| /* bfd back-end for HP PA-RISC SOM objects. |
| Copyright (C) 1990-2023 Free Software Foundation, Inc. |
| |
| Contributed by the Center for Software Science at the |
| University of Utah. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA |
| 02110-1301, USA. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "libiberty.h" |
| #include "libbfd.h" |
| #include "som.h" |
| #include "safe-ctype.h" |
| #include "som/reloc.h" |
| #include "aout/ar.h" |
| |
| static bfd_reloc_status_type hppa_som_reloc |
| (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); |
| static bool som_mkobject (bfd *); |
| static bool som_is_space (asection *); |
| static bool som_is_subspace (asection *); |
| static int compare_subspaces (const void *, const void *); |
| static uint32_t som_compute_checksum (struct som_external_header *); |
| static bool som_build_and_write_symbol_table (bfd *); |
| static unsigned int som_slurp_symbol_table (bfd *); |
| |
| /* Magic not defined in standard HP-UX header files until 8.0. */ |
| |
| #ifndef CPU_PA_RISC1_0 |
| #define CPU_PA_RISC1_0 0x20B |
| #endif /* CPU_PA_RISC1_0 */ |
| |
| #ifndef CPU_PA_RISC1_1 |
| #define CPU_PA_RISC1_1 0x210 |
| #endif /* CPU_PA_RISC1_1 */ |
| |
| #ifndef CPU_PA_RISC2_0 |
| #define CPU_PA_RISC2_0 0x214 |
| #endif /* CPU_PA_RISC2_0 */ |
| |
| #ifndef _PA_RISC1_0_ID |
| #define _PA_RISC1_0_ID CPU_PA_RISC1_0 |
| #endif /* _PA_RISC1_0_ID */ |
| |
| #ifndef _PA_RISC1_1_ID |
| #define _PA_RISC1_1_ID CPU_PA_RISC1_1 |
| #endif /* _PA_RISC1_1_ID */ |
| |
| #ifndef _PA_RISC2_0_ID |
| #define _PA_RISC2_0_ID CPU_PA_RISC2_0 |
| #endif /* _PA_RISC2_0_ID */ |
| |
| #ifndef _PA_RISC_MAXID |
| #define _PA_RISC_MAXID 0x2FF |
| #endif /* _PA_RISC_MAXID */ |
| |
| #ifndef _PA_RISC_ID |
| #define _PA_RISC_ID(__m_num) \ |
| (((__m_num) == _PA_RISC1_0_ID) || \ |
| ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID)) |
| #endif /* _PA_RISC_ID */ |
| |
| /* HIUX in it's infinite stupidity changed the names for several "well |
| known" constants. Work around such braindamage. Try the HPUX version |
| first, then the HIUX version, and finally provide a default. */ |
| #ifdef HPUX_AUX_ID |
| #define EXEC_AUX_ID HPUX_AUX_ID |
| #endif |
| |
| #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID) |
| #define EXEC_AUX_ID HIUX_AUX_ID |
| #endif |
| |
| #ifndef EXEC_AUX_ID |
| #define EXEC_AUX_ID 0 |
| #endif |
| |
| /* Size (in chars) of the temporary buffers used during fixup and string |
| table writes. */ |
| |
| #define SOM_TMP_BUFSIZE 8192 |
| |
| /* Size of the hash table in archives. */ |
| #define SOM_LST_HASH_SIZE 31 |
| |
| /* Max number of SOMs to be found in an archive. */ |
| #define SOM_LST_MODULE_LIMIT 1024 |
| |
| /* Generic alignment macro. */ |
| #define SOM_ALIGN(val, alignment) \ |
| (((val) + (alignment) - 1) &~ ((unsigned long) (alignment) - 1)) |
| |
| /* SOM allows any one of the four previous relocations to be reused |
| with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP |
| relocations are always a single byte, using a R_PREV_FIXUP instead |
| of some multi-byte relocation makes object files smaller. |
| |
| Note one side effect of using a R_PREV_FIXUP is the relocation that |
| is being repeated moves to the front of the queue. */ |
| static struct reloc_queue |
| { |
| unsigned char *reloc; |
| unsigned int size; |
| } reloc_queue[4]; |
| |
| /* This fully describes the symbol types which may be attached to |
| an EXPORT or IMPORT directive. Only SOM uses this formation |
| (ELF has no need for it). */ |
| typedef enum |
| { |
| SYMBOL_TYPE_UNKNOWN, |
| SYMBOL_TYPE_ABSOLUTE, |
| SYMBOL_TYPE_CODE, |
| SYMBOL_TYPE_DATA, |
| SYMBOL_TYPE_ENTRY, |
| SYMBOL_TYPE_MILLICODE, |
| SYMBOL_TYPE_PLABEL, |
| SYMBOL_TYPE_PRI_PROG, |
| SYMBOL_TYPE_SEC_PROG, |
| } pa_symbol_type; |
| |
| struct section_to_type |
| { |
| const char *section; |
| char type; |
| }; |
| |
| /* Assorted symbol information that needs to be derived from the BFD symbol |
| and/or the BFD backend private symbol data. */ |
| struct som_misc_symbol_info |
| { |
| unsigned int symbol_type; |
| unsigned int symbol_scope; |
| unsigned int arg_reloc; |
| unsigned int symbol_info; |
| unsigned int symbol_value; |
| unsigned int priv_level; |
| unsigned int secondary_def; |
| unsigned int is_comdat; |
| unsigned int is_common; |
| unsigned int dup_common; |
| }; |
| |
| /* Map SOM section names to POSIX/BSD single-character symbol types. |
| |
| This table includes all the standard subspaces as defined in the |
| current "PRO ABI for PA-RISC Systems", $UNWIND$ which for |
| some reason was left out, and sections specific to embedded stabs. */ |
| |
| static const struct section_to_type stt[] = |
| { |
| {"$TEXT$", 't'}, |
| {"$SHLIB_INFO$", 't'}, |
| {"$MILLICODE$", 't'}, |
| {"$LIT$", 't'}, |
| {"$CODE$", 't'}, |
| {"$UNWIND_START$", 't'}, |
| {"$UNWIND$", 't'}, |
| {"$PRIVATE$", 'd'}, |
| {"$PLT$", 'd'}, |
| {"$SHLIB_DATA$", 'd'}, |
| {"$DATA$", 'd'}, |
| {"$SHORTDATA$", 'g'}, |
| {"$DLT$", 'd'}, |
| {"$GLOBAL$", 'g'}, |
| {"$SHORTBSS$", 's'}, |
| {"$BSS$", 'b'}, |
| {"$GDB_STRINGS$", 'N'}, |
| {"$GDB_SYMBOLS$", 'N'}, |
| {0, 0} |
| }; |
| |
| /* About the relocation formatting table... |
| |
| There are 256 entries in the table, one for each possible |
| relocation opcode available in SOM. We index the table by |
| the relocation opcode. The names and operations are those |
| defined by a.out_800 (4). |
| |
| Right now this table is only used to count and perform minimal |
| processing on relocation streams so that they can be internalized |
| into BFD and symbolically printed by utilities. To make actual use |
| of them would be much more difficult, BFD's concept of relocations |
| is far too simple to handle SOM relocations. The basic assumption |
| that a relocation can be completely processed independent of other |
| relocations before an object file is written is invalid for SOM. |
| |
| The SOM relocations are meant to be processed as a stream, they |
| specify copying of data from the input section to the output section |
| while possibly modifying the data in some manner. They also can |
| specify that a variable number of zeros or uninitialized data be |
| inserted on in the output segment at the current offset. Some |
| relocations specify that some previous relocation be re-applied at |
| the current location in the input/output sections. And finally a number |
| of relocations have effects on other sections (R_ENTRY, R_EXIT, |
| R_UNWIND_AUX and a variety of others). There isn't even enough room |
| in the BFD relocation data structure to store enough information to |
| perform all the relocations. |
| |
| Each entry in the table has three fields. |
| |
| The first entry is an index into this "class" of relocations. This |
| index can then be used as a variable within the relocation itself. |
| |
| The second field is a format string which actually controls processing |
| of the relocation. It uses a simple postfix machine to do calculations |
| based on variables/constants found in the string and the relocation |
| stream. |
| |
| The third field specifys whether or not this relocation may use |
| a constant (V) from the previous R_DATA_OVERRIDE rather than a constant |
| stored in the instruction. |
| |
| Variables: |
| |
| L = input space byte count |
| D = index into class of relocations |
| M = output space byte count |
| N = statement number (unused?) |
| O = stack operation |
| R = parameter relocation bits |
| S = symbol index |
| T = first 32 bits of stack unwind information |
| U = second 32 bits of stack unwind information |
| V = a literal constant (usually used in the next relocation) |
| P = a previous relocation |
| |
| Lower case letters (starting with 'b') refer to following |
| bytes in the relocation stream. 'b' is the next 1 byte, |
| c is the next 2 bytes, d is the next 3 bytes, etc... |
| This is the variable part of the relocation entries that |
