| /**************************************************************************** | 
 |  | 
 | 		THIS SOFTWARE IS NOT COPYRIGHTED | 
 |  | 
 |    HP offers the following for use in the public domain.  HP makes no | 
 |    warranty with regard to the software or it's performance and the | 
 |    user accepts the software "AS IS" with all faults. | 
 |  | 
 |    HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD | 
 |    TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES | 
 |    OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. | 
 |  | 
 | ****************************************************************************/ | 
 |  | 
 | /**************************************************************************** | 
 |  *  Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $ | 
 |  * | 
 |  *  Module name: remcom.c $ | 
 |  *  Revision: 1.34 $ | 
 |  *  Date: 91/03/09 12:29:49 $ | 
 |  *  Contributor:     Lake Stevens Instrument Division$ | 
 |  * | 
 |  *  Description:     low level support for gdb debugger. $ | 
 |  * | 
 |  *  Considerations:  only works on target hardware $ | 
 |  * | 
 |  *  Written by:      Glenn Engel $ | 
 |  *  ModuleState:     Experimental $ | 
 |  * | 
 |  *  NOTES:           See Below $ | 
 |  * | 
 |  *  Modified for SPARC by Stu Grossman, Cygnus Support. | 
 |  * | 
 |  *  This code has been extensively tested on the Fujitsu SPARClite demo board. | 
 |  * | 
 |  *  To enable debugger support, two things need to happen.  One, a | 
 |  *  call to set_debug_traps() is necessary in order to allow any breakpoints | 
 |  *  or error conditions to be properly intercepted and reported to gdb. | 
 |  *  Two, a breakpoint needs to be generated to begin communication.  This | 
 |  *  is most easily accomplished by a call to breakpoint().  Breakpoint() | 
 |  *  simulates a breakpoint by executing a trap #1. | 
 |  * | 
 |  ************* | 
 |  * | 
 |  *    The following gdb commands are supported: | 
 |  * | 
 |  * command          function                               Return value | 
 |  * | 
 |  *    g             return the value of the CPU registers  hex data or ENN | 
 |  *    G             set the value of the CPU registers     OK or ENN | 
 |  * | 
 |  *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN | 
 |  *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN | 
 |  * | 
 |  *    c             Resume at current address              SNN   ( signal NN) | 
 |  *    cAA..AA       Continue at address AA..AA             SNN | 
 |  * | 
 |  *    s             Step one instruction                   SNN | 
 |  *    sAA..AA       Step one instruction from AA..AA       SNN | 
 |  * | 
 |  *    k             kill | 
 |  * | 
 |  *    ?             What was the last sigval ?             SNN   (signal NN) | 
 |  * | 
 |  * All commands and responses are sent with a packet which includes a | 
 |  * checksum.  A packet consists of | 
 |  * | 
 |  * $<packet info>#<checksum>. | 
