| /* x86 specific support for ELF |
| Copyright (C) 2017-2023 Free Software Foundation, Inc. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| #include "elfxx-x86.h" |
| #include "elf-vxworks.h" |
| #include "objalloc.h" |
| |
| /* The name of the dynamic interpreter. This is put in the .interp |
| section. */ |
| |
| #define ELF32_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" |
| #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1" |
| #define ELFX32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1" |
| |
| bool |
| _bfd_x86_elf_mkobject (bfd *abfd) |
| { |
| return bfd_elf_allocate_object (abfd, |
| sizeof (struct elf_x86_obj_tdata), |
| get_elf_backend_data (abfd)->target_id); |
| } |
| |
| /* _TLS_MODULE_BASE_ needs to be treated especially when linking |
| executables. Rather than setting it to the beginning of the TLS |
| section, we have to set it to the end. This function may be called |
| multiple times, it is idempotent. */ |
| |
| void |
| _bfd_x86_elf_set_tls_module_base (struct bfd_link_info *info) |
| { |
| struct elf_x86_link_hash_table *htab; |
| struct bfd_link_hash_entry *base; |
| const struct elf_backend_data *bed; |
| |
| if (!bfd_link_executable (info)) |
| return; |
| |
| bed = get_elf_backend_data (info->output_bfd); |
| htab = elf_x86_hash_table (info, bed->target_id); |
| if (htab == NULL) |
| return; |
| |
| base = htab->tls_module_base; |
| if (base == NULL) |
| return; |
| |
| base->u.def.value = htab->elf.tls_size; |
| } |
| |
| /* Return the base VMA address which should be subtracted from real addresses |
| when resolving @dtpoff relocation. |
| This is PT_TLS segment p_vaddr. */ |
| |
| bfd_vma |
| _bfd_x86_elf_dtpoff_base (struct bfd_link_info *info) |
| { |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (elf_hash_table (info)->tls_sec == NULL) |
| return 0; |
| return elf_hash_table (info)->tls_sec->vma; |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| dynamic relocs. */ |
| |
| static bool |
| elf_x86_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) |
| { |
| struct bfd_link_info *info; |
| struct elf_x86_link_hash_table *htab; |
| struct elf_x86_link_hash_entry *eh; |
| struct elf_dyn_relocs *p; |
| unsigned int plt_entry_size; |
| bool resolved_to_zero; |
| const struct elf_backend_data *bed; |
| |
| if (h->root.type == bfd_link_hash_indirect) |
| return true; |
| |
| eh = (struct elf_x86_link_hash_entry *) h; |
| |
| info = (struct bfd_link_info *) inf; |
| bed = get_elf_backend_data (info->output_bfd); |
| htab = elf_x86_hash_table (info, bed->target_id); |
| if (htab == NULL) |
| return false; |
| |
| plt_entry_size = htab->plt.plt_entry_size; |
| |
| resolved_to_zero = UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, eh); |
| |
| /* We can't use the GOT PLT if pointer equality is needed since |
| finish_dynamic_symbol won't clear symbol value and the dynamic |
| linker won't update the GOT slot. We will get into an infinite |
| loop at run-time. */ |
| if (htab->plt_got != NULL |
| && h->type != STT_GNU_IFUNC |
| && !h->pointer_equality_needed |
| && h->plt.refcount > 0 |
| && h->got.refcount > 0) |
| { |
| /* Don't use the regular PLT if there are both GOT and GOTPLT |
| reloctions. */ |
| h->plt.offset = (bfd_vma) -1; |
| |
| /* Use the GOT PLT. */ |
| eh->plt_got.refcount = 1; |
| } |
| |
| /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it |
| here if it is defined and referenced in a non-shared object. */ |
| if (h->type == STT_GNU_IFUNC |
| && h->def_regular) |
| { |
| /* GOTOFF relocation needs PLT. */ |
| if (eh->gotoff_ref) |
| h->plt.refcount = 1; |
| |
| if (_bfd_elf_allocate_ifunc_dyn_relocs (info, h, &h->dyn_relocs, |
| plt_entry_size, |
| (htab->plt.has_plt0 |
| * plt_entry_size), |
| htab->got_entry_size, |
| true)) |
| { |
| asection *s = htab->plt_second; |
| if (h->plt.offset != (bfd_vma) -1 && s != NULL) |
| { |
| /* Use the second PLT section if it is created. */ |
| eh->plt_second.offset = s->size; |
| |
| /* Make room for this entry in the second PLT section. */ |
| s->size += htab->non_lazy_plt->plt_entry_size; |
| } |
| |
| return true; |
| } |
| else |
| return false; |
| } |
| /* Don't create the PLT entry if there are only function pointer |
| relocations which can be resolved at run-time. */ |
| else if (htab->elf.dynamic_sections_created |
| && (h->plt.refcount > 0 |
| || eh->plt_got.refcount > 0)) |
| { |
| bool use_plt_got = eh->plt_got.refcount > 0; |
| |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local |
| && !resolved_to_zero |
| && h->root.type == bfd_link_hash_undefweak) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| |
| if (bfd_link_pic (info) |
| || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) |
| { |
| asection *s = htab->elf.splt; |
| asection *second_s = htab->plt_second; |
| asection *got_s = htab->plt_got; |
| bool use_plt; |
| |
| /* If this is the first .plt entry, make room for the special |
| first entry. The .plt section is used by prelink to undo |
| prelinking for dynamic relocations. */ |
| if (s->size == 0) |
| s->size = htab->plt.has_plt0 * plt_entry_size; |
| |
| if (use_plt_got) |
| eh->plt_got.offset = got_s->size; |
| else |
| { |
| h->plt.offset = s->size; |
| if (second_s) |
| eh->plt_second.offset = second_s->size; |
| } |
| |
| /* If this symbol is not defined in a regular file, and we are |
| generating PDE, then set the symbol to this location in the |
| .plt. This is required to make function pointers compare |
| as equal between PDE and the shared library. |
| |
| NB: If PLT is PC-relative, we can use the .plt in PIE for |
| function address. */ |
| if (h->def_regular) |
| use_plt = false; |
| else if (htab->pcrel_plt) |
| use_plt = ! bfd_link_dll (info); |
| else |
| use_plt = bfd_link_pde (info); |
| if (use_plt) |
| { |
| if (use_plt_got) |
| { |
| /* We need to make a call to the entry of the GOT PLT |
| instead of regular PLT entry. */ |
| h->root.u.def.section = got_s; |
| h->root.u.def.value = eh->plt_got.offset; |
| } |
| else |
| { |
| if (second_s) |
| { |
| /* We need to make a call to the entry of the |
| second PLT instead of regular PLT entry. */ |
| h->root.u.def.section = second_s; |
| h->root.u.def.value = eh->plt_second.offset; |
| } |
| else |
| { |
| h->root.u.def.section = s; |
| h->root.u.def.value = h->plt.offset; |
| } |
| } |
| } |
| |
| /* Make room for this entry. */ |
| if (use_plt_got) |
| got_s->size += htab->non_lazy_plt->plt_entry_size; |
| else |
| { |
| s->size += plt_entry_size; |
| if (second_s) |
| second_s->size += htab->non_lazy_plt->plt_entry_size; |
| |
| /* We also need to make an entry in the .got.plt section, |
| which will be placed in the .got section by the linker |
| script. */ |
| htab->elf.sgotplt->size += htab->got_entry_size; |
| |
| /* There should be no PLT relocation against resolved |
| undefined weak symbol in executable. */ |
| if (!resolved_to_zero) |
| { |
| /* We also need to make an entry in the .rel.plt |
| section. */ |
| htab->elf.srelplt->size += htab->sizeof_reloc; |
| htab->elf.srelplt->reloc_count++; |
| } |
| } |
| |
| if (htab->elf.target_os == is_vxworks && !bfd_link_pic (info)) |
| { |
| /* VxWorks has a second set of relocations for each PLT entry |
| in executables. They go in a separate relocation section, |
| which is processed by the kernel loader. */ |
| |
| /* There are two relocations for the initial PLT entry: an |
| R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 4 and an |
| R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 8. */ |
| |
| asection *srelplt2 = htab->srelplt2; |
| if (h->plt.offset == plt_entry_size) |
| srelplt2->size += (htab->sizeof_reloc * 2); |
| |
| /* There are two extra relocations for each subsequent PLT entry: |
| an R_386_32 relocation for the GOT entry, and an R_386_32 |
| relocation for the PLT entry. */ |
| |
| srelplt2->size += (htab->sizeof_reloc * 2); |
| } |
| } |
| else |
| { |
| eh->plt_got.offset = (bfd_vma) -1; |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| } |
| else |
| { |
| eh->plt_got.offset = (bfd_vma) -1; |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| |
| eh->tlsdesc_got = (bfd_vma) -1; |
| |
| /* For i386, if R_386_TLS_{IE_32,IE,GOTIE} symbol is now local to the |
| binary, make it a R_386_TLS_LE_32 requiring no TLS entry. For |
| x86-64, if R_X86_64_GOTTPOFF symbol is now local to the binary, |
| make it a R_X86_64_TPOFF32 requiring no GOT entry. */ |
| if (h->got.refcount > 0 |
| && bfd_link_executable (info) |
| && h->dynindx == -1 |
| && (elf_x86_hash_entry (h)->tls_type & GOT_TLS_IE)) |
| h->got.offset = (bfd_vma) -1; |
| else if (h->got.refcount > 0) |
| { |
| asection *s; |
| bool dyn; |
| int tls_type = elf_x86_hash_entry (h)->tls_type; |
| |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local |
| && !resolved_to_zero |
| && h->root.type == bfd_link_hash_undefweak) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| |
| s = htab->elf.sgot; |
| if (GOT_TLS_GDESC_P (tls_type)) |
| { |
| eh->tlsdesc_got = htab->elf.sgotplt->size |
| - elf_x86_compute_jump_table_size (htab); |
| htab->elf.sgotplt->size += 2 * htab->got_entry_size; |
| h->got.offset = (bfd_vma) -2; |
| } |
| if (! GOT_TLS_GDESC_P (tls_type) |
| || GOT_TLS_GD_P (tls_type)) |
| { |
| h->got.offset = s->size; |
| s->size += htab->got_entry_size; |
| /* R_386_TLS_GD and R_X86_64_TLSGD need 2 consecutive GOT |
| slots. */ |
| if (GOT_TLS_GD_P (tls_type) || tls_type == GOT_TLS_IE_BOTH) |
| s->size += htab->got_entry_size; |
| } |
| dyn = htab->elf.dynamic_sections_created; |
| /* R_386_TLS_IE_32 needs one dynamic relocation, |
| R_386_TLS_IE resp. R_386_TLS_GOTIE needs one dynamic relocation, |
| (but if both R_386_TLS_IE_32 and R_386_TLS_IE is present, we |
| need two), R_386_TLS_GD and R_X86_64_TLSGD need one if local |
| symbol and two if global. No dynamic relocation against |
| resolved undefined weak symbol in executable. No dynamic |
| relocation against non-preemptible absolute symbol. */ |
| if (tls_type == GOT_TLS_IE_BOTH) |
| htab->elf.srelgot->size += 2 * htab->sizeof_reloc; |
| else if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1) |
| || (tls_type & GOT_TLS_IE)) |
| htab->elf.srelgot->size += htab->sizeof_reloc; |
| else if (GOT_TLS_GD_P (tls_type)) |
| htab->elf.srelgot->size += 2 * htab->sizeof_reloc; |
| else if (! GOT_TLS_GDESC_P (tls_type) |
| && ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| && !resolved_to_zero) |
| || h->root.type != bfd_link_hash_undefweak) |
| && ((bfd_link_pic (info) |
| && !(h->dynindx == -1 |
| && ABS_SYMBOL_P (h))) |
| || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) |
| htab->elf.srelgot->size += htab->sizeof_reloc; |
| if (GOT_TLS_GDESC_P (tls_type)) |
| { |
| htab->elf.srelplt->size += htab->sizeof_reloc; |
| if (bed->target_id == X86_64_ELF_DATA) |
| htab->elf.tlsdesc_plt = (bfd_vma) -1; |
| } |
| } |
| else |
| h->got.offset = (bfd_vma) -1; |
| |
| if (h->dyn_relocs == NULL) |
| return true; |
| |
| /* In the shared -Bsymbolic case, discard space allocated for |
| dynamic pc-relative relocs against symbols which turn out to be |
| defined in regular objects. For the normal shared case, discard |
| space for pc-relative relocs that have become local due to symbol |
| visibility changes. */ |
| |
| if (bfd_link_pic (info)) |
| { |
| /* Relocs that use pc_count are those that appear on a call |
| insn, or certain REL relocs that can generated via assembly. |
| We want calls to protected symbols to resolve directly to the |
| function rather than going via the plt. If people want |
| function pointer comparisons to work as expected then they |
| should avoid writing weird assembly. */ |
| if (SYMBOL_CALLS_LOCAL (info, h)) |
| { |
| struct elf_dyn_relocs **pp; |
| |
| for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| p->count -= p->pc_count; |
| p->pc_count = 0; |
| if (p->count == 0) |
| *pp = p->next; |
| else |
| pp = &p->next; |
| } |
| } |
| |
| if (htab->elf.target_os == is_vxworks) |
| { |
| struct elf_dyn_relocs **pp; |
| for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| if (strcmp (p->sec->output_section->name, ".tls_vars") == 0) |
| *pp = p->next; |
| else |
| pp = &p->next; |
| } |
| } |
| |
| /* Also discard relocs on undefined weak syms with non-default |
| visibility or in PIE. */ |
| if (h->dyn_relocs != NULL) |
| { |
| if (h->root.type == bfd_link_hash_undefweak) |
| { |
| /* Undefined weak symbol is never bound locally in shared |
| library. */ |
| if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| || resolved_to_zero) |
| { |
| if (bed->target_id == I386_ELF_DATA |
| && h->non_got_ref) |
| { |
| /* Keep dynamic non-GOT/non-PLT relocation so |
| that we can branch to 0 without PLT. */ |
| struct elf_dyn_relocs **pp; |
| |
| for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) |
| if (p->pc_count == 0) |
| *pp = p->next; |
| else |
| { |
| /* Remove non-R_386_PC32 relocation. */ |
| p->count = p->pc_count; |
| pp = &p->next; |
| } |
| |
| /* Make sure undefined weak symbols are output |
| as dynamic symbols in PIEs for dynamic non-GOT |
| non-PLT reloations. */ |
| if (h->dyn_relocs != NULL |
| && !bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| else |
| h->dyn_relocs = NULL; |
| } |
| else if (h->dynindx == -1 |
| && !h->forced_local |
| && !bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| else if (bfd_link_executable (info) |
| && (h->needs_copy || eh->needs_copy) |
| && h->def_dynamic |
| && !h->def_regular) |
| { |
| /* NB: needs_copy is set only for x86-64. For PIE, |
| discard space for pc-relative relocs against symbols |
| which turn out to need copy relocs. */ |
| struct elf_dyn_relocs **pp; |
| |
| for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| if (p->pc_count != 0) |
| *pp = p->next; |
| else |
| pp = &p->next; |
| } |
| } |
| } |
| } |
| else if (ELIMINATE_COPY_RELOCS) |
| { |
| /* For the non-shared case, discard space for relocs against |
| symbols which turn out to need copy relocs or are not |
| dynamic. Keep dynamic relocations for run-time function |
| pointer initialization. */ |
| |
| if ((!h->non_got_ref |
| || (h->root.type == bfd_link_hash_undefweak |
| && !resolved_to_zero)) |
| && ((h->def_dynamic |
| && !h->def_regular) |
| || (htab->elf.dynamic_sections_created |
| && (h->root.type == bfd_link_hash_undefweak |
| || h->root.type == bfd_link_hash_undefined)))) |
| { |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local |
| && !resolved_to_zero |
| && h->root.type == bfd_link_hash_undefweak |
| && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| |
| /* If that succeeded, we know we'll be keeping all the |
| relocs. */ |
| if (h->dynindx != -1) |
| goto keep; |
| } |
| |
| h->dyn_relocs = NULL; |
| |
| keep: ; |
| } |
| |
| /* Finally, allocate space. */ |
| for (p = h->dyn_relocs; p != NULL; p = p->next) |
| { |
| asection *sreloc; |
| |
| if (eh->def_protected && bfd_link_executable (info)) |
| { |
| /* Disallow copy relocation against non-copyable protected |
| symbol. */ |
| asection *s = p->sec->output_section; |
| if (s != NULL && (s->flags & SEC_READONLY) != 0) |
| { |
| info->callbacks->einfo |
| /* xgettext:c-format */ |
| (_("%F%P: %pB: copy relocation against non-copyable " |
| "protected symbol `%s' in %pB\n"), |
| p->sec->owner, h->root.root.string, |
| h->root.u.def.section->owner); |
| return false; |
| } |
| } |
| |
| sreloc = elf_section_data (p->sec)->sreloc; |
| |
| BFD_ASSERT (sreloc != NULL); |
| sreloc->size += p->count * htab->sizeof_reloc; |
| } |
| |
| return true; |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| local dynamic relocs. */ |
| |
| static int |
| elf_x86_allocate_local_dynreloc (void **slot, void *inf) |
| { |
| struct elf_link_hash_entry *h |
| = (struct elf_link_hash_entry *) *slot; |
| |
| if (h->type != STT_GNU_IFUNC |
| || !h->def_regular |
| || !h->ref_regular |
| || !h->forced_local |
| || h->root.type != bfd_link_hash_defined) |
| abort (); |
| |
| return elf_x86_allocate_dynrelocs (h, inf); |
| } |
| |
| /* Find and/or create a hash entry for local symbol. */ |
| |
| struct elf_link_hash_entry * |
| _bfd_elf_x86_get_local_sym_hash (struct elf_x86_link_hash_table *htab, |
| bfd *abfd, const Elf_Internal_Rela *rel, |
| bool create) |
| { |
| struct elf_x86_link_hash_entry e, *ret; |
| asection *sec = abfd->sections; |
| hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id, |
| htab->r_sym (rel->r_info)); |
| void **slot; |
| |
| e.elf.indx = sec->id; |
| e.elf.dynstr_index = htab->r_sym (rel->r_info); |
| slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h, |