| makes our life a living hell. |
| |
| numerical constants are also used in the format string. Note |
| the constants are represented in decimal. |
| |
| '+', "*" and "=" represents the obvious postfix operators. |
| '<' represents a left shift. |
| |
| Stack Operations: |
| |
| Parameter Relocation Bits: |
| |
| Unwind Entries: |
| |
| Previous Relocations: The index field represents which in the queue |
| of 4 previous fixups should be re-applied. |
| |
| Literal Constants: These are generally used to represent addend |
| parts of relocations when these constants are not stored in the |
| fields of the instructions themselves. For example the instruction |
| addil foo-$global$-0x1234 would use an override for "0x1234" rather |
| than storing it into the addil itself. */ |
| |
| struct fixup_format |
| { |
| int D; |
| const char *format; |
| }; |
| |
| static const struct fixup_format som_fixup_formats[256] = |
| { |
| /* R_NO_RELOCATION. */ |
| { 0, "LD1+4*=" }, /* 0x00 */ |
| { 1, "LD1+4*=" }, /* 0x01 */ |
| { 2, "LD1+4*=" }, /* 0x02 */ |
| { 3, "LD1+4*=" }, /* 0x03 */ |
| { 4, "LD1+4*=" }, /* 0x04 */ |
| { 5, "LD1+4*=" }, /* 0x05 */ |
| { 6, "LD1+4*=" }, /* 0x06 */ |
| { 7, "LD1+4*=" }, /* 0x07 */ |
| { 8, "LD1+4*=" }, /* 0x08 */ |
| { 9, "LD1+4*=" }, /* 0x09 */ |
| { 10, "LD1+4*=" }, /* 0x0a */ |
| { 11, "LD1+4*=" }, /* 0x0b */ |
| { 12, "LD1+4*=" }, /* 0x0c */ |
| { 13, "LD1+4*=" }, /* 0x0d */ |
| { 14, "LD1+4*=" }, /* 0x0e */ |
| { 15, "LD1+4*=" }, /* 0x0f */ |
| { 16, "LD1+4*=" }, /* 0x10 */ |
| { 17, "LD1+4*=" }, /* 0x11 */ |
| { 18, "LD1+4*=" }, /* 0x12 */ |
| { 19, "LD1+4*=" }, /* 0x13 */ |
| { 20, "LD1+4*=" }, /* 0x14 */ |
| { 21, "LD1+4*=" }, /* 0x15 */ |
| { 22, "LD1+4*=" }, /* 0x16 */ |
| { 23, "LD1+4*=" }, /* 0x17 */ |
| { 0, "LD8<b+1+4*=" }, /* 0x18 */ |
| { 1, "LD8<b+1+4*=" }, /* 0x19 */ |
| { 2, "LD8<b+1+4*=" }, /* 0x1a */ |
| { 3, "LD8<b+1+4*=" }, /* 0x1b */ |
| { 0, "LD16<c+1+4*=" }, /* 0x1c */ |
| { 1, "LD16<c+1+4*=" }, /* 0x1d */ |
| { 2, "LD16<c+1+4*=" }, /* 0x1e */ |
| { 0, "Ld1+=" }, /* 0x1f */ |
| /* R_ZEROES. */ |
| { 0, "Lb1+4*=" }, /* 0x20 */ |
| { 1, "Ld1+=" }, /* 0x21 */ |
| /* R_UNINIT. */ |
| { 0, "Lb1+4*=" }, /* 0x22 */ |
| { 1, "Ld1+=" }, /* 0x23 */ |
| /* R_RELOCATION. */ |
| { 0, "L4=" }, /* 0x24 */ |
| /* R_DATA_ONE_SYMBOL. */ |
| { 0, "L4=Sb=" }, /* 0x25 */ |
| { 1, "L4=Sd=" }, /* 0x26 */ |
| /* R_DATA_PLABEL. */ |
| { 0, "L4=Sb=" }, /* 0x27 */ |
| { 1, "L4=Sd=" }, /* 0x28 */ |
| /* R_SPACE_REF. */ |
| { 0, "L4=" }, /* 0x29 */ |
| /* R_REPEATED_INIT. */ |
| { 0, "L4=Mb1+4*=" }, /* 0x2a */ |
| { 1, "Lb4*=Mb1+L*=" }, /* 0x2b */ |
| { 2, "Lb4*=Md1+4*=" }, /* 0x2c */ |
| { 3, "Ld1+=Me1+=" }, /* 0x2d */ |
| { 0, "" }, /* 0x2e */ |
| { 0, "" }, /* 0x2f */ |
| /* R_PCREL_CALL. */ |
| { 0, "L4=RD=Sb=" }, /* 0x30 */ |
| { 1, "L4=RD=Sb=" }, /* 0x31 */ |
| { 2, "L4=RD=Sb=" }, /* 0x32 */ |
| { 3, "L4=RD=Sb=" }, /* 0x33 */ |
| { 4, "L4=RD=Sb=" }, /* 0x34 */ |
| { 5, "L4=RD=Sb=" }, /* 0x35 */ |
| { 6, "L4=RD=Sb=" }, /* 0x36 */ |
| { 7, "L4=RD=Sb=" }, /* 0x37 */ |
| { 8, "L4=RD=Sb=" }, /* 0x38 */ |
| { 9, "L4=RD=Sb=" }, /* 0x39 */ |
| { 0, "L4=RD8<b+=Sb=" }, /* 0x3a */ |
| { 1, "L4=RD8<b+=Sb=" }, /* 0x3b */ |
| { 0, "L4=RD8<b+=Sd=" }, /* 0x3c */ |
| { 1, "L4=RD8<b+=Sd=" }, /* 0x3d */ |
| /* R_SHORT_PCREL_MODE. */ |
| { 0, "" }, /* 0x3e */ |
| /* R_LONG_PCREL_MODE. */ |
| { 0, "" }, /* 0x3f */ |
| /* R_ABS_CALL. */ |
| { 0, "L4=RD=Sb=" }, /* 0x40 */ |
| { 1, "L4=RD=Sb=" }, /* 0x41 */ |
| { 2, "L4=RD=Sb=" }, /* 0x42 */ |
| { 3, "L4=RD=Sb=" }, /* 0x43 */ |
| { 4, "L4=RD=Sb=" }, /* 0x44 */ |
| { 5, "L4=RD=Sb=" }, /* 0x45 */ |
| { 6, "L4=RD=Sb=" }, /* 0x46 */ |
| { 7, "L4=RD=Sb=" }, /* 0x47 */ |
| { 8, "L4=RD=Sb=" }, /* 0x48 */ |
| { 9, "L4=RD=Sb=" }, /* 0x49 */ |
| { 0, "L4=RD8<b+=Sb=" }, /* 0x4a */ |
| { 1, "L4=RD8<b+=Sb=" }, /* 0x4b */ |
| { 0, "L4=RD8<b+=Sd=" }, /* 0x4c */ |
| { 1, "L4=RD8<b+=Sd=" }, /* 0x4d */ |
| /* R_RESERVED. */ |
| { 0, "" }, /* 0x4e */ |
| { 0, "" }, /* 0x4f */ |
| /* R_DP_RELATIVE. */ |
| { 0, "L4=SD=" }, /* 0x50 */ |
| { 1, "L4=SD=" }, /* 0x51 */ |
| { 2, "L4=SD=" }, /* 0x52 */ |
| { 3, "L4=SD=" }, /* 0x53 */ |
| { 4, "L4=SD=" }, /* 0x54 */ |
| { 5, "L4=SD=" }, /* 0x55 */ |
| { 6, "L4=SD=" }, /* 0x56 */ |
| { 7, "L4=SD=" }, /* 0x57 */ |
| { 8, "L4=SD=" }, /* 0x58 */ |
| { 9, "L4=SD=" }, /* 0x59 */ |
| { 10, "L4=SD=" }, /* 0x5a */ |
| { 11, "L4=SD=" }, /* 0x5b */ |
| { 12, "L4=SD=" }, /* 0x5c */ |
| { 13, "L4=SD=" }, /* 0x5d */ |
| { 14, "L4=SD=" }, /* 0x5e */ |
| { 15, "L4=SD=" }, /* 0x5f */ |
| { 16, "L4=SD=" }, /* 0x60 */ |
| { 17, "L4=SD=" }, /* 0x61 */ |
| { 18, "L4=SD=" }, /* 0x62 */ |
| { 19, "L4=SD=" }, /* 0x63 */ |
| { 20, "L4=SD=" }, /* 0x64 */ |
| { 21, "L4=SD=" }, /* 0x65 */ |
| { 22, "L4=SD=" }, /* 0x66 */ |
| { 23, "L4=SD=" }, /* 0x67 */ |
| { 24, "L4=SD=" }, /* 0x68 */ |
| { 25, "L4=SD=" }, /* 0x69 */ |
| { 26, "L4=SD=" }, /* 0x6a */ |
| { 27, "L4=SD=" }, /* 0x6b */ |
| { 28, "L4=SD=" }, /* 0x6c */ |
| { 29, "L4=SD=" }, /* 0x6d */ |
| { 30, "L4=SD=" }, /* 0x6e */ |
| { 31, "L4=SD=" }, /* 0x6f */ |
| { 32, "L4=Sb=" }, /* 0x70 */ |
| { 33, "L4=Sd=" }, /* 0x71 */ |
| /* R_DATA_GPREL. */ |
| { 0, "L4=Sd=" }, /* 0x72 */ |
| /* R_RESERVED. */ |
| { 0, "" }, /* 0x73 */ |
| { 0, "" }, /* 0x74 */ |
| { 0, "" }, /* 0x75 */ |
| { 0, "" }, /* 0x76 */ |
| { 0, "" }, /* 0x77 */ |
| /* R_DLT_REL. */ |
| { 0, "L4=Sb=" }, /* 0x78 */ |
| { 1, "L4=Sd=" }, /* 0x79 */ |
| /* R_RESERVED. */ |
| { 0, "" }, /* 0x7a */ |
| { 0, "" }, /* 0x7b */ |
| { 0, "" }, /* 0x7c */ |
| { 0, "" }, /* 0x7d */ |
| { 0, "" }, /* 0x7e */ |
| { 0, "" }, /* 0x7f */ |
| /* R_CODE_ONE_SYMBOL. */ |
| { 0, "L4=SD=" }, /* 0x80 */ |
| { 1, "L4=SD=" }, /* 0x81 */ |
| { 2, "L4=SD=" }, /* 0x82 */ |
| { 3, "L4=SD=" }, /* 0x83 */ |
| { 4, "L4=SD=" }, /* 0x84 */ |
| { 5, "L4=SD=" }, /* 0x85 */ |
| { 6, "L4=SD=" }, /* 0x86 */ |
| { 7, "L4=SD=" }, /* 0x87 */ |
| { 8, "L4=SD=" }, /* 0x88 */ |
| { 9, "L4=SD=" }, /* 0x89 */ |
| { 10, "L4=SD=" }, /* 0x8q */ |
| { 11, "L4=SD=" }, /* 0x8b */ |
| { 12, "L4=SD=" }, /* 0x8c */ |
| { 13, "L4=SD=" }, /* 0x8d */ |
| { 14, "L4=SD=" }, /* 0x8e */ |
| { 15, "L4=SD=" }, /* 0x8f */ |
| { 16, "L4=SD=" }, /* 0x90 */ |
| { 17, "L4=SD=" }, /* 0x91 */ |
| { 18, "L4=SD=" }, /* 0x92 */ |
| { 19, "L4=SD=" }, /* 0x93 */ |
| { 20, "L4=SD=" }, /* 0x94 */ |
| { 21, "L4=SD=" }, /* 0x95 */ |
| { 22, "L4=SD=" }, /* 0x96 */ |
| { 23, "L4=SD=" }, /* 0x97 */ |
| { 24, "L4=SD=" }, /* 0x98 */ |
| { 25, "L4=SD=" }, /* 0x99 */ |
| { 26, "L4=SD=" }, /* 0x9a */ |
| { 27, "L4=SD=" }, /* 0x9b */ |
| { 28, "L4=SD=" }, /* 0x9c */ |
| { 29, "L4=SD=" }, /* 0x9d */ |
| { 30, "L4=SD=" }, /* 0x9e */ |
| { 31, "L4=SD=" }, /* 0x9f */ |
| { 32, "L4=Sb=" }, /* 0xa0 */ |
| { 33, "L4=Sd=" }, /* 0xa1 */ |
| /* R_RESERVED. */ |
| { 0, "" }, /* 0xa2 */ |
| { 0, "" }, /* 0xa3 */ |
| { 0, "" }, /* 0xa4 */ |
| { 0, "" }, /* 0xa5 */ |
| { 0, "" }, /* 0xa6 */ |
| { 0, "" }, /* 0xa7 */ |
| { 0, "" }, /* 0xa8 */ |
| { 0, "" }, /* 0xa9 */ |
| { 0, "" }, /* 0xaa */ |
| { 0, "" }, /* 0xab */ |
| { 0, "" }, /* 0xac */ |
| { 0, "" }, /* 0xad */ |
| /* R_MILLI_REL. */ |
| { 0, "L4=Sb=" }, /* 0xae */ |
| { 1, "L4=Sd=" }, /* 0xaf */ |
| /* R_CODE_PLABEL. */ |
| { 0, "L4=Sb=" }, /* 0xb0 */ |
| { 1, "L4=Sd=" }, /* 0xb1 */ |
| /* R_BREAKPOINT. */ |
| { 0, "L4=" }, /* 0xb2 */ |
| /* R_ENTRY. */ |
| { 0, "Te=Ue=" }, /* 0xb3 */ |
| { 1, "Uf=" }, /* 0xb4 */ |
| /* R_ALT_ENTRY. */ |
| { 0, "" }, /* 0xb5 */ |
| /* R_EXIT. */ |
| { 0, "" }, /* 0xb6 */ |
| /* R_BEGIN_TRY. */ |
| { 0, "" }, /* 0xb7 */ |
| /* R_END_TRY. */ |
| { 0, "R0=" }, /* 0xb8 */ |
| { 1, "Rb4*=" }, /* 0xb9 */ |
| { 2, "Rd4*=" }, /* 0xba */ |
| /* R_BEGIN_BRTAB. */ |
| { 0, "" }, /* 0xbb */ |
| /* R_END_BRTAB. */ |
| { 0, "" }, /* 0xbc */ |
| /* R_STATEMENT. */ |
| { 0, "Nb=" }, /* 0xbd */ |
| { 1, "Nc=" }, /* 0xbe */ |
| { 2, "Nd=" }, /* 0xbf */ |
| /* R_DATA_EXPR. */ |
| { 0, "L4=" }, /* 0xc0 */ |
| /* R_CODE_EXPR. */ |
| { 0, "L4=" }, /* 0xc1 */ |
