|  | /* Target-dependent code for GNU/Linux AArch64. | 
|  |  | 
|  | Copyright (C) 2009-2025 Free Software Foundation, Inc. | 
|  | Contributed by ARM Ltd. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  |  | 
|  | #include "exceptions.h" | 
|  | #include "extract-store-integer.h" | 
|  | #include "gdbarch.h" | 
|  | #include "glibc-tdep.h" | 
|  | #include "solib-svr4-linux.h" | 
|  | #include "linux-tdep.h" | 
|  | #include "svr4-tls-tdep.h" | 
|  | #include "aarch64-tdep.h" | 
|  | #include "aarch64-linux-tdep.h" | 
|  | #include "osabi.h" | 
|  | #include "solib-svr4.h" | 
|  | #include "symtab.h" | 
|  | #include "tramp-frame.h" | 
|  | #include "trad-frame.h" | 
|  | #include "dwarf2/frame.h" | 
|  | #include "target.h" | 
|  | #include "target/target.h" | 
|  | #include "expop.h" | 
|  | #include "auxv.h" | 
|  | #include "inferior.h" | 
|  |  | 
|  | #include "regcache.h" | 
|  | #include "regset.h" | 
|  |  | 
|  | #include "stap-probe.h" | 
|  | #include "parser-defs.h" | 
|  | #include "user-regs.h" | 
|  | #include "xml-syscall.h" | 
|  |  | 
|  | #include "record-full.h" | 
|  | #include "linux-record.h" | 
|  |  | 
|  | #include "arch/aarch64-gcs-linux.h" | 
|  | #include "arch/aarch64-mte.h" | 
|  | #include "arch/aarch64-mte-linux.h" | 
|  | #include "arch/aarch64-scalable-linux.h" | 
|  |  | 
|  | #include "arch-utils.h" | 
|  | #include "value.h" | 
|  |  | 
|  | #include "gdbsupport/selftest.h" | 
|  |  | 
|  | #include "elf/common.h" | 
|  | #include "elf/aarch64.h" | 
|  | #include "arch/aarch64-insn.h" | 
|  |  | 
|  | /* For std::pow */ | 
|  | #include <cmath> | 
|  |  | 
|  | /* Signal frame handling. | 
|  |  | 
|  | +------------+  ^ | 
|  | | saved lr   |  | | 
|  | +->| saved fp   |--+ | 
|  | |  |            | | 
|  | |  |            | | 
|  | |  +------------+ | 
|  | |  | saved lr   | | 
|  | +--| saved fp   | | 
|  | ^  |            | | 
|  | |  |            | | 
|  | |  +------------+ | 
|  | ^  |            | | 
|  | |  | signal     | | 
|  | |  |            |        SIGTRAMP_FRAME (struct rt_sigframe) | 
|  | |  | saved regs | | 
|  | +--| saved sp   |--> interrupted_sp | 
|  | |  | saved pc   |--> interrupted_pc | 
|  | |  |            | | 
|  | |  +------------+ | 
|  | |  | saved lr   |--> default_restorer (movz x8, NR_sys_rt_sigreturn; svc 0) | 
|  | +--| saved fp   |<- FP | 
|  | |            |         NORMAL_FRAME | 
|  | |            |<- SP | 
|  | +------------+ | 
|  |  | 
|  | On signal delivery, the kernel will create a signal handler stack | 
|  | frame and setup the return address in LR to point at restorer stub. | 
|  | The signal stack frame is defined by: | 
|  |  | 
|  | struct rt_sigframe | 
|  | { | 
|  | siginfo_t info; | 
|  | struct ucontext uc; | 
|  | }; | 
|  |  | 
|  | The ucontext has the following form: | 
|  | struct ucontext | 
|  | { | 
|  | unsigned long uc_flags; | 
|  | struct ucontext *uc_link; | 
|  | stack_t uc_stack; | 
|  | sigset_t uc_sigmask; | 
|  | struct sigcontext uc_mcontext; | 
|  | }; | 
|  |  | 
|  | struct sigcontext | 
|  | { | 
|  | unsigned long fault_address; | 
|  | unsigned long regs[31]; | 
|  | unsigned long sp;		/ * 31 * / | 
|  | unsigned long pc;		/ * 32 * / | 
|  | unsigned long pstate;	/ * 33 * / | 
|  | __u8 __reserved[4096] | 
|  | }; | 
|  |  | 
|  | The reserved space in sigcontext contains additional structures, each starting | 
|  | with a aarch64_ctx, which specifies a unique identifier and the total size of | 
|  | the structure.  The final structure in reserved will start will a null | 
|  | aarch64_ctx.  The penultimate entry in reserved may be a extra_context which | 
|  | then points to a further block of reserved space. | 
|  |  | 
|  | struct aarch64_ctx { | 
|  | u32 magic; | 
|  | u32 size; | 
|  | }; | 
|  |  | 
|  | The restorer stub will always have the form: | 
|  |  | 
|  | d28015a8        movz    x8, #0xad | 
|  | d4000001        svc     #0x0 | 
|  |  | 
|  | This is a system call sys_rt_sigreturn. | 
|  |  | 
|  | We detect signal frames by snooping the return code for the restorer | 
|  | instruction sequence. | 
|  |  | 
|  | The handler then needs to recover the saved register set from | 
|  | ucontext.uc_mcontext.  */ | 
|  |  | 
|  | /* These magic numbers need to reflect the layout of the kernel | 
|  | defined struct rt_sigframe and ucontext.  */ | 
|  | #define AARCH64_SIGCONTEXT_REG_SIZE             8 | 
|  | #define AARCH64_RT_SIGFRAME_UCONTEXT_OFFSET     128 | 
|  | #define AARCH64_UCONTEXT_SIGCONTEXT_OFFSET      176 | 
|  | #define AARCH64_SIGCONTEXT_XO_OFFSET            8 | 
|  | #define AARCH64_SIGCONTEXT_RESERVED_OFFSET      288 | 
|  |  | 
|  | #define AARCH64_SIGCONTEXT_RESERVED_SIZE	4096 | 
|  |  | 
|  | /* Unique identifiers that may be used for aarch64_ctx.magic.  */ | 
|  | #define AARCH64_EXTRA_MAGIC			0x45585401 | 
|  | #define AARCH64_FPSIMD_MAGIC			0x46508001 | 
|  | #define AARCH64_SVE_MAGIC			0x53564501 | 
|  | #define AARCH64_ZA_MAGIC			0x54366345 | 
|  | #define AARCH64_TPIDR2_MAGIC			0x54504902 | 
|  | #define AARCH64_ZT_MAGIC			0x5a544e01 | 
|  | #define AARCH64_GCS_MAGIC			0x47435300 | 
|  |  | 
|  | /* Defines for the extra_context that follows an AARCH64_EXTRA_MAGIC.  */ | 
|  | #define AARCH64_EXTRA_DATAP_OFFSET		8 | 
|  |  | 
|  | /* Defines for the fpsimd that follows an AARCH64_FPSIMD_MAGIC.  */ | 
|  | #define AARCH64_FPSIMD_FPSR_OFFSET		8 | 
|  | #define AARCH64_FPSIMD_FPCR_OFFSET		12 | 
|  | #define AARCH64_FPSIMD_V0_OFFSET		16 | 
|  | #define AARCH64_FPSIMD_VREG_SIZE		16 | 
|  |  | 
|  | /* Defines for the sve structure that follows an AARCH64_SVE_MAGIC.  */ | 
|  | #define AARCH64_SVE_CONTEXT_VL_OFFSET		8 | 
|  | #define AARCH64_SVE_CONTEXT_FLAGS_OFFSET	10 | 
|  | #define AARCH64_SVE_CONTEXT_REGS_OFFSET		16 | 
|  | #define AARCH64_SVE_CONTEXT_P_REGS_OFFSET(vq) (32 * vq * 16) | 
|  | #define AARCH64_SVE_CONTEXT_FFR_OFFSET(vq) \ | 
|  | (AARCH64_SVE_CONTEXT_P_REGS_OFFSET (vq) + (16 * vq * 2)) | 
|  | #define AARCH64_SVE_CONTEXT_SIZE(vq) \ | 
|  | (AARCH64_SVE_CONTEXT_FFR_OFFSET (vq) + (vq * 2)) | 
|  | /* Flag indicating the SVE Context describes streaming mode.  */ | 
|  | #define SVE_SIG_FLAG_SM				0x1 | 
|  |  | 
|  | /* SME constants.  */ | 
|  | #define AARCH64_SME_CONTEXT_SVL_OFFSET		8 | 
|  | #define AARCH64_SME_CONTEXT_REGS_OFFSET		16 | 
|  | #define AARCH64_SME_CONTEXT_ZA_SIZE(svq) \ | 
|  | ((sve_vl_from_vq (svq) * sve_vl_from_vq (svq))) | 
|  | #define AARCH64_SME_CONTEXT_SIZE(svq) \ | 
|  | (AARCH64_SME_CONTEXT_REGS_OFFSET + AARCH64_SME_CONTEXT_ZA_SIZE (svq)) | 
|  |  | 
|  | /* TPIDR2 register value offset in the TPIDR2 signal frame context.  */ | 
|  | #define AARCH64_TPIDR2_CONTEXT_TPIDR2_OFFSET	8 | 
|  |  | 
|  | /* SME2 (ZT) constants.  */ | 
|  | /* Offset of the field containing the number of registers in the SME2 signal | 
|  | context state.  */ | 
|  | #define AARCH64_SME2_CONTEXT_NREGS_OFFSET	8 | 
|  | /* Offset of the beginning of the register data for the first ZT register in | 
|  | the signal context state.  */ | 
|  | #define AARCH64_SME2_CONTEXT_REGS_OFFSET	16 | 
|  |  | 
|  | /* GCSPR register value offset in the GCS signal frame context.  */ | 
|  | #define AARCH64_GCS_CONTEXT_GCSPR_OFFSET	8 | 
|  | /* features_enabled value offset in the GCS signal frame context.  */ | 
|  | #define AARCH64_GCS_CONTEXT_FEATURES_ENABLED_OFFSET	16 | 
|  |  | 
|  | /* Holds information about the signal frame.  */ | 
|  | struct aarch64_linux_sigframe | 
|  | { | 
|  | /* The stack pointer value.  */ | 
|  | CORE_ADDR sp = 0; | 
|  | /* The sigcontext address.  */ | 
|  | CORE_ADDR sigcontext_address = 0; | 
|  | /* The start/end signal frame section addresses.  */ | 
|  | CORE_ADDR section = 0; | 
|  | CORE_ADDR section_end = 0; | 
|  |  | 
|  | /* Starting address of the section containing the general purpose | 
|  | registers.  */ | 
|  | CORE_ADDR gpr_section = 0; | 
|  | /* Starting address of the section containing the FPSIMD registers.  */ | 
|  | CORE_ADDR fpsimd_section = 0; | 
|  | /* Starting address of the section containing the SVE registers.  */ | 
|  | CORE_ADDR sve_section = 0; | 
|  | /* Starting address of the section containing the ZA register.  */ | 
|  | CORE_ADDR za_section = 0; | 
|  | /* Starting address of the section containing the TPIDR2 register.  */ | 
|  | CORE_ADDR tpidr2_section = 0; | 
|  | /* Starting address of the section containing the ZT registers.  */ | 
|  | CORE_ADDR zt_section = 0; | 
|  | /* Starting address of the section containing extra information.  */ | 
|  | CORE_ADDR extra_section = 0; | 
|  |  | 
|  | /* The vector length (SVE or SSVE).  */ | 
|  | ULONGEST vl = 0; | 
|  | /* The streaming vector length (SSVE/ZA).  */ | 
|  | ULONGEST svl = 0; | 
|  | /* Number of ZT registers in this context.  */ | 
|  | unsigned int zt_register_count = 0; | 
|  |  | 
|  | /* True if we are in streaming mode, false otherwise.  */ | 
|  | bool streaming_mode = false; | 
|  | /* True if we have a ZA payload, false otherwise.  */ | 
|  | bool za_payload = false; | 
|  | /* True if we have a ZT entry in the signal context, false otherwise.  */ | 
|  | bool zt_available = false; | 
|  |  | 
|  | /* True if we have a GCS entry in the signal context, false otherwise.  */ | 
|  | bool gcs_availabe = false; | 
|  | /* The Guarded Control Stack Pointer Register.  */ | 
|  | uint64_t gcspr; | 
|  | /* Flags indicating which GCS features are enabled for the thread.  */ | 
|  | uint64_t gcs_features_enabled; | 
|  | }; | 
|  |  | 
|  | /* Read an aarch64_ctx, returning the magic value, and setting *SIZE to the | 
|  | size, or return 0 on error.  */ | 
|  |  | 
|  | static uint32_t | 
|  | read_aarch64_ctx (CORE_ADDR ctx_addr, enum bfd_endian byte_order, | 
|  | uint32_t *size) | 
|  | { | 
|  | uint32_t magic = 0; | 
|  | gdb_byte buf[4]; | 
|  |  | 
|  | if (target_read_memory (ctx_addr, buf, 4) != 0) | 
|  | return 0; | 
|  | magic = extract_unsigned_integer (buf, 4, byte_order); | 
|  |  | 
|  | if (target_read_memory (ctx_addr + 4, buf, 4) != 0) | 
|  | return 0; | 
|  | *size = extract_unsigned_integer (buf, 4, byte_order); | 
|  |  | 
|  | return magic; | 
|  | } | 
|  |  | 
|  | /* Given CACHE, use the trad_frame* functions to restore the FPSIMD | 
|  | registers from a signal frame. | 
|  |  | 
|  | FPSIMD_CONTEXT is the address of the signal frame context containing FPSIMD | 
|  | data.  */ | 
|  |  | 
|  | static void | 
|  | aarch64_linux_restore_vregs (struct gdbarch *gdbarch, | 
|  | struct trad_frame_cache *cache, | 
|  | CORE_ADDR fpsimd_context) | 
|  | { | 
|  | /* WARNING: SIMD state is laid out in memory in target-endian format. | 
|  |  | 
|  | So we have a couple cases to consider: | 
|  |  | 
|  | 1 - If the target is big endian, then SIMD state is big endian, | 
|  | requiring a byteswap. | 
|  |  | 
|  | 2 - If the target is little endian, then SIMD state is little endian, so | 
|  | no byteswap is needed. */ | 
|  |  | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | int num_regs = gdbarch_num_regs (gdbarch); | 
|  | aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | for (int i = 0; i < 32; i++) | 
|  | { | 
|  | CORE_ADDR offset = (fpsimd_context + AARCH64_FPSIMD_V0_OFFSET | 
|  | + (i * AARCH64_FPSIMD_VREG_SIZE)); | 
|  |  | 
|  | gdb_byte buf[V_REGISTER_SIZE]; | 
|  |  | 
|  | /* Read the contents of the V register.  */ | 
|  | if (target_read_memory (offset, buf, V_REGISTER_SIZE)) | 
|  | error (_("Failed to read fpsimd register from signal context.")); | 
|  |  | 
|  | if (byte_order == BFD_ENDIAN_BIG) | 
|  | { | 
|  | size_t size = V_REGISTER_SIZE/2; | 
|  |  | 
|  | /* Read the two halves of the V register in reverse byte order.  */ | 
|  | CORE_ADDR u64 = extract_unsigned_integer (buf, size, | 
|  | byte_order); | 
|  | CORE_ADDR l64 = extract_unsigned_integer (buf + size, size, | 
|  | byte_order); | 
|  |  | 
|  | /* Copy the reversed bytes to the buffer.  */ | 
|  | store_unsigned_integer (buf, size, BFD_ENDIAN_LITTLE, l64); | 
|  | store_unsigned_integer (buf + size , size, BFD_ENDIAN_LITTLE, u64); | 
|  |  | 
|  | /* Now we can store the correct bytes for the V register.  */ | 
|  | trad_frame_set_reg_value_bytes (cache, AARCH64_V0_REGNUM + i, | 
|  | {buf, V_REGISTER_SIZE}); | 
|  | trad_frame_set_reg_value_bytes (cache, | 
|  | num_regs + AARCH64_Q0_REGNUM | 
|  | + i, {buf, Q_REGISTER_SIZE}); | 
|  | trad_frame_set_reg_value_bytes (cache, | 
|  | num_regs + AARCH64_D0_REGNUM | 
|  | + i, {buf, D_REGISTER_SIZE}); | 
|  | trad_frame_set_reg_value_bytes (cache, | 
|  | num_regs + AARCH64_S0_REGNUM | 
|  | + i, {buf, S_REGISTER_SIZE}); | 
|  | trad_frame_set_reg_value_bytes (cache, | 
|  | num_regs + AARCH64_H0_REGNUM | 
|  | + i, {buf, H_REGISTER_SIZE}); | 
|  | trad_frame_set_reg_value_bytes (cache, | 
|  | num_regs + AARCH64_B0_REGNUM | 
|  | + i, {buf, B_REGISTER_SIZE}); | 
|  |  | 
|  | if (tdep->has_sve ()) | 
|  | trad_frame_set_reg_value_bytes (cache, | 
|  | num_regs + AARCH64_SVE_V0_REGNUM | 
|  | + i, {buf, V_REGISTER_SIZE}); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Little endian, just point at the address containing the register | 
|  | value.  */ | 
|  | trad_frame_set_reg_addr (cache, AARCH64_V0_REGNUM + i, offset); | 
|  | trad_frame_set_reg_addr (cache, num_regs + AARCH64_Q0_REGNUM + i, | 
|  | offset); | 
|  | trad_frame_set_reg_addr (cache, num_regs + AARCH64_D0_REGNUM + i, | 
|  | offset); | 
|  | trad_frame_set_reg_addr (cache, num_regs + AARCH64_S0_REGNUM + i, | 
|  | offset); | 
|  | trad_frame_set_reg_addr (cache, num_regs + AARCH64_H0_REGNUM + i, | 
|  | offset); | 
|  | trad_frame_set_reg_addr (cache, num_regs + AARCH64_B0_REGNUM + i, | 
|  | offset); | 
|  |  | 
|  | if (tdep->has_sve ()) | 
|  | trad_frame_set_reg_addr (cache, num_regs + AARCH64_SVE_V0_REGNUM | 
|  | + i, offset); | 
|  | } | 
|  |  | 
|  | if (tdep->has_sve ()) | 
|  | { | 
|  | /* If SVE is supported for this target, zero out the Z | 
|  | registers then copy the first 16 bytes of each of the V | 
|  | registers to the associated Z register.  Otherwise the Z | 
|  | registers will contain uninitialized data.  */ | 
|  | std::vector<gdb_byte> z_buffer (tdep->vq * 16); | 
|  |  | 
|  | /* We have already handled the endianness swap above, so we don't need | 
|  | to worry about it here.  */ | 
|  | memcpy (z_buffer.data (), buf, V_REGISTER_SIZE); | 
|  | trad_frame_set_reg_value_bytes (cache, | 
|  | AARCH64_SVE_Z0_REGNUM + i, | 
|  | z_buffer); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Given a signal frame THIS_FRAME, read the signal frame information into | 
|  | SIGNAL_FRAME.  */ | 
|  |  | 
|  | static void | 
|  | aarch64_linux_read_signal_frame_info (const frame_info_ptr &this_frame, | 
|  | aarch64_linux_sigframe &signal_frame) | 
|  | { | 
|  | signal_frame.sp = get_frame_register_unsigned (this_frame, AARCH64_SP_REGNUM); | 
|  | signal_frame.sigcontext_address | 
|  | = signal_frame.sp + AARCH64_RT_SIGFRAME_UCONTEXT_OFFSET | 
|  | + AARCH64_UCONTEXT_SIGCONTEXT_OFFSET; | 
|  | signal_frame.section | 
