| /* RISC-V-specific support for NN-bit ELF. |
| Copyright (C) 2011-2023 Free Software Foundation, Inc. |
| |
| Contributed by Andrew Waterman (andrew@sifive.com). |
| Based on TILE-Gx and MIPS targets. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; see the file COPYING3. If not, |
| see <http://www.gnu.org/licenses/>. */ |
| |
| /* This file handles RISC-V ELF targets. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "libbfd.h" |
| #include "bfdlink.h" |
| #include "genlink.h" |
| #include "elf-bfd.h" |
| #include "elfxx-riscv.h" |
| #include "elf/riscv.h" |
| #include "opcode/riscv.h" |
| #include "objalloc.h" |
| |
| #include <limits.h> |
| #ifndef CHAR_BIT |
| #define CHAR_BIT 8 |
| #endif |
| |
| /* True if dynamic relocation is needed. If we are creating a shared library, |
| and this is a reloc against a global symbol, or a non PC relative reloc |
| against a local symbol, then we need to copy the reloc into the shared |
| library. However, if we are linking with -Bsymbolic, we do not need to |
| copy a reloc against a global symbol which is defined in an object we are |
| including in the link (i.e., DEF_REGULAR is set). |
| |
| At this point we have not seen all the input files, so it is possible that |
| DEF_REGULAR is not set now but will be set later (it is never cleared). |
| In case of a weak definition, DEF_REGULAR may be cleared later by a strong |
| definition in a shared library. We account for that possibility below by |
| storing information in the relocs_copied field of the hash table entry. |
| A similar situation occurs when creating shared libraries and symbol |
| visibility changes render the symbol local. |
| |
| If on the other hand, we are creating an executable, we may need to keep |
| relocations for symbols satisfied by a dynamic library if we manage to |
| avoid copy relocs for the symbol. |
| |
| Generate dynamic pointer relocation against STT_GNU_IFUNC symbol in the |
| non-code section (R_RISCV_32/R_RISCV_64). */ |
| #define RISCV_NEED_DYNAMIC_RELOC(PCREL, INFO, H, SEC) \ |
| ((bfd_link_pic (INFO) \ |
| && ((SEC)->flags & SEC_ALLOC) != 0 \ |
| && (!(PCREL) \ |
| || ((H) != NULL \ |
| && (!(INFO)->symbolic \ |
| || (H)->root.type == bfd_link_hash_defweak \ |
| || !(H)->def_regular)))) \ |
| || (!bfd_link_pic (INFO) \ |
| && ((SEC)->flags & SEC_ALLOC) != 0 \ |
| && (H) != NULL \ |
| && ((H)->root.type == bfd_link_hash_defweak \ |
| || !(H)->def_regular)) \ |
| || (!bfd_link_pic (INFO) \ |
| && (H) != NULL \ |
| && (H)->type == STT_GNU_IFUNC \ |
| && ((SEC)->flags & SEC_CODE) == 0)) |
| |
| /* True if dynamic relocation should be generated. */ |
| #define RISCV_GENERATE_DYNAMIC_RELOC(PCREL, INFO, H, RESOLVED_TO_ZERO) \ |
| ((bfd_link_pic (INFO) \ |
| && ((H) == NULL \ |
| || (ELF_ST_VISIBILITY ((H)->other) == STV_DEFAULT && !(RESOLVED_TO_ZERO)) \ |
| || (H)->root.type != bfd_link_hash_undefweak) \ |
| && (!(PCREL) \ |
| || !SYMBOL_CALLS_LOCAL ((INFO), (H)))) \ |
| || (!bfd_link_pic (INFO) \ |
| && (H) != NULL \ |
| && (H)->dynindx != -1 \ |
| && !(H)->non_got_ref \ |
| && (((H)->def_dynamic && !(H)->def_regular) \ |
| || (H)->root.type == bfd_link_hash_undefweak \ |
| || (H)->root.type == bfd_link_hash_undefined))) |
| |
| /* True if this input relocation should be copied to output. H->dynindx |
| may be -1 if this symbol was marked to become local. */ |
| #define RISCV_COPY_INPUT_RELOC(INFO, H) \ |
| ((H) != NULL \ |
| && (H)->dynindx != -1 \ |
| && (!bfd_link_pic (INFO) \ |
| || !SYMBOLIC_BIND ((INFO), (H)) \ |
| || !(H)->def_regular)) |
| |
| /* True if this is actually a static link, or it is a -Bsymbolic link |
| and the symbol is defined locally, or the symbol was forced to be |
| local because of a version file. */ |
| #define RISCV_RESOLVED_LOCALLY(INFO, H) \ |
| (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (elf_hash_table (INFO)->dynamic_sections_created, \ |
| bfd_link_pic (INFO), (H)) \ |
| || (bfd_link_pic (INFO) \ |
| && SYMBOL_REFERENCES_LOCAL ((INFO), (H)))) |
| |
| /* Set NEED_RELOC to true if TLS GD/IE needs dynamic relocations, and INDX will |
| be the dynamic index. PR22263, use the same check in allocate_dynrelocs and |
| riscv_elf_relocate_section for TLS GD/IE. */ |
| #define RISCV_TLS_GD_IE_NEED_DYN_RELOC(INFO, DYN, H, INDX, NEED_RELOC) \ |
| do \ |
| { \ |
| if ((H) != NULL \ |
| && (H)->dynindx != -1 \ |
| && WILL_CALL_FINISH_DYNAMIC_SYMBOL ((DYN), bfd_link_pic (INFO), (H)) \ |
| && (bfd_link_dll (INFO) || !SYMBOL_REFERENCES_LOCAL ((INFO), (H)))) \ |
| (INDX) = (H)->dynindx; \ |
| if ((bfd_link_dll (INFO) || (INDX) != 0) \ |
| && ((H) == NULL \ |
| || ELF_ST_VISIBILITY ((H)->other) == STV_DEFAULT \ |
| || (H)->root.type != bfd_link_hash_undefweak)) \ |
| (NEED_RELOC) = true; \ |
| } \ |
| while (0) |
| |
| #define ARCH_SIZE NN |
| |
| #define MINUS_ONE ((bfd_vma)0 - 1) |
| |
| #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3) |
| |
| #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES) |
| |
| /* The name of the dynamic interpreter. This is put in the .interp |
| section. */ |
| |
| #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1" |
| #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1" |
| |
| #define ELF_ARCH bfd_arch_riscv |
| #define ELF_TARGET_ID RISCV_ELF_DATA |
| #define ELF_MACHINE_CODE EM_RISCV |
| #define ELF_MAXPAGESIZE 0x1000 |
| #define ELF_COMMONPAGESIZE 0x1000 |
| |
| #define RISCV_ATTRIBUTES_SECTION_NAME ".riscv.attributes" |
| |
| /* RISC-V ELF linker hash entry. */ |
| |
| struct riscv_elf_link_hash_entry |
| { |
| struct elf_link_hash_entry elf; |
| |
| #define GOT_UNKNOWN 0 |
| #define GOT_NORMAL 1 |
| #define GOT_TLS_GD 2 |
| #define GOT_TLS_IE 4 |
| #define GOT_TLS_LE 8 |
| char tls_type; |
| }; |
| |
| #define riscv_elf_hash_entry(ent) \ |
| ((struct riscv_elf_link_hash_entry *) (ent)) |
| |
| struct _bfd_riscv_elf_obj_tdata |
| { |
| struct elf_obj_tdata root; |
| |
| /* tls_type for each local got entry. */ |
| char *local_got_tls_type; |
| }; |
| |
| #define _bfd_riscv_elf_tdata(abfd) \ |
| ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any) |
| |
| #define _bfd_riscv_elf_local_got_tls_type(abfd) \ |
| (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type) |
| |
| #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \ |
| (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \ |
| : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx])) |
| |
| #define is_riscv_elf(bfd) \ |
| (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ |
| && elf_tdata (bfd) != NULL \ |
| && elf_object_id (bfd) == RISCV_ELF_DATA) |
| |
| static bool |
| elfNN_riscv_mkobject (bfd *abfd) |
| { |
| return bfd_elf_allocate_object (abfd, |
| sizeof (struct _bfd_riscv_elf_obj_tdata), |
| RISCV_ELF_DATA); |
| } |
| |
| #include "elf/common.h" |
| #include "elf/internal.h" |
| |
| struct riscv_elf_link_hash_table |
| { |
| struct elf_link_hash_table elf; |
| |
| /* Various options and other info passed from the linker. */ |
| struct riscv_elf_params *params; |
| |
| /* Short-cuts to get to dynamic linker sections. */ |
| asection *sdyntdata; |
| |
| /* The max alignment of output sections. */ |
| bfd_vma max_alignment; |
| |
| /* The max alignment of output sections in [gp-2K, gp+2K) range. */ |
| bfd_vma max_alignment_for_gp; |
| |
| /* Used by local STT_GNU_IFUNC symbols. */ |
| htab_t loc_hash_table; |
| void * loc_hash_memory; |
| |
| /* The index of the last unused .rel.iplt slot. */ |
| bfd_vma last_iplt_index; |
| |
| /* The data segment phase, don't relax the section |
| when it is exp_seg_relro_adjust. */ |
| int *data_segment_phase; |
| |
| /* Relocations for variant CC symbols may be present. */ |
| int variant_cc; |
| }; |
| |
| /* Instruction access functions. */ |
| #define riscv_get_insn(bits, ptr) \ |
| ((bits) == 16 ? bfd_getl16 (ptr) \ |
| : (bits) == 32 ? bfd_getl32 (ptr) \ |
| : (bits) == 64 ? bfd_getl64 (ptr) \ |
| : (abort (), (bfd_vma) - 1)) |
| #define riscv_put_insn(bits, val, ptr) \ |
| ((bits) == 16 ? bfd_putl16 (val, ptr) \ |
| : (bits) == 32 ? bfd_putl32 (val, ptr) \ |
| : (bits) == 64 ? bfd_putl64 (val, ptr) \ |
| : (abort (), (void) 0)) |
| |
| /* Get the RISC-V ELF linker hash table from a link_info structure. */ |
| #define riscv_elf_hash_table(p) \ |
| ((is_elf_hash_table ((p)->hash) \ |
| && elf_hash_table_id (elf_hash_table (p)) == RISCV_ELF_DATA) \ |
| ? (struct riscv_elf_link_hash_table *) (p)->hash : NULL) |
| |
| void |
| riscv_elfNN_set_options (struct bfd_link_info *link_info, |
| struct riscv_elf_params *params) |
| { |
| riscv_elf_hash_table (link_info)->params = params; |
| } |
| |
| static bool |
| riscv_info_to_howto_rela (bfd *abfd, |
| arelent *cache_ptr, |
| Elf_Internal_Rela *dst) |
| { |
| cache_ptr->howto = riscv_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info)); |
| return cache_ptr->howto != NULL; |
| } |
| |
| static void |
| riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) |
| { |
| const struct elf_backend_data *bed; |
| bfd_byte *loc; |
| |
| bed = get_elf_backend_data (abfd); |
| loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); |
| bed->s->swap_reloca_out (abfd, rel, loc); |
| } |
| |
| /* Return true if a relocation is modifying an instruction. */ |
| |
| static bool |
| riscv_is_insn_reloc (const reloc_howto_type *howto) |
| { |
| /* Heuristic: A multibyte destination with a nontrivial mask |
| is an instruction */ |
| return (howto->bitsize > 8 |
| && howto->dst_mask != 0 |
| && ~(howto->dst_mask | (howto->bitsize < sizeof(bfd_vma) * CHAR_BIT |
| ? (MINUS_ONE << howto->bitsize) : (bfd_vma)0)) != 0); |
| } |
| |
| /* PLT/GOT stuff. */ |
| #define PLT_HEADER_INSNS 8 |
| #define PLT_ENTRY_INSNS 4 |
| #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4) |
| #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4) |
| #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES |
| /* Reserve two entries of GOTPLT for ld.so, one is used for PLT resolver, |
| the other is used for link map. Other targets also reserve one more |
| entry used for runtime profile? */ |
| #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE) |
| |
| #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset) |
| |
| #if ARCH_SIZE == 32 |
| # define MATCH_LREG MATCH_LW |
| #else |
| # define MATCH_LREG MATCH_LD |
| #endif |
| |
| /* Generate a PLT header. */ |
| |
| static bool |
| riscv_make_plt_header (bfd *output_bfd, bfd_vma gotplt_addr, bfd_vma addr, |
| uint32_t *entry) |
| { |
| bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr); |
| bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr); |
| |
| /* RVE has no t3 register, so this won't work, and is not supported. */ |
| if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE) |
| { |
| _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"), |
| output_bfd); |
| return false; |
| } |
| |
| /* auipc t2, %hi(.got.plt) |
| sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12 |
| l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve |
| addi t1, t1, -(hdr size + 12) # shifted .got.plt offset |
| addi t0, t2, %lo(.got.plt) # &.got.plt |
| srli t1, t1, log2(16/PTRSIZE) # .got.plt offset |
| l[w|d] t0, PTRSIZE(t0) # link map |
| jr t3 */ |
| |
| entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high); |
| entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3); |
| entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low); |
| entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, (uint32_t) -(PLT_HEADER_SIZE + 12)); |
| entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low); |
| entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES); |
| entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES); |
| entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0); |
| |
| return true; |
| } |
| |
| /* Generate a PLT entry. */ |
| |
| static bool |
| riscv_make_plt_entry (bfd *output_bfd, bfd_vma got, bfd_vma addr, |
| uint32_t *entry) |
| { |
| /* RVE has no t3 register, so this won't work, and is not supported. */ |
| if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE) |
| { |
| _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"), |
| output_bfd); |
| return false; |
| } |
| |
| /* auipc t3, %hi(.got.plt entry) |
| l[w|d] t3, %lo(.got.plt entry)(t3) |
| jalr t1, t3 |
| nop */ |
| |
| entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr)); |
| entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr)); |
| entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0); |
| entry[3] = RISCV_NOP; |
| |
| return true; |
| } |
| |
| /* Create an entry in an RISC-V ELF linker hash table. */ |
| |
| static struct bfd_hash_entry * |
| link_hash_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, const char *string) |
| { |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (entry == NULL) |
| { |
| entry = |
| bfd_hash_allocate (table, |
| sizeof (struct riscv_elf_link_hash_entry)); |
| if (entry == NULL) |
| return entry; |
| } |
| |
| /* Call the allocation method of the superclass. */ |
| entry = _bfd_elf_link_hash_newfunc (entry, table, string); |
| if (entry != NULL) |
| { |
| struct riscv_elf_link_hash_entry *eh; |
| |
| eh = (struct riscv_elf_link_hash_entry *) entry; |
| eh->tls_type = GOT_UNKNOWN; |
| } |
| |
| return entry; |
| } |
| |
| /* Compute a hash of a local hash entry. We use elf_link_hash_entry |
| for local symbol so that we can handle local STT_GNU_IFUNC symbols |
| as global symbol. We reuse indx and dynstr_index for local symbol |
| hash since they aren't used by global symbols in this backend. */ |
| |
| static hashval_t |
| riscv_elf_local_htab_hash (const void *ptr) |
| { |
| struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) ptr; |
| return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index); |
| } |
| |
| /* Compare local hash entries. */ |
| |
| static int |
| riscv_elf_local_htab_eq (const void *ptr1, const void *ptr2) |
| { |
| struct elf_link_hash_entry *h1 = (struct elf_link_hash_entry *) ptr1; |
| struct elf_link_hash_entry *h2 = (struct elf_link_hash_entry *) ptr2; |
| |
| return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index; |
| } |
| |
| /* Find and/or create a hash entry for local symbol. */ |
| |
| static struct elf_link_hash_entry * |
| riscv_elf_get_local_sym_hash (struct riscv_elf_link_hash_table *htab, |
| bfd *abfd, const Elf_Internal_Rela *rel, |
| bool create) |
| { |
| struct riscv_elf_link_hash_entry eh, *ret; |
| asection *sec = abfd->sections; |
| hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id, |
| ELFNN_R_SYM (rel->r_info)); |
| void **slot; |
| |
| eh.elf.indx = sec->id; |
| eh.elf.dynstr_index = ELFNN_R_SYM (rel->r_info); |
| slot = htab_find_slot_with_hash (htab->loc_hash_table, &eh, h, |
| create ? INSERT : NO_INSERT); |
| |
| if (!slot) |
| return NULL; |
| |
| if (*slot) |
| { |
| ret = (struct riscv_elf_link_hash_entry *) *slot; |
| return &ret->elf; |
| } |
| |
| ret = (struct riscv_elf_link_hash_entry *) |
| objalloc_alloc ((struct objalloc *) htab->loc_hash_memory, |
| sizeof (struct riscv_elf_link_hash_entry)); |
| if (ret) |
| { |
| memset (ret, 0, sizeof (*ret)); |
| ret->elf.indx = sec->id; |
| ret->elf.dynstr_index = ELFNN_R_SYM (rel->r_info); |
| ret->elf.dynindx = -1; |
| *slot = ret; |
| } |
| return &ret->elf; |
| } |
| |
| /* Destroy a RISC-V elf linker hash table. */ |
| |
| static void |
| riscv_elf_link_hash_table_free (bfd *obfd) |
| { |
| struct riscv_elf_link_hash_table *ret |
| = (struct riscv_elf_link_hash_table *) obfd->link.hash; |
| |
| if (ret->loc_hash_table) |
| htab_delete (ret->loc_hash_table); |
| if (ret->loc_hash_memory) |
| objalloc_free ((struct objalloc *) ret->loc_hash_memory); |
| |
| _bfd_elf_link_hash_table_free (obfd); |
| } |
| |
| /* Create a RISC-V ELF linker hash table. */ |
| |
| static struct bfd_link_hash_table * |
| riscv_elf_link_hash_table_create (bfd *abfd) |
| { |
| struct riscv_elf_link_hash_table *ret; |
| size_t amt = sizeof (struct riscv_elf_link_hash_table); |
| |
| ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt); |
| if (ret == NULL) |
| return NULL; |
| |
| if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc, |
| sizeof (struct riscv_elf_link_hash_entry), |
| RISCV_ELF_DATA)) |
| { |
| free (ret); |
| return NULL; |
| } |
| |
| ret->max_alignment = (bfd_vma) -1; |
| ret->max_alignment_for_gp = (bfd_vma) -1; |
| |
| /* Create hash table for local ifunc. */ |
| ret->loc_hash_table = htab_try_create (1024, |
| riscv_elf_local_htab_hash, |
| riscv_elf_local_htab_eq, |
| NULL); |
| ret->loc_hash_memory = objalloc_create (); |
| if (!ret->loc_hash_table || !ret->loc_hash_memory) |
| { |
| riscv_elf_link_hash_table_free (abfd); |
| return NULL; |
| } |
| ret->elf.root.hash_table_free = riscv_elf_link_hash_table_free; |
| |
| return &ret->elf.root; |
| } |
| |
| /* Create the .got section. */ |
| |
| static bool |
| riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) |
| { |
| flagword flags; |
| asection *s, *s_got; |
| struct elf_link_hash_entry *h; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| |
| /* This function may be called more than once. */ |
| if (htab->sgot != NULL) |
| return true; |
| |
| flags = bed->dynamic_sec_flags; |
| |
| s = bfd_make_section_anyway_with_flags (abfd, |
| (bed->rela_plts_and_copies_p |
| ? ".rela.got" : ".rel.got"), |
| (bed->dynamic_sec_flags |
| | SEC_READONLY)); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return false; |
| htab->srelgot = s; |
| |
| s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return false; |
| htab->sgot = s; |
| |
| /* The first bit of the global offset table is the header. */ |
| s->size += bed->got_header_size; |
| |
| if (bed->want_got_plt) |
| { |
| s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return false; |
| htab->sgotplt = s; |
| |
| /* Reserve room for the header. */ |
| s->size += GOTPLT_HEADER_SIZE; |
| } |
| |
| if (bed->want_got_sym) |
| { |
| /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got |
| section. We don't do this in the linker script because we don't want |
| to define the symbol if we are not creating a global offset |
| table. */ |
| h = _bfd_elf_define_linkage_sym (abfd, info, s_got, |
| "_GLOBAL_OFFSET_TABLE_"); |
| elf_hash_table (info)->hgot = h; |
| if (h == NULL) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and |
| .rela.bss sections in DYNOBJ, and set up shortcuts to them in our |
| hash table. */ |
| |
| static bool |
| riscv_elf_create_dynamic_sections (bfd *dynobj, |
| struct bfd_link_info *info) |
| { |
| struct riscv_elf_link_hash_table *htab; |
| |
| htab = riscv_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| if (!riscv_elf_create_got_section (dynobj, info)) |
| return false; |
| |
| if (!_bfd_elf_create_dynamic_sections (dynobj, info)) |
| return false; |
| |
| if (!bfd_link_pic (info)) |
| { |
| /* Technically, this section doesn't have contents. It is used as the |
| target of TLS copy relocs, to copy TLS data from shared libraries into |
| the executable. However, if we don't mark it as loadable, then it |
| matches the IS_TBSS test in ldlang.c, and there is no run-time address |
| space allocated for it even though it has SEC_ALLOC. That test is |
| correct for .tbss, but not correct for this section. There is also |
| a second problem that having a section with no contents can only work |
| if it comes after all sections with contents in the same segment, |
| but the linker script does not guarantee that. This is just mixed in |
| with other .tdata.* sections. We can fix both problems by lying and |
| saying that there are contents. This section is expected to be small |
| so this should not cause a significant extra program startup cost. */ |
| htab->sdyntdata = |
| bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn", |
| (SEC_ALLOC | SEC_THREAD_LOCAL |
| | SEC_LOAD | SEC_DATA |
| | SEC_HAS_CONTENTS |
| | SEC_LINKER_CREATED)); |
| } |
| |
| if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss |
| || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata))) |
| abort (); |
| |
| return true; |
| } |
| |
| /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
| |
| static void |
| riscv_elf_copy_indirect_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *dir, |
| struct elf_link_hash_entry *ind) |
| { |
| struct riscv_elf_link_hash_entry *edir, *eind; |
| |
| edir = (struct riscv_elf_link_hash_entry *) dir; |
| eind = (struct riscv_elf_link_hash_entry *) ind; |
| |
| if (ind->root.type == bfd_link_hash_indirect |
| && dir->got.refcount <= 0) |
| { |
| edir->tls_type = eind->tls_type; |
| eind->tls_type = GOT_UNKNOWN; |
| } |
| _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
| } |
| |
| static bool |
| riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h, |
| unsigned long symndx, char tls_type) |
| { |
| char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx); |
| |
| *new_tls_type |= tls_type; |