| create ? INSERT : NO_INSERT); |
| |
| if (!slot) |
| return NULL; |
| |
| if (*slot) |
| { |
| ret = (struct elf_x86_link_hash_entry *) *slot; |
| return &ret->elf; |
| } |
| |
| ret = (struct elf_x86_link_hash_entry *) |
| objalloc_alloc ((struct objalloc *) htab->loc_hash_memory, |
| sizeof (struct elf_x86_link_hash_entry)); |
| if (ret) |
| { |
| memset (ret, 0, sizeof (*ret)); |
| ret->elf.indx = sec->id; |
| ret->elf.dynstr_index = htab->r_sym (rel->r_info); |
| ret->elf.dynindx = -1; |
| ret->plt_got.offset = (bfd_vma) -1; |
| *slot = ret; |
| } |
| return &ret->elf; |
| } |
| |
| /* Create an entry in a x86 ELF linker hash table. NB: THIS MUST BE IN |
| SYNC WITH _bfd_elf_link_hash_newfunc. */ |
| |
| struct bfd_hash_entry * |
| _bfd_x86_elf_link_hash_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, |
| const char *string) |
| { |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (entry == NULL) |
| { |
| entry = (struct bfd_hash_entry *) |
| bfd_hash_allocate (table, |
| sizeof (struct elf_x86_link_hash_entry)); |
| if (entry == NULL) |
| return entry; |
| } |
| |
| /* Call the allocation method of the superclass. */ |
| entry = _bfd_link_hash_newfunc (entry, table, string); |
| if (entry != NULL) |
| { |
| struct elf_x86_link_hash_entry *eh |
| = (struct elf_x86_link_hash_entry *) entry; |
| struct elf_link_hash_table *htab |
| = (struct elf_link_hash_table *) table; |
| |
| memset (&eh->elf.size, 0, |
| (sizeof (struct elf_x86_link_hash_entry) |
| - offsetof (struct elf_link_hash_entry, size))); |
| /* Set local fields. */ |
| eh->elf.indx = -1; |
| eh->elf.dynindx = -1; |
| eh->elf.got = htab->init_got_refcount; |
| eh->elf.plt = htab->init_plt_refcount; |
| /* Assume that we have been called by a non-ELF symbol reader. |
| This flag is then reset by the code which reads an ELF input |
| file. This ensures that a symbol created by a non-ELF symbol |
| reader will have the flag set correctly. */ |
| eh->elf.non_elf = 1; |
| eh->plt_second.offset = (bfd_vma) -1; |
| eh->plt_got.offset = (bfd_vma) -1; |
| eh->tlsdesc_got = (bfd_vma) -1; |
| eh->zero_undefweak = 1; |
| } |
| |
| return entry; |
| } |
| |
| /* Compute a hash of a local hash entry. We use elf_link_hash_entry |
| for local symbol so that we can handle local STT_GNU_IFUNC symbols |
| as global symbol. We reuse indx and dynstr_index for local symbol |
| hash since they aren't used by global symbols in this backend. */ |
| |
| hashval_t |
| _bfd_x86_elf_local_htab_hash (const void *ptr) |
| { |
| struct elf_link_hash_entry *h |
| = (struct elf_link_hash_entry *) ptr; |
| return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index); |
| } |
| |
| /* Compare local hash entries. */ |
| |
| int |
| _bfd_x86_elf_local_htab_eq (const void *ptr1, const void *ptr2) |
| { |
| struct elf_link_hash_entry *h1 |
| = (struct elf_link_hash_entry *) ptr1; |
| struct elf_link_hash_entry *h2 |
| = (struct elf_link_hash_entry *) ptr2; |
| |
| return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index; |
| } |
| |
| /* Destroy an x86 ELF linker hash table. */ |
| |
| static void |
| elf_x86_link_hash_table_free (bfd *obfd) |
| { |
| struct elf_x86_link_hash_table *htab |
| = (struct elf_x86_link_hash_table *) obfd->link.hash; |
| |
| if (htab->loc_hash_table) |
| htab_delete (htab->loc_hash_table); |
| if (htab->loc_hash_memory) |
| objalloc_free ((struct objalloc *) htab->loc_hash_memory); |
| _bfd_elf_link_hash_table_free (obfd); |
| } |
| |
| static bool |
| elf_i386_is_reloc_section (const char *secname) |
| { |
| return startswith (secname, ".rel"); |
| } |
| |
| static bool |
| elf_x86_64_is_reloc_section (const char *secname) |
| { |
| return startswith (secname, ".rela"); |
| } |
| |
| /* Create an x86 ELF linker hash table. */ |
| |
| struct bfd_link_hash_table * |
| _bfd_x86_elf_link_hash_table_create (bfd *abfd) |
| { |
| struct elf_x86_link_hash_table *ret; |
| const struct elf_backend_data *bed; |
| size_t amt = sizeof (struct elf_x86_link_hash_table); |
| |
| ret = (struct elf_x86_link_hash_table *) bfd_zmalloc (amt); |
| if (ret == NULL) |
| return NULL; |
| |
| bed = get_elf_backend_data (abfd); |
| if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, |
| _bfd_x86_elf_link_hash_newfunc, |
| sizeof (struct elf_x86_link_hash_entry), |
| bed->target_id)) |
| { |
| free (ret); |
| return NULL; |
| } |
| |
| if (bed->target_id == X86_64_ELF_DATA) |
| { |
| ret->is_reloc_section = elf_x86_64_is_reloc_section; |
| ret->got_entry_size = 8; |
| ret->pcrel_plt = true; |
| ret->tls_get_addr = "__tls_get_addr"; |
| ret->relative_r_type = R_X86_64_RELATIVE; |
| ret->relative_r_name = "R_X86_64_RELATIVE"; |
| ret->elf_append_reloc = elf_append_rela; |
| ret->elf_write_addend_in_got = _bfd_elf64_write_addend; |
| } |
| if (ABI_64_P (abfd)) |
| { |
| ret->sizeof_reloc = sizeof (Elf64_External_Rela); |
| ret->pointer_r_type = R_X86_64_64; |
| ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER; |
| ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER; |
| ret->elf_write_addend = _bfd_elf64_write_addend; |
| } |
| else |
| { |
| if (bed->target_id == X86_64_ELF_DATA) |
| { |
| ret->sizeof_reloc = sizeof (Elf32_External_Rela); |
| ret->pointer_r_type = R_X86_64_32; |
| ret->dynamic_interpreter = ELFX32_DYNAMIC_INTERPRETER; |
| ret->dynamic_interpreter_size |
| = sizeof ELFX32_DYNAMIC_INTERPRETER; |
| ret->elf_write_addend = _bfd_elf32_write_addend; |
| } |
| else |
| { |
| ret->is_reloc_section = elf_i386_is_reloc_section; |
| ret->sizeof_reloc = sizeof (Elf32_External_Rel); |
| ret->got_entry_size = 4; |
| ret->pcrel_plt = false; |
| ret->pointer_r_type = R_386_32; |
| ret->relative_r_type = R_386_RELATIVE; |
| ret->relative_r_name = "R_386_RELATIVE"; |
| ret->elf_append_reloc = elf_append_rel; |
| ret->elf_write_addend = _bfd_elf32_write_addend; |
| ret->elf_write_addend_in_got = _bfd_elf32_write_addend; |
| ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER; |
| ret->dynamic_interpreter_size |
| = sizeof ELF32_DYNAMIC_INTERPRETER; |
| ret->tls_get_addr = "___tls_get_addr"; |
| } |
| } |
| |
| ret->loc_hash_table = htab_try_create (1024, |
| _bfd_x86_elf_local_htab_hash, |
| _bfd_x86_elf_local_htab_eq, |
| NULL); |
| ret->loc_hash_memory = objalloc_create (); |
| if (!ret->loc_hash_table || !ret->loc_hash_memory) |
| { |
| elf_x86_link_hash_table_free (abfd); |
| return NULL; |
| } |
| ret->elf.root.hash_table_free = elf_x86_link_hash_table_free; |
| |
| return &ret->elf.root; |
| } |
| |
| /* Sort relocs into address order. */ |
| |
| int |
| _bfd_x86_elf_compare_relocs (const void *ap, const void *bp) |
| { |
| const arelent *a = * (const arelent **) ap; |
| const arelent *b = * (const arelent **) bp; |
| |
| if (a->address > b->address) |
| return 1; |
| else if (a->address < b->address) |
| return -1; |
| else |
| return 0; |
| } |
| |
| /* Mark symbol, NAME, as locally defined by linker if it is referenced |
| and not defined in a relocatable object file. */ |
| |
| static void |
| elf_x86_linker_defined (struct bfd_link_info *info, const char *name) |
| { |
| struct elf_link_hash_entry *h; |
| |
| h = elf_link_hash_lookup (elf_hash_table (info), name, |
| false, false, false); |
| if (h == NULL) |
| return; |
| |
| while (h->root.type == bfd_link_hash_indirect) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| if (h->root.type == bfd_link_hash_new |
| || h->root.type == bfd_link_hash_undefined |
| || h->root.type == bfd_link_hash_undefweak |
| || h->root.type == bfd_link_hash_common |
| || (!h->def_regular && h->def_dynamic)) |
| { |
| elf_x86_hash_entry (h)->local_ref = 2; |
| elf_x86_hash_entry (h)->linker_def = 1; |
| } |
| } |
| |
| /* Hide a linker-defined symbol, NAME, with hidden visibility. */ |
| |
| static void |
| elf_x86_hide_linker_defined (struct bfd_link_info *info, |
| const char *name) |
| { |
| struct elf_link_hash_entry *h; |
| |
| h = elf_link_hash_lookup (elf_hash_table (info), name, |
| false, false, false); |
| if (h == NULL) |
| return; |
| |
| while (h->root.type == bfd_link_hash_indirect) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL |
| || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) |
| _bfd_elf_link_hash_hide_symbol (info, h, true); |
| } |
| |
| bool |
| _bfd_x86_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info) |
| { |
| if (!bfd_link_relocatable (info)) |
| { |
| /* Check for __tls_get_addr reference. */ |
| struct elf_x86_link_hash_table *htab; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| htab = elf_x86_hash_table (info, bed->target_id); |
| if (htab) |
| { |
| struct elf_link_hash_entry *h; |
| |
| h = elf_link_hash_lookup (elf_hash_table (info), |
| htab->tls_get_addr, |
| false, false, false); |
| if (h != NULL) |
| { |
| elf_x86_hash_entry (h)->tls_get_addr = 1; |
| |
| /* Check the versioned __tls_get_addr symbol. */ |
| while (h->root.type == bfd_link_hash_indirect) |
| { |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| elf_x86_hash_entry (h)->tls_get_addr = 1; |
| } |
| } |
| |
| /* "__ehdr_start" will be defined by linker as a hidden symbol |
| later if it is referenced and not defined. */ |
| elf_x86_linker_defined (info, "__ehdr_start"); |
| |
| if (bfd_link_executable (info)) |
| { |
| /* References to __bss_start, _end and _edata should be |
| locally resolved within executables. */ |
| elf_x86_linker_defined (info, "__bss_start"); |
| elf_x86_linker_defined (info, "_end"); |
| elf_x86_linker_defined (info, "_edata"); |
| } |
| else |
| { |
| /* Hide hidden __bss_start, _end and _edata in shared |
| libraries. */ |
| elf_x86_hide_linker_defined (info, "__bss_start"); |
| elf_x86_hide_linker_defined (info, "_end"); |
| elf_x86_hide_linker_defined (info, "_edata"); |
| } |
| } |
| } |
| |
| /* Invoke the regular ELF backend linker to do all the work. */ |
| return _bfd_elf_link_check_relocs (abfd, info); |
| } |
| |
| /* Look through the relocs for a section before allocation to make the |
| dynamic reloc section. */ |
| |
| bool |
| _bfd_x86_elf_check_relocs (bfd *abfd, |
| struct bfd_link_info *info, |
| asection *sec, |
| const Elf_Internal_Rela *relocs) |
| { |
| struct elf_x86_link_hash_table *htab; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| const Elf_Internal_Rela *rel; |
| const Elf_Internal_Rela *rel_end; |
| asection *sreloc; |
| const struct elf_backend_data *bed; |
| bool is_x86_64; |
| |
| if (bfd_link_relocatable (info)) |
| return true; |
| |
| bed = get_elf_backend_data (abfd); |
| htab = elf_x86_hash_table (info, bed->target_id); |
| if (htab == NULL) |
| { |
| sec->check_relocs_failed = 1; |
| return false; |
| } |
| |
| is_x86_64 = bed->target_id == X86_64_ELF_DATA; |
| |
| symtab_hdr = &elf_symtab_hdr (abfd); |
| sym_hashes = elf_sym_hashes (abfd); |
| |
| rel_end = relocs + sec->reloc_count; |
| for (rel = relocs; rel < rel_end; rel++) |
| { |
| unsigned int r_type; |
| unsigned int r_symndx; |
| struct elf_link_hash_entry *h; |
| |
| r_symndx = htab->r_sym (rel->r_info); |
| r_type = ELF32_R_TYPE (rel->r_info); |
| |
| if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: bad symbol index: %d"), |
| abfd, r_symndx); |
| goto error_return; |
| } |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| h = NULL; |
| else |
| { |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| |
| if (X86_NEED_DYNAMIC_RELOC_TYPE_P (is_x86_64, r_type) |
| && NEED_DYNAMIC_RELOCATION_P (is_x86_64, info, true, h, sec, |
| r_type, htab->pointer_r_type)) |
| { |
| /* We may copy these reloc types into the output file. |
| Create a reloc section in dynobj and make room for |
| this reloc. */ |
| sreloc = _bfd_elf_make_dynamic_reloc_section |
| (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2, |
| abfd, sec->use_rela_p); |
| |
| if (sreloc != NULL) |
| return true; |
| |
| error_return: |
| sec->check_relocs_failed = 1; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Add an entry to the relative reloc record. */ |
| |
| static bool |
| elf_x86_relative_reloc_record_add |
| (struct bfd_link_info *info, |
| struct elf_x86_relative_reloc_data *relative_reloc, |
| Elf_Internal_Rela *rel, asection *sec, |
| asection *sym_sec, struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym, bfd_vma offset) |
| { |
| bfd_size_type newidx; |
| |
| if (relative_reloc->data == NULL) |
| { |
| relative_reloc->data = bfd_malloc |
| (sizeof (struct elf_x86_relative_reloc_record)); |
| relative_reloc->count = 0; |
| relative_reloc->size = 1; |
| } |
| |
| newidx = relative_reloc->count++; |
| |
| if (relative_reloc->count > relative_reloc->size) |
| { |
| relative_reloc->size <<= 1; |
| relative_reloc->data = bfd_realloc |
| (relative_reloc->data, |
| (relative_reloc->size |
| * sizeof (struct elf_x86_relative_reloc_record))); |
| } |
| |
| if (relative_reloc->data == NULL) |
| { |
| info->callbacks->einfo |
| /* xgettext:c-format */ |
| (_("%F%P: %pB: failed to allocate relative reloc record\n"), |
| info->output_bfd); |
| return false; |
| } |
| |
| relative_reloc->data[newidx].rel = *rel; |
| relative_reloc->data[newidx].sec = sec; |
| if (h != NULL) |
| { |
| /* Set SYM to NULL to indicate a global symbol. */ |
| relative_reloc->data[newidx].sym = NULL; |
| relative_reloc->data[newidx].u.h = h; |
| } |
| else |
| { |
| relative_reloc->data[newidx].sym = sym; |
| relative_reloc->data[newidx].u.sym_sec = sym_sec; |
| } |
| relative_reloc->data[newidx].offset = offset; |
| relative_reloc->data[newidx].address = 0; |
| return true; |
| } |
| |
| /* After input sections have been mapped to output sections and |
| addresses of output sections are set initiallly, scan input |
| relocations with the same logic in relocate_section to determine |
| if a relative relocation should be generated. Save the relative |
| relocation candidate information for sizing the DT_RELR section |
| later after all symbols addresses can be determined. */ |
| |
| bool |
| _bfd_x86_elf_link_relax_section (bfd *abfd ATTRIBUTE_UNUSED, |
| asection *input_section, |
| struct bfd_link_info *info, |
| bool *again) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| Elf_Internal_Rela *internal_relocs; |
| Elf_Internal_Rela *irel, *irelend; |
| Elf_Internal_Sym *isymbuf = NULL; |
| struct elf_link_hash_entry **sym_hashes; |
| const struct elf_backend_data *bed; |
| struct elf_x86_link_hash_table *htab; |
| bfd_vma *local_got_offsets; |
| bool is_x86_64; |
| bool unaligned_section; |
| |
| if (bfd_link_relocatable (info)) |
| return true; |
| |
| /* Assume we're not going to change any sizes, and we'll only need |
| one pass. */ |
| *again = false; |
| |
| bed = get_elf_backend_data (abfd); |
| htab = elf_x86_hash_table (info, bed->target_id); |
| if (htab == NULL) |
| return true; |
| |
| /* Nothing to do if there are no relocations or relative relocations |
| have been packed. */ |
| if (input_section == htab->elf.srelrdyn |
| || input_section->relative_reloc_packed |
| || ((input_section->flags & (SEC_RELOC | SEC_ALLOC)) |
| != (SEC_RELOC | SEC_ALLOC)) |
| || (input_section->flags & SEC_DEBUGGING) != 0 |
| || input_section->reloc_count == 0) |
| return true; |
| |
| /* Skip if the section isn't aligned. */ |
| unaligned_section = input_section->alignment_power == 0; |
| |
| is_x86_64 = bed->target_id == X86_64_ELF_DATA; |
| |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| sym_hashes = elf_sym_hashes (abfd); |
| local_got_offsets = elf_local_got_offsets (abfd); |
| |
| /* Load the relocations for this section. */ |
| internal_relocs = |
| _bfd_elf_link_read_relocs (abfd, input_section, NULL, |
| (Elf_Internal_Rela *) NULL, |
| info->keep_memory); |
| if (internal_relocs == NULL) |
| return false; |
| |
| irelend = internal_relocs + input_section->reloc_count; |
| for (irel = internal_relocs; irel < irelend; irel++) |
| { |
| unsigned int r_type; |
| unsigned int r_symndx; |
| Elf_Internal_Sym *isym; |
| struct elf_link_hash_entry *h; |
| struct elf_x86_link_hash_entry *eh; |
| bfd_vma offset; |
| bool resolved_to_zero; |
| bool need_copy_reloc_in_pie; |
| bool pc32_reloc; |
| asection *sec; |
| /* Offset must be a multiple of 2. */ |
| bool unaligned_offset = (irel->r_offset & 1) != 0; |
| /* True if there is a relative relocation against a dynamic |
| symbol. */ |
| bool dynamic_relative_reloc_p; |
| |
| /* Get the value of the symbol referred to by the reloc. */ |
| r_symndx = htab->r_sym (irel->r_info); |
| |
| r_type = ELF32_R_TYPE (irel->r_info); |
| /* Clear the R_X86_64_converted_reloc_bit bit. */ |
| r_type &= ~R_X86_64_converted_reloc_bit; |
| |
| sec = NULL; |
| h = NULL; |