|  | = signal_frame.sigcontext_address + AARCH64_SIGCONTEXT_RESERVED_OFFSET; | 
|  | signal_frame.section_end | 
|  | = signal_frame.section + AARCH64_SIGCONTEXT_RESERVED_SIZE; | 
|  |  | 
|  | signal_frame.gpr_section | 
|  | = signal_frame.sigcontext_address + AARCH64_SIGCONTEXT_XO_OFFSET; | 
|  |  | 
|  | /* Search for all the other sections, stopping at null.  */ | 
|  | CORE_ADDR section = signal_frame.section; | 
|  | CORE_ADDR section_end = signal_frame.section_end; | 
|  | uint32_t size, magic; | 
|  | bool extra_found = false; | 
|  | enum bfd_endian byte_order | 
|  | = gdbarch_byte_order (get_frame_arch (this_frame)); | 
|  |  | 
|  | while ((magic = read_aarch64_ctx (section, byte_order, &size)) != 0 | 
|  | && size != 0) | 
|  | { | 
|  | switch (magic) | 
|  | { | 
|  | case AARCH64_FPSIMD_MAGIC: | 
|  | { | 
|  | signal_frame.fpsimd_section = section; | 
|  | section += size; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case AARCH64_SVE_MAGIC: | 
|  | { | 
|  | /* Check if the section is followed by a full SVE dump, and set | 
|  | sve_regs if it is.  */ | 
|  | gdb_byte buf[4]; | 
|  |  | 
|  | /* Extract the vector length.  */ | 
|  | if (target_read_memory (section + AARCH64_SVE_CONTEXT_VL_OFFSET, | 
|  | buf, 2) != 0) | 
|  | { | 
|  | warning (_("Failed to read the vector length from the SVE " | 
|  | "signal frame context.")); | 
|  | section += size; | 
|  | break; | 
|  | } | 
|  |  | 
|  | signal_frame.vl = extract_unsigned_integer (buf, 2, byte_order); | 
|  |  | 
|  | /* Extract the flags to check if we are in streaming mode.  */ | 
|  | if (target_read_memory (section | 
|  | + AARCH64_SVE_CONTEXT_FLAGS_OFFSET, | 
|  | buf, 2) != 0) | 
|  | { | 
|  | warning (_("Failed to read the flags from the SVE signal frame" | 
|  | " context.")); | 
|  | section += size; | 
|  | break; | 
|  | } | 
|  |  | 
|  | uint16_t flags = extract_unsigned_integer (buf, 2, byte_order); | 
|  |  | 
|  | /* Is this SSVE data? If so, we are in streaming mode.  */ | 
|  | signal_frame.streaming_mode | 
|  | = (flags & SVE_SIG_FLAG_SM) ? true : false; | 
|  |  | 
|  | ULONGEST vq = sve_vq_from_vl (signal_frame.vl); | 
|  | if (size >= AARCH64_SVE_CONTEXT_SIZE (vq)) | 
|  | { | 
|  | signal_frame.sve_section | 
|  | = section + AARCH64_SVE_CONTEXT_REGS_OFFSET; | 
|  | } | 
|  | section += size; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case AARCH64_ZA_MAGIC: | 
|  | { | 
|  | /* Check if the section is followed by a full ZA dump, and set | 
|  | za_state if it is.  */ | 
|  | gdb_byte buf[2]; | 
|  |  | 
|  | /* Extract the streaming vector length.  */ | 
|  | if (target_read_memory (section + AARCH64_SME_CONTEXT_SVL_OFFSET, | 
|  | buf, 2) != 0) | 
|  | { | 
|  | warning (_("Failed to read the streaming vector length from " | 
|  | "ZA signal frame context.")); | 
|  | section += size; | 
|  | break; | 
|  | } | 
|  |  | 
|  | signal_frame.svl = extract_unsigned_integer (buf, 2, byte_order); | 
|  | ULONGEST svq = sve_vq_from_vl (signal_frame.svl); | 
|  |  | 
|  | if (size >= AARCH64_SME_CONTEXT_SIZE (svq)) | 
|  | { | 
|  | signal_frame.za_section | 
|  | = section + AARCH64_SME_CONTEXT_REGS_OFFSET; | 
|  | signal_frame.za_payload = true; | 
|  | } | 
|  | section += size; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case AARCH64_TPIDR2_MAGIC: | 
|  | { | 
|  | /* This is context containing the tpidr2 register.  */ | 
|  | signal_frame.tpidr2_section = section; | 
|  | section += size; | 
|  | break; | 
|  | } | 
|  | case AARCH64_ZT_MAGIC: | 
|  | { | 
|  | gdb_byte buf[2]; | 
|  |  | 
|  | /* Extract the number of ZT registers available in this | 
|  | context.  */ | 
|  | if (target_read_memory (section + AARCH64_SME2_CONTEXT_NREGS_OFFSET, | 
|  | buf, 2) != 0) | 
|  | { | 
|  | warning (_("Failed to read the number of ZT registers from the " | 
|  | "ZT signal frame context.")); | 
|  | section += size; | 
|  | break; | 
|  | } | 
|  |  | 
|  | signal_frame.zt_register_count | 
|  | = extract_unsigned_integer (buf, 2, byte_order); | 
|  |  | 
|  | /* This is a context containing the ZT registers.  This should only | 
|  | exist if we also have the ZA context.  The presence of the ZT | 
|  | context without the ZA context is invalid.  */ | 
|  | signal_frame.zt_section = section; | 
|  | signal_frame.zt_available = true; | 
|  |  | 
|  | section += size; | 
|  | break; | 
|  | } | 
|  | case AARCH64_GCS_MAGIC: | 
|  | { | 
|  | gdb_byte buf[8]; | 
|  |  | 
|  | /* Extract the GCSPR.  */ | 
|  | if (target_read_memory (section + AARCH64_GCS_CONTEXT_GCSPR_OFFSET, | 
|  | buf, 8) != 0) | 
|  | { | 
|  | warning (_("Failed to read the GCS pointer from the GCS signal" | 
|  | " frame context.")); | 
|  | section += size; | 
|  | break; | 
|  | } | 
|  |  | 
|  | signal_frame.gcspr = extract_unsigned_integer (buf, byte_order); | 
|  |  | 
|  | /* Extract the features_enabled field.  */ | 
|  | if (target_read_memory (section | 
|  | + AARCH64_GCS_CONTEXT_FEATURES_ENABLED_OFFSET, | 
|  | buf, sizeof (buf)) != 0) | 
|  | { | 
|  | warning (_("Failed to read the enabled features from the GCS" | 
|  | " signal frame context.")); | 
|  | section += size; | 
|  | break; | 
|  | } | 
|  |  | 
|  | signal_frame.gcs_features_enabled | 
|  | = extract_unsigned_integer (buf, byte_order); | 
|  | signal_frame.gcs_availabe = true; | 
|  | section += size; | 
|  | break; | 
|  | } | 
|  | case AARCH64_EXTRA_MAGIC: | 
|  | { | 
|  | /* Extra is always the last valid section in reserved and points to | 
|  | an additional block of memory filled with more sections. Reset | 
|  | the address to the extra section and continue looking for more | 
|  | structures.  */ | 
|  | gdb_byte buf[8]; | 
|  |  | 
|  | if (target_read_memory (section + AARCH64_EXTRA_DATAP_OFFSET, | 
|  | buf, 8) != 0) | 
|  | { | 
|  | warning (_("Failed to read the extra section address from the" | 
|  | " signal frame context.")); | 
|  | section += size; | 
|  | break; | 
|  | } | 
|  |  | 
|  | section = extract_unsigned_integer (buf, 8, byte_order); | 
|  | signal_frame.extra_section = section; | 
|  | extra_found = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | section += size; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Prevent searching past the end of the reserved section.  The extra | 
|  | section does not have a hard coded limit - we have to rely on it ending | 
|  | with nulls.  */ | 
|  | if (!extra_found && section > section_end) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Sanity check that if the ZT entry exists, the ZA entry must also | 
|  | exist.  */ | 
|  | if (signal_frame.zt_available && !signal_frame.za_payload) | 
|  | error (_("While reading signal context information, found a ZT context " | 
|  | "without a ZA context, which is invalid.")); | 
|  | } | 
|  |  | 
|  | /* Implement the "init" method of struct tramp_frame.  */ | 
|  |  | 
|  | static void | 
|  | aarch64_linux_sigframe_init (const struct tramp_frame *self, | 
|  | const frame_info_ptr &this_frame, | 
|  | struct trad_frame_cache *this_cache, | 
|  | CORE_ADDR func) | 
|  | { | 
|  | /* Read the signal context information.  */ | 
|  | struct aarch64_linux_sigframe signal_frame; | 
|  | aarch64_linux_read_signal_frame_info (this_frame, signal_frame); | 
|  |  | 
|  | /* Now we have all the data required to restore the registers from the | 
|  | signal frame.  */ | 
|  |  | 
|  | /* Restore the general purpose registers.  */ | 
|  | CORE_ADDR offset = signal_frame.gpr_section; | 
|  | for (int i = 0; i < 31; i++) | 
|  | { | 
|  | trad_frame_set_reg_addr (this_cache, AARCH64_X0_REGNUM + i, offset); | 
|  | offset += AARCH64_SIGCONTEXT_REG_SIZE; | 
|  | } | 
|  | trad_frame_set_reg_addr (this_cache, AARCH64_SP_REGNUM, offset); | 
|  | offset += AARCH64_SIGCONTEXT_REG_SIZE; | 
|  | trad_frame_set_reg_addr (this_cache, AARCH64_PC_REGNUM, offset); | 
|  |  | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | /* Restore the SVE / FPSIMD registers.  */ | 
|  | if (tdep->has_sve () && signal_frame.sve_section != 0) | 
|  | { | 
|  | ULONGEST vq = sve_vq_from_vl (signal_frame.vl); | 
|  | CORE_ADDR sve_regs = signal_frame.sve_section; | 
|  |  | 
|  | /* Restore VG.  */ | 
|  | trad_frame_set_reg_value (this_cache, AARCH64_SVE_VG_REGNUM, | 
|  | sve_vg_from_vl (signal_frame.vl)); | 
|  |  | 
|  | int num_regs = gdbarch_num_regs (gdbarch); | 
|  | for (int i = 0; i < 32; i++) | 
|  | { | 
|  | offset = sve_regs + (i * vq * 16); | 
|  | trad_frame_set_reg_addr (this_cache, AARCH64_SVE_Z0_REGNUM + i, | 
|  | offset); | 
|  | trad_frame_set_reg_addr (this_cache, | 
|  | num_regs + AARCH64_SVE_V0_REGNUM + i, | 
|  | offset); | 
|  | trad_frame_set_reg_addr (this_cache, num_regs + AARCH64_Q0_REGNUM + i, | 
|  | offset); | 
|  | trad_frame_set_reg_addr (this_cache, num_regs + AARCH64_D0_REGNUM + i, | 
|  | offset); | 
|  | trad_frame_set_reg_addr (this_cache, num_regs + AARCH64_S0_REGNUM + i, | 
|  | offset); | 
|  | trad_frame_set_reg_addr (this_cache, num_regs + AARCH64_H0_REGNUM + i, | 
|  | offset); | 
|  | trad_frame_set_reg_addr (this_cache, num_regs + AARCH64_B0_REGNUM + i, | 
|  | offset); | 
|  | } | 
|  |  | 
|  | offset = sve_regs + AARCH64_SVE_CONTEXT_P_REGS_OFFSET (vq); | 
|  | for (int i = 0; i < 16; i++) | 
|  | trad_frame_set_reg_addr (this_cache, AARCH64_SVE_P0_REGNUM + i, | 
|  | offset + (i * vq * 2)); | 
|  |  | 
|  | offset = sve_regs + AARCH64_SVE_CONTEXT_FFR_OFFSET (vq); | 
|  | trad_frame_set_reg_addr (this_cache, AARCH64_SVE_FFR_REGNUM, offset); | 
|  | } | 
|  |  | 
|  | /* Restore the FPSIMD registers.  */ | 
|  | if (signal_frame.fpsimd_section != 0) | 
|  | { | 
|  | CORE_ADDR fpsimd = signal_frame.fpsimd_section; | 
|  |  | 
|  | trad_frame_set_reg_addr (this_cache, AARCH64_FPSR_REGNUM, | 
|  | fpsimd + AARCH64_FPSIMD_FPSR_OFFSET); | 
|  | trad_frame_set_reg_addr (this_cache, AARCH64_FPCR_REGNUM, | 
|  | fpsimd + AARCH64_FPSIMD_FPCR_OFFSET); | 
|  |  | 
|  | /* If there was no SVE section then set up the V registers.  */ | 
|  | if (!tdep->has_sve () || signal_frame.sve_section == 0) | 
|  | aarch64_linux_restore_vregs (gdbarch, this_cache, fpsimd); | 
|  | } | 
|  |  | 
|  | /* Restore the SME registers.  */ | 
|  | if (tdep->has_sme ()) | 
|  | { | 
|  | if (signal_frame.za_section != 0) | 
|  | { | 
|  | /* Restore the ZA state.  */ | 
|  | trad_frame_set_reg_addr (this_cache, tdep->sme_za_regnum, | 
|  | signal_frame.za_section); | 
|  | } | 
|  |  | 
|  | /* Restore/Reconstruct SVCR.  */ | 
|  | ULONGEST svcr = 0; | 
|  | svcr |= signal_frame.za_payload ? SVCR_ZA_BIT : 0; | 
|  | svcr |= signal_frame.streaming_mode ? SVCR_SM_BIT : 0; | 
|  | trad_frame_set_reg_value (this_cache, tdep->sme_svcr_regnum, svcr); | 
|  |  | 
|  | /* Restore SVG.  */ | 
|  | trad_frame_set_reg_value (this_cache, tdep->sme_svg_regnum, | 
|  | sve_vg_from_vl (signal_frame.svl)); | 
|  |  | 
|  | /* Handle SME2 (ZT).  */ | 
|  | if (tdep->has_sme2 () | 
|  | && signal_frame.za_section != 0 | 
|  | && signal_frame.zt_register_count > 0) | 
|  | { | 
|  | /* Is ZA state available?  */ | 
|  | gdb_assert (svcr & SVCR_ZA_BIT); | 
|  |  | 
|  | /* Restore the ZT state.  For now we assume that we only have | 
|  | a single ZT register.  If/When more ZT registers appear, we | 
|  | should update the code to handle that case accordingly.  */ | 
|  | trad_frame_set_reg_addr (this_cache, tdep->sme2_zt0_regnum, | 
|  | signal_frame.zt_section | 
|  | + AARCH64_SME2_CONTEXT_REGS_OFFSET); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Restore the tpidr2 register, if the target supports it and if there is | 
|  | an entry for it.  */ | 
|  | if (signal_frame.tpidr2_section != 0 && tdep->has_tls () | 
|  | && tdep->tls_register_count >= 2) | 
|  | { | 
|  | /* Restore tpidr2.  */ | 
|  | trad_frame_set_reg_addr (this_cache, tdep->tls_regnum_base + 1, | 
|  | signal_frame.tpidr2_section | 
|  | + AARCH64_TPIDR2_CONTEXT_TPIDR2_OFFSET); | 
|  | } | 
|  |  | 
|  | /* Restore the GCS registers, if the target supports it and if there is | 
|  | an entry for them.  */ | 
|  | if (signal_frame.gcs_availabe && tdep->has_gcs_linux ()) | 
|  | { | 
|  | /* Restore GCSPR.  */ | 
|  | trad_frame_set_reg_value (this_cache, tdep->gcs_reg_base, | 
|  | signal_frame.gcspr); | 
|  | /* Restore gcs_features_enabled.  */ | 
|  | trad_frame_set_reg_value (this_cache, tdep->gcs_linux_reg_base, | 
|  | signal_frame.gcs_features_enabled); | 
|  | /* gcs_features_locked isn't present in the GCS signal context.  */ | 
|  | } | 
|  |  | 
|  | trad_frame_set_id (this_cache, frame_id_build (signal_frame.sp, func)); | 
|  | } | 
|  |  | 
|  | /* Implements the "prev_arch" method of struct tramp_frame.  */ | 
|  |  | 
|  | static struct gdbarch * | 
|  | aarch64_linux_sigframe_prev_arch (const frame_info_ptr &this_frame, | 
|  | void **frame_cache) | 
|  | { | 
|  | struct trad_frame_cache *cache | 
|  | = (struct trad_frame_cache *) *frame_cache; | 
|  |  | 
|  | gdb_assert (cache != nullptr); | 
|  |  | 
|  | struct aarch64_linux_sigframe signal_frame; | 
|  | aarch64_linux_read_signal_frame_info (this_frame, signal_frame); | 
|  |  | 
|  | /* The SVE vector length and the SME vector length may change from frame to | 
|  | frame.  Make sure we report the correct architecture to the previous | 
|  | frame. | 
|  |  | 
|  | We can reuse the next frame's architecture here, as it should be mostly | 
|  | the same, except for potential different vg and svg values.  */ | 
|  | const struct target_desc *tdesc | 
|  | = gdbarch_target_desc (get_frame_arch (this_frame)); | 
|  | aarch64_features features = aarch64_features_from_target_desc (tdesc); | 
|  | features.vq = sve_vq_from_vl (signal_frame.vl); | 
|  | features.svq = (uint8_t) sve_vq_from_vl (signal_frame.svl); | 
|  |  | 
|  | struct gdbarch_info info; | 
|  | info.bfd_arch_info = bfd_lookup_arch (bfd_arch_aarch64, bfd_mach_aarch64); | 
|  | info.target_desc = aarch64_read_description (features); | 
|  | return gdbarch_find_by_info (info); | 
|  | } | 
|  |  | 
|  | static const struct tramp_frame aarch64_linux_rt_sigframe = | 
|  | { | 
|  | SIGTRAMP_FRAME, | 
|  | 4, | 
|  | { | 
|  | /* movz x8, 0x8b (S=1,o=10,h=0,i=0x8b,r=8) | 
|  | Soo1 0010 1hhi iiii iiii iiii iiir rrrr  */ | 
|  | {0xd2801168, ULONGEST_MAX}, | 
|  |  | 
|  | /* svc  0x0      (o=0, l=1) | 
|  | 1101 0100 oooi iiii iiii iiii iii0 00ll  */ | 
|  | {0xd4000001, ULONGEST_MAX}, | 
|  | {TRAMP_SENTINEL_INSN, ULONGEST_MAX} | 
|  | }, | 
|  | aarch64_linux_sigframe_init, | 
|  | nullptr, /* validate */ | 
|  | aarch64_linux_sigframe_prev_arch, /* prev_arch */ | 
|  | }; | 
|  |  | 
|  | /* Register maps.  */ | 
|  |  | 
|  | static const struct regcache_map_entry aarch64_linux_gregmap[] = | 
|  | { | 
|  | { 31, AARCH64_X0_REGNUM, 8 }, /* x0 ... x30 */ | 
|  | { 1, AARCH64_SP_REGNUM, 8 }, | 
|  | { 1, AARCH64_PC_REGNUM, 8 }, | 
|  | { 1, AARCH64_CPSR_REGNUM, 8 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | static const struct regcache_map_entry aarch64_linux_fpregmap[] = | 
|  | { | 