| if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL)) |
| { |
| (*_bfd_error_handler) |
| (_("%pB: `%s' accessed both as normal and thread local symbol"), |
| abfd, h ? h->root.root.string : "<local>"); |
| return false; |
| } |
| return true; |
| } |
| |
| static bool |
| riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info, |
| struct elf_link_hash_entry *h, long symndx) |
| { |
| struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); |
| Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| |
| if (htab->elf.sgot == NULL) |
| { |
| if (!riscv_elf_create_got_section (htab->elf.dynobj, info)) |
| return false; |
| } |
| |
| if (h != NULL) |
| { |
| h->got.refcount += 1; |
| return true; |
| } |
| |
| /* This is a global offset table entry for a local symbol. */ |
| if (elf_local_got_refcounts (abfd) == NULL) |
| { |
| bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1); |
| if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size))) |
| return false; |
| _bfd_riscv_elf_local_got_tls_type (abfd) |
| = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info); |
| } |
| elf_local_got_refcounts (abfd) [symndx] += 1; |
| |
| return true; |
| } |
| |
| static bool |
| bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h) |
| { |
| reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type); |
| |
| /* We propably can improve the information to tell users that they |
| should be recompile the code with -fPIC or -fPIE, just like what |
| x86 does. */ |
| (*_bfd_error_handler) |
| (_("%pB: relocation %s against `%s' can not be used when making a shared " |
| "object; recompile with -fPIC"), |
| abfd, r ? r->name : _("<unknown>"), |
| h != NULL ? h->root.root.string : "a local symbol"); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| /* Look through the relocs for a section during the first phase, and |
| allocate space in the global offset table or procedure linkage |
| table. */ |
| |
| static bool |
| riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, |
| asection *sec, const Elf_Internal_Rela *relocs) |
| { |
| struct riscv_elf_link_hash_table *htab; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| const Elf_Internal_Rela *rel; |
| asection *sreloc = NULL; |
| |
| if (bfd_link_relocatable (info)) |
| return true; |
| |
| htab = riscv_elf_hash_table (info); |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| sym_hashes = elf_sym_hashes (abfd); |
| |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| |
| for (rel = relocs; rel < relocs + sec->reloc_count; rel++) |
| { |
| unsigned int r_type; |
| unsigned int r_symndx; |
| struct elf_link_hash_entry *h; |
| bool is_abs_symbol = false; |
| |
| r_symndx = ELFNN_R_SYM (rel->r_info); |
| r_type = ELFNN_R_TYPE (rel->r_info); |
| |
| if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) |
| { |
| (*_bfd_error_handler) (_("%pB: bad symbol index: %d"), |
| abfd, r_symndx); |
| return false; |
| } |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| /* A local symbol. */ |
| Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| return false; |
| |
| is_abs_symbol = isym->st_shndx == SHN_ABS ? true : false; |
| |
| /* Check relocation against local STT_GNU_IFUNC symbol. */ |
| if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) |
| { |
| h = riscv_elf_get_local_sym_hash (htab, abfd, rel, true); |
| if (h == NULL) |
| return false; |
| |
| /* Fake STT_GNU_IFUNC global symbol. */ |
| h->root.root.string = bfd_elf_sym_name (abfd, symtab_hdr, |
| isym, NULL); |
| h->type = STT_GNU_IFUNC; |
| h->def_regular = 1; |
| h->ref_regular = 1; |
| h->forced_local = 1; |
| h->root.type = bfd_link_hash_defined; |
| } |
| else |
| h = NULL; |
| } |
| else |
| { |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| is_abs_symbol = bfd_is_abs_symbol (&h->root) ? true : false; |
| } |
| |
| if (h != NULL) |
| { |
| switch (r_type) |
| { |
| case R_RISCV_32: |
| case R_RISCV_64: |
| case R_RISCV_CALL: |
| case R_RISCV_CALL_PLT: |
| case R_RISCV_HI20: |
| case R_RISCV_GOT_HI20: |
| case R_RISCV_PCREL_HI20: |
| /* Create the ifunc sections, iplt and ipltgot, for static |
| executables. */ |
| if (h->type == STT_GNU_IFUNC |
| && !_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info)) |
| return false; |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* It is referenced by a non-shared object. */ |
| h->ref_regular = 1; |
| } |
| |
| switch (r_type) |
| { |
| case R_RISCV_TLS_GD_HI20: |
| if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) |
| || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD)) |
| return false; |
| break; |
| |
| case R_RISCV_TLS_GOT_HI20: |
| if (bfd_link_dll (info)) |
| info->flags |= DF_STATIC_TLS; |
| if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) |
| || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE)) |
| return false; |
| break; |
| |
| case R_RISCV_GOT_HI20: |
| if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) |
| || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL)) |
| return false; |
| break; |
| |
| case R_RISCV_CALL: |
| case R_RISCV_CALL_PLT: |
| /* These symbol requires a procedure linkage table entry. |
| We actually build the entry in adjust_dynamic_symbol, |
| because these might be a case of linking PIC code without |
| linking in any dynamic objects, in which case we don't |
| need to generate a procedure linkage table after all. */ |
| |
| /* If it is a local symbol, then we resolve it directly |
| without creating a PLT entry. */ |
| if (h == NULL) |
| continue; |
| |
| h->needs_plt = 1; |
| h->plt.refcount += 1; |
| break; |
| |
| case R_RISCV_PCREL_HI20: |
| if (h != NULL |
| && h->type == STT_GNU_IFUNC) |
| { |
| h->non_got_ref = 1; |
| h->pointer_equality_needed = 1; |
| |
| /* We don't use the PCREL_HI20 in the data section, |
| so we always need the plt when it refers to |
| ifunc symbol. */ |
| h->plt.refcount += 1; |
| } |
| |
| /* The non-preemptible absolute symbol shouldn't be referneced with |
| pc-relative relocation when generating shared object. However, |
| PCREL_HI20/LO12 relocs are always bind locally when generating |
| shared object, so all absolute symbol referenced need to be |
| disallowed, except they are defined in linker script. |
| |
| Maybe we should add this check for all pc-relative relocations, |
| please see pr28789 and pr25749 for details. */ |
| if (bfd_link_pic (info) |
| /* (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)) */ |
| && is_abs_symbol) |
| { |
| if (h != NULL && (h)->root.ldscript_def) |
| /* Disallow the absolute symbol defined in linker script here |
| will cause the glibc-linux toolchain build failed, so regard |
| them as pc-relative symbols, just like what x86 did. */ |
| ; |
| else |
| { |
| const char *name; |
| if (h->root.root.string) |
| name = h->root.root.string; |
| else |
| { |
| Elf_Internal_Sym *sym; |
| sym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, abfd, |
| r_symndx); |
| name = bfd_elf_sym_name (abfd, symtab_hdr, sym, NULL); |
| } |
| |
| reloc_howto_type *r_t = |
| riscv_elf_rtype_to_howto (abfd, r_type); |
| _bfd_error_handler |
| (_("%pB: relocation %s against absolute symbol `%s' can " |
| "not be used when making a shared object"), |
| abfd, r_t ? r_t->name : _("<unknown>"), name); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| } |
| /* Fall through. */ |
| |
| case R_RISCV_JAL: |
| case R_RISCV_BRANCH: |
| case R_RISCV_RVC_BRANCH: |
| case R_RISCV_RVC_JUMP: |
| /* In shared libraries and pie, these relocs are known |
| to bind locally. */ |
| if (bfd_link_pic (info)) |
| break; |
| goto static_reloc; |
| |
| case R_RISCV_TPREL_HI20: |
| /* This is not allowed in the pic, but okay in pie. */ |
| if (!bfd_link_executable (info)) |
| return bad_static_reloc (abfd, r_type, h); |
| if (h != NULL) |
| riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE); |
| break; |
| |
| case R_RISCV_HI20: |
| if (bfd_link_pic (info)) |
| return bad_static_reloc (abfd, r_type, h); |
| goto static_reloc; |
| |
| case R_RISCV_32: |
| if (ARCH_SIZE > 32 |
| && bfd_link_pic (info) |
| && (sec->flags & SEC_ALLOC) != 0) |
| { |
| if (is_abs_symbol) |
| break; |
| |
| reloc_howto_type *r_t = riscv_elf_rtype_to_howto (abfd, r_type); |
| _bfd_error_handler |
| (_("%pB: relocation %s against non-absolute symbol `%s' can " |
| "not be used in RVNN when making a shared object"), |
| abfd, r_t ? r_t->name : _("<unknown>"), |
| h != NULL ? h->root.root.string : "a local symbol"); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| goto static_reloc; |
| |
| case R_RISCV_COPY: |
| case R_RISCV_JUMP_SLOT: |
| case R_RISCV_RELATIVE: |
| case R_RISCV_64: |
| /* Fall through. */ |
| |
| static_reloc: |
| |
| if (h != NULL |
| && (!bfd_link_pic (info) |
| || h->type == STT_GNU_IFUNC)) |
| { |
| /* This reloc might not bind locally. */ |
| h->non_got_ref = 1; |
| h->pointer_equality_needed = 1; |
| |
| if (!h->def_regular |
| || (sec->flags & (SEC_CODE | SEC_READONLY)) != 0) |
| { |
| /* We may need a .plt entry if the symbol is a function |
| defined in a shared lib or is a function referenced |
| from the code or read-only section. */ |
| h->plt.refcount += 1; |
| } |
| } |
| |
| reloc_howto_type *r = riscv_elf_rtype_to_howto (abfd, r_type); |
| if (RISCV_NEED_DYNAMIC_RELOC (r->pc_relative, info, h, sec)) |
| { |
| struct elf_dyn_relocs *p; |
| struct elf_dyn_relocs **head; |
| |
| /* When creating a shared object, we must copy these |
| relocs into the output file. We create a reloc |
| section in dynobj and make room for the reloc. */ |
| if (sreloc == NULL) |
| { |
| sreloc = _bfd_elf_make_dynamic_reloc_section |
| (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES, |
| abfd, /*rela?*/ true); |
| |
| if (sreloc == NULL) |
| return false; |
| } |
| |
| /* If this is a global symbol, we count the number of |
| relocations we need for this symbol. */ |
| if (h != NULL) |
| head = &h->dyn_relocs; |
| else |
| { |
| /* Track dynamic relocs needed for local syms too. |
| We really need local syms available to do this |
| easily. Oh well. */ |
| |
| asection *s; |
| void *vpp; |
| Elf_Internal_Sym *isym; |
| |
| isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| return false; |
| |
| s = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| if (s == NULL) |
| s = sec; |
| |
| vpp = &elf_section_data (s)->local_dynrel; |
| head = (struct elf_dyn_relocs **) vpp; |
| } |
| |
| p = *head; |
| if (p == NULL || p->sec != sec) |
| { |
| size_t amt = sizeof *p; |
| p = ((struct elf_dyn_relocs *) |
| bfd_alloc (htab->elf.dynobj, amt)); |
| if (p == NULL) |
| return false; |
| p->next = *head; |
| *head = p; |
| p->sec = sec; |
| p->count = 0; |
| p->pc_count = 0; |
| } |
| |
| p->count += 1; |
| p->pc_count += r == NULL ? 0 : r->pc_relative; |
| } |
| |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Adjust a symbol defined by a dynamic object and referenced by a |
| regular object. The current definition is in some section of the |
| dynamic object, but we're not including those sections. We have to |
| change the definition to something the rest of the link can |
| understand. */ |
| |
| static bool |
| riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| struct riscv_elf_link_hash_table *htab; |
| struct riscv_elf_link_hash_entry * eh; |
| bfd *dynobj; |
| asection *s, *srel; |
| |
| htab = riscv_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| dynobj = htab->elf.dynobj; |
| |
| /* Make sure we know what is going on here. */ |
| BFD_ASSERT (dynobj != NULL |
| && (h->needs_plt |
| || h->type == STT_GNU_IFUNC |
| || h->is_weakalias |
| || (h->def_dynamic |
| && h->ref_regular |
| && !h->def_regular))); |
| |
| /* If this is a function, put it in the procedure linkage table. We |
| will fill in the contents of the procedure linkage table later |
| (although we could actually do it here). */ |
| if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt) |
| { |
| if (h->plt.refcount <= 0 |
| || (h->type != STT_GNU_IFUNC |
| && (SYMBOL_CALLS_LOCAL (info, h) |
| || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| && h->root.type == bfd_link_hash_undefweak)))) |
| { |
| /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an |
| input file, but the symbol was never referred to by a dynamic |
| object, or if all references were garbage collected. In such |
| a case, we don't actually need to build a PLT entry. */ |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| |
| return true; |
| } |
| else |
| h->plt.offset = (bfd_vma) -1; |
| |
| /* If this is a weak symbol, and there is a real definition, the |
| processor independent code will have arranged for us to see the |
| real definition first, and we can just use the same value. */ |
| if (h->is_weakalias) |
| { |
| struct elf_link_hash_entry *def = weakdef (h); |
| BFD_ASSERT (def->root.type == bfd_link_hash_defined); |
| h->root.u.def.section = def->root.u.def.section; |
| h->root.u.def.value = def->root.u.def.value; |
| return true; |
| } |
| |
| /* This is a reference to a symbol defined by a dynamic object which |
| is not a function. */ |
| |
| /* If we are creating a shared library, we must presume that the |
| only references to the symbol are via the global offset table. |
| For such cases we need not do anything here; the relocations will |
| be handled correctly by relocate_section. */ |
| if (bfd_link_pic (info)) |
| return true; |
| |
| /* If there are no references to this symbol that do not use the |
| GOT, we don't need to generate a copy reloc. */ |
| if (!h->non_got_ref) |
| return true; |
| |
| /* If -z nocopyreloc was given, we won't generate them either. */ |
| if (info->nocopyreloc) |
| { |
| h->non_got_ref = 0; |
| return true; |
| } |
| |
| /* If we don't find any dynamic relocs in read-only sections, then |
| we'll be keeping the dynamic relocs and avoiding the copy reloc. */ |
| if (!_bfd_elf_readonly_dynrelocs (h)) |
| { |
| h->non_got_ref = 0; |
| return true; |
| } |
| |
| /* We must allocate the symbol in our .dynbss section, which will |
| become part of the .bss section of the executable. There will be |
| an entry for this symbol in the .dynsym section. The dynamic |
| object will contain position independent code, so all references |
| from the dynamic object to this symbol will go through the global |
| offset table. The dynamic linker will use the .dynsym entry to |
| determine the address it must put in the global offset table, so |
| both the dynamic object and the regular object will refer to the |
| same memory location for the variable. */ |
| |
| /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker |
| to copy the initial value out of the dynamic object and into the |
| runtime process image. We need to remember the offset into the |
| .rel.bss section we are going to use. */ |
| eh = (struct riscv_elf_link_hash_entry *) h; |
| if (eh->tls_type & ~GOT_NORMAL) |
| { |
| s = htab->sdyntdata; |
| srel = htab->elf.srelbss; |
| } |
| else if ((h->root.u.def.section->flags & SEC_READONLY) != 0) |
| { |
| s = htab->elf.sdynrelro; |
| srel = htab->elf.sreldynrelro; |
| } |
| else |
| { |
| s = htab->elf.sdynbss; |
| srel = htab->elf.srelbss; |
| } |
| if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) |
| { |
| srel->size += sizeof (ElfNN_External_Rela); |
| h->needs_copy = 1; |
| } |
| |
| return _bfd_elf_adjust_dynamic_copy (info, h, s); |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| dynamic relocs. */ |
| |
| static bool |
| allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) |
| { |
| struct bfd_link_info *info; |
| struct riscv_elf_link_hash_table *htab; |
| struct elf_dyn_relocs *p; |
| |
| if (h->root.type == bfd_link_hash_indirect) |
| return true; |
| |
| info = (struct bfd_link_info *) inf; |
| htab = riscv_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| /* When we are generating pde, make sure gp symbol is output as a |
| dynamic symbol. Then ld.so can set the gp register earlier, before |
| resolving the ifunc. */ |
| if (!bfd_link_pic (info) |
| && htab->elf.dynamic_sections_created |
| && strcmp (h->root.root.string, RISCV_GP_SYMBOL) == 0 |
| && !bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| |
| /* Since STT_GNU_IFUNC symbols must go through PLT, we handle them |
| in the allocate_ifunc_dynrelocs and allocate_local_ifunc_dynrelocs, |
| if they are defined and referenced in a non-shared object. */ |
| if (h->type == STT_GNU_IFUNC |
| && h->def_regular) |
| return true; |
| else if (htab->elf.dynamic_sections_created |
| && h->plt.refcount > 0) |
| { |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| |
| if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h)) |
| { |
| asection *s = htab->elf.splt; |
| |
| if (s->size == 0) |
| s->size = PLT_HEADER_SIZE; |
| |
| h->plt.offset = s->size; |
| |
| /* Make room for this entry. */ |
| s->size += PLT_ENTRY_SIZE; |
| |
| /* We also need to make an entry in the .got.plt section. */ |
| htab->elf.sgotplt->size += GOT_ENTRY_SIZE; |
| |
| /* We also need to make an entry in the .rela.plt section. */ |
| htab->elf.srelplt->size += sizeof (ElfNN_External_Rela); |
| |
| /* If this symbol is not defined in a regular file, and we are |
| not generating a shared library, then set the symbol to this |
| location in the .plt. This is required to make function |
| pointers compare as equal between the normal executable and |
| the shared library. */ |
| if (! bfd_link_pic (info) |
| && !h->def_regular) |
| { |
| h->root.u.def.section = s; |
| h->root.u.def.value = h->plt.offset; |
| } |
| |
| /* If the symbol has STO_RISCV_VARIANT_CC flag, then raise the |
| variant_cc flag of riscv_elf_link_hash_table. */ |
| if (h->other & STO_RISCV_VARIANT_CC) |
| htab->variant_cc = 1; |
| } |
| else |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| } |
| else |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| |
| if (h->got.refcount > 0) |
| { |
| asection *s; |
| bool dyn; |
| int tls_type = riscv_elf_hash_entry (h)->tls_type; |
| |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| |
| s = htab->elf.sgot; |
| h->got.offset = s->size; |
| dyn = htab->elf.dynamic_sections_created; |
| if (tls_type & (GOT_TLS_GD | GOT_TLS_IE)) |
| { |
| int indx = 0; |
| bool need_reloc = false; |
| RISCV_TLS_GD_IE_NEED_DYN_RELOC(info, dyn, h, indx, need_reloc); |
| |
| /* TLS_GD needs two dynamic relocs and two GOT slots. */ |
| if (tls_type & GOT_TLS_GD) |
| { |
| s->size += 2 * RISCV_ELF_WORD_BYTES; |
| if (need_reloc) |
| htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela); |
| } |
| |
| /* TLS_IE needs one dynamic reloc and one GOT slot. */ |
| if (tls_type & GOT_TLS_IE) |
| { |
| s->size += RISCV_ELF_WORD_BYTES; |
| if (need_reloc) |
| htab->elf.srelgot->size += sizeof (ElfNN_External_Rela); |
| } |
| } |
| else |
| { |
| s->size += RISCV_ELF_WORD_BYTES; |
| if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) |
| && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) |
| htab->elf.srelgot->size += sizeof (ElfNN_External_Rela); |
| } |
| } |
| else |
| h->got.offset = (bfd_vma) -1; |
| |
| if (h->dyn_relocs == NULL) |
| return true; |
| |
| /* In the shared -Bsymbolic case, discard space allocated for |
| dynamic pc-relative relocs against symbols which turn out to be |
| defined in regular objects. For the normal shared case, discard |
| space for pc-relative relocs that have become local due to symbol |
| visibility changes. */ |
| |
| if (bfd_link_pic (info)) |
| { |
| if (SYMBOL_CALLS_LOCAL (info, h)) |
| { |
| struct elf_dyn_relocs **pp; |
| |
| for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| p->count -= p->pc_count; |
| p->pc_count = 0; |
| if (p->count == 0) |
| *pp = p->next; |
| else |
| pp = &p->next; |
| } |
| } |
| |
| /* Also discard relocs on undefined weak syms with non-default |
| visibility. */ |
| if (h->dyn_relocs != NULL |
| && h->root.type == bfd_link_hash_undefweak) |
| { |
| if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) |
| h->dyn_relocs = NULL; |
| |
| /* Make sure undefined weak symbols are output as a dynamic |
| symbol in PIEs. */ |
| else if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| } |
| } |
| else |
| { |
| /* For the non-shared case, discard space for relocs against |
| symbols which turn out to need copy relocs or are not |
| dynamic. */ |
| |
| if (!h->non_got_ref |
| && ((h->def_dynamic |
| && !h->def_regular) |
| || (htab->elf.dynamic_sections_created |
| && (h->root.type == bfd_link_hash_undefweak |
| || h->root.type == bfd_link_hash_undefined)))) |
| { |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| |
| /* If that succeeded, we know we'll be keeping all the |
| relocs. */ |
| if (h->dynindx != -1) |
| goto keep; |
| } |
| |
| h->dyn_relocs = NULL; |
| |
| keep: ; |
| } |
| |
| /* Finally, allocate space. */ |
| for (p = h->dyn_relocs; p != NULL; p = p->next) |
| { |
| asection *sreloc = elf_section_data (p->sec)->sreloc; |
