|  | /* Print values for GNU debugger GDB. | 
|  |  | 
|  | Copyright (C) 1986-2025 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "event-top.h" | 
|  | #include "extract-store-integer.h" | 
|  | #include "frame.h" | 
|  | #include "symtab.h" | 
|  | #include "gdbtypes.h" | 
|  | #include "top.h" | 
|  | #include "value.h" | 
|  | #include "language.h" | 
|  | #include "c-lang.h" | 
|  | #include "expression.h" | 
|  | #include "gdbcore.h" | 
|  | #include "cli/cli-cmds.h" | 
|  | #include "target.h" | 
|  | #include "breakpoint.h" | 
|  | #include "demangle.h" | 
|  | #include "gdb-demangle.h" | 
|  | #include "valprint.h" | 
|  | #include "annotate.h" | 
|  | #include "symfile.h" | 
|  | #include "objfiles.h" | 
|  | #include "completer.h" | 
|  | #include "ui-out.h" | 
|  | #include "block.h" | 
|  | #include "disasm.h" | 
|  | #include "target-float.h" | 
|  | #include "observable.h" | 
|  | #include "parser-defs.h" | 
|  | #include "charset.h" | 
|  | #include "arch-utils.h" | 
|  | #include "cli/cli-utils.h" | 
|  | #include "cli/cli-option.h" | 
|  | #include "cli/cli-script.h" | 
|  | #include "cli/cli-style.h" | 
|  | #include "gdbsupport/format.h" | 
|  | #include "source.h" | 
|  | #include "gdbsupport/byte-vector.h" | 
|  | #include <optional> | 
|  | #include "inferior.h" | 
|  |  | 
|  | /* Chain containing all defined memory-tag subcommands.  */ | 
|  |  | 
|  | static struct cmd_list_element *memory_tag_list; | 
|  |  | 
|  | /* Last specified output format.  */ | 
|  |  | 
|  | static char last_format = 0; | 
|  |  | 
|  | /* Last specified examination size.  'b', 'h', 'w' or `q'.  */ | 
|  |  | 
|  | static char last_size = 'w'; | 
|  |  | 
|  | /* Last specified count for the 'x' command.  */ | 
|  |  | 
|  | static int last_count; | 
|  |  | 
|  | /* Last specified tag-printing option.  */ | 
|  |  | 
|  | static bool last_print_tags = false; | 
|  |  | 
|  | /* Default address to examine next, and associated architecture.  */ | 
|  |  | 
|  | static struct gdbarch *next_gdbarch; | 
|  | static CORE_ADDR next_address; | 
|  |  | 
|  | /* Number of delay instructions following current disassembled insn.  */ | 
|  |  | 
|  | static int branch_delay_insns; | 
|  |  | 
|  | /* Last address examined.  */ | 
|  |  | 
|  | static CORE_ADDR last_examine_address; | 
|  |  | 
|  | /* Contents of last address examined. | 
|  | This is not valid past the end of the `x' command!  */ | 
|  |  | 
|  | static value_ref_ptr last_examine_value; | 
|  |  | 
|  | /* Largest offset between a symbolic value and an address, that will be | 
|  | printed as `0x1234 <symbol+offset>'.  */ | 
|  |  | 
|  | static unsigned int max_symbolic_offset = UINT_MAX; | 
|  | static void | 
|  | show_max_symbolic_offset (struct ui_file *file, int from_tty, | 
|  | struct cmd_list_element *c, const char *value) | 
|  | { | 
|  | gdb_printf (file, | 
|  | _("The largest offset that will be " | 
|  | "printed in <symbol+1234> form is %s.\n"), | 
|  | value); | 
|  | } | 
|  |  | 
|  | /* Append the source filename and linenumber of the symbol when | 
|  | printing a symbolic value as `<symbol at filename:linenum>' if set.  */ | 
|  | static bool print_symbol_filename = false; | 
|  | static void | 
|  | show_print_symbol_filename (struct ui_file *file, int from_tty, | 
|  | struct cmd_list_element *c, const char *value) | 
|  | { | 
|  | gdb_printf (file, _("Printing of source filename and " | 
|  | "line number with <symbol> is %s.\n"), | 
|  | value); | 
|  | } | 
|  |  | 
|  | /* Number of auto-display expression currently being displayed. | 
|  | So that we can disable it if we get a signal within it. | 
|  | -1 when not doing one.  */ | 
|  |  | 
|  | static int current_display_number; | 
|  |  | 
|  | /* Last allocated display number.  */ | 
|  |  | 
|  | static int display_number; | 
|  |  | 
|  | struct display | 
|  | { | 
|  | display (const char *exp_string_, expression_up &&exp_, | 
|  | const struct format_data &format_, struct program_space *pspace_, | 
|  | const struct block *block_) | 
|  | : exp_string (exp_string_), | 
|  | exp (std::move (exp_)), | 
|  | number (++display_number), | 
|  | format (format_), | 
|  | pspace (pspace_), | 
|  | block (block_), | 
|  | enabled_p (true) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* The expression as the user typed it.  */ | 
|  | std::string exp_string; | 
|  |  | 
|  | /* Expression to be evaluated and displayed.  */ | 
|  | expression_up exp; | 
|  |  | 
|  | /* Item number of this auto-display item.  */ | 
|  | int number; | 
|  |  | 
|  | /* Display format specified.  */ | 
|  | struct format_data format; | 
|  |  | 
|  | /* Program space associated with `block'.  */ | 
|  | struct program_space *pspace; | 
|  |  | 
|  | /* Innermost block required by this expression when evaluated.  */ | 
|  | const struct block *block; | 
|  |  | 
|  | /* Status of this display (enabled or disabled).  */ | 
|  | bool enabled_p; | 
|  | }; | 
|  |  | 
|  | /* Expressions whose values should be displayed automatically each | 
|  | time the program stops.  */ | 
|  |  | 
|  | static std::vector<std::unique_ptr<struct display>> all_displays; | 
|  |  | 
|  | /* Prototypes for local functions.  */ | 
|  |  | 
|  | static void do_one_display (struct display *); | 
|  |  | 
|  |  | 
|  | /* Decode a format specification.  *STRING_PTR should point to it. | 
|  | OFORMAT and OSIZE are used as defaults for the format and size | 
|  | if none are given in the format specification. | 
|  | If OSIZE is zero, then the size field of the returned value | 
|  | should be set only if a size is explicitly specified by the | 
|  | user. | 
|  | The structure returned describes all the data | 
|  | found in the specification.  In addition, *STRING_PTR is advanced | 
|  | past the specification and past all whitespace following it.  */ | 
|  |  | 
|  | static struct format_data | 
|  | decode_format (const char **string_ptr, int oformat, int osize) | 
|  | { | 
|  | struct format_data val; | 
|  | const char *p = *string_ptr; | 
|  |  | 
|  | val.format = '?'; | 
|  | val.size = '?'; | 
|  | val.count = 1; | 
|  | val.raw = 0; | 
|  | val.print_tags = false; | 
|  |  | 
|  | if (*p == '-') | 
|  | { | 
|  | val.count = -1; | 
|  | p++; | 
|  | } | 
|  | if (*p >= '0' && *p <= '9') | 
|  | val.count *= atoi (p); | 
|  | while (*p >= '0' && *p <= '9') | 
|  | p++; | 
|  |  | 
|  | /* Now process size or format letters that follow.  */ | 
|  |  | 
|  | while (1) | 
|  | { | 
|  | if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g') | 
|  | val.size = *p++; | 
|  | else if (*p == 'r') | 
|  | { | 
|  | val.raw = 1; | 
|  | p++; | 
|  | } | 
|  | else if (*p == 'm') | 
|  | { | 
|  | val.print_tags = true; | 
|  | p++; | 
|  | } | 
|  | else if (*p >= 'a' && *p <= 'z') | 
|  | val.format = *p++; | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | *string_ptr = skip_spaces (p); | 
|  |  | 
|  | /* Set defaults for format and size if not specified.  */ | 
|  | if (val.format == '?') | 
|  | { | 
|  | if (val.size == '?') | 
|  | { | 
|  | /* Neither has been specified.  */ | 
|  | val.format = oformat; | 
|  | val.size = osize; | 
|  | } | 
|  | else | 
|  | /* If a size is specified, any format makes a reasonable | 
|  | default except 'i'.  */ | 
|  | val.format = oformat == 'i' ? 'x' : oformat; | 
|  | } | 
|  | else if (val.size == '?') | 
|  | switch (val.format) | 
|  | { | 
|  | case 'a': | 
|  | /* Pick the appropriate size for an address.  This is deferred | 
|  | until do_examine when we know the actual architecture to use. | 
|  | A special size value of 'a' is used to indicate this case.  */ | 
|  | val.size = osize ? 'a' : osize; | 
|  | break; | 
|  | case 'f': | 
|  | /* Floating point has to be word or giantword.  */ | 
|  | if (osize == 'w' || osize == 'g') | 
|  | val.size = osize; | 
|  | else | 
|  | /* Default it to giantword if the last used size is not | 
|  | appropriate.  */ | 
|  | val.size = osize ? 'g' : osize; | 
|  | break; | 
|  | case 'c': | 
|  | /* Characters default to one byte.  */ | 
|  | val.size = osize ? 'b' : osize; | 
|  | break; | 
|  | case 's': | 
|  | /* Display strings with byte size chars unless explicitly | 
|  | specified.  */ | 
|  | val.size = '\0'; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* The default is the size most recently specified.  */ | 
|  | val.size = osize; | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* Print value VAL on stream according to OPTIONS. | 
|  | Do not end with a newline. | 
|  | SIZE is the letter for the size of datum being printed. | 
|  | This is used to pad hex numbers so they line up.  SIZE is 0 | 
|  | for print / output and set for examine.  */ | 
|  |  | 
|  | static void | 
|  | print_formatted (struct value *val, int size, | 
|  | const struct value_print_options *options, | 
|  | struct ui_file *stream) | 
|  | { | 
|  | struct type *type = check_typedef (val->type ()); | 
|  | int len = type->length (); | 
|  |  | 
|  | if (val->lval () == lval_memory) | 
|  | next_address = val->address () + len; | 
|  |  | 
|  | if (size) | 
|  | { | 
|  | switch (options->format) | 
|  | { | 
|  | case 's': | 
|  | { | 
|  | struct type *elttype = val->type (); | 
|  |  | 
|  | next_address = (val->address () | 
|  | + val_print_string (elttype, NULL, | 
|  | val->address (), -1, | 
|  | stream, options) * len); | 
|  | } | 
|  | return; | 
|  |  | 
|  | case 'i': | 
|  | /* We often wrap here if there are long symbolic names.  */ | 
|  | stream->wrap_here (4); | 
|  | next_address = (val->address () | 
|  | + gdb_print_insn (type->arch (), | 
|  | val->address (), stream, | 
|  | &branch_delay_insns)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (options->format == 0 || options->format == 's' | 
|  | || type->code () == TYPE_CODE_VOID | 
|  | || type->code () == TYPE_CODE_REF | 
|  | || type->code () == TYPE_CODE_ARRAY | 
|  | || type->code () == TYPE_CODE_STRING | 
|  | || type->code () == TYPE_CODE_STRUCT | 
|  | || type->code () == TYPE_CODE_UNION | 
|  | || type->code () == TYPE_CODE_NAMESPACE) | 
|  | value_print (val, stream, options); | 
|  | else | 
|  | /* User specified format, so don't look to the type to tell us | 
|  | what to do.  */ | 
|  | value_print_scalar_formatted (val, options, size, stream); | 
|  | } | 
|  |  | 
|  | /* Return builtin floating point type of same length as TYPE. | 
|  | If no such type is found, return TYPE itself.  */ | 
|  | static struct type * | 
|  | float_type_from_length (struct type *type) | 
|  | { | 
|  | struct gdbarch *gdbarch = type->arch (); | 
|  | const struct builtin_type *builtin = builtin_type (gdbarch); | 
|  |  | 
|  | if (type->length () == builtin->builtin_half->length ()) | 
|  | type = builtin->builtin_half; | 
|  | else if (type->length () == builtin->builtin_float->length ()) | 
|  | type = builtin->builtin_float; | 
|  | else if (type->length () == builtin->builtin_double->length ()) | 
|  | type = builtin->builtin_double; | 
|  | else if (type->length () == builtin->builtin_long_double->length ()) | 
|  | type = builtin->builtin_long_double; | 
|  |  | 
|  | return type; | 
|  | } | 
|  |  | 
|  | /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR, | 
|  | according to OPTIONS and SIZE on STREAM.  Formats s and i are not | 
|  | supported at this level.  */ | 
|  |  | 
|  | void | 
|  | print_scalar_formatted (const gdb_byte *valaddr, struct type *type, | 
|  | const struct value_print_options *options, | 
|  | int size, struct ui_file *stream) | 
|  | { | 
|  | struct gdbarch *gdbarch = type->arch (); | 
|  | unsigned int len = type->length (); | 
|  | enum bfd_endian byte_order = type_byte_order (type); | 
|  |  | 
|  | /* String printing should go through val_print_scalar_formatted.  */ | 
|  | gdb_assert (options->format != 's'); | 
|  |  | 
|  | /* If the value is a pointer, and pointers and addresses are not the | 
|  | same, then at this point, the value's length (in target bytes) is | 
|  | gdbarch_addr_bit/TARGET_CHAR_BIT, not type->length ().  */ | 
|  | if (type->code () == TYPE_CODE_PTR) | 
|  | len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT; | 
|  |  | 
|  | /* If we are printing it as unsigned, truncate it in case it is actually | 
|  | a negative signed value (e.g. "print/u (short)-1" should print 65535 | 
|  | (if shorts are 16 bits) instead of 4294967295).  */ | 
|  | if (options->format != 'c' | 
|  | && (options->format != 'd' || type->is_unsigned ())) | 
|  | { | 
|  | if (len < type->length () && byte_order == BFD_ENDIAN_BIG) | 
|  | valaddr += type->length () - len; | 
|  | } | 
|  |  | 
|  | /* Allow LEN == 0, and in this case, don't assume that VALADDR is | 
|  | valid.  */ | 
|  | const gdb_byte zero = 0; | 
|  | if (len == 0) | 
|  | { | 
|  | len = 1; | 
|  | valaddr = &zero; | 
|  | } | 
|  |  | 
|  | if (size != 0 && (options->format == 'x' || options->format == 't')) | 
|  | { | 
|  | /* Truncate to fit.  */ | 
|  | unsigned newlen; | 
|  | switch (size) | 
|  | { | 
|  | case 'b': | 
|  | newlen = 1; | 
|  | break; | 
|  | case 'h': | 
|  | newlen = 2; | 
|  | break; | 
|  | case 'w': | 
|  | newlen = 4; | 
|  | break; | 
|  | case 'g': | 
|  | newlen = 8; | 
|  | break; | 
|  | default: | 
|  | error (_("Undefined output size \"%c\"."), size); | 
|  | } | 
|  | if (newlen < len && byte_order == BFD_ENDIAN_BIG) | 
|  | valaddr += len - newlen; | 
|  | len = newlen; | 
|  | } | 
|  |  | 
|  | /* Biased range types and sub-word scalar types must be handled | 
|  | here; the value is correctly computed by unpack_long.  */ | 
|  | gdb::byte_vector converted_bytes; | 
|  | /* Some cases below will unpack the value again.  In the biased | 
|  | range case, we want to avoid this, so we store the unpacked value | 
|  | here for possible use later.  */ | 
|  | std::optional<LONGEST> val_long; | 
|  | if ((is_fixed_point_type (type) | 
|  | && (options->format == 'o' | 
|  | || options->format == 'x' | 
|  | || options->format == 't' | 
|  | || options->format == 'z' | 
|  | || options->format == 'd' | 
|  | || options->format == 'u')) | 
|  | || (type->code () == TYPE_CODE_RANGE && type->bounds ()->bias != 0) | 
|  | || type->bit_size_differs_p ()) | 
|  | { | 
|  | val_long.emplace (unpack_long (type, valaddr)); | 
|  | converted_bytes.resize (type->length ()); | 
|  | store_signed_integer (converted_bytes.data (), type->length (), | 
|  | byte_order, *val_long); | 
|  | valaddr = converted_bytes.data (); | 
|  | } | 
|  |  | 
|  | /* Printing a non-float type as 'f' will interpret the data as if it were | 
|  | of a floating-point type of the same length, if that exists.  Otherwise, | 
|  | the data is printed as integer.  */ | 
|  | char format = options->format; | 
|  | if (format == 'f' && type->code () != TYPE_CODE_FLT) | 
|  | { | 
|  | type = float_type_from_length (type); | 
|  | if (type->code () != TYPE_CODE_FLT) | 
|  | format = 0; | 
|  | } | 
|  |  | 
|  | switch (format) | 
|  | { | 