|  | { 32, AARCH64_V0_REGNUM, 16 }, /* v0 ... v31 */ | 
|  | { 1, AARCH64_FPSR_REGNUM, 4 }, | 
|  | { 1, AARCH64_FPCR_REGNUM, 4 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | /* Register set definitions.  */ | 
|  |  | 
|  | const struct regset aarch64_linux_gregset = | 
|  | { | 
|  | aarch64_linux_gregmap, | 
|  | regcache_supply_regset, regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | const struct regset aarch64_linux_fpregset = | 
|  | { | 
|  | aarch64_linux_fpregmap, | 
|  | regcache_supply_regset, regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | /* The fields in an SVE header at the start of a SVE regset.  */ | 
|  |  | 
|  | #define SVE_HEADER_SIZE_LENGTH		4 | 
|  | #define SVE_HEADER_MAX_SIZE_LENGTH	4 | 
|  | #define SVE_HEADER_VL_LENGTH		2 | 
|  | #define SVE_HEADER_MAX_VL_LENGTH	2 | 
|  | #define SVE_HEADER_FLAGS_LENGTH		2 | 
|  | #define SVE_HEADER_RESERVED_LENGTH	2 | 
|  |  | 
|  | #define SVE_HEADER_SIZE_OFFSET		0 | 
|  | #define SVE_HEADER_MAX_SIZE_OFFSET	\ | 
|  | (SVE_HEADER_SIZE_OFFSET + SVE_HEADER_SIZE_LENGTH) | 
|  | #define SVE_HEADER_VL_OFFSET		\ | 
|  | (SVE_HEADER_MAX_SIZE_OFFSET + SVE_HEADER_MAX_SIZE_LENGTH) | 
|  | #define SVE_HEADER_MAX_VL_OFFSET	\ | 
|  | (SVE_HEADER_VL_OFFSET + SVE_HEADER_VL_LENGTH) | 
|  | #define SVE_HEADER_FLAGS_OFFSET		\ | 
|  | (SVE_HEADER_MAX_VL_OFFSET + SVE_HEADER_MAX_VL_LENGTH) | 
|  | #define SVE_HEADER_RESERVED_OFFSET	\ | 
|  | (SVE_HEADER_FLAGS_OFFSET + SVE_HEADER_FLAGS_LENGTH) | 
|  | #define SVE_HEADER_SIZE			\ | 
|  | (SVE_HEADER_RESERVED_OFFSET + SVE_HEADER_RESERVED_LENGTH) | 
|  |  | 
|  | #define SVE_HEADER_FLAG_SVE		1 | 
|  |  | 
|  | /* Get the vector quotient (VQ) or streaming vector quotient (SVQ) value | 
|  | from the section named SECTION_NAME. | 
|  |  | 
|  | Return non-zero if successful and 0 otherwise.  */ | 
|  |  | 
|  | static uint64_t | 
|  | aarch64_linux_core_read_vq (struct gdbarch *gdbarch, bfd *abfd, | 
|  | const char *section_name) | 
|  | { | 
|  | gdb_assert (section_name != nullptr); | 
|  |  | 
|  | asection *section = bfd_get_section_by_name (abfd, section_name); | 
|  |  | 
|  | if (section == nullptr) | 
|  | { | 
|  | /* No SVE state.  */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t size = bfd_section_size (section); | 
|  |  | 
|  | /* Check extended state size.  */ | 
|  | if (size < SVE_HEADER_SIZE) | 
|  | { | 
|  | warning (_("'%s' core file section is too small. " | 
|  | "Expected %s bytes, got %s bytes"), section_name, | 
|  | pulongest (SVE_HEADER_SIZE), pulongest (size)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | gdb_byte header[SVE_HEADER_SIZE]; | 
|  |  | 
|  | if (!bfd_get_section_contents (abfd, section, header, 0, SVE_HEADER_SIZE)) | 
|  | { | 
|  | warning (_("Couldn't read sve header from " | 
|  | "'%s' core file section."), section_name); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | uint64_t vq | 
|  | = sve_vq_from_vl (extract_unsigned_integer (header + SVE_HEADER_VL_OFFSET, | 
|  | SVE_HEADER_VL_LENGTH, | 
|  | byte_order)); | 
|  |  | 
|  | if (vq > AARCH64_MAX_SVE_VQ || vq == 0) | 
|  | { | 
|  | warning (_("SVE/SSVE vector length in core file is invalid." | 
|  | " (max vq=%d) (detected vq=%s)"), AARCH64_MAX_SVE_VQ, | 
|  | pulongest (vq)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return vq; | 
|  | } | 
|  |  | 
|  | /* Get the vector quotient (VQ) value from CORE_BFD's sections. | 
|  |  | 
|  | Return non-zero if successful and 0 otherwise.  */ | 
|  |  | 
|  | static uint64_t | 
|  | aarch64_linux_core_read_vq_from_sections (struct gdbarch *gdbarch, | 
|  | bfd *core_bfd) | 
|  | { | 
|  | /* First check if we have a SSVE section.  If so, check if it is active.  */ | 
|  | asection *section = bfd_get_section_by_name (core_bfd, ".reg-aarch-ssve"); | 
|  |  | 
|  | if (section != nullptr) | 
|  | { | 
|  | /* We've found a SSVE section, so now fetch its data.  */ | 
|  | gdb_byte header[SVE_HEADER_SIZE]; | 
|  |  | 
|  | if (bfd_get_section_contents (core_bfd, section, header, 0, | 
|  | SVE_HEADER_SIZE)) | 
|  | { | 
|  | /* Check if the SSVE section has SVE contents.  */ | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | uint16_t flags | 
|  | = extract_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET, | 
|  | SVE_HEADER_FLAGS_LENGTH, byte_order); | 
|  |  | 
|  | if (flags & SVE_HEADER_FLAG_SVE) | 
|  | { | 
|  | /* The SSVE state is active, so return the vector length from the | 
|  | the SSVE section.  */ | 
|  | return aarch64_linux_core_read_vq (gdbarch, core_bfd, | 
|  | ".reg-aarch-ssve"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* No valid SSVE section.  Return the vq from the SVE section (if any).  */ | 
|  | return aarch64_linux_core_read_vq (gdbarch, core_bfd, ".reg-aarch-sve"); | 
|  | } | 
|  |  | 
|  | /* Supply register REGNUM from BUF to REGCACHE, using the register map | 
|  | in REGSET.  If REGNUM is -1, do this for all registers in REGSET. | 
|  | If BUF is nullptr, set the registers to "unavailable" status.  */ | 
|  |  | 
|  | static void | 
|  | supply_sve_regset (const struct regset *regset, | 
|  | struct regcache *regcache, | 
|  | int regnum, const void *buf, size_t size) | 
|  | { | 
|  | gdb_byte *header = (gdb_byte *) buf; | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | if (buf == nullptr) | 
|  | return regcache->supply_regset (regset, regnum, nullptr, size); | 
|  | gdb_assert (size > SVE_HEADER_SIZE); | 
|  |  | 
|  | /* BUF contains an SVE header followed by a register dump of either the | 
|  | passed in SVE regset or a NEON fpregset.  */ | 
|  |  | 
|  | /* Extract required fields from the header.  */ | 
|  | ULONGEST vl = extract_unsigned_integer (header + SVE_HEADER_VL_OFFSET, | 
|  | SVE_HEADER_VL_LENGTH, byte_order); | 
|  | uint16_t flags = extract_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET, | 
|  | SVE_HEADER_FLAGS_LENGTH, | 
|  | byte_order); | 
|  |  | 
|  | if (regnum == -1 || regnum == AARCH64_SVE_VG_REGNUM) | 
|  | { | 
|  | gdb_byte vg_target[8]; | 
|  | store_integer ((gdb_byte *)&vg_target, sizeof (uint64_t), byte_order, | 
|  | sve_vg_from_vl (vl)); | 
|  | regcache->raw_supply (AARCH64_SVE_VG_REGNUM, &vg_target); | 
|  | } | 
|  |  | 
|  | if (flags & SVE_HEADER_FLAG_SVE) | 
|  | { | 
|  | /* Register dump is a SVE structure.  */ | 
|  | regcache->supply_regset (regset, regnum, | 
|  | (gdb_byte *) buf + SVE_HEADER_SIZE, | 
|  | size - SVE_HEADER_SIZE); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Register dump is a fpsimd structure.  First clear the SVE | 
|  | registers.  */ | 
|  | for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++) | 
|  | regcache->raw_supply_zeroed (AARCH64_SVE_Z0_REGNUM + i); | 
|  | for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++) | 
|  | regcache->raw_supply_zeroed (AARCH64_SVE_P0_REGNUM + i); | 
|  | regcache->raw_supply_zeroed (AARCH64_SVE_FFR_REGNUM); | 
|  |  | 
|  | /* Then supply the fpsimd registers.  */ | 
|  | regcache->supply_regset (&aarch64_linux_fpregset, regnum, | 
|  | (gdb_byte *) buf + SVE_HEADER_SIZE, | 
|  | size - SVE_HEADER_SIZE); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Collect an inactive SVE register set state.  This is equivalent to a | 
|  | fpsimd layout. | 
|  |  | 
|  | Collect the data from REGCACHE to BUF, using the register | 
|  | map in REGSET.  */ | 
|  |  | 
|  | static void | 
|  | collect_inactive_sve_regset (const struct regcache *regcache, | 
|  | void *buf, size_t size, int vg_regnum) | 
|  | { | 
|  | gdb_byte *header = (gdb_byte *) buf; | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | gdb_assert (buf != nullptr); | 
|  | gdb_assert (size >= SVE_CORE_DUMMY_SIZE); | 
|  |  | 
|  | /* Zero out everything first.  */ | 
|  | memset ((gdb_byte *) buf, 0, SVE_CORE_DUMMY_SIZE); | 
|  |  | 
|  | /* BUF starts with a SVE header prior to the register dump.  */ | 
|  |  | 
|  | /* Dump the default size of an empty SVE payload.  */ | 
|  | uint32_t real_size = SVE_CORE_DUMMY_SIZE; | 
|  | store_unsigned_integer (header + SVE_HEADER_SIZE_OFFSET, | 
|  | SVE_HEADER_SIZE_LENGTH, byte_order, real_size); | 
|  |  | 
|  | /* Dump a dummy max size.  */ | 
|  | uint32_t max_size = SVE_CORE_DUMMY_MAX_SIZE; | 
|  | store_unsigned_integer (header + SVE_HEADER_MAX_SIZE_OFFSET, | 
|  | SVE_HEADER_MAX_SIZE_LENGTH, byte_order, max_size); | 
|  |  | 
|  | /* Dump the vector length.  */ | 
|  | ULONGEST vg = 0; | 
|  | regcache->raw_collect (vg_regnum, &vg); | 
|  | uint16_t vl = sve_vl_from_vg (vg); | 
|  | store_unsigned_integer (header + SVE_HEADER_VL_OFFSET, SVE_HEADER_VL_LENGTH, | 
|  | byte_order, vl); | 
|  |  | 
|  | /* Dump the standard maximum vector length.  */ | 
|  | uint16_t max_vl = SVE_CORE_DUMMY_MAX_VL; | 
|  | store_unsigned_integer (header + SVE_HEADER_MAX_VL_OFFSET, | 
|  | SVE_HEADER_MAX_VL_LENGTH, byte_order, | 
|  | max_vl); | 
|  |  | 
|  | /* The rest of the fields are zero.  */ | 
|  | uint16_t flags = SVE_CORE_DUMMY_FLAGS; | 
|  | store_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET, | 
|  | SVE_HEADER_FLAGS_LENGTH, byte_order, | 
|  | flags); | 
|  | uint16_t reserved = SVE_CORE_DUMMY_RESERVED; | 
|  | store_unsigned_integer (header + SVE_HEADER_RESERVED_OFFSET, | 
|  | SVE_HEADER_RESERVED_LENGTH, byte_order, reserved); | 
|  |  | 
|  | /* We are done with the header part of it.  Now dump the register state | 
|  | in the FPSIMD format.  */ | 
|  |  | 
|  | /* Dump the first 128 bits of each of the Z registers.  */ | 
|  | header += AARCH64_SVE_CONTEXT_REGS_OFFSET; | 
|  | for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++) | 
|  | regcache->raw_collect_part (AARCH64_SVE_Z0_REGNUM + i, 0, V_REGISTER_SIZE, | 
|  | header + V_REGISTER_SIZE * i); | 
|  |  | 
|  | /* Dump FPSR and FPCR.  */ | 
|  | header += 32 * V_REGISTER_SIZE; | 
|  | regcache->raw_collect (AARCH64_FPSR_REGNUM, header); | 
|  | regcache->raw_collect (AARCH64_FPCR_REGNUM, header + 4); | 
|  |  | 
|  | /* Dump two reserved empty fields of 4 bytes.  */ | 
|  | header += 8; | 
|  | memset (header, 0, 8); | 
|  |  | 
|  | /* We should have a FPSIMD-formatted register dump now.  */ | 
|  | } | 
|  |  | 
|  | /* Collect register REGNUM from REGCACHE to BUF, using the register | 
|  | map in REGSET.  If REGNUM is -1, do this for all registers in | 
|  | REGSET.  */ | 
|  |  | 
|  | static void | 
|  | collect_sve_regset (const struct regset *regset, | 
|  | const struct regcache *regcache, | 
|  | int regnum, void *buf, size_t size) | 
|  | { | 
|  | gdb_byte *header = (gdb_byte *) buf; | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); | 
|  | uint64_t vq = tdep->vq; | 
|  |  | 
|  | gdb_assert (buf != NULL); | 
|  | gdb_assert (size > SVE_HEADER_SIZE); | 
|  |  | 
|  | /* BUF starts with a SVE header prior to the register dump.  */ | 
|  |  | 
|  | store_unsigned_integer (header + SVE_HEADER_SIZE_OFFSET, | 
|  | SVE_HEADER_SIZE_LENGTH, byte_order, size); | 
|  | uint32_t max_size = SVE_CORE_DUMMY_MAX_SIZE; | 
|  | store_unsigned_integer (header + SVE_HEADER_MAX_SIZE_OFFSET, | 
|  | SVE_HEADER_MAX_SIZE_LENGTH, byte_order, max_size); | 
|  | store_unsigned_integer (header + SVE_HEADER_VL_OFFSET, SVE_HEADER_VL_LENGTH, | 
|  | byte_order, sve_vl_from_vq (vq)); | 
|  | uint16_t max_vl = SVE_CORE_DUMMY_MAX_VL; | 
|  | store_unsigned_integer (header + SVE_HEADER_MAX_VL_OFFSET, | 
|  | SVE_HEADER_MAX_VL_LENGTH, byte_order, | 
|  | max_vl); | 
|  | uint16_t flags = SVE_HEADER_FLAG_SVE; | 
|  | store_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET, | 
|  | SVE_HEADER_FLAGS_LENGTH, byte_order, | 
|  | flags); | 
|  | uint16_t reserved = SVE_CORE_DUMMY_RESERVED; | 
|  | store_unsigned_integer (header + SVE_HEADER_RESERVED_OFFSET, | 
|  | SVE_HEADER_RESERVED_LENGTH, byte_order, reserved); | 
|  |  | 
|  | /* The SVE register dump follows.  */ | 
|  | regcache->collect_regset (regset, regnum, (gdb_byte *) buf + SVE_HEADER_SIZE, | 
|  | size - SVE_HEADER_SIZE); | 
|  | } | 
|  |  | 
|  | /* Supply register REGNUM from BUF to REGCACHE, using the register map | 
|  | in REGSET.  If REGNUM is -1, do this for all registers in REGSET. | 
|  | If BUF is NULL, set the registers to "unavailable" status.  */ | 
|  |  | 
|  | static void | 
|  | aarch64_linux_supply_sve_regset (const struct regset *regset, | 
|  | struct regcache *regcache, | 
|  | int regnum, const void *buf, size_t size) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (tdep->has_sme ()) | 
|  | { | 
|  | ULONGEST svcr = 0; | 
|  | regcache->raw_collect (tdep->sme_svcr_regnum, &svcr); | 
|  |  | 
|  | /* Is streaming mode enabled?  */ | 
|  | if (svcr & SVCR_SM_BIT) | 
|  | /* If so, don't load SVE data from the SVE section.  The data to be | 
|  | used is in the SSVE section.  */ | 
|  | return; | 
|  | } | 
|  | /* If streaming mode is not enabled, load the SVE regcache data from the SVE | 
|  | section.  */ | 
|  | supply_sve_regset (regset, regcache, regnum, buf, size); | 
|  | } | 
|  |  | 
|  | /* Collect register REGNUM from REGCACHE to BUF, using the register | 
|  | map in REGSET.  If REGNUM is -1, do this for all registers in | 
|  | REGSET.  */ | 
|  |  | 
|  | static void | 
|  | aarch64_linux_collect_sve_regset (const struct regset *regset, | 
|  | const struct regcache *regcache, | 
|  | int regnum, void *buf, size_t size) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); | 
|  | bool streaming_mode = false; | 
|  |  | 
|  | if (tdep->has_sme ()) | 
|  | { | 
|  | ULONGEST svcr = 0; | 
|  | regcache->raw_collect (tdep->sme_svcr_regnum, &svcr); | 
|  |  | 
|  | /* Is streaming mode enabled?  */ | 
|  | if (svcr & SVCR_SM_BIT) | 
|  | { | 
|  | /* If so, don't dump SVE regcache data to the SVE section.  The SVE | 
|  | data should be dumped to the SSVE section.  Dump an empty SVE | 
|  | block instead.  */ | 
|  | streaming_mode = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If streaming mode is not enabled or there is no SME support, dump the | 
|  | SVE regcache data to the SVE section.  */ | 
|  |  | 
|  | /* Check if we have an active SVE state (non-zero Z/P/FFR registers). | 
|  | If so, then we need to dump registers in the SVE format. | 
|  |  | 
|  | Otherwise we should dump the registers in the FPSIMD format.  */ | 
|  | if (sve_state_is_empty (regcache) || streaming_mode) | 
|  | collect_inactive_sve_regset (regcache, buf, size, AARCH64_SVE_VG_REGNUM); | 
|  | else | 
|  | collect_sve_regset (regset, regcache, regnum, buf, size); | 
|  | } | 
|  |  | 
|  | /* Supply register REGNUM from BUF to REGCACHE, using the register map | 
|  | in REGSET.  If REGNUM is -1, do this for all registers in REGSET. | 
|  | If BUF is NULL, set the registers to "unavailable" status.  */ | 
|  |  | 
|  | static void | 
|  | aarch64_linux_supply_ssve_regset (const struct regset *regset, | 
|  | struct regcache *regcache, | 
|  | int regnum, const void *buf, size_t size) | 
|  | { | 
|  | gdb_byte *header = (gdb_byte *) buf; | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | uint16_t flags = extract_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET, | 