| sreloc->size += p->count * sizeof (ElfNN_External_Rela); |
| } |
| |
| return true; |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| ifunc dynamic relocs. */ |
| |
| static bool |
| allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h, |
| void *inf) |
| { |
| struct bfd_link_info *info; |
| |
| if (h->root.type == bfd_link_hash_indirect) |
| return true; |
| |
| if (h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| info = (struct bfd_link_info *) inf; |
| |
| /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it |
| here if it is defined and referenced in a non-shared object. */ |
| if (h->type == STT_GNU_IFUNC |
| && h->def_regular) |
| return _bfd_elf_allocate_ifunc_dyn_relocs (info, h, |
| &h->dyn_relocs, |
| PLT_ENTRY_SIZE, |
| PLT_HEADER_SIZE, |
| GOT_ENTRY_SIZE, |
| true); |
| return true; |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| local ifunc dynamic relocs. */ |
| |
| static int |
| allocate_local_ifunc_dynrelocs (void **slot, void *inf) |
| { |
| struct elf_link_hash_entry *h |
| = (struct elf_link_hash_entry *) *slot; |
| |
| if (h->type != STT_GNU_IFUNC |
| || !h->def_regular |
| || !h->ref_regular |
| || !h->forced_local |
| || h->root.type != bfd_link_hash_defined) |
| abort (); |
| |
| return allocate_ifunc_dynrelocs (h, inf); |
| } |
| |
| static bool |
| riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| struct riscv_elf_link_hash_table *htab; |
| bfd *dynobj; |
| asection *s; |
| bfd *ibfd; |
| |
| htab = riscv_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| dynobj = htab->elf.dynobj; |
| BFD_ASSERT (dynobj != NULL); |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| /* Set the contents of the .interp section to the interpreter. */ |
| if (bfd_link_executable (info) && !info->nointerp) |
| { |
| s = bfd_get_linker_section (dynobj, ".interp"); |
| BFD_ASSERT (s != NULL); |
| s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1; |
| s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER; |
| } |
| } |
| |
| /* Set up .got offsets for local syms, and space for local dynamic |
| relocs. */ |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| { |
| bfd_signed_vma *local_got; |
| bfd_signed_vma *end_local_got; |
| char *local_tls_type; |
| bfd_size_type locsymcount; |
| Elf_Internal_Shdr *symtab_hdr; |
| asection *srel; |
| |
| if (! is_riscv_elf (ibfd)) |
| continue; |
| |
| for (s = ibfd->sections; s != NULL; s = s->next) |
| { |
| struct elf_dyn_relocs *p; |
| |
| for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next) |
| { |
| if (!bfd_is_abs_section (p->sec) |
| && bfd_is_abs_section (p->sec->output_section)) |
| { |
| /* Input section has been discarded, either because |
| it is a copy of a linkonce section or due to |
| linker script /DISCARD/, so we'll be discarding |
| the relocs too. */ |
| } |
| else if (p->count != 0) |
| { |
| srel = elf_section_data (p->sec)->sreloc; |
| srel->size += p->count * sizeof (ElfNN_External_Rela); |
| if ((p->sec->output_section->flags & SEC_READONLY) != 0) |
| info->flags |= DF_TEXTREL; |
| } |
| } |
| } |
| |
| local_got = elf_local_got_refcounts (ibfd); |
| if (!local_got) |
| continue; |
| |
| symtab_hdr = &elf_symtab_hdr (ibfd); |
| locsymcount = symtab_hdr->sh_info; |
| end_local_got = local_got + locsymcount; |
| local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd); |
| s = htab->elf.sgot; |
| srel = htab->elf.srelgot; |
| for (; local_got < end_local_got; ++local_got, ++local_tls_type) |
| { |
| if (*local_got > 0) |
| { |
| *local_got = s->size; |
| s->size += RISCV_ELF_WORD_BYTES; |
| if (*local_tls_type & GOT_TLS_GD) |
| s->size += RISCV_ELF_WORD_BYTES; |
| if (bfd_link_pic (info) |
| || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE))) |
| srel->size += sizeof (ElfNN_External_Rela); |
| } |
| else |
| *local_got = (bfd_vma) -1; |
| } |
| } |
| |
| /* Allocate .plt and .got entries and space dynamic relocs for |
| global symbols. */ |
| elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info); |
| |
| /* Allocate .plt and .got entries and space dynamic relocs for |
| global ifunc symbols. */ |
| elf_link_hash_traverse (&htab->elf, allocate_ifunc_dynrelocs, info); |
| |
| /* Allocate .plt and .got entries and space dynamic relocs for |
| local ifunc symbols. */ |
| htab_traverse (htab->loc_hash_table, allocate_local_ifunc_dynrelocs, info); |
| |
| /* Used to resolve the dynamic relocs overwite problems when |
| generating static executable. */ |
| if (htab->elf.irelplt) |
| htab->last_iplt_index = htab->elf.irelplt->reloc_count - 1; |
| |
| if (htab->elf.sgotplt) |
| { |
| struct elf_link_hash_entry *got; |
| got = elf_link_hash_lookup (elf_hash_table (info), |
| "_GLOBAL_OFFSET_TABLE_", |
| false, false, false); |
| |
| /* Don't allocate .got.plt section if there are no GOT nor PLT |
| entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */ |
| if ((got == NULL |
| || !got->ref_regular_nonweak) |
| && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE) |
| && (htab->elf.splt == NULL |
| || htab->elf.splt->size == 0) |
| && (htab->elf.sgot == NULL |
| || (htab->elf.sgot->size |
| == get_elf_backend_data (output_bfd)->got_header_size))) |
| htab->elf.sgotplt->size = 0; |
| } |
| |
| /* The check_relocs and adjust_dynamic_symbol entry points have |
| determined the sizes of the various dynamic sections. Allocate |
| memory for them. */ |
| for (s = dynobj->sections; s != NULL; s = s->next) |
| { |
| if ((s->flags & SEC_LINKER_CREATED) == 0) |
| continue; |
| |
| if (s == htab->elf.splt |
| || s == htab->elf.sgot |
| || s == htab->elf.sgotplt |
| || s == htab->elf.iplt |
| || s == htab->elf.igotplt |
| || s == htab->elf.sdynbss |
| || s == htab->elf.sdynrelro |
| || s == htab->sdyntdata) |
| { |
| /* Strip this section if we don't need it; see the |
| comment below. */ |
| } |
| else if (startswith (s->name, ".rela")) |
| { |
| if (s->size != 0) |
| { |
| /* We use the reloc_count field as a counter if we need |
| to copy relocs into the output file. */ |
| s->reloc_count = 0; |
| } |
| } |
| else |
| { |
| /* It's not one of our sections. */ |
| continue; |
| } |
| |
| if (s->size == 0) |
| { |
| /* If we don't need this section, strip it from the |
| output file. This is mostly to handle .rela.bss and |
| .rela.plt. We must create both sections in |
| create_dynamic_sections, because they must be created |
| before the linker maps input sections to output |
| sections. The linker does that before |
| adjust_dynamic_symbol is called, and it is that |
| function which decides whether anything needs to go |
| into these sections. */ |
| s->flags |= SEC_EXCLUDE; |
| continue; |
| } |
| |
| if ((s->flags & SEC_HAS_CONTENTS) == 0) |
| continue; |
| |
| /* Allocate memory for the section contents. Zero the memory |
| for the benefit of .rela.plt, which has 4 unused entries |
| at the beginning, and we don't want garbage. */ |
| s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
| if (s->contents == NULL) |
| return false; |
| } |
| |
| /* Add dynamic entries. */ |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| if (!_bfd_elf_add_dynamic_tags (output_bfd, info, true)) |
| return false; |
| |
| if (htab->variant_cc |
| && !_bfd_elf_add_dynamic_entry (info, DT_RISCV_VARIANT_CC, 0)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| #define TP_OFFSET 0 |
| #define DTP_OFFSET 0x800 |
| |
| /* Return the relocation value for a TLS dtp-relative reloc. */ |
| |
| static bfd_vma |
| dtpoff (struct bfd_link_info *info, bfd_vma address) |
| { |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (elf_hash_table (info)->tls_sec == NULL) |
| return 0; |
| return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET; |
| } |
| |
| /* Return the relocation value for a static TLS tp-relative relocation. */ |
| |
| static bfd_vma |
| tpoff (struct bfd_link_info *info, bfd_vma address) |
| { |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (elf_hash_table (info)->tls_sec == NULL) |
| return 0; |
| return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET; |
| } |
| |
| /* Return the global pointer's value, or 0 if it is not in use. */ |
| |
| static bfd_vma |
| riscv_global_pointer_value (struct bfd_link_info *info) |
| { |
| struct bfd_link_hash_entry *h; |
| |
| h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, false, false, true); |
| if (h == NULL || h->type != bfd_link_hash_defined) |
| return 0; |
| |
| return h->u.def.value + sec_addr (h->u.def.section); |
| } |
| |
| /* Emplace a static relocation. */ |
| |
| static bfd_reloc_status_type |
| perform_relocation (const reloc_howto_type *howto, |
| const Elf_Internal_Rela *rel, |
| bfd_vma value, |
| asection *input_section, |
| bfd *input_bfd, |
| bfd_byte *contents) |
| { |
| if (howto->pc_relative) |
| value -= sec_addr (input_section) + rel->r_offset; |
| |
| switch (ELFNN_R_TYPE (rel->r_info)) |
| { |
| case R_RISCV_SUB6: |
| case R_RISCV_SUB8: |
| case R_RISCV_SUB16: |
| case R_RISCV_SUB32: |
| case R_RISCV_SUB64: |
| case R_RISCV_SUB_ULEB128: |
| value -= rel->r_addend; |
| break; |
| default: |
| value += rel->r_addend; |
| } |
| |
| switch (ELFNN_R_TYPE (rel->r_info)) |
| { |
| case R_RISCV_HI20: |
| case R_RISCV_TPREL_HI20: |
| case R_RISCV_PCREL_HI20: |
| case R_RISCV_GOT_HI20: |
| case R_RISCV_TLS_GOT_HI20: |
| case R_RISCV_TLS_GD_HI20: |
| if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))) |
| return bfd_reloc_overflow; |
| value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)); |
| break; |
| |
| case R_RISCV_LO12_I: |
| case R_RISCV_GPREL_I: |
| case R_RISCV_TPREL_LO12_I: |
| case R_RISCV_TPREL_I: |
| case R_RISCV_PCREL_LO12_I: |
| value = ENCODE_ITYPE_IMM (value); |
| break; |
| |
| case R_RISCV_LO12_S: |
| case R_RISCV_GPREL_S: |
| case R_RISCV_TPREL_LO12_S: |
| case R_RISCV_TPREL_S: |
| case R_RISCV_PCREL_LO12_S: |
| value = ENCODE_STYPE_IMM (value); |
| break; |
| |
| case R_RISCV_CALL: |
| case R_RISCV_CALL_PLT: |
| if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))) |
| return bfd_reloc_overflow; |
| value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)) |
| | (ENCODE_ITYPE_IMM (value) << 32); |
| break; |
| |
| case R_RISCV_JAL: |
| if (!VALID_JTYPE_IMM (value)) |
| return bfd_reloc_overflow; |
| value = ENCODE_JTYPE_IMM (value); |
| break; |
| |
| case R_RISCV_BRANCH: |
| if (!VALID_BTYPE_IMM (value)) |
| return bfd_reloc_overflow; |
| value = ENCODE_BTYPE_IMM (value); |
| break; |
| |
| case R_RISCV_RVC_BRANCH: |
| if (!VALID_CBTYPE_IMM (value)) |
| return bfd_reloc_overflow; |
| value = ENCODE_CBTYPE_IMM (value); |
| break; |
| |
| case R_RISCV_RVC_JUMP: |
| if (!VALID_CJTYPE_IMM (value)) |
| return bfd_reloc_overflow; |
| value = ENCODE_CJTYPE_IMM (value); |
| break; |
| |
| case R_RISCV_RVC_LUI: |
| if (RISCV_CONST_HIGH_PART (value) == 0) |
| { |
| /* Linker relaxation can convert an address equal to or greater than |
| 0x800 to slightly below 0x800. C.LUI does not accept zero as a |
| valid immediate. We can fix this by converting it to a C.LI. */ |
| bfd_vma insn = riscv_get_insn (howto->bitsize, |
| contents + rel->r_offset); |
| insn = (insn & ~MATCH_C_LUI) | MATCH_C_LI; |
| riscv_put_insn (howto->bitsize, insn, contents + rel->r_offset); |
| value = ENCODE_CITYPE_IMM (0); |
| } |
| else if (!VALID_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (value))) |
| return bfd_reloc_overflow; |
| else |
| value = ENCODE_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (value)); |
| break; |
| |
| /* R_RISCV_SET_ULEB128 won't go into here. */ |
| case R_RISCV_SUB_ULEB128: |
| { |
| unsigned int len = 0; |
| _bfd_read_unsigned_leb128 (input_bfd, contents + rel->r_offset, &len); |
| |
| /* Clean the contents value to zero (0x80), but keep the original |
| length. */ |
| bfd_byte *p = contents + rel->r_offset; |
| bfd_byte *endp = p + len - 1; |
| memset (p, 0x80, len - 1); |
| *(endp) = 0; |
| |
| /* Make sure the length of the new uleb128 value within the |
| original (available) length. */ |
| unsigned int new_len = 0; |
| unsigned int val_t = value; |
| do |
| { |
| new_len++; |
| val_t >>= 7; |
| } |
| while (val_t); |
| if (new_len > len) |
| { |
| _bfd_error_handler |
| (_("final size of uleb128 value at offset 0x%lx in %pA from " |
| "%pB exceeds available space"), |
| (long) rel->r_offset, input_section, input_bfd); |
| return bfd_reloc_dangerous; |
| } |
| else |
| { |
| p = _bfd_write_unsigned_leb128 (p, endp, value); |
| BFD_ASSERT (p); |
| |
| /* If the length of the value is reduced and shorter than the |
| original uleb128 length, then _bfd_write_unsigned_leb128 may |
| clear the 0x80 to 0x0 for the last byte that was written. |
| So reset it to keep the the original uleb128 length. */ |
| if (--p < endp) |
| *p |= 0x80; |
| } |
| return bfd_reloc_ok; |
| } |
| |
| case R_RISCV_32: |
| case R_RISCV_64: |
| case R_RISCV_ADD8: |
| case R_RISCV_ADD16: |
| case R_RISCV_ADD32: |
| case R_RISCV_ADD64: |
| case R_RISCV_SUB6: |
| case R_RISCV_SUB8: |
| case R_RISCV_SUB16: |
| case R_RISCV_SUB32: |
| case R_RISCV_SUB64: |
| case R_RISCV_SET6: |
| case R_RISCV_SET8: |
| case R_RISCV_SET16: |
| case R_RISCV_SET32: |
| case R_RISCV_32_PCREL: |
| case R_RISCV_TLS_DTPREL32: |
| case R_RISCV_TLS_DTPREL64: |
| break; |
| |
| case R_RISCV_DELETE: |
| return bfd_reloc_ok; |
| |
| default: |
| return bfd_reloc_notsupported; |
| } |
| |
| bfd_vma word; |
| if (riscv_is_insn_reloc (howto)) |
| word = riscv_get_insn (howto->bitsize, contents + rel->r_offset); |
| else |
| word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset); |
| word = (word & ~howto->dst_mask) | (value & howto->dst_mask); |
| if (riscv_is_insn_reloc (howto)) |
| riscv_put_insn (howto->bitsize, word, contents + rel->r_offset); |
| else |
| bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset); |
| |
| return bfd_reloc_ok; |
| } |
| |
| /* Remember all PC-relative high-part relocs we've encountered to help us |
| later resolve the corresponding low-part relocs. */ |
| |
| typedef struct |
| { |
| /* PC value. */ |
| bfd_vma address; |
| /* Relocation value with addend. */ |
| bfd_vma value; |
| /* Original reloc type. */ |
| int type; |
| } riscv_pcrel_hi_reloc; |
| |
| typedef struct riscv_pcrel_lo_reloc |
| { |
| /* PC value of auipc. */ |
| bfd_vma address; |
| /* Internal relocation. */ |
| const Elf_Internal_Rela *reloc; |
| /* Record the following information helps to resolve the %pcrel |
| which cross different input section. For now we build a hash |
| for pcrel at the start of riscv_elf_relocate_section, and then |
| free the hash at the end. But riscv_elf_relocate_section only |
| handles an input section at a time, so that means we can only |
| resolve the %pcrel_hi and %pcrel_lo which are in the same input |
| section. Otherwise, we will report dangerous relocation errors |
| for those %pcrel which are not in the same input section. */ |
| asection *input_section; |
| struct bfd_link_info *info; |
| reloc_howto_type *howto; |
| bfd_byte *contents; |
| /* The next riscv_pcrel_lo_reloc. */ |
| struct riscv_pcrel_lo_reloc *next; |
| } riscv_pcrel_lo_reloc; |
| |
| typedef struct |
| { |
| /* Hash table for riscv_pcrel_hi_reloc. */ |
| htab_t hi_relocs; |
| /* Linked list for riscv_pcrel_lo_reloc. */ |
| riscv_pcrel_lo_reloc *lo_relocs; |
| } riscv_pcrel_relocs; |
| |
| static hashval_t |
| riscv_pcrel_reloc_hash (const void *entry) |
| { |
| const riscv_pcrel_hi_reloc *e = entry; |
| return (hashval_t)(e->address >> 2); |
| } |
| |
| static int |
| riscv_pcrel_reloc_eq (const void *entry1, const void *entry2) |
| { |
| const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2; |
| return e1->address == e2->address; |
| } |
| |
| static bool |
| riscv_init_pcrel_relocs (riscv_pcrel_relocs *p) |
| { |
| p->lo_relocs = NULL; |
| p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash, |
| riscv_pcrel_reloc_eq, free); |
| return p->hi_relocs != NULL; |
| } |
| |
| static void |
| riscv_free_pcrel_relocs (riscv_pcrel_relocs *p) |
| { |
| riscv_pcrel_lo_reloc *cur = p->lo_relocs; |
| |
| while (cur != NULL) |
| { |
| riscv_pcrel_lo_reloc *next = cur->next; |
| free (cur); |
| cur = next; |
| } |
| |
| htab_delete (p->hi_relocs); |
| } |
| |
| static bool |
| riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel, |
| struct bfd_link_info *info, |
| bfd_vma pc, |
| bfd_vma addr, |
| bfd_byte *contents, |
| const reloc_howto_type *howto) |
| { |
| /* We may need to reference low addreses in PC-relative modes even when the |
| PC is far away from these addresses. For example, undefweak references |
| need to produce the address 0 when linked. As 0 is far from the arbitrary |
| addresses that we can link PC-relative programs at, the linker can't |
| actually relocate references to those symbols. In order to allow these |
| programs to work we simply convert the PC-relative auipc sequences to |
| 0-relative lui sequences. */ |
| if (bfd_link_pic (info)) |
| return false; |
| |
| /* If it's possible to reference the symbol using auipc we do so, as that's |
| more in the spirit of the PC-relative relocations we're processing. */ |
| bfd_vma offset = addr - pc; |
| if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset))) |
| return false; |
| |
| /* If it's impossible to reference this with a LUI-based offset then don't |
| bother to convert it at all so users still see the PC-relative relocation |
| in the truncation message. */ |
| if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr))) |
| return false; |
| |
| rel->r_info = ELFNN_R_INFO (addr, R_RISCV_HI20); |
| |
| bfd_vma insn = riscv_get_insn (howto->bitsize, contents + rel->r_offset); |
| insn = (insn & ~MASK_AUIPC) | MATCH_LUI; |
| riscv_put_insn (howto->bitsize, insn, contents + rel->r_offset); |
| return true; |
| } |
| |
| static bool |
| riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, |
| bfd_vma addr, |
| bfd_vma value, |
| int type, |
| bool absolute) |
| { |
| bfd_vma offset = absolute ? value : value - addr; |
| riscv_pcrel_hi_reloc entry = {addr, offset, type}; |
| riscv_pcrel_hi_reloc **slot = |
| (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT); |
| |
| BFD_ASSERT (*slot == NULL); |
| *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc)); |
| if (*slot == NULL) |
| return false; |
| **slot = entry; |
| return true; |
| } |
| |
| static bool |
| riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p, |
| bfd_vma addr, |
| const Elf_Internal_Rela *reloc, |
| asection *input_section, |
| struct bfd_link_info *info, |
| reloc_howto_type *howto, |
| bfd_byte *contents) |
| { |
| riscv_pcrel_lo_reloc *entry; |
| entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc)); |
| if (entry == NULL) |
| return false; |
| *entry = (riscv_pcrel_lo_reloc) {addr, reloc, input_section, info, |
| howto, contents, p->lo_relocs}; |
| p->lo_relocs = entry; |
| return true; |
| } |
| |
| static bool |
| riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p) |
| { |
| riscv_pcrel_lo_reloc *r; |
| |
| for (r = p->lo_relocs; r != NULL; r = r->next) |
| { |
| bfd *input_bfd = r->input_section->owner; |
| |
| riscv_pcrel_hi_reloc search = {r->address, 0, 0}; |
| riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search); |
| /* There may be a risk if the %pcrel_lo with addend refers to |
| an IFUNC symbol. The %pcrel_hi has been relocated to plt, |
| so the corresponding %pcrel_lo with addend looks wrong. */ |
| char *string = NULL; |
| if (entry == NULL) |
| string = _("%pcrel_lo missing matching %pcrel_hi"); |
| else if (entry->type == R_RISCV_GOT_HI20 |
| && r->reloc->r_addend != 0) |
| string = _("%pcrel_lo with addend isn't allowed for R_RISCV_GOT_HI20"); |
| else if (RISCV_CONST_HIGH_PART (entry->value) |
| != RISCV_CONST_HIGH_PART (entry->value + r->reloc->r_addend)) |
| { |
| /* Check the overflow when adding reloc addend. */ |
| string = bfd_asprintf (_("%%pcrel_lo overflow with an addend," |
| " the value of %%pcrel_hi is 0x%" PRIx64 |
| " without any addend, but may be 0x%" PRIx64 |
| " after adding the %%pcrel_lo addend"), |
| (int64_t) RISCV_CONST_HIGH_PART (entry->value), |
| (int64_t) RISCV_CONST_HIGH_PART |
| (entry->value + r->reloc->r_addend)); |
| if (string == NULL) |
| string = _("%pcrel_lo overflow with an addend"); |
| } |
| |
| if (string != NULL) |
| { |
| (*r->info->callbacks->reloc_dangerous) |
| (r->info, string, input_bfd, r->input_section, r->reloc->r_offset); |
| return true; |
| } |
| |
| perform_relocation (r->howto, r->reloc, entry->value, r->input_section, |
| input_bfd, r->contents); |
| } |
| |
| return true; |
| } |
| |
| /* Relocate a RISC-V ELF section. |
| |
| The RELOCATE_SECTION function is called by the new ELF backend linker |
| to handle the relocations for a section. |
| |
| The relocs are always passed as Rela structures. |
| |
| This function is responsible for adjusting the section contents as |
| necessary, and (if generating a relocatable output file) adjusting |
| the reloc addend as necessary. |