|  | case 'o': | 
|  | print_octal_chars (stream, valaddr, len, byte_order); | 
|  | break; | 
|  | case 'd': | 
|  | print_decimal_chars (stream, valaddr, len, true, byte_order); | 
|  | break; | 
|  | case 'u': | 
|  | print_decimal_chars (stream, valaddr, len, false, byte_order); | 
|  | break; | 
|  | case 0: | 
|  | if (type->code () != TYPE_CODE_FLT) | 
|  | { | 
|  | print_decimal_chars (stream, valaddr, len, !type->is_unsigned (), | 
|  | byte_order); | 
|  | break; | 
|  | } | 
|  | [[fallthrough]]; | 
|  | case 'f': | 
|  | print_floating (valaddr, type, stream); | 
|  | break; | 
|  |  | 
|  | case 't': | 
|  | print_binary_chars (stream, valaddr, len, byte_order, size > 0, options); | 
|  | break; | 
|  | case 'x': | 
|  | print_hex_chars (stream, valaddr, len, byte_order, size > 0); | 
|  | break; | 
|  | case 'z': | 
|  | print_hex_chars (stream, valaddr, len, byte_order, true); | 
|  | break; | 
|  | case 'c': | 
|  | { | 
|  | struct value_print_options opts = *options; | 
|  |  | 
|  | if (!val_long.has_value ()) | 
|  | val_long.emplace (unpack_long (type, valaddr)); | 
|  |  | 
|  | opts.format = 0; | 
|  | if (type->is_unsigned ()) | 
|  | type = builtin_type (gdbarch)->builtin_true_unsigned_char; | 
|  | else | 
|  | type = builtin_type (gdbarch)->builtin_true_char; | 
|  |  | 
|  | value_print (value_from_longest (type, *val_long), stream, &opts); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 'a': | 
|  | { | 
|  | if (!val_long.has_value ()) | 
|  | val_long.emplace (unpack_long (type, valaddr)); | 
|  | print_address (gdbarch, *val_long, stream); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | error (_("Undefined output format \"%c\"."), format); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Specify default address for `x' command. | 
|  | The `info lines' command uses this.  */ | 
|  |  | 
|  | void | 
|  | set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr) | 
|  | { | 
|  | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; | 
|  |  | 
|  | next_gdbarch = gdbarch; | 
|  | next_address = addr; | 
|  |  | 
|  | /* Make address available to the user as $_.  */ | 
|  | set_internalvar (lookup_internalvar ("_"), | 
|  | value_from_pointer (ptr_type, addr)); | 
|  | } | 
|  |  | 
|  | /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM, | 
|  | after LEADIN.  Print nothing if no symbolic name is found nearby. | 
|  | Optionally also print source file and line number, if available. | 
|  | DO_DEMANGLE controls whether to print a symbol in its native "raw" form, | 
|  | or to interpret it as a possible C++ name and convert it back to source | 
|  | form.  However note that DO_DEMANGLE can be overridden by the specific | 
|  | settings of the demangle and asm_demangle variables.  Returns | 
|  | non-zero if anything was printed; zero otherwise.  */ | 
|  |  | 
|  | int | 
|  | print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr, | 
|  | struct ui_file *stream, | 
|  | int do_demangle, const char *leadin) | 
|  | { | 
|  | std::string name, filename; | 
|  | int unmapped = 0; | 
|  | int offset = 0; | 
|  | int line = 0; | 
|  |  | 
|  | if (build_address_symbolic (gdbarch, addr, do_demangle, false, &name, | 
|  | &offset, &filename, &line, &unmapped)) | 
|  | return 0; | 
|  |  | 
|  | gdb_puts (leadin, stream); | 
|  | if (unmapped) | 
|  | gdb_puts ("<*", stream); | 
|  | else | 
|  | gdb_puts ("<", stream); | 
|  | fputs_styled (name.c_str (), function_name_style.style (), stream); | 
|  | if (offset != 0) | 
|  | gdb_printf (stream, "%+d", offset); | 
|  |  | 
|  | /* Append source filename and line number if desired.  Give specific | 
|  | line # of this addr, if we have it; else line # of the nearest symbol.  */ | 
|  | if (print_symbol_filename && !filename.empty ()) | 
|  | { | 
|  | gdb_puts (line == -1 ? " in " : " at ", stream); | 
|  | fputs_styled (filename.c_str (), file_name_style.style (), stream); | 
|  | if (line != -1) | 
|  | gdb_printf (stream, ":%d", line); | 
|  | } | 
|  | if (unmapped) | 
|  | gdb_puts ("*>", stream); | 
|  | else | 
|  | gdb_puts (">", stream); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* See valprint.h.  */ | 
|  |  | 
|  | int | 
|  | build_address_symbolic (struct gdbarch *gdbarch, | 
|  | CORE_ADDR addr,  /* IN */ | 
|  | bool do_demangle, /* IN */ | 
|  | bool prefer_sym_over_minsym, /* IN */ | 
|  | std::string *name, /* OUT */ | 
|  | int *offset,     /* OUT */ | 
|  | std::string *filename, /* OUT */ | 
|  | int *line,       /* OUT */ | 
|  | int *unmapped)   /* OUT */ | 
|  | { | 
|  | struct symbol *symbol; | 
|  | CORE_ADDR name_location = 0; | 
|  | struct obj_section *section = NULL; | 
|  | const char *name_temp = ""; | 
|  |  | 
|  | /* Let's say it is mapped (not unmapped).  */ | 
|  | *unmapped = 0; | 
|  |  | 
|  | /* Determine if the address is in an overlay, and whether it is | 
|  | mapped.  */ | 
|  | if (overlay_debugging) | 
|  | { | 
|  | section = find_pc_overlay (addr); | 
|  | if (pc_in_unmapped_range (addr, section)) | 
|  | { | 
|  | *unmapped = 1; | 
|  | addr = overlay_mapped_address (addr, section); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Try to find the address in both the symbol table and the minsyms. | 
|  | In most cases, we'll prefer to use the symbol instead of the | 
|  | minsym.  However, there are cases (see below) where we'll choose | 
|  | to use the minsym instead.  */ | 
|  |  | 
|  | /* This is defective in the sense that it only finds text symbols.  So | 
|  | really this is kind of pointless--we should make sure that the | 
|  | minimal symbols have everything we need (by changing that we could | 
|  | save some memory, but for many debug format--ELF/DWARF or | 
|  | anything/stabs--it would be inconvenient to eliminate those minimal | 
|  | symbols anyway).  */ | 
|  | bound_minimal_symbol msymbol | 
|  | = lookup_minimal_symbol_by_pc_section (addr, section); | 
|  | symbol = find_pc_sect_function (addr, section); | 
|  |  | 
|  | if (symbol) | 
|  | { | 
|  | /* If this is a function (i.e. a code address), strip out any | 
|  | non-address bits.  For instance, display a pointer to the | 
|  | first instruction of a Thumb function as <function>; the | 
|  | second instruction will be <function+2>, even though the | 
|  | pointer is <function+3>.  This matches the ISA behavior.  */ | 
|  | addr = gdbarch_addr_bits_remove (gdbarch, addr); | 
|  |  | 
|  | name_location = symbol->value_block ()->entry_pc (); | 
|  | if (do_demangle || asm_demangle) | 
|  | name_temp = symbol->print_name (); | 
|  | else | 
|  | name_temp = symbol->linkage_name (); | 
|  | } | 
|  |  | 
|  | if (msymbol.minsym != NULL | 
|  | && msymbol.minsym->has_size () | 
|  | && msymbol.minsym->size () == 0 | 
|  | && msymbol.minsym->type () != mst_text | 
|  | && msymbol.minsym->type () != mst_text_gnu_ifunc | 
|  | && msymbol.minsym->type () != mst_file_text) | 
|  | msymbol.minsym = NULL; | 
|  |  | 
|  | if (msymbol.minsym != NULL) | 
|  | { | 
|  | /* Use the minsym if no symbol is found. | 
|  |  | 
|  | Additionally, use the minsym instead of a (found) symbol if | 
|  | the following conditions all hold: | 
|  | 1) The prefer_sym_over_minsym flag is false. | 
|  | 2) The minsym address is identical to that of the address under | 
|  | consideration. | 
|  | 3) The symbol address is not identical to that of the address | 
|  | under consideration.  */ | 
|  | if (symbol == NULL || | 
|  | (!prefer_sym_over_minsym | 
|  | && msymbol.value_address () == addr | 
|  | && name_location != addr)) | 
|  | { | 
|  | /* If this is a function (i.e. a code address), strip out any | 
|  | non-address bits.  For instance, display a pointer to the | 
|  | first instruction of a Thumb function as <function>; the | 
|  | second instruction will be <function+2>, even though the | 
|  | pointer is <function+3>.  This matches the ISA behavior.  */ | 
|  | if (msymbol.minsym->type () == mst_text | 
|  | || msymbol.minsym->type () == mst_text_gnu_ifunc | 
|  | || msymbol.minsym->type () == mst_file_text | 
|  | || msymbol.minsym->type () == mst_solib_trampoline) | 
|  | addr = gdbarch_addr_bits_remove (gdbarch, addr); | 
|  |  | 
|  | symbol = 0; | 
|  | name_location = msymbol.value_address (); | 
|  | if (do_demangle || asm_demangle) | 
|  | name_temp = msymbol.minsym->print_name (); | 
|  | else | 
|  | name_temp = msymbol.minsym->linkage_name (); | 
|  | } | 
|  | } | 
|  | if (symbol == NULL && msymbol.minsym == NULL) | 
|  | return 1; | 
|  |  | 
|  | /* If the nearest symbol is too far away, don't print anything symbolic.  */ | 
|  |  | 
|  | /* For when CORE_ADDR is larger than unsigned int, we do math in | 
|  | CORE_ADDR.  But when we detect unsigned wraparound in the | 
|  | CORE_ADDR math, we ignore this test and print the offset, | 
|  | because addr+max_symbolic_offset has wrapped through the end | 
|  | of the address space back to the beginning, giving bogus comparison.  */ | 
|  | if (addr > name_location + max_symbolic_offset | 
|  | && name_location + max_symbolic_offset > name_location) | 
|  | return 1; | 
|  |  | 
|  | *offset = (LONGEST) addr - name_location; | 
|  |  | 
|  | *name = name_temp; | 
|  |  | 
|  | if (print_symbol_filename) | 
|  | { | 
|  | struct symtab_and_line sal; | 
|  |  | 
|  | sal = find_pc_sect_line (addr, section, 0); | 
|  |  | 
|  | if (sal.symtab) | 
|  | { | 
|  | *filename = symtab_to_filename_for_display (sal.symtab); | 
|  | *line = sal.line; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Print address ADDR symbolically on STREAM. | 
|  | First print it as a number.  Then perhaps print | 
|  | <SYMBOL + OFFSET> after the number.  */ | 
|  |  | 
|  | void | 
|  | print_address (struct gdbarch *gdbarch, | 
|  | CORE_ADDR addr, struct ui_file *stream) | 
|  | { | 
|  | fputs_styled (paddress (gdbarch, addr), address_style.style (), stream); | 
|  | print_address_symbolic (gdbarch, addr, stream, asm_demangle, " "); | 
|  | } | 
|  |  | 
|  | /* Return a prefix for instruction address: | 
|  | "=> " for current instruction, else "   ".  */ | 
|  |  | 
|  | const char * | 
|  | pc_prefix (CORE_ADDR addr) | 
|  | { | 
|  | if (has_stack_frames ()) | 
|  | { | 
|  | frame_info_ptr frame; | 
|  | std::optional<CORE_ADDR> pc; | 
|  |  | 
|  | frame = get_selected_frame (NULL); | 
|  | if ((pc = get_frame_pc_if_available (frame)) && *pc == addr) | 
|  | return "=> "; | 
|  | } | 
|  | return "   "; | 
|  | } | 
|  |  | 
|  | /* Print address ADDR symbolically on STREAM.  Parameter DEMANGLE | 
|  | controls whether to print the symbolic name "raw" or demangled. | 
|  | Return non-zero if anything was printed; zero otherwise.  */ | 
|  |  | 
|  | int | 
|  | print_address_demangle (const struct value_print_options *opts, | 
|  | struct gdbarch *gdbarch, CORE_ADDR addr, | 
|  | struct ui_file *stream, int do_demangle) | 
|  | { | 
|  | if (opts->addressprint) | 
|  | { | 
|  | fputs_styled (paddress (gdbarch, addr), address_style.style (), stream); | 
|  | print_address_symbolic (gdbarch, addr, stream, do_demangle, " "); | 
|  | } | 
|  | else | 
|  | { | 
|  | return print_address_symbolic (gdbarch, addr, stream, do_demangle, ""); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Find the address of the instruction that is INST_COUNT instructions before | 
|  | the instruction at ADDR. | 
|  | Since some architectures have variable-length instructions, we can't just | 
|  | simply subtract INST_COUNT * INSN_LEN from ADDR.  Instead, we use line | 
|  | number information to locate the nearest known instruction boundary, | 
|  | and disassemble forward from there.  If we go out of the symbol range | 
|  | during disassembling, we return the lowest address we've got so far and | 
|  | set the number of instructions read to INST_READ.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr, | 
|  | int inst_count, int *inst_read) | 
|  | { | 
|  | /* The vector PCS is used to store instruction addresses within | 
|  | a pc range.  */ | 
|  | CORE_ADDR loop_start, loop_end, p; | 
|  | std::vector<CORE_ADDR> pcs; | 
|  | struct symtab_and_line sal; | 
|  |  | 
|  | *inst_read = 0; | 
|  | loop_start = loop_end = addr; | 
|  |  | 
|  | /* In each iteration of the outer loop, we get a pc range that ends before | 
|  | LOOP_START, then we count and store every instruction address of the range | 
|  | iterated in the loop. | 
|  | If the number of instructions counted reaches INST_COUNT, return the | 
|  | stored address that is located INST_COUNT instructions back from ADDR. | 
|  | If INST_COUNT is not reached, we subtract the number of counted | 
|  | instructions from INST_COUNT, and go to the next iteration.  */ | 
|  | do | 
|  | { | 
|  | pcs.clear (); | 
|  | sal = find_pc_sect_line (loop_start, NULL, 1); | 
|  | if (sal.line <= 0) | 
|  | { | 
|  | /* We reach here when line info is not available.  In this case, | 
|  | we print a message and just exit the loop.  The return value | 
|  | is calculated after the loop.  */ | 
|  | gdb_printf (_("No line number information available " | 
|  | "for address ")); | 
|  | gdb_stdout->wrap_here (2); | 
|  | print_address (gdbarch, loop_start - 1, gdb_stdout); | 
|  | gdb_printf ("\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | loop_end = loop_start; | 
|  | loop_start = sal.pc; | 
|  |  | 
|  | /* This loop pushes instruction addresses in the range from | 
|  | LOOP_START to LOOP_END.  */ | 
|  | for (p = loop_start; p < loop_end;) | 
|  | { | 
|  | pcs.push_back (p); | 
|  | p += gdb_insn_length (gdbarch, p); | 
|  | } | 
|  |  | 
|  | inst_count -= pcs.size (); | 
|  | *inst_read += pcs.size (); | 
|  | } | 
|  | while (inst_count > 0); | 
|  |  | 
|  | /* After the loop, the vector PCS has instruction addresses of the last | 
|  | source line we processed, and INST_COUNT has a negative value. | 
|  | We return the address at the index of -INST_COUNT in the vector for | 
|  | the reason below. | 
|  | Let's assume the following instruction addresses and run 'x/-4i 0x400e'. | 
|  | Line X of File | 
|  | 0x4000 | 
|  | 0x4001 | 
|  | 0x4005 | 
|  | Line Y of File | 
|  | 0x4009 | 
|  | 0x400c | 
|  | => 0x400e | 
|  | 0x4011 | 
|  | find_instruction_backward is called with INST_COUNT = 4 and expected to | 
|  | return 0x4001.  When we reach here, INST_COUNT is set to -1 because | 
|  | it was subtracted by 2 (from Line Y) and 3 (from Line X).  The value | 
|  | 4001 is located at the index 1 of the last iterated line (= Line X), | 
|  | which is simply calculated by -INST_COUNT. | 
|  | The case when the length of PCS is 0 means that we reached an area for | 
|  | which line info is not available.  In such case, we return LOOP_START, | 
|  | which was the lowest instruction address that had line info.  */ | 
|  | p = pcs.size () > 0 ? pcs[-inst_count] : loop_start; | 
|  |  | 
|  | /* INST_READ includes all instruction addresses in a pc range.  Need to | 
|  | exclude the beginning part up to the address we're returning.  That | 