|  | SVE_HEADER_FLAGS_LENGTH, | 
|  | byte_order); | 
|  |  | 
|  | /* Since SVCR's bits are inferred from the data we have in the header of the | 
|  | SSVE section, we need to initialize it to zero first, so that it doesn't | 
|  | carry garbage data.  */ | 
|  | ULONGEST svcr = 0; | 
|  | regcache->raw_supply (tdep->sme_svcr_regnum, &svcr); | 
|  |  | 
|  | /* Is streaming mode enabled?  */ | 
|  | if (flags & SVE_HEADER_FLAG_SVE) | 
|  | { | 
|  | /* Streaming mode is active, so flip the SM bit.  */ | 
|  | svcr = SVCR_SM_BIT; | 
|  | regcache->raw_supply (tdep->sme_svcr_regnum, &svcr); | 
|  |  | 
|  | /* Fetch the SVE data from the SSVE section.  */ | 
|  | supply_sve_regset (regset, regcache, regnum, buf, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Collect register REGNUM from REGCACHE to BUF, using the register | 
|  | map in REGSET.  If REGNUM is -1, do this for all registers in | 
|  | REGSET.  */ | 
|  |  | 
|  | static void | 
|  | aarch64_linux_collect_ssve_regset (const struct regset *regset, | 
|  | const struct regcache *regcache, | 
|  | int regnum, void *buf, size_t size) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); | 
|  | ULONGEST svcr = 0; | 
|  | regcache->raw_collect (tdep->sme_svcr_regnum, &svcr); | 
|  |  | 
|  | /* Is streaming mode enabled?  */ | 
|  | if (svcr & SVCR_SM_BIT) | 
|  | { | 
|  | /* If so, dump SVE regcache data to the SSVE section.  */ | 
|  | collect_sve_regset (regset, regcache, regnum, buf, size); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Otherwise dump an empty SVE block to the SSVE section with the | 
|  | streaming vector length.  */ | 
|  | collect_inactive_sve_regset (regcache, buf, size, tdep->sme_svg_regnum); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Supply register REGNUM from BUF to REGCACHE, using the register map | 
|  | in REGSET.  If REGNUM is -1, do this for all registers in REGSET. | 
|  | If BUF is NULL, set the registers to "unavailable" status.  */ | 
|  |  | 
|  | static void | 
|  | aarch64_linux_supply_za_regset (const struct regset *regset, | 
|  | struct regcache *regcache, | 
|  | int regnum, const void *buf, size_t size) | 
|  | { | 
|  | gdb_byte *header = (gdb_byte *) buf; | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | /* Handle an empty buffer.  */ | 
|  | if (buf == nullptr) | 
|  | return regcache->supply_regset (regset, regnum, nullptr, size); | 
|  |  | 
|  | if (size < SVE_HEADER_SIZE) | 
|  | error (_("ZA state header size (%s) invalid.  Should be at least %s."), | 
|  | pulongest (size), pulongest (SVE_HEADER_SIZE)); | 
|  |  | 
|  | /* The ZA register note in a core file can have a couple of states: | 
|  |  | 
|  | 1 - Just the header without the payload.  This means that there is no | 
|  | ZA data, and we should populate only SVCR and SVG registers on GDB's | 
|  | side.  The ZA data should be marked as unavailable. | 
|  |  | 
|  | 2 - The header with an additional data payload.  This means there is | 
|  | actual ZA data, and we should populate ZA, SVCR and SVG.  */ | 
|  |  | 
|  | aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | /* Populate SVG.  */ | 
|  | ULONGEST svg | 
|  | = sve_vg_from_vl (extract_unsigned_integer (header + SVE_HEADER_VL_OFFSET, | 
|  | SVE_HEADER_VL_LENGTH, | 
|  | byte_order)); | 
|  | regcache->raw_supply (tdep->sme_svg_regnum, &svg); | 
|  |  | 
|  | size_t data_size | 
|  | = extract_unsigned_integer (header + SVE_HEADER_SIZE_OFFSET, | 
|  | SVE_HEADER_SIZE_LENGTH, byte_order) | 
|  | - SVE_HEADER_SIZE; | 
|  |  | 
|  | /* Populate SVCR.  */ | 
|  | bool has_za_payload = (data_size > 0); | 
|  | ULONGEST svcr; | 
|  | regcache->raw_collect (tdep->sme_svcr_regnum, &svcr); | 
|  |  | 
|  | /* If we have a ZA payload, enable bit 2 of SVCR, otherwise clear it.  This | 
|  | register gets updated by the SVE/SSVE-handling functions as well, as they | 
|  | report the SM bit 1.  */ | 
|  | if (has_za_payload) | 
|  | svcr |= SVCR_ZA_BIT; | 
|  | else | 
|  | svcr &= ~SVCR_ZA_BIT; | 
|  |  | 
|  | /* Update SVCR in the register buffer.  */ | 
|  | regcache->raw_supply (tdep->sme_svcr_regnum, &svcr); | 
|  |  | 
|  | /* Populate the register cache with ZA register contents, if we have any.  */ | 
|  | buf = has_za_payload ? (gdb_byte *) buf + SVE_HEADER_SIZE : nullptr; | 
|  |  | 
|  | size_t za_bytes = std::pow (sve_vl_from_vg (svg), 2); | 
|  |  | 
|  | /* Update ZA in the register buffer.  */ | 
|  | if (has_za_payload) | 
|  | { | 
|  | /* Check that the payload size is sane.  */ | 
|  | if (size < SVE_HEADER_SIZE + za_bytes) | 
|  | { | 
|  | error (_("ZA header + payload size (%s) invalid.  Should be at " | 
|  | "least %s."), | 
|  | pulongest (size), pulongest (SVE_HEADER_SIZE + za_bytes)); | 
|  | } | 
|  |  | 
|  | regcache->raw_supply (tdep->sme_za_regnum, buf); | 
|  | } | 
|  | else | 
|  | regcache->raw_supply_part_zeroed (tdep->sme_za_regnum, 0, za_bytes); | 
|  | } | 
|  |  | 
|  | /* Collect register REGNUM from REGCACHE to BUF, using the register | 
|  | map in REGSET.  If REGNUM is -1, do this for all registers in | 
|  | REGSET.  */ | 
|  |  | 
|  | static void | 
|  | aarch64_linux_collect_za_regset (const struct regset *regset, | 
|  | const struct regcache *regcache, | 
|  | int regnum, void *buf, size_t size) | 
|  | { | 
|  | gdb_assert (buf != nullptr); | 
|  |  | 
|  | /* Sanity check the dump size.  */ | 
|  | gdb_assert (size >= SVE_HEADER_SIZE); | 
|  |  | 
|  | /* The ZA register note in a core file can have a couple of states: | 
|  |  | 
|  | 1 - Just the header without the payload.  This means that there is no | 
|  | ZA data, and we should dump just the header. | 
|  |  | 
|  | 2 - The header with an additional data payload.  This means there is | 
|  | actual ZA data, and we should dump both the header and the ZA data | 
|  | payload.  */ | 
|  |  | 
|  | aarch64_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ()); | 
|  |  | 
|  | /* Determine if we have ZA state from the SVCR register ZA bit.  */ | 
|  | ULONGEST svcr; | 
|  | regcache->raw_collect (tdep->sme_svcr_regnum, &svcr); | 
|  |  | 
|  | /* Check the ZA payload.  */ | 
|  | bool has_za_payload = (svcr & SVCR_ZA_BIT) != 0; | 
|  | size = has_za_payload ? size : SVE_HEADER_SIZE; | 
|  |  | 
|  | /* Write the size and max_size fields.  */ | 
|  | gdb_byte *header = (gdb_byte *) buf; | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (regcache->arch ()); | 
|  | store_unsigned_integer (header + SVE_HEADER_SIZE_OFFSET, | 
|  | SVE_HEADER_SIZE_LENGTH, byte_order, size); | 
|  |  | 
|  | uint32_t max_size | 
|  | = SVE_HEADER_SIZE + std::pow (sve_vl_from_vq (tdep->sme_svq), 2); | 
|  | store_unsigned_integer (header + SVE_HEADER_MAX_SIZE_OFFSET, | 
|  | SVE_HEADER_MAX_SIZE_LENGTH, byte_order, max_size); | 
|  |  | 
|  | /* Output the other fields of the ZA header (vl, max_vl, flags and | 
|  | reserved).  */ | 
|  | uint64_t svq = tdep->sme_svq; | 
|  | store_unsigned_integer (header + SVE_HEADER_VL_OFFSET, SVE_HEADER_VL_LENGTH, | 
|  | byte_order, sve_vl_from_vq (svq)); | 
|  |  | 
|  | uint16_t max_vl = SVE_CORE_DUMMY_MAX_VL; | 
|  | store_unsigned_integer (header + SVE_HEADER_MAX_VL_OFFSET, | 
|  | SVE_HEADER_MAX_VL_LENGTH, byte_order, | 
|  | max_vl); | 
|  |  | 
|  | uint16_t flags = SVE_CORE_DUMMY_FLAGS; | 
|  | store_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET, | 
|  | SVE_HEADER_FLAGS_LENGTH, byte_order, flags); | 
|  |  | 
|  | uint16_t reserved = SVE_CORE_DUMMY_RESERVED; | 
|  | store_unsigned_integer (header + SVE_HEADER_RESERVED_OFFSET, | 
|  | SVE_HEADER_RESERVED_LENGTH, byte_order, reserved); | 
|  |  | 
|  | buf = has_za_payload ? (gdb_byte *) buf + SVE_HEADER_SIZE : nullptr; | 
|  |  | 
|  | /* Dump the register cache contents for the ZA register to the buffer.  */ | 
|  | regcache->collect_regset (regset, regnum, (gdb_byte *) buf, | 
|  | size - SVE_HEADER_SIZE); | 
|  | } | 
|  |  | 
|  | /* Supply register REGNUM from BUF to REGCACHE, using the register map | 
|  | in REGSET.  If REGNUM is -1, do this for all registers in REGSET. | 
|  | If BUF is NULL, set the registers to "unavailable" status.  */ | 
|  |  | 
|  | static void | 
|  | aarch64_linux_supply_zt_regset (const struct regset *regset, | 
|  | struct regcache *regcache, | 
|  | int regnum, const void *buf, size_t size) | 
|  | { | 
|  | /* Read the ZT register note from a core file into the register buffer.  */ | 
|  |  | 
|  | /* Make sure the buffer contains at least the expected amount of data we are | 
|  | supposed to get.  */ | 
|  | gdb_assert (size >= AARCH64_SME2_ZT0_SIZE); | 
|  |  | 
|  | /* Handle an empty buffer.  */ | 
|  | if (buf == nullptr) | 
|  | return regcache->supply_regset (regset, regnum, nullptr, size); | 
|  |  | 
|  | aarch64_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ()); | 
|  |  | 
|  | /* Supply the ZT0 register contents.  */ | 
|  | regcache->raw_supply (tdep->sme2_zt0_regnum, buf); | 
|  | } | 
|  |  | 
|  | /* Collect register REGNUM from REGCACHE to BUF, using the register | 
|  | map in REGSET.  If REGNUM is -1, do this for all registers in | 
|  | REGSET.  */ | 
|  |  | 
|  | static void | 
|  | aarch64_linux_collect_zt_regset (const struct regset *regset, | 
|  | const struct regcache *regcache, | 
|  | int regnum, void *buf, size_t size) | 
|  | { | 
|  | /* Read the ZT register contents from the register buffer into the core | 
|  | file section.  */ | 
|  |  | 
|  | /* Make sure the buffer can hold the data we need to return.  */ | 
|  | gdb_assert (size >= AARCH64_SME2_ZT0_SIZE); | 
|  | gdb_assert (buf != nullptr); | 
|  |  | 
|  | aarch64_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ()); | 
|  |  | 
|  | /* Dump the register cache contents for the ZT register to the buffer.  */ | 
|  | regcache->collect_regset (regset, tdep->sme2_zt0_regnum, buf, | 
|  | AARCH64_SME2_ZT0_SIZE); | 
|  | } | 
|  |  | 
|  | /* Implement the "iterate_over_regset_sections" gdbarch method.  */ | 
|  |  | 
|  | static void | 
|  | aarch64_linux_iterate_over_regset_sections (struct gdbarch *gdbarch, | 
|  | iterate_over_regset_sections_cb *cb, | 
|  | void *cb_data, | 
|  | const struct regcache *regcache) | 
|  | { | 
|  | aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | cb (".reg", AARCH64_LINUX_SIZEOF_GREGSET, AARCH64_LINUX_SIZEOF_GREGSET, | 
|  | &aarch64_linux_gregset, NULL, cb_data); | 
|  |  | 
|  | if (tdep->has_sve ()) | 
|  | { | 
|  | /* Create this on the fly in order to handle vector register sizes.  */ | 
|  | const struct regcache_map_entry sve_regmap[] = | 
|  | { | 
|  | { 32, AARCH64_SVE_Z0_REGNUM, (int) (tdep->vq * 16) }, | 
|  | { 16, AARCH64_SVE_P0_REGNUM, (int) (tdep->vq * 16 / 8) }, | 
|  | { 1, AARCH64_SVE_FFR_REGNUM, (int) (tdep->vq * 16 / 8) }, | 
|  | { 1, AARCH64_FPSR_REGNUM, 4 }, | 
|  | { 1, AARCH64_FPCR_REGNUM, 4 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | const struct regset aarch64_linux_ssve_regset = | 
|  | { | 
|  | sve_regmap, | 
|  | aarch64_linux_supply_ssve_regset, aarch64_linux_collect_ssve_regset, | 
|  | REGSET_VARIABLE_SIZE | 
|  | }; | 
|  |  | 
|  | /* If SME is supported in the core file, process the SSVE section first, | 
|  | and the SVE section last.  This is because we need information from | 
|  | the SSVE set to determine if streaming mode is active.  If streaming | 
|  | mode is active, we need to extract the data from the SSVE section. | 
|  |  | 
|  | Otherwise, if streaming mode is not active, we fetch the data from the | 
|  | SVE section.  */ | 
|  | if (tdep->has_sme ()) | 
|  | { | 
|  | cb (".reg-aarch-ssve", | 
|  | SVE_HEADER_SIZE | 
|  | + regcache_map_entry_size (aarch64_linux_fpregmap), | 
|  | SVE_HEADER_SIZE + regcache_map_entry_size (sve_regmap), | 
|  | &aarch64_linux_ssve_regset, "SSVE registers", cb_data); | 
|  | } | 
|  |  | 
|  | /* Handle the SVE register set.  */ | 
|  | const struct regset aarch64_linux_sve_regset = | 
|  | { | 
|  | sve_regmap, | 
|  | aarch64_linux_supply_sve_regset, aarch64_linux_collect_sve_regset, | 
|  | REGSET_VARIABLE_SIZE | 
|  | }; | 
|  |  | 
|  | cb (".reg-aarch-sve", | 
|  | SVE_HEADER_SIZE + regcache_map_entry_size (aarch64_linux_fpregmap), | 
|  | SVE_HEADER_SIZE + regcache_map_entry_size (sve_regmap), | 
|  | &aarch64_linux_sve_regset, "SVE registers", cb_data); | 
|  | } | 
|  | else | 
|  | cb (".reg2", AARCH64_LINUX_SIZEOF_FPREGSET, AARCH64_LINUX_SIZEOF_FPREGSET, | 
|  | &aarch64_linux_fpregset, NULL, cb_data); | 
|  |  | 
|  | if (tdep->has_sme ()) | 
|  | { | 
|  | /* Setup the register set information for a ZA register set core | 
|  | dump.  */ | 
|  |  | 
|  | /* Create this on the fly in order to handle the ZA register size.  */ | 
|  | const struct regcache_map_entry za_regmap[] = | 
|  | { | 
|  | { 1, tdep->sme_za_regnum, | 
|  | (int) std::pow (sve_vl_from_vq (tdep->sme_svq), 2) }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | const struct regset aarch64_linux_za_regset = | 
|  | { | 
|  | za_regmap, | 
|  | aarch64_linux_supply_za_regset, aarch64_linux_collect_za_regset, | 
|  | REGSET_VARIABLE_SIZE | 
|  | }; | 
|  |  | 
|  | cb (".reg-aarch-za", | 
|  | SVE_HEADER_SIZE, | 
|  | SVE_HEADER_SIZE + std::pow (sve_vl_from_vq (tdep->sme_svq), 2), | 
|  | &aarch64_linux_za_regset, "ZA register", cb_data); | 
|  |  | 
|  | /* Handle SME2 (ZT) as well, which is only available if SME is | 
|  | available.  */ | 
|  | if (tdep->has_sme2 ()) | 
|  | { | 
|  | const struct regcache_map_entry zt_regmap[] = | 
|  | { | 
|  | { 1, tdep->sme2_zt0_regnum, AARCH64_SME2_ZT0_SIZE }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | /* We set the register set size to REGSET_VARIABLE_SIZE here because | 
|  | in the future there might be more ZT registers.  */ | 
|  | const struct regset aarch64_linux_zt_regset = | 
|  | { | 
|  | zt_regmap, | 
|  | aarch64_linux_supply_zt_regset, aarch64_linux_collect_zt_regset, | 
|  | REGSET_VARIABLE_SIZE | 
|  | }; | 
|  |  | 
|  | cb (".reg-aarch-zt", | 
|  | AARCH64_SME2_ZT0_SIZE, | 
|  | AARCH64_SME2_ZT0_SIZE, | 
|  | &aarch64_linux_zt_regset, "ZT registers", cb_data); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tdep->has_pauth ()) | 
|  | { | 
|  | /* Create this on the fly in order to handle the variable location.  */ | 
|  | const struct regcache_map_entry pauth_regmap[] = | 
|  | { | 
|  | { 2, AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base), 8}, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | const struct regset aarch64_linux_pauth_regset = | 
|  | { | 
|  | pauth_regmap, regcache_supply_regset, regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | cb (".reg-aarch-pauth", AARCH64_LINUX_SIZEOF_PAUTH, | 
|  | AARCH64_LINUX_SIZEOF_PAUTH, &aarch64_linux_pauth_regset, | 
|  | "pauth registers", cb_data); | 
|  | } | 
|  |  | 
|  | /* Handle MTE registers.  */ | 
|  | if (tdep->has_mte ()) | 
|  | { | 
|  | /* Create this on the fly in order to handle the variable location.  */ | 
|  | const struct regcache_map_entry mte_regmap[] = | 
|  | { | 