| dynamic_relative_reloc_p = false; |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| /* Read this BFD's local symbols. */ |
| if (isymbuf == NULL) |
| { |
| isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| if (isymbuf == NULL) |
| isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, |
| symtab_hdr->sh_info, 0, |
| NULL, NULL, NULL); |
| if (isymbuf == NULL) |
| goto error_return; |
| } |
| |
| isym = isymbuf + r_symndx; |
| switch (isym->st_shndx) |
| { |
| case SHN_ABS: |
| sec = bfd_abs_section_ptr; |
| break; |
| case SHN_COMMON: |
| sec = bfd_com_section_ptr; |
| break; |
| case SHN_X86_64_LCOMMON: |
| if (!is_x86_64) |
| abort (); |
| sec = &_bfd_elf_large_com_section; |
| break; |
| default: |
| sec = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| break; |
| } |
| |
| /* Skip relocation against local STT_GNU_IFUNC symbol. */ |
| if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) |
| continue; |
| |
| eh = (struct elf_x86_link_hash_entry *) h; |
| resolved_to_zero = false; |
| } |
| else |
| { |
| /* Get H and SEC for GENERATE_DYNAMIC_RELOCATION_P below. */ |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| if (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| sec = h->root.u.def.section; |
| |
| /* Skip relocation against STT_GNU_IFUNC symbol. */ |
| if (h->type == STT_GNU_IFUNC) |
| continue; |
| |
| eh = (struct elf_x86_link_hash_entry *) h; |
| resolved_to_zero = UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, eh); |
| |
| /* NB: See how elf_backend_finish_dynamic_symbol is called |
| from elf_link_output_extsym. */ |
| if ((h->dynindx != -1 || h->forced_local) |
| && ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak) |
| || !h->forced_local) |
| && h->got.offset != (bfd_vma) -1 |
| && ! GOT_TLS_GD_ANY_P (elf_x86_hash_entry (h)->tls_type) |
| && elf_x86_hash_entry (h)->tls_type != GOT_TLS_IE |
| && !resolved_to_zero |
| && SYMBOL_REFERENCES_LOCAL_P (info, h) |
| && SYMBOL_DEFINED_NON_SHARED_P (h)) |
| dynamic_relative_reloc_p = true; |
| |
| isym = NULL; |
| } |
| |
| if (X86_GOT_TYPE_P (is_x86_64, r_type)) |
| { |
| /* Pack GOT relative relocations. There should be only a |
| single R_*_RELATIVE relocation in GOT. */ |
| if (eh != NULL) |
| { |
| if (eh->got_relative_reloc_done) |
| continue; |
| |
| if (!(dynamic_relative_reloc_p |
| || (RESOLVED_LOCALLY_P (info, h, htab) |
| && GENERATE_RELATIVE_RELOC_P (info, h)))) |
| continue; |
| |
| if (!dynamic_relative_reloc_p) |
| eh->no_finish_dynamic_symbol = 1; |
| eh->got_relative_reloc_done = 1; |
| offset = h->got.offset; |
| } |
| else |
| { |
| if (elf_x86_relative_reloc_done (abfd)[r_symndx]) |
| continue; |
| |
| if (!X86_LOCAL_GOT_RELATIVE_RELOC_P (is_x86_64, info, |
| isym)) |
| continue; |
| |
| elf_x86_relative_reloc_done (abfd)[r_symndx] = 1; |
| offset = local_got_offsets[r_symndx]; |
| } |
| |
| if (!elf_x86_relative_reloc_record_add (info, |
| &htab->relative_reloc, |
| irel, htab->elf.sgot, |
| sec, h, isym, offset)) |
| goto error_return; |
| |
| continue; |
| } |
| |
| if (is_x86_64 |
| && irel->r_addend == 0 |
| && !ABI_64_P (info->output_bfd)) |
| { |
| /* For x32, if addend is zero, treat R_X86_64_64 like |
| R_X86_64_32 and R_X86_64_SIZE64 like R_X86_64_SIZE32. */ |
| if (r_type == R_X86_64_64) |
| r_type = R_X86_64_32; |
| else if (r_type == R_X86_64_SIZE64) |
| r_type = R_X86_64_SIZE32; |
| } |
| |
| if (!X86_RELATIVE_RELOC_TYPE_P (is_x86_64, r_type)) |
| continue; |
| |
| /* Pack non-GOT relative relocations. */ |
| if (is_x86_64) |
| { |
| need_copy_reloc_in_pie = |
| (bfd_link_pie (info) |
| && h != NULL |
| && (h->needs_copy |
| || eh->needs_copy |
| || (h->root.type == bfd_link_hash_undefined)) |
| && (X86_PCREL_TYPE_P (true, r_type) |
| || X86_SIZE_TYPE_P (true, r_type))); |
| pc32_reloc = false; |
| } |
| else |
| { |
| need_copy_reloc_in_pie = false; |
| pc32_reloc = r_type == R_386_PC32; |
| } |
| |
| if (GENERATE_DYNAMIC_RELOCATION_P (is_x86_64, info, eh, r_type, |
| sec, need_copy_reloc_in_pie, |
| resolved_to_zero, pc32_reloc)) |
| { |
| /* When generating a shared object, these relocations |
| are copied into the output file to be resolved at run |
| time. */ |
| offset = _bfd_elf_section_offset (info->output_bfd, info, |
| input_section, |
| irel->r_offset); |
| if (offset == (bfd_vma) -1 |
| || offset == (bfd_vma) -2 |
| || COPY_INPUT_RELOC_P (is_x86_64, info, h, r_type)) |
| continue; |
| |
| /* This symbol is local, or marked to become local. When |
| relocation overflow check is disabled, we convert |
| R_X86_64_32 to dynamic R_X86_64_RELATIVE. */ |
| if (is_x86_64 |
| && !(r_type == htab->pointer_r_type |
| || (r_type == R_X86_64_32 |
| && htab->params->no_reloc_overflow_check))) |
| continue; |
| |
| if (!elf_x86_relative_reloc_record_add |
| (info, |
| ((unaligned_section || unaligned_offset) |
| ? &htab->unaligned_relative_reloc |
| : &htab->relative_reloc), |
| irel, input_section, sec, h, isym, offset)) |
| goto error_return; |
| } |
| } |
| |
| input_section->relative_reloc_packed = 1; |
| |
| return true; |
| |
| error_return: |
| if ((unsigned char *) isymbuf != symtab_hdr->contents) |
| free (isymbuf); |
| if (elf_section_data (input_section)->relocs != internal_relocs) |
| free (internal_relocs); |
| return false; |
| } |
| |
| /* Add an entry to the 64-bit DT_RELR bitmap. */ |
| |
| static void |
| elf64_dt_relr_bitmap_add |
| (struct bfd_link_info *info, struct elf_dt_relr_bitmap *bitmap, |
| uint64_t entry) |
| { |
| bfd_size_type newidx; |
| |
| if (bitmap->u.elf64 == NULL) |
| { |
| bitmap->u.elf64 = bfd_malloc (sizeof (uint64_t)); |
| bitmap->count = 0; |
| bitmap->size = 1; |
| } |
| |
| newidx = bitmap->count++; |
| |
| if (bitmap->count > bitmap->size) |
| { |
| bitmap->size <<= 1; |
| bitmap->u.elf64 = bfd_realloc (bitmap->u.elf64, |
| (bitmap->size * sizeof (uint64_t))); |
| } |
| |
| if (bitmap->u.elf64 == NULL) |
| { |
| info->callbacks->einfo |
| /* xgettext:c-format */ |
| (_("%F%P: %pB: failed to allocate 64-bit DT_RELR bitmap\n"), |
| info->output_bfd); |
| } |
| |
| bitmap->u.elf64[newidx] = entry; |
| } |
| |
| /* Add an entry to the 32-bit DT_RELR bitmap. */ |
| |
| static void |
| elf32_dt_relr_bitmap_add |
| (struct bfd_link_info *info, struct elf_dt_relr_bitmap *bitmap, |
| uint32_t entry) |
| { |
| bfd_size_type newidx; |
| |
| if (bitmap->u.elf32 == NULL) |
| { |
| bitmap->u.elf32 = bfd_malloc (sizeof (uint32_t)); |
| bitmap->count = 0; |
| bitmap->size = 1; |
| } |
| |
| newidx = bitmap->count++; |
| |
| if (bitmap->count > bitmap->size) |
| { |
| bitmap->size <<= 1; |
| bitmap->u.elf32 = bfd_realloc (bitmap->u.elf32, |
| (bitmap->size * sizeof (uint32_t))); |
| } |
| |
| if (bitmap->u.elf32 == NULL) |
| { |
| info->callbacks->einfo |
| /* xgettext:c-format */ |
| (_("%F%P: %pB: failed to allocate 32-bit DT_RELR bitmap\n"), |
| info->output_bfd); |
| } |
| |
| bitmap->u.elf32[newidx] = entry; |
| } |
| |
| void |
| _bfd_elf32_write_addend (bfd *abfd, uint64_t value, void *addr) |
| { |
| bfd_put_32 (abfd, value, addr); |
| } |
| |
| void |
| _bfd_elf64_write_addend (bfd *abfd, uint64_t value, void *addr) |
| { |
| bfd_put_64 (abfd, value, addr); |
| } |
| |
| /* Size or finish relative relocations to determine the run-time |
| addresses for DT_RELR bitmap computation later. OUTREL is set |
| to NULL in the sizing phase and non-NULL in the finising phase |
| where the regular relative relocations will be written out. */ |
| |
| static void |
| elf_x86_size_or_finish_relative_reloc |
| (bool is_x86_64, struct bfd_link_info *info, |
| struct elf_x86_link_hash_table *htab, bool unaligned, |
| Elf_Internal_Rela *outrel) |
| { |
| unsigned int align_mask; |
| bfd_size_type i, count; |
| asection *sec, *srel; |
| struct elf_link_hash_entry *h; |
| bfd_vma offset; |
| Elf_Internal_Sym *sym; |
| asection *sym_sec; |
| asection *sgot = htab->elf.sgot; |
| asection *srelgot = htab->elf.srelgot; |
| struct elf_x86_relative_reloc_data *relative_reloc; |
| |
| if (unaligned) |
| { |
| align_mask = 0; |
| relative_reloc = &htab->unaligned_relative_reloc; |
| } |
| else |
| { |
| align_mask = 1; |
| relative_reloc = &htab->relative_reloc; |
| } |
| |
| count = relative_reloc->count; |
| for (i = 0; i < count; i++) |
| { |
| sec = relative_reloc->data[i].sec; |
| sym = relative_reloc->data[i].sym; |
| |
| /* If SYM is NULL, it must be a global symbol. */ |
| if (sym == NULL) |
| h = relative_reloc->data[i].u.h; |
| else |
| h = NULL; |
| |
| if (is_x86_64) |
| { |
| bfd_vma relocation; |
| /* This function may be called more than once and REL may be |
| updated by _bfd_elf_rela_local_sym below. */ |
| Elf_Internal_Rela rel = relative_reloc->data[i].rel; |
| |
| if (h != NULL) |
| { |
| if (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| { |
| sym_sec = h->root.u.def.section; |
| relocation = (h->root.u.def.value |
| + sym_sec->output_section->vma |
| + sym_sec->output_offset); |
| } |
| else |
| { |
| /* Allow undefined symbol only at the sizing phase. |
| Otherwise skip undefined symbol here. Undefined |
| symbol will be reported by relocate_section. */ |
| if (outrel == NULL) |
| relocation = 0; |
| else |
| continue; |
| } |
| } |
| else |
| { |
| sym_sec = relative_reloc->data[i].u.sym_sec; |
| relocation = _bfd_elf_rela_local_sym |
| (info->output_bfd, sym, &sym_sec, &rel); |
| } |
| |
| if (outrel != NULL) |
| { |
| outrel->r_addend = relocation; |
| if (sec == sgot) |
| { |
| if (h != NULL && h->needs_plt) |
| abort (); |
| } |
| else |
| outrel->r_addend += rel.r_addend; |
| |
| /* Write the implicit addend if ALIGN_MASK isn't 0. */ |
| if (align_mask) |
| { |
| if (sec == sgot) |
| { |
| if (relative_reloc->data[i].offset >= sec->size) |
| abort (); |
| htab->elf_write_addend_in_got |
| (info->output_bfd, outrel->r_addend, |
| sec->contents + relative_reloc->data[i].offset); |
| } |
| else |
| { |
| bfd_byte *contents; |
| |
| if (rel.r_offset >= sec->size) |
| abort (); |
| |
| if (elf_section_data (sec)->this_hdr.contents |
| != NULL) |
| contents |
| = elf_section_data (sec)->this_hdr.contents; |
| else |
| { |
| if (!bfd_malloc_and_get_section (sec->owner, |
| sec, |
| &contents)) |
| info->callbacks->einfo |
| /* xgettext:c-format */ |
| (_("%F%P: %pB: failed to allocate memory for section `%pA'\n"), |
| info->output_bfd, sec); |
| |
| /* Cache the section contents for |
| elf_link_input_bfd. */ |
| elf_section_data (sec)->this_hdr.contents |
| = contents; |
| } |
| htab->elf_write_addend |
| (info->output_bfd, outrel->r_addend, |
| contents + rel.r_offset); |
| } |
| } |
| } |
| } |
| |
| if (sec == sgot) |
| srel = srelgot; |
| else |
| srel = elf_section_data (sec)->sreloc; |
| offset = (sec->output_section->vma + sec->output_offset |
| + relative_reloc->data[i].offset); |
| relative_reloc->data[i].address = offset; |
| if (outrel != NULL) |
| { |
| outrel->r_offset = offset; |
| |
| if ((outrel->r_offset & align_mask) != 0) |
| abort (); |
| |
| if (htab->params->report_relative_reloc) |
| _bfd_x86_elf_link_report_relative_reloc |
| (info, sec, h, sym, htab->relative_r_name, outrel); |
| |
| /* Generate regular relative relocation if ALIGN_MASK is 0. */ |
| if (align_mask == 0) |
| htab->elf_append_reloc (info->output_bfd, srel, outrel); |
| } |
| } |
| } |
| |
| /* Compute the DT_RELR section size. Set NEED_PLAYOUT to true if |
| the DT_RELR section size has been increased. */ |
| |
| static void |
| elf_x86_compute_dl_relr_bitmap |
| (struct bfd_link_info *info, struct elf_x86_link_hash_table *htab, |
| bool *need_layout) |
| { |
| bfd_vma base; |
| bfd_size_type i, count, new_count; |
| struct elf_x86_relative_reloc_data *relative_reloc = |
| &htab->relative_reloc; |
| /* Save the old DT_RELR bitmap count. Don't shrink the DT_RELR bitmap |
| if the new DT_RELR bitmap count is smaller than the old one. Pad |
| with trailing 1s which won't be decoded to more relocations. */ |
| bfd_size_type dt_relr_bitmap_count = htab->dt_relr_bitmap.count; |
| |
| /* Clear the DT_RELR bitmap count. */ |
| htab->dt_relr_bitmap.count = 0; |
| |
| count = relative_reloc->count; |
| |
| if (ABI_64_P (info->output_bfd)) |
| { |
| /* Compute the 64-bit DT_RELR bitmap. */ |
| i = 0; |
| while (i < count) |
| { |
| if ((relative_reloc->data[i].address % 1) != 0) |
| abort (); |
| |
| elf64_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap, |
| relative_reloc->data[i].address); |
| |
| base = relative_reloc->data[i].address + 8; |
| i++; |
| |
| while (i < count) |
| { |
| uint64_t bitmap = 0; |
| for (; i < count; i++) |
| { |
| bfd_vma delta = (relative_reloc->data[i].address |
| - base); |
| /* Stop if it is too far from base. */ |
| if (delta >= 63 * 8) |
| break; |
| /* Stop if it isn't a multiple of 8. */ |
| if ((delta % 8) != 0) |
| break; |
| bitmap |= 1ULL << (delta / 8); |
| } |
| |
| if (bitmap == 0) |
| break; |
| |
| elf64_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap, |
| (bitmap << 1) | 1); |
| |
| base += 63 * 8; |
| } |
| } |
| |
| new_count = htab->dt_relr_bitmap.count; |
| if (dt_relr_bitmap_count > new_count) |
| { |
| /* Don't shrink the DT_RELR section size to avoid section |
| layout oscillation. Instead, pad the DT_RELR bitmap with |
| 1s which do not decode to more relocations. */ |
| |
| htab->dt_relr_bitmap.count = dt_relr_bitmap_count; |
| count = dt_relr_bitmap_count - new_count; |
| for (i = 0; i < count; i++) |
| htab->dt_relr_bitmap.u.elf64[new_count + i] = 1; |
| } |
| } |
| else |
| { |
| /* Compute the 32-bit DT_RELR bitmap. */ |
| i = 0; |
| while (i < count) |
| { |
| if ((relative_reloc->data[i].address % 1) != 0) |
| abort (); |
| |
| elf32_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap, |
| relative_reloc->data[i].address); |
| |
| base = relative_reloc->data[i].address + 4; |
| i++; |
| |
| while (i < count) |
| { |
| uint32_t bitmap = 0; |
| for (; i < count; i++) |
| { |
| bfd_vma delta = (relative_reloc->data[i].address |
| - base); |
| /* Stop if it is too far from base. */ |
| if (delta >= 31 * 4) |
| break; |
| /* Stop if it isn't a multiple of 4. */ |
| if ((delta % 4) != 0) |
| break; |
| bitmap |= 1ULL << (delta / 4); |
| } |
| |
| if (bitmap == 0) |
| break; |
| |
| elf32_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap, |
| (bitmap << 1) | 1); |
| |
| base += 31 * 4; |
| } |
| } |
| |
| new_count = htab->dt_relr_bitmap.count; |
| if (dt_relr_bitmap_count > new_count) |
| { |
| /* Don't shrink the DT_RELR section size to avoid section |
| layout oscillation. Instead, pad the DT_RELR bitmap with |
| 1s which do not decode to more relocations. */ |
| |
| htab->dt_relr_bitmap.count = dt_relr_bitmap_count; |
| count = dt_relr_bitmap_count - new_count; |
| for (i = 0; i < count; i++) |
| htab->dt_relr_bitmap.u.elf32[new_count + i] = 1; |
| } |
| } |
| |
| if (htab->dt_relr_bitmap.count != dt_relr_bitmap_count) |
| { |
| if (need_layout) |
| { |
| /* The .relr.dyn section size is changed. Update the section |
| size and tell linker to layout sections again. */ |
| htab->elf.srelrdyn->size = |
| (htab->dt_relr_bitmap.count |
| * (ABI_64_P (info->output_bfd) ? 8 : 4)); |
| |
| *need_layout = true; |
| } |
| else |
| info->callbacks->einfo |
| /* xgettext:c-format */ |
| (_("%F%P: %pB: size of compact relative reloc section is " |
| "changed: new (%lu) != old (%lu)\n"), |
| info->output_bfd, htab->dt_relr_bitmap.count, |
| dt_relr_bitmap_count); |
| } |
| } |
| |
| /* Write out the DT_RELR section. */ |
| |
| static void |
| elf_x86_write_dl_relr_bitmap (struct bfd_link_info *info, |
| struct elf_x86_link_hash_table *htab) |
| { |
| asection *sec = htab->elf.srelrdyn; |
| bfd_size_type size = sec->size; |
| bfd_size_type i; |
| unsigned char *contents; |
| |
| contents = (unsigned char *) bfd_alloc (sec->owner, size); |
| if (contents == NULL) |
| info->callbacks->einfo |
| /* xgettext:c-format */ |
| (_("%F%P: %pB: failed to allocate compact relative reloc section\n"), |
| info->output_bfd); |
| |
| /* Cache the section contents for elf_link_input_bfd. */ |
| sec->contents = contents; |
| |
| if (ABI_64_P (info->output_bfd)) |
| for (i = 0; i < htab->dt_relr_bitmap.count; i++, contents += 8) |
| bfd_put_64 (info->output_bfd, htab->dt_relr_bitmap.u.elf64[i], |
| contents); |
| else |
| for (i = 0; i < htab->dt_relr_bitmap.count; i++, contents += 4) |
| bfd_put_32 (info->output_bfd, htab->dt_relr_bitmap.u.elf32[i], |
| contents); |
| } |
| |
| /* Sort relative relocations by address. */ |
| |
| static int |
| elf_x86_relative_reloc_compare (const void *pa, const void *pb) |
| { |
| struct elf_x86_relative_reloc_record *a = |