|  | is, exclude {0x4000} in the example above.  */ | 
|  | if (inst_count < 0) | 
|  | *inst_read += inst_count; | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* Backward read LEN bytes of target memory from address MEMADDR + LEN, | 
|  | placing the results in GDB's memory from MYADDR + LEN.  Returns | 
|  | a count of the bytes actually read.  */ | 
|  |  | 
|  | static int | 
|  | read_memory_backward (struct gdbarch *gdbarch, | 
|  | CORE_ADDR memaddr, gdb_byte *myaddr, int len) | 
|  | { | 
|  | int errcode; | 
|  | int nread;      /* Number of bytes actually read.  */ | 
|  |  | 
|  | /* First try a complete read.  */ | 
|  | errcode = target_read_memory (memaddr, myaddr, len); | 
|  | if (errcode == 0) | 
|  | { | 
|  | /* Got it all.  */ | 
|  | nread = len; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Loop, reading one byte at a time until we get as much as we can.  */ | 
|  | memaddr += len; | 
|  | myaddr += len; | 
|  | for (nread = 0; nread < len; ++nread) | 
|  | { | 
|  | errcode = target_read_memory (--memaddr, --myaddr, 1); | 
|  | if (errcode != 0) | 
|  | { | 
|  | /* The read was unsuccessful, so exit the loop.  */ | 
|  | gdb_printf (_("Cannot access memory at address %s\n"), | 
|  | paddress (gdbarch, memaddr)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return nread; | 
|  | } | 
|  |  | 
|  | /* Returns true if X (which is LEN bytes wide) is the number zero.  */ | 
|  |  | 
|  | static int | 
|  | integer_is_zero (const gdb_byte *x, int len) | 
|  | { | 
|  | int i = 0; | 
|  |  | 
|  | while (i < len && x[i] == 0) | 
|  | ++i; | 
|  | return (i == len); | 
|  | } | 
|  |  | 
|  | /* Find the start address of a string in which ADDR is included. | 
|  | Basically we search for '\0' and return the next address, | 
|  | but if OPTIONS->PRINT_MAX is smaller than the length of a string, | 
|  | we stop searching and return the address to print characters as many as | 
|  | PRINT_MAX from the string.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | find_string_backward (struct gdbarch *gdbarch, | 
|  | CORE_ADDR addr, int count, int char_size, | 
|  | const struct value_print_options *options, | 
|  | int *strings_counted) | 
|  | { | 
|  | const int chunk_size = 0x20; | 
|  | int read_error = 0; | 
|  | int chars_read = 0; | 
|  | int chars_to_read = chunk_size; | 
|  | int chars_counted = 0; | 
|  | int count_original = count; | 
|  | CORE_ADDR string_start_addr = addr; | 
|  |  | 
|  | gdb_assert (char_size == 1 || char_size == 2 || char_size == 4); | 
|  | gdb::byte_vector buffer (chars_to_read * char_size); | 
|  | while (count > 0 && read_error == 0) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | addr -= chars_to_read * char_size; | 
|  | chars_read = read_memory_backward (gdbarch, addr, buffer.data (), | 
|  | chars_to_read * char_size); | 
|  | chars_read /= char_size; | 
|  | read_error = (chars_read == chars_to_read) ? 0 : 1; | 
|  | unsigned int print_max_chars = get_print_max_chars (options); | 
|  | /* Searching for '\0' from the end of buffer in backward direction.  */ | 
|  | for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted) | 
|  | { | 
|  | int offset = (chars_to_read - i - 1) * char_size; | 
|  |  | 
|  | if (integer_is_zero (&buffer[offset], char_size) | 
|  | || chars_counted == print_max_chars) | 
|  | { | 
|  | /* Found '\0' or reached `print_max_chars'.  As OFFSET | 
|  | is the offset to '\0', we add CHAR_SIZE to return | 
|  | the start address of a string.  */ | 
|  | --count; | 
|  | string_start_addr = addr + offset + char_size; | 
|  | chars_counted = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Update STRINGS_COUNTED with the actual number of loaded strings.  */ | 
|  | *strings_counted = count_original - count; | 
|  |  | 
|  | if (read_error != 0) | 
|  | { | 
|  | /* In error case, STRING_START_ADDR is pointing to the string that | 
|  | was last successfully loaded.  Rewind the partially loaded string.  */ | 
|  | string_start_addr -= chars_counted * char_size; | 
|  | } | 
|  |  | 
|  | return string_start_addr; | 
|  | } | 
|  |  | 
|  | /* Examine data at address ADDR in format FMT. | 
|  | Fetch it from memory and print on gdb_stdout.  */ | 
|  |  | 
|  | static void | 
|  | do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr) | 
|  | { | 
|  | char format = 0; | 
|  | char size; | 
|  | int count = 1; | 
|  | struct type *val_type = NULL; | 
|  | int i; | 
|  | int maxelts; | 
|  | struct value_print_options opts; | 
|  | int need_to_update_next_address = 0; | 
|  | CORE_ADDR addr_rewound = 0; | 
|  |  | 
|  | format = fmt.format; | 
|  | size = fmt.size; | 
|  | count = fmt.count; | 
|  | next_gdbarch = gdbarch; | 
|  | next_address = addr; | 
|  |  | 
|  | /* Instruction format implies fetch single bytes | 
|  | regardless of the specified size. | 
|  | The case of strings is handled in decode_format, only explicit | 
|  | size operator are not changed to 'b'.  */ | 
|  | if (format == 'i') | 
|  | size = 'b'; | 
|  |  | 
|  | if (size == 'a') | 
|  | { | 
|  | /* Pick the appropriate size for an address.  */ | 
|  | if (gdbarch_ptr_bit (next_gdbarch) == 64) | 
|  | size = 'g'; | 
|  | else if (gdbarch_ptr_bit (next_gdbarch) == 32) | 
|  | size = 'w'; | 
|  | else if (gdbarch_ptr_bit (next_gdbarch) == 16) | 
|  | size = 'h'; | 
|  | else | 
|  | /* Bad value for gdbarch_ptr_bit.  */ | 
|  | internal_error (_("failed internal consistency check")); | 
|  | } | 
|  |  | 
|  | if (size == 'b') | 
|  | val_type = builtin_type (next_gdbarch)->builtin_int8; | 
|  | else if (size == 'h') | 
|  | val_type = builtin_type (next_gdbarch)->builtin_int16; | 
|  | else if (size == 'w') | 
|  | val_type = builtin_type (next_gdbarch)->builtin_int32; | 
|  | else if (size == 'g') | 
|  | val_type = builtin_type (next_gdbarch)->builtin_int64; | 
|  |  | 
|  | if (format == 's') | 
|  | { | 
|  | struct type *char_type = NULL; | 
|  |  | 
|  | /* Search for "char16_t"  or "char32_t" types or fall back to 8-bit char | 
|  | if type is not found.  */ | 
|  | if (size == 'h') | 
|  | char_type = builtin_type (next_gdbarch)->builtin_char16; | 
|  | else if (size == 'w') | 
|  | char_type = builtin_type (next_gdbarch)->builtin_char32; | 
|  | if (char_type) | 
|  | val_type = char_type; | 
|  | else | 
|  | { | 
|  | if (size != '\0' && size != 'b') | 
|  | warning (_("Unable to display strings with " | 
|  | "size '%c', using 'b' instead."), size); | 
|  | size = 'b'; | 
|  | val_type = builtin_type (next_gdbarch)->builtin_int8; | 
|  | } | 
|  | } | 
|  |  | 
|  | maxelts = 8; | 
|  | if (size == 'w') | 
|  | maxelts = 4; | 
|  | if (size == 'g') | 
|  | maxelts = 2; | 
|  | if (format == 's' || format == 'i') | 
|  | maxelts = 1; | 
|  |  | 
|  | get_formatted_print_options (&opts, format); | 
|  |  | 
|  | if (count < 0) | 
|  | { | 
|  | /* This is the negative repeat count case. | 
|  | We rewind the address based on the given repeat count and format, | 
|  | then examine memory from there in forward direction.  */ | 
|  |  | 
|  | count = -count; | 
|  | if (format == 'i') | 
|  | { | 
|  | next_address = find_instruction_backward (gdbarch, addr, count, | 
|  | &count); | 
|  | } | 
|  | else if (format == 's') | 
|  | { | 
|  | next_address = find_string_backward (gdbarch, addr, count, | 
|  | val_type->length (), | 
|  | &opts, &count); | 
|  | } | 
|  | else | 
|  | { | 
|  | next_address = addr - count * val_type->length (); | 
|  | } | 
|  |  | 
|  | /* The following call to print_formatted updates next_address in every | 
|  | iteration.  In backward case, we store the start address here | 
|  | and update next_address with it before exiting the function.  */ | 
|  | addr_rewound = (format == 's' | 
|  | ? next_address - val_type->length () | 
|  | : next_address); | 
|  | need_to_update_next_address = 1; | 
|  | } | 
|  |  | 
|  | /* Whether we need to print the memory tag information for the current | 
|  | address range.  */ | 
|  | bool print_range_tag = true; | 
|  | uint32_t gsize = gdbarch_memtag_granule_size (gdbarch); | 
|  |  | 
|  | /* Print as many objects as specified in COUNT, at most maxelts per line, | 
|  | with the address of the next one at the start of each line.  */ | 
|  |  | 
|  | while (count > 0) | 
|  | { | 
|  | QUIT; | 
|  |  | 
|  | CORE_ADDR tag_laddr = 0, tag_haddr = 0; | 
|  |  | 
|  | /* Print the memory tag information if requested.  */ | 
|  | if (fmt.print_tags && print_range_tag | 
|  | && target_supports_memory_tagging ()) | 
|  | { | 
|  | tag_laddr = align_down (next_address, gsize); | 
|  | tag_haddr = align_down (next_address + gsize, gsize); | 
|  |  | 
|  | struct value *v_addr | 
|  | = value_from_ulongest (builtin_type (gdbarch)->builtin_data_ptr, | 
|  | tag_laddr); | 
|  |  | 
|  | if (target_is_address_tagged (gdbarch, value_as_address (v_addr))) | 
|  | { | 
|  | /* Fetch the allocation tag.  */ | 
|  | struct value *tag | 
|  | = gdbarch_get_memtag (gdbarch, v_addr, memtag_type::allocation); | 
|  | std::string atag | 
|  | = gdbarch_memtag_to_string (gdbarch, tag); | 
|  |  | 
|  | if (!atag.empty ()) | 
|  | { | 
|  | gdb_printf (_("<Allocation Tag %s for range [%s,%s)>\n"), | 
|  | atag.c_str (), | 
|  | paddress (gdbarch, tag_laddr), | 
|  | paddress (gdbarch, tag_haddr)); | 
|  | } | 
|  | } | 
|  | print_range_tag = false; | 
|  | } | 
|  |  | 
|  | if (format == 'i') | 
|  | gdb_puts (pc_prefix (next_address)); | 
|  | print_address (next_gdbarch, next_address, gdb_stdout); | 
|  | gdb_printf (":"); | 
|  | for (i = maxelts; | 
|  | i > 0 && count > 0; | 
|  | i--, count--) | 
|  | { | 
|  | gdb_printf ("\t"); | 
|  | /* Note that print_formatted sets next_address for the next | 
|  | object.  */ | 
|  | last_examine_address = next_address; | 
|  |  | 
|  | /* The value to be displayed is not fetched greedily. | 
|  | Instead, to avoid the possibility of a fetched value not | 
|  | being used, its retrieval is delayed until the print code | 
|  | uses it.  When examining an instruction stream, the | 
|  | disassembler will perform its own memory fetch using just | 
|  | the address stored in LAST_EXAMINE_VALUE.  FIXME: Should | 
|  | the disassembler be modified so that LAST_EXAMINE_VALUE | 
|  | is left with the byte sequence from the last complete | 
|  | instruction fetched from memory?  */ | 
|  | last_examine_value | 
|  | = release_value (value_at_lazy (val_type, next_address)); | 
|  |  | 
|  | print_formatted (last_examine_value.get (), size, &opts, gdb_stdout); | 
|  |  | 
|  | /* Display any branch delay slots following the final insn.  */ | 
|  | if (format == 'i' && count == 1) | 
|  | count += branch_delay_insns; | 
|  |  | 
|  | /* Update the tag range based on the current address being | 
|  | processed.  */ | 
|  | if (tag_haddr <= next_address) | 
|  | print_range_tag = true; | 
|  | } | 
|  | gdb_printf ("\n"); | 
|  | } | 
|  |  | 
|  | if (need_to_update_next_address) | 
|  | next_address = addr_rewound; | 
|  | } | 
|  |  | 
|  | static void | 
|  | validate_format (struct format_data fmt, const char *cmdname) | 
|  | { | 
|  | if (fmt.size != 0) | 
|  | error (_("Size letters are meaningless in \"%s\" command."), cmdname); | 
|  | if (fmt.count != 1) | 
|  | error (_("Item count other than 1 is meaningless in \"%s\" command."), | 
|  | cmdname); | 
|  | if (fmt.format == 'i') | 
|  | error (_("Format letter \"%c\" is meaningless in \"%s\" command."), | 
|  | fmt.format, cmdname); | 
|  | } | 
|  |  | 
|  | /* Parse print command format string into *OPTS and update *EXPP. | 
|  | CMDNAME should name the current command.  */ | 
|  |  | 
|  | void | 
|  | print_command_parse_format (const char **expp, const char *cmdname, | 
|  | value_print_options *opts) | 
|  | { | 
|  | const char *exp = *expp; | 
|  |  | 
|  | /* opts->raw value might already have been set by 'set print raw-values' | 
|  | or by using 'print -raw-values'. | 
|  | So, do not set opts->raw to 0, only set it to 1 if /r is given.  */ | 
|  | if (exp && *exp == '/') | 
|  | { | 
|  | format_data fmt; | 
|  |  | 
|  | exp++; | 
|  | fmt = decode_format (&exp, last_format, 0); | 
|  | validate_format (fmt, cmdname); | 
|  | last_format = fmt.format; | 
|  |  | 
|  | opts->format = fmt.format; | 
|  | opts->raw = opts->raw || fmt.raw; | 
|  | } | 
|  | else | 
|  | { | 
|  | opts->format = 0; | 
|  | } | 
|  |  | 
|  | *expp = exp; | 
|  | } | 
|  |  | 
|  | /* See valprint.h.  */ | 
|  |  | 
|  | void | 
|  | print_value (value *val, const value_print_options &opts) | 
|  | { | 
|  | /* This setting allows large arrays to be printed by limiting the | 
|  | number of elements that are loaded into GDB's memory; we only | 
|  | need to load as many array elements as we plan to print.  */ | 
|  | scoped_array_length_limiting limit_large_arrays (opts.print_max); | 
|  |  | 
|  | int histindex = val->record_latest (); | 
|  |  | 
|  | annotate_value_history_begin (histindex, val->type ()); | 
|  |  | 
|  | std::string idx = string_printf ("$%d", histindex); | 
|  | gdb_printf ("%ps = ", styled_string (variable_name_style.style (), | 
|  | idx.c_str ())); | 
|  |  | 
|  | annotate_value_history_value (); | 
|  |  | 
|  | print_formatted (val, 0, &opts, gdb_stdout); | 
|  | gdb_printf ("\n"); | 
|  |  | 
|  | annotate_value_history_end (); | 
|  | } | 
|  |  | 
|  | /* Returns true if memory tags should be validated.  False otherwise.  */ | 
|  |  | 
|  | static bool | 
|  | should_validate_memtags (gdbarch *gdbarch, struct value *value) | 
|  | { | 
|  | gdb_assert (value != nullptr && value->type () != nullptr); | 
|  |  | 
|  | if (!target_supports_memory_tagging ()) | 
|  | return false; | 
|  |  | 
|  | enum type_code code = value->type ()->code (); | 
|  |  | 
|  | /* Skip non-address values.  */ | 
|  | if (code != TYPE_CODE_PTR | 
|  | && !TYPE_IS_REFERENCE (value->type ())) | 
|  | return false; | 
|  |  | 
|  | /* OK, we have an address value.  Check we have a complete value we | 
|  | can extract.  */ | 
|  | if (value->optimized_out () | 
|  | || !value->entirely_available ()) | 
|  | return false; | 
|  |  | 
|  | /* We do.  Check whether it includes any tags.  */ | 
|  | struct type *val_type = value->type (); | 
|  | const gdb_byte *data = value->contents ().data (); | 
|  | return target_is_address_tagged (gdbarch, unpack_pointer (val_type, data)); | 
|  | } | 
|  |  | 
|  | /* Helper for parsing arguments for print_command_1.  */ | 
|  |  | 
|  | static struct value * | 
|  | process_print_command_args (const char *args, value_print_options *print_opts, | 
|  | bool voidprint) | 
|  | { | 
|  | get_user_print_options (print_opts); | 
|  | /* Override global settings with explicit options, if any.  */ | 
|  | auto group = make_value_print_options_def_group (print_opts); | 
|  | gdb::option::process_options | 
|  | (&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group); | 
|  |  | 
|  | print_command_parse_format (&args, "print", print_opts); | 