| |
| This function does not have to worry about setting the reloc |
| address or the reloc symbol index. |
| |
| LOCAL_SYMS is a pointer to the swapped in local symbols. |
| |
| LOCAL_SECTIONS is an array giving the section in the input file |
| corresponding to the st_shndx field of each local symbol. |
| |
| The global hash table entry for the global symbols can be found |
| via elf_sym_hashes (input_bfd). |
| |
| When generating relocatable output, this function must handle |
| STB_LOCAL/STT_SECTION symbols specially. The output symbol is |
| going to be the section symbol corresponding to the output |
| section, which means that the addend must be adjusted |
| accordingly. */ |
| |
| static int |
| riscv_elf_relocate_section (bfd *output_bfd, |
| struct bfd_link_info *info, |
| bfd *input_bfd, |
| asection *input_section, |
| bfd_byte *contents, |
| Elf_Internal_Rela *relocs, |
| Elf_Internal_Sym *local_syms, |
| asection **local_sections) |
| { |
| Elf_Internal_Rela *rel; |
| Elf_Internal_Rela *relend; |
| riscv_pcrel_relocs pcrel_relocs; |
| bool ret = false; |
| struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); |
| Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd); |
| struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); |
| bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd); |
| bfd_vma uleb128_set_vma = 0; |
| Elf_Internal_Rela *uleb128_set_rel = NULL; |
| bool absolute; |
| |
| if (!riscv_init_pcrel_relocs (&pcrel_relocs)) |
| return false; |
| |
| relend = relocs + input_section->reloc_count; |
| for (rel = relocs; rel < relend; rel++) |
| { |
| unsigned long r_symndx; |
| struct elf_link_hash_entry *h; |
| Elf_Internal_Sym *sym; |
| asection *sec; |
| bfd_vma relocation; |
| bfd_reloc_status_type r = bfd_reloc_ok; |
| const char *name = NULL; |
| bfd_vma off, ie_off; |
| bool unresolved_reloc, is_ie = false; |
| bfd_vma pc = sec_addr (input_section) + rel->r_offset; |
| int r_type = ELFNN_R_TYPE (rel->r_info), tls_type; |
| reloc_howto_type *howto = riscv_elf_rtype_to_howto (input_bfd, r_type); |
| const char *msg = NULL; |
| bool resolved_to_zero; |
| |
| if (howto == NULL) |
| continue; |
| |
| /* This is a final link. */ |
| r_symndx = ELFNN_R_SYM (rel->r_info); |
| h = NULL; |
| sym = NULL; |
| sec = NULL; |
| unresolved_reloc = false; |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| sym = local_syms + r_symndx; |
| sec = local_sections[r_symndx]; |
| relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
| |
| /* Relocate against local STT_GNU_IFUNC symbol. */ |
| if (!bfd_link_relocatable (info) |
| && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC) |
| { |
| h = riscv_elf_get_local_sym_hash (htab, input_bfd, rel, false); |
| if (h == NULL) |
| abort (); |
| |
| /* Set STT_GNU_IFUNC symbol value. */ |
| h->root.u.def.value = sym->st_value; |
| h->root.u.def.section = sec; |
| } |
| } |
| else |
| { |
| bool warned, ignored; |
| |
| RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
| r_symndx, symtab_hdr, sym_hashes, |
| h, sec, relocation, |
| unresolved_reloc, warned, ignored); |
| if (warned) |
| { |
| /* To avoid generating warning messages about truncated |
| relocations, set the relocation's address to be the same as |
| the start of this section. */ |
| if (input_section->output_section != NULL) |
| relocation = input_section->output_section->vma; |
| else |
| relocation = 0; |
| } |
| } |
| |
| if (sec != NULL && discarded_section (sec)) |
| RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
| rel, 1, relend, howto, 0, contents); |
| |
| if (bfd_link_relocatable (info)) |
| continue; |
| |
| /* Since STT_GNU_IFUNC symbol must go through PLT, we handle |
| it here if it is defined in a non-shared object. */ |
| if (h != NULL |
| && h->type == STT_GNU_IFUNC |
| && h->def_regular) |
| { |
| asection *plt, *base_got; |
| |
| if ((input_section->flags & SEC_ALLOC) == 0) |
| { |
| /* If this is a SHT_NOTE section without SHF_ALLOC, treat |
| STT_GNU_IFUNC symbol as STT_FUNC. */ |
| if (elf_section_type (input_section) == SHT_NOTE) |
| goto skip_ifunc; |
| |
| /* Dynamic relocs are not propagated for SEC_DEBUGGING |
| sections because such sections are not SEC_ALLOC and |
| thus ld.so will not process them. */ |
| if ((input_section->flags & SEC_DEBUGGING) != 0) |
| continue; |
| |
| abort (); |
| } |
| else if (h->plt.offset == (bfd_vma) -1 |
| /* The following relocation may not need the .plt entries |
| when all references to a STT_GNU_IFUNC symbols are done |
| via GOT or static function pointers. */ |
| && r_type != R_RISCV_32 |
| && r_type != R_RISCV_64 |
| && r_type != R_RISCV_HI20 |
| && r_type != R_RISCV_GOT_HI20 |
| && r_type != R_RISCV_LO12_I |
| && r_type != R_RISCV_LO12_S) |
| goto bad_ifunc_reloc; |
| |
| /* STT_GNU_IFUNC symbol must go through PLT. */ |
| plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt; |
| relocation = plt->output_section->vma |
| + plt->output_offset |
| + h->plt.offset; |
| |
| switch (r_type) |
| { |
| case R_RISCV_32: |
| case R_RISCV_64: |
| if (rel->r_addend != 0) |
| { |
| if (h->root.root.string) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL); |
| |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: relocation %s against STT_GNU_IFUNC " |
| "symbol `%s' has non-zero addend: %" PRId64), |
| input_bfd, howto->name, name, (int64_t) rel->r_addend); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| /* Generate dynamic relocation only when there is a non-GOT |
| reference in a shared object or there is no PLT. */ |
| if ((bfd_link_pic (info) && h->non_got_ref) |
| || h->plt.offset == (bfd_vma) -1) |
| { |
| Elf_Internal_Rela outrel; |
| asection *sreloc; |
| |
| /* Need a dynamic relocation to get the real function |
| address. */ |
| outrel.r_offset = _bfd_elf_section_offset (output_bfd, |
| info, |
| input_section, |
| rel->r_offset); |
| if (outrel.r_offset == (bfd_vma) -1 |
| || outrel.r_offset == (bfd_vma) -2) |
| abort (); |
| |
| outrel.r_offset += input_section->output_section->vma |
| + input_section->output_offset; |
| |
| if (h->dynindx == -1 |
| || h->forced_local |
| || bfd_link_executable (info)) |
| { |
| info->callbacks->minfo |
| (_("Local IFUNC function `%s' in %pB\n"), |
| h->root.root.string, |
| h->root.u.def.section->owner); |
| |
| /* This symbol is resolved locally. */ |
| outrel.r_info = ELFNN_R_INFO (0, R_RISCV_IRELATIVE); |
| outrel.r_addend = h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset; |
| } |
| else |
| { |
| outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); |
| outrel.r_addend = 0; |
| } |
| |
| /* Dynamic relocations are stored in |
| 1. .rela.ifunc section in PIC object. |
| 2. .rela.got section in dynamic executable. |
| 3. .rela.iplt section in static executable. */ |
| if (bfd_link_pic (info)) |
| sreloc = htab->elf.irelifunc; |
| else if (htab->elf.splt != NULL) |
| sreloc = htab->elf.srelgot; |
| else |
| sreloc = htab->elf.irelplt; |
| |
| riscv_elf_append_rela (output_bfd, sreloc, &outrel); |
| |
| /* If this reloc is against an external symbol, we |
| do not want to fiddle with the addend. Otherwise, |
| we need to include the symbol value so that it |
| becomes an addend for the dynamic reloc. For an |
| internal symbol, we have updated addend. */ |
| continue; |
| } |
| goto do_relocation; |
| |
| case R_RISCV_GOT_HI20: |
| base_got = htab->elf.sgot; |
| off = h->got.offset; |
| |
| if (base_got == NULL) |
| abort (); |
| |
| if (off == (bfd_vma) -1) |
| { |
| bfd_vma plt_idx; |
| |
| /* We can't use h->got.offset here to save state, or |
| even just remember the offset, as finish_dynamic_symbol |
| would use that as offset into .got. */ |
| |
| if (htab->elf.splt != NULL) |
| { |
| plt_idx = (h->plt.offset - PLT_HEADER_SIZE) |
| / PLT_ENTRY_SIZE; |
| off = GOTPLT_HEADER_SIZE + (plt_idx * GOT_ENTRY_SIZE); |
| base_got = htab->elf.sgotplt; |
| } |
| else |
| { |
| plt_idx = h->plt.offset / PLT_ENTRY_SIZE; |
| off = plt_idx * GOT_ENTRY_SIZE; |
| base_got = htab->elf.igotplt; |
| } |
| |
| if (h->dynindx == -1 |
| || h->forced_local |
| || info->symbolic) |
| { |
| /* This references the local definition. We must |
| initialize this entry in the global offset table. |
| Since the offset must always be a multiple of 8, |
| we use the least significant bit to record |
| whether we have initialized it already. |
| |
| When doing a dynamic link, we create a .rela.got |
| relocation entry to initialize the value. This |
| is done in the finish_dynamic_symbol routine. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| bfd_put_NN (output_bfd, relocation, |
| base_got->contents + off); |
| /* Note that this is harmless for the case, |
| as -1 | 1 still is -1. */ |
| h->got.offset |= 1; |
| } |
| } |
| } |
| |
| relocation = base_got->output_section->vma |
| + base_got->output_offset + off; |
| |
| if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, |
| relocation, r_type, |
| false)) |
| r = bfd_reloc_overflow; |
| goto do_relocation; |
| |
| case R_RISCV_CALL: |
| case R_RISCV_CALL_PLT: |
| case R_RISCV_HI20: |
| case R_RISCV_LO12_I: |
| case R_RISCV_LO12_S: |
| goto do_relocation; |
| |
| case R_RISCV_PCREL_HI20: |
| if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, |
| relocation, r_type, |
| false)) |
| r = bfd_reloc_overflow; |
| goto do_relocation; |
| |
| default: |
| bad_ifunc_reloc: |
| if (h->root.root.string) |
| name = h->root.root.string; |
| else |
| /* The entry of local ifunc is fake in global hash table, |
| we should find the name by the original local symbol. */ |
| name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL); |
| |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: relocation %s against STT_GNU_IFUNC " |
| "symbol `%s' isn't supported"), input_bfd, |
| howto->name, name); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| } |
| |
| skip_ifunc: |
| if (h != NULL) |
| name = h->root.root.string; |
| else |
| { |
| name = (bfd_elf_string_from_elf_section |
| (input_bfd, symtab_hdr->sh_link, sym->st_name)); |
| if (name == NULL || *name == '\0') |
| name = bfd_section_name (sec); |
| } |
| |
| resolved_to_zero = (h != NULL |
| && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)); |
| |
| switch (r_type) |
| { |
| case R_RISCV_NONE: |
| case R_RISCV_RELAX: |
| case R_RISCV_TPREL_ADD: |
| case R_RISCV_COPY: |
| case R_RISCV_JUMP_SLOT: |
| case R_RISCV_RELATIVE: |
| /* These require nothing of us at all. */ |
| continue; |
| |
| case R_RISCV_HI20: |
| case R_RISCV_BRANCH: |
| case R_RISCV_RVC_BRANCH: |
| case R_RISCV_RVC_LUI: |
| case R_RISCV_LO12_I: |
| case R_RISCV_LO12_S: |
| case R_RISCV_SET6: |
| case R_RISCV_SET8: |
| case R_RISCV_SET16: |
| case R_RISCV_SET32: |
| case R_RISCV_32_PCREL: |
| case R_RISCV_DELETE: |
| /* These require no special handling beyond perform_relocation. */ |
| break; |
| |
| case R_RISCV_SET_ULEB128: |
| if (uleb128_set_rel == NULL) |
| { |
| /* Saved for later usage. */ |
| uleb128_set_vma = relocation; |
| uleb128_set_rel = rel; |
| continue; |
| } |
| else |
| { |
| msg = ("Mismatched R_RISCV_SET_ULEB128, it must be paired with" |
| "and applied before R_RISCV_SUB_ULEB128"); |
| r = bfd_reloc_dangerous; |
| } |
| break; |
| |
| case R_RISCV_SUB_ULEB128: |
| if (uleb128_set_rel != NULL |
| && uleb128_set_rel->r_offset == rel->r_offset) |
| { |
| relocation = uleb128_set_vma - relocation + uleb128_set_rel->r_addend; |
| uleb128_set_vma = 0; |
| uleb128_set_rel = NULL; |
| } |
| else |
| { |
| msg = ("Mismatched R_RISCV_SUB_ULEB128, it must be paired with" |
| "and applied after R_RISCV_SET_ULEB128"); |
| r = bfd_reloc_dangerous; |
| } |
| break; |
| |
| case R_RISCV_GOT_HI20: |
| if (h != NULL) |
| { |
| off = h->got.offset; |
| BFD_ASSERT (off != (bfd_vma) -1); |
| |
| if (RISCV_RESOLVED_LOCALLY (info, h)) |
| { |
| /* We must initialize this entry in the global offset table. |
| Since the offset must always be a multiple of the word |
| size, we use the least significant bit to record whether |
| we have initialized it already. |
| |
| When doing a dynamic link, we create a .rela.got |
| relocation entry to initialize the value. This |
| is done in the finish_dynamic_symbol routine. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| bfd_put_NN (output_bfd, relocation, |
| htab->elf.sgot->contents + off); |
| h->got.offset |= 1; |
| } |
| } |
| else |
| unresolved_reloc = false; |
| } |
| else |
| { |
| BFD_ASSERT (local_got_offsets != NULL |
| && local_got_offsets[r_symndx] != (bfd_vma) -1); |
| |
| off = local_got_offsets[r_symndx]; |
| |
| /* The offset must always be a multiple of the word size. |
| So, we can use the least significant bit to record |
| whether we have already processed this entry. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| if (bfd_link_pic (info)) |
| { |
| asection *s; |
| Elf_Internal_Rela outrel; |
| |
| /* We need to generate a R_RISCV_RELATIVE reloc |
| for the dynamic linker. */ |
| s = htab->elf.srelgot; |
| BFD_ASSERT (s != NULL); |
| |
| outrel.r_offset = sec_addr (htab->elf.sgot) + off; |
| outrel.r_info = |
| ELFNN_R_INFO (0, R_RISCV_RELATIVE); |
| outrel.r_addend = relocation; |
| relocation = 0; |
| riscv_elf_append_rela (output_bfd, s, &outrel); |
| } |
| |
| bfd_put_NN (output_bfd, relocation, |
| htab->elf.sgot->contents + off); |
| local_got_offsets[r_symndx] |= 1; |
| } |
| } |
| |
| if (rel->r_addend != 0) |
| { |
| msg = _("The addend isn't allowed for R_RISCV_GOT_HI20"); |
| r = bfd_reloc_dangerous; |
| } |
| else |
| { |
| /* Address of got entry. */ |
| relocation = sec_addr (htab->elf.sgot) + off; |
| absolute = riscv_zero_pcrel_hi_reloc (rel, info, pc, |
| relocation, contents, |
| howto); |
| /* Update howto if relocation is changed. */ |
| howto = riscv_elf_rtype_to_howto (input_bfd, |
| ELFNN_R_TYPE (rel->r_info)); |
| if (howto == NULL) |
| r = bfd_reloc_notsupported; |
| else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, |
| relocation, r_type, |
| absolute)) |
| r = bfd_reloc_overflow; |
| } |
| break; |
| |
| case R_RISCV_ADD8: |
| case R_RISCV_ADD16: |
| case R_RISCV_ADD32: |
| case R_RISCV_ADD64: |
| { |
| bfd_vma old_value = bfd_get (howto->bitsize, input_bfd, |
| contents + rel->r_offset); |
| relocation = old_value + relocation; |
| } |
| break; |
| |
| case R_RISCV_SUB6: |
| { |
| bfd_vma old_value = bfd_get (howto->bitsize, input_bfd, |
| contents + rel->r_offset); |
| relocation = (old_value & ~howto->dst_mask) |
| | (((old_value & howto->dst_mask) - relocation) |
| & howto->dst_mask); |
| } |
| break; |
| |
| case R_RISCV_SUB8: |
| case R_RISCV_SUB16: |
| case R_RISCV_SUB32: |
| case R_RISCV_SUB64: |
| { |
| bfd_vma old_value = bfd_get (howto->bitsize, input_bfd, |
| contents + rel->r_offset); |
| relocation = old_value - relocation; |
| } |
| break; |
| |
| case R_RISCV_CALL: |
| case R_RISCV_CALL_PLT: |
| /* Handle a call to an undefined weak function. This won't be |
| relaxed, so we have to handle it here. */ |
| if (h != NULL && h->root.type == bfd_link_hash_undefweak |
| && (!bfd_link_pic (info) || h->plt.offset == MINUS_ONE)) |
| { |
| /* We can use x0 as the base register. */ |
| bfd_vma insn = bfd_getl32 (contents + rel->r_offset + 4); |
| insn &= ~(OP_MASK_RS1 << OP_SH_RS1); |
| bfd_putl32 (insn, contents + rel->r_offset + 4); |
| /* Set the relocation value so that we get 0 after the pc |
| relative adjustment. */ |
| relocation = sec_addr (input_section) + rel->r_offset; |
| } |
| /* Fall through. */ |
| |
| case R_RISCV_JAL: |
| case R_RISCV_RVC_JUMP: |
| if (bfd_link_pic (info) && h != NULL) |
| { |
| if (h->plt.offset != MINUS_ONE) |
| { |
| /* Refer to the PLT entry. This check has to match the |
| check in _bfd_riscv_relax_section. */ |
| relocation = sec_addr (htab->elf.splt) + h->plt.offset; |
| unresolved_reloc = false; |
| } |
| else if (!SYMBOL_REFERENCES_LOCAL (info, h) |
| && (input_section->flags & SEC_ALLOC) != 0 |
| && (input_section->flags & SEC_READONLY) != 0 |
| && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) |
| { |
| /* PR 28509, when generating the shared object, these |
| referenced symbols may bind externally, which means |
| they will be exported to the dynamic symbol table, |
| and are preemptible by default. These symbols cannot |
| be referenced by the non-pic relocations, like |
| R_RISCV_JAL and R_RISCV_RVC_JUMP relocations. |
| |
| However, consider that linker may relax the R_RISCV_CALL |
| relocations to R_RISCV_JAL or R_RISCV_RVC_JUMP, if |
| these relocations are relocated to the plt entries, |
| then we won't report error for them. |
| |
| Perhaps we also need the similar checks for the |
| R_RISCV_BRANCH and R_RISCV_RVC_BRANCH relocations. */ |
| msg = bfd_asprintf (_("%%X%%P: relocation %s against `%s'" |
| " which may bind externally" |
| " can not be used" |
| " when making a shared object;" |
| " recompile with -fPIC\n"), |
| howto->name, h->root.root.string); |
| r = bfd_reloc_notsupported; |
| } |
| } |
| break; |
| |
| case R_RISCV_TPREL_HI20: |
| relocation = tpoff (info, relocation); |
| break; |
| |
| case R_RISCV_TPREL_LO12_I: |
| case R_RISCV_TPREL_LO12_S: |
| relocation = tpoff (info, relocation); |
| break; |
| |
| case R_RISCV_TPREL_I: |
| case R_RISCV_TPREL_S: |
| relocation = tpoff (info, relocation); |
| if (VALID_ITYPE_IMM (relocation + rel->r_addend)) |
| { |
| /* We can use tp as the base register. */ |
| bfd_vma insn = bfd_getl32 (contents + rel->r_offset); |
| insn &= ~(OP_MASK_RS1 << OP_SH_RS1); |
| insn |= X_TP << OP_SH_RS1; |
| bfd_putl32 (insn, contents + rel->r_offset); |
| } |
| else |
| r = bfd_reloc_overflow; |
| break; |
| |
| case R_RISCV_GPREL_I: |
| case R_RISCV_GPREL_S: |
| { |
| bfd_vma gp = riscv_global_pointer_value (info); |
| bool x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend); |
| if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp)) |
| { |
| /* We can use x0 or gp as the base register. */ |
| bfd_vma insn = bfd_getl32 (contents + rel->r_offset); |
| insn &= ~(OP_MASK_RS1 << OP_SH_RS1); |
| if (!x0_base) |
| { |
| rel->r_addend -= gp; |
| insn |= X_GP << OP_SH_RS1; |
| } |
| bfd_putl32 (insn, contents + rel->r_offset); |
| } |
| else |
| r = bfd_reloc_overflow; |
| break; |
| } |
| |
| case R_RISCV_PCREL_HI20: |
| absolute = riscv_zero_pcrel_hi_reloc (rel, info, pc, relocation, |
| contents, howto); |
| /* Update howto if relocation is changed. */ |
| howto = riscv_elf_rtype_to_howto (input_bfd, |
| ELFNN_R_TYPE (rel->r_info)); |
| if (howto == NULL) |
| r = bfd_reloc_notsupported; |
| else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, |
| relocation + rel->r_addend, |
| r_type, absolute)) |
| r = bfd_reloc_overflow; |
| break; |
| |
| case R_RISCV_PCREL_LO12_I: |
| case R_RISCV_PCREL_LO12_S: |
| /* We don't allow section symbols plus addends as the auipc address, |
| because then riscv_relax_delete_bytes would have to search through |
| all relocs to update these addends. This is also ambiguous, as |
| we do allow offsets to be added to the target address, which are |
| not to be used to find the auipc address. */ |
| if (((sym != NULL && (ELF_ST_TYPE (sym->st_info) == STT_SECTION)) |
| || (h != NULL && h->type == STT_SECTION)) |
| && rel->r_addend) |
| { |
| msg = _("%pcrel_lo section symbol with an addend"); |
| r = bfd_reloc_dangerous; |
| break; |
| } |
| |
| if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, relocation, rel, |
| input_section, info, howto, |
| contents)) |
| continue; |
| r = bfd_reloc_overflow; |
| break; |
| |
| case R_RISCV_TLS_DTPREL32: |
| case R_RISCV_TLS_DTPREL64: |
| relocation = dtpoff (info, relocation); |
| break; |
| |
| case R_RISCV_32: |
| /* Non ABS symbol should be blocked in check_relocs. */ |
| if (ARCH_SIZE > 32) |
| break; |
| /* Fall through. */ |
| |
| case R_RISCV_64: |
| if ((input_section->flags & SEC_ALLOC) == 0) |
| break; |
| |
| if (RISCV_GENERATE_DYNAMIC_RELOC (howto->pc_relative, info, h, |
| resolved_to_zero)) |
| { |
| Elf_Internal_Rela outrel; |
| asection *sreloc; |
| |
| /* When generating a shared object, these relocations |
| are copied into the output file to be resolved at run |
| time. */ |
| |
| outrel.r_offset = |
| _bfd_elf_section_offset (output_bfd, info, input_section, |
| rel->r_offset); |
| bool skip = false; |
| bool relocate = false; |
| if (outrel.r_offset == (bfd_vma) -1) |
| skip = true; |
| else if (outrel.r_offset == (bfd_vma) -2) |
| { |
| skip = true; |
| relocate = true; |
| } |
| else if (h != NULL && bfd_is_abs_symbol (&h->root)) |
| { |
| /* Don't need dynamic reloc when the ABS symbol is |
| non-dynamic or forced to local. Maybe just use |
| SYMBOL_REFERENCES_LOCAL to check? */ |
| skip = (h->forced_local || (h->dynindx == -1)); |
| relocate = skip; |
| } |
| |
| outrel.r_offset += sec_addr (input_section); |
| |
| if (skip) |
| memset (&outrel, 0, sizeof outrel); /* R_RISCV_NONE. */ |
| else if (RISCV_COPY_INPUT_RELOC (info, h)) |
| { |