| /* R_FSEL. */ |
| { 0, "" }, /* 0xc2 */ |
| /* R_LSEL. */ |
| { 0, "" }, /* 0xc3 */ |
| /* R_RSEL. */ |
| { 0, "" }, /* 0xc4 */ |
| /* R_N_MODE. */ |
| { 0, "" }, /* 0xc5 */ |
| /* R_S_MODE. */ |
| { 0, "" }, /* 0xc6 */ |
| /* R_D_MODE. */ |
| { 0, "" }, /* 0xc7 */ |
| /* R_R_MODE. */ |
| { 0, "" }, /* 0xc8 */ |
| /* R_DATA_OVERRIDE. */ |
| { 0, "V0=" }, /* 0xc9 */ |
| { 1, "Vb=" }, /* 0xca */ |
| { 2, "Vc=" }, /* 0xcb */ |
| { 3, "Vd=" }, /* 0xcc */ |
| { 4, "Ve=" }, /* 0xcd */ |
| /* R_TRANSLATED. */ |
| { 0, "" }, /* 0xce */ |
| /* R_AUX_UNWIND. */ |
| { 0,"Sd=Ve=Ee=" }, /* 0xcf */ |
| /* R_COMP1. */ |
| { 0, "Ob=" }, /* 0xd0 */ |
| /* R_COMP2. */ |
| { 0, "Ob=Sd=" }, /* 0xd1 */ |
| /* R_COMP3. */ |
| { 0, "Ob=Ve=" }, /* 0xd2 */ |
| /* R_PREV_FIXUP. */ |
| { 0, "P" }, /* 0xd3 */ |
| { 1, "P" }, /* 0xd4 */ |
| { 2, "P" }, /* 0xd5 */ |
| { 3, "P" }, /* 0xd6 */ |
| /* R_SEC_STMT. */ |
| { 0, "" }, /* 0xd7 */ |
| /* R_N0SEL. */ |
| { 0, "" }, /* 0xd8 */ |
| /* R_N1SEL. */ |
| { 0, "" }, /* 0xd9 */ |
| /* R_LINETAB. */ |
| { 0, "Eb=Sd=Ve=" }, /* 0xda */ |
| /* R_LINETAB_ESC. */ |
| { 0, "Eb=Mb=" }, /* 0xdb */ |
| /* R_LTP_OVERRIDE. */ |
| { 0, "" }, /* 0xdc */ |
| /* R_COMMENT. */ |
| { 0, "Ob=Vf=" }, /* 0xdd */ |
| /* R_RESERVED. */ |
| { 0, "" }, /* 0xde */ |
| { 0, "" }, /* 0xdf */ |
| { 0, "" }, /* 0xe0 */ |
| { 0, "" }, /* 0xe1 */ |
| { 0, "" }, /* 0xe2 */ |
| { 0, "" }, /* 0xe3 */ |
| { 0, "" }, /* 0xe4 */ |
| { 0, "" }, /* 0xe5 */ |
| { 0, "" }, /* 0xe6 */ |
| { 0, "" }, /* 0xe7 */ |
| { 0, "" }, /* 0xe8 */ |
| { 0, "" }, /* 0xe9 */ |
| { 0, "" }, /* 0xea */ |
| { 0, "" }, /* 0xeb */ |
| { 0, "" }, /* 0xec */ |
| { 0, "" }, /* 0xed */ |
| { 0, "" }, /* 0xee */ |
| { 0, "" }, /* 0xef */ |
| { 0, "" }, /* 0xf0 */ |
| { 0, "" }, /* 0xf1 */ |
| { 0, "" }, /* 0xf2 */ |
| { 0, "" }, /* 0xf3 */ |
| { 0, "" }, /* 0xf4 */ |
| { 0, "" }, /* 0xf5 */ |
| { 0, "" }, /* 0xf6 */ |
| { 0, "" }, /* 0xf7 */ |
| { 0, "" }, /* 0xf8 */ |
| { 0, "" }, /* 0xf9 */ |
| { 0, "" }, /* 0xfa */ |
| { 0, "" }, /* 0xfb */ |
| { 0, "" }, /* 0xfc */ |
| { 0, "" }, /* 0xfd */ |
| { 0, "" }, /* 0xfe */ |
| { 0, "" }, /* 0xff */ |
| }; |
| |
| static const int comp1_opcodes[] = |
| { |
| 0x00, |
| 0x40, |
| 0x41, |
| 0x42, |
| 0x43, |
| 0x44, |
| 0x45, |
| 0x46, |
| 0x47, |
| 0x48, |
| 0x49, |
| 0x4a, |
| 0x4b, |
| 0x60, |
| 0x80, |
| 0xa0, |
| 0xc0, |
| -1 |
| }; |
| |
| static const int comp2_opcodes[] = |
| { |
| 0x00, |
| 0x80, |
| 0x82, |
| 0xc0, |
| -1 |
| }; |
| |
| static const int comp3_opcodes[] = |
| { |
| 0x00, |
| 0x02, |
| -1 |
| }; |
| |
| /* These apparently are not in older versions of hpux reloc.h (hpux7). */ |
| |
| /* And these first appeared in hpux10. */ |
| #ifndef R_SHORT_PCREL_MODE |
| #define NO_PCREL_MODES |
| #define R_SHORT_PCREL_MODE 0x3e |
| #endif |
| |
| #define SOM_HOWTO(SIZE, TYPE) \ |
| HOWTO(TYPE, 0, SIZE, 32, false, 0, 0, hppa_som_reloc, \ |
| #TYPE, false, 0, 0, false) |
| |
| static reloc_howto_type som_hppa_howto_table[] = |
| { |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_NO_RELOCATION), |
| SOM_HOWTO (0, R_ZEROES), |
| SOM_HOWTO (0, R_ZEROES), |
| SOM_HOWTO (0, R_UNINIT), |
| SOM_HOWTO (0, R_UNINIT), |
| SOM_HOWTO (4, R_RELOCATION), |
| SOM_HOWTO (4, R_DATA_ONE_SYMBOL), |
| SOM_HOWTO (4, R_DATA_ONE_SYMBOL), |
| SOM_HOWTO (4, R_DATA_PLABEL), |
| SOM_HOWTO (4, R_DATA_PLABEL), |
| SOM_HOWTO (4, R_SPACE_REF), |
| SOM_HOWTO (0, R_REPEATED_INIT), |
| SOM_HOWTO (0, R_REPEATED_INIT), |
| SOM_HOWTO (0, R_REPEATED_INIT), |
| SOM_HOWTO (0, R_REPEATED_INIT), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (4, R_PCREL_CALL), |
| SOM_HOWTO (4, R_PCREL_CALL), |
| SOM_HOWTO (4, R_PCREL_CALL), |
| SOM_HOWTO (4, R_PCREL_CALL), |
| SOM_HOWTO (4, R_PCREL_CALL), |
| SOM_HOWTO (4, R_PCREL_CALL), |
| SOM_HOWTO (4, R_PCREL_CALL), |
| SOM_HOWTO (4, R_PCREL_CALL), |
| SOM_HOWTO (4, R_PCREL_CALL), |
| SOM_HOWTO (4, R_PCREL_CALL), |
| SOM_HOWTO (4, R_PCREL_CALL), |
| SOM_HOWTO (4, R_PCREL_CALL), |
| SOM_HOWTO (4, R_PCREL_CALL), |
| SOM_HOWTO (4, R_PCREL_CALL), |
| SOM_HOWTO (0, R_SHORT_PCREL_MODE), |
| SOM_HOWTO (0, R_LONG_PCREL_MODE), |
| SOM_HOWTO (4, R_ABS_CALL), |
| SOM_HOWTO (4, R_ABS_CALL), |
| SOM_HOWTO (4, R_ABS_CALL), |
| SOM_HOWTO (4, R_ABS_CALL), |
| SOM_HOWTO (4, R_ABS_CALL), |
| SOM_HOWTO (4, R_ABS_CALL), |
| SOM_HOWTO (4, R_ABS_CALL), |
| SOM_HOWTO (4, R_ABS_CALL), |
| SOM_HOWTO (4, R_ABS_CALL), |
| SOM_HOWTO (4, R_ABS_CALL), |
| SOM_HOWTO (4, R_ABS_CALL), |
| SOM_HOWTO (4, R_ABS_CALL), |
| SOM_HOWTO (4, R_ABS_CALL), |
| SOM_HOWTO (4, R_ABS_CALL), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DP_RELATIVE), |
| SOM_HOWTO (4, R_DATA_GPREL), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (4, R_DLT_REL), |
| SOM_HOWTO (4, R_DLT_REL), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (4, R_CODE_ONE_SYMBOL), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (4, R_MILLI_REL), |
| SOM_HOWTO (4, R_MILLI_REL), |
| SOM_HOWTO (4, R_CODE_PLABEL), |
| SOM_HOWTO (4, R_CODE_PLABEL), |
| SOM_HOWTO (4, R_BREAKPOINT), |
| SOM_HOWTO (0, R_ENTRY), |
| SOM_HOWTO (0, R_ENTRY), |
| SOM_HOWTO (0, R_ALT_ENTRY), |
| SOM_HOWTO (0, R_EXIT), |
| SOM_HOWTO (0, R_BEGIN_TRY), |
| SOM_HOWTO (0, R_END_TRY), |
| SOM_HOWTO (0, R_END_TRY), |
| SOM_HOWTO (0, R_END_TRY), |
| SOM_HOWTO (0, R_BEGIN_BRTAB), |
| SOM_HOWTO (0, R_END_BRTAB), |
| SOM_HOWTO (0, R_STATEMENT), |
| SOM_HOWTO (0, R_STATEMENT), |
| SOM_HOWTO (0, R_STATEMENT), |
| SOM_HOWTO (4, R_DATA_EXPR), |
| SOM_HOWTO (4, R_CODE_EXPR), |
| SOM_HOWTO (0, R_FSEL), |
| SOM_HOWTO (0, R_LSEL), |
| SOM_HOWTO (0, R_RSEL), |
| SOM_HOWTO (0, R_N_MODE), |
| SOM_HOWTO (0, R_S_MODE), |
| SOM_HOWTO (0, R_D_MODE), |
| SOM_HOWTO (0, R_R_MODE), |
| SOM_HOWTO (0, R_DATA_OVERRIDE), |
| SOM_HOWTO (0, R_DATA_OVERRIDE), |
| SOM_HOWTO (0, R_DATA_OVERRIDE), |
| SOM_HOWTO (0, R_DATA_OVERRIDE), |
| SOM_HOWTO (0, R_DATA_OVERRIDE), |
| SOM_HOWTO (0, R_TRANSLATED), |
| SOM_HOWTO (0, R_AUX_UNWIND), |
| SOM_HOWTO (0, R_COMP1), |
| SOM_HOWTO (0, R_COMP2), |
| SOM_HOWTO (0, R_COMP3), |
| SOM_HOWTO (0, R_PREV_FIXUP), |
| SOM_HOWTO (0, R_PREV_FIXUP), |
| SOM_HOWTO (0, R_PREV_FIXUP), |
| SOM_HOWTO (0, R_PREV_FIXUP), |
| SOM_HOWTO (0, R_SEC_STMT), |
| SOM_HOWTO (0, R_N0SEL), |
| SOM_HOWTO (0, R_N1SEL), |
| SOM_HOWTO (0, R_LINETAB), |
| SOM_HOWTO (0, R_LINETAB_ESC), |
| SOM_HOWTO (0, R_LTP_OVERRIDE), |
| SOM_HOWTO (0, R_COMMENT), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED), |
| SOM_HOWTO (0, R_RESERVED) |
| }; |
| |
| /* Initialize the SOM relocation queue. By definition the queue holds |
| the last four multibyte fixups. */ |
| |
| static void |
| som_initialize_reloc_queue (struct reloc_queue *queue) |
| { |
| queue[0].reloc = NULL; |
| queue[0].size = 0; |
| queue[1].reloc = NULL; |
| queue[1].size = 0; |
| queue[2].reloc = NULL; |
| queue[2].size = 0; |
| queue[3].reloc = NULL; |
| queue[3].size = 0; |
| } |
| |
| /* Insert a new relocation into the relocation queue. */ |
| |
| static void |
| som_reloc_queue_insert (unsigned char *p, |
| unsigned int size, |
| struct reloc_queue *queue) |
| { |
| queue[3].reloc = queue[2].reloc; |
| queue[3].size = queue[2].size; |
| queue[2].reloc = queue[1].reloc; |
| queue[2].size = queue[1].size; |
| queue[1].reloc = queue[0].reloc; |
| queue[1].size = queue[0].size; |
| queue[0].reloc = p; |
| queue[0].size = size; |
| } |
| |
| /* When an entry in the relocation queue is reused, the entry moves |
| to the front of the queue. */ |
| |
| static void |
| som_reloc_queue_fix (struct reloc_queue *queue, unsigned int idx) |
| { |
| if (idx == 0) |
| return; |
| |
| if (idx == 1) |
| { |
| unsigned char *tmp1 = queue[0].reloc; |
| unsigned int tmp2 = queue[0].size; |
| |
| queue[0].reloc = queue[1].reloc; |
| queue[0].size = queue[1].size; |
| queue[1].reloc = tmp1; |
| queue[1].size = tmp2; |
| return; |
| } |
| |
| if (idx == 2) |
| { |
| unsigned char *tmp1 = queue[0].reloc; |
| unsigned int tmp2 = queue[0].size; |