| (struct elf_x86_relative_reloc_record *) pa; |
| struct elf_x86_relative_reloc_record *b = |
| (struct elf_x86_relative_reloc_record *) pb; |
| if (a->address < b->address) |
| return -1; |
| if (a->address > b->address) |
| return 1; |
| return 0; |
| } |
| |
| enum dynobj_sframe_plt_type |
| { |
| SFRAME_PLT = 1, |
| SFRAME_PLT_SEC = 2 |
| }; |
| |
| /* Create SFrame stack trace info for the plt entries in the .plt section |
| of type PLT_SEC_TYPE. */ |
| |
| static bool |
| _bfd_x86_elf_create_sframe_plt (bfd *output_bfd, |
| struct bfd_link_info *info, |
| unsigned int plt_sec_type) |
| { |
| struct elf_x86_link_hash_table *htab; |
| const struct elf_backend_data *bed; |
| |
| bool plt0_generated_p; |
| unsigned int plt0_entry_size; |
| unsigned char func_info; |
| unsigned int fre_type; |
| /* The dynamic plt section for which .sframe stack trace information is being |
| created. */ |
| asection *dpltsec; |
| |
| int err = 0; |
| |
| sframe_encoder_ctx **ectx = NULL; |
| unsigned plt_entry_size = 0; |
| unsigned int num_pltn_fres = 0; |
| unsigned int num_pltn_entries = 0; |
| |
| bed = get_elf_backend_data (output_bfd); |
| htab = elf_x86_hash_table (info, bed->target_id); |
| /* Whether SFrame stack trace info for plt0 is to be generated. */ |
| plt0_generated_p = htab->plt.has_plt0; |
| plt0_entry_size |
| = (plt0_generated_p) ? htab->sframe_plt->plt0_entry_size : 0; |
| |
| switch (plt_sec_type) |
| { |
| case SFRAME_PLT: |
| { |
| ectx = &htab->plt_cfe_ctx; |
| dpltsec = htab->elf.splt; |
| |
| plt_entry_size = htab->plt.plt_entry_size; |
| num_pltn_fres = htab->sframe_plt->pltn_num_fres; |
| num_pltn_entries |
| = (htab->elf.splt->size - plt0_entry_size) / plt_entry_size; |
| |
| break; |
| } |
| case SFRAME_PLT_SEC: |
| { |
| ectx = &htab->plt_second_cfe_ctx; |
| /* FIXME - this or htab->plt_second_sframe ? */ |
| dpltsec = htab->plt_second_eh_frame; |
| |
| plt_entry_size = htab->sframe_plt->sec_pltn_entry_size; |
| num_pltn_fres = htab->sframe_plt->sec_pltn_num_fres; |
| num_pltn_entries |
| = htab->plt_second_eh_frame->size / plt_entry_size; |
| break; |
| } |
| default: |
| /* No other value is possible. */ |
| return false; |
| break; |
| } |
| |
| *ectx = sframe_encode (SFRAME_VERSION_1, |
| 0, |
| SFRAME_ABI_AMD64_ENDIAN_LITTLE, |
| SFRAME_CFA_FIXED_FP_INVALID, |
| -8, /* Fixed RA offset. */ |
| &err); |
| |
| /* FRE type is dependent on the size of the function. */ |
| fre_type = sframe_calc_fre_type (dpltsec->size); |
| func_info = sframe_fde_create_func_info (fre_type, SFRAME_FDE_TYPE_PCINC); |
| |
| /* Add SFrame FDE and the associated FREs for plt0 if plt0 has been |
| generated. */ |
| if (plt0_generated_p) |
| { |
| /* Add SFrame FDE for plt0, the function start address is updated later |
| at _bfd_elf_merge_section_sframe time. */ |
| sframe_encoder_add_funcdesc (*ectx, |
| 0, /* func start addr. */ |
| plt0_entry_size, |
| func_info, |
| 0 /* Num FREs. */); |
| sframe_frame_row_entry plt0_fre; |
| unsigned int num_plt0_fres = htab->sframe_plt->plt0_num_fres; |
| for (unsigned int j = 0; j < num_plt0_fres; j++) |
| { |
| plt0_fre = *(htab->sframe_plt->plt0_fres[j]); |
| sframe_encoder_add_fre (*ectx, 0, &plt0_fre); |
| } |
| } |
| |
| |
| if (num_pltn_entries) |
| { |
| /* pltn entries use an SFrame FDE of type |
| SFRAME_FDE_TYPE_PCMASK to exploit the repetitive |
| pattern of the instructions in these entries. Using this SFrame FDE |
| type helps in keeping the SFrame stack trace info for pltn entries |
| compact. */ |
| func_info = sframe_fde_create_func_info (fre_type, |
| SFRAME_FDE_TYPE_PCMASK); |
| /* Add the SFrame FDE for all PCs starting at the first pltn entry (hence, |
| function start address = plt0_entry_size. As usual, this will be |
| updated later at _bfd_elf_merge_section_sframe, by when the |
| sections are relocated. */ |
| sframe_encoder_add_funcdesc (*ectx, |
| plt0_entry_size, /* func start addr. */ |
| dpltsec->size - plt0_entry_size, |
| func_info, |
| 0 /* Num FREs. */); |
| |
| sframe_frame_row_entry pltn_fre; |
| /* Now add the FREs for pltn. Simply adding the two FREs suffices due |
| to the usage of SFRAME_FDE_TYPE_PCMASK above. */ |
| for (unsigned int j = 0; j < num_pltn_fres; j++) |
| { |
| pltn_fre = *(htab->sframe_plt->pltn_fres[j]); |
| sframe_encoder_add_fre (*ectx, 1, &pltn_fre); |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Put contents of the .sframe section corresponding to the specified |
| PLT_SEC_TYPE. */ |
| |
| static bool |
| _bfd_x86_elf_write_sframe_plt (bfd *output_bfd, |
| struct bfd_link_info *info, |
| unsigned int plt_sec_type) |
| { |
| struct elf_x86_link_hash_table *htab; |
| const struct elf_backend_data *bed; |
| sframe_encoder_ctx *ectx; |
| size_t sec_size; |
| asection *sec; |
| bfd *dynobj; |
| |
| int err = 0; |
| |
| bed = get_elf_backend_data (output_bfd); |
| htab = elf_x86_hash_table (info, bed->target_id); |
| dynobj = htab->elf.dynobj; |
| |
| switch (plt_sec_type) |
| { |
| case SFRAME_PLT: |
| ectx = htab->plt_cfe_ctx; |
| sec = htab->plt_sframe; |
| break; |
| case SFRAME_PLT_SEC: |
| ectx = htab->plt_second_cfe_ctx; |
| sec = htab->plt_second_sframe; |
| break; |
| default: |
| /* No other value is possible. */ |
| return false; |
| break; |
| } |
| |
| BFD_ASSERT (ectx); |
| |
| void *contents = sframe_encoder_write (ectx, &sec_size, &err); |
| |
| sec->size = (bfd_size_type) sec_size; |
| sec->contents = (unsigned char *) bfd_zalloc (dynobj, sec->size); |
| memcpy (sec->contents, contents, sec_size); |
| |
| sframe_encoder_free (&ectx); |
| |
| return true; |
| } |
| |
| bool |
| _bfd_elf_x86_size_relative_relocs (struct bfd_link_info *info, |
| bool *need_layout) |
| { |
| struct elf_x86_link_hash_table *htab; |
| const struct elf_backend_data *bed; |
| bool is_x86_64; |
| bfd_size_type i, count, unaligned_count; |
| asection *sec, *srel; |
| |
| /* Do nothing for ld -r. */ |
| if (bfd_link_relocatable (info)) |
| return true; |
| |
| bed = get_elf_backend_data (info->output_bfd); |
| htab = elf_x86_hash_table (info, bed->target_id); |
| if (htab == NULL) |
| return false; |
| |
| count = htab->relative_reloc.count; |
| unaligned_count = htab->unaligned_relative_reloc.count; |
| if (count == 0) |
| { |
| if (htab->generate_relative_reloc_pass == 0 |
| && htab->elf.srelrdyn != NULL) |
| { |
| /* Remove the empty .relr.dyn sections now. */ |
| if (!bfd_is_abs_section (htab->elf.srelrdyn->output_section)) |
| { |
| bfd_section_list_remove |
| (info->output_bfd, htab->elf.srelrdyn->output_section); |
| info->output_bfd->section_count--; |
| } |
| bfd_section_list_remove (htab->elf.srelrdyn->owner, |
| htab->elf.srelrdyn); |
| htab->elf.srelrdyn->owner->section_count--; |
| } |
| if (unaligned_count == 0) |
| { |
| htab->generate_relative_reloc_pass++; |
| return true; |
| } |
| } |
| |
| is_x86_64 = bed->target_id == X86_64_ELF_DATA; |
| |
| /* Size relative relocations. */ |
| if (htab->generate_relative_reloc_pass) |
| { |
| /* Reset the regular relative relocation count. */ |
| for (i = 0; i < unaligned_count; i++) |
| { |
| sec = htab->unaligned_relative_reloc.data[i].sec; |
| srel = elf_section_data (sec)->sreloc; |
| srel->reloc_count = 0; |
| } |
| } |
| else |
| { |
| /* Remove the reserved space for compact relative relocations. */ |
| if (count) |
| { |
| asection *sgot = htab->elf.sgot; |
| asection *srelgot = htab->elf.srelgot; |
| |
| for (i = 0; i < count; i++) |
| { |
| sec = htab->relative_reloc.data[i].sec; |
| if (sec == sgot) |
| srel = srelgot; |
| else |
| srel = elf_section_data (sec)->sreloc; |
| srel->size -= htab->sizeof_reloc; |
| } |
| } |
| } |
| |
| /* Size unaligned relative relocations. */ |
| if (unaligned_count) |
| elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab, |
| true, NULL); |
| |
| if (count) |
| { |
| elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab, |
| false, NULL); |
| |
| /* Sort relative relocations by addresses. We only need to |
| sort them in the first pass since the relative positions |
| won't change. */ |
| if (htab->generate_relative_reloc_pass == 0) |
| qsort (htab->relative_reloc.data, count, |
| sizeof (struct elf_x86_relative_reloc_record), |
| elf_x86_relative_reloc_compare); |
| |
| elf_x86_compute_dl_relr_bitmap (info, htab, need_layout); |
| } |
| |
| htab->generate_relative_reloc_pass++; |
| |
| return true; |
| } |
| |
| bool |
| _bfd_elf_x86_finish_relative_relocs (struct bfd_link_info *info) |
| { |
| struct elf_x86_link_hash_table *htab; |
| const struct elf_backend_data *bed; |
| Elf_Internal_Rela outrel; |
| bool is_x86_64; |
| bfd_size_type count; |
| |
| /* Do nothing for ld -r. */ |
| if (bfd_link_relocatable (info)) |
| return true; |
| |
| bed = get_elf_backend_data (info->output_bfd); |
| htab = elf_x86_hash_table (info, bed->target_id); |
| if (htab == NULL) |
| return false; |
| |
| is_x86_64 = bed->target_id == X86_64_ELF_DATA; |
| |
| outrel.r_info = htab->r_info (0, htab->relative_r_type); |
| |
| if (htab->unaligned_relative_reloc.count) |
| elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab, |
| true, &outrel); |
| |
| count = htab->relative_reloc.count; |
| if (count) |
| { |
| elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab, |
| false, &outrel); |
| |
| elf_x86_compute_dl_relr_bitmap (info, htab, NULL); |
| |
| elf_x86_write_dl_relr_bitmap (info, htab); |
| } |
| |
| return true; |
| } |
| |
| bool |
| _bfd_elf_x86_valid_reloc_p (asection *input_section, |
| struct bfd_link_info *info, |
| struct elf_x86_link_hash_table *htab, |
| const Elf_Internal_Rela *rel, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym, |
| Elf_Internal_Shdr *symtab_hdr, |
| bool *no_dynreloc_p) |
| { |
| bool valid_p = true; |
| |
| *no_dynreloc_p = false; |
| |
| /* Check If relocation against non-preemptible absolute symbol is |
| valid in PIC. FIXME: Can't use SYMBOL_REFERENCES_LOCAL_P since |
| it may call _bfd_elf_link_hide_sym_by_version and result in |
| ld-elfvers/ vers21 test failure. */ |
| if (bfd_link_pic (info) |
| && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h))) |
| { |
| const struct elf_backend_data *bed; |
| unsigned int r_type; |
| Elf_Internal_Rela irel; |
| |
| /* Skip non-absolute symbol. */ |
| if (h) |
| { |
| if (!ABS_SYMBOL_P (h)) |
| return valid_p; |
| } |
| else if (sym->st_shndx != SHN_ABS) |
| return valid_p; |
| |
| bed = get_elf_backend_data (input_section->owner); |
| r_type = ELF32_R_TYPE (rel->r_info); |
| irel = *rel; |
| |
| /* Only allow relocations against absolute symbol, which can be |
| resolved as absolute value + addend. GOTPCREL and GOT32 |
| relocations are allowed since absolute value + addend is |
| stored in the GOT slot. */ |
| if (bed->target_id == X86_64_ELF_DATA) |
| { |
| r_type &= ~R_X86_64_converted_reloc_bit; |
| valid_p = (r_type == R_X86_64_64 |
| || r_type == R_X86_64_32 |
| || r_type == R_X86_64_32S |
| || r_type == R_X86_64_16 |
| || r_type == R_X86_64_8 |
| || r_type == R_X86_64_GOTPCREL |
| || r_type == R_X86_64_GOTPCRELX |
| || r_type == R_X86_64_REX_GOTPCRELX); |
| if (!valid_p) |
| { |
| unsigned int r_symndx = htab->r_sym (rel->r_info); |
| irel.r_info = htab->r_info (r_symndx, r_type); |
| } |
| } |
| else |
| valid_p = (r_type == R_386_32 |
| || r_type == R_386_16 |
| || r_type == R_386_8 |
| || r_type == R_386_GOT32 |
| || r_type == R_386_GOT32X); |
| |
| if (valid_p) |
| *no_dynreloc_p = true; |
| else |
| { |
| const char *name; |
| arelent internal_reloc; |
| |
| if (!bed->elf_info_to_howto (input_section->owner, |
| &internal_reloc, &irel) |
| || internal_reloc.howto == NULL) |
| abort (); |
| |
| if (h) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (input_section->owner, symtab_hdr, |
| sym, NULL); |
| info->callbacks->einfo |
| /* xgettext:c-format */ |
| (_("%F%P: %pB: relocation %s against absolute symbol " |
| "`%s' in section `%pA' is disallowed\n"), |
| input_section->owner, internal_reloc.howto->name, name, |
| input_section); |
| bfd_set_error (bfd_error_bad_value); |
| } |
| } |
| |
| return valid_p; |
| } |
| |
| /* Set the sizes of the dynamic sections. */ |
| |
| bool |
| _bfd_x86_elf_size_dynamic_sections (bfd *output_bfd, |
| struct bfd_link_info *info) |
| { |
| struct elf_x86_link_hash_table *htab; |
| bfd *dynobj; |
| asection *s; |
| bool relocs; |
| bfd *ibfd; |
| const struct elf_backend_data *bed |
| = get_elf_backend_data (output_bfd); |
| |
| htab = elf_x86_hash_table (info, bed->target_id); |
| if (htab == NULL) |
| return false; |
| dynobj = htab->elf.dynobj; |
| if (dynobj == NULL) |
| abort (); |
| |
| /* Set up .got offsets for local syms, and space for local dynamic |
| relocs. */ |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| { |
| bfd_signed_vma *local_got; |
| bfd_signed_vma *end_local_got; |
| char *local_tls_type; |
| bfd_vma *local_tlsdesc_gotent; |
| bfd_size_type locsymcount; |
| Elf_Internal_Shdr *symtab_hdr; |
| asection *srel; |
| |
| if (! is_x86_elf (ibfd, htab)) |
| continue; |
| |
| for (s = ibfd->sections; s != NULL; s = s->next) |
| { |
| struct elf_dyn_relocs *p; |
| |
| for (p = ((struct elf_dyn_relocs *) |
| elf_section_data (s)->local_dynrel); |
| p != NULL; |
| p = p->next) |
| { |
| if (!bfd_is_abs_section (p->sec) |
| && bfd_is_abs_section (p->sec->output_section)) |
| { |
| /* Input section has been discarded, either because |
| it is a copy of a linkonce section or due to |
| linker script /DISCARD/, so we'll be discarding |
| the relocs too. */ |
| } |
| else if (htab->elf.target_os == is_vxworks |
| && strcmp (p->sec->output_section->name, |
| ".tls_vars") == 0) |
| { |
| /* Relocations in vxworks .tls_vars sections are |
| handled specially by the loader. */ |
| } |
| else if (p->count != 0) |
| { |
| srel = elf_section_data (p->sec)->sreloc; |
| srel->size += p->count * htab->sizeof_reloc; |
| if ((p->sec->output_section->flags & SEC_READONLY) != 0 |
| && (info->flags & DF_TEXTREL) == 0) |
| { |
| info->flags |= DF_TEXTREL; |
| if (bfd_link_textrel_check (info)) |
| /* xgettext:c-format */ |
| info->callbacks->einfo |
| (_("%P: %pB: warning: relocation " |
| "in read-only section `%pA'\n"), |
| p->sec->owner, p->sec); |
| } |
| } |
| } |
| } |
| |
| local_got = elf_local_got_refcounts (ibfd); |
| if (!local_got) |
| continue; |
| |
| symtab_hdr = &elf_symtab_hdr (ibfd); |
| locsymcount = symtab_hdr->sh_info; |
| end_local_got = local_got + locsymcount; |
| local_tls_type = elf_x86_local_got_tls_type (ibfd); |
| local_tlsdesc_gotent = elf_x86_local_tlsdesc_gotent (ibfd); |
| s = htab->elf.sgot; |
| srel = htab->elf.srelgot; |
| for (; local_got < end_local_got; |
| ++local_got, ++local_tls_type, ++local_tlsdesc_gotent) |
| { |
| *local_tlsdesc_gotent = (bfd_vma) -1; |
| if (*local_got > 0) |
| { |
| if (GOT_TLS_GDESC_P (*local_tls_type)) |
| { |
| *local_tlsdesc_gotent = htab->elf.sgotplt->size |
| - elf_x86_compute_jump_table_size (htab); |
| htab->elf.sgotplt->size += 2 * htab->got_entry_size; |
| *local_got = (bfd_vma) -2; |
| } |
| if (! GOT_TLS_GDESC_P (*local_tls_type) |
| || GOT_TLS_GD_P (*local_tls_type)) |
| { |
| *local_got = s->size; |
| s->size += htab->got_entry_size; |
| if (GOT_TLS_GD_P (*local_tls_type) |
| || *local_tls_type == GOT_TLS_IE_BOTH) |
| s->size += htab->got_entry_size; |
| } |
| if ((bfd_link_pic (info) && *local_tls_type != GOT_ABS) |
| || GOT_TLS_GD_ANY_P (*local_tls_type) |
| || (*local_tls_type & GOT_TLS_IE)) |
| { |
| if (*local_tls_type == GOT_TLS_IE_BOTH) |
| srel->size += 2 * htab->sizeof_reloc; |
| else if (GOT_TLS_GD_P (*local_tls_type) |
| || ! GOT_TLS_GDESC_P (*local_tls_type)) |
| srel->size += htab->sizeof_reloc; |
| if (GOT_TLS_GDESC_P (*local_tls_type)) |
| { |
| htab->elf.srelplt->size += htab->sizeof_reloc; |
| if (bed->target_id == X86_64_ELF_DATA) |
| htab->elf.tlsdesc_plt = (bfd_vma) -1; |
| } |
| } |
| } |
| else |
| *local_got = (bfd_vma) -1; |
| } |
| } |
| |
| if (htab->tls_ld_or_ldm_got.refcount > 0) |
| { |
| /* Allocate 2 got entries and 1 dynamic reloc for R_386_TLS_LDM |
| or R_X86_64_TLSLD relocs. */ |
| htab->tls_ld_or_ldm_got.offset = htab->elf.sgot->size; |
| htab->elf.sgot->size += 2 * htab->got_entry_size; |
| htab->elf.srelgot->size += htab->sizeof_reloc; |
| } |
| else |
| htab->tls_ld_or_ldm_got.offset = -1; |
| |
| /* Allocate global sym .plt and .got entries, and space for global |
| sym dynamic relocs. */ |
| elf_link_hash_traverse (&htab->elf, elf_x86_allocate_dynrelocs, |
| info); |
| |
| /* Allocate .plt and .got entries, and space for local symbols. */ |
| htab_traverse (htab->loc_hash_table, elf_x86_allocate_local_dynreloc, |