 |  * | 
 |  * where | 
 |  * <packet info> :: <characters representing the command or response> | 
 |  * <checksum>    :: < two hex digits computed as modulo 256 sum of <packetinfo>> | 
 |  * | 
 |  * When a packet is received, it is first acknowledged with either '+' or '-'. | 
 |  * '+' indicates a successful transfer.  '-' indicates a failed transfer. | 
 |  * | 
 |  * Example: | 
 |  * | 
 |  * Host:                  Reply: | 
 |  * $m0,10#2a               +$00010203040506070809101112131415#42 | 
 |  * | 
 |  ****************************************************************************/ | 
 |  | 
 | #include <string.h> | 
 | #include <signal.h> | 
 |  | 
 | /************************************************************************ | 
 |  * | 
 |  * external low-level support routines | 
 |  */ | 
 |  | 
 | extern void putDebugChar();	/* write a single character      */ | 
 | extern int getDebugChar();	/* read and return a single char */ | 
 |  | 
 | /************************************************************************/ | 
 | /* BUFMAX defines the maximum number of characters in inbound/outbound buffers*/ | 
 | /* at least NUMREGBYTES*2 are needed for register packets */ | 
 | #define BUFMAX 2048 | 
 |  | 
 | static int initialized = 0;	/* !0 means we've been initialized */ | 
 |  | 
 | static void set_mem_fault_trap(); | 
 |  | 
 | static const char hexchars[]="0123456789abcdef"; | 
 |  | 
 | #define NUMREGS 72 | 
 |  | 
 | /* Number of bytes of registers.  */ | 
 | #define NUMREGBYTES (NUMREGS * 4) | 
 | enum regnames {G0, G1, G2, G3, G4, G5, G6, G7, | 
 | 		 O0, O1, O2, O3, O4, O5, SP, O7, | 
 | 		 L0, L1, L2, L3, L4, L5, L6, L7, | 
 | 		 I0, I1, I2, I3, I4, I5, FP, I7, | 
 |  | 
 | 		 F0, F1, F2, F3, F4, F5, F6, F7, | 
 | 		 F8, F9, F10, F11, F12, F13, F14, F15, | 
 | 		 F16, F17, F18, F19, F20, F21, F22, F23, | 
 | 		 F24, F25, F26, F27, F28, F29, F30, F31, | 
 | 		 Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR }; | 
 |  | 
 | /***************************  ASSEMBLY CODE MACROS *************************/ | 
 | /* 									   */ | 
 |  | 
 | extern void trap_low(); | 
 |  | 
 | asm(" | 
 | 	.reserve trapstack, 1000 * 4, \"bss\", 8 | 
 |  | 
 | 	.data | 
 | 	.align	4 | 
 |  | 
 | in_trap_handler: | 
 | 	.word	0 | 
 |  | 
 | 	.text | 
 | 	.align 4 | 
 |  | 
 | ! This function is called when any SPARC trap (except window overflow or | 
 | ! underflow) occurs.  It makes sure that the invalid register window is still | 
 | ! available before jumping into C code.  It will also restore the world if you | 
 | ! return from handle_exception. | 
 |  | 
 | 	.globl _trap_low | 
 | _trap_low: | 
 | 	mov	%psr, %l0 | 
 | 	mov	%wim, %l3 | 
 |  | 
 | 	srl	%l3, %l0, %l4		! wim >> cwp | 
 | 	cmp	%l4, 1 | 
 | 	bne	window_fine		! Branch if not in the invalid window | 
 | 	nop | 
 |  | 
 | ! Handle window overflow | 
 |  | 
 | 	mov	%g1, %l4		! Save g1, we use it to hold the wim | 