|  | { 1, tdep->mte_reg_base, 8}, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | const struct regset aarch64_linux_mte_regset = | 
|  | { | 
|  | mte_regmap, regcache_supply_regset, regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | cb (".reg-aarch-mte", AARCH64_LINUX_SIZEOF_MTE_REGSET, | 
|  | AARCH64_LINUX_SIZEOF_MTE_REGSET, &aarch64_linux_mte_regset, | 
|  | "MTE registers", cb_data); | 
|  | } | 
|  |  | 
|  | /* Handle the TLS registers.  */ | 
|  | if (tdep->has_tls ()) | 
|  | { | 
|  | gdb_assert (tdep->tls_regnum_base != -1); | 
|  | gdb_assert (tdep->tls_register_count > 0); | 
|  |  | 
|  | int sizeof_tls_regset | 
|  | = AARCH64_TLS_REGISTER_SIZE * tdep->tls_register_count; | 
|  |  | 
|  | const struct regcache_map_entry tls_regmap[] = | 
|  | { | 
|  | { tdep->tls_register_count, tdep->tls_regnum_base, | 
|  | AARCH64_TLS_REGISTER_SIZE }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | const struct regset aarch64_linux_tls_regset = | 
|  | { | 
|  | tls_regmap, regcache_supply_regset, regcache_collect_regset, | 
|  | REGSET_VARIABLE_SIZE | 
|  | }; | 
|  |  | 
|  | cb (".reg-aarch-tls", sizeof_tls_regset, sizeof_tls_regset, | 
|  | &aarch64_linux_tls_regset, "TLS register", cb_data); | 
|  | } | 
|  |  | 
|  | /* Handle GCS registers.  */ | 
|  | if (tdep->has_gcs_linux ()) | 
|  | { | 
|  | /* Create this on the fly in order to handle the variable regnums.  */ | 
|  | const regcache_map_entry gcs_regmap[] = | 
|  | { | 
|  | { 1, tdep->gcs_linux_reg_base, 8 },      /* features_enabled */ | 
|  | { 1, tdep->gcs_linux_reg_base + 1, 8 },  /* features_locked */ | 
|  | { 1, tdep->gcs_reg_base, 8 },            /* GCSPR */ | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | const regset aarch64_linux_gcs_regset = | 
|  | { | 
|  | gcs_regmap, regcache_supply_regset, regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | cb (".reg-aarch-gcs", sizeof (user_gcs), sizeof (user_gcs), | 
|  | &aarch64_linux_gcs_regset, "GCS registers", cb_data); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Implement the "core_read_description" gdbarch method.  */ | 
|  |  | 
|  | static const struct target_desc * | 
|  | aarch64_linux_core_read_description (struct gdbarch *gdbarch, | 
|  | struct target_ops *target, bfd *abfd) | 
|  | { | 
|  | std::optional<gdb::byte_vector> auxv = target_read_auxv_raw (target); | 
|  | CORE_ADDR hwcap = linux_get_hwcap (auxv, target, gdbarch); | 
|  | CORE_ADDR hwcap2 = linux_get_hwcap2 (auxv, target, gdbarch); | 
|  |  | 
|  | aarch64_features features; | 
|  |  | 
|  | /* We need to extract the SVE data from the .reg-aarch-sve section or the | 
|  | .reg-aarch-ssve section depending on which one was active when the core | 
|  | file was generated. | 
|  |  | 
|  | If the SSVE section contains SVE data, then it is considered active. | 
|  | Otherwise the SVE section is considered active.  This guarantees we will | 
|  | have the correct target description with the correct SVE vector | 
|  | length.  */ | 
|  | features.vq = aarch64_linux_core_read_vq_from_sections (gdbarch, abfd); | 
|  | features.pauth = hwcap & AARCH64_HWCAP_PACA; | 
|  | features.gcs = features.gcs_linux = hwcap & HWCAP_GCS; | 
|  | features.mte = hwcap2 & HWCAP2_MTE; | 
|  |  | 
|  | /* Handle the TLS section.  */ | 
|  | asection *tls = bfd_get_section_by_name (abfd, ".reg-aarch-tls"); | 
|  | if (tls != nullptr) | 
|  | { | 
|  | size_t size = bfd_section_size (tls); | 
|  | /* Convert the size to the number of actual registers, by | 
|  | dividing by 8.  */ | 
|  | features.tls = size / AARCH64_TLS_REGISTER_SIZE; | 
|  | } | 
|  |  | 
|  | features.svq | 
|  | = aarch64_linux_core_read_vq (gdbarch, abfd, ".reg-aarch-za"); | 
|  |  | 
|  | /* Are the ZT registers available?  */ | 
|  | if (bfd_get_section_by_name (abfd, ".reg-aarch-zt") != nullptr) | 
|  | { | 
|  | /* Check if ZA is also available, otherwise this is an invalid | 
|  | combination.  */ | 
|  | if (bfd_get_section_by_name (abfd, ".reg-aarch-za") != nullptr) | 
|  | features.sme2 = true; | 
|  | else | 
|  | warning (_("While reading core file sections, found ZT registers entry " | 
|  | "but no ZA register entry.  The ZT contents will be " | 
|  | "ignored")); | 
|  | } | 
|  |  | 
|  | return aarch64_read_description (features); | 
|  | } | 
|  |  | 
|  | /* Implementation of `gdbarch_stap_is_single_operand', as defined in | 
|  | gdbarch.h.  */ | 
|  |  | 
|  | static int | 
|  | aarch64_stap_is_single_operand (struct gdbarch *gdbarch, const char *s) | 
|  | { | 
|  | return (*s == '#' || c_isdigit (*s) /* Literal number.  */ | 
|  | || *s == '[' /* Register indirection.  */ | 
|  | || c_isalpha (*s)); /* Register value.  */ | 
|  | } | 
|  |  | 
|  | /* This routine is used to parse a special token in AArch64's assembly. | 
|  |  | 
|  | The special tokens parsed by it are: | 
|  |  | 
|  | - Register displacement (e.g, [fp, #-8]) | 
|  |  | 
|  | It returns one if the special token has been parsed successfully, | 
|  | or zero if the current token is not considered special.  */ | 
|  |  | 
|  | static expr::operation_up | 
|  | aarch64_stap_parse_special_token (struct gdbarch *gdbarch, | 
|  | struct stap_parse_info *p) | 
|  | { | 
|  | if (*p->arg == '[') | 
|  | { | 
|  | /* Temporary holder for lookahead.  */ | 
|  | const char *tmp = p->arg; | 
|  | char *endp; | 
|  | /* Used to save the register name.  */ | 
|  | const char *start; | 
|  | int len; | 
|  | int got_minus = 0; | 
|  | long displacement; | 
|  |  | 
|  | ++tmp; | 
|  | start = tmp; | 
|  |  | 
|  | /* Register name.  */ | 
|  | while (c_isalnum (*tmp)) | 
|  | ++tmp; | 
|  |  | 
|  | if (*tmp != ',') | 
|  | return {}; | 
|  |  | 
|  | len = tmp - start; | 
|  | std::string regname (start, len); | 
|  |  | 
|  | if (user_reg_map_name_to_regnum (gdbarch, regname.c_str (), len) == -1) | 
|  | error (_("Invalid register name `%s' on expression `%s'."), | 
|  | regname.c_str (), p->saved_arg); | 
|  |  | 
|  | ++tmp; | 
|  | tmp = skip_spaces (tmp); | 
|  | /* Now we expect a number.  It can begin with '#' or simply | 
|  | a digit.  */ | 
|  | if (*tmp == '#') | 
|  | ++tmp; | 
|  |  | 
|  | if (*tmp == '-') | 
|  | { | 
|  | ++tmp; | 
|  | got_minus = 1; | 
|  | } | 
|  | else if (*tmp == '+') | 
|  | ++tmp; | 
|  |  | 
|  | if (!c_isdigit (*tmp)) | 
|  | return {}; | 
|  |  | 
|  | displacement = strtol (tmp, &endp, 10); | 
|  | tmp = endp; | 
|  |  | 
|  | /* Skipping last `]'.  */ | 
|  | if (*tmp++ != ']') | 
|  | return {}; | 
|  | p->arg = tmp; | 
|  |  | 
|  | using namespace expr; | 
|  |  | 
|  | /* The displacement.  */ | 
|  | struct type *long_type = builtin_type (gdbarch)->builtin_long; | 
|  | if (got_minus) | 
|  | displacement = -displacement; | 
|  | operation_up disp = make_operation<long_const_operation> (long_type, | 
|  | displacement); | 
|  |  | 
|  | /* The register name.  */ | 
|  | operation_up reg | 
|  | = make_operation<register_operation> (std::move (regname)); | 
|  |  | 
|  | operation_up sum | 
|  | = make_operation<add_operation> (std::move (reg), std::move (disp)); | 
|  |  | 
|  | /* Casting to the expected type.  */ | 
|  | struct type *arg_ptr_type = lookup_pointer_type (p->arg_type); | 
|  | sum = make_operation<unop_cast_operation> (std::move (sum), | 
|  | arg_ptr_type); | 
|  | return make_operation<unop_ind_operation> (std::move (sum)); | 
|  | } | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | /* AArch64 process record-replay constructs: syscall, signal etc.  */ | 
|  |  | 
|  | static linux_record_tdep aarch64_linux_record_tdep; | 
|  |  | 
|  | /* Enum that defines the AArch64 linux specific syscall identifiers used for | 
|  | process record/replay.  */ | 
|  |  | 
|  | enum aarch64_syscall { | 
|  | aarch64_sys_io_setup = 0, | 
|  | aarch64_sys_io_destroy = 1, | 
|  | aarch64_sys_io_submit = 2, | 
|  | aarch64_sys_io_cancel = 3, | 
|  | aarch64_sys_io_getevents = 4, | 
|  | aarch64_sys_setxattr = 5, | 
|  | aarch64_sys_lsetxattr = 6, | 
|  | aarch64_sys_fsetxattr = 7, | 
|  | aarch64_sys_getxattr = 8, | 
|  | aarch64_sys_lgetxattr = 9, | 
|  | aarch64_sys_fgetxattr = 10, | 
|  | aarch64_sys_listxattr = 11, | 
|  | aarch64_sys_llistxattr = 12, | 
|  | aarch64_sys_flistxattr = 13, | 
|  | aarch64_sys_removexattr = 14, | 
|  | aarch64_sys_lremovexattr = 15, | 
|  | aarch64_sys_fremovexattr = 16, | 
|  | aarch64_sys_getcwd = 17, | 
|  | aarch64_sys_lookup_dcookie = 18, | 
|  | aarch64_sys_eventfd2 = 19, | 
|  | aarch64_sys_epoll_create1 = 20, | 
|  | aarch64_sys_epoll_ctl = 21, | 
|  | aarch64_sys_epoll_pwait = 22, | 
|  | aarch64_sys_dup = 23, | 
|  | aarch64_sys_dup3 = 24, | 
|  | aarch64_sys_fcntl = 25, | 
|  | aarch64_sys_inotify_init1 = 26, | 
|  | aarch64_sys_inotify_add_watch = 27, | 
|  | aarch64_sys_inotify_rm_watch = 28, | 
|  | aarch64_sys_ioctl = 29, | 
|  | aarch64_sys_ioprio_set = 30, | 
|  | aarch64_sys_ioprio_get = 31, | 
|  | aarch64_sys_flock = 32, | 
|  | aarch64_sys_mknodat = 33, | 
|  | aarch64_sys_mkdirat = 34, | 
|  | aarch64_sys_unlinkat = 35, | 
|  | aarch64_sys_symlinkat = 36, | 
|  | aarch64_sys_linkat = 37, | 
|  | aarch64_sys_renameat = 38, | 
|  | aarch64_sys_umount2 = 39, | 
|  | aarch64_sys_mount = 40, | 
|  | aarch64_sys_pivot_root = 41, | 
|  | aarch64_sys_nfsservctl = 42, | 
|  | aarch64_sys_statfs = 43, | 
|  | aarch64_sys_fstatfs = 44, | 
|  | aarch64_sys_truncate = 45, | 
|  | aarch64_sys_ftruncate = 46, | 
|  | aarch64_sys_fallocate = 47, | 
|  | aarch64_sys_faccessat = 48, | 
|  | aarch64_sys_chdir = 49, | 
|  | aarch64_sys_fchdir = 50, | 
|  | aarch64_sys_chroot = 51, | 
|  | aarch64_sys_fchmod = 52, | 
|  | aarch64_sys_fchmodat = 53, | 
|  | aarch64_sys_fchownat = 54, | 
|  | aarch64_sys_fchown = 55, | 
|  | aarch64_sys_openat = 56, | 
|  | aarch64_sys_close = 57, | 
|  | aarch64_sys_vhangup = 58, | 
|  | aarch64_sys_pipe2 = 59, | 
|  | aarch64_sys_quotactl = 60, | 
|  | aarch64_sys_getdents64 = 61, | 
|  | aarch64_sys_lseek = 62, | 
|  | aarch64_sys_read = 63, | 
|  | aarch64_sys_write = 64, | 
|  | aarch64_sys_readv = 65, | 
|  | aarch64_sys_writev = 66, | 
|  | aarch64_sys_pread64 = 67, | 
|  | aarch64_sys_pwrite64 = 68, | 
|  | aarch64_sys_preadv = 69, | 
|  | aarch64_sys_pwritev = 70, | 
|  | aarch64_sys_sendfile = 71, | 
|  | aarch64_sys_pselect6 = 72, | 
|  | aarch64_sys_ppoll = 73, | 
|  | aarch64_sys_signalfd4 = 74, | 
|  | aarch64_sys_vmsplice = 75, | 
|  | aarch64_sys_splice = 76, | 
|  | aarch64_sys_tee = 77, | 
|  | aarch64_sys_readlinkat = 78, | 
|  | aarch64_sys_newfstatat = 79, | 
|  | aarch64_sys_fstat = 80, | 
|  | aarch64_sys_sync = 81, | 
|  | aarch64_sys_fsync = 82, | 
|  | aarch64_sys_fdatasync = 83, | 
|  | aarch64_sys_sync_file_range2 = 84, | 
|  | aarch64_sys_sync_file_range = 84, | 
|  | aarch64_sys_timerfd_create = 85, | 
|  | aarch64_sys_timerfd_settime = 86, | 
|  | aarch64_sys_timerfd_gettime = 87, | 
|  | aarch64_sys_utimensat = 88, | 
|  | aarch64_sys_acct = 89, | 
|  | aarch64_sys_capget = 90, | 
|  | aarch64_sys_capset = 91, | 
|  | aarch64_sys_personality = 92, | 
|  | aarch64_sys_exit = 93, | 
|  | aarch64_sys_exit_group = 94, | 
|  | aarch64_sys_waitid = 95, | 
|  | aarch64_sys_set_tid_address = 96, | 
|  | aarch64_sys_unshare = 97, | 
|  | aarch64_sys_futex = 98, | 
|  | aarch64_sys_set_robust_list = 99, | 
|  | aarch64_sys_get_robust_list = 100, | 
|  | aarch64_sys_nanosleep = 101, | 
|  | aarch64_sys_getitimer = 102, | 
|  | aarch64_sys_setitimer = 103, | 
|  | aarch64_sys_kexec_load = 104, | 
|  | aarch64_sys_init_module = 105, | 
|  | aarch64_sys_delete_module = 106, | 
|  | aarch64_sys_timer_create = 107, | 
|  | aarch64_sys_timer_gettime = 108, | 
|  | aarch64_sys_timer_getoverrun = 109, | 
|  | aarch64_sys_timer_settime = 110, | 
|  | aarch64_sys_timer_delete = 111, | 
|  | aarch64_sys_clock_settime = 112, | 
|  | aarch64_sys_clock_gettime = 113, | 
|  | aarch64_sys_clock_getres = 114, | 
|  | aarch64_sys_clock_nanosleep = 115, | 
|  | aarch64_sys_syslog = 116, | 
|  | aarch64_sys_ptrace = 117, | 
|  | aarch64_sys_sched_setparam = 118, | 
|  | aarch64_sys_sched_setscheduler = 119, | 
|  | aarch64_sys_sched_getscheduler = 120, | 
|  | aarch64_sys_sched_getparam = 121, | 
|  | aarch64_sys_sched_setaffinity = 122, | 
|  | aarch64_sys_sched_getaffinity = 123, | 
|  | aarch64_sys_sched_yield = 124, | 
|  | aarch64_sys_sched_get_priority_max = 125, | 
|  | aarch64_sys_sched_get_priority_min = 126, | 
|  | aarch64_sys_sched_rr_get_interval = 127, | 
|  | aarch64_sys_kill = 129, | 
|  | aarch64_sys_tkill = 130, | 
|  | aarch64_sys_tgkill = 131, | 
|  | aarch64_sys_sigaltstack = 132, | 
|  | aarch64_sys_rt_sigsuspend = 133, | 
|  | aarch64_sys_rt_sigaction = 134, | 
|  | aarch64_sys_rt_sigprocmask = 135, | 
|  | aarch64_sys_rt_sigpending = 136, | 
|  | aarch64_sys_rt_sigtimedwait = 137, | 
|  | aarch64_sys_rt_sigqueueinfo = 138, | 
|  | aarch64_sys_rt_sigreturn = 139, | 
|  | aarch64_sys_setpriority = 140, | 
|  | aarch64_sys_getpriority = 141, | 
|  | aarch64_sys_reboot = 142, | 
|  | aarch64_sys_setregid = 143, | 
|  | aarch64_sys_setgid = 144, | 
|  | aarch64_sys_setreuid = 145, | 
|  | aarch64_sys_setuid = 146, | 
|  | aarch64_sys_setresuid = 147, | 
|  | aarch64_sys_getresuid = 148, | 
|  | aarch64_sys_setresgid = 149, | 
|  | aarch64_sys_getresgid = 150, | 
|  | aarch64_sys_setfsuid = 151, | 
|  | aarch64_sys_setfsgid = 152, | 
|  | aarch64_sys_times = 153, | 
|  | aarch64_sys_setpgid = 154, | 
|  | aarch64_sys_getpgid = 155, | 
|  | aarch64_sys_getsid = 156, | 
|  | aarch64_sys_setsid = 157, | 
|  | aarch64_sys_getgroups = 158, | 
|  | aarch64_sys_setgroups = 159, | 
|  | aarch64_sys_uname = 160, | 
|  | aarch64_sys_sethostname = 161, | 
|  | aarch64_sys_setdomainname = 162, | 
|  | aarch64_sys_getrlimit = 163, | 
|  | aarch64_sys_setrlimit = 164, | 
|  | aarch64_sys_getrusage = 165, | 
|  | aarch64_sys_umask = 166, | 
|  | aarch64_sys_prctl = 167, | 
|  | aarch64_sys_getcpu = 168, | 
|  | aarch64_sys_gettimeofday = 169, | 
|  | aarch64_sys_settimeofday = 170, | 
|  | aarch64_sys_adjtimex = 171, | 
|  | aarch64_sys_getpid = 172, | 
|  | aarch64_sys_getppid = 173, | 
|  | aarch64_sys_getuid = 174, | 
|  | aarch64_sys_geteuid = 175, | 
|  | aarch64_sys_getgid = 176, | 
|  | aarch64_sys_getegid = 177, | 
|  | aarch64_sys_gettid = 178, | 
|  | aarch64_sys_sysinfo = 179, | 
|  | aarch64_sys_mq_open = 180, | 
|  | aarch64_sys_mq_unlink = 181, | 
|  | aarch64_sys_mq_timedsend = 182, | 
|  | aarch64_sys_mq_timedreceive = 183, | 
|  | aarch64_sys_mq_notify = 184, | 
|  | aarch64_sys_mq_getsetattr = 185, | 
|  | aarch64_sys_msgget = 186, | 
|  | aarch64_sys_msgctl = 187, | 
|  | aarch64_sys_msgrcv = 188, | 
|  | aarch64_sys_msgsnd = 189, | 
|  | aarch64_sys_semget = 190, | 
|  | aarch64_sys_semctl = 191, | 
|  | aarch64_sys_semtimedop = 192, | 
|  | aarch64_sys_semop = 193, | 
|  | aarch64_sys_shmget = 194, | 
|  | aarch64_sys_shmctl = 195, | 
|  | aarch64_sys_shmat = 196, | 
|  | aarch64_sys_shmdt = 197, | 
|  | aarch64_sys_socket = 198, | 
|  | aarch64_sys_socketpair = 199, | 