|  |  | 
|  | const char *exp = args; | 
|  |  | 
|  | if (exp != nullptr && *exp) | 
|  | { | 
|  | /* This setting allows large arrays to be printed by limiting the | 
|  | number of elements that are loaded into GDB's memory; we only | 
|  | need to load as many array elements as we plan to print.  */ | 
|  | scoped_array_length_limiting limit_large_arrays (print_opts->print_max); | 
|  |  | 
|  | /* VOIDPRINT is true to indicate that we do want to print a void | 
|  | value, so invert it for parse_expression.  */ | 
|  | parser_flags flags = 0; | 
|  | if (!voidprint) | 
|  | flags |= PARSER_VOID_CONTEXT; | 
|  | if (parser_debug) | 
|  | flags |= PARSER_DEBUG; | 
|  | expression_up expr = parse_expression (exp, nullptr, flags); | 
|  | return expr->evaluate (); | 
|  | } | 
|  |  | 
|  | return access_value_history (0); | 
|  | } | 
|  |  | 
|  | /* Implementation of the "print" and "call" commands.  */ | 
|  |  | 
|  | static void | 
|  | print_command_1 (const char *args, int voidprint) | 
|  | { | 
|  | value_print_options print_opts; | 
|  |  | 
|  | struct value *val = process_print_command_args (args, &print_opts, voidprint); | 
|  |  | 
|  | if (voidprint || (val && val->type () && | 
|  | val->type ()->code () != TYPE_CODE_VOID)) | 
|  | { | 
|  | /* If memory tagging validation is on, check if the tag is valid.  */ | 
|  | if (print_opts.memory_tag_violations) | 
|  | { | 
|  | try | 
|  | { | 
|  | gdbarch *arch = current_inferior ()->arch (); | 
|  |  | 
|  | if (should_validate_memtags (arch, val) | 
|  | && !gdbarch_memtag_matches_p (arch, val)) | 
|  | { | 
|  | /* Fetch the logical tag.  */ | 
|  | struct value *tag | 
|  | = gdbarch_get_memtag (arch, val, memtag_type::logical); | 
|  | std::string ltag = gdbarch_memtag_to_string (arch, tag); | 
|  |  | 
|  | /* Fetch the allocation tag.  */ | 
|  | tag = gdbarch_get_memtag (arch, val, | 
|  | memtag_type::allocation); | 
|  | std::string atag = gdbarch_memtag_to_string (arch, tag); | 
|  |  | 
|  | gdb_printf (_("Logical tag (%s) does not match the " | 
|  | "allocation tag (%s).\n"), | 
|  | ltag.c_str (), atag.c_str ()); | 
|  | } | 
|  | } | 
|  | catch (gdb_exception_error &ex) | 
|  | { | 
|  | if (ex.error == TARGET_CLOSE_ERROR) | 
|  | throw; | 
|  |  | 
|  | gdb_printf (gdb_stderr, | 
|  | _("Could not validate memory tag: %s\n"), | 
|  | ex.message->c_str ()); | 
|  | } | 
|  | } | 
|  |  | 
|  | print_value (val, print_opts); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* See valprint.h.  */ | 
|  |  | 
|  | void | 
|  | print_command_completer (struct cmd_list_element *ignore, | 
|  | completion_tracker &tracker, | 
|  | const char *text, const char * /*word*/) | 
|  | { | 
|  | const auto group = make_value_print_options_def_group (nullptr); | 
|  | if (gdb::option::complete_options | 
|  | (tracker, &text, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group)) | 
|  | return; | 
|  |  | 
|  | if (skip_over_slash_fmt (tracker, &text)) | 
|  | return; | 
|  |  | 
|  | const char *word = advance_to_expression_complete_word_point (tracker, text); | 
|  | expression_completer (ignore, tracker, text, word); | 
|  | } | 
|  |  | 
|  | static void | 
|  | print_command (const char *exp, int from_tty) | 
|  | { | 
|  | print_command_1 (exp, true); | 
|  | } | 
|  |  | 
|  | /* Same as print, except it doesn't print void results.  */ | 
|  | static void | 
|  | call_command (const char *exp, int from_tty) | 
|  | { | 
|  | print_command_1 (exp, false); | 
|  | } | 
|  |  | 
|  | /* Implementation of the "output" command.  */ | 
|  |  | 
|  | void | 
|  | output_command (const char *exp, int from_tty) | 
|  | { | 
|  | char format = 0; | 
|  | struct value *val; | 
|  | struct format_data fmt; | 
|  | struct value_print_options opts; | 
|  |  | 
|  | fmt.size = 0; | 
|  | fmt.raw = 0; | 
|  |  | 
|  | if (exp && *exp == '/') | 
|  | { | 
|  | exp++; | 
|  | fmt = decode_format (&exp, 0, 0); | 
|  | validate_format (fmt, "output"); | 
|  | format = fmt.format; | 
|  | } | 
|  |  | 
|  | expression_up expr = parse_expression (exp); | 
|  |  | 
|  | val = expr->evaluate (); | 
|  |  | 
|  | annotate_value_begin (val->type ()); | 
|  |  | 
|  | get_formatted_print_options (&opts, format); | 
|  | opts.raw = fmt.raw; | 
|  |  | 
|  | /* This setting allows large arrays to be printed by limiting the | 
|  | number of elements that are loaded into GDB's memory; we only | 
|  | need to load as many array elements as we plan to print.  */ | 
|  | scoped_array_length_limiting limit_large_arrays (opts.print_max); | 
|  |  | 
|  | print_formatted (val, fmt.size, &opts, gdb_stdout); | 
|  |  | 
|  | annotate_value_end (); | 
|  |  | 
|  | gdb_flush (gdb_stdout); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_command (const char *exp, int from_tty) | 
|  | { | 
|  | expression_up expr = parse_expression (exp); | 
|  |  | 
|  | switch (expr->first_opcode ()) | 
|  | { | 
|  | case UNOP_PREINCREMENT: | 
|  | case UNOP_POSTINCREMENT: | 
|  | case UNOP_PREDECREMENT: | 
|  | case UNOP_POSTDECREMENT: | 
|  | case BINOP_ASSIGN: | 
|  | case BINOP_ASSIGN_MODIFY: | 
|  | case BINOP_COMMA: | 
|  | break; | 
|  | default: | 
|  | warning | 
|  | (_("Expression is not an assignment (and might have no effect)")); | 
|  | } | 
|  |  | 
|  | expr->evaluate (); | 
|  | } | 
|  |  | 
|  | static void | 
|  | info_symbol_command (const char *arg, int from_tty) | 
|  | { | 
|  | struct minimal_symbol *msymbol; | 
|  | CORE_ADDR addr, sect_addr; | 
|  | int matches = 0; | 
|  | unsigned int offset; | 
|  |  | 
|  | if (!arg) | 
|  | error_no_arg (_("address")); | 
|  |  | 
|  | addr = parse_and_eval_address (arg); | 
|  | for (objfile *objfile : current_program_space->objfiles ()) | 
|  | for (obj_section &osect : objfile->sections ()) | 
|  | { | 
|  | /* Only process each object file once, even if there's a separate | 
|  | debug file.  */ | 
|  | if (objfile->separate_debug_objfile_backlink) | 
|  | continue; | 
|  |  | 
|  | sect_addr = overlay_mapped_address (addr, &osect); | 
|  |  | 
|  | if (osect.contains (sect_addr) | 
|  | && (msymbol | 
|  | = lookup_minimal_symbol_by_pc_section (sect_addr, | 
|  | &osect).minsym)) | 
|  | { | 
|  | const char *obj_name, *mapped, *sec_name, *msym_name; | 
|  | const char *loc_string; | 
|  |  | 
|  | matches = 1; | 
|  | offset = sect_addr - msymbol->value_address (objfile); | 
|  | mapped = section_is_mapped (&osect) ? _("mapped") : _("unmapped"); | 
|  | sec_name = osect.the_bfd_section->name; | 
|  | msym_name = msymbol->print_name (); | 
|  |  | 
|  | /* Don't print the offset if it is zero. | 
|  | We assume there's no need to handle i18n of "sym + offset".  */ | 
|  | std::string string_holder; | 
|  | if (offset) | 
|  | { | 
|  | string_holder = string_printf ("%s + %u", msym_name, offset); | 
|  | loc_string = string_holder.c_str (); | 
|  | } | 
|  | else | 
|  | loc_string = msym_name; | 
|  |  | 
|  | gdb_assert (osect.objfile && objfile_name (osect.objfile)); | 
|  | obj_name = objfile_name (osect.objfile); | 
|  |  | 
|  | if (current_program_space->multi_objfile_p ()) | 
|  | if (pc_in_unmapped_range (addr, &osect)) | 
|  | if (section_is_overlay (&osect)) | 
|  | gdb_printf (_("%s in load address range of " | 
|  | "%s overlay section %s of %s\n"), | 
|  | loc_string, mapped, sec_name, obj_name); | 
|  | else | 
|  | gdb_printf (_("%s in load address range of " | 
|  | "section %s of %s\n"), | 
|  | loc_string, sec_name, obj_name); | 
|  | else | 
|  | if (section_is_overlay (&osect)) | 
|  | gdb_printf (_("%s in %s overlay section %s of %s\n"), | 
|  | loc_string, mapped, sec_name, obj_name); | 
|  | else | 
|  | gdb_printf (_("%s in section %s of %s\n"), | 
|  | loc_string, sec_name, obj_name); | 
|  | else | 
|  | if (pc_in_unmapped_range (addr, &osect)) | 
|  | if (section_is_overlay (&osect)) | 
|  | gdb_printf (_("%s in load address range of %s overlay " | 
|  | "section %s\n"), | 
|  | loc_string, mapped, sec_name); | 
|  | else | 
|  | gdb_printf | 
|  | (_("%s in load address range of section %s\n"), | 
|  | loc_string, sec_name); | 
|  | else | 
|  | if (section_is_overlay (&osect)) | 
|  | gdb_printf (_("%s in %s overlay section %s\n"), | 
|  | loc_string, mapped, sec_name); | 
|  | else | 
|  | gdb_printf (_("%s in section %s\n"), | 
|  | loc_string, sec_name); | 
|  | } | 
|  | } | 
|  | if (matches == 0) | 
|  | gdb_printf (_("No symbol matches %s.\n"), arg); | 
|  | } | 
|  |  | 
|  | static void | 
|  | info_address_command (const char *exp, int from_tty) | 
|  | { | 
|  | struct gdbarch *gdbarch; | 
|  | int regno; | 
|  | struct symbol *sym; | 
|  | long val; | 
|  | struct obj_section *section; | 
|  | CORE_ADDR load_addr, context_pc = 0; | 
|  | struct field_of_this_result is_a_field_of_this; | 
|  |  | 
|  | if (exp == 0) | 
|  | error (_("Argument required.")); | 
|  |  | 
|  | sym = lookup_symbol (exp, get_selected_block (&context_pc), SEARCH_VFT, | 
|  | &is_a_field_of_this).symbol; | 
|  | if (sym == NULL) | 
|  | { | 
|  | if (is_a_field_of_this.type != NULL) | 
|  | { | 
|  | gdb_printf ("Symbol \""); | 
|  | fprintf_symbol (gdb_stdout, exp, | 
|  | current_language->la_language, DMGL_ANSI); | 
|  | gdb_printf ("\" is a field of the local class variable "); | 
|  | if (current_language->la_language == language_objc) | 
|  | gdb_printf ("`self'\n");	/* ObjC equivalent of "this" */ | 
|  | else | 
|  | gdb_printf ("`this'\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bound_minimal_symbol msymbol | 
|  | = lookup_minimal_symbol (current_program_space, exp); | 
|  |  | 
|  | if (msymbol.minsym != NULL) | 
|  | { | 
|  | struct objfile *objfile = msymbol.objfile; | 
|  |  | 
|  | gdbarch = objfile->arch (); | 
|  | load_addr = msymbol.value_address (); | 
|  |  | 
|  | gdb_printf ("Symbol \""); | 
|  | fprintf_symbol (gdb_stdout, exp, | 
|  | current_language->la_language, DMGL_ANSI); | 
|  | gdb_printf ("\" is at "); | 
|  | fputs_styled (paddress (gdbarch, load_addr), address_style.style (), | 
|  | gdb_stdout); | 
|  | gdb_printf (" in a file compiled without debugging"); | 
|  | section = msymbol.minsym->obj_section (objfile); | 
|  | if (section_is_overlay (section)) | 
|  | { | 
|  | load_addr = overlay_unmapped_address (load_addr, section); | 
|  | gdb_printf (",\n -- loaded at "); | 
|  | fputs_styled (paddress (gdbarch, load_addr), | 
|  | address_style.style (), | 
|  | gdb_stdout); | 
|  | gdb_printf (" in overlay section %s", | 
|  | section->the_bfd_section->name); | 
|  | } | 
|  | gdb_printf (".\n"); | 
|  | } | 
|  | else | 
|  | error (_("No symbol \"%s\" in current context."), exp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | gdb_printf ("Symbol \""); | 
|  | gdb_puts (sym->print_name ()); | 
|  | gdb_printf ("\" is "); | 
|  | val = sym->value_longest (); | 
|  | if (sym->is_objfile_owned ()) | 
|  | section = sym->obj_section (sym->objfile ()); | 
|  | else | 
|  | section = NULL; | 
|  | gdbarch = sym->arch (); | 
|  |  | 
|  | if (const symbol_computed_ops *computed_ops = sym->computed_ops (); | 
|  | computed_ops != nullptr) | 
|  | { | 
|  | computed_ops->describe_location (sym, context_pc, gdb_stdout); | 
|  | gdb_printf (".\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (sym->loc_class ()) | 
|  | { | 
|  | case LOC_CONST: | 
|  | case LOC_CONST_BYTES: | 
|  | gdb_printf ("constant"); | 
|  | break; | 
|  |  | 
|  | case LOC_LABEL: | 
|  | gdb_printf ("a label at address "); | 
|  | load_addr = sym->value_address (); | 
|  | fputs_styled (paddress (gdbarch, load_addr), address_style.style (), | 
|  | gdb_stdout); | 
|  | if (section_is_overlay (section)) | 
|  | { | 
|  | load_addr = overlay_unmapped_address (load_addr, section); | 
|  | gdb_printf (",\n -- loaded at "); | 
|  | fputs_styled (paddress (gdbarch, load_addr), address_style.style (), | 
|  | gdb_stdout); | 
|  | gdb_printf (" in overlay section %s", | 
|  | section->the_bfd_section->name); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case LOC_COMPUTED: | 
|  | gdb_assert_not_reached ("LOC_COMPUTED variable missing a method"); | 
|  |  | 
|  | case LOC_REGISTER: | 
|  | /* GDBARCH is the architecture associated with the objfile the symbol | 
|  | is defined in; the target architecture may be different, and may | 
|  | provide additional registers.  However, we do not know the target | 
|  | architecture at this point.  We assume the objfile architecture | 
|  | will contain all the standard registers that occur in debug info | 
|  | in that objfile.  */ | 
|  | regno = sym->register_ops ()->register_number (sym, gdbarch); | 
|  |  | 
|  | if (sym->is_argument ()) | 
|  | gdb_printf (_("an argument in register %s"), | 
|  | gdbarch_register_name (gdbarch, regno)); | 
|  | else | 
|  | gdb_printf (_("a variable in register %s"), | 
|  | gdbarch_register_name (gdbarch, regno)); | 
|  | break; | 
|  |  | 
|  | case LOC_STATIC: | 
|  | gdb_printf (_("static storage at address ")); | 
|  | load_addr = sym->value_address (); | 
|  | fputs_styled (paddress (gdbarch, load_addr), address_style.style (), | 
|  | gdb_stdout); | 
|  | if (section_is_overlay (section)) | 
|  | { | 
|  | load_addr = overlay_unmapped_address (load_addr, section); | 
|  | gdb_printf (_(",\n -- loaded at ")); | 
|  | fputs_styled (paddress (gdbarch, load_addr), address_style.style (), | 
|  | gdb_stdout); | 
|  | gdb_printf (_(" in overlay section %s"), | 
|  | section->the_bfd_section->name); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case LOC_REGPARM_ADDR: | 
|  | /* Note comment at LOC_REGISTER.  */ | 
|  | regno = sym->register_ops ()->register_number (sym, gdbarch); | 
|  | gdb_printf (_("address of an argument in register %s"), | 
|  | gdbarch_register_name (gdbarch, regno)); | 
|  | break; | 
|  |  | 
|  | case LOC_ARG: | 
|  | gdb_printf (_("an argument at offset %ld"), val); | 
|  | break; | 
|  |  | 
|  | case LOC_LOCAL: | 
|  | gdb_printf (_("a local variable at frame offset %ld"), val); | 
|  | break; | 
|  |  | 
|  | case LOC_REF_ARG: | 
|  | gdb_printf (_("a reference argument at offset %ld"), val); | 
|  | break; | 
|  |  | 
|  | case LOC_TYPEDEF: | 
|  | gdb_printf (_("a typedef")); | 
|  | break; | 
|  |  | 
|  | case LOC_BLOCK: | 
|  | gdb_printf (_("a function at address ")); | 
|  | load_addr = sym->value_block ()->entry_pc (); | 
|  | fputs_styled (paddress (gdbarch, load_addr), address_style.style (), | 
|  | gdb_stdout); | 
|  | if (section_is_overlay (section)) | 
|  | { | 
|  | load_addr = overlay_unmapped_address (load_addr, section); | 
|  | gdb_printf (_(",\n -- loaded at ")); | 
|  | fputs_styled (paddress (gdbarch, load_addr), address_style.style (), | 
|  | gdb_stdout); | 
|  | gdb_printf (_(" in overlay section %s"), | 
|  | section->the_bfd_section->name); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case LOC_UNRESOLVED: | 
|  | { | 
|  | bound_minimal_symbol msym | 
|  | = lookup_minimal_symbol (current_program_space, | 
|  | sym->linkage_name ()); | 