 | 	srl	%l3, 1, %g1		! Rotate wim right | 
 | 	tst	%g1 | 
 | 	bg	good_wim		! Branch if new wim is non-zero | 
 | 	nop | 
 |  | 
 | ! At this point, we need to bring a 1 into the high order bit of the wim. | 
 | ! Since we don't want to make any assumptions about the number of register | 
 | ! windows, we figure it out dynamically so as to setup the wim correctly. | 
 |  | 
 | 	not	%g1			! Fill g1 with ones | 
 | 	mov	%g1, %wim		! Fill the wim with ones | 
 | 	nop | 
 | 	nop | 
 | 	nop | 
 | 	mov	%wim, %g1		! Read back the wim | 
 | 	inc	%g1			! Now g1 has 1 just to left of wim | 
 | 	srl	%g1, 1, %g1		! Now put 1 at top of wim | 
 | 	mov	%g0, %wim		! Clear wim so that subsequent save | 
 | 	nop				!  won't trap | 
 | 	nop | 
 | 	nop | 
 |  | 
 | good_wim: | 
 | 	save	%g0, %g0, %g0		! Slip into next window | 
 | 	mov	%g1, %wim		! Install the new wim | 
 |  | 
 | 	std	%l0, [%sp + 0 * 4]	! save L & I registers | 
 | 	std	%l2, [%sp + 2 * 4] | 
 | 	std	%l4, [%sp + 4 * 4] | 
 | 	std	%l6, [%sp + 6 * 4] | 
 |  | 
 | 	std	%i0, [%sp + 8 * 4] | 
 | 	std	%i2, [%sp + 10 * 4] | 
 | 	std	%i4, [%sp + 12 * 4] | 
 | 	std	%i6, [%sp + 14 * 4] | 
 |  | 
 | 	restore				! Go back to trap window. | 
 | 	mov	%l4, %g1		! Restore %g1 | 
 |  | 
 | window_fine: | 
 | 	sethi	%hi(in_trap_handler), %l4 | 
 | 	ld	[%lo(in_trap_handler) + %l4], %l5 | 
 | 	tst	%l5 | 
 | 	bg	recursive_trap | 
 | 	inc	%l5 | 
 |  | 
 | 	set	trapstack+1000*4, %sp	! Switch to trap stack | 
 |  | 
 | recursive_trap: | 
 | 	st	%l5, [%lo(in_trap_handler) + %l4] | 
 | 	sub	%sp,(16+1+6+1+72)*4,%sp	! Make room for input & locals | 
 | 					! + hidden arg + arg spill | 
 | 					! + doubleword alignment | 
 | 					! + registers[72] local var | 
 |  | 
 | 	std	%g0, [%sp + (24 + 0) * 4] ! registers[Gx] | 
 | 	std	%g2, [%sp + (24 + 2) * 4] | 
 | 	std	%g4, [%sp + (24 + 4) * 4] | 
 | 	std	%g6, [%sp + (24 + 6) * 4] | 
 |  | 
 | 	std	%i0, [%sp + (24 + 8) * 4] ! registers[Ox] | 
 | 	std	%i2, [%sp + (24 + 10) * 4] | 
 | 	std	%i4, [%sp + (24 + 12) * 4] | 
 | 	std	%i6, [%sp + (24 + 14) * 4] | 
 | 					! F0->F31 not implemented | 
 | 	mov	%y, %l4 | 
 | 	mov	%tbr, %l5 | 
 | 	st	%l4, [%sp + (24 + 64) * 4] ! Y | 
 | 	st	%l0, [%sp + (24 + 65) * 4] ! PSR | 
 | 	st	%l3, [%sp + (24 + 66) * 4] ! WIM | 
 | 	st	%l5, [%sp + (24 + 67) * 4] ! TBR | 
 | 	st	%l1, [%sp + (24 + 68) * 4] ! PC | 
 | 	st	%l2, [%sp + (24 + 69) * 4] ! NPC | 
 |  | 
 | 					! CPSR and FPSR not impl | 
 |  | 
 | 	or	%l0, 0xf20, %l4 | 
 | 	mov	%l4, %psr		! Turn on traps, disable interrupts | 
 |  | 
 | 	call	_handle_exception | 
 | 	add	%sp, 24 * 4, %o0	! Pass address of registers | 
 |  | 
 | ! Reload all of the registers that aren't on the stack | 
 |  | 
 | 	ld	[%sp + (24 + 1) * 4], %g1 ! registers[Gx] | 
 | 	ldd	[%sp + (24 + 2) * 4], %g2 | 
 | 	ldd	[%sp + (24 + 4) * 4], %g4 | 
 | 	ldd	[%sp + (24 + 6) * 4], %g6 | 
 |  | 
 | 	ldd	[%sp + (24 + 8) * 4], %i0 ! registers[Ox] | 
 | 	ldd	[%sp + (24 + 10) * 4], %i2 | 
 | 	ldd	[%sp + (24 + 12) * 4], %i4 | 