| /* Maybe just use !SYMBOL_REFERENCES_LOCAL to check? */ |
| outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); |
| outrel.r_addend = rel->r_addend; |
| } |
| else |
| { |
| /* This symbol is local, or marked to become local. */ |
| outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE); |
| outrel.r_addend = relocation + rel->r_addend; |
| } |
| |
| sreloc = elf_section_data (input_section)->sreloc; |
| riscv_elf_append_rela (output_bfd, sreloc, &outrel); |
| if (!relocate) |
| continue; |
| } |
| break; |
| |
| case R_RISCV_TLS_GOT_HI20: |
| is_ie = true; |
| /* Fall through. */ |
| |
| case R_RISCV_TLS_GD_HI20: |
| if (h != NULL) |
| { |
| off = h->got.offset; |
| h->got.offset |= 1; |
| } |
| else |
| { |
| off = local_got_offsets[r_symndx]; |
| local_got_offsets[r_symndx] |= 1; |
| } |
| |
| tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx); |
| BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD)); |
| /* If this symbol is referenced by both GD and IE TLS, the IE |
| reference's GOT slot follows the GD reference's slots. */ |
| ie_off = 0; |
| if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE)) |
| ie_off = 2 * GOT_ENTRY_SIZE; |
| |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| Elf_Internal_Rela outrel; |
| int indx = 0; |
| bool need_relocs = false; |
| |
| if (htab->elf.srelgot == NULL) |
| abort (); |
| |
| bool dyn = elf_hash_table (info)->dynamic_sections_created; |
| RISCV_TLS_GD_IE_NEED_DYN_RELOC (info, dyn, h, indx, need_relocs); |
| |
| /* The GOT entries have not been initialized yet. Do it |
| now, and emit any relocations. */ |
| if (tls_type & GOT_TLS_GD) |
| { |
| if (need_relocs) |
| { |
| outrel.r_offset = sec_addr (htab->elf.sgot) + off; |
| outrel.r_addend = 0; |
| outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN); |
| bfd_put_NN (output_bfd, 0, |
| htab->elf.sgot->contents + off); |
| riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); |
| if (indx == 0) |
| { |
| BFD_ASSERT (! unresolved_reloc); |
| bfd_put_NN (output_bfd, |
| dtpoff (info, relocation), |
| (htab->elf.sgot->contents |
| + off + RISCV_ELF_WORD_BYTES)); |
| } |
| else |
| { |
| bfd_put_NN (output_bfd, 0, |
| (htab->elf.sgot->contents |
| + off + RISCV_ELF_WORD_BYTES)); |
| outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN); |
| outrel.r_offset += RISCV_ELF_WORD_BYTES; |
| riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); |
| } |
| } |
| else |
| { |
| /* If we are not emitting relocations for a |
| general dynamic reference, then we must be in a |
| static link or an executable link with the |
| symbol binding locally. Mark it as belonging |
| to module 1, the executable. */ |
| bfd_put_NN (output_bfd, 1, |
| htab->elf.sgot->contents + off); |
| bfd_put_NN (output_bfd, |
| dtpoff (info, relocation), |
| (htab->elf.sgot->contents |
| + off + RISCV_ELF_WORD_BYTES)); |
| } |
| } |
| |
| if (tls_type & GOT_TLS_IE) |
| { |
| if (need_relocs) |
| { |
| bfd_put_NN (output_bfd, 0, |
| htab->elf.sgot->contents + off + ie_off); |
| outrel.r_offset = sec_addr (htab->elf.sgot) |
| + off + ie_off; |
| outrel.r_addend = 0; |
| if (indx == 0) |
| outrel.r_addend = tpoff (info, relocation); |
| outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN); |
| riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); |
| } |
| else |
| { |
| bfd_put_NN (output_bfd, tpoff (info, relocation), |
| htab->elf.sgot->contents + off + ie_off); |
| } |
| } |
| } |
| |
| BFD_ASSERT (off < (bfd_vma) -2); |
| relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0); |
| if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, |
| relocation, r_type, |
| false)) |
| r = bfd_reloc_overflow; |
| unresolved_reloc = false; |
| break; |
| |
| default: |
| r = bfd_reloc_notsupported; |
| } |
| |
| /* Dynamic relocs are not propagated for SEC_DEBUGGING sections |
| because such sections are not SEC_ALLOC and thus ld.so will |
| not process them. */ |
| if (unresolved_reloc |
| && !((input_section->flags & SEC_DEBUGGING) != 0 |
| && h->def_dynamic) |
| && _bfd_elf_section_offset (output_bfd, info, input_section, |
| rel->r_offset) != (bfd_vma) -1) |
| { |
| msg = bfd_asprintf (_("%%X%%P: unresolvable %s relocation against " |
| "symbol `%s'\n"), |
| howto->name, |
| h->root.root.string); |
| r = bfd_reloc_notsupported; |
| } |
| |
| do_relocation: |
| if (r == bfd_reloc_ok) |
| r = perform_relocation (howto, rel, relocation, input_section, |
| input_bfd, contents); |
| |
| /* We should have already detected the error and set message before. |
| If the error message isn't set since the linker runs out of memory |
| or we don't set it before, then we should set the default message |
| with the "internal error" string here. */ |
| switch (r) |
| { |
| case bfd_reloc_ok: |
| continue; |
| |
| case bfd_reloc_overflow: |
| info->callbacks->reloc_overflow |
| (info, (h ? &h->root : NULL), name, howto->name, |
| (bfd_vma) 0, input_bfd, input_section, rel->r_offset); |
| break; |
| |
| case bfd_reloc_undefined: |
| info->callbacks->undefined_symbol |
| (info, name, input_bfd, input_section, rel->r_offset, |
| true); |
| break; |
| |
| case bfd_reloc_outofrange: |
| if (msg == NULL) |
| msg = _("%X%P: internal error: out of range error\n"); |
| break; |
| |
| case bfd_reloc_notsupported: |
| if (msg == NULL) |
| msg = _("%X%P: internal error: unsupported relocation error\n"); |
| break; |
| |
| case bfd_reloc_dangerous: |
| /* The error message should already be set. */ |
| if (msg == NULL) |
| msg = _("dangerous relocation error"); |
| info->callbacks->reloc_dangerous |
| (info, msg, input_bfd, input_section, rel->r_offset); |
| break; |
| |
| default: |
| msg = _("%X%P: internal error: unknown error\n"); |
| break; |
| } |
| |
| /* Do not report error message for the dangerous relocation again. */ |
| if (msg && r != bfd_reloc_dangerous) |
| info->callbacks->einfo (msg); |
| |
| /* We already reported the error via a callback, so don't try to report |
| it again by returning false. That leads to spurious errors. */ |
| ret = true; |
| goto out; |
| } |
| |
| ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs); |
| out: |
| riscv_free_pcrel_relocs (&pcrel_relocs); |
| return ret; |
| } |
| |
| /* Finish up dynamic symbol handling. We set the contents of various |
| dynamic sections here. */ |
| |
| static bool |
| riscv_elf_finish_dynamic_symbol (bfd *output_bfd, |
| struct bfd_link_info *info, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); |
| const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
| |
| if (h->plt.offset != (bfd_vma) -1) |
| { |
| /* We've decided to create a PLT entry for this symbol. */ |
| bfd_byte *loc; |
| bfd_vma i, header_address, plt_idx, got_offset, got_address; |
| uint32_t plt_entry[PLT_ENTRY_INSNS]; |
| Elf_Internal_Rela rela; |
| asection *plt, *gotplt, *relplt; |
| |
| /* When building a static executable, use .iplt, .igot.plt and |
| .rela.iplt sections for STT_GNU_IFUNC symbols. */ |
| if (htab->elf.splt != NULL) |
| { |
| plt = htab->elf.splt; |
| gotplt = htab->elf.sgotplt; |
| relplt = htab->elf.srelplt; |
| } |
| else |
| { |
| plt = htab->elf.iplt; |
| gotplt = htab->elf.igotplt; |
| relplt = htab->elf.irelplt; |
| } |
| |
| /* This symbol has an entry in the procedure linkage table. Set |
| it up. */ |
| if ((h->dynindx == -1 |
| && !((h->forced_local || bfd_link_executable (info)) |
| && h->def_regular |
| && h->type == STT_GNU_IFUNC)) |
| || plt == NULL |
| || gotplt == NULL |
| || relplt == NULL) |
| return false; |
| |
| /* Calculate the address of the PLT header. */ |
| header_address = sec_addr (plt); |
| |
| /* Calculate the index of the entry and the offset of .got.plt entry. |
| For static executables, we don't reserve anything. */ |
| if (plt == htab->elf.splt) |
| { |
| plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE; |
| got_offset = GOTPLT_HEADER_SIZE + (plt_idx * GOT_ENTRY_SIZE); |
| } |
| else |
| { |
| plt_idx = h->plt.offset / PLT_ENTRY_SIZE; |
| got_offset = plt_idx * GOT_ENTRY_SIZE; |
| } |
| |
| /* Calculate the address of the .got.plt entry. */ |
| got_address = sec_addr (gotplt) + got_offset; |
| |
| /* Find out where the .plt entry should go. */ |
| loc = plt->contents + h->plt.offset; |
| |
| /* Fill in the PLT entry itself. */ |
| if (! riscv_make_plt_entry (output_bfd, got_address, |
| header_address + h->plt.offset, |
| plt_entry)) |
| return false; |
| |
| for (i = 0; i < PLT_ENTRY_INSNS; i++) |
| bfd_putl32 (plt_entry[i], loc + 4*i); |
| |
| /* Fill in the initial value of the .got.plt entry. */ |
| loc = gotplt->contents + (got_address - sec_addr (gotplt)); |
| bfd_put_NN (output_bfd, sec_addr (plt), loc); |
| |
| rela.r_offset = got_address; |
| |
| if (h->dynindx == -1 |
| || ((bfd_link_executable (info) |
| || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) |
| && h->def_regular |
| && h->type == STT_GNU_IFUNC)) |
| { |
| info->callbacks->minfo (_("Local IFUNC function `%s' in %pB\n"), |
| h->root.root.string, |
| h->root.u.def.section->owner); |
| |
| /* If an STT_GNU_IFUNC symbol is locally defined, generate |
| R_RISCV_IRELATIVE instead of R_RISCV_JUMP_SLOT. */ |
| asection *sec = h->root.u.def.section; |
| rela.r_info = ELFNN_R_INFO (0, R_RISCV_IRELATIVE); |
| rela.r_addend = h->root.u.def.value |
| + sec->output_section->vma |
| + sec->output_offset; |
| } |
| else |
| { |
| /* Fill in the entry in the .rela.plt section. */ |
| rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT); |
| rela.r_addend = 0; |
| } |
| |
| loc = relplt->contents + plt_idx * sizeof (ElfNN_External_Rela); |
| bed->s->swap_reloca_out (output_bfd, &rela, loc); |
| |
| if (!h->def_regular) |
| { |
| /* Mark the symbol as undefined, rather than as defined in |
| the .plt section. Leave the value alone. */ |
| sym->st_shndx = SHN_UNDEF; |
| /* If the symbol is weak, we do need to clear the value. |
| Otherwise, the PLT entry would provide a definition for |
| the symbol even if the symbol wasn't defined anywhere, |
| and so the symbol would never be NULL. */ |
| if (!h->ref_regular_nonweak) |
| sym->st_value = 0; |
| } |
| } |
| |
| if (h->got.offset != (bfd_vma) -1 |
| && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) |
| && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) |
| { |
| asection *sgot; |
| asection *srela; |
| Elf_Internal_Rela rela; |
| bool use_elf_append_rela = true; |
| |
| /* This symbol has an entry in the GOT. Set it up. */ |
| |
| sgot = htab->elf.sgot; |
| srela = htab->elf.srelgot; |
| BFD_ASSERT (sgot != NULL && srela != NULL); |
| |
| rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1); |
| |
| /* Handle the ifunc symbol in GOT entry. */ |
| if (h->def_regular |
| && h->type == STT_GNU_IFUNC) |
| { |
| if (h->plt.offset == (bfd_vma) -1) |
| { |
| /* STT_GNU_IFUNC is referenced without PLT. */ |
| |
| if (htab->elf.splt == NULL) |
| { |
| /* Use .rela.iplt section to store .got relocations |
| in static executable. */ |
| srela = htab->elf.irelplt; |
| |
| /* Do not use riscv_elf_append_rela to add dynamic |
| relocs. */ |
| use_elf_append_rela = false; |
| } |
| |
| if (SYMBOL_REFERENCES_LOCAL (info, h)) |
| { |
| info->callbacks->minfo (_("Local IFUNC function `%s' in %pB\n"), |
| h->root.root.string, |
| h->root.u.def.section->owner); |
| |
| rela.r_info = ELFNN_R_INFO (0, R_RISCV_IRELATIVE); |
| rela.r_addend = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| } |
| else |
| { |
| /* Generate R_RISCV_NN. */ |
| BFD_ASSERT ((h->got.offset & 1) == 0); |
| BFD_ASSERT (h->dynindx != -1); |
| rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN); |
| rela.r_addend = 0; |
| } |
| } |
| else if (bfd_link_pic (info)) |
| { |
| /* Generate R_RISCV_NN. */ |
| BFD_ASSERT ((h->got.offset & 1) == 0); |
| BFD_ASSERT (h->dynindx != -1); |
| rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN); |
| rela.r_addend = 0; |
| } |
| else |
| { |
| asection *plt; |
| |
| if (!h->pointer_equality_needed) |
| abort (); |
| |
| /* For non-shared object, we can't use .got.plt, which |
| contains the real function address if we need pointer |
| equality. We load the GOT entry with the PLT entry. */ |
| plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt; |
| bfd_put_NN (output_bfd, (plt->output_section->vma |
| + plt->output_offset |
| + h->plt.offset), |
| htab->elf.sgot->contents |
| + (h->got.offset & ~(bfd_vma) 1)); |
| return true; |
| } |
| } |
| else if (bfd_link_pic (info) |
| && SYMBOL_REFERENCES_LOCAL (info, h)) |
| { |
| /* If this is a local symbol reference, we just want to emit |
| a RELATIVE reloc. This can happen if it is a -Bsymbolic link, |
| or a pie link, or the symbol was forced to be local because |
| of a version file. The entry in the global offset table will |
| already have been initialized in the relocate_section function. */ |
| BFD_ASSERT ((h->got.offset & 1) != 0); |
| asection *sec = h->root.u.def.section; |
| rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE); |
| rela.r_addend = (h->root.u.def.value |
| + sec->output_section->vma |
| + sec->output_offset); |
| } |
| else |
| { |
| BFD_ASSERT ((h->got.offset & 1) == 0); |
| BFD_ASSERT (h->dynindx != -1); |
| rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN); |
| rela.r_addend = 0; |
| } |
| |
| bfd_put_NN (output_bfd, 0, |
| sgot->contents + (h->got.offset & ~(bfd_vma) 1)); |
| |
| if (use_elf_append_rela) |
| riscv_elf_append_rela (output_bfd, srela, &rela); |
| else |
| { |
| /* Use riscv_elf_append_rela to add the dynamic relocs into |
| .rela.iplt may cause the overwrite problems. Since we insert |
| the relocs for PLT didn't handle the reloc_index of .rela.iplt, |
| but the riscv_elf_append_rela adds the relocs to the place |
| that are calculated from the reloc_index (in seqential). |
| |
| One solution is that add these dynamic relocs (GOT IFUNC) |
| from the last of .rela.iplt section. */ |
| bfd_vma iplt_idx = htab->last_iplt_index--; |
| bfd_byte *loc = srela->contents |
| + iplt_idx * sizeof (ElfNN_External_Rela); |
| bed->s->swap_reloca_out (output_bfd, &rela, loc); |
| } |
| } |
| |
| if (h->needs_copy) |
| { |
| Elf_Internal_Rela rela; |
| asection *s; |
| |
| /* This symbols needs a copy reloc. Set it up. */ |
| BFD_ASSERT (h->dynindx != -1); |
| |
| rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value; |
| rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY); |
| rela.r_addend = 0; |
| if (h->root.u.def.section == htab->elf.sdynrelro) |
| s = htab->elf.sreldynrelro; |
| else |
| s = htab->elf.srelbss; |
| riscv_elf_append_rela (output_bfd, s, &rela); |
| } |
| |
| /* Mark some specially defined symbols as absolute. */ |
| if (h == htab->elf.hdynamic |
| || (h == htab->elf.hgot || h == htab->elf.hplt)) |
| sym->st_shndx = SHN_ABS; |
| |
| return true; |
| } |
| |
| /* Finish up local dynamic symbol handling. We set the contents of |
| various dynamic sections here. */ |
| |
| static int |
| riscv_elf_finish_local_dynamic_symbol (void **slot, void *inf) |
| { |
| struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) *slot; |
| struct bfd_link_info *info = (struct bfd_link_info *) inf; |
| |
| return riscv_elf_finish_dynamic_symbol (info->output_bfd, info, h, NULL); |
| } |
| |
| /* Finish up the dynamic sections. */ |
| |
| static bool |
| riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info, |
| bfd *dynobj, asection *sdyn) |
| { |
| struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); |
| const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
| size_t dynsize = bed->s->sizeof_dyn; |
| bfd_byte *dyncon, *dynconend; |
| |
| dynconend = sdyn->contents + sdyn->size; |
| for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize) |
| { |
| Elf_Internal_Dyn dyn; |
| asection *s; |
| |
| bed->s->swap_dyn_in (dynobj, dyncon, &dyn); |
| |
| switch (dyn.d_tag) |
| { |
| case DT_PLTGOT: |
| s = htab->elf.sgotplt; |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
| break; |
| case DT_JMPREL: |
| s = htab->elf.srelplt; |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
| break; |
| case DT_PLTRELSZ: |
| s = htab->elf.srelplt; |
| dyn.d_un.d_val = s->size; |
| break; |
| default: |
| continue; |
| } |
| |
| bed->s->swap_dyn_out (output_bfd, &dyn, dyncon); |
| } |
| return true; |
| } |
| |
| static bool |
| riscv_elf_finish_dynamic_sections (bfd *output_bfd, |
| struct bfd_link_info *info) |
| { |
| bfd *dynobj; |
| asection *sdyn; |
| struct riscv_elf_link_hash_table *htab; |
| |
| htab = riscv_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| dynobj = htab->elf.dynobj; |
| |
| sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| asection *splt; |
| bool ret; |
| |
| splt = htab->elf.splt; |
| BFD_ASSERT (splt != NULL && sdyn != NULL); |
| |
| ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn); |
| |
| if (!ret) |
| return ret; |
| |
| /* Fill in the head and tail entries in the procedure linkage table. */ |
| if (splt->size > 0) |
| { |
| int i; |
| uint32_t plt_header[PLT_HEADER_INSNS]; |
| ret = riscv_make_plt_header (output_bfd, |
| sec_addr (htab->elf.sgotplt), |
| sec_addr (splt), plt_header); |
| if (!ret) |
| return ret; |
| |
| for (i = 0; i < PLT_HEADER_INSNS; i++) |
| bfd_putl32 (plt_header[i], splt->contents + 4*i); |
| |
| elf_section_data (splt->output_section)->this_hdr.sh_entsize |
| = PLT_ENTRY_SIZE; |
| } |
| } |
| |
| if (htab->elf.sgotplt) |
| { |
| asection *output_section = htab->elf.sgotplt->output_section; |
| |
| if (bfd_is_abs_section (output_section)) |
| { |
| (*_bfd_error_handler) |
| (_("discarded output section: `%pA'"), htab->elf.sgotplt); |
| return false; |
| } |
| |
| if (htab->elf.sgotplt->size > 0) |
| { |
| /* Write the first two entries in .got.plt, needed for the dynamic |
| linker. */ |
| bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents); |
| bfd_put_NN (output_bfd, (bfd_vma) 0, |
| htab->elf.sgotplt->contents + GOT_ENTRY_SIZE); |
| } |
| |
| elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE; |
| } |
| |
| if (htab->elf.sgot) |
| { |
| asection *output_section = htab->elf.sgot->output_section; |
| |
| if (htab->elf.sgot->size > 0) |
| { |
| /* Set the first entry in the global offset table to the address of |
| the dynamic section. */ |
| bfd_vma val = sdyn ? sec_addr (sdyn) : 0; |
| bfd_put_NN (output_bfd, val, htab->elf.sgot->contents); |
| } |
| |
| elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE; |
| } |
| |
| /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */ |
| htab_traverse (htab->loc_hash_table, |
| riscv_elf_finish_local_dynamic_symbol, |
| info); |
| |
| return true; |
| } |
| |
| /* Return address for Ith PLT stub in section PLT, for relocation REL |
| or (bfd_vma) -1 if it should not be included. */ |
| |
| static bfd_vma |
| riscv_elf_plt_sym_val (bfd_vma i, const asection *plt, |
| const arelent *rel ATTRIBUTE_UNUSED) |
| { |
| return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE; |
| } |
| |
| static enum elf_reloc_type_class |
| riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| const asection *rel_sec ATTRIBUTE_UNUSED, |
| const Elf_Internal_Rela *rela) |
| { |
| switch (ELFNN_R_TYPE (rela->r_info)) |
| { |
| case R_RISCV_RELATIVE: |
| return reloc_class_relative; |
| case R_RISCV_JUMP_SLOT: |
| return reloc_class_plt; |
| case R_RISCV_COPY: |
| return reloc_class_copy; |
| default: |
| return reloc_class_normal; |
| } |
| } |
| |
| /* Given the ELF header flags in FLAGS, it returns a string that describes the |
| float ABI. */ |
| |
| static const char * |
| riscv_float_abi_string (flagword flags) |
| { |
| switch (flags & EF_RISCV_FLOAT_ABI) |
| { |
| case EF_RISCV_FLOAT_ABI_SOFT: |
| return "soft-float"; |
| break; |
| case EF_RISCV_FLOAT_ABI_SINGLE: |
| return "single-float"; |
| break; |
| case EF_RISCV_FLOAT_ABI_DOUBLE: |
| return "double-float"; |
| break; |
| case EF_RISCV_FLOAT_ABI_QUAD: |
| return "quad-float"; |
| break; |
| default: |
| abort (); |
| } |
| } |
| |
| /* The information of architecture elf attributes. */ |
| static riscv_subset_list_t in_subsets; |
| static riscv_subset_list_t out_subsets; |
| static riscv_subset_list_t merged_subsets; |
| |
| /* Predicator for standard extension. */ |
| |
| static bool |
| riscv_std_ext_p (const char *name) |
| { |
| return (strlen (name) == 1) && (name[0] != 'x') && (name[0] != 's'); |
| } |
| |
| /* Update the output subset's version to match the input when the input |
| subset's version is newer. */ |
| |
| static void |
| riscv_update_subset_version (struct riscv_subset_t *in, |
| struct riscv_subset_t *out) |
| { |
| if (in == NULL || out == NULL) |
| return; |
| |
| /* Update the output ISA versions to the newest ones, but otherwise don't |
| provide any errors or warnings about mis-matched ISA versions as it's |
| generally too tricky to check for these at link time. */ |
| if ((in->major_version > out->major_version) |
| || (in->major_version == out->major_version |
| && in->minor_version > out->minor_version) |