| info); |
| |
| /* For every jump slot reserved in the sgotplt, reloc_count is |
| incremented. However, when we reserve space for TLS descriptors, |
| it's not incremented, so in order to compute the space reserved |
| for them, it suffices to multiply the reloc count by the jump |
| slot size. |
| |
| PR ld/13302: We start next_irelative_index at the end of .rela.plt |
| so that R_{386,X86_64}_IRELATIVE entries come last. */ |
| if (htab->elf.srelplt) |
| { |
| htab->next_tls_desc_index = htab->elf.srelplt->reloc_count; |
| htab->sgotplt_jump_table_size |
| = elf_x86_compute_jump_table_size (htab); |
| htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1; |
| } |
| else if (htab->elf.irelplt) |
| htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1; |
| |
| if (htab->elf.tlsdesc_plt) |
| { |
| /* NB: tlsdesc_plt is set only for x86-64. If we're not using |
| lazy TLS relocations, don't generate the PLT and GOT entries |
| they require. */ |
| if ((info->flags & DF_BIND_NOW)) |
| htab->elf.tlsdesc_plt = 0; |
| else |
| { |
| htab->elf.tlsdesc_got = htab->elf.sgot->size; |
| htab->elf.sgot->size += htab->got_entry_size; |
| /* Reserve room for the initial entry. |
| FIXME: we could probably do away with it in this case. */ |
| if (htab->elf.splt->size == 0) |
| htab->elf.splt->size = htab->plt.plt_entry_size; |
| htab->elf.tlsdesc_plt = htab->elf.splt->size; |
| htab->elf.splt->size += htab->plt.plt_entry_size; |
| } |
| } |
| |
| if (htab->elf.sgotplt) |
| { |
| /* Don't allocate .got.plt section if there are no GOT nor PLT |
| entries and there is no reference to _GLOBAL_OFFSET_TABLE_. */ |
| if ((htab->elf.hgot == NULL |
| || !htab->got_referenced) |
| && (htab->elf.sgotplt->size == bed->got_header_size) |
| && (htab->elf.splt == NULL |
| || htab->elf.splt->size == 0) |
| && (htab->elf.sgot == NULL |
| || htab->elf.sgot->size == 0) |
| && (htab->elf.iplt == NULL |
| || htab->elf.iplt->size == 0) |
| && (htab->elf.igotplt == NULL |
| || htab->elf.igotplt->size == 0)) |
| { |
| htab->elf.sgotplt->size = 0; |
| /* Solaris requires to keep _GLOBAL_OFFSET_TABLE_ even if it |
| isn't used. */ |
| if (htab->elf.hgot != NULL |
| && htab->elf.target_os != is_solaris) |
| { |
| /* Remove the unused _GLOBAL_OFFSET_TABLE_ from symbol |
| table. */ |
| htab->elf.hgot->root.type = bfd_link_hash_undefined; |
| htab->elf.hgot->root.u.undef.abfd |
| = htab->elf.hgot->root.u.def.section->owner; |
| htab->elf.hgot->root.linker_def = 0; |
| htab->elf.hgot->ref_regular = 0; |
| htab->elf.hgot->def_regular = 0; |
| } |
| } |
| } |
| |
| if (_bfd_elf_eh_frame_present (info)) |
| { |
| if (htab->plt_eh_frame != NULL |
| && htab->elf.splt != NULL |
| && htab->elf.splt->size != 0 |
| && !bfd_is_abs_section (htab->elf.splt->output_section)) |
| htab->plt_eh_frame->size = htab->plt.eh_frame_plt_size; |
| |
| if (htab->plt_got_eh_frame != NULL |
| && htab->plt_got != NULL |
| && htab->plt_got->size != 0 |
| && !bfd_is_abs_section (htab->plt_got->output_section)) |
| htab->plt_got_eh_frame->size |
| = htab->non_lazy_plt->eh_frame_plt_size; |
| |
| /* Unwind info for the second PLT and .plt.got sections are |
| identical. */ |
| if (htab->plt_second_eh_frame != NULL |
| && htab->plt_second != NULL |
| && htab->plt_second->size != 0 |
| && !bfd_is_abs_section (htab->plt_second->output_section)) |
| htab->plt_second_eh_frame->size |
| = htab->non_lazy_plt->eh_frame_plt_size; |
| } |
| |
| /* No need to size the .sframe section explicitly because the write-out |
| mechanism is different. Simply prep up the FDE/FRE for the |
| .plt section. */ |
| if (_bfd_elf_sframe_present (info)) |
| { |
| if (htab->plt_sframe != NULL |
| && htab->elf.splt != NULL |
| && htab->elf.splt->size != 0 |
| && !bfd_is_abs_section (htab->elf.splt->output_section)) |
| { |
| _bfd_x86_elf_create_sframe_plt (output_bfd, info, SFRAME_PLT); |
| /* FIXME - Dirty Hack. Set the size to something non-zero for now, |
| so that the section does not get stripped out below. The precise |
| size of this section is known only when the contents are |
| serialized in _bfd_x86_elf_write_sframe_plt. */ |
| htab->plt_sframe->size = sizeof (sframe_header) + 1; |
| } |
| |
| /* FIXME - generate for .got.plt ? */ |
| |
| /* Unwind info for the second PLT. */ |
| if (htab->plt_second_sframe != NULL |
| && htab->plt_second != NULL |
| && htab->plt_second->size != 0 |
| && !bfd_is_abs_section (htab->plt_second->output_section)) |
| { |
| _bfd_x86_elf_create_sframe_plt (output_bfd, info, |
| SFRAME_PLT_SEC); |
| /* FIXME - Dirty Hack. Set the size to something non-zero for now, |
| so that the section does not get stripped out below. The precise |
| size of this section is known only when the contents are |
| serialized in _bfd_x86_elf_write_sframe_plt. */ |
| htab->plt_second_sframe->size = sizeof (sframe_header) + 1; |
| } |
| } |
| |
| /* We now have determined the sizes of the various dynamic sections. |
| Allocate memory for them. */ |
| relocs = false; |
| for (s = dynobj->sections; s != NULL; s = s->next) |
| { |
| bool strip_section = true; |
| |
| if ((s->flags & SEC_LINKER_CREATED) == 0) |
| continue; |
| |
| /* The .relr.dyn section for compact relative relocation will |
| be filled later. */ |
| if (s == htab->elf.srelrdyn) |
| continue; |
| |
| if (s == htab->elf.splt |
| || s == htab->elf.sgot) |
| { |
| /* Strip this section if we don't need it; see the |
| comment below. */ |
| /* We'd like to strip these sections if they aren't needed, but if |
| we've exported dynamic symbols from them we must leave them. |
| It's too late to tell BFD to get rid of the symbols. */ |
| |
| if (htab->elf.hplt != NULL) |
| strip_section = false; |
| } |
| else if (s == htab->elf.sgotplt |
| || s == htab->elf.iplt |
| || s == htab->elf.igotplt |
| || s == htab->plt_second |
| || s == htab->plt_got |
| || s == htab->plt_eh_frame |
| || s == htab->plt_got_eh_frame |
| || s == htab->plt_second_eh_frame |
| || s == htab->plt_sframe |
| || s == htab->plt_second_sframe |
| || s == htab->elf.sdynbss |
| || s == htab->elf.sdynrelro) |
| { |
| /* Strip these too. */ |
| } |
| else if (htab->is_reloc_section (bfd_section_name (s))) |
| { |
| if (s->size != 0 |
| && s != htab->elf.srelplt |
| && s != htab->srelplt2) |
| relocs = true; |
| |
| /* We use the reloc_count field as a counter if we need |
| to copy relocs into the output file. */ |
| if (s != htab->elf.srelplt) |
| s->reloc_count = 0; |
| } |
| else |
| { |
| /* It's not one of our sections, so don't allocate space. */ |
| continue; |
| } |
| |
| if (s->size == 0) |
| { |
| /* If we don't need this section, strip it from the |
| output file. This is mostly to handle .rel.bss and |
| .rel.plt. We must create both sections in |
| create_dynamic_sections, because they must be created |
| before the linker maps input sections to output |
| sections. The linker does that before |
| adjust_dynamic_symbol is called, and it is that |
| function which decides whether anything needs to go |
| into these sections. */ |
| if (strip_section) |
| s->flags |= SEC_EXCLUDE; |
| continue; |
| } |
| |
| if ((s->flags & SEC_HAS_CONTENTS) == 0) |
| continue; |
| |
| /* Skip allocating contents for .sframe section as it is written |
| out differently. See below. */ |
| if ((s == htab->plt_sframe) || (s == htab->plt_second_sframe)) |
| continue; |
| |
| /* NB: Initially, the iplt section has minimal alignment to |
| avoid moving dot of the following section backwards when |
| it is empty. Update its section alignment now since it |
| is non-empty. */ |
| if (s == htab->elf.iplt) |
| bfd_set_section_alignment (s, htab->plt.iplt_alignment); |
| |
| /* Allocate memory for the section contents. We use bfd_zalloc |
| here in case unused entries are not reclaimed before the |
| section's contents are written out. This should not happen, |
| but this way if it does, we get a R_386_NONE or R_X86_64_NONE |
| reloc instead of garbage. */ |
| s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size); |
| if (s->contents == NULL) |
| return false; |
| } |
| |
| if (htab->plt_eh_frame != NULL |
| && htab->plt_eh_frame->contents != NULL) |
| { |
| memcpy (htab->plt_eh_frame->contents, |
| htab->plt.eh_frame_plt, |
| htab->plt_eh_frame->size); |
| bfd_put_32 (dynobj, htab->elf.splt->size, |
| htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET); |
| } |
| |
| if (htab->plt_got_eh_frame != NULL |
| && htab->plt_got_eh_frame->contents != NULL) |
| { |
| memcpy (htab->plt_got_eh_frame->contents, |
| htab->non_lazy_plt->eh_frame_plt, |
| htab->plt_got_eh_frame->size); |
| bfd_put_32 (dynobj, htab->plt_got->size, |
| (htab->plt_got_eh_frame->contents |
| + PLT_FDE_LEN_OFFSET)); |
| } |
| |
| if (htab->plt_second_eh_frame != NULL |
| && htab->plt_second_eh_frame->contents != NULL) |
| { |
| memcpy (htab->plt_second_eh_frame->contents, |
| htab->non_lazy_plt->eh_frame_plt, |
| htab->plt_second_eh_frame->size); |
| bfd_put_32 (dynobj, htab->plt_second->size, |
| (htab->plt_second_eh_frame->contents |
| + PLT_FDE_LEN_OFFSET)); |
| } |
| |
| if (_bfd_elf_sframe_present (info)) |
| { |
| if (htab->plt_sframe != NULL |
| && htab->elf.splt != NULL |
| && htab->elf.splt->size != 0 |
| && htab->plt_sframe->contents == NULL) |
| _bfd_x86_elf_write_sframe_plt (output_bfd, info, SFRAME_PLT); |
| |
| if (htab->plt_second_sframe != NULL |
| && htab->elf.splt != NULL |
| && htab->elf.splt->size != 0 |
| && htab->plt_second_sframe->contents == NULL) |
| _bfd_x86_elf_write_sframe_plt (output_bfd, info, SFRAME_PLT_SEC); |
| } |
| |
| return _bfd_elf_maybe_vxworks_add_dynamic_tags (output_bfd, info, |
| relocs); |
| } |
| |
| /* Finish up the x86 dynamic sections. */ |
| |
| struct elf_x86_link_hash_table * |
| _bfd_x86_elf_finish_dynamic_sections (bfd *output_bfd, |
| struct bfd_link_info *info) |
| { |
| struct elf_x86_link_hash_table *htab; |
| const struct elf_backend_data *bed; |
| bfd *dynobj; |
| asection *sdyn; |
| bfd_byte *dyncon, *dynconend; |
| bfd_size_type sizeof_dyn; |
| |
| bed = get_elf_backend_data (output_bfd); |
| htab = elf_x86_hash_table (info, bed->target_id); |
| if (htab == NULL) |
| return htab; |
| |
| dynobj = htab->elf.dynobj; |
| sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
| |
| /* GOT is always created in setup_gnu_properties. But it may not be |
| needed. .got.plt section may be needed for static IFUNC. */ |
| if (htab->elf.sgotplt && htab->elf.sgotplt->size > 0) |
| { |
| bfd_vma dynamic_addr; |
| |
| if (bfd_is_abs_section (htab->elf.sgotplt->output_section)) |
| { |
| _bfd_error_handler |
| (_("discarded output section: `%pA'"), htab->elf.sgotplt); |
| return NULL; |
| } |
| |
| elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize |
| = htab->got_entry_size; |
| |
| dynamic_addr = (sdyn == NULL |
| ? (bfd_vma) 0 |
| : sdyn->output_section->vma + sdyn->output_offset); |
| |
| /* Set the first entry in the global offset table to the address |
| of the dynamic section. Write GOT[1] and GOT[2], needed for |
| the dynamic linker. */ |
| if (htab->got_entry_size == 8) |
| { |
| bfd_put_64 (output_bfd, dynamic_addr, |
| htab->elf.sgotplt->contents); |
| bfd_put_64 (output_bfd, (bfd_vma) 0, |
| htab->elf.sgotplt->contents + 8); |
| bfd_put_64 (output_bfd, (bfd_vma) 0, |
| htab->elf.sgotplt->contents + 8*2); |
| } |
| else |
| { |
| bfd_put_32 (output_bfd, dynamic_addr, |
| htab->elf.sgotplt->contents); |
| bfd_put_32 (output_bfd, 0, |
| htab->elf.sgotplt->contents + 4); |
| bfd_put_32 (output_bfd, 0, |
| htab->elf.sgotplt->contents + 4*2); |
| } |
| } |
| |
| if (!htab->elf.dynamic_sections_created) |
| return htab; |
| |
| if (sdyn == NULL || htab->elf.sgot == NULL) |
| abort (); |
| |
| sizeof_dyn = bed->s->sizeof_dyn; |
| dyncon = sdyn->contents; |
| dynconend = sdyn->contents + sdyn->size; |
| for (; dyncon < dynconend; dyncon += sizeof_dyn) |
| { |
| Elf_Internal_Dyn dyn; |
| asection *s; |
| |
| (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn); |
| |
| switch (dyn.d_tag) |
| { |
| default: |
| if (htab->elf.target_os == is_vxworks |
| && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) |
| break; |
| continue; |
| |
| case DT_PLTGOT: |
| s = htab->elf.sgotplt; |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
| break; |
| |
| case DT_JMPREL: |
| dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma; |
| break; |
| |
| case DT_PLTRELSZ: |
| s = htab->elf.srelplt->output_section; |
| dyn.d_un.d_val = s->size; |
| break; |
| |
| case DT_TLSDESC_PLT: |
| s = htab->elf.splt; |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset |
| + htab->elf.tlsdesc_plt; |
| break; |
| |
| case DT_TLSDESC_GOT: |
| s = htab->elf.sgot; |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset |
| + htab->elf.tlsdesc_got; |
| break; |
| } |
| |
| (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon); |
| } |
| |
| if (htab->plt_got != NULL && htab->plt_got->size > 0) |
| elf_section_data (htab->plt_got->output_section) |
| ->this_hdr.sh_entsize = htab->non_lazy_plt->plt_entry_size; |
| |
| if (htab->plt_second != NULL && htab->plt_second->size > 0) |
| elf_section_data (htab->plt_second->output_section) |
| ->this_hdr.sh_entsize = htab->non_lazy_plt->plt_entry_size; |
| |
| /* Adjust .eh_frame for .plt section. */ |
| if (htab->plt_eh_frame != NULL |
| && htab->plt_eh_frame->contents != NULL) |
| { |
| if (htab->elf.splt != NULL |
| && htab->elf.splt->size != 0 |
| && (htab->elf.splt->flags & SEC_EXCLUDE) == 0 |
| && htab->elf.splt->output_section != NULL |
| && htab->plt_eh_frame->output_section != NULL) |
| { |
| bfd_vma plt_start = htab->elf.splt->output_section->vma; |
| bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma |
| + htab->plt_eh_frame->output_offset |
| + PLT_FDE_START_OFFSET; |
| bfd_put_signed_32 (dynobj, plt_start - eh_frame_start, |
| htab->plt_eh_frame->contents |
| + PLT_FDE_START_OFFSET); |
| } |
| |
| if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME) |
| { |
| if (! _bfd_elf_write_section_eh_frame (output_bfd, info, |
| htab->plt_eh_frame, |
| htab->plt_eh_frame->contents)) |
| return NULL; |
| } |
| } |
| |
| /* Adjust .eh_frame for .plt.got section. */ |
| if (htab->plt_got_eh_frame != NULL |
| && htab->plt_got_eh_frame->contents != NULL) |
| { |
| if (htab->plt_got != NULL |
| && htab->plt_got->size != 0 |
| && (htab->plt_got->flags & SEC_EXCLUDE) == 0 |
| && htab->plt_got->output_section != NULL |
| && htab->plt_got_eh_frame->output_section != NULL) |
| { |
| bfd_vma plt_start = htab->plt_got->output_section->vma; |
| bfd_vma eh_frame_start = htab->plt_got_eh_frame->output_section->vma |
| + htab->plt_got_eh_frame->output_offset |
| + PLT_FDE_START_OFFSET; |
| bfd_put_signed_32 (dynobj, plt_start - eh_frame_start, |
| htab->plt_got_eh_frame->contents |
| + PLT_FDE_START_OFFSET); |
| } |
| if (htab->plt_got_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME) |
| { |
| if (! _bfd_elf_write_section_eh_frame (output_bfd, info, |
| htab->plt_got_eh_frame, |
| htab->plt_got_eh_frame->contents)) |
| return NULL; |
| } |
| } |
| |
| /* Adjust .eh_frame for the second PLT section. */ |
| if (htab->plt_second_eh_frame != NULL |
| && htab->plt_second_eh_frame->contents != NULL) |
| { |
| if (htab->plt_second != NULL |
| && htab->plt_second->size != 0 |
| && (htab->plt_second->flags & SEC_EXCLUDE) == 0 |
| && htab->plt_second->output_section != NULL |
| && htab->plt_second_eh_frame->output_section != NULL) |
| { |
| bfd_vma plt_start = htab->plt_second->output_section->vma; |
| bfd_vma eh_frame_start |
| = (htab->plt_second_eh_frame->output_section->vma |
| + htab->plt_second_eh_frame->output_offset |
| + PLT_FDE_START_OFFSET); |
| bfd_put_signed_32 (dynobj, plt_start - eh_frame_start, |
| htab->plt_second_eh_frame->contents |
| + PLT_FDE_START_OFFSET); |
| } |
| if (htab->plt_second_eh_frame->sec_info_type |
| == SEC_INFO_TYPE_EH_FRAME) |
| { |
| if (! _bfd_elf_write_section_eh_frame (output_bfd, info, |
| htab->plt_second_eh_frame, |
| htab->plt_second_eh_frame->contents)) |
| return NULL; |
| } |
| } |
| |
| /* Make any adjustment if necessary and merge .sframe section to |
| create the final .sframe section for output_bfd. */ |
| if (htab->plt_sframe != NULL |
| && htab->plt_sframe->contents != NULL) |
| { |
| if (htab->elf.splt != NULL |
| && htab->elf.splt->size != 0 |
| && (htab->elf.splt->flags & SEC_EXCLUDE) == 0 |
| && htab->elf.splt->output_section != NULL |
| && htab->plt_sframe->output_section != NULL) |
| { |
| bfd_vma plt_start = htab->elf.splt->output_section->vma; |
| bfd_vma sframe_start = htab->plt_sframe->output_section->vma |