 | 	ldd	[%sp + (24 + 14) * 4], %i6 | 
 |  | 
 | 	ldd	[%sp + (24 + 64) * 4], %l0 ! Y & PSR | 
 | 	ldd	[%sp + (24 + 68) * 4], %l2 ! PC & NPC | 
 |  | 
 | 	restore				! Ensure that previous window is valid | 
 | 	save	%g0, %g0, %g0		!  by causing a window_underflow trap | 
 |  | 
 | 	mov	%l0, %y | 
 | 	mov	%l1, %psr		! Make sure that traps are disabled | 
 | 					! for rett | 
 |  | 
 | 	sethi	%hi(in_trap_handler), %l4 | 
 | 	ld	[%lo(in_trap_handler) + %l4], %l5 | 
 | 	dec	%l5 | 
 | 	st	%l5, [%lo(in_trap_handler) + %l4] | 
 |  | 
 | 	jmpl	%l2, %g0		! Restore old PC | 
 | 	rett	%l3			! Restore old nPC | 
 | "); | 
 |  | 
 | /* Convert ch from a hex digit to an int */ | 
 |  | 
 | static int | 
 | hex (unsigned char ch) | 
 | { | 
 |   if (ch >= 'a' && ch <= 'f') | 
 |     return ch-'a'+10; | 
 |   if (ch >= '0' && ch <= '9') | 
 |     return ch-'0'; | 
 |   if (ch >= 'A' && ch <= 'F') | 
 |     return ch-'A'+10; | 
 |   return -1; | 
 | } | 
 |  | 
 | static char remcomInBuffer[BUFMAX]; | 
 | static char remcomOutBuffer[BUFMAX]; | 
 |  | 
 | /* scan for the sequence $<data>#<checksum>     */ | 
 |  | 
 | unsigned char * | 
 | getpacket (void) | 
 | { | 
 |   unsigned char *buffer = &remcomInBuffer[0]; | 
 |   unsigned char checksum; | 
 |   unsigned char xmitcsum; | 
 |   int count; | 
 |   char ch; | 
 |  | 
 |   while (1) | 
 |     { | 
 |       /* wait around for the start character, ignore all other characters */ | 
 |       while ((ch = getDebugChar ()) != '$') | 
 | 	; | 
 |  | 
 | retry: | 
 |       checksum = 0; | 
 |       xmitcsum = -1; | 
 |       count = 0; | 
 |  | 
 |       /* now, read until a # or end of buffer is found */ | 
 |       while (count < BUFMAX - 1) | 
 | 	{ | 
 | 	  ch = getDebugChar (); | 
 | 	  if (ch == '$') | 
 | 	    goto retry; | 
 | 	  if (ch == '#') | 
 | 	    break; | 
 | 	  checksum = checksum + ch; | 
 | 	  buffer[count] = ch; | 
 | 	  count = count + 1; | 
 | 	} | 
 |       buffer[count] = 0; | 
 |  | 
 |       if (ch == '#') | 
 | 	{ | 
 | 	  ch = getDebugChar (); | 
 | 	  xmitcsum = hex (ch) << 4; | 
 | 	  ch = getDebugChar (); | 
 | 	  xmitcsum += hex (ch); | 
 |  | 
 | 	  if (checksum != xmitcsum) | 
 | 	    { | 
 | 	      putDebugChar ('-');	/* failed checksum */ | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      putDebugChar ('+');	/* successful transfer */ | 
 |  | 
 | 	      /* if a sequence char is present, reply the sequence ID */ | 
 | 	      if (buffer[2] == ':') | 
 | 		{ | 
 | 		  putDebugChar (buffer[0]); | 
 | 		  putDebugChar (buffer[1]); | 
 |  | 
 | 		  return &buffer[3]; | 
 | 		} | 
 |  | 
 | 	      return &buffer[0]; | 
 | 	    } | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | /* send the packet in buffer.  */ | 
 |  | 
 | static void | 
 | putpacket (unsigned char *buffer) | 
 | { | 
 |   unsigned char checksum; | 
 |   int count; | 
 |   unsigned char ch; | 
 |  | 
 |   /*  $<packet info>#<checksum>. */ | 
 |   do | 