| || (out->major_version == RISCV_UNKNOWN_VERSION)) |
| { |
| out->major_version = in->major_version; |
| out->minor_version = in->minor_version; |
| } |
| } |
| |
| /* Return true if subset is 'i' or 'e'. */ |
| |
| static bool |
| riscv_i_or_e_p (bfd *ibfd, |
| const char *arch, |
| struct riscv_subset_t *subset) |
| { |
| if ((strcasecmp (subset->name, "e") != 0) |
| && (strcasecmp (subset->name, "i") != 0)) |
| { |
| _bfd_error_handler |
| (_("error: %pB: corrupted ISA string '%s'. " |
| "First letter should be 'i' or 'e' but got '%s'"), |
| ibfd, arch, subset->name); |
| return false; |
| } |
| return true; |
| } |
| |
| /* Merge standard extensions. |
| |
| Return Value: |
| Return FALSE if failed to merge. |
| |
| Arguments: |
| `bfd`: bfd handler. |
| `in_arch`: Raw ISA string for input object. |
| `out_arch`: Raw ISA string for output object. |
| `pin`: Subset list for input object. |
| `pout`: Subset list for output object. */ |
| |
| static bool |
| riscv_merge_std_ext (bfd *ibfd, |
| const char *in_arch, |
| const char *out_arch, |
| struct riscv_subset_t **pin, |
| struct riscv_subset_t **pout) |
| { |
| const char *standard_exts = "mafdqlcbjtpvnh"; |
| const char *p; |
| struct riscv_subset_t *in = *pin; |
| struct riscv_subset_t *out = *pout; |
| |
| /* First letter should be 'i' or 'e'. */ |
| if (!riscv_i_or_e_p (ibfd, in_arch, in)) |
| return false; |
| |
| if (!riscv_i_or_e_p (ibfd, out_arch, out)) |
| return false; |
| |
| if (strcasecmp (in->name, out->name) != 0) |
| { |
| /* TODO: We might allow merge 'i' with 'e'. */ |
| _bfd_error_handler |
| (_("error: %pB: mis-matched ISA string to merge '%s' and '%s'"), |
| ibfd, in->name, out->name); |
| return false; |
| } |
| |
| riscv_update_subset_version(in, out); |
| riscv_add_subset (&merged_subsets, |
| out->name, out->major_version, out->minor_version); |
| |
| in = in->next; |
| out = out->next; |
| |
| /* Handle standard extension first. */ |
| for (p = standard_exts; *p; ++p) |
| { |
| struct riscv_subset_t *ext_in, *ext_out, *ext_merged; |
| char find_ext[2] = {*p, '\0'}; |
| bool find_in, find_out; |
| |
| find_in = riscv_lookup_subset (&in_subsets, find_ext, &ext_in); |
| find_out = riscv_lookup_subset (&out_subsets, find_ext, &ext_out); |
| |
| if (!find_in && !find_out) |
| continue; |
| |
| if (find_in && find_out) |
| riscv_update_subset_version(ext_in, ext_out); |
| |
| ext_merged = find_out ? ext_out : ext_in; |
| riscv_add_subset (&merged_subsets, ext_merged->name, |
| ext_merged->major_version, ext_merged->minor_version); |
| } |
| |
| /* Skip all standard extensions. */ |
| while ((in != NULL) && riscv_std_ext_p (in->name)) in = in->next; |
| while ((out != NULL) && riscv_std_ext_p (out->name)) out = out->next; |
| |
| *pin = in; |
| *pout = out; |
| |
| return true; |
| } |
| |
| /* Merge multi letter extensions. PIN is a pointer to the head of the input |
| object subset list. Likewise for POUT and the output object. Return TRUE |
| on success and FALSE when a conflict is found. */ |
| |
| static bool |
| riscv_merge_multi_letter_ext (riscv_subset_t **pin, |
| riscv_subset_t **pout) |
| { |
| riscv_subset_t *in = *pin; |
| riscv_subset_t *out = *pout; |
| riscv_subset_t *tail; |
| |
| int cmp; |
| |
| while (in && out) |
| { |
| cmp = riscv_compare_subsets (in->name, out->name); |
| |
| if (cmp < 0) |
| { |
| /* `in' comes before `out', append `in' and increment. */ |
| riscv_add_subset (&merged_subsets, in->name, in->major_version, |
| in->minor_version); |
| in = in->next; |
| } |
| else if (cmp > 0) |
| { |
| /* `out' comes before `in', append `out' and increment. */ |
| riscv_add_subset (&merged_subsets, out->name, out->major_version, |
| out->minor_version); |
| out = out->next; |
| } |
| else |
| { |
| /* Both present, check version and increment both. */ |
| riscv_update_subset_version (in, out); |
| |
| riscv_add_subset (&merged_subsets, out->name, out->major_version, |
| out->minor_version); |
| out = out->next; |
| in = in->next; |
| } |
| } |
| |
| if (in || out) |
| { |
| /* If we're here, either `in' or `out' is running longer than |
| the other. So, we need to append the corresponding tail. */ |
| tail = in ? in : out; |
| while (tail) |
| { |
| riscv_add_subset (&merged_subsets, tail->name, tail->major_version, |
| tail->minor_version); |
| tail = tail->next; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Merge Tag_RISCV_arch attribute. */ |
| |
| static char * |
| riscv_merge_arch_attr_info (bfd *ibfd, char *in_arch, char *out_arch) |
| { |
| riscv_subset_t *in, *out; |
| char *merged_arch_str; |
| |
| unsigned xlen_in, xlen_out; |
| merged_subsets.head = NULL; |
| merged_subsets.tail = NULL; |
| |
| riscv_parse_subset_t riscv_rps_ld_in = |
| {&in_subsets, _bfd_error_handler, &xlen_in, NULL, false}; |
| riscv_parse_subset_t riscv_rps_ld_out = |
| {&out_subsets, _bfd_error_handler, &xlen_out, NULL, false}; |
| |
| if (in_arch == NULL && out_arch == NULL) |
| return NULL; |
| if (in_arch == NULL && out_arch != NULL) |
| return out_arch; |
| if (in_arch != NULL && out_arch == NULL) |
| return in_arch; |
| |
| /* Parse subset from ISA string. */ |
| if (!riscv_parse_subset (&riscv_rps_ld_in, in_arch)) |
| return NULL; |
| if (!riscv_parse_subset (&riscv_rps_ld_out, out_arch)) |
| return NULL; |
| |
| /* Checking XLEN. */ |
| if (xlen_out != xlen_in) |
| { |
| _bfd_error_handler |
| (_("error: %pB: ISA string of input (%s) doesn't match " |
| "output (%s)"), ibfd, in_arch, out_arch); |
| return NULL; |
| } |
| |
| /* Merge subset list. */ |
| in = in_subsets.head; |
| out = out_subsets.head; |
| |
| /* Merge standard extension. */ |
| if (!riscv_merge_std_ext (ibfd, in_arch, out_arch, &in, &out)) |
| return NULL; |
| |
| /* Merge all non-single letter extensions with single call. */ |
| if (!riscv_merge_multi_letter_ext (&in, &out)) |
| return NULL; |
| |
| if (xlen_in != xlen_out) |
| { |
| _bfd_error_handler |
| (_("error: %pB: XLEN of input (%u) doesn't match " |
| "output (%u)"), ibfd, xlen_in, xlen_out); |
| return NULL; |
| } |
| |
| if (xlen_in != ARCH_SIZE) |
| { |
| _bfd_error_handler |
| (_("error: %pB: unsupported XLEN (%u), you might be " |
| "using wrong emulation"), ibfd, xlen_in); |
| return NULL; |
| } |
| |
| merged_arch_str = riscv_arch_str (ARCH_SIZE, &merged_subsets); |
| |
| /* Release the subset lists. */ |
| riscv_release_subset_list (&in_subsets); |
| riscv_release_subset_list (&out_subsets); |
| riscv_release_subset_list (&merged_subsets); |
| |
| return merged_arch_str; |
| } |
| |
| /* Merge object attributes from IBFD into output_bfd of INFO. |
| Raise an error if there are conflicting attributes. */ |
| |
| static bool |
| riscv_merge_attributes (bfd *ibfd, struct bfd_link_info *info) |
| { |
| bfd *obfd = info->output_bfd; |
| obj_attribute *in_attr; |
| obj_attribute *out_attr; |
| bool result = true; |
| bool priv_attrs_merged = false; |
| const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section; |
| unsigned int i; |
| |
| /* Skip linker created files. */ |
| if (ibfd->flags & BFD_LINKER_CREATED) |
| return true; |
| |
| /* Skip any input that doesn't have an attribute section. |
| This enables to link object files without attribute section with |
| any others. */ |
| if (bfd_get_section_by_name (ibfd, sec_name) == NULL) |
| return true; |
| |
| if (!elf_known_obj_attributes_proc (obfd)[0].i) |
| { |
| /* This is the first object. Copy the attributes. */ |
| _bfd_elf_copy_obj_attributes (ibfd, obfd); |
| |
| out_attr = elf_known_obj_attributes_proc (obfd); |
| |
| /* Use the Tag_null value to indicate the attributes have been |
| initialized. */ |
| out_attr[0].i = 1; |
| |
| return true; |
| } |
| |
| in_attr = elf_known_obj_attributes_proc (ibfd); |
| out_attr = elf_known_obj_attributes_proc (obfd); |
| |
| for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++) |
| { |
| switch (i) |
| { |
| case Tag_RISCV_arch: |
| if (!out_attr[Tag_RISCV_arch].s) |
| out_attr[Tag_RISCV_arch].s = in_attr[Tag_RISCV_arch].s; |
| else if (in_attr[Tag_RISCV_arch].s |
| && out_attr[Tag_RISCV_arch].s) |
| { |
| /* Check compatible. */ |
| char *merged_arch = |
| riscv_merge_arch_attr_info (ibfd, |
| in_attr[Tag_RISCV_arch].s, |
| out_attr[Tag_RISCV_arch].s); |
| if (merged_arch == NULL) |
| { |
| result = false; |
| out_attr[Tag_RISCV_arch].s = ""; |
| } |
| else |
| out_attr[Tag_RISCV_arch].s = merged_arch; |
| } |
| break; |
| |
| case Tag_RISCV_priv_spec: |
| case Tag_RISCV_priv_spec_minor: |
| case Tag_RISCV_priv_spec_revision: |
| /* If we have handled the privileged elf attributes, then skip it. */ |
| if (!priv_attrs_merged) |
| { |
| unsigned int Tag_a = Tag_RISCV_priv_spec; |
| unsigned int Tag_b = Tag_RISCV_priv_spec_minor; |
| unsigned int Tag_c = Tag_RISCV_priv_spec_revision; |
| enum riscv_spec_class in_priv_spec = PRIV_SPEC_CLASS_NONE; |
| enum riscv_spec_class out_priv_spec = PRIV_SPEC_CLASS_NONE; |
| |
| /* Get the privileged spec class from elf attributes. */ |
| riscv_get_priv_spec_class_from_numbers (in_attr[Tag_a].i, |
| in_attr[Tag_b].i, |
| in_attr[Tag_c].i, |
| &in_priv_spec); |
| riscv_get_priv_spec_class_from_numbers (out_attr[Tag_a].i, |
| out_attr[Tag_b].i, |
| out_attr[Tag_c].i, |
| &out_priv_spec); |
| |
| /* Allow to link the object without the privileged specs. */ |
| if (out_priv_spec == PRIV_SPEC_CLASS_NONE) |
| { |
| out_attr[Tag_a].i = in_attr[Tag_a].i; |
| out_attr[Tag_b].i = in_attr[Tag_b].i; |
| out_attr[Tag_c].i = in_attr[Tag_c].i; |
| } |
| else if (in_priv_spec != PRIV_SPEC_CLASS_NONE |
| && in_priv_spec != out_priv_spec) |
| { |
| _bfd_error_handler |
| (_("warning: %pB use privileged spec version %u.%u.%u but " |
| "the output use version %u.%u.%u"), |
| ibfd, |
| in_attr[Tag_a].i, |
| in_attr[Tag_b].i, |
| in_attr[Tag_c].i, |
| out_attr[Tag_a].i, |
| out_attr[Tag_b].i, |
| out_attr[Tag_c].i); |
| |
| /* The privileged spec v1.9.1 can not be linked with others |
| since the conflicts, so we plan to drop it in a year or |
| two. */ |
| if (in_priv_spec == PRIV_SPEC_CLASS_1P9P1 |
| || out_priv_spec == PRIV_SPEC_CLASS_1P9P1) |
| { |
| _bfd_error_handler |
| (_("warning: privileged spec version 1.9.1 can not be " |
| "linked with other spec versions")); |
| } |
| |
| /* Update the output privileged spec to the newest one. */ |
| if (in_priv_spec > out_priv_spec) |
| { |
| out_attr[Tag_a].i = in_attr[Tag_a].i; |
| out_attr[Tag_b].i = in_attr[Tag_b].i; |
| out_attr[Tag_c].i = in_attr[Tag_c].i; |
| } |
| } |
| priv_attrs_merged = true; |
| } |
| break; |
| |
| case Tag_RISCV_unaligned_access: |
| out_attr[i].i |= in_attr[i].i; |
| break; |
| |
| case Tag_RISCV_stack_align: |
| if (out_attr[i].i == 0) |
| out_attr[i].i = in_attr[i].i; |
| else if (in_attr[i].i != 0 |
| && out_attr[i].i != 0 |
| && out_attr[i].i != in_attr[i].i) |
| { |
| _bfd_error_handler |
| (_("error: %pB use %u-byte stack aligned but the output " |
| "use %u-byte stack aligned"), |
| ibfd, in_attr[i].i, out_attr[i].i); |
| result = false; |
| } |
| break; |
| |
| default: |
| result &= _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i); |
| } |
| |
| /* If out_attr was copied from in_attr then it won't have a type yet. */ |
| if (in_attr[i].type && !out_attr[i].type) |
| out_attr[i].type = in_attr[i].type; |
| } |
| |
| /* Merge Tag_compatibility attributes and any common GNU ones. */ |
| if (!_bfd_elf_merge_object_attributes (ibfd, info)) |
| return false; |
| |
| /* Check for any attributes not known on RISC-V. */ |
| result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd); |
| |
| return result; |
| } |
| |
| /* Merge backend specific data from an object file to the output |
| object file when linking. */ |
| |
| static bool |
| _bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) |
| { |
| bfd *obfd = info->output_bfd; |
| flagword new_flags, old_flags; |
| |
| if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd)) |
| return true; |
| |
| if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) |
| { |
| (*_bfd_error_handler) |
| (_("%pB: ABI is incompatible with that of the selected emulation:\n" |
| " target emulation `%s' does not match `%s'"), |
| ibfd, bfd_get_target (ibfd), bfd_get_target (obfd)); |
| return false; |
| } |
| |
| if (!_bfd_elf_merge_object_attributes (ibfd, info)) |
| return false; |
| |
| if (!riscv_merge_attributes (ibfd, info)) |
| return false; |
| |
| /* Check to see if the input BFD actually contains any sections. If not, |
| its flags may not have been initialized either, but it cannot actually |
| cause any incompatibility. Do not short-circuit dynamic objects; their |
| section list may be emptied by elf_link_add_object_symbols. |
| |
| Also check to see if there are no code sections in the input. In this |
| case, there is no need to check for code specific flags. */ |
| if (!(ibfd->flags & DYNAMIC)) |
| { |
| bool null_input_bfd = true; |
| bool only_data_sections = true; |
| asection *sec; |
| |
| for (sec = ibfd->sections; sec != NULL; sec = sec->next) |
| { |
| null_input_bfd = false; |
| |
| if ((bfd_section_flags (sec) |
| & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) |
| == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) |
| { |
| only_data_sections = false; |
| break; |
| } |
| } |
| |
| if (null_input_bfd || only_data_sections) |
| return true; |
| } |
| |
| new_flags = elf_elfheader (ibfd)->e_flags; |
| old_flags = elf_elfheader (obfd)->e_flags; |
| |
| if (!elf_flags_init (obfd)) |
| { |
| elf_flags_init (obfd) = true; |
| elf_elfheader (obfd)->e_flags = new_flags; |
| return true; |
| } |
| |
| /* Disallow linking different float ABIs. */ |
| if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI) |
| { |
| (*_bfd_error_handler) |
| (_("%pB: can't link %s modules with %s modules"), ibfd, |
| riscv_float_abi_string (new_flags), |
| riscv_float_abi_string (old_flags)); |
| goto fail; |
| } |
| |
| /* Disallow linking RVE and non-RVE. */ |
| if ((old_flags ^ new_flags) & EF_RISCV_RVE) |
| { |
| (*_bfd_error_handler) |
| (_("%pB: can't link RVE with other target"), ibfd); |
| goto fail; |
| } |
| |
| /* Allow linking RVC and non-RVC, and keep the RVC flag. */ |
| elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC; |
| |
| /* Allow linking TSO and non-TSO, and keep the TSO flag. */ |
| elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_TSO; |
| |
| return true; |
| |
| fail: |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| /* A second format for recording PC-relative hi relocations. This stores the |
| information required to relax them to GP-relative addresses. */ |
| |
| typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc; |
| struct riscv_pcgp_hi_reloc |
| { |
| bfd_vma hi_sec_off; |
| bfd_vma hi_addend; |
| bfd_vma hi_addr; |
| unsigned hi_sym; |
| asection *sym_sec; |
| bool undefined_weak; |
| riscv_pcgp_hi_reloc *next; |
| }; |
| |
| typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc; |
| struct riscv_pcgp_lo_reloc |
| { |
| bfd_vma hi_sec_off; |
| riscv_pcgp_lo_reloc *next; |
| }; |
| |
| typedef struct |
| { |
| riscv_pcgp_hi_reloc *hi; |
| riscv_pcgp_lo_reloc *lo; |
| } riscv_pcgp_relocs; |
| |
| /* Initialize the pcgp reloc info in P. */ |
| |
| static bool |
| riscv_init_pcgp_relocs (riscv_pcgp_relocs *p) |
| { |
| p->hi = NULL; |
| p->lo = NULL; |
| return true; |
| } |
| |
| /* Free the pcgp reloc info in P. */ |
| |
| static void |
| riscv_free_pcgp_relocs (riscv_pcgp_relocs *p, |
| bfd *abfd ATTRIBUTE_UNUSED, |
| asection *sec ATTRIBUTE_UNUSED) |
| { |
| riscv_pcgp_hi_reloc *c; |
| riscv_pcgp_lo_reloc *l; |
| |
| for (c = p->hi; c != NULL; ) |
| { |
| riscv_pcgp_hi_reloc *next = c->next; |
| free (c); |
| c = next; |
| } |
| |
| for (l = p->lo; l != NULL; ) |
| { |
| riscv_pcgp_lo_reloc *next = l->next; |
| free (l); |
| l = next; |
| } |
| } |
| |
| /* Record pcgp hi part reloc info in P, using HI_SEC_OFF as the lookup index. |
| The HI_ADDEND, HI_ADDR, HI_SYM, and SYM_SEC args contain info required to |
| relax the corresponding lo part reloc. */ |
| |
| static bool |
| riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off, |
| bfd_vma hi_addend, bfd_vma hi_addr, |
| unsigned hi_sym, asection *sym_sec, |
| bool undefined_weak) |
| { |
| riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof (*new)); |
| if (!new) |
| return false; |
| new->hi_sec_off = hi_sec_off; |
| new->hi_addend = hi_addend; |
| new->hi_addr = hi_addr; |
| new->hi_sym = hi_sym; |
| new->sym_sec = sym_sec; |
| new->undefined_weak = undefined_weak; |
| new->next = p->hi; |
| p->hi = new; |
| return true; |
| } |
| |
| /* Look up hi part pcgp reloc info in P, using HI_SEC_OFF as the lookup index. |
| This is used by a lo part reloc to find the corresponding hi part reloc. */ |
| |
| static riscv_pcgp_hi_reloc * |
| riscv_find_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off) |
| { |
| riscv_pcgp_hi_reloc *c; |
| |
| for (c = p->hi; c != NULL; c = c->next) |
| if (c->hi_sec_off == hi_sec_off) |
| return c; |
| return NULL; |
| } |
| |
| /* Record pcgp lo part reloc info in P, using HI_SEC_OFF as the lookup info. |
| This is used to record relocs that can't be relaxed. */ |
| |
| static bool |
| riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off) |
| { |
| riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof (*new)); |
| if (!new) |
| return false; |
| new->hi_sec_off = hi_sec_off; |
| new->next = p->lo; |
| p->lo = new; |
| return true; |
| } |
| |
| /* Look up lo part pcgp reloc info in P, using HI_SEC_OFF as the lookup index. |
| This is used by a hi part reloc to find the corresponding lo part reloc. */ |
| |
| static bool |
| riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off) |
| { |
| riscv_pcgp_lo_reloc *c; |
| |
| for (c = p->lo; c != NULL; c = c->next) |
| if (c->hi_sec_off == hi_sec_off) |
| return true; |
| return false; |
| } |
| |
| static void |
| riscv_update_pcgp_relocs (riscv_pcgp_relocs *p, asection *deleted_sec, |
| bfd_vma deleted_addr, size_t deleted_count) |
| { |
| /* Bytes have already been deleted and toaddr should match the old section |
| size for our checks, so adjust it here. */ |
| bfd_vma toaddr = deleted_sec->size + deleted_count; |
| riscv_pcgp_lo_reloc *l; |
| riscv_pcgp_hi_reloc *h; |
| |
| /* Update section offsets of corresponding pcrel_hi relocs for the pcrel_lo |
| entries where they occur after the deleted bytes. */ |
| for (l = p->lo; l != NULL; l = l->next) |
| if (l->hi_sec_off > deleted_addr |
| && l->hi_sec_off < toaddr) |
| l->hi_sec_off -= deleted_count; |
| |
| /* Update both section offsets, and symbol values of pcrel_hi relocs where |
| these values occur after the deleted bytes. */ |
| for (h = p->hi; h != NULL; h = h->next) |
| { |
| if (h->hi_sec_off > deleted_addr |
| && h->hi_sec_off < toaddr) |
| h->hi_sec_off -= deleted_count; |
| if (h->sym_sec == deleted_sec |
| && h->hi_addr > deleted_addr |
| && h->hi_addr < toaddr) |
| h->hi_addr -= deleted_count; |
| } |
| } |
| |
| /* Delete some bytes, adjust relcocations and symbol table from a section. */ |
| |
| static bool |
| _riscv_relax_delete_bytes (bfd *abfd, |
| asection *sec, |
| bfd_vma addr, |
| size_t count, |
| struct bfd_link_info *link_info, |
| riscv_pcgp_relocs *p, |
| bfd_vma delete_total, |
| bfd_vma toaddr) |
| { |
| unsigned int i, symcount; |
| struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd); |
| Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); |
| struct bfd_elf_section_data *data = elf_section_data (sec); |
| bfd_byte *contents = data->this_hdr.contents; |
| size_t bytes_to_move = toaddr - addr - count; |
| |
| /* Actually delete the bytes. */ |
| sec->size -= count; |
| memmove (contents + addr, contents + addr + count + delete_total, bytes_to_move); |
| |
| /* Still adjust relocations and symbols in non-linear times. */ |
| toaddr = sec->size + count; |
| |
| /* Adjust the location of all of the relocs. Note that we need not |
| adjust the addends, since all PC-relative references must be against |
| symbols, which we will adjust below. */ |
| for (i = 0; i < sec->reloc_count; i++) |
| if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr) |
| data->relocs[i].r_offset -= count; |
| |
| /* Adjust the hi_sec_off, and the hi_addr of any entries in the pcgp relocs |
| table for which these values occur after the deleted bytes. */ |
| if (p) |
| riscv_update_pcgp_relocs (p, sec, addr, count); |
| |
| /* Adjust the local symbols defined in this section. */ |
| for (i = 0; i < symtab_hdr->sh_info; i++) |
| { |
| Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i; |
| if (sym->st_shndx == sec_shndx) |
| { |
| /* If the symbol is in the range of memory we just moved, we |
| have to adjust its value. */ |
| if (sym->st_value > addr && sym->st_value <= toaddr) |
| sym->st_value -= count; |
| |
| /* If the symbol *spans* the bytes we just deleted (i.e. its |
| *end* is in the moved bytes but its *start* isn't), then we |