| |
| queue[0].reloc = queue[2].reloc; |
| queue[0].size = queue[2].size; |
| queue[2].reloc = queue[1].reloc; |
| queue[2].size = queue[1].size; |
| queue[1].reloc = tmp1; |
| queue[1].size = tmp2; |
| return; |
| } |
| |
| if (idx == 3) |
| { |
| unsigned char *tmp1 = queue[0].reloc; |
| unsigned int tmp2 = queue[0].size; |
| |
| queue[0].reloc = queue[3].reloc; |
| queue[0].size = queue[3].size; |
| queue[3].reloc = queue[2].reloc; |
| queue[3].size = queue[2].size; |
| queue[2].reloc = queue[1].reloc; |
| queue[2].size = queue[1].size; |
| queue[1].reloc = tmp1; |
| queue[1].size = tmp2; |
| return; |
| } |
| abort (); |
| } |
| |
| /* Search for a particular relocation in the relocation queue. */ |
| |
| static int |
| som_reloc_queue_find (unsigned char *p, |
| unsigned int size, |
| struct reloc_queue *queue) |
| { |
| if (queue[0].reloc && !memcmp (p, queue[0].reloc, size) |
| && size == queue[0].size) |
| return 0; |
| if (queue[1].reloc && !memcmp (p, queue[1].reloc, size) |
| && size == queue[1].size) |
| return 1; |
| if (queue[2].reloc && !memcmp (p, queue[2].reloc, size) |
| && size == queue[2].size) |
| return 2; |
| if (queue[3].reloc && !memcmp (p, queue[3].reloc, size) |
| && size == queue[3].size) |
| return 3; |
| return -1; |
| } |
| |
| static unsigned char * |
| try_prev_fixup (bfd *abfd ATTRIBUTE_UNUSED, |
| unsigned int *subspace_reloc_sizep, |
| unsigned char *p, |
| unsigned int size, |
| struct reloc_queue *queue) |
| { |
| int queue_index = som_reloc_queue_find (p, size, queue); |
| |
| if (queue_index != -1) |
| { |
| /* Found this in a previous fixup. Undo the fixup we |
| just built and use R_PREV_FIXUP instead. We saved |
| a total of size - 1 bytes in the fixup stream. */ |
| bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p); |
| p += 1; |
| *subspace_reloc_sizep += 1; |
| som_reloc_queue_fix (queue, queue_index); |
| } |
| else |
| { |
| som_reloc_queue_insert (p, size, queue); |
| *subspace_reloc_sizep += size; |
| p += size; |
| } |
| return p; |
| } |
| |
| /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP |
| bytes without any relocation. Update the size of the subspace |
| relocation stream via SUBSPACE_RELOC_SIZE_P; also return the |
| current pointer into the relocation stream. */ |
| |
| static unsigned char * |
| som_reloc_skip (bfd *abfd, |
| unsigned int skip, |
| unsigned char *p, |
| unsigned int *subspace_reloc_sizep, |
| struct reloc_queue *queue) |
| { |
| /* Use a 4 byte R_NO_RELOCATION entry with a maximal value |
| then R_PREV_FIXUPs to get the difference down to a |
| reasonable size. */ |
| if (skip >= 0x1000000) |
| { |
| skip -= 0x1000000; |
| bfd_put_8 (abfd, R_NO_RELOCATION + 31, p); |
| bfd_put_8 (abfd, 0xff, p + 1); |
| bfd_put_16 (abfd, (bfd_vma) 0xffff, p + 2); |
| p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue); |
| while (skip >= 0x1000000) |
| { |
| skip -= 0x1000000; |
| bfd_put_8 (abfd, R_PREV_FIXUP, p); |
| p++; |
| *subspace_reloc_sizep += 1; |
| /* No need to adjust queue here since we are repeating the |
| most recent fixup. */ |
| } |
| } |
| |
| /* The difference must be less than 0x1000000. Use one |
| more R_NO_RELOCATION entry to get to the right difference. */ |
| if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0) |
| { |
| /* Difference can be handled in a simple single-byte |
| R_NO_RELOCATION entry. */ |
| if (skip <= 0x60) |
| { |
| bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p); |
| *subspace_reloc_sizep += 1; |
| p++; |
| } |
| /* Handle it with a two byte R_NO_RELOCATION entry. */ |
| else if (skip <= 0x1000) |
| { |
| bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p); |
| bfd_put_8 (abfd, (skip >> 2) - 1, p + 1); |
| p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue); |
| } |
| /* Handle it with a three byte R_NO_RELOCATION entry. */ |
| else |
| { |
| bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p); |
| bfd_put_16 (abfd, (bfd_vma) (skip >> 2) - 1, p + 1); |
| p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue); |
| } |
| } |
| /* Ugh. Punt and use a 4 byte entry. */ |
| else if (skip > 0) |
| { |
| bfd_put_8 (abfd, R_NO_RELOCATION + 31, p); |
| bfd_put_8 (abfd, (skip - 1) >> 16, p + 1); |
| bfd_put_16 (abfd, (bfd_vma) skip - 1, p + 2); |
| p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue); |
| } |
| return p; |
| } |
| |
| /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend |
| from a BFD relocation. Update the size of the subspace relocation |
| stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer |
| into the relocation stream. */ |
| |
| static unsigned char * |
| som_reloc_addend (bfd *abfd, |
| bfd_vma addend, |
| unsigned char *p, |
| unsigned int *subspace_reloc_sizep, |
| struct reloc_queue *queue) |
| { |
| if (addend + 0x80 < 0x100) |
| { |
| bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p); |
| bfd_put_8 (abfd, addend, p + 1); |
| p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue); |
| } |
| else if (addend + 0x8000 < 0x10000) |
| { |
| bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p); |
| bfd_put_16 (abfd, addend, p + 1); |
| p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue); |
| } |
| else if (addend + 0x800000 < 0x1000000) |
| { |
| bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p); |
| bfd_put_8 (abfd, addend >> 16, p + 1); |
| bfd_put_16 (abfd, addend, p + 2); |
| p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue); |
| } |
| else |
| { |
| bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p); |
| bfd_put_32 (abfd, addend, p + 1); |
| p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue); |
| } |
| return p; |
| } |
| |
| /* Handle a single function call relocation. */ |
| |
| static unsigned char * |
| som_reloc_call (bfd *abfd, |
| unsigned char *p, |
| unsigned int *subspace_reloc_sizep, |
| arelent *bfd_reloc, |
| int sym_num, |
| struct reloc_queue *queue) |
| { |
| int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend); |
| int rtn_bits = arg_bits & 0x3; |
| int type, done = 0; |
| |
| /* You'll never believe all this is necessary to handle relocations |
| for function calls. Having to compute and pack the argument |
| relocation bits is the real nightmare. |
| |
| If you're interested in how this works, just forget it. You really |
| do not want to know about this braindamage. */ |
| |
| /* First see if this can be done with a "simple" relocation. Simple |
| relocations have a symbol number < 0x100 and have simple encodings |
| of argument relocations. */ |
| |
| if (sym_num < 0x100) |
| { |
| switch (arg_bits) |
| { |
| case 0: |
| case 1: |
| type = 0; |
| break; |
| case 1 << 8: |
| case 1 << 8 | 1: |
| type = 1; |
| break; |
| case 1 << 8 | 1 << 6: |
| case 1 << 8 | 1 << 6 | 1: |
| type = 2; |
| break; |
| case 1 << 8 | 1 << 6 | 1 << 4: |
| case 1 << 8 | 1 << 6 | 1 << 4 | 1: |
| type = 3; |
| break; |
| case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2: |
| case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1: |
| type = 4; |
| break; |
| default: |
| /* Not one of the easy encodings. This will have to be |
| handled by the more complex code below. */ |
| type = -1; |
| break; |
| } |
| if (type != -1) |
| { |
| /* Account for the return value too. */ |
| if (rtn_bits) |
| type += 5; |
| |
| /* Emit a 2 byte relocation. Then see if it can be handled |
| with a relocation which is already in the relocation queue. */ |
| bfd_put_8 (abfd, bfd_reloc->howto->type + type, p); |
| bfd_put_8 (abfd, sym_num, p + 1); |
| p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue); |
| done = 1; |
| } |
| } |
| |
| /* If this could not be handled with a simple relocation, then do a hard |
| one. Hard relocations occur if the symbol number was too high or if |
| the encoding of argument relocation bits is too complex. */ |
| if (! done) |
| { |
| /* Don't ask about these magic sequences. I took them straight |