 |     { | 
 |       putDebugChar('$'); | 
 |       checksum = 0; | 
 |       count = 0; | 
 |  | 
 |       while (ch = buffer[count]) | 
 | 	{ | 
 | 	  putDebugChar(ch); | 
 | 	  checksum += ch; | 
 | 	  count += 1; | 
 | 	} | 
 |  | 
 |       putDebugChar('#'); | 
 |       putDebugChar(hexchars[checksum >> 4]); | 
 |       putDebugChar(hexchars[checksum & 0xf]); | 
 |  | 
 |     } | 
 |   while (getDebugChar() != '+'); | 
 | } | 
 |  | 
 | /* Indicate to caller of mem2hex or hex2mem that there has been an | 
 |    error.  */ | 
 | static volatile int mem_err = 0; | 
 |  | 
 | /* Convert the memory pointed to by mem into hex, placing result in buf. | 
 |  * Return a pointer to the last char put in buf (null), in case of mem fault, | 
 |  * return 0. | 
 |  * If MAY_FAULT is non-zero, then we will handle memory faults by returning | 
 |  * a 0, else treat a fault like any other fault in the stub. | 
 |  */ | 
 |  | 
 | static unsigned char * | 
 | mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault) | 
 | { | 
 |   unsigned char ch; | 
 |  | 
 |   set_mem_fault_trap(may_fault); | 
 |  | 
 |   while (count-- > 0) | 
 |     { | 
 |       ch = *mem++; | 
 |       if (mem_err) | 
 | 	return 0; | 
 |       *buf++ = hexchars[ch >> 4]; | 
 |       *buf++ = hexchars[ch & 0xf]; | 
 |     } | 
 |  | 
 |   *buf = 0; | 
 |  | 
 |   set_mem_fault_trap(0); | 
 |  | 
 |   return buf; | 
 | } | 
 |  | 
 | /* convert the hex array pointed to by buf into binary to be placed in mem | 
 |  * return a pointer to the character AFTER the last byte written */ | 
 |  | 
 | static char * | 
 | hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault) | 
 | { | 
 |   int i; | 
 |   unsigned char ch; | 
 |  | 
 |   set_mem_fault_trap(may_fault); | 
 |  | 
 |   for (i=0; i<count; i++) | 
 |     { | 
 |       ch = hex(*buf++) << 4; | 
 |       ch |= hex(*buf++); | 
 |       *mem++ = ch; | 
 |       if (mem_err) | 
 | 	return 0; | 
 |     } | 
 |  | 
 |   set_mem_fault_trap(0); | 
 |  | 
 |   return mem; | 
 | } | 
 |  | 
 | /* This table contains the mapping between SPARC hardware trap types, and | 
 |    signals, which are primarily what GDB understands.  It also indicates | 
 |    which hardware traps we need to commandeer when initializing the stub. */ | 
 |  | 
 | static struct hard_trap_info | 
 | { | 
 |   unsigned char tt;		/* Trap type code for SPARClite */ | 
 |   unsigned char signo;		/* Signal that we map this trap into */ | 
 | } hard_trap_info[] = { | 
 |   {1, SIGSEGV},			/* instruction access error */ | 
 |   {2, SIGILL},			/* privileged instruction */ | 
 |   {3, SIGILL},			/* illegal instruction */ | 
 |   {4, SIGEMT},			/* fp disabled */ | 
 |   {36, SIGEMT},			/* cp disabled */ | 
 |   {7, SIGBUS},			/* mem address not aligned */ | 
 |   {9, SIGSEGV},			/* data access exception */ | 
 |   {10, SIGEMT},			/* tag overflow */ | 
 |   {128+1, SIGTRAP},		/* ta 1 - normal breakpoint instruction */ | 