|  | if (msym.minsym == NULL) | 
|  | gdb_printf ("unresolved"); | 
|  | else | 
|  | { | 
|  | section = msym.obj_section (); | 
|  |  | 
|  | if (section | 
|  | && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0) | 
|  | { | 
|  | load_addr = CORE_ADDR (msym.minsym->unrelocated_address ()); | 
|  | gdb_printf (_("a thread-local variable at offset %s " | 
|  | "in the thread-local storage for `%s'"), | 
|  | paddress (gdbarch, load_addr), | 
|  | objfile_name (section->objfile)); | 
|  | } | 
|  | else | 
|  | { | 
|  | load_addr = msym.value_address (); | 
|  | gdb_printf (_("static storage at address ")); | 
|  | fputs_styled (paddress (gdbarch, load_addr), | 
|  | address_style.style (), gdb_stdout); | 
|  | if (section_is_overlay (section)) | 
|  | { | 
|  | load_addr = overlay_unmapped_address (load_addr, section); | 
|  | gdb_printf (_(",\n -- loaded at ")); | 
|  | fputs_styled (paddress (gdbarch, load_addr), | 
|  | address_style.style (), | 
|  | gdb_stdout); | 
|  | gdb_printf (_(" in overlay section %s"), | 
|  | section->the_bfd_section->name); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case LOC_OPTIMIZED_OUT: | 
|  | gdb_printf (_("optimized out")); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | gdb_printf (_("of unknown (botched) type")); | 
|  | break; | 
|  | } | 
|  | gdb_printf (".\n"); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | x_command (const char *exp, int from_tty) | 
|  | { | 
|  | struct format_data fmt; | 
|  | struct value *val; | 
|  |  | 
|  | fmt.format = last_format ? last_format : 'x'; | 
|  | fmt.print_tags = last_print_tags; | 
|  | fmt.size = last_size; | 
|  | fmt.count = 1; | 
|  | fmt.raw = 0; | 
|  |  | 
|  | /* If there is no expression and no format, use the most recent | 
|  | count.  */ | 
|  | if (exp == nullptr && last_count > 0) | 
|  | fmt.count = last_count; | 
|  |  | 
|  | if (exp && *exp == '/') | 
|  | { | 
|  | const char *tmp = exp + 1; | 
|  |  | 
|  | fmt = decode_format (&tmp, last_format, last_size); | 
|  | exp = (char *) tmp; | 
|  | } | 
|  |  | 
|  | last_count = fmt.count; | 
|  |  | 
|  | /* If we have an expression, evaluate it and use it as the address.  */ | 
|  |  | 
|  | if (exp != 0 && *exp != 0) | 
|  | { | 
|  | expression_up expr = parse_expression (exp); | 
|  | /* Cause expression not to be there any more if this command is | 
|  | repeated with Newline.  But don't clobber a user-defined | 
|  | command's definition.  */ | 
|  | if (from_tty) | 
|  | set_repeat_arguments (""); | 
|  | val = expr->evaluate (); | 
|  | if (TYPE_IS_REFERENCE (val->type ())) | 
|  | val = coerce_ref (val); | 
|  | /* In rvalue contexts, such as this, functions are coerced into | 
|  | pointers to functions.  This makes "x/i main" work.  */ | 
|  | if (val->type ()->code () == TYPE_CODE_FUNC | 
|  | && val->lval () == lval_memory) | 
|  | next_address = val->address (); | 
|  | else | 
|  | next_address = value_as_address (val); | 
|  |  | 
|  | next_gdbarch = expr->gdbarch; | 
|  | } | 
|  |  | 
|  | if (!next_gdbarch) | 
|  | error_no_arg (_("starting display address")); | 
|  |  | 
|  | do_examine (fmt, next_gdbarch, next_address); | 
|  |  | 
|  | /* If the examine succeeds, we remember its size and format for next | 
|  | time.  Set last_size to 'b' for strings.  */ | 
|  | if (fmt.format == 's') | 
|  | last_size = 'b'; | 
|  | else | 
|  | last_size = fmt.size; | 
|  | last_format = fmt.format; | 
|  |  | 
|  | /* Remember tag-printing setting.  */ | 
|  | last_print_tags = fmt.print_tags; | 
|  |  | 
|  | /* Set a couple of internal variables if appropriate.  */ | 
|  | if (last_examine_value != nullptr) | 
|  | { | 
|  | /* Make last address examined available to the user as $_.  Use | 
|  | the correct pointer type.  */ | 
|  | struct type *pointer_type | 
|  | = lookup_pointer_type (last_examine_value->type ()); | 
|  | set_internalvar (lookup_internalvar ("_"), | 
|  | value_from_pointer (pointer_type, | 
|  | last_examine_address)); | 
|  |  | 
|  | /* Make contents of last address examined available to the user | 
|  | as $__.  If the last value has not been fetched from memory | 
|  | then don't fetch it now; instead mark it by voiding the $__ | 
|  | variable.  */ | 
|  | if (last_examine_value->lazy ()) | 
|  | clear_internalvar (lookup_internalvar ("__")); | 
|  | else | 
|  | set_internalvar (lookup_internalvar ("__"), last_examine_value.get ()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Command completion for the 'display' and 'x' commands.  */ | 
|  |  | 
|  | static void | 
|  | display_and_x_command_completer (struct cmd_list_element *ignore, | 
|  | completion_tracker &tracker, | 
|  | const char *text, const char * /*word*/) | 
|  | { | 
|  | if (skip_over_slash_fmt (tracker, &text)) | 
|  | return; | 
|  |  | 
|  | const char *word = advance_to_expression_complete_word_point (tracker, text); | 
|  | expression_completer (ignore, tracker, text, word); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* Add an expression to the auto-display chain. | 
|  | Specify the expression.  */ | 
|  |  | 
|  | static void | 
|  | display_command (const char *arg, int from_tty) | 
|  | { | 
|  | struct format_data fmt; | 
|  | struct display *newobj; | 
|  | const char *exp = arg; | 
|  |  | 
|  | if (exp == 0) | 
|  | { | 
|  | do_displays (); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (*exp == '/') | 
|  | { | 
|  | exp++; | 
|  | fmt = decode_format (&exp, 0, 0); | 
|  | if (fmt.size && fmt.format == 0) | 
|  | fmt.format = 'x'; | 
|  | if (fmt.format == 'i' || fmt.format == 's') | 
|  | fmt.size = 'b'; | 
|  | } | 
|  | else | 
|  | { | 
|  | fmt.format = 0; | 
|  | fmt.size = 0; | 
|  | fmt.count = 0; | 
|  | fmt.raw = 0; | 
|  | } | 
|  |  | 
|  | innermost_block_tracker tracker; | 
|  | expression_up expr = parse_expression (exp, &tracker); | 
|  |  | 
|  | newobj = new display (exp, std::move (expr), fmt, | 
|  | current_program_space, tracker.block ()); | 
|  | all_displays.emplace_back (newobj); | 
|  |  | 
|  | if (from_tty) | 
|  | do_one_display (newobj); | 
|  |  | 
|  | dont_repeat (); | 
|  | } | 
|  |  | 
|  | /* Clear out the display_chain.  Done when new symtabs are loaded, | 
|  | since this invalidates the types stored in many expressions.  */ | 
|  |  | 
|  | void | 
|  | clear_displays () | 
|  | { | 
|  | all_displays.clear (); | 
|  | } | 
|  |  | 
|  | /* Delete the auto-display DISPLAY.  */ | 
|  |  | 
|  | static void | 
|  | delete_display (struct display *display) | 
|  | { | 
|  | gdb_assert (display != NULL); | 
|  |  | 
|  | auto iter = std::find_if (all_displays.begin (), | 
|  | all_displays.end (), | 
|  | [=] (const std::unique_ptr<struct display> &item) | 
|  | { | 
|  | return item.get () == display; | 
|  | }); | 
|  | gdb_assert (iter != all_displays.end ()); | 
|  | all_displays.erase (iter); | 
|  | } | 
|  |  | 
|  | /* Call FUNCTION on each of the displays whose numbers are given in | 
|  | ARGS.  DATA is passed unmodified to FUNCTION.  */ | 
|  |  | 
|  | static void | 
|  | map_display_numbers (const char *args, | 
|  | gdb::function_view<void (struct display *)> function) | 
|  | { | 
|  | int num; | 
|  |  | 
|  | if (args == NULL) | 
|  | error_no_arg (_("one or more display numbers")); | 
|  |  | 
|  | number_or_range_parser parser (args); | 
|  |  | 
|  | while (!parser.finished ()) | 
|  | { | 
|  | const char *p = parser.cur_tok (); | 
|  |  | 
|  | num = parser.get_number (); | 
|  | if (num == 0) | 
|  | warning (_("bad display number at or near '%s'"), p); | 
|  | else | 
|  | { | 
|  | auto iter = std::find_if (all_displays.begin (), | 
|  | all_displays.end (), | 
|  | [=] (const std::unique_ptr<display> &item) | 
|  | { | 
|  | return item->number == num; | 
|  | }); | 
|  | if (iter == all_displays.end ()) | 
|  | gdb_printf (_("No display number %d.\n"), num); | 
|  | else | 
|  | function (iter->get ()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* "undisplay" command.  */ | 
|  |  | 
|  | static void | 
|  | undisplay_command (const char *args, int from_tty) | 
|  | { | 
|  | if (args == NULL) | 
|  | { | 
|  | if (query (_("Delete all auto-display expressions? "))) | 
|  | clear_displays (); | 
|  | dont_repeat (); | 
|  | return; | 
|  | } | 
|  |  | 
|  | map_display_numbers (args, delete_display); | 
|  | dont_repeat (); | 
|  | } | 
|  |  | 
|  | /* Display a single auto-display. | 
|  | Do nothing if the display cannot be printed in the current context, | 
|  | or if the display is disabled.  */ | 
|  |  | 
|  | static void | 
|  | do_one_display (struct display *d) | 
|  | { | 
|  | int within_current_scope; | 
|  |  | 
|  | if (!d->enabled_p) | 
|  | return; | 
|  |  | 
|  | /* The expression carries the architecture that was used at parse time. | 
|  | This is a problem if the expression depends on architecture features | 
|  | (e.g. register numbers), and the current architecture is now different. | 
|  | For example, a display statement like "display/i $pc" is expected to | 
|  | display the PC register of the current architecture, not the arch at | 
|  | the time the display command was given.  Therefore, we re-parse the | 
|  | expression if the current architecture has changed.  */ | 
|  | if (d->exp != NULL && d->exp->gdbarch != get_current_arch ()) | 
|  | { | 
|  | d->exp.reset (); | 
|  | d->block = NULL; | 
|  | } | 
|  |  | 
|  | if (d->exp == NULL) | 
|  | { | 
|  |  | 
|  | try | 
|  | { | 
|  | innermost_block_tracker tracker; | 
|  | d->exp = parse_expression (d->exp_string.c_str (), &tracker); | 
|  | d->block = tracker.block (); | 
|  | } | 
|  | catch (const gdb_exception_error &ex) | 
|  | { | 
|  | /* Can't re-parse the expression.  Disable this display item.  */ | 
|  | d->enabled_p = false; | 
|  | warning (_("Unable to display \"%s\": %s"), | 
|  | d->exp_string.c_str (), ex.what ()); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (d->block) | 
|  | { | 
|  | if (d->pspace == current_program_space) | 
|  | within_current_scope = d->block->contains (get_selected_block (0), | 
|  | true); | 
|  | else | 
|  | within_current_scope = 0; | 
|  | } | 
|  | else | 
|  | within_current_scope = 1; | 
|  | if (!within_current_scope) | 
|  | return; | 
|  |  | 
|  | scoped_restore save_display_number | 
|  | = make_scoped_restore (¤t_display_number, d->number); | 
|  |  | 
|  | annotate_display_begin (); | 
|  | gdb_printf ("%d", d->number); | 
|  | annotate_display_number_end (); | 
|  | gdb_printf (": "); | 
|  | if (d->format.size) | 
|  | { | 
|  |  | 
|  | annotate_display_format (); | 
|  |  | 
|  | gdb_printf ("x/"); | 
|  | if (d->format.count != 1) | 
|  | gdb_printf ("%d", d->format.count); | 
|  | gdb_printf ("%c", d->format.format); | 
|  | if (d->format.format != 'i' && d->format.format != 's') | 
|  | gdb_printf ("%c", d->format.size); | 
|  | gdb_printf (" "); | 
|  |  | 
|  | annotate_display_expression (); | 
|  |  | 
|  | gdb_puts (d->exp_string.c_str ()); | 
|  | annotate_display_expression_end (); | 
|  |  | 
|  | if (d->format.count != 1 || d->format.format == 'i') | 
|  | gdb_printf ("\n"); | 
|  | else | 
|  | gdb_printf ("  "); | 
|  |  | 
|  | annotate_display_value (); | 
|  |  | 
|  | try | 
|  | { | 
|  | struct value *val; | 
|  | CORE_ADDR addr; | 
|  |  | 
|  | val = d->exp->evaluate (); | 
|  | addr = value_as_address (val); | 
|  | if (d->format.format == 'i') | 
|  | addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr); | 
|  | do_examine (d->format, d->exp->gdbarch, addr); | 
|  | } | 
|  | catch (const gdb_exception_error &ex) | 
|  | { | 
|  | gdb_printf (_("%p[<error: %s>%p]\n"), | 
|  | metadata_style.style ().ptr (), ex.what (), | 
|  | nullptr); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | struct value_print_options opts; | 
|  |  | 
|  | annotate_display_format (); | 
|  |  | 
|  | if (d->format.format) | 
|  | gdb_printf ("/%c ", d->format.format); | 
|  |  | 
|  | annotate_display_expression (); | 
|  |  | 
|  | gdb_puts (d->exp_string.c_str ()); | 
|  | annotate_display_expression_end (); | 
|  |  | 
|  | gdb_printf (" = "); | 
|  |  | 
|  | annotate_display_expression (); | 
|  |  | 
|  | get_formatted_print_options (&opts, d->format.format); | 
|  | opts.raw = d->format.raw; | 
|  |  | 
|  | try | 
|  | { | 
|  | struct value *val; | 
|  |  | 
|  | val = d->exp->evaluate (); | 
|  | print_formatted (val, d->format.size, &opts, gdb_stdout); | 
|  | } | 
|  | catch (const gdb_exception_error &ex) | 
|  | { | 
|  | fprintf_styled (gdb_stdout, metadata_style.style (), | 
|  | _("<error: %s>"), ex.what ()); | 
|  | } | 
|  |  | 
|  | gdb_printf ("\n"); | 
|  | } | 
|  |  | 
|  | annotate_display_end (); | 
|  |  | 
|  | gdb_flush (gdb_stdout); | 
|  | } | 
|  |  | 
|  | /* Display all of the values on the auto-display chain which can be | 
|  | evaluated in the current scope.  */ | 
|  |  | 
|  | void | 
|  | do_displays (void) | 
|  | { | 
|  | for (auto &d : all_displays) | 
|  | do_one_display (d.get ()); | 
|  | } | 
|  |  | 
|  | /* Delete the auto-display which we were in the process of displaying. | 
|  | This is done when there is an error or a signal.  */ | 
|  |  | 
|  | void | 
|  | disable_display (int num) | 
|  | { | 
|  | for (auto &d : all_displays) | 
|  | if (d->number == num) | 
|  | { | 
|  | d->enabled_p = false; | 
|  | return; | 
|  | } | 
|  | gdb_printf (_("No display number %d.\n"), num); | 
|  | } | 
|  |  | 
|  | void | 
|  | disable_current_display (void) | 
|  | { | 
|  | if (current_display_number >= 0) | 
|  | { | 
|  | disable_display (current_display_number); | 
|  | gdb_printf (gdb_stderr, | 
|  | _("Disabling display %d to " | 
|  | "avoid infinite recursion.\n"), | 
|  | current_display_number); | 
|  | } | 
|  | current_display_number = -1; | 
|  | } | 
|  |  | 
|  | static void | 
|  | info_display_command (const char *ignore, int from_tty) | 
|  | { | 
|  | if (all_displays.empty ()) | 
|  | gdb_printf (_("There are no auto-display expressions now.\n")); | 
|  | else | 
|  | gdb_printf (_("Auto-display expressions now in effect:\n\ | 
|  | Num Enb Expression\n")); | 
|  |  | 
|  | for (auto &d : all_displays) | 
|  | { | 
|  | gdb_printf ("%d:   %c  ", d->number, "ny"[(int) d->enabled_p]); | 
|  | if (d->format.size) | 
|  | gdb_printf ("/%d%c%c ", d->format.count, d->format.size, | 
|  | d->format.format); | 
|  | else if (d->format.format) | 
|  | gdb_printf ("/%c ", d->format.format); | 
|  | gdb_puts (d->exp_string.c_str ()); | 
|  | if (d->block && !d->block->contains (get_selected_block (0), true)) | 
|  | gdb_printf (_(" (cannot be evaluated in the current context)")); | 
|  | gdb_printf ("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Implementation of both the "disable display" and "enable display" | 
|  | commands.  ENABLE decides what to do.  */ | 
|  |  | 
|  | static void | 
|  | enable_disable_display_command (const char *args, int from_tty, bool enable) | 
|  | { | 
|  | if (args == NULL) | 
|  | { | 