| must adjust its size. |
| |
| This test needs to use the original value of st_value, otherwise |
| we might accidentally decrease size when deleting bytes right |
| before the symbol. But since deleted relocs can't span across |
| symbols, we can't have both a st_value and a st_size decrease, |
| so it is simpler to just use an else. */ |
| else if (sym->st_value <= addr |
| && sym->st_value + sym->st_size > addr |
| && sym->st_value + sym->st_size <= toaddr) |
| sym->st_size -= count; |
| } |
| } |
| |
| /* Now adjust the global symbols defined in this section. */ |
| symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym)) |
| - symtab_hdr->sh_info); |
| |
| for (i = 0; i < symcount; i++) |
| { |
| struct elf_link_hash_entry *sym_hash = sym_hashes[i]; |
| |
| /* The '--wrap SYMBOL' option is causing a pain when the object file, |
| containing the definition of __wrap_SYMBOL, includes a direct |
| call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference |
| the same symbol (which is __wrap_SYMBOL), but still exist as two |
| different symbols in 'sym_hashes', we don't want to adjust |
| the global symbol __wrap_SYMBOL twice. |
| |
| The same problem occurs with symbols that are versioned_hidden, as |
| foo becomes an alias for foo@BAR, and hence they need the same |
| treatment. */ |
| if (link_info->wrap_hash != NULL |
| || sym_hash->versioned != unversioned) |
| { |
| struct elf_link_hash_entry **cur_sym_hashes; |
| |
| /* Loop only over the symbols which have already been checked. */ |
| for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i]; |
| cur_sym_hashes++) |
| { |
| /* If the current symbol is identical to 'sym_hash', that means |
| the symbol was already adjusted (or at least checked). */ |
| if (*cur_sym_hashes == sym_hash) |
| break; |
| } |
| /* Don't adjust the symbol again. */ |
| if (cur_sym_hashes < &sym_hashes[i]) |
| continue; |
| } |
| |
| if ((sym_hash->root.type == bfd_link_hash_defined |
| || sym_hash->root.type == bfd_link_hash_defweak) |
| && sym_hash->root.u.def.section == sec) |
| { |
| /* As above, adjust the value if needed. */ |
| if (sym_hash->root.u.def.value > addr |
| && sym_hash->root.u.def.value <= toaddr) |
| sym_hash->root.u.def.value -= count; |
| |
| /* As above, adjust the size if needed. */ |
| else if (sym_hash->root.u.def.value <= addr |
| && sym_hash->root.u.def.value + sym_hash->size > addr |
| && sym_hash->root.u.def.value + sym_hash->size <= toaddr) |
| sym_hash->size -= count; |
| } |
| } |
| |
| return true; |
| } |
| |
| typedef bool (*relax_delete_t) (bfd *, asection *, |
| bfd_vma, size_t, |
| struct bfd_link_info *, |
| riscv_pcgp_relocs *, |
| Elf_Internal_Rela *); |
| |
| static relax_delete_t riscv_relax_delete_bytes; |
| |
| /* Do not delete some bytes from a section while relaxing. |
| Just mark the deleted bytes as R_RISCV_DELETE. */ |
| |
| static bool |
| _riscv_relax_delete_piecewise (bfd *abfd ATTRIBUTE_UNUSED, |
| asection *sec ATTRIBUTE_UNUSED, |
| bfd_vma addr, |
| size_t count, |
| struct bfd_link_info *link_info ATTRIBUTE_UNUSED, |
| riscv_pcgp_relocs *p ATTRIBUTE_UNUSED, |
| Elf_Internal_Rela *rel) |
| { |
| if (rel == NULL) |
| return false; |
| rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE); |
| rel->r_offset = addr; |
| rel->r_addend = count; |
| return true; |
| } |
| |
| /* Delete some bytes from a section while relaxing. */ |
| |
| static bool |
| _riscv_relax_delete_immediate (bfd *abfd, |
| asection *sec, |
| bfd_vma addr, |
| size_t count, |
| struct bfd_link_info *link_info, |
| riscv_pcgp_relocs *p, |
| Elf_Internal_Rela *rel) |
| { |
| if (rel != NULL) |
| rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE); |
| return _riscv_relax_delete_bytes (abfd, sec, addr, count, |
| link_info, p, 0, sec->size); |
| } |
| |
| /* Delete the bytes for R_RISCV_DELETE relocs. */ |
| |
| static bool |
| riscv_relax_resolve_delete_relocs (bfd *abfd, |
| asection *sec, |
| struct bfd_link_info *link_info, |
| Elf_Internal_Rela *relocs) |
| { |
| bfd_vma delete_total = 0; |
| unsigned int i; |
| |
| for (i = 0; i < sec->reloc_count; i++) |
| { |
| Elf_Internal_Rela *rel = relocs + i; |
| if (ELFNN_R_TYPE (rel->r_info) != R_RISCV_DELETE) |
| continue; |
| |
| /* Find the next R_RISCV_DELETE reloc if possible. */ |
| Elf_Internal_Rela *rel_next = NULL; |
| unsigned int start = rel - relocs; |
| for (i = start; i < sec->reloc_count; i++) |
| { |
| /* Since we only replace existing relocs and don't add new relocs, the |
| relocs are in sequential order. We can skip the relocs prior to this |
| one, making this search linear time. */ |
| rel_next = relocs + i; |
| if (ELFNN_R_TYPE ((rel_next)->r_info) == R_RISCV_DELETE |
| && (rel_next)->r_offset > rel->r_offset) |
| { |
| BFD_ASSERT (rel_next - rel > 0); |
| break; |
| } |
| else |
| rel_next = NULL; |
| } |
| |
| bfd_vma toaddr = rel_next == NULL ? sec->size : rel_next->r_offset; |
| if (!_riscv_relax_delete_bytes (abfd, sec, rel->r_offset, rel->r_addend, |
| link_info, NULL, delete_total, toaddr)) |
| return false; |
| |
| delete_total += rel->r_addend; |
| rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE); |
| |
| /* Skip ahead to the next delete reloc. */ |
| i = rel_next != NULL ? (unsigned int) (rel_next - relocs - 1) |
| : sec->reloc_count; |
| } |
| |
| return true; |
| } |
| |
| typedef bool (*relax_func_t) (bfd *, asection *, asection *, |
| struct bfd_link_info *, |
| Elf_Internal_Rela *, |
| bfd_vma, bfd_vma, bfd_vma, bool *, |
| riscv_pcgp_relocs *, |
| bool undefined_weak); |
| |
| /* Relax AUIPC + JALR into JAL. */ |
| |
| static bool |
| _bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec, |
| struct bfd_link_info *link_info, |
| Elf_Internal_Rela *rel, |
| bfd_vma symval, |
| bfd_vma max_alignment, |
| bfd_vma reserve_size ATTRIBUTE_UNUSED, |
| bool *again, |
| riscv_pcgp_relocs *pcgp_relocs, |
| bool undefined_weak ATTRIBUTE_UNUSED) |
| { |
| bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; |
| bfd_vma foff = symval - (sec_addr (sec) + rel->r_offset); |
| bool near_zero = (symval + RISCV_IMM_REACH / 2) < RISCV_IMM_REACH; |
| bfd_vma auipc, jalr; |
| int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC; |
| |
| /* If the call crosses section boundaries, an alignment directive could |
| cause the PC-relative offset to later increase, so we need to add in the |
| max alignment of any section inclusive from the call to the target. |
| Otherwise, we only need to use the alignment of the current section. */ |
| if (VALID_JTYPE_IMM (foff)) |
| { |
| if (sym_sec->output_section == sec->output_section |
| && sym_sec->output_section != bfd_abs_section_ptr) |
| max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power; |
| foff += ((bfd_signed_vma) foff < 0 ? -max_alignment : max_alignment); |
| } |
| |
| /* See if this function call can be shortened. */ |
| if (!VALID_JTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero)) |
| return true; |
| |
| /* Shorten the function call. */ |
| BFD_ASSERT (rel->r_offset + 8 <= sec->size); |
| |
| auipc = bfd_getl32 (contents + rel->r_offset); |
| jalr = bfd_getl32 (contents + rel->r_offset + 4); |
| rd = (jalr >> OP_SH_RD) & OP_MASK_RD; |
| rvc = rvc && VALID_CJTYPE_IMM (foff); |
| |
| /* C.J exists on RV32 and RV64, but C.JAL is RV32-only. */ |
| rvc = rvc && (rd == 0 || (rd == X_RA && ARCH_SIZE == 32)); |
| |
| if (rvc) |
| { |
| /* Relax to C.J[AL] rd, addr. */ |
| r_type = R_RISCV_RVC_JUMP; |
| auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL; |
| len = 2; |
| } |
| else if (VALID_JTYPE_IMM (foff)) |
| { |
| /* Relax to JAL rd, addr. */ |
| r_type = R_RISCV_JAL; |
| auipc = MATCH_JAL | (rd << OP_SH_RD); |
| } |
| else |
| { |
| /* Near zero, relax to JALR rd, x0, addr. */ |
| r_type = R_RISCV_LO12_I; |
| auipc = MATCH_JALR | (rd << OP_SH_RD); |
| } |
| |
| /* Replace the R_RISCV_CALL reloc. */ |
| rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type); |
| /* Replace the AUIPC. */ |
| riscv_put_insn (8 * len, auipc, contents + rel->r_offset); |
| |
| /* Delete unnecessary JALR and reuse the R_RISCV_RELAX reloc. */ |
| *again = true; |
| return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len, |
| link_info, pcgp_relocs, rel + 1); |
| } |
| |
| /* Traverse all output sections and return the max alignment. |
| |
| If gp is zero, then all the output section alignments are |
| possible candidates; Otherwise, only the output sections |
| which are in the [gp-2K, gp+2K) range need to be considered. */ |
| |
| static bfd_vma |
| _bfd_riscv_get_max_alignment (asection *sec, bfd_vma gp) |
| { |
| unsigned int max_alignment_power = 0; |
| asection *o; |
| |
| for (o = sec->output_section->owner->sections; o != NULL; o = o->next) |
| { |
| bool valid = true; |
| if (gp |
| && !(VALID_ITYPE_IMM (sec_addr (o) - gp) |
| || VALID_ITYPE_IMM (sec_addr (o) + o->size - gp))) |
| valid = false; |
| |
| if (valid && o->alignment_power > max_alignment_power) |
| max_alignment_power = o->alignment_power; |
| } |
| |
| return (bfd_vma) 1 << max_alignment_power; |
| } |
| |
| /* Relax non-PIC global variable references to GP-relative references. */ |
| |
| static bool |
| _bfd_riscv_relax_lui (bfd *abfd, |
| asection *sec, |
| asection *sym_sec, |
| struct bfd_link_info *link_info, |
| Elf_Internal_Rela *rel, |
| bfd_vma symval, |
| bfd_vma max_alignment, |
| bfd_vma reserve_size, |
| bool *again, |
| riscv_pcgp_relocs *pcgp_relocs, |
| bool undefined_weak) |
| { |
| struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (link_info); |
| bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; |
| /* Can relax to x0 even when gp relaxation is disabled. */ |
| bfd_vma gp = htab->params->relax_gp |
| ? riscv_global_pointer_value (link_info) |
| : 0; |
| int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC; |
| |
| BFD_ASSERT (rel->r_offset + 4 <= sec->size); |
| |
| if (!undefined_weak && gp) |
| { |
| /* If gp and the symbol are in the same output section, which is not the |
| abs section, then consider only that output section's alignment. */ |
| struct bfd_link_hash_entry *h = |
| bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, false, false, |
| true); |
| if (h->u.def.section->output_section == sym_sec->output_section |
| && sym_sec->output_section != bfd_abs_section_ptr) |
| max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power; |
| else |
| { |
| /* Consider output section alignments which are in [gp-2K, gp+2K). */ |
| max_alignment = htab->max_alignment_for_gp; |
| if (max_alignment == (bfd_vma) -1) |
| { |
| max_alignment = _bfd_riscv_get_max_alignment (sec, gp); |
| htab->max_alignment_for_gp = max_alignment; |
| } |
| } |
| } |
| |
| /* Is the reference in range of x0 or gp? |
| Valid gp range conservatively because of alignment issue. |
| |
| Should we also consider the alignment issue for x0 base? */ |
| if (undefined_weak |
| || VALID_ITYPE_IMM (symval) |
| || (symval >= gp |
| && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size)) |
| || (symval < gp |
| && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size))) |
| { |
| unsigned sym = ELFNN_R_SYM (rel->r_info); |
| switch (ELFNN_R_TYPE (rel->r_info)) |
| { |
| case R_RISCV_LO12_I: |
| rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I); |
| return true; |
| |
| case R_RISCV_LO12_S: |
| rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S); |
| return true; |
| |
| case R_RISCV_HI20: |
| /* Delete unnecessary LUI and reuse the reloc. */ |
| *again = true; |
| return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, |
| link_info, pcgp_relocs, rel); |
| |
| default: |
| abort (); |
| } |
| } |
| |
| /* Can we relax LUI to C.LUI? Alignment might move the section forward; |
| account for this assuming page alignment at worst. In the presence of |
| RELRO segment the linker aligns it by one page size, therefore sections |
| after the segment can be moved more than one page. */ |
| |
| if (use_rvc |
| && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20 |
| && VALID_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (symval)) |
| && VALID_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (symval) |
| + (link_info->relro ? 2 * ELF_MAXPAGESIZE |
| : ELF_MAXPAGESIZE))) |
| { |
| /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */ |
| bfd_vma lui = bfd_getl32 (contents + rel->r_offset); |
| unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD; |
| if (rd == 0 || rd == X_SP) |
| return true; |
| |
| lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI; |
| bfd_putl32 (lui, contents + rel->r_offset); |
| |
| /* Replace the R_RISCV_HI20 reloc. */ |
| rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI); |
| |
| /* Delete extra bytes and reuse the R_RISCV_RELAX reloc. */ |
| *again = true; |
| return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2, |
| link_info, pcgp_relocs, rel + 1); |
| } |
| |
| return true; |
| } |
| |
| /* Relax non-PIC TLS references to TP-relative references. */ |
| |
| static bool |
| _bfd_riscv_relax_tls_le (bfd *abfd, |
| asection *sec, |
| asection *sym_sec ATTRIBUTE_UNUSED, |
| struct bfd_link_info *link_info, |
| Elf_Internal_Rela *rel, |
| bfd_vma symval, |
| bfd_vma max_alignment ATTRIBUTE_UNUSED, |
| bfd_vma reserve_size ATTRIBUTE_UNUSED, |
| bool *again, |
| riscv_pcgp_relocs *pcgp_relocs, |
| bool undefined_weak ATTRIBUTE_UNUSED) |
| { |
| /* See if this symbol is in range of tp. */ |
| if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0) |
| return true; |
| |
| BFD_ASSERT (rel->r_offset + 4 <= sec->size); |
| switch (ELFNN_R_TYPE (rel->r_info)) |
| { |
| case R_RISCV_TPREL_LO12_I: |
| rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I); |
| return true; |
| |
| case R_RISCV_TPREL_LO12_S: |
| rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S); |
| return true; |
| |
| case R_RISCV_TPREL_HI20: |
| case R_RISCV_TPREL_ADD: |
| /* Delete unnecessary instruction and reuse the reloc. */ |
| *again = true; |
| return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info, |
| pcgp_relocs, rel); |
| |
| default: |
| abort (); |
| } |
| } |
| |
| /* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. |
| Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */ |
| |
| static bool |
| _bfd_riscv_relax_align (bfd *abfd, asection *sec, |
| asection *sym_sec, |
| struct bfd_link_info *link_info, |
| Elf_Internal_Rela *rel, |
| bfd_vma symval, |
| bfd_vma max_alignment ATTRIBUTE_UNUSED, |
| bfd_vma reserve_size ATTRIBUTE_UNUSED, |
| bool *again ATTRIBUTE_UNUSED, |
| riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED, |
| bool undefined_weak ATTRIBUTE_UNUSED) |
| { |
| bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; |
| bfd_vma alignment = 1, pos; |
| while (alignment <= rel->r_addend) |
| alignment *= 2; |
| |
| symval -= rel->r_addend; |
| bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment; |
| bfd_vma nop_bytes = aligned_addr - symval; |
| |
| /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */ |
| sec->sec_flg0 = true; |
| |
| /* Make sure there are enough NOPs to actually achieve the alignment. */ |
| if (rel->r_addend < nop_bytes) |
| { |
| _bfd_error_handler |
| (_("%pB(%pA+%#" PRIx64 "): %" PRId64 " bytes required for alignment " |
| "to %" PRId64 "-byte boundary, but only %" PRId64 " present"), |
| abfd, sym_sec, (uint64_t) rel->r_offset, |
| (int64_t) nop_bytes, (int64_t) alignment, (int64_t) rel->r_addend); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| /* Delete the reloc. */ |
| rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE); |
| |
| /* If the number of NOPs is already correct, there's nothing to do. */ |
| if (nop_bytes == rel->r_addend) |
| return true; |
| |
| /* Write as many RISC-V NOPs as we need. */ |
| for (pos = 0; pos < (nop_bytes & -4); pos += 4) |
| bfd_putl32 (RISCV_NOP, contents + rel->r_offset + pos); |
| |
| /* Write a final RVC NOP if need be. */ |
| if (nop_bytes % 4 != 0) |
| bfd_putl16 (RVC_NOP, contents + rel->r_offset + pos); |
| |
| /* Delete excess bytes. */ |
| return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes, |
| rel->r_addend - nop_bytes, link_info, |
| NULL, NULL); |
| } |
| |
| /* Relax PC-relative references to GP-relative references. */ |
| |
| static bool |
| _bfd_riscv_relax_pc (bfd *abfd ATTRIBUTE_UNUSED, |
| asection *sec, |
| asection *sym_sec, |
| struct bfd_link_info *link_info, |
| Elf_Internal_Rela *rel, |
| bfd_vma symval, |
| bfd_vma max_alignment, |
| bfd_vma reserve_size, |
| bool *again, |
| riscv_pcgp_relocs *pcgp_relocs, |
| bool undefined_weak) |
| { |
| struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (link_info); |
| /* Can relax to x0 even when gp relaxation is disabled. */ |
| bfd_vma gp = htab->params->relax_gp |
| ? riscv_global_pointer_value (link_info) |
| : 0; |
| |
| BFD_ASSERT (rel->r_offset + 4 <= sec->size); |
| |
| /* Chain the _LO relocs to their cooresponding _HI reloc to compute the |
| actual target address. */ |
| riscv_pcgp_hi_reloc hi_reloc; |
| memset (&hi_reloc, 0, sizeof (hi_reloc)); |
| switch (ELFNN_R_TYPE (rel->r_info)) |
| { |
| case R_RISCV_PCREL_LO12_I: |
| case R_RISCV_PCREL_LO12_S: |
| { |
| /* If the %lo has an addend, it isn't for the label pointing at the |
| hi part instruction, but rather for the symbol pointed at by the |
| hi part instruction. So we must subtract it here for the lookup. |
| It is still used below in the final symbol address. */ |
| bfd_vma hi_sec_off = symval - sec_addr (sym_sec) - rel->r_addend; |
| riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs, |
| hi_sec_off); |
| if (hi == NULL) |
| { |
| riscv_record_pcgp_lo_reloc (pcgp_relocs, hi_sec_off); |
| return true; |
| } |
| |
| hi_reloc = *hi; |
| symval = hi_reloc.hi_addr; |
| sym_sec = hi_reloc.sym_sec; |
| |
| /* We can not know whether the undefined weak symbol is referenced |
| according to the information of R_RISCV_PCREL_LO12_I/S. Therefore, |
| we have to record the 'undefined_weak' flag when handling the |
| corresponding R_RISCV_HI20 reloc in riscv_record_pcgp_hi_reloc. */ |
| undefined_weak = hi_reloc.undefined_weak; |
| } |
| break; |
| |
| case R_RISCV_PCREL_HI20: |
| /* Mergeable symbols and code might later move out of range. */ |
| if (! undefined_weak |
| && sym_sec->flags & (SEC_MERGE | SEC_CODE)) |
| return true; |
| |
| /* If the cooresponding lo relocation has already been seen then it's not |
| safe to relax this relocation. */ |
| if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset)) |
| return true; |
| |
| break; |
| |
| default: |
| abort (); |
| } |
| |
| if (!undefined_weak && gp) |
| { |
| /* If gp and the symbol are in the same output section, which is not the |
| abs section, then consider only that output section's alignment. */ |
| struct bfd_link_hash_entry *h = |
| bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, false, false, |
| true); |
| if (h->u.def.section->output_section == sym_sec->output_section |
| && sym_sec->output_section != bfd_abs_section_ptr) |
| max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power; |
| else |
| { |
| /* Consider output section alignments which are in [gp-2K, gp+2K). */ |
| max_alignment = htab->max_alignment_for_gp; |
| if (max_alignment == (bfd_vma) -1) |
| { |
| max_alignment = _bfd_riscv_get_max_alignment (sec, gp); |
| htab->max_alignment_for_gp = max_alignment; |
| } |
| } |
| } |
| |
| /* Is the reference in range of x0 or gp? |
| Valid gp range conservatively because of alignment issue. |
| |
| Should we also consider the alignment issue for x0 base? */ |
| if (undefined_weak |
| || VALID_ITYPE_IMM (symval) |
| || (symval >= gp |
| && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size)) |
| || (symval < gp |
| && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size))) |
| { |
| unsigned sym = hi_reloc.hi_sym; |
| switch (ELFNN_R_TYPE (rel->r_info)) |
| { |
| case R_RISCV_PCREL_LO12_I: |
| rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I); |
| rel->r_addend += hi_reloc.hi_addend; |
| return true; |
| |
| case R_RISCV_PCREL_LO12_S: |
| rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S); |
| rel->r_addend += hi_reloc.hi_addend; |
| return true; |
| |
| case R_RISCV_PCREL_HI20: |
| riscv_record_pcgp_hi_reloc (pcgp_relocs, |
| rel->r_offset, |
| rel->r_addend, |
| symval, |
| ELFNN_R_SYM(rel->r_info), |
| sym_sec, |
| undefined_weak); |
| /* Delete unnecessary AUIPC and reuse the reloc. */ |
| *again = true; |
| riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info, |
| pcgp_relocs, rel); |
| return true; |
| |
| default: |
| abort (); |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Called by after_allocation to set the information of data segment |
| before relaxing. */ |
| |
| void |
| bfd_elfNN_riscv_set_data_segment_info (struct bfd_link_info *info, |
| int *data_segment_phase) |
| { |
| struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); |
| htab->data_segment_phase = data_segment_phase; |