 |   {0, 0}			/* Must be last */ | 
 | }; | 
 |  | 
 | /* Set up exception handlers for tracing and breakpoints */ | 
 |  | 
 | void | 
 | set_debug_traps (void) | 
 | { | 
 |   struct hard_trap_info *ht; | 
 |  | 
 |   for (ht = hard_trap_info; ht->tt && ht->signo; ht++) | 
 |     exceptionHandler(ht->tt, trap_low); | 
 |  | 
 |   initialized = 1; | 
 | } | 
 |  | 
 | asm (" | 
 | ! Trap handler for memory errors.  This just sets mem_err to be non-zero.  It | 
 | ! assumes that %l1 is non-zero.  This should be safe, as it is doubtful that | 
 | ! 0 would ever contain code that could mem fault.  This routine will skip | 
 | ! past the faulting instruction after setting mem_err. | 
 |  | 
 | 	.text | 
 | 	.align 4 | 
 |  | 
 | _fltr_set_mem_err: | 
 | 	sethi %hi(_mem_err), %l0 | 
 | 	st %l1, [%l0 + %lo(_mem_err)] | 
 | 	jmpl %l2, %g0 | 
 | 	rett %l2+4 | 
 | "); | 
 |  | 
 | static void | 
 | set_mem_fault_trap (int enable) | 
 | { | 
 |   extern void fltr_set_mem_err(); | 
 |   mem_err = 0; | 
 |  | 
 |   if (enable) | 
 |     exceptionHandler(9, fltr_set_mem_err); | 
 |   else | 
 |     exceptionHandler(9, trap_low); | 
 | } | 
 |  | 
 | /* Convert the SPARC hardware trap type code to a unix signal number. */ | 
 |  | 
 | static int | 
 | computeSignal (int tt) | 
 | { | 
 |   struct hard_trap_info *ht; | 
 |  | 
 |   for (ht = hard_trap_info; ht->tt && ht->signo; ht++) | 
 |     if (ht->tt == tt) | 
 |       return ht->signo; | 
 |  | 
 |   return SIGHUP;		/* default for things we don't know about */ | 
 | } | 
 |  | 
 | /* | 
 |  * While we find nice hex chars, build an int. | 
 |  * Return number of chars processed. | 
 |  */ | 
 |  | 
 | static int | 
 | hexToInt(char **ptr, int *intValue) | 
 | { | 
 |   int numChars = 0; | 
 |   int hexValue; | 
 |  | 
 |   *intValue = 0; | 
 |  | 
 |   while (**ptr) | 
 |     { | 
 |       hexValue = hex(**ptr); | 
 |       if (hexValue < 0) | 
 | 	break; | 
 |  | 
 |       *intValue = (*intValue << 4) | hexValue; | 
 |       numChars ++; | 
 |  | 
 |       (*ptr)++; | 
 |     } | 
 |  | 
 |   return (numChars); | 
 | } | 
 |  | 
 | /* | 
 |  * This function does all command procesing for interfacing to gdb.  It | 
 |  * returns 1 if you should skip the instruction at the trap address, 0 | 
 |  * otherwise. | 
 |  */ | 
 |  | 
 | extern void breakinst(); | 
 |  | 
 | static void | 
 | handle_exception (unsigned long *registers) | 
 | { | 
 |   int tt;			/* Trap type */ | 
 |   int sigval; | 
 |   int addr; | 
 |   int length; | 
 |   char *ptr; | 
 |   unsigned long *sp; | 
 |  | 
 | /* First, we must force all of the windows to be spilled out */ | 
 |  | 
 |   asm("	save %sp, -64, %sp | 
 | 	save %sp, -64, %sp | 
 | 	save %sp, -64, %sp | 
 | 	save %sp, -64, %sp | 
 | 	save %sp, -64, %sp | 
 | 	save %sp, -64, %sp | 
 | 	save %sp, -64, %sp | 
 | 	save %sp, -64, %sp | 
 | 	restore | 
 | 	restore | 
 | 	restore | 
 | 	restore | 
 | 	restore | 
 | 	restore | 
 | 	restore | 