|  | aarch64_sys_bind = 200, | 
|  | aarch64_sys_listen = 201, | 
|  | aarch64_sys_accept = 202, | 
|  | aarch64_sys_connect = 203, | 
|  | aarch64_sys_getsockname = 204, | 
|  | aarch64_sys_getpeername = 205, | 
|  | aarch64_sys_sendto = 206, | 
|  | aarch64_sys_recvfrom = 207, | 
|  | aarch64_sys_setsockopt = 208, | 
|  | aarch64_sys_getsockopt = 209, | 
|  | aarch64_sys_shutdown = 210, | 
|  | aarch64_sys_sendmsg = 211, | 
|  | aarch64_sys_recvmsg = 212, | 
|  | aarch64_sys_readahead = 213, | 
|  | aarch64_sys_brk = 214, | 
|  | aarch64_sys_munmap = 215, | 
|  | aarch64_sys_mremap = 216, | 
|  | aarch64_sys_add_key = 217, | 
|  | aarch64_sys_request_key = 218, | 
|  | aarch64_sys_keyctl = 219, | 
|  | aarch64_sys_clone = 220, | 
|  | aarch64_sys_execve = 221, | 
|  | aarch64_sys_mmap = 222, | 
|  | aarch64_sys_fadvise64 = 223, | 
|  | aarch64_sys_swapon = 224, | 
|  | aarch64_sys_swapoff = 225, | 
|  | aarch64_sys_mprotect = 226, | 
|  | aarch64_sys_msync = 227, | 
|  | aarch64_sys_mlock = 228, | 
|  | aarch64_sys_munlock = 229, | 
|  | aarch64_sys_mlockall = 230, | 
|  | aarch64_sys_munlockall = 231, | 
|  | aarch64_sys_mincore = 232, | 
|  | aarch64_sys_madvise = 233, | 
|  | aarch64_sys_remap_file_pages = 234, | 
|  | aarch64_sys_mbind = 235, | 
|  | aarch64_sys_get_mempolicy = 236, | 
|  | aarch64_sys_set_mempolicy = 237, | 
|  | aarch64_sys_migrate_pages = 238, | 
|  | aarch64_sys_move_pages = 239, | 
|  | aarch64_sys_rt_tgsigqueueinfo = 240, | 
|  | aarch64_sys_perf_event_open = 241, | 
|  | aarch64_sys_accept4 = 242, | 
|  | aarch64_sys_recvmmsg = 243, | 
|  | aarch64_sys_wait4 = 260, | 
|  | aarch64_sys_prlimit64 = 261, | 
|  | aarch64_sys_fanotify_init = 262, | 
|  | aarch64_sys_fanotify_mark = 263, | 
|  | aarch64_sys_name_to_handle_at = 264, | 
|  | aarch64_sys_open_by_handle_at = 265, | 
|  | aarch64_sys_clock_adjtime = 266, | 
|  | aarch64_sys_syncfs = 267, | 
|  | aarch64_sys_setns = 268, | 
|  | aarch64_sys_sendmmsg = 269, | 
|  | aarch64_sys_process_vm_readv = 270, | 
|  | aarch64_sys_process_vm_writev = 271, | 
|  | aarch64_sys_kcmp = 272, | 
|  | aarch64_sys_finit_module = 273, | 
|  | aarch64_sys_sched_setattr = 274, | 
|  | aarch64_sys_sched_getattr = 275, | 
|  | aarch64_sys_getrandom = 278 | 
|  | }; | 
|  |  | 
|  | /* aarch64_canonicalize_syscall maps syscall ids from the native AArch64 | 
|  | linux set of syscall ids into a canonical set of syscall ids used by | 
|  | process record.  */ | 
|  |  | 
|  | static enum gdb_syscall | 
|  | aarch64_canonicalize_syscall (enum aarch64_syscall syscall_number) | 
|  | { | 
|  | #define SYSCALL_MAP(SYSCALL)			\ | 
|  | case aarch64_sys_ ## SYSCALL:			\ | 
|  | return gdb_sys_ ## SYSCALL | 
|  |  | 
|  | #define SYSCALL_MAP_RENAME(SYSCALL, GDB_SYSCALL)	\ | 
|  | case aarch64_sys_ ## SYSCALL:				\ | 
|  | return GDB_SYSCALL; | 
|  |  | 
|  | #define UNSUPPORTED_SYSCALL_MAP(SYSCALL)	\ | 
|  | case aarch64_sys_ ## SYSCALL:			\ | 
|  | return gdb_sys_no_syscall | 
|  |  | 
|  | switch (syscall_number) | 
|  | { | 
|  | SYSCALL_MAP (io_setup); | 
|  | SYSCALL_MAP (io_destroy); | 
|  | SYSCALL_MAP (io_submit); | 
|  | SYSCALL_MAP (io_cancel); | 
|  | SYSCALL_MAP (io_getevents); | 
|  |  | 
|  | SYSCALL_MAP (setxattr); | 
|  | SYSCALL_MAP (lsetxattr); | 
|  | SYSCALL_MAP (fsetxattr); | 
|  | SYSCALL_MAP (getxattr); | 
|  | SYSCALL_MAP (lgetxattr); | 
|  | SYSCALL_MAP (fgetxattr); | 
|  | SYSCALL_MAP (listxattr); | 
|  | SYSCALL_MAP (llistxattr); | 
|  | SYSCALL_MAP (flistxattr); | 
|  | SYSCALL_MAP (removexattr); | 
|  | SYSCALL_MAP (lremovexattr); | 
|  | SYSCALL_MAP (fremovexattr); | 
|  | SYSCALL_MAP (getcwd); | 
|  | SYSCALL_MAP (lookup_dcookie); | 
|  | SYSCALL_MAP (eventfd2); | 
|  | SYSCALL_MAP (epoll_create1); | 
|  | SYSCALL_MAP (epoll_ctl); | 
|  | SYSCALL_MAP (epoll_pwait); | 
|  | SYSCALL_MAP (dup); | 
|  | SYSCALL_MAP (dup3); | 
|  | SYSCALL_MAP (fcntl); | 
|  | SYSCALL_MAP (inotify_init1); | 
|  | SYSCALL_MAP (inotify_add_watch); | 
|  | SYSCALL_MAP (inotify_rm_watch); | 
|  | SYSCALL_MAP (ioctl); | 
|  | SYSCALL_MAP (ioprio_set); | 
|  | SYSCALL_MAP (ioprio_get); | 
|  | SYSCALL_MAP (flock); | 
|  | SYSCALL_MAP (mknodat); | 
|  | SYSCALL_MAP (mkdirat); | 
|  | SYSCALL_MAP (unlinkat); | 
|  | SYSCALL_MAP (symlinkat); | 
|  | SYSCALL_MAP (linkat); | 
|  | SYSCALL_MAP (renameat); | 
|  | UNSUPPORTED_SYSCALL_MAP (umount2); | 
|  | SYSCALL_MAP (mount); | 
|  | SYSCALL_MAP (pivot_root); | 
|  | SYSCALL_MAP (nfsservctl); | 
|  | SYSCALL_MAP (statfs); | 
|  | SYSCALL_MAP (truncate); | 
|  | SYSCALL_MAP (ftruncate); | 
|  | SYSCALL_MAP (fallocate); | 
|  | SYSCALL_MAP (faccessat); | 
|  | SYSCALL_MAP (fchdir); | 
|  | SYSCALL_MAP (chroot); | 
|  | SYSCALL_MAP (fchmod); | 
|  | SYSCALL_MAP (fchmodat); | 
|  | SYSCALL_MAP (fchownat); | 
|  | SYSCALL_MAP (fchown); | 
|  | SYSCALL_MAP (openat); | 
|  | SYSCALL_MAP (close); | 
|  | SYSCALL_MAP (vhangup); | 
|  | SYSCALL_MAP (pipe2); | 
|  | SYSCALL_MAP (quotactl); | 
|  | SYSCALL_MAP (getdents64); | 
|  | SYSCALL_MAP (lseek); | 
|  | SYSCALL_MAP (read); | 
|  | SYSCALL_MAP (write); | 
|  | SYSCALL_MAP (readv); | 
|  | SYSCALL_MAP (writev); | 
|  | SYSCALL_MAP (pread64); | 
|  | SYSCALL_MAP (pwrite64); | 
|  | UNSUPPORTED_SYSCALL_MAP (preadv); | 
|  | UNSUPPORTED_SYSCALL_MAP (pwritev); | 
|  | SYSCALL_MAP (sendfile); | 
|  | SYSCALL_MAP (pselect6); | 
|  | SYSCALL_MAP (ppoll); | 
|  | UNSUPPORTED_SYSCALL_MAP (signalfd4); | 
|  | SYSCALL_MAP (vmsplice); | 
|  | SYSCALL_MAP (splice); | 
|  | SYSCALL_MAP (tee); | 
|  | SYSCALL_MAP (readlinkat); | 
|  | SYSCALL_MAP (newfstatat); | 
|  |  | 
|  | SYSCALL_MAP (fstat); | 
|  | SYSCALL_MAP (sync); | 
|  | SYSCALL_MAP (fsync); | 
|  | SYSCALL_MAP (fdatasync); | 
|  | SYSCALL_MAP (sync_file_range); | 
|  | UNSUPPORTED_SYSCALL_MAP (timerfd_create); | 
|  | UNSUPPORTED_SYSCALL_MAP (timerfd_settime); | 
|  | UNSUPPORTED_SYSCALL_MAP (timerfd_gettime); | 
|  | UNSUPPORTED_SYSCALL_MAP (utimensat); | 
|  | SYSCALL_MAP (acct); | 
|  | SYSCALL_MAP (capget); | 
|  | SYSCALL_MAP (capset); | 
|  | SYSCALL_MAP (personality); | 
|  | SYSCALL_MAP (exit); | 
|  | SYSCALL_MAP (exit_group); | 
|  | SYSCALL_MAP (waitid); | 
|  | SYSCALL_MAP (set_tid_address); | 
|  | SYSCALL_MAP (unshare); | 
|  | SYSCALL_MAP (futex); | 
|  | SYSCALL_MAP (set_robust_list); | 
|  | SYSCALL_MAP (get_robust_list); | 
|  | SYSCALL_MAP (nanosleep); | 
|  |  | 
|  | SYSCALL_MAP (getitimer); | 
|  | SYSCALL_MAP (setitimer); | 
|  | SYSCALL_MAP (kexec_load); | 
|  | SYSCALL_MAP (init_module); | 
|  | SYSCALL_MAP (delete_module); | 
|  | SYSCALL_MAP (timer_create); | 
|  | SYSCALL_MAP (timer_settime); | 
|  | SYSCALL_MAP (timer_gettime); | 
|  | SYSCALL_MAP (timer_getoverrun); | 
|  | SYSCALL_MAP (timer_delete); | 
|  | SYSCALL_MAP (clock_settime); | 
|  | SYSCALL_MAP (clock_gettime); | 
|  | SYSCALL_MAP (clock_getres); | 
|  | SYSCALL_MAP (clock_nanosleep); | 
|  | SYSCALL_MAP (syslog); | 
|  | SYSCALL_MAP (ptrace); | 
|  | SYSCALL_MAP (sched_setparam); | 
|  | SYSCALL_MAP (sched_setscheduler); | 
|  | SYSCALL_MAP (sched_getscheduler); | 
|  | SYSCALL_MAP (sched_getparam); | 
|  | SYSCALL_MAP (sched_setaffinity); | 
|  | SYSCALL_MAP (sched_getaffinity); | 
|  | SYSCALL_MAP (sched_yield); | 
|  | SYSCALL_MAP (sched_get_priority_max); | 
|  | SYSCALL_MAP (sched_get_priority_min); | 
|  | SYSCALL_MAP (sched_rr_get_interval); | 
|  | SYSCALL_MAP (kill); | 
|  | SYSCALL_MAP (tkill); | 
|  | SYSCALL_MAP (tgkill); | 
|  | SYSCALL_MAP (sigaltstack); | 
|  | SYSCALL_MAP (rt_sigsuspend); | 
|  | SYSCALL_MAP (rt_sigaction); | 
|  | SYSCALL_MAP (rt_sigprocmask); | 
|  | SYSCALL_MAP (rt_sigpending); | 
|  | SYSCALL_MAP (rt_sigtimedwait); | 
|  | SYSCALL_MAP (rt_sigqueueinfo); | 
|  | SYSCALL_MAP (rt_sigreturn); | 
|  | SYSCALL_MAP (setpriority); | 
|  | SYSCALL_MAP (getpriority); | 
|  | SYSCALL_MAP (reboot); | 
|  | SYSCALL_MAP (setregid); | 
|  | SYSCALL_MAP (setgid); | 
|  | SYSCALL_MAP (setreuid); | 
|  | SYSCALL_MAP (setuid); | 
|  | SYSCALL_MAP (setresuid); | 
|  | SYSCALL_MAP (getresuid); | 
|  | SYSCALL_MAP (setresgid); | 
|  | SYSCALL_MAP (getresgid); | 
|  | SYSCALL_MAP (setfsuid); | 
|  | SYSCALL_MAP (setfsgid); | 
|  | SYSCALL_MAP (times); | 
|  | SYSCALL_MAP (setpgid); | 
|  | SYSCALL_MAP (getpgid); | 
|  | SYSCALL_MAP (getsid); | 
|  | SYSCALL_MAP (setsid); | 
|  | SYSCALL_MAP (getgroups); | 
|  | SYSCALL_MAP (setgroups); | 
|  | SYSCALL_MAP (uname); | 
|  | SYSCALL_MAP (sethostname); | 
|  | SYSCALL_MAP (setdomainname); | 
|  | SYSCALL_MAP (getrlimit); | 
|  | SYSCALL_MAP (setrlimit); | 
|  | SYSCALL_MAP (getrusage); | 
|  | SYSCALL_MAP (umask); | 
|  | SYSCALL_MAP (prctl); | 
|  | SYSCALL_MAP (getcpu); | 
|  | SYSCALL_MAP (gettimeofday); | 
|  | SYSCALL_MAP (settimeofday); | 
|  | SYSCALL_MAP (adjtimex); | 
|  | SYSCALL_MAP (getpid); | 
|  | SYSCALL_MAP (getppid); | 
|  | SYSCALL_MAP (getuid); | 
|  | SYSCALL_MAP (geteuid); | 
|  | SYSCALL_MAP (getgid); | 
|  | SYSCALL_MAP (getegid); | 
|  | SYSCALL_MAP (gettid); | 
|  | SYSCALL_MAP (sysinfo); | 
|  | SYSCALL_MAP (mq_open); | 
|  | SYSCALL_MAP (mq_unlink); | 
|  | SYSCALL_MAP (mq_timedsend); | 
|  | SYSCALL_MAP (mq_timedreceive); | 
|  | SYSCALL_MAP (mq_notify); | 
|  | SYSCALL_MAP (mq_getsetattr); | 
|  | SYSCALL_MAP (msgget); | 
|  | SYSCALL_MAP (msgctl); | 
|  | SYSCALL_MAP (msgrcv); | 
|  | SYSCALL_MAP (msgsnd); | 
|  | SYSCALL_MAP (semget); | 
|  | SYSCALL_MAP (semctl); | 
|  | SYSCALL_MAP (semtimedop); | 
|  | SYSCALL_MAP (semop); | 
|  | SYSCALL_MAP (shmget); | 
|  | SYSCALL_MAP (shmctl); | 
|  | SYSCALL_MAP (shmat); | 
|  | SYSCALL_MAP (shmdt); | 
|  | SYSCALL_MAP (socket); | 
|  | SYSCALL_MAP (socketpair); | 
|  | SYSCALL_MAP (bind); | 
|  | SYSCALL_MAP (listen); | 
|  | SYSCALL_MAP (accept); | 
|  | SYSCALL_MAP (connect); | 
|  | SYSCALL_MAP (getsockname); | 
|  | SYSCALL_MAP (getpeername); | 
|  | SYSCALL_MAP (sendto); | 
|  | SYSCALL_MAP (recvfrom); | 
|  | SYSCALL_MAP (setsockopt); | 
|  | SYSCALL_MAP (getsockopt); | 
|  | SYSCALL_MAP (shutdown); | 
|  | SYSCALL_MAP (sendmsg); | 
|  | SYSCALL_MAP (recvmsg); | 
|  | SYSCALL_MAP (readahead); | 
|  | SYSCALL_MAP (brk); | 
|  | SYSCALL_MAP (munmap); | 
|  | SYSCALL_MAP (mremap); | 
|  | SYSCALL_MAP (add_key); | 
|  | SYSCALL_MAP (request_key); | 
|  | SYSCALL_MAP (keyctl); | 
|  | SYSCALL_MAP (clone); | 
|  | SYSCALL_MAP (execve); | 
|  |  | 
|  | SYSCALL_MAP_RENAME (mmap, gdb_sys_old_mmap); | 
|  |  | 
|  | SYSCALL_MAP (fadvise64); | 
|  | SYSCALL_MAP (swapon); | 
|  | SYSCALL_MAP (swapoff); | 
|  | SYSCALL_MAP (mprotect); | 
|  | SYSCALL_MAP (msync); | 
|  | SYSCALL_MAP (mlock); | 
|  | SYSCALL_MAP (munlock); | 
|  | SYSCALL_MAP (mlockall); | 
|  | SYSCALL_MAP (munlockall); | 
|  | SYSCALL_MAP (mincore); | 
|  | SYSCALL_MAP (madvise); | 
|  | SYSCALL_MAP (remap_file_pages); | 
|  | SYSCALL_MAP (mbind); | 
|  | SYSCALL_MAP (get_mempolicy); | 
|  | SYSCALL_MAP (set_mempolicy); | 
|  | SYSCALL_MAP (migrate_pages); | 
|  | SYSCALL_MAP (move_pages); | 
|  | UNSUPPORTED_SYSCALL_MAP (rt_tgsigqueueinfo); | 
|  | UNSUPPORTED_SYSCALL_MAP (perf_event_open); | 
|  | SYSCALL_MAP (accept4); | 
|  | UNSUPPORTED_SYSCALL_MAP (recvmmsg); | 
|  |  | 
|  | SYSCALL_MAP (wait4); | 
|  |  | 
|  | UNSUPPORTED_SYSCALL_MAP (prlimit64); | 
|  | UNSUPPORTED_SYSCALL_MAP (fanotify_init); | 
|  | UNSUPPORTED_SYSCALL_MAP (fanotify_mark); | 
|  | UNSUPPORTED_SYSCALL_MAP (name_to_handle_at); | 
|  | UNSUPPORTED_SYSCALL_MAP (open_by_handle_at); | 
|  | UNSUPPORTED_SYSCALL_MAP (clock_adjtime); | 
|  | UNSUPPORTED_SYSCALL_MAP (syncfs); | 
|  | UNSUPPORTED_SYSCALL_MAP (setns); | 
|  | UNSUPPORTED_SYSCALL_MAP (sendmmsg); | 
|  | UNSUPPORTED_SYSCALL_MAP (process_vm_readv); | 
|  | UNSUPPORTED_SYSCALL_MAP (process_vm_writev); | 
|  | UNSUPPORTED_SYSCALL_MAP (kcmp); | 
|  | UNSUPPORTED_SYSCALL_MAP (finit_module); | 
|  | UNSUPPORTED_SYSCALL_MAP (sched_setattr); | 
|  | UNSUPPORTED_SYSCALL_MAP (sched_getattr); | 
|  | SYSCALL_MAP (getrandom); | 
|  |  | 
|  | default: | 
|  | return gdb_sys_no_syscall; | 
|  | } | 
|  |  | 
|  | #undef SYSCALL_MAP | 
|  | #undef SYSCALL_MAP_RENAME | 
|  | #undef UNSUPPORTED_SYSCALL_MAP | 
|  | } | 
|  |  | 
|  | /* Retrieve the syscall number at a ptrace syscall-stop, either on syscall entry | 
|  | or exit.  Return -1 upon error.  */ | 
|  |  | 
|  | static LONGEST | 
|  | aarch64_linux_get_syscall_number (struct gdbarch *gdbarch, thread_info *thread) | 
|  | { | 
|  | struct regcache *regs = get_thread_regcache (thread); | 
|  | LONGEST ret; | 
|  |  | 
|  | /* Get the system call number from register x8.  */ | 
|  | regs->cooked_read (AARCH64_X0_REGNUM + 8, &ret); | 
|  |  | 
|  | /* On exit from a successful execve, we will be in a new process and all the | 
|  | registers will be cleared - x0 to x30 will be 0, except for a 1 in x7. | 
|  | This function will only ever get called when stopped at the entry or exit | 
|  | of a syscall, so by checking for 0 in x0 (arg0/retval), x1 (arg1), x8 | 
|  | (syscall), x29 (FP) and x30 (LR) we can infer: | 
|  | 1) Either inferior is at exit from successful execve. | 
|  | 2) Or inferior is at entry to a call to io_setup with invalid arguments and | 
|  | a corrupted FP and LR. | 
|  | It should be safe enough to assume case 1.  */ | 
|  | if (ret == 0) | 
|  | { | 
|  | LONGEST x1 = -1, fp = -1, lr = -1; | 
|  | regs->cooked_read (AARCH64_X0_REGNUM + 1, &x1); | 
|  | regs->cooked_read (AARCH64_FP_REGNUM, &fp); | 
|  | regs->cooked_read (AARCH64_LR_REGNUM, &lr); | 
|  | if (x1 == 0 && fp ==0 && lr == 0) | 
|  | return aarch64_sys_execve; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Record all registers but PC register for process-record.  */ | 
|  |  | 
|  | static int | 
|  | aarch64_all_but_pc_registers_record (struct regcache *regcache) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = AARCH64_X0_REGNUM; i < AARCH64_PC_REGNUM; i++) | 
|  | if (record_full_arch_list_add_reg (regcache, i)) | 
|  | return -1; | 
|  |  | 
|  | if (record_full_arch_list_add_reg (regcache, AARCH64_CPSR_REGNUM)) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handler for aarch64 system call instruction recording.  */ | 
|  |  | 
|  | static int | 
|  | aarch64_linux_syscall_record (struct regcache *regcache, | 
|  | unsigned long svc_number) | 
|  | { | 
|  | int ret = 0; | 
|  | enum gdb_syscall syscall_gdb; | 
|  |  | 
|  | syscall_gdb = | 
|  | aarch64_canonicalize_syscall ((enum aarch64_syscall) svc_number); | 
|  |  | 
|  | if (syscall_gdb < 0) | 
|  | { | 
|  | gdb_printf (gdb_stderr, | 
|  | _("Process record and replay target doesn't " | 
|  | "support syscall number %s\n"), | 
|  | plongest (svc_number)); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (syscall_gdb == gdb_sys_sigreturn | 
|  | || syscall_gdb == gdb_sys_rt_sigreturn) | 
|  | { | 
|  | if (aarch64_all_but_pc_registers_record (regcache)) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = record_linux_system_call (syscall_gdb, regcache, | 
|  | &aarch64_linux_record_tdep); | 
|  | if (ret != 0) | 
|  | return ret; | 
|  |  | 