| } |
| |
| /* Relax a section. |
| |
| Pass 0: Shortens code sequences for LUI/CALL/TPREL/PCREL relocs and |
| deletes the obsolete bytes. |
| Pass 1: Which cannot be disabled, handles code alignment directives. */ |
| |
| static bool |
| _bfd_riscv_relax_section (bfd *abfd, asection *sec, |
| struct bfd_link_info *info, |
| bool *again) |
| { |
| Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd); |
| struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); |
| struct bfd_elf_section_data *data = elf_section_data (sec); |
| Elf_Internal_Rela *relocs; |
| bool ret = false; |
| unsigned int i; |
| bfd_vma max_alignment, reserve_size = 0; |
| riscv_pcgp_relocs pcgp_relocs; |
| static asection *first_section = NULL; |
| |
| *again = false; |
| |
| if (bfd_link_relocatable (info) |
| || sec->sec_flg0 |
| || sec->reloc_count == 0 |
| || (sec->flags & SEC_RELOC) == 0 |
| || (sec->flags & SEC_HAS_CONTENTS) == 0 |
| || (info->disable_target_specific_optimizations |
| && info->relax_pass == 0) |
| /* The exp_seg_relro_adjust is enum phase_enum (0x4), |
| and defined in ld/ldexp.h. */ |
| || *(htab->data_segment_phase) == 4) |
| return true; |
| |
| /* Record the first relax section, so that we can reset the |
| max_alignment_for_gp for the repeated relax passes. */ |
| if (first_section == NULL) |
| first_section = sec; |
| else if (first_section == sec) |
| htab->max_alignment_for_gp = -1; |
| |
| riscv_init_pcgp_relocs (&pcgp_relocs); |
| |
| /* Read this BFD's relocs if we haven't done so already. */ |
| if (data->relocs) |
| relocs = data->relocs; |
| else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, |
| info->keep_memory))) |
| goto fail; |
| |
| /* Estimate the maximum alignment for all output sections once time |
| should be enough. */ |
| max_alignment = htab->max_alignment; |
| if (max_alignment == (bfd_vma) -1) |
| { |
| max_alignment = _bfd_riscv_get_max_alignment (sec, 0/* gp */); |
| htab->max_alignment = max_alignment; |
| } |
| |
| /* Examine and consider relaxing each reloc. */ |
| for (i = 0; i < sec->reloc_count; i++) |
| { |
| asection *sym_sec; |
| Elf_Internal_Rela *rel = relocs + i; |
| relax_func_t relax_func; |
| int type = ELFNN_R_TYPE (rel->r_info); |
| bfd_vma symval; |
| char symtype; |
| bool undefined_weak = false; |
| |
| relax_func = NULL; |
| riscv_relax_delete_bytes = NULL; |
| if (info->relax_pass == 0) |
| { |
| if (type == R_RISCV_CALL |
| || type == R_RISCV_CALL_PLT) |
| relax_func = _bfd_riscv_relax_call; |
| else if (type == R_RISCV_HI20 |
| || type == R_RISCV_LO12_I |
| || type == R_RISCV_LO12_S) |
| relax_func = _bfd_riscv_relax_lui; |
| else if (type == R_RISCV_TPREL_HI20 |
| || type == R_RISCV_TPREL_ADD |
| || type == R_RISCV_TPREL_LO12_I |
| || type == R_RISCV_TPREL_LO12_S) |
| relax_func = _bfd_riscv_relax_tls_le; |
| else if (!bfd_link_pic (info) |
| && (type == R_RISCV_PCREL_HI20 |
| || type == R_RISCV_PCREL_LO12_I |
| || type == R_RISCV_PCREL_LO12_S)) |
| relax_func = _bfd_riscv_relax_pc; |
| else |
| continue; |
| riscv_relax_delete_bytes = _riscv_relax_delete_piecewise; |
| |
| /* Only relax this reloc if it is paired with R_RISCV_RELAX. */ |
| if (i == sec->reloc_count - 1 |
| || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX |
| || rel->r_offset != (rel + 1)->r_offset) |
| continue; |
| |
| /* Skip over the R_RISCV_RELAX. */ |
| i++; |
| } |
| else if (info->relax_pass == 1 && type == R_RISCV_ALIGN) |
| { |
| relax_func = _bfd_riscv_relax_align; |
| riscv_relax_delete_bytes = _riscv_relax_delete_immediate; |
| } |
| else |
| continue; |
| |
| data->relocs = relocs; |
| |
| /* Read this BFD's contents if we haven't done so already. */ |
| if (!data->this_hdr.contents |
| && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents)) |
| goto fail; |
| |
| /* Read this BFD's symbols if we haven't done so already. */ |
| if (symtab_hdr->sh_info != 0 |
| && !symtab_hdr->contents |
| && !(symtab_hdr->contents = |
| (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr, |
| symtab_hdr->sh_info, |
| 0, NULL, NULL, NULL))) |
| goto fail; |
| |
| /* Get the value of the symbol referred to by the reloc. */ |
| if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info) |
| { |
| /* A local symbol. */ |
| Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents |
| + ELFNN_R_SYM (rel->r_info)); |
| reserve_size = (isym->st_size - rel->r_addend) > isym->st_size |
| ? 0 : isym->st_size - rel->r_addend; |
| |
| /* Relocate against local STT_GNU_IFUNC symbol. we have created |
| a fake global symbol entry for this, so deal with the local ifunc |
| as a global. */ |
| if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) |
| continue; |
| |
| if (isym->st_shndx == SHN_UNDEF) |
| sym_sec = sec, symval = rel->r_offset; |
| else |
| { |
| BFD_ASSERT (isym->st_shndx < elf_numsections (abfd)); |
| sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section; |
| #if 0 |
| /* The purpose of this code is unknown. It breaks linker scripts |
| for embedded development that place sections at address zero. |
| This code is believed to be unnecessary. Disabling it but not |
| yet removing it, in case something breaks. */ |
| if (sec_addr (sym_sec) == 0) |
| continue; |
| #endif |
| symval = isym->st_value; |
| } |
| symtype = ELF_ST_TYPE (isym->st_info); |
| } |
| else |
| { |
| unsigned long indx; |
| struct elf_link_hash_entry *h; |
| |
| indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info; |
| h = elf_sym_hashes (abfd)[indx]; |
| |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| /* Disable the relaxation for ifunc. */ |
| if (h != NULL && h->type == STT_GNU_IFUNC) |
| continue; |
| |
| /* Maybe we should check UNDEFWEAK_NO_DYNAMIC_RELOC here? But that |
| will break the undefweak relaxation testcases, so just make sure |
| we won't do relaxations for linker_def symbols in short-term. */ |
| if (h->root.type == bfd_link_hash_undefweak |
| /* The linker_def symbol like __ehdr_start that may be undefweak |
| for now, but will be guaranteed to be defined later. */ |
| && !h->root.linker_def |
| && (relax_func == _bfd_riscv_relax_lui |
| || relax_func == _bfd_riscv_relax_pc)) |
| { |
| /* For the lui and auipc relaxations, since the symbol |
| value of an undefined weak symbol is always be zero, |
| we can optimize the patterns into a single LI/MV/ADDI |
| instruction. |
| |
| Note that, creating shared libraries and pie output may |
| break the rule above. Fortunately, since we do not relax |
| pc relocs when creating shared libraries and pie output, |
| and the absolute address access for R_RISCV_HI20 isn't |
| allowed when "-fPIC" is set, the problem of creating shared |
| libraries can not happen currently. Once we support the |
| auipc relaxations when creating shared libraries, then we will |
| need the more rigorous checking for this optimization. */ |
| undefined_weak = true; |
| } |
| |
| /* This line has to match the check in riscv_elf_relocate_section |
| in the R_RISCV_CALL[_PLT] case. */ |
| if (bfd_link_pic (info) && h->plt.offset != MINUS_ONE) |
| { |
| sym_sec = htab->elf.splt; |
| symval = h->plt.offset; |
| } |
| else if (undefined_weak) |
| { |
| symval = 0; |
| sym_sec = bfd_und_section_ptr; |
| } |
| else if ((h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && h->root.u.def.section != NULL |
| && h->root.u.def.section->output_section != NULL) |
| { |
| symval = h->root.u.def.value; |
| sym_sec = h->root.u.def.section; |
| } |
| else |
| continue; |
| |
| if (h->type != STT_FUNC) |
| reserve_size = |
| (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend; |
| symtype = h->type; |
| } |
| |
| if (sym_sec->sec_info_type == SEC_INFO_TYPE_MERGE |
| && (sym_sec->flags & SEC_MERGE)) |
| { |
| /* At this stage in linking, no SEC_MERGE symbol has been |
| adjusted, so all references to such symbols need to be |
| passed through _bfd_merged_section_offset. (Later, in |
| relocate_section, all SEC_MERGE symbols *except* for |
| section symbols have been adjusted.) |
| |
| gas may reduce relocations against symbols in SEC_MERGE |
| sections to a relocation against the section symbol when |
| the original addend was zero. When the reloc is against |
| a section symbol we should include the addend in the |
| offset passed to _bfd_merged_section_offset, since the |
| location of interest is the original symbol. On the |
| other hand, an access to "sym+addend" where "sym" is not |
| a section symbol should not include the addend; Such an |
| access is presumed to be an offset from "sym"; The |
| location of interest is just "sym". */ |
| if (symtype == STT_SECTION) |
| symval += rel->r_addend; |
| |
| symval = _bfd_merged_section_offset (abfd, &sym_sec, |
| elf_section_data (sym_sec)->sec_info, |
| symval); |
| |
| if (symtype != STT_SECTION) |
| symval += rel->r_addend; |
| } |
| else |
| symval += rel->r_addend; |
| |
| symval += sec_addr (sym_sec); |
| |
| if (!relax_func (abfd, sec, sym_sec, info, rel, symval, |
| max_alignment, reserve_size, again, |
| &pcgp_relocs, undefined_weak)) |
| goto fail; |
| } |
| |
| /* Resolve R_RISCV_DELETE relocations. */ |
| if (!riscv_relax_resolve_delete_relocs (abfd, sec, info, relocs)) |
| goto fail; |
| |
| ret = true; |
| |
| fail: |
| if (relocs != data->relocs) |
| free (relocs); |
| riscv_free_pcgp_relocs (&pcgp_relocs, abfd, sec); |
| |
| return ret; |
| } |
| |
| #if ARCH_SIZE == 32 |
| # define PRSTATUS_SIZE 204 |
| # define PRSTATUS_OFFSET_PR_CURSIG 12 |
| # define PRSTATUS_OFFSET_PR_PID 24 |
| # define PRSTATUS_OFFSET_PR_REG 72 |
| # define ELF_GREGSET_T_SIZE 128 |
| # define PRPSINFO_SIZE 128 |
| # define PRPSINFO_OFFSET_PR_PID 16 |
| # define PRPSINFO_OFFSET_PR_FNAME 32 |
| # define PRPSINFO_OFFSET_PR_PSARGS 48 |
| # define PRPSINFO_PR_FNAME_LENGTH 16 |
| # define PRPSINFO_PR_PSARGS_LENGTH 80 |
| #else |
| # define PRSTATUS_SIZE 376 |
| # define PRSTATUS_OFFSET_PR_CURSIG 12 |
| # define PRSTATUS_OFFSET_PR_PID 32 |
| # define PRSTATUS_OFFSET_PR_REG 112 |
| # define ELF_GREGSET_T_SIZE 256 |
| # define PRPSINFO_SIZE 136 |
| # define PRPSINFO_OFFSET_PR_PID 24 |
| # define PRPSINFO_OFFSET_PR_FNAME 40 |
| # define PRPSINFO_OFFSET_PR_PSARGS 56 |
| # define PRPSINFO_PR_FNAME_LENGTH 16 |
| # define PRPSINFO_PR_PSARGS_LENGTH 80 |
| #endif |
| |
| /* Write PRSTATUS and PRPSINFO note into core file. This will be called |
| before the generic code in elf.c. By checking the compiler defines we |
| only perform any action here if the generic code would otherwise not be |
| able to help us. The intention is that bare metal core dumps (where the |
| prstatus_t and/or prpsinfo_t might not be available) will use this code, |
| while non bare metal tools will use the generic elf code. */ |
| |
| static char * |
| riscv_write_core_note (bfd *abfd ATTRIBUTE_UNUSED, |
| char *buf ATTRIBUTE_UNUSED, |
| int *bufsiz ATTRIBUTE_UNUSED, |
| int note_type ATTRIBUTE_UNUSED, ...) |
| { |
| switch (note_type) |
| { |
| default: |
| return NULL; |
| |
| #if !defined (HAVE_PRPSINFO_T) |
| case NT_PRPSINFO: |
| { |
| char data[PRPSINFO_SIZE] ATTRIBUTE_NONSTRING; |
| va_list ap; |
| |
| va_start (ap, note_type); |
| memset (data, 0, sizeof (data)); |
| strncpy (data + PRPSINFO_OFFSET_PR_FNAME, va_arg (ap, const char *), |
| PRPSINFO_PR_FNAME_LENGTH); |
| #if GCC_VERSION == 8000 || GCC_VERSION == 8001 |
| DIAGNOSTIC_PUSH; |
| /* GCC 8.0 and 8.1 warn about 80 equals destination size with |
| -Wstringop-truncation: |
| https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643 |
| */ |
| DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION; |
| #endif |
| strncpy (data + PRPSINFO_OFFSET_PR_PSARGS, va_arg (ap, const char *), |
| PRPSINFO_PR_PSARGS_LENGTH); |
| #if GCC_VERSION == 8000 || GCC_VERSION == 8001 |
| DIAGNOSTIC_POP; |
| #endif |
| va_end (ap); |
| return elfcore_write_note (abfd, buf, bufsiz, |
| "CORE", note_type, data, sizeof (data)); |
| } |
| #endif /* !HAVE_PRPSINFO_T */ |
| |
| #if !defined (HAVE_PRSTATUS_T) |
| case NT_PRSTATUS: |
| { |
| char data[PRSTATUS_SIZE]; |
| va_list ap; |
| long pid; |
| int cursig; |
| const void *greg; |
| |
| va_start (ap, note_type); |
| memset (data, 0, sizeof(data)); |
| pid = va_arg (ap, long); |
| bfd_put_32 (abfd, pid, data + PRSTATUS_OFFSET_PR_PID); |
| cursig = va_arg (ap, int); |
| bfd_put_16 (abfd, cursig, data + PRSTATUS_OFFSET_PR_CURSIG); |
| greg = va_arg (ap, const void *); |
| memcpy (data + PRSTATUS_OFFSET_PR_REG, greg, |
| PRSTATUS_SIZE - PRSTATUS_OFFSET_PR_REG - ARCH_SIZE / 8); |
| va_end (ap); |
| return elfcore_write_note (abfd, buf, bufsiz, |
| "CORE", note_type, data, sizeof (data)); |
| } |
| #endif /* !HAVE_PRSTATUS_T */ |
| } |
| } |
| |
| /* Support for core dump NOTE sections. */ |
| |
| static bool |
| riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
| { |
| switch (note->descsz) |
| { |
| default: |
| return false; |
| |
| case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */ |
| /* pr_cursig */ |
| elf_tdata (abfd)->core->signal |
| = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG); |
| |
| /* pr_pid */ |
| elf_tdata (abfd)->core->lwpid |
| = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID); |
| break; |
| } |
| |
| /* Make a ".reg/999" section. */ |
| return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE, |
| note->descpos + PRSTATUS_OFFSET_PR_REG); |
| } |
| |
| static bool |
| riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
| { |
| switch (note->descsz) |
| { |
| default: |
| return false; |
| |
| case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */ |
| /* pr_pid */ |
| elf_tdata (abfd)->core->pid |
| = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID); |
| |
| /* pr_fname */ |
| elf_tdata (abfd)->core->program = _bfd_elfcore_strndup |
| (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, |
| PRPSINFO_PR_FNAME_LENGTH); |
| |
| /* pr_psargs */ |
| elf_tdata (abfd)->core->command = _bfd_elfcore_strndup |
| (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, |
| PRPSINFO_PR_PSARGS_LENGTH); |
| break; |
| } |
| |
| /* Note that for some reason, a spurious space is tacked |
| onto the end of the args in some (at least one anyway) |
| implementations, so strip it off if it exists. */ |
| |
| { |
| char *command = elf_tdata (abfd)->core->command; |
| int n = strlen (command); |
| |
| if (0 < n && command[n - 1] == ' ') |
| command[n - 1] = '\0'; |
| } |
| |
| return true; |
| } |
| |
| /* Set the right mach type. */ |
| |
| static bool |
| riscv_elf_object_p (bfd *abfd) |
| { |
| /* There are only two mach types in RISCV currently. */ |
| if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0 |
| || strcmp (abfd->xvec->name, "elf32-bigriscv") == 0) |
| bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32); |
| else |
| bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64); |
| |
| return true; |
| } |
| |
| /* Determine whether an object attribute tag takes an integer, a |
| string or both. */ |
| |
| static int |
| riscv_elf_obj_attrs_arg_type (int tag) |
| { |
| return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL; |
| } |
| |
| /* Do not choose mapping symbols as a function name. */ |
| |
| static bfd_size_type |
| riscv_maybe_function_sym (const asymbol *sym, |
| asection *sec, |
| bfd_vma *code_off) |
| { |
| if (sym->flags & BSF_LOCAL |
| && riscv_elf_is_mapping_symbols (sym->name)) |
| return 0; |
| |
| return _bfd_elf_maybe_function_sym (sym, sec, code_off); |
| } |
| |
| /* Treat the following cases as target special symbols, they are |
| usually omitted. */ |
| |
| static bool |
| riscv_elf_is_target_special_symbol (bfd *abfd, asymbol *sym) |
| { |
| /* PR27584, local and empty symbols. Since they are usually |
| generated for pcrel relocations. */ |
| return (!strcmp (sym->name, "") |
| || _bfd_elf_is_local_label_name (abfd, sym->name) |
| /* PR27916, mapping symbols. */ |
| || riscv_elf_is_mapping_symbols (sym->name)); |
| } |
| |
| static int |
| riscv_elf_additional_program_headers (bfd *abfd, |
| struct bfd_link_info *info ATTRIBUTE_UNUSED) |
| { |
| int ret = 0; |
| |
| /* See if we need a PT_RISCV_ATTRIBUTES segment. */ |
| if (bfd_get_section_by_name (abfd, RISCV_ATTRIBUTES_SECTION_NAME)) |
| ++ret; |
| |
| return ret; |
| } |
| |
| static bool |
| riscv_elf_modify_segment_map (bfd *abfd, |
| struct bfd_link_info *info ATTRIBUTE_UNUSED) |
| { |
| asection *s; |
| struct elf_segment_map *m, **pm; |
| size_t amt; |
| |
| /* If there is a .riscv.attributes section, we need a PT_RISCV_ATTRIBUTES |
| segment. */ |
| s = bfd_get_section_by_name (abfd, RISCV_ATTRIBUTES_SECTION_NAME); |
| if (s != NULL) |
| { |
| for (m = elf_seg_map (abfd); m != NULL; m = m->next) |
| if (m->p_type == PT_RISCV_ATTRIBUTES) |
| break; |
| /* If there is already a PT_RISCV_ATTRIBUTES header, avoid adding |
| another. */ |
| if (m == NULL) |
| { |
| amt = sizeof (*m); |
| m = bfd_zalloc (abfd, amt); |
| if (m == NULL) |
| return false; |
| |
| m->p_type = PT_RISCV_ATTRIBUTES; |
| m->count = 1; |
| m->sections[0] = s; |
| |
| /* We want to put it after the PHDR and INTERP segments. */ |
| pm = &elf_seg_map (abfd); |
| while (*pm != NULL |
| && ((*pm)->p_type == PT_PHDR |
| || (*pm)->p_type == PT_INTERP)) |
| pm = &(*pm)->next; |
| |
| m->next = *pm; |
| *pm = m; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Merge non-visibility st_other attributes. */ |
| |
| static void |
| riscv_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, |
| unsigned int st_other, |
| bool definition ATTRIBUTE_UNUSED, |
| bool dynamic ATTRIBUTE_UNUSED) |
| { |
| unsigned int isym_sto = st_other & ~ELF_ST_VISIBILITY (-1); |
| unsigned int h_sto = h->other & ~ELF_ST_VISIBILITY (-1); |
| |
| if (isym_sto == h_sto) |
| return; |
| |
| if (isym_sto & ~STO_RISCV_VARIANT_CC) |
| _bfd_error_handler (_("unknown attribute for symbol `%s': 0x%02x"), |
| h->root.root.string, isym_sto); |
| |
| if (isym_sto & STO_RISCV_VARIANT_CC) |
| h->other |= STO_RISCV_VARIANT_CC; |
| } |
| |
| #define TARGET_LITTLE_SYM riscv_elfNN_vec |
| #define TARGET_LITTLE_NAME "elfNN-littleriscv" |
| #define TARGET_BIG_SYM riscv_elfNN_be_vec |
| #define TARGET_BIG_NAME "elfNN-bigriscv" |
| |
| #define elf_backend_reloc_type_class riscv_reloc_type_class |
| |
| #define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup |
| #define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create |
| #define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup |
| #define bfd_elfNN_bfd_merge_private_bfd_data \ |
| _bfd_riscv_elf_merge_private_bfd_data |
| #define bfd_elfNN_bfd_is_target_special_symbol riscv_elf_is_target_special_symbol |
| |
| #define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol |
| #define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections |
| #define elf_backend_check_relocs riscv_elf_check_relocs |
| #define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol |
| #define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections |
| #define elf_backend_relocate_section riscv_elf_relocate_section |
| #define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol |
| #define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections |
| #define elf_backend_plt_sym_val riscv_elf_plt_sym_val |
| #define elf_backend_grok_prstatus riscv_elf_grok_prstatus |
| #define elf_backend_grok_psinfo riscv_elf_grok_psinfo |
| #define elf_backend_object_p riscv_elf_object_p |
| #define elf_backend_write_core_note riscv_write_core_note |
| #define elf_backend_maybe_function_sym riscv_maybe_function_sym |
| #define elf_info_to_howto_rel NULL |
| #define elf_info_to_howto riscv_info_to_howto_rela |
| #define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section |
| #define bfd_elfNN_mkobject elfNN_riscv_mkobject |
| #define elf_backend_additional_program_headers \ |
| riscv_elf_additional_program_headers |
| #define elf_backend_modify_segment_map riscv_elf_modify_segment_map |
| #define elf_backend_merge_symbol_attribute riscv_elf_merge_symbol_attribute |
| |
| #define elf_backend_init_index_section _bfd_elf_init_1_index_section |
| |
| #define elf_backend_can_gc_sections 1 |
| #define elf_backend_can_refcount 1 |
| #define elf_backend_want_got_plt 1 |
| #define elf_backend_plt_readonly 1 |
| #define elf_backend_plt_alignment 4 |
| #define elf_backend_want_plt_sym 1 |
| #define elf_backend_got_header_size (ARCH_SIZE / 8) |
| #define elf_backend_want_dynrelro 1 |
| #define elf_backend_rela_normal 1 |
| #define elf_backend_default_execstack 0 |
| |
| #undef elf_backend_obj_attrs_vendor |
| #define elf_backend_obj_attrs_vendor "riscv" |
| #undef elf_backend_obj_attrs_arg_type |
| #define elf_backend_obj_attrs_arg_type riscv_elf_obj_attrs_arg_type |
| #undef elf_backend_obj_attrs_section_type |
| #define elf_backend_obj_attrs_section_type SHT_RISCV_ATTRIBUTES |
| #undef elf_backend_obj_attrs_section |
| #define elf_backend_obj_attrs_section RISCV_ATTRIBUTES_SECTION_NAME |
| |
| #include "elfNN-target.h" |