| from gas-1.36 which took them from the a.out man page. */ |
| type = rtn_bits; |
| if ((arg_bits >> 6 & 0xf) == 0xe) |
| type += 9 * 40; |
| else |
| type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40; |
| if ((arg_bits >> 2 & 0xf) == 0xe) |
| type += 9 * 4; |
| else |
| type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4; |
| |
| /* Output the first two bytes of the relocation. These describe |
| the length of the relocation and encoding style. */ |
| bfd_put_8 (abfd, bfd_reloc->howto->type + 10 |
| + 2 * (sym_num >= 0x100) + (type >= 0x100), |
| p); |
| bfd_put_8 (abfd, type, p + 1); |
| |
| /* Now output the symbol index and see if this bizarre relocation |
| just happened to be in the relocation queue. */ |
| if (sym_num < 0x100) |
| { |
| bfd_put_8 (abfd, sym_num, p + 2); |
| p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue); |
| } |
| else |
| { |
| bfd_put_8 (abfd, sym_num >> 16, p + 2); |
| bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3); |
| p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue); |
| } |
| } |
| return p; |
| } |
| |
| /* Return the logarithm of X, base 2, considering X unsigned, |
| if X is a power of 2. Otherwise, returns -1. */ |
| |
| static int |
| exact_log2 (unsigned int x) |
| { |
| int log = 0; |
| |
| /* Test for 0 or a power of 2. */ |
| if (x == 0 || x != (x & -x)) |
| return -1; |
| |
| while ((x >>= 1) != 0) |
| log++; |
| return log; |
| } |
| |
| static bfd_reloc_status_type |
| hppa_som_reloc (bfd *abfd ATTRIBUTE_UNUSED, |
| arelent *reloc_entry, |
| asymbol *symbol_in ATTRIBUTE_UNUSED, |
| void *data ATTRIBUTE_UNUSED, |
| asection *input_section, |
| bfd *output_bfd, |
| char **error_message ATTRIBUTE_UNUSED) |
| { |
| if (output_bfd) |
| reloc_entry->address += input_section->output_offset; |
| |
| return bfd_reloc_ok; |
| } |
| |
| /* Given a generic HPPA relocation type, the instruction format, |
| and a field selector, return one or more appropriate SOM relocations. */ |
| |
| int ** |
| hppa_som_gen_reloc_type (bfd *abfd, |
| int base_type, |
| int format, |
| enum hppa_reloc_field_selector_type_alt field, |
| int sym_diff, |
| asymbol *sym) |
| { |
| int *final_type, **final_types; |
| |
| final_types = bfd_alloc (abfd, (bfd_size_type) sizeof (int *) * 6); |
| final_type = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); |
| if (!final_types || !final_type) |
| return NULL; |
| |
| /* The field selector may require additional relocations to be |
| generated. It's impossible to know at this moment if additional |
| relocations will be needed, so we make them. The code to actually |
| write the relocation/fixup stream is responsible for removing |
| any redundant relocations. */ |
| switch (field) |
| { |
| case e_fsel: |
| case e_psel: |
| case e_lpsel: |
| case e_rpsel: |
| final_types[0] = final_type; |
| final_types[1] = NULL; |
| final_types[2] = NULL; |
| *final_type = base_type; |
| break; |
| |
| case e_tsel: |
| case e_ltsel: |
| case e_rtsel: |
| final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); |
| if (!final_types[0]) |
| return NULL; |
| if (field == e_tsel) |
| *final_types[0] = R_FSEL; |
| else if (field == e_ltsel) |
| *final_types[0] = R_LSEL; |
| else |
| *final_types[0] = R_RSEL; |
| final_types[1] = final_type; |
| final_types[2] = NULL; |
| *final_type = base_type; |
| break; |
| |
| case e_lssel: |
| case e_rssel: |
| final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); |
| if (!final_types[0]) |
| return NULL; |
| *final_types[0] = R_S_MODE; |
| final_types[1] = final_type; |
| final_types[2] = NULL; |
| *final_type = base_type; |
| break; |
| |
| case e_lsel: |
| case e_rsel: |
| final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); |
| if (!final_types[0]) |
| return NULL; |
| *final_types[0] = R_N_MODE; |
| final_types[1] = final_type; |
| final_types[2] = NULL; |
| *final_type = base_type; |
| break; |
| |
| case e_ldsel: |
| case e_rdsel: |
| final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); |
| if (!final_types[0]) |
| return NULL; |
| *final_types[0] = R_D_MODE; |
| final_types[1] = final_type; |
| final_types[2] = NULL; |
| *final_type = base_type; |
| break; |
| |
| case e_lrsel: |
| case e_rrsel: |
| final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); |
| if (!final_types[0]) |
| return NULL; |
| *final_types[0] = R_R_MODE; |
| final_types[1] = final_type; |
| final_types[2] = NULL; |
| *final_type = base_type; |
| break; |
| |
| case e_nsel: |
| final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); |
| if (!final_types[0]) |
| return NULL; |
| *final_types[0] = R_N1SEL; |
| final_types[1] = final_type; |
| final_types[2] = NULL; |
| *final_type = base_type; |
| break; |
| |
| case e_nlsel: |
| case e_nlrsel: |
| final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); |
| if (!final_types[0]) |
| return NULL; |
| *final_types[0] = R_N0SEL; |
| final_types[1] = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); |
| if (!final_types[1]) |
| return NULL; |
| if (field == e_nlsel) |
| *final_types[1] = R_N_MODE; |
| else |
| *final_types[1] = R_R_MODE; |
| final_types[2] = final_type; |
| final_types[3] = NULL; |
| *final_type = base_type; |
| break; |
| |
| /* FIXME: These two field selectors are not currently supported. */ |
| case e_ltpsel: |
| case e_rtpsel: |
| abort (); |
| } |
| |
| switch (base_type) |
| { |
| case R_HPPA: |
| /* The difference of two symbols needs *very* special handling. */ |
| if (sym_diff) |
| { |
| size_t amt = sizeof (int); |
| |
| final_types[0] = bfd_alloc (abfd, amt); |
| final_types[1] = bfd_alloc (abfd, amt); |
| final_types[2] = bfd_alloc (abfd, amt); |
| final_types[3] = bfd_alloc (abfd, amt); |
| if (!final_types[0] || !final_types[1] || !final_types[2]) |
| return NULL; |
| if (field == e_fsel) |
| *final_types[0] = R_FSEL; |
| else if (field == e_rsel) |
| *final_types[0] = R_RSEL; |
| else if (field == e_lsel) |
| *final_types[0] = R_LSEL; |
| *final_types[1] = R_COMP2; |
| *final_types[2] = R_COMP2; |
| *final_types[3] = R_COMP1; |
| final_types[4] = final_type; |
| if (format == 32) |
| *final_types[4] = R_DATA_EXPR; |
| else |
| *final_types[4] = R_CODE_EXPR; |
| final_types[5] = NULL; |
| break; |
| } |
| /* PLABELs get their own relocation type. */ |
| else if (field == e_psel |
| || field == e_lpsel |
| || field == e_rpsel) |
| { |
| /* A PLABEL relocation that has a size of 32 bits must |
| be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */ |
| if (format == 32) |
| *final_type = R_DATA_PLABEL; |
| else |
| *final_type = R_CODE_PLABEL; |
| } |
| /* PIC stuff. */ |
| else if (field == e_tsel |
| || field == e_ltsel |
| || field == e_rtsel) |
| *final_type = R_DLT_REL; |
| /* A relocation in the data space is always a full 32bits. */ |
| else if (format == 32) |
| { |
| *final_type = R_DATA_ONE_SYMBOL; |
| |
| /* If there's no SOM symbol type associated with this BFD |
| symbol, then set the symbol type to ST_DATA. |
| |
| Only do this if the type is going to default later when |
| we write the object file. |
| |
| This is done so that the linker never encounters an |
| R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol. |
| |
| This allows the compiler to generate exception handling |
| tables. |
| |
| Note that one day we may need to also emit BEGIN_BRTAB and |
| END_BRTAB to prevent the linker from optimizing away insns |
| in exception handling regions. */ |
| if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN |
| && (sym->flags & BSF_SECTION_SYM) == 0 |
| && (sym->flags & BSF_FUNCTION) == 0 |
| && ! bfd_is_com_section (sym->section)) |
| som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA; |
| } |
| break; |
| |
| case R_HPPA_GOTOFF: |
| /* More PLABEL special cases. */ |
| if (field == e_psel |
| || field == e_lpsel |
| || field == e_rpsel) |
| *final_type = R_DATA_PLABEL; |
| else if (field == e_fsel && format == 32) |
| *final_type = R_DATA_GPREL; |
| break; |