|  | /* Record the return value of the system call.  */ | 
|  | if (record_full_arch_list_add_reg (regcache, AARCH64_X0_REGNUM)) | 
|  | return -1; | 
|  | /* Record LR.  */ | 
|  | if (record_full_arch_list_add_reg (regcache, AARCH64_LR_REGNUM)) | 
|  | return -1; | 
|  | /* Record CPSR.  */ | 
|  | if (record_full_arch_list_add_reg (regcache, AARCH64_CPSR_REGNUM)) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Implement the "gcc_target_options" gdbarch method.  */ | 
|  |  | 
|  | static std::string | 
|  | aarch64_linux_gcc_target_options (struct gdbarch *gdbarch) | 
|  | { | 
|  | /* GCC doesn't know "-m64".  */ | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | /* Implement the tagged_address_p gdbarch method.  */ | 
|  |  | 
|  | static bool | 
|  | aarch64_linux_tagged_address_p (struct gdbarch *gdbarch, CORE_ADDR address) | 
|  | { | 
|  | /* Remove the top byte for the memory range check.  */ | 
|  | address = aarch64_remove_non_address_bits (gdbarch, address); | 
|  |  | 
|  | /* Check if the page that contains ADDRESS is mapped with PROT_MTE.  */ | 
|  | if (!linux_address_in_memtag_page (address)) | 
|  | return false; | 
|  |  | 
|  | /* We have a valid tag in the top byte of the 64-bit address.  */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Implement the "get_shadow_stack_pointer" gdbarch method.  */ | 
|  |  | 
|  | static std::optional<CORE_ADDR> | 
|  | aarch64_linux_get_shadow_stack_pointer (gdbarch *gdbarch, regcache *regcache, | 
|  | bool &shadow_stack_enabled) | 
|  | { | 
|  | aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); | 
|  | shadow_stack_enabled = false; | 
|  |  | 
|  | if (!tdep->has_gcs_linux ()) | 
|  | return {}; | 
|  |  | 
|  | uint64_t features_enabled; | 
|  | register_status status = regcache->cooked_read (tdep->gcs_linux_reg_base, | 
|  | &features_enabled); | 
|  | if (status != REG_VALID) | 
|  | error (_("Can't read $gcs_features_enabled.")); | 
|  |  | 
|  | CORE_ADDR gcspr; | 
|  | status = regcache->cooked_read (tdep->gcs_reg_base, &gcspr); | 
|  | if (status != REG_VALID) | 
|  | error (_("Can't read $gcspr.")); | 
|  |  | 
|  | shadow_stack_enabled = features_enabled & PR_SHADOW_STACK_ENABLE; | 
|  | return gcspr; | 
|  | } | 
|  |  | 
|  | /* Implement Guarded Control Stack Pointer Register unwinding.  For each | 
|  | previous GCS pointer check if its address is still in the GCS memory | 
|  | range.  If it's outside the range set the returned value to unavailable, | 
|  | otherwise return a value containing the new GCS pointer.  */ | 
|  |  | 
|  | static value * | 
|  | aarch64_linux_dwarf2_prev_gcspr (const frame_info_ptr &this_frame, | 
|  | void **this_cache, int regnum) | 
|  | { | 
|  | value *v = frame_unwind_got_register (this_frame, regnum, regnum); | 
|  | gdb_assert (v != nullptr); | 
|  |  | 
|  | gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  |  | 
|  | if (v->entirely_available () && !v->optimized_out ()) | 
|  | { | 
|  | int size = register_size (gdbarch, regnum); | 
|  | bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR gcspr = extract_unsigned_integer (v->contents_all ().data (), | 
|  | size, byte_order); | 
|  |  | 
|  | /* Starting with v6.13, the Linux kernel supports Guarded Control | 
|  | Stack.  Using /proc/PID/smaps we can only check if the current | 
|  | GCSPR points to GCS memory.  Only if this is the case a valid | 
|  | previous GCS pointer can be calculated.  */ | 
|  | std::pair<CORE_ADDR, CORE_ADDR> range; | 
|  | if (linux_address_in_shadow_stack_mem_range (gcspr, &range)) | 
|  | { | 
|  | /* The GCS grows downwards.  To compute the previous GCS pointer, | 
|  | we need to increment the GCSPR.  */ | 
|  | CORE_ADDR new_gcspr = gcspr + 8; | 
|  |  | 
|  | /* If NEW_GCSPR still points within the current GCS memory range | 
|  | we consider it to be valid.  */ | 
|  | if (new_gcspr < range.second) | 
|  | return frame_unwind_got_address (this_frame, regnum, new_gcspr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return a value which is marked as unavailable in case we could not | 
|  | calculate a valid previous GCS pointer.  */ | 
|  | value *retval | 
|  | = value::allocate_register (get_next_frame_sentinel_okay (this_frame), | 
|  | regnum, register_type (gdbarch, regnum)); | 
|  | retval->mark_bytes_unavailable (0, retval->type ()->length ()); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* AArch64 Linux implementation of the report_signal_info gdbarch | 
|  | hook.  Displays information about possible memory tag violations.  */ | 
|  |  | 
|  | static void | 
|  | aarch64_linux_report_signal_info (struct gdbarch *gdbarch, | 
|  | struct ui_out *uiout, | 
|  | enum gdb_signal siggnal) | 
|  | { | 
|  | aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (!(tdep->has_mte () || tdep->has_gcs ()) || siggnal != GDB_SIGNAL_SEGV) | 
|  | return; | 
|  |  | 
|  | CORE_ADDR fault_addr = 0; | 
|  | long si_code = 0, si_errno = 0; | 
|  |  | 
|  | try | 
|  | { | 
|  | /* Sigcode tells us if the segfault is actually a memory tag | 
|  | violation.  */ | 
|  | si_code = parse_and_eval_long ("$_siginfo.si_code"); | 
|  | si_errno = parse_and_eval_long ("$_siginfo.si_errno"); | 
|  |  | 
|  | fault_addr | 
|  | = parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr"); | 
|  | } | 
|  | catch (const gdb_exception_error &exception) | 
|  | { | 
|  | exception_print (gdb_stderr, exception); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const char *meaning; | 
|  |  | 
|  | if (si_code == SEGV_MTEAERR || si_code == SEGV_MTESERR) | 
|  | meaning = _("Memory tag violation"); | 
|  | else if (si_code == SEGV_CPERR && si_errno == 0) | 
|  | meaning = _("Guarded Control Stack error"); | 
|  | else | 
|  | return; | 
|  |  | 
|  | uiout->text ("\n"); | 
|  |  | 
|  | uiout->field_string ("sigcode-meaning", meaning); | 
|  |  | 
|  | /* For synchronous faults, show additional information.  */ | 
|  | if (si_code == SEGV_MTESERR) | 
|  | { | 
|  | uiout->text (_(" while accessing address ")); | 
|  | uiout->field_core_addr ("fault-addr", gdbarch, fault_addr); | 
|  | uiout->text ("\n"); | 
|  |  | 
|  | std::optional<CORE_ADDR> atag | 
|  | = aarch64_mte_get_atag ( | 
|  | aarch64_remove_non_address_bits (gdbarch, fault_addr)); | 
|  |  | 
|  | gdb_byte ltag = aarch64_mte_get_ltag (fault_addr); | 
|  |  | 
|  | if (!atag.has_value ()) | 
|  | uiout->text (_("Allocation tag unavailable")); | 
|  | else | 
|  | { | 
|  | uiout->text (_("Allocation tag ")); | 
|  | uiout->field_string ("allocation-tag", hex_string (*atag)); | 
|  | uiout->text ("\n"); | 
|  | uiout->text (_("Logical tag ")); | 
|  | uiout->field_string ("logical-tag", hex_string (ltag)); | 
|  | } | 
|  | } | 
|  | else if (si_code != SEGV_CPERR) | 
|  | { | 
|  | uiout->text ("\n"); | 
|  | uiout->text (_("Fault address unavailable")); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* AArch64 Linux implementation of the gdbarch_create_memtag_section hook.  */ | 
|  |  | 
|  | static asection * | 
|  | aarch64_linux_create_memtag_section (struct gdbarch *gdbarch, bfd *obfd, | 
|  | CORE_ADDR address, size_t size) | 
|  | { | 
|  | gdb_assert (obfd != nullptr); | 
|  | gdb_assert (size > 0); | 
|  |  | 
|  | /* Create the section and associated program header. | 
|  |  | 
|  | Make sure the section's flags has SEC_HAS_CONTENTS, otherwise BFD will | 
|  | refuse to write data to this section.  */ | 
|  | asection *mte_section | 
|  | = bfd_make_section_anyway_with_flags (obfd, "memtag", SEC_HAS_CONTENTS); | 
|  |  | 
|  | if (mte_section == nullptr) | 
|  | return nullptr; | 
|  |  | 
|  | bfd_set_section_vma (mte_section, address); | 
|  | /* The size of the memory range covered by the memory tags.  We reuse the | 
|  | section's rawsize field for this purpose.  */ | 
|  | mte_section->rawsize = size; | 
|  |  | 
|  | /* Fetch the number of tags we need to save.  */ | 
|  | size_t tags_count | 
|  | = aarch64_mte_get_tag_granules (address, size, AARCH64_MTE_GRANULE_SIZE); | 
|  | /* Tags are stored packed as 2 tags per byte.  */ | 
|  | bfd_set_section_size (mte_section, (tags_count + 1) >> 1); | 
|  | /* Store program header information.  */ | 
|  | bfd_record_phdr (obfd, PT_AARCH64_MEMTAG_MTE, 1, 0, 0, 0, 0, 0, 1, | 
|  | &mte_section); | 
|  |  | 
|  | return mte_section; | 
|  | } | 
|  |  | 
|  | /* Maximum number of tags to request.  */ | 
|  | #define MAX_TAGS_TO_TRANSFER 1024 | 
|  |  | 
|  | /* AArch64 Linux implementation of the gdbarch_fill_memtag_section hook.  */ | 
|  |  | 
|  | static bool | 
|  | aarch64_linux_fill_memtag_section (struct gdbarch *gdbarch, asection *osec) | 
|  | { | 
|  | /* We only handle MTE tags for now.  */ | 
|  |  | 
|  | size_t segment_size = osec->rawsize; | 
|  | CORE_ADDR start_address = bfd_section_vma (osec); | 
|  | CORE_ADDR end_address = start_address + segment_size; | 
|  |  | 
|  | /* Figure out how many tags we need to store in this memory range.  */ | 
|  | size_t granules = aarch64_mte_get_tag_granules (start_address, segment_size, | 
|  | AARCH64_MTE_GRANULE_SIZE); | 
|  |  | 
|  | /* If there are no tag granules to fetch, just return.  */ | 
|  | if (granules == 0) | 
|  | return true; | 
|  |  | 
|  | CORE_ADDR address = start_address; | 
|  |  | 
|  | /* Vector of tags.  */ | 
|  | gdb::byte_vector tags; | 
|  |  | 
|  | while (granules > 0) | 
|  | { | 
|  | /* Transfer tags in chunks.  */ | 
|  | gdb::byte_vector tags_read; | 
|  | size_t xfer_len | 
|  | = ((granules >= MAX_TAGS_TO_TRANSFER) | 
|  | ? MAX_TAGS_TO_TRANSFER * AARCH64_MTE_GRANULE_SIZE | 
|  | : granules * AARCH64_MTE_GRANULE_SIZE); | 
|  |  | 
|  | if (!target_fetch_memtags (address, xfer_len, tags_read, | 
|  | static_cast<int> (memtag_type::allocation))) | 
|  | { | 
|  | warning (_("Failed to read MTE tags from memory range [%s,%s)."), | 
|  | phex_nz (start_address), | 
|  | phex_nz (end_address)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Transfer over the tags that have been read.  */ | 
|  | tags.insert (tags.end (), tags_read.begin (), tags_read.end ()); | 
|  |  | 
|  | /* Adjust the remaining granules and starting address.  */ | 
|  | granules -= tags_read.size (); | 
|  | address += tags_read.size () * AARCH64_MTE_GRANULE_SIZE; | 
|  | } | 
|  |  | 
|  | /* Pack the MTE tag bits.  */ | 
|  | aarch64_mte_pack_tags (tags); | 
|  |  | 
|  | if (!bfd_set_section_contents (osec->owner, osec, tags.data (), | 
|  | 0, tags.size ())) | 
|  | { | 
|  | warning (_("Failed to write %s bytes of corefile memory " | 
|  | "tag content (%s)."), | 
|  | pulongest (tags.size ()), | 
|  | bfd_errmsg (bfd_get_error ())); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* AArch64 Linux implementation of the gdbarch_decode_memtag_section | 
|  | hook.  Decode a memory tag section and return the requested tags. | 
|  |  | 
|  | The section is guaranteed to cover the [ADDRESS, ADDRESS + length) | 
|  | range.  */ | 
|  |  | 
|  | static gdb::byte_vector | 
|  | aarch64_linux_decode_memtag_section (struct gdbarch *gdbarch, | 
|  | bfd_section *section, | 
|  | int type, | 
|  | CORE_ADDR address, size_t length) | 
|  | { | 
|  | gdb_assert (section != nullptr); | 
|  |  | 
|  | /* The requested address must not be less than section->vma.  */ | 
|  | gdb_assert (section->vma <= address); | 
|  |  | 
|  | /* Figure out how many tags we need to fetch in this memory range.  */ | 
|  | size_t granules = aarch64_mte_get_tag_granules (address, length, | 
|  | AARCH64_MTE_GRANULE_SIZE); | 
|  | /* Sanity check.  */ | 
|  | gdb_assert (granules > 0); | 
|  |  | 
|  | /* Fetch the total number of tags in the range [VMA, address + length).  */ | 
|  | size_t granules_from_vma | 
|  | = aarch64_mte_get_tag_granules (section->vma, | 
|  | address - section->vma + length, | 
|  | AARCH64_MTE_GRANULE_SIZE); | 
|  |  | 
|  | /* Adjust the tags vector to contain the exact number of packed bytes.  */ | 
|  | gdb::byte_vector tags (((granules - 1) >> 1) + 1); | 
|  |  | 
|  | /* Figure out the starting offset into the packed tags data.  */ | 
|  | file_ptr offset = ((granules_from_vma - granules) >> 1); | 
|  |  | 
|  | if (!bfd_get_section_contents (section->owner, section, tags.data (), | 
|  | offset, tags.size ())) | 
|  | error (_("Couldn't read contents from memtag section.")); | 
|  |  | 
|  | /* At this point, the tags are packed 2 per byte.  Unpack them before | 
|  | returning.  */ | 
|  | bool skip_first = ((granules_from_vma - granules) % 2) != 0; | 
|  | aarch64_mte_unpack_tags (tags, skip_first); | 
|  |  | 
|  | /* Resize to the exact number of tags that was requested.  */ | 
|  | tags.resize (granules); | 
|  |  | 
|  | return tags; | 
|  | } | 
|  |  | 
|  | /* AArch64 Linux implementation of the | 
|  | gdbarch_use_target_description_from_corefile_notes hook.  */ | 
|  |  | 
|  | static bool | 
|  | aarch64_use_target_description_from_corefile_notes (gdbarch *gdbarch, | 
|  | bfd *obfd) | 
|  | { | 
|  | /* Sanity check.  */ | 
|  | gdb_assert (obfd != nullptr); | 
|  |  | 
|  | /* If the corefile contains any SVE or SME register data, we don't want to | 
|  | use the target description note, as it may be incorrect. | 
|  |  | 
|  | Currently the target description note contains a potentially incorrect | 
|  | target description if the originating program changed the SVE or SME | 
|  | vector lengths mid-execution. | 
|  |  | 
|  | Once we support per-thread target description notes in the corefiles, we | 
|  | can always trust those notes whenever they are available.  */ | 
|  | if (bfd_get_section_by_name (obfd, ".reg-aarch-sve") != nullptr | 
|  | || bfd_get_section_by_name (obfd, ".reg-aarch-za") != nullptr | 
|  | || bfd_get_section_by_name (obfd, ".reg-aarch-zt") != nullptr) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Fetch and return the TLS DTV (dynamic thread vector) address for PTID. | 
|  | Throw a suitable TLS error if something goes wrong.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | aarch64_linux_get_tls_dtv_addr (struct gdbarch *gdbarch, ptid_t ptid, | 
|  | svr4_tls_libc libc) | 
|  | { | 
|  | /* On aarch64, the thread pointer is found in the TPIDR register. | 
|  | Note that this is the first register in the TLS feature - see | 
|  | features/aarch64-tls.c - and it will always be present.  */ | 
|  | regcache *regcache | 
|  | = get_thread_arch_regcache (current_inferior (), ptid, gdbarch); | 
|  | aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); | 
|  | target_fetch_registers (regcache, tdep->tls_regnum_base); | 
|  | ULONGEST thr_ptr; | 
|  | if (regcache->cooked_read (tdep->tls_regnum_base, &thr_ptr) != REG_VALID) | 
|  | throw_error (TLS_GENERIC_ERROR, _("Unable to fetch thread pointer")); | 
|  |  | 
|  | CORE_ADDR dtv_ptr_addr; | 
|  | switch (libc) | 
|  | { | 
|  | case svr4_tls_libc_musl: | 
|  | /* MUSL: The DTV pointer is found at the very end of the pthread | 
|  | struct which is located *before* the thread pointer.  I.e. | 
|  | the thread pointer will be just beyond the end of the struct, | 