| + htab->plt_sframe->output_offset |
| + PLT_SFRAME_FDE_START_OFFSET; |
| #if 0 /* FIXME Testing only. Remove before review. */ |
| bfd_vma test_value = (plt_start - sframe_start) |
| + htab->plt_sframe->output_section->vma |
| + htab->plt_sframe->output_offset |
| + PLT_SFRAME_FDE_START_OFFSET; |
| bfd_put_signed_32 (dynobj, test_value, |
| #endif |
| bfd_put_signed_32 (dynobj, plt_start - sframe_start, |
| htab->plt_sframe->contents |
| + PLT_SFRAME_FDE_START_OFFSET); |
| } |
| if (htab->plt_sframe->sec_info_type == SEC_INFO_TYPE_SFRAME) |
| { |
| if (! _bfd_elf_merge_section_sframe (output_bfd, info, |
| htab->plt_sframe, |
| htab->plt_sframe->contents)) |
| return NULL; |
| } |
| } |
| |
| if (htab->plt_second_sframe != NULL |
| && htab->plt_second_sframe->contents != NULL) |
| { |
| if (htab->plt_second != NULL |
| && htab->plt_second->size != 0 |
| && (htab->plt_second->flags & SEC_EXCLUDE) == 0 |
| && htab->plt_second->output_section != NULL |
| && htab->plt_second_sframe->output_section != NULL) |
| { |
| bfd_vma plt_start = htab->plt_second->output_section->vma; |
| bfd_vma sframe_start |
| = (htab->plt_second_sframe->output_section->vma |
| + htab->plt_second_sframe->output_offset |
| + PLT_SFRAME_FDE_START_OFFSET); |
| #if 0 /* FIXME Testing only. Remove before review. */ |
| bfd_vma test_value = (plt_start - sframe_start) |
| + htab->plt_second_sframe->output_section->vma |
| + htab->plt_second_sframe->output_offset |
| + PLT_SFRAME_FDE_START_OFFSET; |
| bfd_put_signed_32 (dynobj, test_value, |
| #endif |
| bfd_put_signed_32 (dynobj, plt_start - sframe_start, |
| htab->plt_second_sframe->contents |
| + PLT_SFRAME_FDE_START_OFFSET); |
| } |
| if (htab->plt_second_sframe->sec_info_type == SEC_INFO_TYPE_SFRAME) |
| { |
| if (! _bfd_elf_merge_section_sframe (output_bfd, info, |
| htab->plt_second_sframe, |
| htab->plt_second_sframe->contents)) |
| return NULL; |
| } |
| } |
| if (htab->elf.sgot && htab->elf.sgot->size > 0) |
| elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize |
| = htab->got_entry_size; |
| |
| return htab; |
| } |
| |
| |
| bool |
| _bfd_x86_elf_always_size_sections (bfd *output_bfd, |
| struct bfd_link_info *info) |
| { |
| asection *tls_sec = elf_hash_table (info)->tls_sec; |
| |
| if (tls_sec && !bfd_link_relocatable (info)) |
| { |
| struct elf_link_hash_entry *tlsbase; |
| |
| tlsbase = elf_link_hash_lookup (elf_hash_table (info), |
| "_TLS_MODULE_BASE_", |
| false, false, false); |
| |
| if (tlsbase && tlsbase->type == STT_TLS) |
| { |
| struct elf_x86_link_hash_table *htab; |
| struct bfd_link_hash_entry *bh = NULL; |
| const struct elf_backend_data *bed |
| = get_elf_backend_data (output_bfd); |
| |
| htab = elf_x86_hash_table (info, bed->target_id); |
| if (htab == NULL) |
| return false; |
| |
| if (!(_bfd_generic_link_add_one_symbol |
| (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, |
| tls_sec, 0, NULL, false, |
| bed->collect, &bh))) |
| return false; |
| |
| htab->tls_module_base = bh; |
| |
| tlsbase = (struct elf_link_hash_entry *)bh; |
| tlsbase->def_regular = 1; |
| tlsbase->other = STV_HIDDEN; |
| tlsbase->root.linker_def = 1; |
| (*bed->elf_backend_hide_symbol) (info, tlsbase, true); |
| } |
| } |
| |
| return true; |
| } |
| |
| void |
| _bfd_x86_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, |
| unsigned int st_other, |
| bool definition, |
| bool dynamic ATTRIBUTE_UNUSED) |
| { |
| if (definition) |
| { |
| struct elf_x86_link_hash_entry *eh |
| = (struct elf_x86_link_hash_entry *) h; |
| eh->def_protected = ELF_ST_VISIBILITY (st_other) == STV_PROTECTED; |
| } |
| } |
| |
| /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
| |
| void |
| _bfd_x86_elf_copy_indirect_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *dir, |
| struct elf_link_hash_entry *ind) |
| { |
| struct elf_x86_link_hash_entry *edir, *eind; |
| |
| edir = (struct elf_x86_link_hash_entry *) dir; |
| eind = (struct elf_x86_link_hash_entry *) ind; |
| |
| if (ind->root.type == bfd_link_hash_indirect |
| && dir->got.refcount <= 0) |
| { |
| edir->tls_type = eind->tls_type; |
| eind->tls_type = GOT_UNKNOWN; |
| } |
| |
| /* Copy gotoff_ref so that elf_i386_adjust_dynamic_symbol will |
| generate a R_386_COPY reloc. */ |
| edir->gotoff_ref |= eind->gotoff_ref; |
| |
| edir->zero_undefweak |= eind->zero_undefweak; |
| |
| if (ELIMINATE_COPY_RELOCS |
| && ind->root.type != bfd_link_hash_indirect |
| && dir->dynamic_adjusted) |
| { |
| /* If called to transfer flags for a weakdef during processing |
| of elf_adjust_dynamic_symbol, don't copy non_got_ref. |
| We clear it ourselves for ELIMINATE_COPY_RELOCS. */ |
| if (dir->versioned != versioned_hidden) |
| dir->ref_dynamic |= ind->ref_dynamic; |
| dir->ref_regular |= ind->ref_regular; |
| dir->ref_regular_nonweak |= ind->ref_regular_nonweak; |
| dir->needs_plt |= ind->needs_plt; |
| dir->pointer_equality_needed |= ind->pointer_equality_needed; |
| } |
| else |
| _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
| } |
| |
| /* Remove undefined weak symbol from the dynamic symbol table if it |
| is resolved to 0. */ |
| |
| bool |
| _bfd_x86_elf_fixup_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| if (h->dynindx != -1 |
| && UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, elf_x86_hash_entry (h))) |
| { |
| h->dynindx = -1; |
| _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, |
| h->dynstr_index); |
| } |
| return true; |
| } |
| |
| /* Change the STT_GNU_IFUNC symbol defined in position-dependent |
| executable into the normal function symbol and set its address |
| to its PLT entry, which should be resolved by R_*_IRELATIVE at |
| run-time. */ |
| |
| void |
| _bfd_x86_elf_link_fixup_ifunc_symbol (struct bfd_link_info *info, |
| struct elf_x86_link_hash_table *htab, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| if (bfd_link_pde (info) |
| && h->def_regular |
| && h->dynindx != -1 |
| && h->plt.offset != (bfd_vma) -1 |
| && h->type == STT_GNU_IFUNC) |
| { |
| asection *plt_s; |
| bfd_vma plt_offset; |
| bfd *output_bfd = info->output_bfd; |
| |
| if (htab->plt_second) |
| { |
| struct elf_x86_link_hash_entry *eh |
| = (struct elf_x86_link_hash_entry *) h; |
| |
| plt_s = htab->plt_second; |
| plt_offset = eh->plt_second.offset; |
| } |
| else |
| { |
| plt_s = htab->elf.splt; |
| plt_offset = h->plt.offset; |
| } |
| |
| sym->st_size = 0; |
| sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC); |
| sym->st_shndx |
| = _bfd_elf_section_from_bfd_section (output_bfd, |
| plt_s->output_section); |
| sym->st_value = (plt_s->output_section->vma |
| + plt_s->output_offset + plt_offset); |
| } |
| } |
| |
| /* Report relative relocation. */ |
| |
| void |
| _bfd_x86_elf_link_report_relative_reloc |
| (struct bfd_link_info *info, asection *asect, |
| struct elf_link_hash_entry *h, Elf_Internal_Sym *sym, |
| const char *reloc_name, const void *reloc) |
| { |
| const char *name; |
| bfd *abfd; |
| const Elf_Internal_Rela *rel = (const Elf_Internal_Rela *) reloc; |
| |
| /* Use the output BFD for linker created sections. */ |
| if ((asect->flags & SEC_LINKER_CREATED) != 0) |
| abfd = info->output_bfd; |
| else |
| abfd = asect->owner; |
| |
| if (h != NULL && h->root.root.string != NULL) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (abfd, &elf_symtab_hdr (abfd), sym, NULL); |
| |
| if (asect->use_rela_p) |
| info->callbacks->einfo |
| (_("%pB: %s (offset: 0x%v, info: 0x%v, addend: 0x%v) against " |
| "'%s' " "for section '%pA' in %pB\n"), |
| info->output_bfd, reloc_name, rel->r_offset, rel->r_info, |
| rel->r_addend, name, asect, abfd); |
| else |
| info->callbacks->einfo |
| (_("%pB: %s (offset: 0x%v, info: 0x%v) against '%s' for section " |
| "'%pA' in %pB\n"), |
| info->output_bfd, reloc_name, rel->r_offset, rel->r_info, name, |
| asect, abfd); |
| } |
| |
| /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ |
| |
| bool |
| _bfd_x86_elf_hash_symbol (struct elf_link_hash_entry *h) |
| { |
| if (h->plt.offset != (bfd_vma) -1 |
| && !h->def_regular |
| && !h->pointer_equality_needed) |
| return false; |
| |
| return _bfd_elf_hash_symbol (h); |
| } |
| |
| /* Adjust a symbol defined by a dynamic object and referenced by a |
| regular object. The current definition is in some section of the |
| dynamic object, but we're not including those sections. We have to |
| change the definition to something the rest of the link can |
| understand. */ |
| |
| bool |
| _bfd_x86_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| struct elf_x86_link_hash_table *htab; |
| asection *s, *srel; |
| struct elf_x86_link_hash_entry *eh; |
| struct elf_dyn_relocs *p; |
| const struct elf_backend_data *bed |
| = get_elf_backend_data (info->output_bfd); |
| |
| eh = (struct elf_x86_link_hash_entry *) h; |
| |
| /* Clear GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS if it is turned |
| on by an input relocatable file and there is a non-GOT/non-PLT |
| reference from another relocatable file without it. |
| NB: There can be non-GOT reference in data sections in input with |
| GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS. */ |
| if (eh->non_got_ref_without_indirect_extern_access |
| && info->indirect_extern_access == 1 |
| && bfd_link_executable (info)) |
| { |
| unsigned int needed_1; |
| info->indirect_extern_access = 0; |
| /* Turn off nocopyreloc if implied by indirect_extern_access. */ |
| if (info->nocopyreloc == 2) |
| info->nocopyreloc = 0; |
| needed_1 = bfd_h_get_32 (info->output_bfd, info->needed_1_p); |
| needed_1 &= ~GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS; |
| bfd_h_put_32 (info->output_bfd, needed_1, info->needed_1_p); |
| } |
| |
| /* STT_GNU_IFUNC symbol must go through PLT. */ |
| if (h->type == STT_GNU_IFUNC) |
| { |
| /* All local STT_GNU_IFUNC references must be treate as local |
| calls via local PLT. */ |
| if (h->ref_regular |
| && SYMBOL_CALLS_LOCAL (info, h)) |
| { |
| bfd_size_type pc_count = 0, count = 0; |
| struct elf_dyn_relocs **pp; |
| |
| eh = (struct elf_x86_link_hash_entry *) h; |
| for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| pc_count += p->pc_count; |
| p->count -= p->pc_count; |
| p->pc_count = 0; |
| count += p->count; |
| if (p->count == 0) |
| *pp = p->next; |
| else |
| pp = &p->next; |
| } |
| |
| if (pc_count || count) |
| { |
| h->non_got_ref = 1; |
| if (pc_count) |
| { |
| /* Increment PLT reference count only for PC-relative |
| references. */ |
| h->needs_plt = 1; |
| if (h->plt.refcount <= 0) |
| h->plt.refcount = 1; |
| else |
| h->plt.refcount += 1; |
| } |
| } |
| |
| /* GOTOFF relocation needs PLT. */ |
| if (eh->gotoff_ref) |
| h->plt.refcount = 1; |
| } |
| |
| if (h->plt.refcount <= 0) |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| return true; |
| } |
| |
| /* If this is a function, put it in the procedure linkage table. We |
| will fill in the contents of the procedure linkage table later, |
| when we know the address of the .got section. */ |
| if (h->type == STT_FUNC |
| || h->needs_plt) |
| { |
| if (h->plt.refcount <= 0 |
| || SYMBOL_CALLS_LOCAL (info, h) |
| || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| && h->root.type == bfd_link_hash_undefweak)) |
| { |
| /* This case can occur if we saw a PLT32 reloc in an input |
| file, but the symbol was never referred to by a dynamic |
| object, or if all references were garbage collected. In |
| such a case, we don't actually need to build a procedure |
| linkage table, and we can just do a PC32 reloc instead. */ |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| |
| return true; |
| } |
| else |
| /* It's possible that we incorrectly decided a .plt reloc was needed |
| * for an R_386_PC32/R_X86_64_PC32 reloc to a non-function sym in |
| check_relocs. We can't decide accurately between function and |
| non-function syms in check-relocs; Objects loaded later in |
| the link may change h->type. So fix it now. */ |
| h->plt.offset = (bfd_vma) -1; |
| |
| /* If this is a weak symbol, and there is a real definition, the |
| processor independent code will have arranged for us to see the |
| real definition first, and we can just use the same value. */ |
| if (h->is_weakalias) |
| { |
| struct elf_link_hash_entry *def = weakdef (h); |
| BFD_ASSERT (def->root.type == bfd_link_hash_defined); |
| h->root.u.def.section = def->root.u.def.section; |
| h->root.u.def.value = def->root.u.def.value; |
| if (ELIMINATE_COPY_RELOCS |
| || info->nocopyreloc |
| || SYMBOL_NO_COPYRELOC (info, eh)) |
| { |
| /* NB: needs_copy is always 0 for i386. */ |
| h->non_got_ref = def->non_got_ref; |
| eh->needs_copy = def->needs_copy; |
| } |
| return true; |
| } |
| |
| /* This is a reference to a symbol defined by a dynamic object which |
| is not a function. */ |
| |
| /* If we are creating a shared library, we must presume that the |
| only references to the symbol are via the global offset table. |
| For such cases we need not do anything here; the relocations will |
| be handled correctly by relocate_section. */ |
| if (!bfd_link_executable (info)) |
| return true; |
| |
| /* If there are no references to this symbol that do not use the |
| GOT nor R_386_GOTOFF relocation, we don't need to generate a copy |
| reloc. NB: gotoff_ref is always 0 for x86-64. */ |
| if (!h->non_got_ref && !eh->gotoff_ref) |
| return true; |
| |
| /* If -z nocopyreloc was given, we won't generate them either. */ |
| if (info->nocopyreloc || SYMBOL_NO_COPYRELOC (info, eh)) |
| { |
| h->non_got_ref = 0; |
| return true; |
| } |
| |
| htab = elf_x86_hash_table (info, bed->target_id); |
| if (htab == NULL) |
| return false; |
| |
| /* If there aren't any dynamic relocs in read-only sections nor |
| R_386_GOTOFF relocation, then we can keep the dynamic relocs and |
| avoid the copy reloc. This doesn't work on VxWorks, where we can |
| not have dynamic relocations (other than copy and jump slot |
| relocations) in an executable. */ |
| if (ELIMINATE_COPY_RELOCS |
| && (bed->target_id == X86_64_ELF_DATA |
| || (!eh->gotoff_ref |
| && htab->elf.target_os != is_vxworks))) |
| { |
| /* If we don't find any dynamic relocs in read-only sections, |
| then we'll be keeping the dynamic relocs and avoiding the copy |
| reloc. */ |
| if (!_bfd_elf_readonly_dynrelocs (h)) |
| { |
| h->non_got_ref = 0; |
| return true; |
| } |
| } |
| |
| /* We must allocate the symbol in our .dynbss section, which will |
| become part of the .bss section of the executable. There will be |
| an entry for this symbol in the .dynsym section. The dynamic |
| object will contain position independent code, so all references |
| from the dynamic object to this symbol will go through the global |
| offset table. The dynamic linker will use the .dynsym entry to |
| determine the address it must put in the global offset table, so |
| both the dynamic object and the regular object will refer to the |
| same memory location for the variable. */ |
| |
| /* We must generate a R_386_COPY/R_X86_64_COPY reloc to tell the |
| dynamic linker to copy the initial value out of the dynamic object |
| and into the runtime process image. */ |
| if ((h->root.u.def.section->flags & SEC_READONLY) != 0) |
| { |
| s = htab->elf.sdynrelro; |
| srel = htab->elf.sreldynrelro; |
| } |
| else |
| { |
| s = htab->elf.sdynbss; |
| srel = htab->elf.srelbss; |
| } |
| if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) |
| { |
| if (eh->def_protected && bfd_link_executable (info)) |
| for (p = h->dyn_relocs; p != NULL; p = p->next) |
| { |
| /* Disallow copy relocation against non-copyable protected |
| symbol. */ |
| s = p->sec->output_section; |
| if (s != NULL && (s->flags & SEC_READONLY) != 0) |
| { |
| info->callbacks->einfo |
| /* xgettext:c-format */ |
| (_("%F%P: %pB: copy relocation against non-copyable " |
| "protected symbol `%s' in %pB\n"), |
| p->sec->owner, h->root.root.string, |
| h->root.u.def.section->owner); |
| return false; |
| } |
| } |
| |
| srel->size += htab->sizeof_reloc; |
| h->needs_copy = 1; |
| } |
| |
| return _bfd_elf_adjust_dynamic_copy (info, h, s); |
| } |
| |
| void |
| _bfd_x86_elf_hide_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h, |
| bool force_local) |
| { |
| if (h->root.type == bfd_link_hash_undefweak |
| && info->nointerp |
| && bfd_link_pie (info)) |
| { |
| /* When there is no dynamic interpreter in PIE, make the undefined |
| weak symbol dynamic so that PC relative branch to the undefined |
| weak symbol will land to address 0. */ |
| struct elf_x86_link_hash_entry *eh = elf_x86_hash_entry (h); |
| if (h->plt.refcount > 0 |
| || eh->plt_got.refcount > 0) |