 | 	restore | 
 | "); | 
 |  | 
 |   if (registers[PC] == (unsigned long)breakinst) | 
 |     { | 
 |       registers[PC] = registers[NPC]; | 
 |       registers[NPC] += 4; | 
 |     } | 
 |  | 
 |   sp = (unsigned long *)registers[SP]; | 
 |  | 
 |   tt = (registers[TBR] >> 4) & 0xff; | 
 |  | 
 |   /* reply to host that an exception has occurred */ | 
 |   sigval = computeSignal(tt); | 
 |   ptr = remcomOutBuffer; | 
 |  | 
 |   *ptr++ = 'T'; | 
 |   *ptr++ = hexchars[sigval >> 4]; | 
 |   *ptr++ = hexchars[sigval & 0xf]; | 
 |  | 
 |   *ptr++ = hexchars[PC >> 4]; | 
 |   *ptr++ = hexchars[PC & 0xf]; | 
 |   *ptr++ = ':'; | 
 |   ptr = mem2hex((char *)®isters[PC], ptr, 4, 0); | 
 |   *ptr++ = ';'; | 
 |  | 
 |   *ptr++ = hexchars[FP >> 4]; | 
 |   *ptr++ = hexchars[FP & 0xf]; | 
 |   *ptr++ = ':'; | 
 |   ptr = mem2hex(sp + 8 + 6, ptr, 4, 0); /* FP */ | 
 |   *ptr++ = ';'; | 
 |  | 
 |   *ptr++ = hexchars[SP >> 4]; | 
 |   *ptr++ = hexchars[SP & 0xf]; | 
 |   *ptr++ = ':'; | 
 |   ptr = mem2hex((char *)&sp, ptr, 4, 0); | 
 |   *ptr++ = ';'; | 
 |  | 
 |   *ptr++ = hexchars[NPC >> 4]; | 
 |   *ptr++ = hexchars[NPC & 0xf]; | 
 |   *ptr++ = ':'; | 
 |   ptr = mem2hex((char *)®isters[NPC], ptr, 4, 0); | 
 |   *ptr++ = ';'; | 
 |  | 
 |   *ptr++ = hexchars[O7 >> 4]; | 
 |   *ptr++ = hexchars[O7 & 0xf]; | 
 |   *ptr++ = ':'; | 
 |   ptr = mem2hex((char *)®isters[O7], ptr, 4, 0); | 
 |   *ptr++ = ';'; | 
 |  | 
 |   *ptr++ = 0; | 
 |  | 
 |   putpacket(remcomOutBuffer); | 
 |  | 
 |   while (1) | 
 |     { | 
 |       remcomOutBuffer[0] = 0; | 
 |  | 
 |       ptr = getpacket(); | 
 |       switch (*ptr++) | 
 | 	{ | 
 | 	case '?': | 
 | 	  remcomOutBuffer[0] = 'S'; | 
 | 	  remcomOutBuffer[1] = hexchars[sigval >> 4]; | 
 | 	  remcomOutBuffer[2] = hexchars[sigval & 0xf]; | 
 | 	  remcomOutBuffer[3] = 0; | 
 | 	  break; | 
 |  | 
 | 	case 'd':		/* toggle debug flag */ | 
 | 	  break; | 
 |  | 
 | 	case 'g':		/* return the value of the CPU registers */ | 
 | 	  { | 
 | 	    ptr = remcomOutBuffer; | 
 | 	    ptr = mem2hex((char *)registers, ptr, 16 * 4, 0); /* G & O regs */ | 
 | 	    ptr = mem2hex(sp + 0, ptr, 16 * 4, 0); /* L & I regs */ | 
 | 	    memset(ptr, '0', 32 * 8); /* Floating point */ | 
 | 	    mem2hex((char *)®isters[Y], | 
 | 		    ptr + 32 * 4 * 2, | 
 | 		    8 * 4, | 
 | 		    0);		/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ | 
 | 	  } | 
 | 	  break; | 
 |  | 
 | 	case 'G':	   /* set the value of the CPU registers - return OK */ | 
 | 	  { | 
 | 	    unsigned long *newsp, psr; | 
 |  | 
 | 	    psr = registers[PSR]; | 
 |  | 
 | 	    hex2mem(ptr, (char *)registers, 16 * 4, 0); /* G & O regs */ | 
 | 	    hex2mem(ptr + 16 * 4 * 2, sp + 0, 16 * 4, 0); /* L & I regs */ | 
 | 	    hex2mem(ptr + 64 * 4 * 2, (char *)®isters[Y], | 
 | 		    8 * 4, 0);	/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ | 
 |  | 
 | 	    /* See if the stack pointer has moved.  If so, then copy the saved | 