|  | for (auto &d : all_displays) | 
|  | d->enabled_p = enable; | 
|  | return; | 
|  | } | 
|  |  | 
|  | map_display_numbers (args, | 
|  | [=] (struct display *d) | 
|  | { | 
|  | d->enabled_p = enable; | 
|  | }); | 
|  | } | 
|  |  | 
|  | /* The "enable display" command.  */ | 
|  |  | 
|  | static void | 
|  | enable_display_command (const char *args, int from_tty) | 
|  | { | 
|  | enable_disable_display_command (args, from_tty, true); | 
|  | } | 
|  |  | 
|  | /* The "disable display" command.  */ | 
|  |  | 
|  | static void | 
|  | disable_display_command (const char *args, int from_tty) | 
|  | { | 
|  | enable_disable_display_command (args, from_tty, false); | 
|  | } | 
|  |  | 
|  | /* display_chain items point to blocks and expressions.  Some expressions in | 
|  | turn may point to symbols. | 
|  | Both symbols and blocks are obstack_alloc'd on objfile_stack, and are | 
|  | obstack_free'd when a shared library is unloaded. | 
|  | Clear pointers that are about to become dangling. | 
|  | Both .exp and .block fields will be restored next time we need to display | 
|  | an item by re-parsing .exp_string field in the new execution context.  */ | 
|  |  | 
|  | static void | 
|  | clear_dangling_display_expressions (struct objfile *objfile) | 
|  | { | 
|  | program_space *pspace = objfile->pspace (); | 
|  | if (objfile->separate_debug_objfile_backlink) | 
|  | { | 
|  | objfile = objfile->separate_debug_objfile_backlink; | 
|  | gdb_assert (objfile->pspace () == pspace); | 
|  | } | 
|  |  | 
|  | for (auto &d : all_displays) | 
|  | { | 
|  | if (d->pspace != pspace) | 
|  | continue; | 
|  |  | 
|  | struct objfile *bl_objf = nullptr; | 
|  | if (d->block != nullptr) | 
|  | { | 
|  | bl_objf = d->block->objfile (); | 
|  | if (bl_objf->separate_debug_objfile_backlink != nullptr) | 
|  | bl_objf = bl_objf->separate_debug_objfile_backlink; | 
|  | } | 
|  |  | 
|  | if (bl_objf == objfile | 
|  | || (d->exp != nullptr && d->exp->uses_objfile (objfile))) | 
|  | { | 
|  | d->exp.reset (); | 
|  | d->block = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Print the value in stack frame FRAME of a variable specified by a | 
|  | struct symbol.  NAME is the name to print; if NULL then VAR's print | 
|  | name will be used.  STREAM is the ui_file on which to print the | 
|  | value.  INDENT specifies the number of indent levels to print | 
|  | before printing the variable name.  */ | 
|  |  | 
|  | void | 
|  | print_variable_and_value (const char *name, struct symbol *var, | 
|  | const frame_info_ptr &frame, | 
|  | struct ui_file *stream, int indent) | 
|  | { | 
|  |  | 
|  | if (!name) | 
|  | name = var->print_name (); | 
|  |  | 
|  | gdb_printf (stream, "%*s%ps = ", 2 * indent, "", | 
|  | styled_string (variable_name_style.style (), name)); | 
|  |  | 
|  | try | 
|  | { | 
|  | struct value *val; | 
|  | struct value_print_options opts; | 
|  |  | 
|  | /* READ_VAR_VALUE needs a block in order to deal with non-local | 
|  | references (i.e. to handle nested functions).  In this context, we | 
|  | print variables that are local to this frame, so we can avoid passing | 
|  | a block to it.  */ | 
|  | val = read_var_value (var, NULL, frame); | 
|  | get_user_print_options (&opts); | 
|  | opts.deref_ref = true; | 
|  | common_val_print_checked (val, stream, indent, &opts, current_language); | 
|  | } | 
|  | catch (const gdb_exception_error &except) | 
|  | { | 
|  | fprintf_styled (stream, metadata_style.style (), | 
|  | "<error reading variable %s (%s)>", name, | 
|  | except.what ()); | 
|  | } | 
|  |  | 
|  | gdb_printf (stream, "\n"); | 
|  | } | 
|  |  | 
|  | /* Subroutine of ui_printf to simplify it. | 
|  | Print VALUE to STREAM using FORMAT. | 
|  | VALUE is a C-style string either on the target or | 
|  | in a GDB internal variable.  */ | 
|  |  | 
|  | static void | 
|  | printf_c_string (struct ui_file *stream, const char *format, | 
|  | struct value *value) | 
|  | { | 
|  | gdb::byte_vector str; | 
|  |  | 
|  | if (((value->type ()->code () != TYPE_CODE_PTR && value->lval () == lval_internalvar) | 
|  | || value->type ()->code () == TYPE_CODE_ARRAY) | 
|  | && c_is_string_type_p (value->type ())) | 
|  | { | 
|  | size_t len = value->type ()->length (); | 
|  |  | 
|  | /* Copy the internal var value to TEM_STR and append a terminating null | 
|  | character.  This protects against corrupted C-style strings that lack | 
|  | the terminating null char.  It also allows Ada-style strings (not | 
|  | null terminated) to be printed without problems.  */ | 
|  | str.resize (len + 1); | 
|  |  | 
|  | memcpy (str.data (), value->contents ().data (), len); | 
|  | str [len] = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | CORE_ADDR tem = value_as_address (value); | 
|  |  | 
|  | if (tem == 0) | 
|  | { | 
|  | DIAGNOSTIC_PUSH | 
|  | DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
|  | gdb_printf (stream, format, "(null)"); | 
|  | DIAGNOSTIC_POP | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* This is a %s argument.  Build the string in STR which is | 
|  | currently empty.  */ | 
|  | gdb_assert (str.size () == 0); | 
|  | size_t len; | 
|  | for (len = 0;; len++) | 
|  | { | 
|  | gdb_byte c; | 
|  |  | 
|  | QUIT; | 
|  |  | 
|  | read_memory (tem + len, &c, 1); | 
|  | if (!exceeds_max_value_size (len + 1)) | 
|  | str.push_back (c); | 
|  | if (c == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (exceeds_max_value_size (len + 1)) | 
|  | error (_("printed string requires %s bytes, which is more than " | 
|  | "max-value-size"), plongest (len + 1)); | 
|  |  | 
|  | /* We will have passed through the above loop at least once, and will | 
|  | only exit the loop when we have pushed a zero byte onto the end of | 
|  | STR.  */ | 
|  | gdb_assert (str.size () > 0); | 
|  | gdb_assert (str.back () == 0); | 
|  | } | 
|  |  | 
|  | DIAGNOSTIC_PUSH | 
|  | DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
|  | gdb_printf (stream, format, (char *) str.data ()); | 
|  | DIAGNOSTIC_POP | 
|  | } | 
|  |  | 
|  | /* Subroutine of ui_printf to simplify it. | 
|  | Print VALUE to STREAM using FORMAT. | 
|  | VALUE is a wide C-style string on the target or | 
|  | in a GDB internal variable.  */ | 
|  |  | 
|  | static void | 
|  | printf_wide_c_string (struct ui_file *stream, const char *format, | 
|  | struct value *value) | 
|  | { | 
|  | const gdb_byte *str; | 
|  | size_t len; | 
|  | struct gdbarch *gdbarch = value->type ()->arch (); | 
|  | struct type *wctype = lookup_typename (current_language, | 
|  | "wchar_t", NULL, 0); | 
|  | int wcwidth = wctype->length (); | 
|  | std::optional<gdb::byte_vector> tem_str; | 
|  |  | 
|  | if (value->lval () == lval_internalvar | 
|  | && c_is_string_type_p (value->type ())) | 
|  | { | 
|  | str = value->contents ().data (); | 
|  | len = value->type ()->length (); | 
|  | } | 
|  | else | 
|  | { | 
|  | CORE_ADDR tem = value_as_address (value); | 
|  |  | 
|  | if (tem == 0) | 
|  | { | 
|  | DIAGNOSTIC_PUSH | 
|  | DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
|  | gdb_printf (stream, format, "(null)"); | 
|  | DIAGNOSTIC_POP | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* This is a %s argument.  Find the length of the string.  */ | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | tem_str.emplace (); | 
|  |  | 
|  | for (len = 0;; len += wcwidth) | 
|  | { | 
|  | QUIT; | 
|  | gdb_byte *dst; | 
|  | if (!exceeds_max_value_size (len + wcwidth)) | 
|  | { | 
|  | tem_str->resize (tem_str->size () + wcwidth); | 
|  | dst = tem_str->data () + len; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* We still need to check for the null-character, so we need | 
|  | somewhere to place the data read from the inferior.  We | 
|  | can't keep growing TEM_STR, it's gotten too big, so | 
|  | instead just read the new character into the start of | 
|  | TEMS_STR.  This will corrupt the previously read contents, | 
|  | but we're not going to print this string anyway, we just | 
|  | want to know how big it would have been so we can tell the | 
|  | user in the error message (see below). | 
|  |  | 
|  | And we know there will be space in this buffer so long as | 
|  | WCWIDTH is smaller than our LONGEST type, the | 
|  | max-value-size can't be smaller than a LONGEST.  */ | 
|  | dst = tem_str->data (); | 
|  | } | 
|  | read_memory (tem + len, dst, wcwidth); | 
|  | if (extract_unsigned_integer (dst, wcwidth, byte_order) == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (exceeds_max_value_size (len + wcwidth)) | 
|  | error (_("printed string requires %s bytes, which is more than " | 
|  | "max-value-size"), plongest (len + wcwidth)); | 
|  |  | 
|  | str = tem_str->data (); | 
|  | } | 
|  |  | 
|  | auto_obstack output; | 
|  |  | 
|  | convert_between_encodings (target_wide_charset (gdbarch), | 
|  | host_charset (), | 
|  | str, len, wcwidth, | 
|  | &output, translit_char); | 
|  | obstack_grow_str0 (&output, ""); | 
|  |  | 
|  | DIAGNOSTIC_PUSH | 
|  | DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
|  | gdb_printf (stream, format, obstack_base (&output)); | 
|  | DIAGNOSTIC_POP | 
|  | } | 
|  |  | 
|  | /* Subroutine of ui_printf to simplify it. | 
|  | Print VALUE, a floating point value, to STREAM using FORMAT.  */ | 
|  |  | 
|  | static void | 
|  | printf_floating (struct ui_file *stream, const char *format, | 
|  | struct value *value, enum argclass argclass) | 
|  | { | 
|  | /* Parameter data.  */ | 
|  | struct type *param_type = value->type (); | 
|  | struct gdbarch *gdbarch = param_type->arch (); | 
|  |  | 
|  | /* Determine target type corresponding to the format string.  */ | 
|  | struct type *fmt_type; | 
|  | switch (argclass) | 
|  | { | 
|  | case double_arg: | 
|  | fmt_type = builtin_type (gdbarch)->builtin_double; | 
|  | break; | 
|  | case long_double_arg: | 
|  | fmt_type = builtin_type (gdbarch)->builtin_long_double; | 
|  | break; | 
|  | case dec32float_arg: | 
|  | fmt_type = builtin_type (gdbarch)->builtin_decfloat; | 
|  | break; | 
|  | case dec64float_arg: | 
|  | fmt_type = builtin_type (gdbarch)->builtin_decdouble; | 
|  | break; | 
|  | case dec128float_arg: | 
|  | fmt_type = builtin_type (gdbarch)->builtin_declong; | 
|  | break; | 
|  | default: | 
|  | gdb_assert_not_reached ("unexpected argument class"); | 
|  | } | 
|  |  | 
|  | /* To match the traditional GDB behavior, the conversion is | 
|  | done differently depending on the type of the parameter: | 
|  |  | 
|  | - if the parameter has floating-point type, it's value | 
|  | is converted to the target type; | 
|  |  | 
|  | - otherwise, if the parameter has a type that is of the | 
|  | same size as a built-in floating-point type, the value | 
|  | bytes are interpreted as if they were of that type, and | 
|  | then converted to the target type (this is not done for | 
|  | decimal floating-point argument classes); | 
|  |  | 
|  | - otherwise, if the source value has an integer value, | 
|  | it's value is converted to the target type; | 
|  |  | 
|  | - otherwise, an error is raised. | 
|  |  | 
|  | In either case, the result of the conversion is a byte buffer | 
|  | formatted in the target format for the target type.  */ | 
|  |  | 
|  | if (fmt_type->code () == TYPE_CODE_FLT) | 
|  | { | 
|  | param_type = float_type_from_length (param_type); | 
|  | if (param_type != value->type ()) | 
|  | value = value_from_contents (param_type, | 
|  | value->contents ().data ()); | 
|  | } | 
|  |  | 
|  | value = value_cast (fmt_type, value); | 
|  |  | 
|  | /* Convert the value to a string and print it.  */ | 
|  | std::string str | 
|  | = target_float_to_string (value->contents ().data (), fmt_type, format); | 
|  | gdb_puts (str.c_str (), stream); | 
|  | } | 
|  |  | 
|  | /* Subroutine of ui_printf to simplify it. | 
|  | Print VALUE, a target pointer, to STREAM using FORMAT.  */ | 
|  |  | 
|  | static void | 
|  | printf_pointer (struct ui_file *stream, const char *format, | 
|  | struct value *value) | 
|  | { | 
|  | /* We avoid the host's %p because pointers are too | 
|  | likely to be the wrong size.  The only interesting | 
|  | modifier for %p is a width; extract that, and then | 
|  | handle %p as glibc would: %#x or a literal "(nil)".  */ | 
|  |  | 
|  | #ifdef PRINTF_HAS_LONG_LONG | 
|  | long long val = value_as_long (value); | 
|  | #else | 
|  | long val = value_as_long (value); | 
|  | #endif | 
|  |  | 
|  | /* Build the new output format in FMT.  */ | 
|  | std::string fmt; | 
|  |  | 
|  | /* Copy up to the leading %.  */ | 
|  | const char *p = format; | 
|  | while (*p) | 
|  | { | 
|  | int is_percent = (*p == '%'); | 
|  |  | 
|  | fmt.push_back (*p++); | 
|  | if (is_percent) | 
|  | { | 
|  | if (*p == '%') | 
|  | fmt.push_back (*p++); | 
|  | else | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (val != 0) | 
|  | fmt.push_back ('#'); | 
|  |  | 
|  | /* Copy any width or flags.  Only the "-" flag is valid for pointers | 
|  | -- see the format_pieces constructor.  */ | 
|  | while (*p == '-' || (*p >= '0' && *p < '9')) | 
|  | fmt.push_back (*p++); | 
|  |  | 
|  | gdb_assert (*p == 'p' && *(p + 1) == '\0'); | 
|  | if (val != 0) | 
|  | { | 
|  | #ifdef PRINTF_HAS_LONG_LONG | 
|  | fmt.push_back ('l'); | 
|  | #endif | 
|  | fmt.push_back ('l'); | 
|  | fmt.push_back ('x'); | 
|  | DIAGNOSTIC_PUSH | 
|  | DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
|  | gdb_printf (stream, fmt.c_str (), val); | 
|  | DIAGNOSTIC_POP | 
|  | } | 
|  | else | 
|  | { | 
|  | fmt.push_back ('s'); | 
|  | DIAGNOSTIC_PUSH | 
|  | DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
|  | gdb_printf (stream, fmt.c_str (), "(nil)"); | 
|  | DIAGNOSTIC_POP | 
|  | } | 
|  | } | 
|  |  | 
|  | /* printf "printf format string" ARG to STREAM.  */ | 
|  |  | 
|  | static void | 
|  | ui_printf (const char *arg, struct ui_file *stream) | 
|  | { | 
|  | const char *s = arg; | 
|  | std::vector<struct value *> val_args; | 
|  |  | 
|  | if (s == 0) | 
|  | error_no_arg (_("format-control string and values to print")); | 
|  |  | 
|  | s = skip_spaces (s); | 
|  |  | 
|  | /* A format string should follow, enveloped in double quotes.  */ | 
|  | if (*s++ != '"') | 
|  | error (_("Bad format string, missing '\"'.")); | 
|  |  | 
|  | format_pieces fpieces (&s, false, true); | 
|  |  | 
|  | if (*s++ != '"') | 
|  | error (_("Bad format string, non-terminated '\"'.")); | 
|  |  | 
|  | s = skip_spaces (s); | 
|  |  | 
|  | if (*s != ',' && *s != 0) | 
|  | error (_("Invalid argument syntax")); | 
|  |  | 
|  | if (*s == ',') | 
|  | s++; | 
|  | s = skip_spaces (s); | 
|  |  | 
|  | { | 
|  | int nargs_wanted; | 
|  | int i; | 
|  |  | 
|  | nargs_wanted = 0; | 
|  | for (auto &&piece : fpieces) | 
|  | if (piece.argclass != literal_piece) | 
|  | ++nargs_wanted; | 
|  |  | 
|  | /* Now, parse all arguments and evaluate them. | 
|  | Store the VALUEs in VAL_ARGS.  */ | 