| return; |
| } |
| |
| _bfd_elf_link_hash_hide_symbol (info, h, force_local); |
| } |
| |
| /* Return TRUE if a symbol is referenced locally. It is similar to |
| SYMBOL_REFERENCES_LOCAL, but it also checks version script. It |
| works in check_relocs. */ |
| |
| bool |
| _bfd_x86_elf_link_symbol_references_local (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| struct elf_x86_link_hash_entry *eh = elf_x86_hash_entry (h); |
| struct elf_x86_link_hash_table *htab |
| = (struct elf_x86_link_hash_table *) info->hash; |
| |
| if (eh->local_ref > 1) |
| return true; |
| |
| if (eh->local_ref == 1) |
| return false; |
| |
| /* Unversioned symbols defined in regular objects can be forced local |
| by linker version script. A weak undefined symbol is forced local |
| if |
| 1. It has non-default visibility. Or |
| 2. When building executable, there is no dynamic linker. Or |
| 3. or "-z nodynamic-undefined-weak" is used. |
| */ |
| if (_bfd_elf_symbol_refs_local_p (h, info, 1) |
| || (h->root.type == bfd_link_hash_undefweak |
| && (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| || (bfd_link_executable (info) |
| && htab->interp == NULL) |
| || info->dynamic_undefined_weak == 0)) |
| || ((h->def_regular || ELF_COMMON_DEF_P (h)) |
| && info->version_info != NULL |
| && _bfd_elf_link_hide_sym_by_version (info, h))) |
| { |
| eh->local_ref = 2; |
| return true; |
| } |
| |
| eh->local_ref = 1; |
| return false; |
| } |
| |
| /* Return the section that should be marked against GC for a given |
| relocation. */ |
| |
| asection * |
| _bfd_x86_elf_gc_mark_hook (asection *sec, |
| struct bfd_link_info *info, |
| Elf_Internal_Rela *rel, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| /* Compiler should optimize this out. */ |
| if (((unsigned int) R_X86_64_GNU_VTINHERIT |
| != (unsigned int) R_386_GNU_VTINHERIT) |
| || ((unsigned int) R_X86_64_GNU_VTENTRY |
| != (unsigned int) R_386_GNU_VTENTRY)) |
| abort (); |
| |
| if (h != NULL) |
| switch (ELF32_R_TYPE (rel->r_info)) |
| { |
| case R_X86_64_GNU_VTINHERIT: |
| case R_X86_64_GNU_VTENTRY: |
| return NULL; |
| } |
| |
| return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
| } |
| |
| static bfd_vma |
| elf_i386_get_plt_got_vma (struct elf_x86_plt *plt_p ATTRIBUTE_UNUSED, |
| bfd_vma off, |
| bfd_vma offset ATTRIBUTE_UNUSED, |
| bfd_vma got_addr) |
| { |
| return got_addr + off; |
| } |
| |
| static bfd_vma |
| elf_x86_64_get_plt_got_vma (struct elf_x86_plt *plt_p, |
| bfd_vma off, |
| bfd_vma offset, |
| bfd_vma got_addr ATTRIBUTE_UNUSED) |
| { |
| return plt_p->sec->vma + offset + off + plt_p->plt_got_insn_size; |
| } |
| |
| static bool |
| elf_i386_valid_plt_reloc_p (unsigned int type) |
| { |
| return (type == R_386_JUMP_SLOT |
| || type == R_386_GLOB_DAT |
| || type == R_386_IRELATIVE); |
| } |
| |
| static bool |
| elf_x86_64_valid_plt_reloc_p (unsigned int type) |
| { |
| return (type == R_X86_64_JUMP_SLOT |
| || type == R_X86_64_GLOB_DAT |
| || type == R_X86_64_IRELATIVE); |
| } |
| |
| long |
| _bfd_x86_elf_get_synthetic_symtab (bfd *abfd, |
| long count, |
| long relsize, |
| bfd_vma got_addr, |
| struct elf_x86_plt plts[], |
| asymbol **dynsyms, |
| asymbol **ret) |
| { |
| long size, i, n, len; |
| int j; |
| unsigned int plt_got_offset, plt_entry_size; |
| asymbol *s; |
| bfd_byte *plt_contents; |
| long dynrelcount; |
| arelent **dynrelbuf, *p; |
| char *names; |
| const struct elf_backend_data *bed; |
| bfd_vma (*get_plt_got_vma) (struct elf_x86_plt *, bfd_vma, bfd_vma, |
| bfd_vma); |
| bool (*valid_plt_reloc_p) (unsigned int); |
| |
| dynrelbuf = NULL; |
| if (count == 0) |
| goto bad_return; |
| |
| dynrelbuf = (arelent **) bfd_malloc (relsize); |
| if (dynrelbuf == NULL) |
| goto bad_return; |
| |
| dynrelcount = bfd_canonicalize_dynamic_reloc (abfd, dynrelbuf, |
| dynsyms); |
| if (dynrelcount <= 0) |
| goto bad_return; |
| |
| /* Sort the relocs by address. */ |
| qsort (dynrelbuf, dynrelcount, sizeof (arelent *), |
| _bfd_x86_elf_compare_relocs); |
| |
| size = count * sizeof (asymbol); |
| |
| /* Allocate space for @plt suffixes. */ |
| n = 0; |
| for (i = 0; i < dynrelcount; i++) |
| { |
| p = dynrelbuf[i]; |
| size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt"); |
| if (p->addend != 0) |
| size += sizeof ("+0x") - 1 + 8 + 8 * ABI_64_P (abfd); |
| } |
| |
| s = *ret = (asymbol *) bfd_zmalloc (size); |
| if (s == NULL) |
| goto bad_return; |
| |
| bed = get_elf_backend_data (abfd); |
| |
| if (bed->target_id == X86_64_ELF_DATA) |
| { |
| get_plt_got_vma = elf_x86_64_get_plt_got_vma; |
| valid_plt_reloc_p = elf_x86_64_valid_plt_reloc_p; |
| } |
| else |
| { |
| get_plt_got_vma = elf_i386_get_plt_got_vma; |
| valid_plt_reloc_p = elf_i386_valid_plt_reloc_p; |
| if (got_addr) |
| { |
| /* Check .got.plt and then .got to get the _GLOBAL_OFFSET_TABLE_ |
| address. */ |
| asection *sec = bfd_get_section_by_name (abfd, ".got.plt"); |
| if (sec != NULL) |
| got_addr = sec->vma; |
| else |
| { |
| sec = bfd_get_section_by_name (abfd, ".got"); |
| if (sec != NULL) |
| got_addr = sec->vma; |
| } |
| |
| if (got_addr == (bfd_vma) -1) |
| goto bad_return; |
| } |
| } |
| |
| /* Check for each PLT section. */ |
| names = (char *) (s + count); |
| size = 0; |
| n = 0; |
| for (j = 0; plts[j].name != NULL; j++) |
| if ((plt_contents = plts[j].contents) != NULL) |
| { |
| long k; |
| bfd_vma offset; |
| asection *plt; |
| struct elf_x86_plt *plt_p = &plts[j]; |
| |
| plt_got_offset = plt_p->plt_got_offset; |
| plt_entry_size = plt_p->plt_entry_size; |
| |
| plt = plt_p->sec; |
| |
| if ((plt_p->type & plt_lazy)) |
| { |
| /* Skip PLT0 in lazy PLT. */ |
| k = 1; |
| offset = plt_entry_size; |
| } |
| else |
| { |
| k = 0; |
| offset = 0; |
| } |
| |
| /* Check each PLT entry against dynamic relocations. */ |
| for (; k < plt_p->count; k++) |
| { |
| int off; |
| bfd_vma got_vma; |
| long min, max, mid; |
| |
| /* Get the GOT offset for i386 or the PC-relative offset |
| for x86-64, a signed 32-bit integer. */ |
| off = H_GET_32 (abfd, (plt_contents + offset |
| + plt_got_offset)); |
| got_vma = get_plt_got_vma (plt_p, off, offset, got_addr); |
| |
| /* Binary search. */ |
| p = dynrelbuf[0]; |
| min = 0; |
| max = dynrelcount; |
| while ((min + 1) < max) |
| { |
| arelent *r; |
| |
| mid = (min + max) / 2; |
| r = dynrelbuf[mid]; |
| if (got_vma > r->address) |
| min = mid; |
| else if (got_vma < r->address) |
| max = mid; |
| else |
| { |
| p = r; |
| break; |
| } |
| } |
| |
| /* Skip unknown relocation. PR 17512: file: bc9d6cf5. */ |
| if (got_vma == p->address |
| && p->howto != NULL |
| && valid_plt_reloc_p (p->howto->type)) |
| { |
| *s = **p->sym_ptr_ptr; |
| /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL |
| set. Since we are defining a symbol, ensure one |
| of them is set. */ |
| if ((s->flags & BSF_LOCAL) == 0) |
| s->flags |= BSF_GLOBAL; |
| s->flags |= BSF_SYNTHETIC; |
| /* This is no longer a section symbol. */ |
| s->flags &= ~BSF_SECTION_SYM; |
| s->section = plt; |
| s->the_bfd = plt->owner; |
| s->value = offset; |
| s->udata.p = NULL; |
| s->name = names; |
| len = strlen ((*p->sym_ptr_ptr)->name); |
| memcpy (names, (*p->sym_ptr_ptr)->name, len); |
| names += len; |
| if (p->addend != 0) |
| { |
| char buf[30], *a; |
| |
| memcpy (names, "+0x", sizeof ("+0x") - 1); |
| names += sizeof ("+0x") - 1; |
| bfd_sprintf_vma (abfd, buf, p->addend); |
| for (a = buf; *a == '0'; ++a) |
| ; |
| size = strlen (a); |
| memcpy (names, a, size); |
| names += size; |
| } |
| memcpy (names, "@plt", sizeof ("@plt")); |
| names += sizeof ("@plt"); |
| n++; |
| s++; |
| /* There should be only one entry in PLT for a given |
| symbol. Set howto to NULL after processing a PLT |
| entry to guard against corrupted PLT. */ |
| p->howto = NULL; |
| } |
| offset += plt_entry_size; |
| } |
| } |
| |
| /* PLT entries with R_386_TLS_DESC relocations are skipped. */ |
| if (n == 0) |
| { |
| bad_return: |
| count = -1; |
| } |
| else |
| count = n; |
| |
| for (j = 0; plts[j].name != NULL; j++) |
| free (plts[j].contents); |
| |
| free (dynrelbuf); |
| |
| return count; |
| } |
| |
| /* Parse x86 GNU properties. */ |
| |
| enum elf_property_kind |
| _bfd_x86_elf_parse_gnu_properties (bfd *abfd, unsigned int type, |
| bfd_byte *ptr, unsigned int datasz) |
| { |
| elf_property *prop; |
| |
| if (type == GNU_PROPERTY_X86_COMPAT_ISA_1_USED |
| || type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED |
| || (type >= GNU_PROPERTY_X86_UINT32_AND_LO |
| && type <= GNU_PROPERTY_X86_UINT32_AND_HI) |
| || (type >= GNU_PROPERTY_X86_UINT32_OR_LO |
| && type <= GNU_PROPERTY_X86_UINT32_OR_HI) |
| || (type >= GNU_PROPERTY_X86_UINT32_OR_AND_LO |
| && type <= GNU_PROPERTY_X86_UINT32_OR_AND_HI)) |
| { |
| if (datasz != 4) |
| { |
| _bfd_error_handler |
| (_("error: %pB: <corrupt x86 property (0x%x) size: 0x%x>"), |
| abfd, type, datasz); |
| return property_corrupt; |
| } |
| prop = _bfd_elf_get_property (abfd, type, datasz); |
| prop->u.number |= bfd_h_get_32 (abfd, ptr); |
| prop->pr_kind = property_number; |
| return property_number; |
| } |
| |
| return property_ignored; |
| } |
| |
| /* Merge x86 GNU property BPROP with APROP. If APROP isn't NULL, |
| return TRUE if APROP is updated. Otherwise, return TRUE if BPROP |
| should be merged with ABFD. */ |
| |
| bool |
| _bfd_x86_elf_merge_gnu_properties (struct bfd_link_info *info, |
| bfd *abfd ATTRIBUTE_UNUSED, |
| bfd *bbfd ATTRIBUTE_UNUSED, |
| elf_property *aprop, |
| elf_property *bprop) |
| { |
| unsigned int number, features; |
| bool updated = false; |
| const struct elf_backend_data *bed; |
| struct elf_x86_link_hash_table *htab; |
| unsigned int pr_type = aprop != NULL ? aprop->pr_type : bprop->pr_type; |
| |
| if (pr_type == GNU_PROPERTY_X86_COMPAT_ISA_1_USED |
| || (pr_type >= GNU_PROPERTY_X86_UINT32_OR_AND_LO |
| && pr_type <= GNU_PROPERTY_X86_UINT32_OR_AND_HI)) |
| { |
| if (aprop == NULL || bprop == NULL) |
| { |
| /* Only one of APROP and BPROP can be NULL. */ |
| if (aprop != NULL) |
| { |
| /* Remove this property since the other input file doesn't |
| have it. */ |
| aprop->pr_kind = property_remove; |
| updated = true; |
| } |
| } |
| else |
| { |
| number = aprop->u.number; |
| aprop->u.number = number | bprop->u.number; |
| updated = number != (unsigned int) aprop->u.number; |
| } |
| return updated; |
| } |
| else if (pr_type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED |
| || (pr_type >= GNU_PROPERTY_X86_UINT32_OR_LO |
| && pr_type <= GNU_PROPERTY_X86_UINT32_OR_HI)) |
| { |
| features = 0; |
| if (pr_type == GNU_PROPERTY_X86_ISA_1_NEEDED) |
| { |
| bed = get_elf_backend_data (info->output_bfd); |
| htab = elf_x86_hash_table (info, bed->target_id); |
| switch (htab->params->isa_level) |
| { |
| case 0: |
| break; |
| case 2: |
| features = GNU_PROPERTY_X86_ISA_1_V2; |
| break; |
| case 3: |
| features = GNU_PROPERTY_X86_ISA_1_V3; |
| break; |
| case 4: |
| features = GNU_PROPERTY_X86_ISA_1_V4; |
| break; |
| default: |
| abort (); |
| } |
| } |
| if (aprop != NULL && bprop != NULL) |
| { |
| number = aprop->u.number; |
| aprop->u.number = number | bprop->u.number | features; |
| /* Remove the property if all bits are empty. */ |
| if (aprop->u.number == 0) |
| { |
| aprop->pr_kind = property_remove; |
| updated = true; |
| } |
| else |
| updated = number != (unsigned int) aprop->u.number; |
| } |
| else |
| { |
| /* Only one of APROP and BPROP can be NULL. */ |
| if (aprop != NULL) |
| { |
| aprop->u.number |= features; |
| if (aprop->u.number == 0) |
| { |
| /* Remove APROP if all bits are empty. */ |
| aprop->pr_kind = property_remove; |
| updated = true; |
| } |
| } |
| else |
| { |
| /* Return TRUE if APROP is NULL and all bits of BPROP |
| aren't empty to indicate that BPROP should be added |
| to ABFD. */ |
| bprop->u.number |= features; |
| updated = bprop->u.number != 0; |
| } |
| } |
| return updated; |
| } |
| else if (pr_type >= GNU_PROPERTY_X86_UINT32_AND_LO |
| && pr_type <= GNU_PROPERTY_X86_UINT32_AND_HI) |
| { |
| /* Only one of APROP and BPROP can be NULL: |
| 1. APROP & BPROP when both APROP and BPROP aren't NULL. |
| 2. If APROP is NULL, remove x86 feature. |
| 3. Otherwise, do nothing. |
| */ |
| bed = get_elf_backend_data (info->output_bfd); |
| htab = elf_x86_hash_table (info, bed->target_id); |
| if (!htab) |
| abort (); |
| if (aprop != NULL && bprop != NULL) |
| { |
| number = aprop->u.number; |
| aprop->u.number = number & bprop->u.number; |
| if (pr_type == GNU_PROPERTY_X86_FEATURE_1_AND) |
| { |
| features = 0; |
| if (htab->params->ibt) |
| features = GNU_PROPERTY_X86_FEATURE_1_IBT; |
| if (htab->params->shstk) |
| features |= GNU_PROPERTY_X86_FEATURE_1_SHSTK; |
| if (htab->params->lam_u48) |
| features |= (GNU_PROPERTY_X86_FEATURE_1_LAM_U48 |
| | GNU_PROPERTY_X86_FEATURE_1_LAM_U57); |
| else if (htab->params->lam_u57) |
| features |= GNU_PROPERTY_X86_FEATURE_1_LAM_U57; |
| /* Add GNU_PROPERTY_X86_FEATURE_1_IBT, |
| GNU_PROPERTY_X86_FEATURE_1_SHSTK, |
| GNU_PROPERTY_X86_FEATURE_1_LAM_U48 and |
| GNU_PROPERTY_X86_FEATURE_1_LAM_U57. */ |
| aprop->u.number |= features; |
| } |
| updated = number != (unsigned int) aprop->u.number; |
| /* Remove the property if all feature bits are cleared. */ |
| if (aprop->u.number == 0) |
| aprop->pr_kind = property_remove; |
| } |
| else |
| { |
| /* There should be no AND properties since some input doesn't |
| have them. Set IBT and SHSTK properties for -z ibt and -z |
| shstk if needed. */ |
| features = 0; |
| if (pr_type == GNU_PROPERTY_X86_FEATURE_1_AND) |
| { |
| if (htab->params->ibt) |
| features = GNU_PROPERTY_X86_FEATURE_1_IBT; |
| if (htab->params->shstk) |
| features |= GNU_PROPERTY_X86_FEATURE_1_SHSTK; |
| if (htab->params->lam_u48) |
| features |= (GNU_PROPERTY_X86_FEATURE_1_LAM_U48 |
| | GNU_PROPERTY_X86_FEATURE_1_LAM_U57); |
| else if (htab->params->lam_u57) |
| features |= GNU_PROPERTY_X86_FEATURE_1_LAM_U57; |
| } |
| if (features) |
| { |
| if (aprop != NULL) |
| { |
| updated = features != (unsigned int) aprop->u.number; |
| aprop->u.number = features; |
| } |
| else |
| { |
| updated = true; |
| bprop->u.number = features; |
| } |
| } |
| else if (aprop != NULL) |
| { |
| aprop->pr_kind = property_remove; |
| updated = true; |
| } |
| } |
| return updated; |
| } |
| else |
| { |
| /* Never should happen. */ |
| abort (); |
| } |
| |
| return updated; |
| } |
| |
| /* Set up x86 GNU properties. Return the first relocatable ELF input |
| with GNU properties if found. Otherwise, return NULL. */ |
| |
| bfd * |
| _bfd_x86_elf_link_setup_gnu_properties |
| (struct bfd_link_info *info, struct elf_x86_init_table *init_table) |
| { |
| bool normal_target; |
| bool lazy_plt; |
| asection *sec, *pltsec; |
| bfd *dynobj; |
| bool use_ibt_plt; |
| unsigned int plt_alignment, features, isa_level; |
| struct elf_x86_link_hash_table *htab; |
| bfd *pbfd; |
| bfd *ebfd = NULL; |
| elf_property *prop; |
| const struct elf_backend_data *bed; |
| unsigned int class_align = ABI_64_P (info->output_bfd) ? 3 : 2; |
| unsigned int got_align; |
| |
| /* Find a normal input file with GNU property note. */ |
| for (pbfd = info->input_bfds; |
| pbfd != NULL; |
| pbfd = pbfd->link.next) |
| if (bfd_get_flavour (pbfd) == bfd_target_elf_flavour |
| && bfd_count_sections (pbfd) != 0) |
| { |
| ebfd = pbfd; |
| |
| if (elf_properties (pbfd) != NULL) |
| break; |
| } |
| |
| bed = get_elf_backend_data (info->output_bfd); |
| |
| htab = elf_x86_hash_table (info, bed->target_id); |
| if (htab == NULL) |
| return pbfd; |
| |
| features = 0; |
| if (htab->params->ibt) |
| { |
| features = GNU_PROPERTY_X86_FEATURE_1_IBT; |
| htab->params->cet_report &= ~prop_report_ibt; |
| } |
| if (htab->params->shstk) |
| { |
| features |= GNU_PROPERTY_X86_FEATURE_1_SHSTK; |
| htab->params->cet_report &= ~prop_report_shstk; |
| } |
| if (!(htab->params->cet_report & (prop_report_ibt | prop_report_shstk))) |
| htab->params->cet_report = prop_report_none; |
| if (htab->params->lam_u48) |
| { |
| features |= (GNU_PROPERTY_X86_FEATURE_1_LAM_U48 |
| | GNU_PROPERTY_X86_FEATURE_1_LAM_U57); |
| htab->params->lam_u48_report = prop_report_none; |
| htab->params->lam_u57_report = prop_report_none; |
| } |
| else if (htab->params->lam_u57) |
| { |
| features |= GNU_PROPERTY_X86_FEATURE_1_LAM_U57; |
| htab->params->lam_u57_report = prop_report_none; |
| } |
| |
| switch (htab->params->isa_level) |
| { |
| case 0: |
| isa_level = 0; |
| break; |
| case 1: |
| isa_level = GNU_PROPERTY_X86_ISA_1_BASELINE; |
| break; |
| case 2: |
| isa_level = GNU_PROPERTY_X86_ISA_1_V2; |
| break; |
| case 3: |