| |
| case R_HPPA_COMPLEX: |
| /* The difference of two symbols needs *very* special handling. */ |
| if (sym_diff) |
| { |
| size_t amt = sizeof (int); |
| |
| final_types[0] = bfd_alloc (abfd, amt); |
| final_types[1] = bfd_alloc (abfd, amt); |
| final_types[2] = bfd_alloc (abfd, amt); |
| final_types[3] = bfd_alloc (abfd, amt); |
| if (!final_types[0] || !final_types[1] || !final_types[2]) |
| return NULL; |
| if (field == e_fsel) |
| *final_types[0] = R_FSEL; |
| else if (field == e_rsel) |
| *final_types[0] = R_RSEL; |
| else if (field == e_lsel) |
| *final_types[0] = R_LSEL; |
| *final_types[1] = R_COMP2; |
| *final_types[2] = R_COMP2; |
| *final_types[3] = R_COMP1; |
| final_types[4] = final_type; |
| if (format == 32) |
| *final_types[4] = R_DATA_EXPR; |
| else |
| *final_types[4] = R_CODE_EXPR; |
| final_types[5] = NULL; |
| break; |
| } |
| else |
| break; |
| |
| case R_HPPA_NONE: |
| case R_HPPA_ABS_CALL: |
| /* Right now we can default all these. */ |
| break; |
| |
| case R_HPPA_PCREL_CALL: |
| { |
| #ifndef NO_PCREL_MODES |
| /* If we have short and long pcrel modes, then generate the proper |
| mode selector, then the pcrel relocation. Redundant selectors |
| will be eliminated as the relocs are sized and emitted. */ |
| size_t amt = sizeof (int); |
| |
| final_types[0] = bfd_alloc (abfd, amt); |
| if (!final_types[0]) |
| return NULL; |
| if (format == 17) |
| *final_types[0] = R_SHORT_PCREL_MODE; |
| else |
| *final_types[0] = R_LONG_PCREL_MODE; |
| final_types[1] = final_type; |
| final_types[2] = NULL; |
| *final_type = base_type; |
| #endif |
| break; |
| } |
| } |
| return final_types; |
| } |
| |
| /* Return the address of the correct entry in the PA SOM relocation |
| howto table. */ |
| |
| static reloc_howto_type * |
| som_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| bfd_reloc_code_real_type code) |
| { |
| if ((int) code < (int) R_NO_RELOCATION + 255) |
| { |
| BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code); |
| return &som_hppa_howto_table[(int) code]; |
| } |
| |
| return NULL; |
| } |
| |
| static reloc_howto_type * |
| som_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| const char *r_name) |
| { |
| unsigned int i; |
| |
| for (i = 0; |
| i < sizeof (som_hppa_howto_table) / sizeof (som_hppa_howto_table[0]); |
| i++) |
| if (som_hppa_howto_table[i].name != NULL |
| && strcasecmp (som_hppa_howto_table[i].name, r_name) == 0) |
| return &som_hppa_howto_table[i]; |
| |
| return NULL; |
| } |
| |
| static void |
| som_swap_clock_in (struct som_external_clock *src, |
| struct som_clock *dst) |
| { |
| dst->secs = bfd_getb32 (src->secs); |
| dst->nanosecs = bfd_getb32 (src->nanosecs); |
| } |
| |
| static void |
| som_swap_clock_out (struct som_clock *src, |
| struct som_external_clock *dst) |
| { |
| bfd_putb32 (src->secs, dst->secs); |
| bfd_putb32 (src->nanosecs, dst->nanosecs); |
| } |
| |
| static void |
| som_swap_header_in (struct som_external_header *src, |
| struct som_header *dst) |
| { |
| dst->system_id = bfd_getb16 (src->system_id); |
| dst->a_magic = bfd_getb16 (src->a_magic); |
| dst->version_id = bfd_getb32 (src->version_id); |
| som_swap_clock_in (&src->file_time, &dst->file_time); |
| dst->entry_space = bfd_getb32 (src->entry_space); |
| dst->entry_subspace = bfd_getb32 (src->entry_subspace); |
| dst->entry_offset = bfd_getb32 (src->entry_offset); |
| dst->aux_header_location = bfd_getb32 (src->aux_header_location); |
| dst->aux_header_size = bfd_getb32 (src->aux_header_size); |
| dst->som_length = bfd_getb32 (src->som_length); |
| dst->presumed_dp = bfd_getb32 (src->presumed_dp); |
| dst->space_location = bfd_getb32 (src->space_location); |
| dst->space_total = bfd_getb32 (src->space_total); |
| dst->subspace_location = bfd_getb32 (src->subspace_location); |
| dst->subspace_total = bfd_getb32 (src->subspace_total); |
| dst->loader_fixup_location = bfd_getb32 (src->loader_fixup_location); |
| dst->loader_fixup_total = bfd_getb32 (src->loader_fixup_total); |
| dst->space_strings_location = bfd_getb32 (src->space_strings_location); |
| dst->space_strings_size = bfd_getb32 (src->space_strings_size); |
| dst->init_array_location = bfd_getb32 (src->init_array_location); |
| dst->init_array_total = bfd_getb32 (src->init_array_total); |
| dst->compiler_location = bfd_getb32 (src->compiler_location); |
| dst->compiler_total = bfd_getb32 (src->compiler_total); |
| dst->symbol_location = bfd_getb32 (src->symbol_location); |
| dst->symbol_total = bfd_getb32 (src->symbol_total); |
| dst->fixup_request_location = bfd_getb32 (src->fixup_request_location); |
| dst->fixup_request_total = bfd_getb32 (src->fixup_request_total); |
| dst->symbol_strings_location = bfd_getb32 (src->symbol_strings_location); |
| dst->symbol_strings_size = bfd_getb32 (src->symbol_strings_size); |
| dst->unloadable_sp_location = bfd_getb32 (src->unloadable_sp_location); |
| dst->unloadable_sp_size = bfd_getb32 (src->unloadable_sp_size); |
| dst->checksum = bfd_getb32 (src->checksum); |
| } |
| |
| static void |
| som_swap_header_out (struct som_header *src, |
| struct som_external_header *dst) |
| { |
| bfd_putb16 (src->system_id, dst->system_id); |
| bfd_putb16 (src->a_magic, dst->a_magic); |
| bfd_putb32 (src->version_id, dst->version_id); |
| som_swap_clock_out (&src->file_time, &dst->file_time); |
| bfd_putb32 (src->entry_space, dst->entry_space); |
| bfd_putb32 (src->entry_subspace, dst->entry_subspace); |
| bfd_putb32 (src->entry_offset, dst->entry_offset); |
| bfd_putb32 (src->aux_header_location, dst->aux_header_location); |
| bfd_putb32 (src->aux_header_size, dst->aux_header_size); |
| bfd_putb32 (src->som_length, dst->som_length); |
| bfd_putb32 (src->presumed_dp, dst->presumed_dp); |
| bfd_putb32 (src->space_location, dst->space_location); |
| bfd_putb32 (src->space_total, dst->space_total); |
| bfd_putb32 (src->subspace_location, dst->subspace_location); |
| bfd_putb32 (src->subspace_total, dst->subspace_total); |
| bfd_putb32 (src->loader_fixup_location, dst->loader_fixup_location); |
| bfd_putb32 (src->loader_fixup_total, dst->loader_fixup_total); |
| bfd_putb32 (src->space_strings_location, dst->space_strings_location); |
| bfd_putb32 (src->space_strings_size, dst->space_strings_size); |
| bfd_putb32 (src->init_array_location, dst->init_array_location); |
| bfd_putb32 (src->init_array_total, dst->init_array_total); |
| bfd_putb32 (src->compiler_location, dst->compiler_location); |
| bfd_putb32 (src->compiler_total, dst->compiler_total); |
| bfd_putb32 (src->symbol_location, dst->symbol_location); |
| bfd_putb32 (src->symbol_total, dst->symbol_total); |
| bfd_putb32 (src->fixup_request_location, dst->fixup_request_location); |
| bfd_putb32 (src->fixup_request_total, dst->fixup_request_total); |
| bfd_putb32 (src->symbol_strings_location, dst->symbol_strings_location); |
| bfd_putb32 (src->symbol_strings_size, dst->symbol_strings_size); |
| bfd_putb32 (src->unloadable_sp_location, dst->unloadable_sp_location); |
| bfd_putb32 (src->unloadable_sp_size, dst->unloadable_sp_size); |
| bfd_putb32 (src->checksum, dst->checksum); |
| } |
| |
| static void |
| som_swap_space_dictionary_in (struct som_external_space_dictionary_record *src, |
| struct som_space_dictionary_record *dst) |
| { |
| unsigned int flags; |
| |
| dst->name = bfd_getb32 (src->name); |
| flags = bfd_getb32 (src->flags); |
| dst->is_loadable = (flags & SOM_SPACE_IS_LOADABLE) != 0; |
| dst->is_defined = (flags & SOM_SPACE_IS_DEFINED) != 0; |
| dst->is_private = (flags & SOM_SPACE_IS_PRIVATE) != 0; |
| dst->has_intermediate_code = (flags & SOM_SPACE_HAS_INTERMEDIATE_CODE) != 0; |
| dst->is_tspecific = (flags & SOM_SPACE_IS_TSPECIFIC) != 0; |
| dst->reserved = 0; |
| dst->sort_key = (flags >> SOM_SPACE_SORT_KEY_SH) & SOM_SPACE_SORT_KEY_MASK; |
| dst->reserved2 = 0; |
| dst->space_number = bfd_getb32 (src->space_number); |
| dst->subspace_index = bfd_getb32 (src->subspace_index); |