|  |  | 
|  | while (*s != '\0') | 
|  | { | 
|  | const char *s1; | 
|  |  | 
|  | s1 = s; | 
|  | val_args.push_back (parse_to_comma_and_eval (&s1)); | 
|  |  | 
|  | s = s1; | 
|  | if (*s == ',') | 
|  | s++; | 
|  | } | 
|  |  | 
|  | if (val_args.size () != nargs_wanted) | 
|  | error (_("Wrong number of arguments for specified format-string")); | 
|  |  | 
|  | /* Now actually print them.  */ | 
|  | i = 0; | 
|  | for (auto &&piece : fpieces) | 
|  | { | 
|  | const char *current_substring = fpieces.piece_str (piece); | 
|  |  | 
|  | switch (piece.argclass) | 
|  | { | 
|  | case string_arg: | 
|  | printf_c_string (stream, current_substring, val_args[i]); | 
|  | break; | 
|  | case wide_string_arg: | 
|  | printf_wide_c_string (stream, current_substring, val_args[i]); | 
|  | break; | 
|  | case wide_char_arg: | 
|  | { | 
|  | struct gdbarch *gdbarch = val_args[i]->type ()->arch (); | 
|  | struct type *wctype = lookup_typename (current_language, | 
|  | "wchar_t", NULL, 0); | 
|  | struct type *valtype; | 
|  | const gdb_byte *bytes; | 
|  |  | 
|  | valtype = val_args[i]->type (); | 
|  | if (valtype->length () != wctype->length () | 
|  | || valtype->code () != TYPE_CODE_INT) | 
|  | error (_("expected wchar_t argument for %%lc")); | 
|  |  | 
|  | bytes = val_args[i]->contents ().data (); | 
|  |  | 
|  | auto_obstack output; | 
|  |  | 
|  | convert_between_encodings (target_wide_charset (gdbarch), | 
|  | host_charset (), | 
|  | bytes, valtype->length (), | 
|  | valtype->length (), | 
|  | &output, translit_char); | 
|  | obstack_grow_str0 (&output, ""); | 
|  |  | 
|  | DIAGNOSTIC_PUSH | 
|  | DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
|  | gdb_printf (stream, current_substring, | 
|  | obstack_base (&output)); | 
|  | DIAGNOSTIC_POP | 
|  | } | 
|  | break; | 
|  | case long_long_arg: | 
|  | #ifdef PRINTF_HAS_LONG_LONG | 
|  | { | 
|  | long long val = value_as_long (val_args[i]); | 
|  |  | 
|  | DIAGNOSTIC_PUSH | 
|  | DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
|  | gdb_printf (stream, current_substring, val); | 
|  | DIAGNOSTIC_POP | 
|  | break; | 
|  | } | 
|  | #else | 
|  | error (_("long long not supported in printf")); | 
|  | #endif | 
|  | case int_arg: | 
|  | { | 
|  | int val = value_as_long (val_args[i]); | 
|  |  | 
|  | DIAGNOSTIC_PUSH | 
|  | DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
|  | gdb_printf (stream, current_substring, val); | 
|  | DIAGNOSTIC_POP | 
|  | break; | 
|  | } | 
|  | case long_arg: | 
|  | { | 
|  | long val = value_as_long (val_args[i]); | 
|  |  | 
|  | DIAGNOSTIC_PUSH | 
|  | DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
|  | gdb_printf (stream, current_substring, val); | 
|  | DIAGNOSTIC_POP | 
|  | break; | 
|  | } | 
|  | case size_t_arg: | 
|  | { | 
|  | size_t val = value_as_long (val_args[i]); | 
|  |  | 
|  | DIAGNOSTIC_PUSH | 
|  | DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
|  | gdb_printf (stream, current_substring, val); | 
|  | DIAGNOSTIC_POP | 
|  | break; | 
|  | } | 
|  | /* Handles floating-point values.  */ | 
|  | case double_arg: | 
|  | case long_double_arg: | 
|  | case dec32float_arg: | 
|  | case dec64float_arg: | 
|  | case dec128float_arg: | 
|  | printf_floating (stream, current_substring, val_args[i], | 
|  | piece.argclass); | 
|  | break; | 
|  | case ptr_arg: | 
|  | printf_pointer (stream, current_substring, val_args[i]); | 
|  | break; | 
|  | case value_arg: | 
|  | { | 
|  | value_print_options print_opts; | 
|  | get_user_print_options (&print_opts); | 
|  |  | 
|  | if (current_substring[2] == '[') | 
|  | { | 
|  | std::string args (¤t_substring[3], | 
|  | strlen (¤t_substring[3]) - 1); | 
|  |  | 
|  | const char *args_ptr = args.c_str (); | 
|  |  | 
|  | /* Override global settings with explicit options, if | 
|  | any.  */ | 
|  | auto group | 
|  | = make_value_print_options_def_group (&print_opts); | 
|  | gdb::option::process_options | 
|  | (&args_ptr, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, | 
|  | group); | 
|  |  | 
|  | if (*args_ptr != '\0') | 
|  | error (_("unexpected content in print options: %s"), | 
|  | args_ptr); | 
|  | } | 
|  |  | 
|  | print_formatted (val_args[i], 0, &print_opts, stream); | 
|  | } | 
|  | break; | 
|  | case literal_piece: | 
|  | /* Print a portion of the format string that has no | 
|  | directives.  Note that this will not include any | 
|  | ordinary %-specs, but it might include "%%".  That is | 
|  | why we use gdb_printf and not gdb_puts here. | 
|  | Also, we pass a dummy argument because some platforms | 
|  | have modified GCC to include -Wformat-security by | 
|  | default, which will warn here if there is no | 
|  | argument.  */ | 
|  | DIAGNOSTIC_PUSH | 
|  | DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
|  | gdb_printf (stream, current_substring, 0); | 
|  | DIAGNOSTIC_POP | 
|  | break; | 
|  | default: | 
|  | internal_error (_("failed internal consistency check")); | 
|  | } | 
|  | /* Maybe advance to the next argument.  */ | 
|  | if (piece.argclass != literal_piece) | 
|  | ++i; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Implement the "printf" command.  */ | 
|  |  | 
|  | static void | 
|  | printf_command (const char *arg, int from_tty) | 
|  | { | 
|  | ui_printf (arg, gdb_stdout); | 
|  | gdb_stdout->emit_style_escape (ui_file_style ()); | 
|  | gdb_stdout->wrap_here (0); | 
|  | gdb_stdout->flush (); | 
|  | } | 
|  |  | 
|  | /* Implement the "eval" command.  */ | 
|  |  | 
|  | static void | 
|  | eval_command (const char *arg, int from_tty) | 
|  | { | 
|  | string_file stb; | 
|  |  | 
|  | ui_printf (arg, &stb); | 
|  |  | 
|  | std::string expanded = insert_user_defined_cmd_args (stb.c_str ()); | 
|  |  | 
|  | execute_command (expanded.c_str (), from_tty); | 
|  | } | 
|  |  | 
|  | /* Convenience function for error checking in memory-tag commands.  */ | 
|  |  | 
|  | static void | 
|  | show_addr_not_tagged (CORE_ADDR address) | 
|  | { | 
|  | error (_("Address %s not in a region mapped with a memory tagging flag."), | 
|  | paddress (current_inferior ()->arch (), address)); | 
|  | } | 
|  |  | 
|  | /* Convenience function for error checking in memory-tag commands.  */ | 
|  |  | 
|  | static void | 
|  | show_memory_tagging_unsupported (void) | 
|  | { | 
|  | error (_("Memory tagging not supported or disabled by the current" | 
|  | " architecture.")); | 
|  | } | 
|  |  | 
|  | /* Helper for print-logical-tag and print-allocation-tag.  */ | 
|  |  | 
|  | static void | 
|  | memory_tag_print_tag_command (const char *args, enum memtag_type tag_type) | 
|  | { | 
|  | if (args == nullptr) | 
|  | error_no_arg (_("address or pointer")); | 
|  |  | 
|  | /* Parse args into a value.  If the value is a pointer or an address, | 
|  | then fetch the logical or allocation tag.  */ | 
|  | value_print_options print_opts; | 
|  |  | 
|  | struct value *val = process_print_command_args (args, &print_opts, true); | 
|  | gdbarch *arch = current_inferior ()->arch (); | 
|  |  | 
|  | /* If the address is not in a region memory mapped with a memory tagging | 
|  | flag, it is no use trying to access/manipulate its allocation tag. | 
|  |  | 
|  | It is OK to manipulate the logical tag though.  */ | 
|  | CORE_ADDR addr = value_as_address (val); | 
|  | if (tag_type == memtag_type::allocation | 
|  | && !target_is_address_tagged (arch, addr)) | 
|  | show_addr_not_tagged (addr); | 
|  |  | 
|  | value *tag_value = gdbarch_get_memtag (arch, val, tag_type); | 
|  | std::string tag = gdbarch_memtag_to_string (arch, tag_value); | 
|  |  | 
|  | if (tag.empty ()) | 
|  | gdb_printf (_("%s tag unavailable.\n"), | 
|  | tag_type | 
|  | == memtag_type::logical? "Logical" : "Allocation"); | 
|  |  | 
|  | struct value *v_tag = process_print_command_args (tag.c_str (), | 
|  | &print_opts, | 
|  | true); | 
|  | print_opts.output_format = 'x'; | 
|  | print_value (v_tag, print_opts); | 
|  | } | 
|  |  | 
|  | /* Implement the "memory-tag print-logical-tag" command.  */ | 
|  |  | 
|  | static void | 
|  | memory_tag_print_logical_tag_command (const char *args, int from_tty) | 
|  | { | 
|  | if (!target_supports_memory_tagging ()) | 
|  | show_memory_tagging_unsupported (); | 
|  |  | 
|  | memory_tag_print_tag_command (args, memtag_type::logical); | 
|  | } | 
|  |  | 
|  | /* Implement the "memory-tag print-allocation-tag" command.  */ | 
|  |  | 
|  | static void | 
|  | memory_tag_print_allocation_tag_command (const char *args, int from_tty) | 
|  | { | 
|  | if (!target_supports_memory_tagging ()) | 
|  | show_memory_tagging_unsupported (); | 
|  |  | 
|  | memory_tag_print_tag_command (args, memtag_type::allocation); | 
|  | } | 
|  |  | 
|  | /* Parse ARGS and extract ADDR and TAG. | 
|  | ARGS should have format <expression> <tag bytes>.  */ | 
|  |  | 
|  | static void | 
|  | parse_with_logical_tag_input (const char *args, struct value **val, | 
|  | gdb::byte_vector &tags, | 
|  | value_print_options *print_opts) | 
|  | { | 
|  | /* Fetch the address.  */ | 
|  | std::string address_string = extract_string_maybe_quoted (&args); | 
|  |  | 
|  | /* Parse the address into a value.  */ | 
|  | *val = process_print_command_args (address_string.c_str (), print_opts, | 
|  | true); | 
|  |  | 
|  | /* Fetch the tag bytes.  */ | 
|  | std::string tag_string = extract_string_maybe_quoted (&args); | 
|  |  | 
|  | /* Validate the input.  */ | 
|  | if (address_string.empty () || tag_string.empty ()) | 
|  | error (_("Missing arguments.")); | 
|  |  | 
|  | if (tag_string.length () != 2) | 
|  | error (_("Error parsing tags argument. The tag should be 2 digits.")); | 
|  |  | 
|  | tags = hex2bin (tag_string.c_str ()); | 
|  | } | 
|  |  | 
|  | /* Implement the "memory-tag with-logical-tag" command.  */ | 
|  |  | 
|  | static void | 
|  | memory_tag_with_logical_tag_command (const char *args, int from_tty) | 
|  | { | 
|  | if (!target_supports_memory_tagging ()) | 
|  | show_memory_tagging_unsupported (); | 
|  |  | 
|  | if (args == nullptr) | 
|  | error_no_arg (_("<address> <tag>")); | 
|  |  | 
|  | gdb::byte_vector tags; | 
|  | struct value *val; | 
|  | value_print_options print_opts; | 
|  | gdbarch *arch = current_inferior ()->arch (); | 
|  |  | 
|  | /* Parse the input.  */ | 
|  | parse_with_logical_tag_input (args, &val, tags, &print_opts); | 
|  |  | 
|  | /* Setting the logical tag is just a local operation that does not touch | 
|  | any memory from the target.  Given an input value, we modify the value | 
|  | to include the appropriate tag. | 
|  |  | 
|  | For this reason we need to cast the argument value to a | 
|  | (void *) pointer.  This is so we have the right type for the gdbarch | 
|  | hook to manipulate the value and insert the tag. | 
|  |  | 
|  | Otherwise, this would fail if, for example, GDB parsed the argument value | 
|  | into an int-sized value and the pointer value has a type of greater | 
|  | length.  */ | 
|  |  | 
|  | /* Cast to (void *).  */ | 
|  | val = value_cast (builtin_type (current_inferior ()->arch ())->builtin_data_ptr, | 
|  | val); | 
|  |  | 
|  | /* Length doesn't matter for a logical tag.  Pass 0.  */ | 
|  | if (!gdbarch_set_memtags (arch, val, 0, tags,  memtag_type::logical)) | 
|  | gdb_printf (_("Could not update the logical tag data.\n")); | 
|  | else | 
|  | { | 
|  | /* Always print it in hex format.  */ | 
|  | print_opts.output_format = 'x'; | 
|  | print_value (val, print_opts); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Parse ARGS and extract ADDR, LENGTH and TAGS.  */ | 
|  |  | 
|  | static void | 
|  | parse_set_allocation_tag_input (const char *args, struct value **val, | 
|  | size_t *length, gdb::byte_vector &tags) | 
|  | { | 
|  | /* Fetch the address.  */ | 
|  | std::string address_string = extract_string_maybe_quoted (&args); | 
|  |  | 
|  | /* Parse the address into a value.  */ | 
|  | value_print_options print_opts; | 
|  | *val = process_print_command_args (address_string.c_str (), &print_opts, | 
|  | true); | 
|  |  | 
|  | /* Fetch the length.  */ | 
|  | std::string length_string = extract_string_maybe_quoted (&args); | 
|  |  | 
|  | /* Fetch the tag bytes.  */ | 
|  | std::string tags_string = extract_string_maybe_quoted (&args); | 
|  |  | 
|  | /* Validate the input.  */ | 
|  | if (address_string.empty () || length_string.empty () || tags_string.empty ()) | 
|  | error (_("Missing arguments.")); | 
|  |  | 
|  | errno = 0; | 
|  | const char *trailer = nullptr; | 
|  | LONGEST parsed_length = strtoulst (length_string.c_str (), &trailer, 10); | 
|  |  | 
|  | if (errno != 0 || (trailer != nullptr && trailer[0] != '\0')) | 
|  | error (_("Error parsing length argument.")); | 
|  |  | 
|  | if (parsed_length <= 0) | 
|  | error (_("Invalid zero or negative length.")); | 
|  |  | 
|  | *length = parsed_length; | 
|  |  | 
|  | if (tags_string.length () % 2) | 
|  | error (_("Error parsing tags argument. Tags should be 2 digits per byte.")); | 
|  |  | 
|  | tags = hex2bin (tags_string.c_str ()); | 
|  | } | 
|  |  | 
|  | /* Implement the "memory-tag set-allocation-tag" command. | 
|  | ARGS should be in the format <address> <length> <tags>.  */ | 
|  |  | 
|  | static void | 
|  | memory_tag_set_allocation_tag_command (const char *args, int from_tty) | 
|  | { | 
|  | if (!target_supports_memory_tagging ()) | 
|  | show_memory_tagging_unsupported (); | 
|  |  | 
|  | if (args == nullptr) | 
|  | error_no_arg (_("<starting address> <length> <tag bytes>")); | 
|  |  | 
|  | gdb::byte_vector tags; | 
|  | size_t length = 0; | 
|  | struct value *val; | 
|  |  | 
|  | /* Parse the input.  */ | 
|  | parse_set_allocation_tag_input (args, &val, &length, tags); | 
|  |  | 
|  | /* If the address is not in a region memory-mapped with a memory tagging | 
|  | flag, it is no use trying to manipulate its allocation tag.  */ | 
|  | CORE_ADDR addr = value_as_address (val); | 
|  | if (!target_is_address_tagged (current_inferior ()-> arch(), addr)) | 
|  | show_addr_not_tagged (addr); | 
|  |  | 
|  | if (!gdbarch_set_memtags (current_inferior ()->arch (), val, length, tags, | 
|  | memtag_type::allocation)) | 
|  | gdb_printf (_("Could not update the allocation tag(s).\n")); | 
|  | else | 
|  | gdb_printf (_("Allocation tag(s) updated successfully.\n")); | 
|  | } | 
|  |  | 
|  | /* Implement the "memory-tag check" command.  */ | 
|  |  | 
|  | static void | 
|  | memory_tag_check_command (const char *args, int from_tty) | 
|  | { | 
|  | if (!target_supports_memory_tagging ()) | 
|  | show_memory_tagging_unsupported (); | 
|  |  | 
|  | if (args == nullptr) | 
|  | error_no_arg (_("address or pointer")); | 
|  |  | 
|  | /* Parse the expression into a value.  If the value is an address or | 
|  | pointer, then check its logical tag against the allocation tag.  */ | 
|  | value_print_options print_opts; | 
|  |  | 
|  | struct value *val = process_print_command_args (args, &print_opts, true); | 