| isa_level = GNU_PROPERTY_X86_ISA_1_V3; |
| break; |
| case 4: |
| isa_level = GNU_PROPERTY_X86_ISA_1_V4; |
| break; |
| default: |
| abort (); |
| } |
| |
| if (ebfd != NULL) |
| { |
| prop = NULL; |
| if (features) |
| { |
| /* If features is set, add GNU_PROPERTY_X86_FEATURE_1_IBT, |
| GNU_PROPERTY_X86_FEATURE_1_SHSTK, |
| GNU_PROPERTY_X86_FEATURE_1_LAM_U48 and |
| GNU_PROPERTY_X86_FEATURE_1_LAM_U57. */ |
| prop = _bfd_elf_get_property (ebfd, |
| GNU_PROPERTY_X86_FEATURE_1_AND, |
| 4); |
| prop->u.number |= features; |
| prop->pr_kind = property_number; |
| } |
| |
| if (isa_level) |
| { |
| /* If ISA level is set, add GNU_PROPERTY_X86_ISA_1_NEEDED. */ |
| prop = _bfd_elf_get_property (ebfd, |
| GNU_PROPERTY_X86_ISA_1_NEEDED, |
| 4); |
| prop->u.number |= isa_level; |
| prop->pr_kind = property_number; |
| } |
| |
| /* Create the GNU property note section if needed. */ |
| if (prop != NULL && pbfd == NULL) |
| { |
| sec = bfd_make_section_with_flags (ebfd, |
| NOTE_GNU_PROPERTY_SECTION_NAME, |
| (SEC_ALLOC |
| | SEC_LOAD |
| | SEC_IN_MEMORY |
| | SEC_READONLY |
| | SEC_HAS_CONTENTS |
| | SEC_DATA)); |
| if (sec == NULL) |
| info->callbacks->einfo (_("%F%P: failed to create GNU property section\n")); |
| |
| if (!bfd_set_section_alignment (sec, class_align)) |
| { |
| error_alignment: |
| info->callbacks->einfo (_("%F%pA: failed to align section\n"), |
| sec); |
| } |
| |
| elf_section_type (sec) = SHT_NOTE; |
| } |
| } |
| |
| if (htab->params->cet_report |
| || htab->params->lam_u48_report |
| || htab->params->lam_u57_report) |
| { |
| /* Report missing IBT, SHSTK and LAM properties. */ |
| bfd *abfd; |
| const char *warning_msg = _("%P: %pB: warning: missing %s\n"); |
| const char *error_msg = _("%X%P: %pB: error: missing %s\n"); |
| const char *cet_msg = NULL; |
| const char *lam_u48_msg = NULL; |
| const char *lam_u57_msg = NULL; |
| const char *missing; |
| elf_property_list *p; |
| bool missing_ibt, missing_shstk; |
| bool missing_lam_u48, missing_lam_u57; |
| bool check_ibt |
| = (htab->params->cet_report |
| && (htab->params->cet_report & prop_report_ibt)); |
| bool check_shstk |
| = (htab->params->cet_report |
| && (htab->params->cet_report & prop_report_shstk)); |
| |
| if (htab->params->cet_report) |
| { |
| if ((htab->params->cet_report & prop_report_warning)) |
| cet_msg = warning_msg; |
| else |
| cet_msg = error_msg; |
| } |
| if (htab->params->lam_u48_report) |
| { |
| if ((htab->params->lam_u48_report & prop_report_warning)) |
| lam_u48_msg = warning_msg; |
| else |
| lam_u48_msg = error_msg; |
| } |
| if (htab->params->lam_u57_report) |
| { |
| if ((htab->params->lam_u57_report & prop_report_warning)) |
| lam_u57_msg = warning_msg; |
| else |
| lam_u57_msg = error_msg; |
| } |
| |
| for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
| if (!(abfd->flags & (DYNAMIC | BFD_PLUGIN | BFD_LINKER_CREATED)) |
| && bfd_get_flavour (abfd) == bfd_target_elf_flavour) |
| { |
| for (p = elf_properties (abfd); p; p = p->next) |
| if (p->property.pr_type == GNU_PROPERTY_X86_FEATURE_1_AND) |
| break; |
| |
| missing_ibt = check_ibt; |
| missing_shstk = check_shstk; |
| missing_lam_u48 = !!lam_u48_msg; |
| missing_lam_u57 = !!lam_u57_msg; |
| if (p) |
| { |
| missing_ibt &= !(p->property.u.number |
| & GNU_PROPERTY_X86_FEATURE_1_IBT); |
| missing_shstk &= !(p->property.u.number |
| & GNU_PROPERTY_X86_FEATURE_1_SHSTK); |
| missing_lam_u48 &= !(p->property.u.number |
| & GNU_PROPERTY_X86_FEATURE_1_LAM_U48); |
| missing_lam_u57 &= !(p->property.u.number |
| & GNU_PROPERTY_X86_FEATURE_1_LAM_U57); |
| } |
| if (missing_ibt || missing_shstk) |
| { |
| if (missing_ibt && missing_shstk) |
| missing = _("IBT and SHSTK properties"); |
| else if (missing_ibt) |
| missing = _("IBT property"); |
| else |
| missing = _("SHSTK property"); |
| info->callbacks->einfo (cet_msg, abfd, missing); |
| } |
| if (missing_lam_u48) |
| { |
| missing = _("LAM_U48 property"); |
| info->callbacks->einfo (lam_u48_msg, abfd, missing); |
| } |
| if (missing_lam_u57) |
| { |
| missing = _("LAM_U57 property"); |
| info->callbacks->einfo (lam_u57_msg, abfd, missing); |
| } |
| } |
| } |
| |
| pbfd = _bfd_elf_link_setup_gnu_properties (info); |
| |
| htab->r_info = init_table->r_info; |
| htab->r_sym = init_table->r_sym; |
| |
| if (bfd_link_relocatable (info)) |
| return pbfd; |
| |
| htab->plt0_pad_byte = init_table->plt0_pad_byte; |
| |
| use_ibt_plt = htab->params->ibtplt || htab->params->ibt; |
| if (!use_ibt_plt && pbfd != NULL) |
| { |
| /* Check if GNU_PROPERTY_X86_FEATURE_1_IBT is on. */ |
| elf_property_list *p; |
| |
| /* The property list is sorted in order of type. */ |
| for (p = elf_properties (pbfd); p; p = p->next) |
| { |
| if (GNU_PROPERTY_X86_FEATURE_1_AND == p->property.pr_type) |
| { |
| use_ibt_plt = !!(p->property.u.number |
| & GNU_PROPERTY_X86_FEATURE_1_IBT); |
| break; |
| } |
| else if (GNU_PROPERTY_X86_FEATURE_1_AND < p->property.pr_type) |
| break; |
| } |
| } |
| |
| dynobj = htab->elf.dynobj; |
| |
| /* Set htab->elf.dynobj here so that there is no need to check and |
| set it in check_relocs. */ |
| if (dynobj == NULL) |
| { |
| if (pbfd != NULL) |
| { |
| htab->elf.dynobj = pbfd; |
| dynobj = pbfd; |
| } |
| else |
| { |
| bfd *abfd; |
| |
| /* Find a normal input file to hold linker created |
| sections. */ |
| for (abfd = info->input_bfds; |
| abfd != NULL; |
| abfd = abfd->link.next) |
| if (bfd_get_flavour (abfd) == bfd_target_elf_flavour |
| && (abfd->flags |
| & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0 |
| && bed->relocs_compatible (abfd->xvec, |
| info->output_bfd->xvec)) |
| { |
| htab->elf.dynobj = abfd; |
| dynobj = abfd; |
| break; |
| } |
| } |
| } |
| |
| /* Return if there are no normal input files. */ |
| if (dynobj == NULL) |
| return pbfd; |
| |
| /* Even when lazy binding is disabled by "-z now", the PLT0 entry may |
| still be used with LD_AUDIT or LD_PROFILE if PLT entry is used for |
| canonical function address. */ |
| htab->plt.has_plt0 = 1; |
| normal_target = htab->elf.target_os == is_normal; |
| |
| if (normal_target) |
| { |
| if (use_ibt_plt) |
| { |
| htab->lazy_plt = init_table->lazy_ibt_plt; |
| htab->non_lazy_plt = init_table->non_lazy_ibt_plt; |
| } |
| else |
| { |
| htab->lazy_plt = init_table->lazy_plt; |
| htab->non_lazy_plt = init_table->non_lazy_plt; |
| } |
| } |
| else |
| { |
| htab->lazy_plt = init_table->lazy_plt; |
| htab->non_lazy_plt = NULL; |
| } |
| |
| pltsec = htab->elf.splt; |
| |
| if (htab->non_lazy_plt != NULL |
| && (!htab->plt.has_plt0 || pltsec == NULL)) |
| lazy_plt = false; |
| else |
| lazy_plt = true; |
| |
| if (normal_target) |
| { |
| if (use_ibt_plt) |
| { |
| if (lazy_plt) |
| htab->sframe_plt = init_table->sframe_lazy_ibt_plt; |
| else |
| htab->sframe_plt = init_table->sframe_non_lazy_ibt_plt; |
| } |
| else |
| { |
| if (lazy_plt) |
| htab->sframe_plt = init_table->sframe_lazy_plt; |
| else |
| htab->sframe_plt = init_table->sframe_non_lazy_plt; |
| } |
| } |
| else |
| htab->sframe_plt = NULL; |
| |
| /* If the non-lazy PLT is available, use it for all PLT entries if |
| there are no PLT0 or no .plt section. */ |
| if (!lazy_plt) |
| { |
| if (bfd_link_pic (info)) |
| htab->plt.plt_entry = htab->non_lazy_plt->pic_plt_entry; |
| else |
| htab->plt.plt_entry = htab->non_lazy_plt->plt_entry; |
| htab->plt.plt_entry_size = htab->non_lazy_plt->plt_entry_size; |
| htab->plt.plt_got_offset = htab->non_lazy_plt->plt_got_offset; |
| htab->plt.plt_got_insn_size |
| = htab->non_lazy_plt->plt_got_insn_size; |
| htab->plt.eh_frame_plt_size |
| = htab->non_lazy_plt->eh_frame_plt_size; |
| htab->plt.eh_frame_plt = htab->non_lazy_plt->eh_frame_plt; |
| } |
| else |
| { |
| if (bfd_link_pic (info)) |
| { |
| htab->plt.plt0_entry = htab->lazy_plt->pic_plt0_entry; |
| htab->plt.plt_entry = htab->lazy_plt->pic_plt_entry; |
| } |
| else |
| { |
| htab->plt.plt0_entry = htab->lazy_plt->plt0_entry; |
| htab->plt.plt_entry = htab->lazy_plt->plt_entry; |
| } |
| htab->plt.plt_entry_size = htab->lazy_plt->plt_entry_size; |
| htab->plt.plt_got_offset = htab->lazy_plt->plt_got_offset; |
| htab->plt.plt_got_insn_size |
| = htab->lazy_plt->plt_got_insn_size; |
| htab->plt.eh_frame_plt_size |
| = htab->lazy_plt->eh_frame_plt_size; |
| htab->plt.eh_frame_plt = htab->lazy_plt->eh_frame_plt; |
| } |
| |
| if (htab->elf.target_os == is_vxworks |
| && !elf_vxworks_create_dynamic_sections (dynobj, info, |
| &htab->srelplt2)) |
| { |
| info->callbacks->einfo (_("%F%P: failed to create VxWorks dynamic sections\n")); |
| return pbfd; |
| } |
| |
| /* Since create_dynamic_sections isn't always called, but GOT |
| relocations need GOT relocations, create them here so that we |
| don't need to do it in check_relocs. */ |
| if (htab->elf.sgot == NULL |
| && !_bfd_elf_create_got_section (dynobj, info)) |
| info->callbacks->einfo (_("%F%P: failed to create GOT sections\n")); |
| |
| got_align = (bed->target_id == X86_64_ELF_DATA) ? 3 : 2; |
| |
| /* Align .got and .got.plt sections to their entry size. Do it here |
| instead of in create_dynamic_sections so that they are always |
| properly aligned even if create_dynamic_sections isn't called. */ |
| sec = htab->elf.sgot; |
| if (!bfd_set_section_alignment (sec, got_align)) |
| goto error_alignment; |
| |
| sec = htab->elf.sgotplt; |
| if (!bfd_set_section_alignment (sec, got_align)) |
| goto error_alignment; |
| |
| /* Create the ifunc sections here so that check_relocs can be |
| simplified. */ |
| if (!_bfd_elf_create_ifunc_sections (dynobj, info)) |
| info->callbacks->einfo (_("%F%P: failed to create ifunc sections\n")); |
| |
| plt_alignment = bfd_log2 (htab->plt.plt_entry_size); |
| |
| if (pltsec != NULL) |
| { |
| /* Whe creating executable, set the contents of the .interp |
| section to the interpreter. */ |
| if (bfd_link_executable (info) && !info->nointerp) |
| { |
| asection *s = bfd_get_linker_section (dynobj, ".interp"); |
| if (s == NULL) |
| abort (); |
| s->size = htab->dynamic_interpreter_size; |
| s->contents = (unsigned char *) htab->dynamic_interpreter; |
| htab->interp = s; |
| } |
| |
| if (normal_target) |
| { |
| flagword pltflags = (bed->dynamic_sec_flags |
| | SEC_ALLOC |
| | SEC_CODE |
| | SEC_LOAD |
| | SEC_READONLY); |
| unsigned int non_lazy_plt_alignment |
| = bfd_log2 (htab->non_lazy_plt->plt_entry_size); |
| |
| sec = pltsec; |
| if (!bfd_set_section_alignment (sec, plt_alignment)) |
| goto error_alignment; |
| |
| /* Create the GOT procedure linkage table. */ |
| sec = bfd_make_section_anyway_with_flags (dynobj, |
| ".plt.got", |
| pltflags); |
| if (sec == NULL) |
| info->callbacks->einfo (_("%F%P: failed to create GOT PLT section\n")); |
| |
| if (!bfd_set_section_alignment (sec, non_lazy_plt_alignment)) |
| goto error_alignment; |
| |
| htab->plt_got = sec; |
| |
| if (lazy_plt) |
| { |
| sec = NULL; |
| |
| if (use_ibt_plt) |
| { |
| /* Create the second PLT for Intel IBT support. IBT |
| PLT is needed only for lazy binding. */ |
| sec = bfd_make_section_anyway_with_flags (dynobj, |
| ".plt.sec", |
| pltflags); |
| if (sec == NULL) |
| info->callbacks->einfo (_("%F%P: failed to create IBT-enabled PLT section\n")); |
| |
| if (!bfd_set_section_alignment (sec, plt_alignment)) |
| goto error_alignment; |
| } |
| |
| htab->plt_second = sec; |
| } |
| } |
| |
| if (!info->no_ld_generated_unwind_info) |
| { |
| flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY |
| | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED); |
| |
| sec = bfd_make_section_anyway_with_flags (dynobj, |
| ".eh_frame", |
| flags); |
| if (sec == NULL) |
| info->callbacks->einfo (_("%F%P: failed to create PLT .eh_frame section\n")); |
| |
| if (!bfd_set_section_alignment (sec, class_align)) |
| goto error_alignment; |
| |
| htab->plt_eh_frame = sec; |
| |
| if (htab->plt_got != NULL) |
| { |
| sec = bfd_make_section_anyway_with_flags (dynobj, |
| ".eh_frame", |
| flags); |
| if (sec == NULL) |
| info->callbacks->einfo (_("%F%P: failed to create GOT PLT .eh_frame section\n")); |
| |
| if (!bfd_set_section_alignment (sec, class_align)) |
| goto error_alignment; |
| |
| htab->plt_got_eh_frame = sec; |
| } |
| |
| if (htab->plt_second != NULL) |
| { |
| sec = bfd_make_section_anyway_with_flags (dynobj, |
| ".eh_frame", |
| flags); |
| if (sec == NULL) |
| info->callbacks->einfo (_("%F%P: failed to create the second PLT .eh_frame section\n")); |
| |
| if (!bfd_set_section_alignment (sec, class_align)) |
| goto error_alignment; |
| |
| htab->plt_second_eh_frame = sec; |
| } |
| } |
| |
| /* .sframe sections are emitted for AMD64 ABI only. */ |
| if (ABI_64_P (info->output_bfd) && !info->no_ld_generated_unwind_info) |
| { |
| flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY |
| | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED); |
| |
| sec = bfd_make_section_anyway_with_flags (dynobj, |
| ".sframe", |
| flags); |
| if (sec == NULL) |
| info->callbacks->einfo (_("%F%P: failed to create PLT .sframe section\n")); |
| |
| // FIXME check this |
| // if (!bfd_set_section_alignment (sec, class_align)) |
| // goto error_alignment; |
| |
| htab->plt_sframe = sec; |
| |
| /* Second PLT is generated for Intel IBT + lazy plt. */ |
| if (htab->plt_second != NULL) |
| { |
| sec = bfd_make_section_anyway_with_flags (dynobj, |
| ".sframe", |
| flags); |
| if (sec == NULL) |
| info->callbacks->einfo (_("%F%P: failed to create second PLT .sframe section\n")); |
| |
| htab->plt_second_sframe = sec; |
| } |
| /* FIXME - add later for plt_got. */ |
| } |
| } |
| |
| /* The .iplt section is used for IFUNC symbols in static |
| executables. */ |
| sec = htab->elf.iplt; |
| if (sec != NULL) |
| { |
| /* NB: Delay setting its alignment until we know it is non-empty. |
| Otherwise an empty iplt section may change vma and lma of the |
| following sections, which triggers moving dot of the following |
| section backwards, resulting in a warning and section lma not |
| being set properly. It later leads to a "File truncated" |
| error. */ |
| if (!bfd_set_section_alignment (sec, 0)) |
| goto error_alignment; |
| |
| htab->plt.iplt_alignment = (normal_target |
| ? plt_alignment |
| : bed->plt_alignment); |
| } |
| |
| if (bfd_link_executable (info) |
| && !info->nointerp |
| && !htab->params->has_dynamic_linker |
| && htab->params->static_before_all_inputs) |
| { |
| /* Report error for dynamic input objects if -static is passed at |
| command-line before all input files without --dynamic-linker |
| unless --no-dynamic-linker is used. */ |
| bfd *abfd; |
| |
| for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
| if ((abfd->flags & DYNAMIC)) |
| info->callbacks->einfo |
| (_("%X%P: attempted static link of dynamic object `%pB'\n"), |
| abfd); |
| } |
| |
| return pbfd; |
| } |
| |
| /* Fix up x86 GNU properties. */ |
| |
| void |
| _bfd_x86_elf_link_fixup_gnu_properties |
| (struct bfd_link_info *info, elf_property_list **listp) |
| { |
| elf_property_list *p; |
| |
| for (p = *listp; p; p = p->next) |
| { |
| unsigned int type = p->property.pr_type; |
| if (type == GNU_PROPERTY_X86_COMPAT_ISA_1_USED |
| || type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED |
| || (type >= GNU_PROPERTY_X86_UINT32_AND_LO |
| && type <= GNU_PROPERTY_X86_UINT32_AND_HI) |
| || (type >= GNU_PROPERTY_X86_UINT32_OR_LO |
| && type <= GNU_PROPERTY_X86_UINT32_OR_HI) |
| || (type >= GNU_PROPERTY_X86_UINT32_OR_AND_LO |
| && type <= GNU_PROPERTY_X86_UINT32_OR_AND_HI)) |
| { |
| if (p->property.u.number == 0 |
| && (type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED |
| || (type >= GNU_PROPERTY_X86_UINT32_AND_LO |
| && type <= GNU_PROPERTY_X86_UINT32_AND_HI) |
| || (type >= GNU_PROPERTY_X86_UINT32_OR_LO |
| && type <= GNU_PROPERTY_X86_UINT32_OR_HI))) |
| { |
| /* Remove empty property. */ |
| *listp = p->next; |
| continue; |
| } |
| |
| /* Keep LAM features only for 64-bit output. */ |
| if (type == GNU_PROPERTY_X86_FEATURE_1_AND |
| && !ABI_64_P (info->output_bfd)) |
| p->property.u.number &= ~(GNU_PROPERTY_X86_FEATURE_1_LAM_U48 |
| | GNU_PROPERTY_X86_FEATURE_1_LAM_U57); |
| |
| listp = &p->next; |
| } |
| else if (type > GNU_PROPERTY_HIPROC) |
| { |
| /* The property list is sorted in order of type. */ |
| break; |
| } |
| } |
| } |
| |
| void |
| _bfd_elf_linker_x86_set_options (struct bfd_link_info * info, |
| struct elf_linker_x86_params *params) |
| { |
| const struct elf_backend_data *bed |
| = get_elf_backend_data (info->output_bfd); |
| struct elf_x86_link_hash_table *htab |
| = elf_x86_hash_table (info, bed->target_id); |
| if (htab != NULL) |
| htab->params = params; |
| } |