| dst->subspace_quantity = bfd_getb32 (src->subspace_quantity); |
| dst->loader_fix_index = bfd_getb32 (src->loader_fix_index); |
| dst->loader_fix_quantity = bfd_getb32 (src->loader_fix_quantity); |
| dst->init_pointer_index = bfd_getb32 (src->init_pointer_index); |
| dst->init_pointer_quantity = bfd_getb32 (src->init_pointer_quantity); |
| } |
| |
| static void |
| som_swap_space_dictionary_out (struct som_space_dictionary_record *src, |
| struct som_external_space_dictionary_record *dst) |
| { |
| unsigned int flags; |
| |
| bfd_putb32 (src->name, dst->name); |
| |
| flags = 0; |
| if (src->is_loadable) |
| flags |= SOM_SPACE_IS_LOADABLE; |
| if (src->is_defined) |
| flags |= SOM_SPACE_IS_DEFINED; |
| if (src->is_private) |
| flags |= SOM_SPACE_IS_PRIVATE; |
| if (src->has_intermediate_code) |
| flags |= SOM_SPACE_HAS_INTERMEDIATE_CODE; |
| if (src->is_tspecific) |
| flags |= SOM_SPACE_IS_TSPECIFIC; |
| flags |= (src->sort_key & SOM_SPACE_SORT_KEY_MASK) << SOM_SPACE_SORT_KEY_SH; |
| bfd_putb32 (flags, dst->flags); |
| bfd_putb32 (src->space_number, dst->space_number); |
| bfd_putb32 (src->subspace_index, dst->subspace_index); |
| bfd_putb32 (src->subspace_quantity, dst->subspace_quantity); |
| bfd_putb32 (src->loader_fix_index, dst->loader_fix_index); |
| bfd_putb32 (src->loader_fix_quantity, dst->loader_fix_quantity); |
| bfd_putb32 (src->init_pointer_index, dst->init_pointer_index); |
| bfd_putb32 (src->init_pointer_quantity, dst->init_pointer_quantity); |
| } |
| |
| static void |
| som_swap_subspace_dictionary_in |
| (struct som_external_subspace_dictionary_record *src, |
| struct som_subspace_dictionary_record *dst) |
| { |
| unsigned int flags; |
| dst->space_index = bfd_getb32 (src->space_index); |
| flags = bfd_getb32 (src->flags); |
| dst->access_control_bits = (flags >> SOM_SUBSPACE_ACCESS_CONTROL_BITS_SH) |
| & SOM_SUBSPACE_ACCESS_CONTROL_BITS_MASK; |
| dst->memory_resident = (flags & SOM_SUBSPACE_MEMORY_RESIDENT) != 0; |
| dst->dup_common = (flags & SOM_SUBSPACE_DUP_COMMON) != 0; |
| dst->is_common = (flags & SOM_SUBSPACE_IS_COMMON) != 0; |
| dst->is_loadable = (flags & SOM_SUBSPACE_IS_LOADABLE) != 0; |
| dst->quadrant = (flags >> SOM_SUBSPACE_QUADRANT_SH) |
| & SOM_SUBSPACE_QUADRANT_MASK; |
| dst->initially_frozen = (flags & SOM_SUBSPACE_INITIALLY_FROZEN) != 0; |
| dst->is_first = (flags & SOM_SUBSPACE_IS_FIRST) != 0; |
| dst->code_only = (flags & SOM_SUBSPACE_CODE_ONLY) != 0; |
| dst->sort_key = (flags >> SOM_SUBSPACE_SORT_KEY_SH) |
| & SOM_SUBSPACE_SORT_KEY_MASK; |
| dst->replicate_init = (flags & SOM_SUBSPACE_REPLICATE_INIT) != 0; |
| dst->continuation = (flags & SOM_SUBSPACE_CONTINUATION) != 0; |
| dst->is_tspecific = (flags & SOM_SUBSPACE_IS_TSPECIFIC) != 0; |
| dst->is_comdat = (flags & SOM_SUBSPACE_IS_COMDAT) != 0; |
| dst->reserved = 0; |
| dst->file_loc_init_value = bfd_getb32 (src->file_loc_init_value); |
| dst->initialization_length = bfd_getb32 (src->initialization_length); |
| dst->subspace_start = bfd_getb32 (src->subspace_start); |
| dst->subspace_length = bfd_getb32 (src->subspace_length); |
| dst->alignment = bfd_getb32 (src->alignment); |
| dst->name = bfd_getb32 (src->name); |
| dst->fixup_request_index = bfd_getb32 (src->fixup_request_index); |
| dst->fixup_request_quantity = bfd_getb32 (src->fixup_request_quantity); |
| } |
| |
| static void |
| som_swap_subspace_dictionary_record_out |
| (struct som_subspace_dictionary_record *src, |
| struct som_external_subspace_dictionary_record *dst) |
| { |
| unsigned int flags; |
| |
| bfd_putb32 (src->space_index, dst->space_index); |
| flags = (src->access_control_bits & SOM_SUBSPACE_ACCESS_CONTROL_BITS_MASK) |
| << SOM_SUBSPACE_ACCESS_CONTROL_BITS_SH; |
| if (src->memory_resident) |
| flags |= SOM_SUBSPACE_MEMORY_RESIDENT; |
| if (src->dup_common) |
| flags |= SOM_SUBSPACE_DUP_COMMON; |
| if (src->is_common) |
| flags |= SOM_SUBSPACE_IS_COMMON; |
| if (src->is_loadable) |
| flags |= SOM_SUBSPACE_IS_LOADABLE; |
| flags |= (src->quadrant & SOM_SUBSPACE_QUADRANT_MASK) |
| << SOM_SUBSPACE_QUADRANT_SH; |
| if (src->initially_frozen) |
| flags |= SOM_SUBSPACE_INITIALLY_FROZEN; |
| if (src->is_first) |
| flags |= SOM_SUBSPACE_IS_FIRST; |
| if (src->code_only) |
| flags |= SOM_SUBSPACE_CODE_ONLY; |
| flags |= (src->sort_key & SOM_SUBSPACE_SORT_KEY_MASK) |
| << SOM_SUBSPACE_SORT_KEY_SH; |
| if (src->replicate_init) |
| flags |= SOM_SUBSPACE_REPLICATE_INIT; |
| if (src->continuation) |
| flags |= SOM_SUBSPACE_CONTINUATION; |
| if (src->is_tspecific) |
| flags |= SOM_SUBSPACE_IS_TSPECIFIC; |
| if (src->is_comdat) |
| flags |= SOM_SUBSPACE_IS_COMDAT; |
| bfd_putb32 (flags, dst->flags); |
| bfd_putb32 (src->file_loc_init_value, dst->file_loc_init_value); |
| bfd_putb32 (src->initialization_length, dst->initialization_length); |
| bfd_putb32 (src->subspace_start, dst->subspace_start); |
| bfd_putb32 (src->subspace_length, dst->subspace_length); |
| bfd_putb32 (src->alignment, dst->alignment); |
| bfd_putb32 (src->name, dst->name); |
| bfd_putb32 (src->fixup_request_index, dst->fixup_request_index); |
| bfd_putb32 (src->fixup_request_quantity, dst->fixup_request_quantity); |
| } |
| |
| static void |
| som_swap_aux_id_in (struct som_external_aux_id *src, |
| struct som_aux_id *dst) |
| { |
| unsigned int flags = bfd_getb32 (src->flags); |
| |
| dst->mandatory = (flags & SOM_AUX_ID_MANDATORY) != 0; |
| dst->copy = (flags & SOM_AUX_ID_COPY) != 0; |
| dst->append = (flags & SOM_AUX_ID_APPEND) != 0; |
| dst->ignore = (flags & SOM_AUX_ID_IGNORE) != 0; |
| dst->type = (flags >> SOM_AUX_ID_TYPE_SH) & SOM_AUX_ID_TYPE_MASK; |
| dst->length = bfd_getb32 (src->length); |
| } |
| |
| static void |
| som_swap_aux_id_out (struct som_aux_id *src, |
| struct som_external_aux_id *dst) |
| { |
| unsigned int flags = 0; |
| |
| if (src->mandatory) |
| flags |= SOM_AUX_ID_MANDATORY; |
| if (src->copy) |
| flags |= SOM_AUX_ID_COPY; |
| if (src->append) |
| flags |= SOM_AUX_ID_APPEND; |
| if (src->ignore) |
| flags |= SOM_AUX_ID_IGNORE; |
| flags |= (src->type & SOM_AUX_ID_TYPE_MASK) << SOM_AUX_ID_TYPE_SH; |
| bfd_putb32 (flags, dst->flags); |
| bfd_putb32 (src->length, dst->length); |
| } |
| |
| static void |
| som_swap_string_auxhdr_out (struct som_string_auxhdr *src, |
| struct som_external_string_auxhdr *dst) |
| { |
| som_swap_aux_id_out (&src->header_id, &dst->header_id); |
| bfd_putb32 (src->string_length, dst->string_length); |
| } |
| |
| static void |
| som_swap_compilation_unit_out (struct som_compilation_unit *src, |
| struct som_external_compilation_unit *dst) |
| { |
| bfd_putb32 (src->name.strx, dst->name); |
| bfd_putb32 (src->language_name.strx, dst->language_name); |
| bfd_putb32 (src->product_id.strx, dst->product_id); |
| bfd_putb32 (src->version_id.strx, dst->version_id); |
| bfd_putb32 (src->flags, dst->flags); |
| som_swap_clock_out (&src->compile_time, &dst->compile_time); |
| som_swap_clock_out (&src->source_time, &dst->source_time); |
| } |
| |
| static void |
| som_swap_exec_auxhdr_in (struct som_external_exec_auxhdr *src, |
| struct som_exec_auxhdr *dst) |
| { |
| som_swap_aux_id_in (&src->som_auxhdr, &dst->som_auxhdr); |
| dst->exec_tsize = bfd_getb32 (src->exec_tsize); |
| dst->exec_tmem = bfd_getb32 (src->exec_tmem); |
| dst->exec_tfile = bfd_getb32 (src->exec_tfile); |
| dst->exec_dsize = bfd_getb32 (src->exec_dsize); |
| dst->exec_dmem = bfd_getb32 (src->exec_dmem); |
| dst->exec_dfile = bfd_getb32 (src->exec_dfile); |
| dst->exec_bsize = bfd_getb32 (src->exec_bsize); |
| dst->exec_entry = bfd_getb32 (src->exec_entry); |
| dst->exec_flags = bfd_getb32 (src->exec_flags); |
| dst->exec_bfill = bfd_getb32 (src->exec_bfill); |
| } |
| |
| static void |
| som_swap_exec_auxhdr_out (struct som_exec_auxhdr *src, |
| struct som_external_exec_auxhdr *dst) |
| { |
| som_swap_aux_id_out (&src->som_auxhdr, &dst->som_auxhdr); |
| bfd_putb32 (src->exec_tsize, dst->exec_tsize); |
| bfd_putb32 (src->exec_tmem, dst->exec_tmem); |
