_k1om_fbsd_bed |
| |
| #include "elf64-target.h" |
| |
| /* 32bit x86-64 support. */ |
| |
| #undef TARGET_LITTLE_SYM |
| #define TARGET_LITTLE_SYM x86_64_elf32_vec |
| #undef TARGET_LITTLE_NAME |
| #define TARGET_LITTLE_NAME "elf32-x86-64" |
| #undef elf32_bed |
| |
| #undef ELF_ARCH |
| #define ELF_ARCH bfd_arch_i386 |
| |
| #undef ELF_MACHINE_CODE |
| #define ELF_MACHINE_CODE EM_X86_64 |
| |
| #undef ELF_OSABI |
| |
| #undef elf_backend_object_p |
| #define elf_backend_object_p \ |
| elf32_x86_64_elf_object_p |
| |
| #undef elf_backend_bfd_from_remote_memory |
| #define elf_backend_bfd_from_remote_memory \ |
| _bfd_elf32_bfd_from_remote_memory |
| |
| #undef elf_backend_size_info |
| #define elf_backend_size_info \ |
| _bfd_elf32_size_info |
| |
| #include "elf32-target.h" |