|  | so the address of the DTV pointer is found one pointer-size | 
|  | before the thread pointer.  */ | 
|  | dtv_ptr_addr = thr_ptr - (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT); | 
|  | break; | 
|  | case svr4_tls_libc_glibc: | 
|  | /* GLIBC: The thread pointer (tpidr) points at the TCB (thread control | 
|  | block).  On aarch64, this struct (tcbhead_t) is defined to | 
|  | contain two pointers.  The first is a pointer to the DTV and | 
|  | the second is a pointer to private data.  So the DTV pointer | 
|  | address is the same as the thread pointer.  */ | 
|  | dtv_ptr_addr = thr_ptr; | 
|  | break; | 
|  | default: | 
|  | throw_error (TLS_GENERIC_ERROR, _("Unknown aarch64 C library")); | 
|  | break; | 
|  | } | 
|  | gdb::byte_vector buf (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT); | 
|  | if (target_read_memory (dtv_ptr_addr, buf.data (), buf.size ()) != 0) | 
|  | throw_error (TLS_GENERIC_ERROR, _("Unable to fetch DTV address")); | 
|  |  | 
|  | const struct builtin_type *builtin = builtin_type (gdbarch); | 
|  | CORE_ADDR dtv_addr = gdbarch_pointer_to_address | 
|  | (gdbarch, builtin->builtin_data_ptr, buf.data ()); | 
|  | return dtv_addr; | 
|  | } | 
|  |  | 
|  | static void | 
|  | aarch64_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) | 
|  | { | 
|  | static const char *const stap_integer_prefixes[] = { "#", "", NULL }; | 
|  | static const char *const stap_register_prefixes[] = { "", NULL }; | 
|  | static const char *const stap_register_indirection_prefixes[] = { "[", | 
|  | NULL }; | 
|  | static const char *const stap_register_indirection_suffixes[] = { "]", | 
|  | NULL }; | 
|  | aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (tdep->has_gcs () && !tdep->has_gcs_linux ()) | 
|  | { | 
|  | warning (_("Incomplete GCS support in the target: missing Linux part." | 
|  | " GCS feature disabled.")); | 
|  | tdep->gcs_reg_base = -1; | 
|  | } | 
|  |  | 
|  | tdep->lowest_pc = 0x8000; | 
|  |  | 
|  | linux_init_abi (info, gdbarch, 1); | 
|  | set_solib_svr4_ops (gdbarch, make_linux_lp64_svr4_solib_ops); | 
|  |  | 
|  | /* Enable TLS support.  */ | 
|  | set_gdbarch_fetch_tls_load_module_address (gdbarch, | 
|  | svr4_fetch_objfile_link_map); | 
|  | set_gdbarch_get_thread_local_address (gdbarch, | 
|  | svr4_tls_get_thread_local_address); | 
|  | svr4_tls_register_tls_methods (info, gdbarch, aarch64_linux_get_tls_dtv_addr); | 
|  |  | 
|  | /* Shared library handling.  */ | 
|  | set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); | 
|  | set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver); | 
|  |  | 
|  | tramp_frame_prepend_unwinder (gdbarch, &aarch64_linux_rt_sigframe); | 
|  |  | 
|  | /* Enable longjmp.  */ | 
|  | tdep->jb_pc = 11; | 
|  |  | 
|  | set_gdbarch_iterate_over_regset_sections | 
|  | (gdbarch, aarch64_linux_iterate_over_regset_sections); | 
|  | set_gdbarch_core_read_description | 
|  | (gdbarch, aarch64_linux_core_read_description); | 
|  |  | 
|  | /* SystemTap related.  */ | 
|  | set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes); | 
|  | set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes); | 
|  | set_gdbarch_stap_register_indirection_prefixes (gdbarch, | 
|  | stap_register_indirection_prefixes); | 
|  | set_gdbarch_stap_register_indirection_suffixes (gdbarch, | 
|  | stap_register_indirection_suffixes); | 
|  | set_gdbarch_stap_is_single_operand (gdbarch, aarch64_stap_is_single_operand); | 
|  | set_gdbarch_stap_parse_special_token (gdbarch, | 
|  | aarch64_stap_parse_special_token); | 
|  |  | 
|  | /* Reversible debugging, process record.  */ | 
|  | set_gdbarch_process_record (gdbarch, aarch64_process_record); | 
|  | /* Syscall record.  */ | 
|  | tdep->aarch64_syscall_record = aarch64_linux_syscall_record; | 
|  |  | 
|  | /* MTE-specific settings and hooks.  */ | 
|  | if (tdep->has_mte ()) | 
|  | { | 
|  | /* Register a hook for checking if an address is tagged or not.  */ | 
|  | set_gdbarch_tagged_address_p (gdbarch, aarch64_linux_tagged_address_p); | 
|  |  | 
|  | /* Core file helpers.  */ | 
|  |  | 
|  | /* Core file helper to create a memory tag section for a particular | 
|  | PT_LOAD segment.  */ | 
|  | set_gdbarch_create_memtag_section | 
|  | (gdbarch, aarch64_linux_create_memtag_section); | 
|  |  | 
|  | /* Core file helper to fill a memory tag section with tag data.  */ | 
|  | set_gdbarch_fill_memtag_section | 
|  | (gdbarch, aarch64_linux_fill_memtag_section); | 
|  |  | 
|  | /* Core file helper to decode a memory tag section.  */ | 
|  | set_gdbarch_decode_memtag_section (gdbarch, | 
|  | aarch64_linux_decode_memtag_section); | 
|  | } | 
|  |  | 
|  | if (tdep->has_mte () || tdep->has_gcs ()) | 
|  | set_gdbarch_report_signal_info (gdbarch, aarch64_linux_report_signal_info); | 
|  |  | 
|  | /* Initialize the aarch64_linux_record_tdep.  */ | 
|  | /* These values are the size of the type that will be used in a system | 
|  | call.  They are obtained from Linux Kernel source.  */ | 
|  | aarch64_linux_record_tdep.size_pointer | 
|  | = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; | 
|  | aarch64_linux_record_tdep.size__old_kernel_stat = 32; | 
|  | aarch64_linux_record_tdep.size_tms = 32; | 
|  | aarch64_linux_record_tdep.size_loff_t = 8; | 
|  | aarch64_linux_record_tdep.size_flock = 32; | 
|  | aarch64_linux_record_tdep.size_oldold_utsname = 45; | 
|  | aarch64_linux_record_tdep.size_ustat = 32; | 
|  | aarch64_linux_record_tdep.size_old_sigaction = 32; | 
|  | aarch64_linux_record_tdep.size_old_sigset_t = 8; | 
|  | aarch64_linux_record_tdep.size_rlimit = 16; | 
|  | aarch64_linux_record_tdep.size_rusage = 144; | 
|  | aarch64_linux_record_tdep.size_timeval = 16; | 
|  | aarch64_linux_record_tdep.size_timezone = 8; | 
|  | aarch64_linux_record_tdep.size_old_gid_t = 2; | 
|  | aarch64_linux_record_tdep.size_old_uid_t = 2; | 
|  | aarch64_linux_record_tdep.size_fd_set = 128; | 
|  | aarch64_linux_record_tdep.size_old_dirent = 280; | 
|  | aarch64_linux_record_tdep.size_statfs = 120; | 
|  | aarch64_linux_record_tdep.size_statfs64 = 120; | 
|  | aarch64_linux_record_tdep.size_sockaddr = 16; | 
|  | aarch64_linux_record_tdep.size_int | 
|  | = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT; | 
|  | aarch64_linux_record_tdep.size_long | 
|  | = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT; | 
|  | aarch64_linux_record_tdep.size_ulong | 
|  | = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT; | 
|  | aarch64_linux_record_tdep.size_msghdr = 56; | 
|  | aarch64_linux_record_tdep.size_itimerval = 32; | 
|  | aarch64_linux_record_tdep.size_stat = 144; | 
|  | aarch64_linux_record_tdep.size_old_utsname = 325; | 
|  | aarch64_linux_record_tdep.size_sysinfo = 112; | 
|  | aarch64_linux_record_tdep.size_msqid_ds = 120; | 
|  | aarch64_linux_record_tdep.size_shmid_ds = 112; | 
|  | aarch64_linux_record_tdep.size_new_utsname = 390; | 
|  | aarch64_linux_record_tdep.size_timex = 208; | 
|  | aarch64_linux_record_tdep.size_mem_dqinfo = 24; | 
|  | aarch64_linux_record_tdep.size_if_dqblk = 72; | 
|  | aarch64_linux_record_tdep.size_fs_quota_stat = 80; | 
|  | aarch64_linux_record_tdep.size_timespec = 16; | 
|  | aarch64_linux_record_tdep.size_pollfd = 8; | 
|  | aarch64_linux_record_tdep.size_NFS_FHSIZE = 32; | 
|  | aarch64_linux_record_tdep.size_knfsd_fh = 132; | 
|  | aarch64_linux_record_tdep.size_TASK_COMM_LEN = 16; | 
|  | aarch64_linux_record_tdep.size_sigaction = 32; | 
|  | aarch64_linux_record_tdep.size_sigset_t = 8; | 
|  | aarch64_linux_record_tdep.size_siginfo_t = 128; | 
|  | aarch64_linux_record_tdep.size_cap_user_data_t = 8; | 
|  | aarch64_linux_record_tdep.size_stack_t = 24; | 
|  | aarch64_linux_record_tdep.size_off_t = 8; | 
|  | aarch64_linux_record_tdep.size_stat64 = 144; | 
|  | aarch64_linux_record_tdep.size_gid_t = 4; | 
|  | aarch64_linux_record_tdep.size_uid_t = 4; | 
|  | aarch64_linux_record_tdep.size_PAGE_SIZE = 4096; | 
|  | aarch64_linux_record_tdep.size_flock64 = 32; | 
|  | aarch64_linux_record_tdep.size_user_desc = 16; | 
|  | aarch64_linux_record_tdep.size_io_event = 32; | 
|  | aarch64_linux_record_tdep.size_iocb = 64; | 
|  | aarch64_linux_record_tdep.size_epoll_event = 12; | 
|  | aarch64_linux_record_tdep.size_itimerspec = 32; | 
|  | aarch64_linux_record_tdep.size_mq_attr = 64; | 
|  | aarch64_linux_record_tdep.size_termios = 36; | 
|  | aarch64_linux_record_tdep.size_termios2 = 44; | 
|  | aarch64_linux_record_tdep.size_pid_t = 4; | 
|  | aarch64_linux_record_tdep.size_winsize = 8; | 
|  | aarch64_linux_record_tdep.size_serial_struct = 72; | 
|  | aarch64_linux_record_tdep.size_serial_icounter_struct = 80; | 
|  | aarch64_linux_record_tdep.size_hayes_esp_config = 12; | 
|  | aarch64_linux_record_tdep.size_size_t = 8; | 
|  | aarch64_linux_record_tdep.size_iovec = 16; | 
|  | aarch64_linux_record_tdep.size_time_t = 8; | 
|  |  | 
|  | /* These values are the second argument of system call "sys_ioctl". | 
|  | They are obtained from Linux Kernel source.  */ | 
|  | aarch64_linux_record_tdep.ioctl_TCGETS = 0x5401; | 
|  | aarch64_linux_record_tdep.ioctl_TCSETS = 0x5402; | 
|  | aarch64_linux_record_tdep.ioctl_TCSETSW = 0x5403; | 
|  | aarch64_linux_record_tdep.ioctl_TCSETSF = 0x5404; | 
|  | aarch64_linux_record_tdep.ioctl_TCGETA = 0x5405; | 
|  | aarch64_linux_record_tdep.ioctl_TCSETA = 0x5406; | 
|  | aarch64_linux_record_tdep.ioctl_TCSETAW = 0x5407; | 
|  | aarch64_linux_record_tdep.ioctl_TCSETAF = 0x5408; | 
|  | aarch64_linux_record_tdep.ioctl_TCSBRK = 0x5409; | 
|  | aarch64_linux_record_tdep.ioctl_TCXONC = 0x540a; | 
|  | aarch64_linux_record_tdep.ioctl_TCFLSH = 0x540b; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCEXCL = 0x540c; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCNXCL = 0x540d; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSTI = 0x5412; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCMGET = 0x5415; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCMBIS = 0x5416; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCMBIC = 0x5417; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCMSET = 0x5418; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a; | 
|  | aarch64_linux_record_tdep.ioctl_FIONREAD = 0x541b; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCINQ = 0x541b; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCLINUX = 0x541c; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCCONS = 0x541d; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCPKT = 0x5420; | 
|  | aarch64_linux_record_tdep.ioctl_FIONBIO = 0x5421; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSETD = 0x5423; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCGETD = 0x5424; | 
|  | aarch64_linux_record_tdep.ioctl_TCSBRKP = 0x5425; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSBRK = 0x5427; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCCBRK = 0x5428; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCGSID = 0x5429; | 
|  | aarch64_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a; | 
|  | aarch64_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b; | 
|  | aarch64_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c; | 
|  | aarch64_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431; | 
|  | aarch64_linux_record_tdep.ioctl_FIONCLEX = 0x5450; | 
|  | aarch64_linux_record_tdep.ioctl_FIOCLEX = 0x5451; | 
|  | aarch64_linux_record_tdep.ioctl_FIOASYNC = 0x5452; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e; | 
|  | aarch64_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f; | 
|  | aarch64_linux_record_tdep.ioctl_FIOQSIZE = 0x5460; | 
|  |  | 
|  | /* These values are the second argument of system call "sys_fcntl" | 
|  | and "sys_fcntl64".  They are obtained from Linux Kernel source.  */ | 
|  | aarch64_linux_record_tdep.fcntl_F_GETLK = 5; | 
|  | aarch64_linux_record_tdep.fcntl_F_GETLK64 = 12; | 
|  | aarch64_linux_record_tdep.fcntl_F_SETLK64 = 13; | 
|  | aarch64_linux_record_tdep.fcntl_F_SETLKW64 = 14; | 
|  |  | 
|  | /* The AArch64 syscall calling convention: reg x0-x6 for arguments, | 
|  | reg x8 for syscall number and return value in reg x0.  */ | 
|  | aarch64_linux_record_tdep.arg1 = AARCH64_X0_REGNUM + 0; | 
|  | aarch64_linux_record_tdep.arg2 = AARCH64_X0_REGNUM + 1; | 
|  | aarch64_linux_record_tdep.arg3 = AARCH64_X0_REGNUM + 2; | 
|  | aarch64_linux_record_tdep.arg4 = AARCH64_X0_REGNUM + 3; | 
|  | aarch64_linux_record_tdep.arg5 = AARCH64_X0_REGNUM + 4; | 
|  | aarch64_linux_record_tdep.arg6 = AARCH64_X0_REGNUM + 5; | 
|  | aarch64_linux_record_tdep.arg7 = AARCH64_X0_REGNUM + 6; | 
|  |  | 
|  | /* `catch syscall' */ | 
|  | set_xml_syscall_file_name (gdbarch, "syscalls/aarch64-linux.xml"); | 
|  | set_gdbarch_get_syscall_number (gdbarch, aarch64_linux_get_syscall_number); | 
|  |  | 
|  | /* Displaced stepping.  */ | 
|  | set_gdbarch_max_insn_length (gdbarch, 4); | 
|  | set_gdbarch_displaced_step_buffer_length | 
|  | (gdbarch, 4 * AARCH64_DISPLACED_MODIFIED_INSNS); | 
|  | set_gdbarch_displaced_step_copy_insn (gdbarch, | 
|  | aarch64_displaced_step_copy_insn); | 
|  | set_gdbarch_displaced_step_fixup (gdbarch, aarch64_displaced_step_fixup); | 
|  | set_gdbarch_displaced_step_hw_singlestep (gdbarch, | 
|  | aarch64_displaced_step_hw_singlestep); | 
|  |  | 
|  | set_gdbarch_gcc_target_options (gdbarch, aarch64_linux_gcc_target_options); | 
|  |  | 
|  | /* Hook to decide if the target description should be obtained from | 
|  | corefile target description note(s) or inferred from the corefile | 
|  | sections.  */ | 
|  | set_gdbarch_use_target_description_from_corefile_notes (gdbarch, | 
|  | aarch64_use_target_description_from_corefile_notes); | 
|  |  | 
|  | if (tdep->has_gcs_linux ()) | 
|  | { | 
|  | set_gdbarch_get_shadow_stack_pointer (gdbarch, | 
|  | aarch64_linux_get_shadow_stack_pointer); | 
|  | tdep->fn_prev_gcspr = aarch64_linux_dwarf2_prev_gcspr; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if GDB_SELF_TEST | 
|  |  | 
|  | namespace selftests { | 
|  |  | 
|  | /* Verify functions to read and write logical tags.  */ | 
|  |  | 
|  | static void | 
|  | aarch64_linux_ltag_tests (void) | 
|  | { | 
|  | /* We have 4 bits of tags, but we test writing all the bits of the top | 
|  | byte of address.  */ | 
|  | for (int i = 0; i < 1 << 8; i++) | 
|  | { | 
|  | CORE_ADDR addr = ((CORE_ADDR) i << 56) | 0xdeadbeef; | 
|  | SELF_CHECK (aarch64_mte_get_ltag (addr) == (i & 0xf)); | 
|  |  | 
|  | addr = aarch64_mte_set_ltag (0xdeadbeef, i); | 
|  | SELF_CHECK (addr = ((CORE_ADDR) (i & 0xf) << 56) | 0xdeadbeef); | 
|  | } | 
|  | } | 
|  |  | 
|  | } /* namespace selftests */ | 
|  | #endif /* GDB_SELF_TEST */ | 
|  |  | 
|  | INIT_GDB_FILE (aarch64_linux_tdep) | 
|  | { | 
|  | gdbarch_register_osabi (bfd_arch_aarch64, 0, GDB_OSABI_LINUX, | 
|  | aarch64_linux_init_abi); | 
|  |  | 
|  | #if GDB_SELF_TEST | 
|  | selftests::register_test ("aarch64-linux-tagged-address", | 
|  | selftests::aarch64_linux_ltag_tests); | 
|  | #endif | 
|  | } |