 | 	       locals and ins to the new location.  This keeps the window | 
 | 	       overflow and underflow routines happy.  */ | 
 |  | 
 | 	    newsp = (unsigned long *)registers[SP]; | 
 | 	    if (sp != newsp) | 
 | 	      sp = memcpy(newsp, sp, 16 * 4); | 
 |  | 
 | 	    /* Don't allow CWP to be modified. */ | 
 |  | 
 | 	    if (psr != registers[PSR]) | 
 | 	      registers[PSR] = (psr & 0x1f) | (registers[PSR] & ~0x1f); | 
 |  | 
 | 	    strcpy(remcomOutBuffer,"OK"); | 
 | 	  } | 
 | 	  break; | 
 |  | 
 | 	case 'm':	  /* mAA..AA,LLLL  Read LLLL bytes at address AA..AA */ | 
 | 	  /* Try to read %x,%x.  */ | 
 |  | 
 | 	  if (hexToInt(&ptr, &addr) | 
 | 	      && *ptr++ == ',' | 
 | 	      && hexToInt(&ptr, &length)) | 
 | 	    { | 
 | 	      if (mem2hex((char *)addr, remcomOutBuffer, length, 1)) | 
 | 		break; | 
 |  | 
 | 	      strcpy (remcomOutBuffer, "E03"); | 
 | 	    } | 
 | 	  else | 
 | 	    strcpy(remcomOutBuffer,"E01"); | 
 | 	  break; | 
 |  | 
 | 	case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */ | 
 | 	  /* Try to read '%x,%x:'.  */ | 
 |  | 
 | 	  if (hexToInt(&ptr, &addr) | 
 | 	      && *ptr++ == ',' | 
 | 	      && hexToInt(&ptr, &length) | 
 | 	      && *ptr++ == ':') | 
 | 	    { | 
 | 	      if (hex2mem(ptr, (char *)addr, length, 1)) | 
 | 		strcpy(remcomOutBuffer, "OK"); | 
 | 	      else | 
 | 		strcpy(remcomOutBuffer, "E03"); | 
 | 	    } | 
 | 	  else | 
 | 	    strcpy(remcomOutBuffer, "E02"); | 
 | 	  break; | 
 |  | 
 | 	case 'c':    /* cAA..AA    Continue at address AA..AA(optional) */ | 
 | 	  /* try to read optional parameter, pc unchanged if no parm */ | 
 |  | 
 | 	  if (hexToInt(&ptr, &addr)) | 
 | 	    { | 
 | 	      registers[PC] = addr; | 
 | 	      registers[NPC] = addr + 4; | 
 | 	    } | 
 |  | 
 | /* Need to flush the instruction cache here, as we may have deposited a | 
 |    breakpoint, and the icache probably has no way of knowing that a data ref to | 
 |    some location may have changed something that is in the instruction cache. | 
 |  */ | 
 |  | 
 | 	  flush_i_cache(); | 
 | 	  return; | 
 |  | 
 | 	  /* kill the program */ | 
 | 	case 'k' :		/* do nothing */ | 
 | 	  break; | 
 | #if 0 | 
 | 	case 't':		/* Test feature */ | 
 | 	  asm (" std %f30,[%sp]"); | 
 | 	  break; | 
 | #endif | 
 | 	case 'r':		/* Reset */ | 
 | 	  asm ("call 0 | 
 | 		nop "); | 
 | 	  break; | 
 | 	}			/* switch */ | 
 |  | 
 |       /* reply to the request */ | 
 |       putpacket(remcomOutBuffer); | 
 |     } | 
 | } | 
 |  | 
 | /* This function will generate a breakpoint exception.  It is used at the | 
 |    beginning of a program to sync up with a debugger and can be used | 
 |    otherwise as a quick means to stop program execution and "break" into | 
 |    the debugger. */ | 
 |  | 
 | void | 
 | breakpoint (void) | 
 | { | 
 |   if (!initialized) | 
 |     return; | 
 |  | 
 |   asm("	.globl _breakinst | 
 |  | 
 | 	_breakinst: ta 1 | 
 |       "); | 
 | } |