|  | gdbarch *arch = current_inferior ()->arch (); | 
|  |  | 
|  | CORE_ADDR addr = value_as_address (val); | 
|  |  | 
|  | /* If the address is not in a region memory mapped with a memory tagging | 
|  | flag, it is no use trying to access/manipulate its allocation tag.  */ | 
|  | if (!target_is_address_tagged (arch, addr)) | 
|  | show_addr_not_tagged (addr); | 
|  |  | 
|  | /* Check if the tag is valid.  */ | 
|  | if (!gdbarch_memtag_matches_p (arch, val)) | 
|  | { | 
|  | value *tag = gdbarch_get_memtag (arch, val, memtag_type::logical); | 
|  | std::string ltag = gdbarch_memtag_to_string (arch, tag); | 
|  |  | 
|  | tag = gdbarch_get_memtag (arch, val, memtag_type::allocation); | 
|  | std::string atag = gdbarch_memtag_to_string (arch, tag); | 
|  |  | 
|  | gdb_printf (_("Logical tag (%s) does not match" | 
|  | " the allocation tag (%s) for address %s.\n"), | 
|  | ltag.c_str (), atag.c_str (), | 
|  | paddress (current_inferior ()->arch (), addr)); | 
|  | } | 
|  | else | 
|  | { | 
|  | struct value *tag | 
|  | = gdbarch_get_memtag (current_inferior ()->arch (), val, | 
|  | memtag_type::logical); | 
|  | std::string ltag | 
|  | = gdbarch_memtag_to_string (current_inferior ()->arch (), tag); | 
|  |  | 
|  | gdb_printf (_("Memory tags for address %s match (%s).\n"), | 
|  | paddress (current_inferior ()->arch (), addr), ltag.c_str ()); | 
|  | } | 
|  | } | 
|  |  | 
|  | INIT_GDB_FILE (printcmd) | 
|  | { | 
|  | struct cmd_list_element *c; | 
|  |  | 
|  | current_display_number = -1; | 
|  |  | 
|  | gdb::observers::free_objfile.attach (clear_dangling_display_expressions, | 
|  | "printcmd"); | 
|  |  | 
|  | add_info ("address", info_address_command, | 
|  | _("Describe where symbol SYM is stored.\n\ | 
|  | Usage: info address SYM")); | 
|  |  | 
|  | add_info ("symbol", info_symbol_command, _("\ | 
|  | Describe what symbol is at location ADDR.\n\ | 
|  | Usage: info symbol ADDR\n\ | 
|  | Only for symbols with fixed locations (global or static scope).")); | 
|  |  | 
|  | c = add_com ("x", class_vars, x_command, _("\ | 
|  | Examine memory: x/FMT ADDRESS.\n\ | 
|  | ADDRESS is an expression for the memory address to examine.\n\ | 
|  | FMT is a repeat count followed by a format letter and a size letter.\n\ | 
|  | Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\ | 
|  | t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\ | 
|  | and z(hex, zero padded on the left).\n\ | 
|  | Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\ | 
|  | The specified number of objects of the specified size are printed\n\ | 
|  | according to the format.  If a negative number is specified, memory is\n\ | 
|  | examined backward from the address.\n\n\ | 
|  | Defaults for format and size letters are those previously used.\n\ | 
|  | Default count is 1.  Default address is following last thing printed\n\ | 
|  | with this command or \"print\".")); | 
|  | set_cmd_completer_handle_brkchars (c, display_and_x_command_completer); | 
|  |  | 
|  | add_info ("display", info_display_command, _("\ | 
|  | Expressions to display when program stops, with code numbers.\n\ | 
|  | Usage: info display")); | 
|  |  | 
|  | add_cmd ("undisplay", class_vars, undisplay_command, _("\ | 
|  | Cancel some expressions to be displayed when program stops.\n\ | 
|  | Usage: undisplay [NUM]...\n\ | 
|  | Arguments are the code numbers of the expressions to stop displaying.\n\ | 
|  | No argument means cancel all automatic-display expressions.\n\ | 
|  | \"delete display\" has the same effect as this command.\n\ | 
|  | Do \"info display\" to see current list of code numbers."), | 
|  | &cmdlist); | 
|  |  | 
|  | c = add_com ("display", class_vars, display_command, _("\ | 
|  | Print value of expression EXP each time the program stops.\n\ | 
|  | Usage: display[/FMT] EXP\n\ | 
|  | /FMT may be used before EXP as in the \"print\" command.\n\ | 
|  | /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\ | 
|  | as in the \"x\" command, and then EXP is used to get the address to examine\n\ | 
|  | and examining is done as in the \"x\" command.\n\n\ | 
|  | With no argument, display all currently requested auto-display expressions.\n\ | 
|  | Use \"undisplay\" to cancel display requests previously made.")); | 
|  | set_cmd_completer_handle_brkchars (c, display_and_x_command_completer); | 
|  |  | 
|  | add_cmd ("display", class_vars, enable_display_command, _("\ | 
|  | Enable some expressions to be displayed when program stops.\n\ | 
|  | Usage: enable display [NUM]...\n\ | 
|  | Arguments are the code numbers of the expressions to resume displaying.\n\ | 
|  | No argument means enable all automatic-display expressions.\n\ | 
|  | Do \"info display\" to see current list of code numbers."), &enablelist); | 
|  |  | 
|  | add_cmd ("display", class_vars, disable_display_command, _("\ | 
|  | Disable some expressions to be displayed when program stops.\n\ | 
|  | Usage: disable display [NUM]...\n\ | 
|  | Arguments are the code numbers of the expressions to stop displaying.\n\ | 
|  | No argument means disable all automatic-display expressions.\n\ | 
|  | Do \"info display\" to see current list of code numbers."), &disablelist); | 
|  |  | 
|  | add_cmd ("display", class_vars, undisplay_command, _("\ | 
|  | Cancel some expressions to be displayed when program stops.\n\ | 
|  | Usage: delete display [NUM]...\n\ | 
|  | Arguments are the code numbers of the expressions to stop displaying.\n\ | 
|  | No argument means cancel all automatic-display expressions.\n\ | 
|  | Do \"info display\" to see current list of code numbers."), &deletelist); | 
|  |  | 
|  | add_com ("printf", class_vars, printf_command, _("\ | 
|  | Formatted printing, like the C \"printf\" function.\n\ | 
|  | Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\ | 
|  | This supports most C printf format specifications, like %s, %d, etc.")); | 
|  |  | 
|  | add_com ("output", class_vars, output_command, _("\ | 
|  | Like \"print\" but don't put in value history and don't print newline.\n\ | 
|  | Usage: output EXP\n\ | 
|  | This is useful in user-defined commands.")); | 
|  |  | 
|  | add_prefix_cmd ("set", class_vars, set_command, _("\ | 
|  | Evaluate expression EXP and assign result to variable VAR.\n\ | 
|  | Usage: set VAR = EXP\n\ | 
|  | This uses assignment syntax appropriate for the current language\n\ | 
|  | (VAR = EXP or VAR := EXP for example).\n\ | 
|  | VAR may be a debugger \"convenience\" variable (names starting\n\ | 
|  | with $), a register (a few standard names starting with $), or an actual\n\ | 
|  | variable in the program being debugged.  EXP is any valid expression.\n\ | 
|  | Use \"set variable\" for variables with names identical to set subcommands.\n\ | 
|  | \n\ | 
|  | With a subcommand, this command modifies parts of the gdb environment.\n\ | 
|  | You can see these environment settings with the \"show\" command."), | 
|  | &setlist, 1, &cmdlist); | 
|  |  | 
|  | /* "call" is the same as "set", but handy for dbx users to call fns.  */ | 
|  | c = add_com ("call", class_vars, call_command, _("\ | 
|  | Call a function in the program.\n\ | 
|  | Usage: call EXP\n\ | 
|  | The argument is the function name and arguments, in the notation of the\n\ | 
|  | current working language.  The result is printed and saved in the value\n\ | 
|  | history, if it is not void.")); | 
|  | set_cmd_completer_handle_brkchars (c, print_command_completer); | 
|  |  | 
|  | cmd_list_element *set_variable_cmd | 
|  | = add_cmd ("variable", class_vars, set_command, _("\ | 
|  | Evaluate expression EXP and assign result to variable VAR.\n\ | 
|  | Usage: set variable VAR = EXP\n\ | 
|  | This uses assignment syntax appropriate for the current language\n\ | 
|  | (VAR = EXP or VAR := EXP for example).\n\ | 
|  | VAR may be a debugger \"convenience\" variable (names starting\n\ | 
|  | with $), a register (a few standard names starting with $), or an actual\n\ | 
|  | variable in the program being debugged.  EXP is any valid expression.\n\ | 
|  | This may usually be abbreviated to simply \"set\"."), | 
|  | &setlist); | 
|  | add_alias_cmd ("var", set_variable_cmd, class_vars, 0, &setlist); | 
|  |  | 
|  | const auto print_opts = make_value_print_options_def_group (nullptr); | 
|  |  | 
|  | static const std::string print_help = gdb::option::build_help (_("\ | 
|  | Print value of expression EXP.\n\ | 
|  | Usage: print [[OPTION]... --] [/FMT] [EXP]\n\ | 
|  | \n\ | 
|  | Options:\n\ | 
|  | %OPTIONS%\n\ | 
|  | \n\ | 
|  | Note: because this command accepts arbitrary expressions, if you\n\ | 
|  | specify any command option, you must use a double dash (\"--\")\n\ | 
|  | to mark the end of option processing.  E.g.: \"print -o -- myobj\".\n\ | 
|  | \n\ | 
|  | Variables accessible are those of the lexical environment of the selected\n\ | 
|  | stack frame, plus all those whose scope is global or an entire file.\n\ | 
|  | \n\ | 
|  | $NUM gets previous value number NUM.  $ and $$ are the last two values.\n\ | 
|  | $$NUM refers to NUM'th value back from the last one.\n\ | 
|  | Names starting with $ refer to registers (with the values they would have\n\ | 
|  | if the program were to return to the stack frame now selected, restoring\n\ | 
|  | all registers saved by frames farther in) or else to debugger\n\ | 
|  | \"convenience\" variables (any such name not a known register).\n\ | 
|  | Use assignment expressions to give values to convenience variables.\n\ | 
|  | \n\ | 
|  | {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\ | 
|  | @ is a binary operator for treating consecutive data objects\n\ | 
|  | anywhere in memory as an array.  FOO@NUM gives an array whose first\n\ | 
|  | element is FOO, whose second element is stored in the space following\n\ | 
|  | where FOO is stored, etc.  FOO must be an expression whose value\n\ | 
|  | resides in memory.\n\ | 
|  | \n\ | 
|  | EXP may be preceded with /FMT, where FMT is a format letter\n\ | 
|  | but no count or size letter (see \"x\" command)."), | 
|  | print_opts); | 
|  |  | 
|  | cmd_list_element *print_cmd | 
|  | = add_com ("print", class_vars, print_command, print_help.c_str ()); | 
|  | set_cmd_completer_handle_brkchars (print_cmd, print_command_completer); | 
|  | add_com_alias ("p", print_cmd, class_vars, 1); | 
|  | add_com_alias ("inspect", print_cmd, class_vars, 1); | 
|  |  | 
|  | add_setshow_uinteger_cmd ("max-symbolic-offset", no_class, | 
|  | &max_symbolic_offset, _("\ | 
|  | Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\ | 
|  | Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\ | 
|  | Tell GDB to only display the symbolic form of an address if the\n\ | 
|  | offset between the closest earlier symbol and the address is less than\n\ | 
|  | the specified maximum offset.  The default is \"unlimited\", which tells GDB\n\ | 
|  | to always print the symbolic form of an address if any symbol precedes\n\ | 
|  | it.  Zero is equivalent to \"unlimited\"."), | 
|  | NULL, | 
|  | show_max_symbolic_offset, | 
|  | &setprintlist, &showprintlist); | 
|  | add_setshow_boolean_cmd ("symbol-filename", no_class, | 
|  | &print_symbol_filename, _("\ | 
|  | Set printing of source filename and line number with <SYMBOL>."), _("\ | 
|  | Show printing of source filename and line number with <SYMBOL>."), NULL, | 
|  | NULL, | 
|  | show_print_symbol_filename, | 
|  | &setprintlist, &showprintlist); | 
|  |  | 
|  | add_com ("eval", no_class, eval_command, _("\ | 
|  | Construct a GDB command and then evaluate it.\n\ | 
|  | Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\ | 
|  | Convert the arguments to a string as \"printf\" would, but then\n\ | 
|  | treat this string as a command line, and evaluate it.")); | 
|  |  | 
|  | /* Memory tagging commands.  */ | 
|  | add_basic_prefix_cmd ("memory-tag", class_vars, _("\ | 
|  | Generic command for printing and manipulating memory tag properties."), | 
|  | &memory_tag_list, 0, &cmdlist); | 
|  | add_cmd ("print-logical-tag", class_vars, | 
|  | memory_tag_print_logical_tag_command, | 
|  | ("Print the logical tag from POINTER.\n\ | 
|  | Usage: memory-tag print-logical-tag <POINTER>.\n\ | 
|  | <POINTER> is an expression that evaluates to a pointer.\n\ | 
|  | Print the logical tag contained in POINTER.  The tag interpretation is\n\ | 
|  | architecture-specific."), | 
|  | &memory_tag_list); | 
|  | add_cmd ("print-allocation-tag", class_vars, | 
|  | memory_tag_print_allocation_tag_command, | 
|  | _("Print the allocation tag for ADDRESS.\n\ | 
|  | Usage: memory-tag print-allocation-tag <ADDRESS>.\n\ | 
|  | <ADDRESS> is an expression that evaluates to a memory address.\n\ | 
|  | Print the allocation tag associated with the memory address ADDRESS.\n\ | 
|  | The tag interpretation is architecture-specific."), | 
|  | &memory_tag_list); | 
|  | add_cmd ("with-logical-tag", class_vars, memory_tag_with_logical_tag_command, | 
|  | _("Print a POINTER with a specific logical TAG.\n\ | 
|  | Usage: memory-tag with-logical-tag <POINTER> <TAG>\n\ | 
|  | <POINTER> is an expression that evaluates to a pointer.\n\ | 
|  | <TAG> is a sequence of hex bytes that is interpreted by the architecture\n\ | 
|  | as a single memory tag."), | 
|  | &memory_tag_list); | 
|  | add_cmd ("set-allocation-tag", class_vars, | 
|  | memory_tag_set_allocation_tag_command, | 
|  | _("Set the allocation tag(s) for a memory range.\n\ | 
|  | Usage: memory-tag set-allocation-tag <ADDRESS> <LENGTH> <TAG_BYTES>\n\ | 
|  | <ADDRESS> is an expression that evaluates to a memory address\n\ | 
|  | <LENGTH> is the number of bytes that is added to <ADDRESS> to calculate\n\ | 
|  | the memory range.\n\ | 
|  | <TAG_BYTES> is a sequence of hex bytes that is interpreted by the\n\ | 
|  | architecture as one or more memory tags.\n\ | 
|  | Sets the tags of the memory range [ADDRESS, ADDRESS + LENGTH)\n\ | 
|  | to TAG_BYTES.\n\ | 
|  | \n\ | 
|  | If the number of tags is greater than or equal to the number of tag granules\n\ | 
|  | in the [ADDRESS, ADDRESS + LENGTH) range, only the tags up to the\n\ | 
|  | number of tag granules are updated.\n\ | 
|  | \n\ | 
|  | If the number of tags is less than the number of tag granules, then the\n\ | 
|  | command is a fill operation.  The TAG_BYTES are interpreted as a pattern\n\ | 
|  | that gets repeated until the number of tag granules in the memory range\n\ | 
|  | [ADDRESS, ADDRESS + LENGTH) is updated."), | 
|  | &memory_tag_list); | 
|  | add_cmd ("check", class_vars, memory_tag_check_command, | 
|  | _("Validate a pointer's logical tag against the allocation tag.\n\ | 
|  | Usage: memory-tag check <POINTER>\n\ | 
|  | <POINTER> is an expression that evaluates to a pointer\n\ | 
|  | Fetch the logical and allocation tags for POINTER and compare them\n\ | 
|  | for equality.  If the tags do not match, print additional information about\n\ | 
|  | the tag mismatch."), | 
|  | &memory_tag_list); | 
|  | } |