| bfd_putb32 (src->exec_tfile, dst->exec_tfile); |
| bfd_putb32 (src->exec_dsize, dst->exec_dsize); |
| bfd_putb32 (src->exec_dmem, dst->exec_dmem); |
| bfd_putb32 (src->exec_dfile, dst->exec_dfile); |
| bfd_putb32 (src->exec_bsize, dst->exec_bsize); |
| bfd_putb32 (src->exec_entry, dst->exec_entry); |
| bfd_putb32 (src->exec_flags, dst->exec_flags); |
| bfd_putb32 (src->exec_bfill, dst->exec_bfill); |
| } |
| |
| static void |
| som_swap_lst_header_in (struct som_external_lst_header *src, |
| struct som_lst_header *dst) |
| { |
| dst->system_id = bfd_getb16 (src->system_id); |
| dst->a_magic = bfd_getb16 (src->a_magic); |
| dst->version_id = bfd_getb32 (src->version_id); |
| som_swap_clock_in (&src->file_time, &dst->file_time); |
| dst->hash_loc = bfd_getb32 (src->hash_loc); |
| dst->hash_size = bfd_getb32 (src->hash_size); |
| dst->module_count = bfd_getb32 (src->module_count); |
| dst->module_limit = bfd_getb32 (src->module_limit); |
| dst->dir_loc = bfd_getb32 (src->dir_loc); |
| dst->export_loc = bfd_getb32 (src->export_loc); |
| dst->export_count = bfd_getb32 (src->export_count); |
| dst->import_loc = bfd_getb32 (src->import_loc); |
| dst->aux_loc = bfd_getb32 (src->aux_loc); |
| dst->aux_size = bfd_getb32 (src->aux_size); |
| dst->string_loc = bfd_getb32 (src->string_loc); |
| dst->string_size = bfd_getb32 (src->string_size); |
| dst->free_list = bfd_getb32 (src->free_list); |
| dst->file_end = bfd_getb32 (src->file_end); |
| dst->checksum = bfd_getb32 (src->checksum); |
| } |
| |
| /* Perform some initialization for an object. Save results of this |
| initialization in the BFD. */ |
| |
| static bfd_cleanup |
| som_object_setup (bfd *abfd, |
| struct som_header *file_hdrp, |
| struct som_exec_auxhdr *aux_hdrp, |
| unsigned long current_offset) |
| { |
| asection *section; |
| |
| /* som_mkobject will set bfd_error if som_mkobject fails. */ |
| if (! som_mkobject (abfd)) |
| return NULL; |
| |
| /* Set BFD flags based on what information is available in the SOM. */ |
| abfd->flags = BFD_NO_FLAGS; |
| if (file_hdrp->symbol_total) |
| abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS; |
| |
| switch (file_hdrp->a_magic) |
| { |
| case DEMAND_MAGIC: |
| abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P); |
| break; |
| case SHARE_MAGIC: |
| abfd->flags |= (WP_TEXT | EXEC_P); |
| break; |
| case EXEC_MAGIC: |
| abfd->flags |= (EXEC_P); |
| break; |
| case RELOC_MAGIC: |
| abfd->flags |= HAS_RELOC; |
| break; |
| #ifdef SHL_MAGIC |
| case SHL_MAGIC: |
| #endif |
| #ifdef DL_MAGIC |
| case DL_MAGIC: |
| #endif |
| abfd->flags |= DYNAMIC; |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Save the auxiliary header. */ |
| obj_som_exec_hdr (abfd) = aux_hdrp; |
| |
| /* Allocate space to hold the saved exec header information. */ |
| obj_som_exec_data (abfd) = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_exec_data)); |
| if (obj_som_exec_data (abfd) == NULL) |
| return NULL; |
| |
| /* The braindamaged OSF1 linker switched exec_flags and exec_entry! |
| |
| We used to identify OSF1 binaries based on NEW_VERSION_ID, but |
| apparently the latest HPUX linker is using NEW_VERSION_ID now. |
| |
| It's about time, OSF has used the new id since at least 1992; |
| HPUX didn't start till nearly 1995!. |
| |
| The new approach examines the entry field for an executable. If |
| it is not 4-byte aligned then it's not a proper code address and |
| we guess it's really the executable flags. For a main program, |
| we also consider zero to be indicative of a buggy linker, since |
| that is not a valid entry point. The entry point for a shared |
| library, however, can be zero so we do not consider that to be |
| indicative of a buggy linker. */ |
| if (aux_hdrp) |
| { |
| int found = 0; |
| |
| for (section = abfd->sections; section; section = section->next) |
| { |
| bfd_vma entry; |
| |
| if ((section->flags & SEC_CODE) == 0) |
| continue; |
| entry = aux_hdrp->exec_entry + aux_hdrp->exec_tmem; |
| if (entry >= section->vma |
| && entry < section->vma + section->size) |
| found = 1; |
| } |
| if ((aux_hdrp->exec_entry == 0 && !(abfd->flags & DYNAMIC)) |
| || (aux_hdrp->exec_entry & 0x3) != 0 |
| || ! found) |
| { |
| abfd->start_address = aux_hdrp->exec_flags; |
| obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry; |
| } |
| else |
| { |
| abfd->start_address = aux_hdrp->exec_entry + current_offset; |
| obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags; |
| } |
| } |
| |
| obj_som_exec_data (abfd)->version_id = file_hdrp->version_id; |
| |
| bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10); |
| abfd->symcount = file_hdrp->symbol_total; |
| |
| /* Initialize the saved symbol table and string table to NULL. |
| Save important offsets and sizes from the SOM header into |
| the BFD. */ |
| obj_som_stringtab (abfd) = NULL; |
| obj_som_symtab (abfd) = NULL; |
| obj_som_sorted_syms (abfd) = NULL; |
| obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size; |
| obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset; |
| obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location |
| + current_offset); |
| obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location |
| + current_offset); |
| obj_som_exec_data (abfd)->system_id = file_hdrp->system_id; |
| |
| return _bfd_no_cleanup; |
| } |
| |
| /* Convert all of the space and subspace info into BFD sections. Each space |
| contains a number of subspaces, which in turn describe the mapping between |
| regions of the exec file, and the address space that the program runs in. |
| BFD sections which correspond to spaces will overlap the sections for the |
| associated subspaces. */ |
| |
| static bool |
| setup_sections (bfd *abfd, |
| struct som_header *file_hdr, |
| unsigned long current_offset) |
| { |
| char *space_strings = NULL; |
| unsigned int space_index, i; |
| unsigned int total_subspaces = 0; |
| asection **subspace_sections = NULL; |
| asection *section; |
| size_t amt; |
| |
| /* First, read in space names. */ |
| amt = file_hdr->space_strings_size; |
| if (amt == (size_t) -1) |
| { |
| bfd_set_error (bfd_error_no_memory); |
| goto error_return; |
| } |
| if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location, |
| SEEK_SET) != 0) |
| goto error_return; |
| space_strings = (char *) _bfd_malloc_and_read (abfd, amt + 1, amt); |
| if (space_strings == NULL) |
| goto error_return; |
| /* Make sure that the string table is NUL terminated. */ |
| space_strings[amt] = 0; |
| |
| /* Loop over all of the space dictionaries, building up sections. */ |
| for (space_index = 0; space_index < file_hdr->space_total; space_index++) |
| { |
| struct som_space_dictionary_record space; |
| struct som_external_space_dictionary_record ext_space; |
| char *space_name; |
| struct som_external_subspace_dictionary_record ext_subspace; |
| struct som_subspace_dictionary_record subspace, save_subspace; |
| unsigned int subspace_index; |
| asection *space_asect; |
| bfd_size_type space_size = 0; |
| char *newname; |
| |
| /* Read the space dictionary element. */ |
| if (bfd_seek (abfd, |
| (current_offset + file_hdr->space_location |
| + space_index * sizeof (ext_space)), |
| SEEK_SET) != 0) |
| goto error_return; |
| amt = sizeof ext_space; |
| if (bfd_bread (&ext_space, amt, abfd) != amt) |
| goto error_return; |
| |
| som_swap_space_dictionary_in (&ext_space, &space); |
| |
| /* Setup the space name string. */ |
| if (space.name >= file_hdr->space_strings_size) |
| goto error_return; |
| |
| space_name = space.name + space_strings; |
| |
| /* Make a section out of it. */ |
| amt = strlen (space_name) + 1; |
| newname = bfd_alloc (abfd, amt); |
| if (!newname) |
| goto error_return; |
| strcpy (newname, space_name); |
| |
| space_asect = bfd_make_section_anyway (abfd, newname); |
| if (!space_asect) |
| goto error_return; |
| |
| if (space.is_loadable == 0) |
| space_asect->flags |= SEC_DEBUGGING; |
| |
| /* Set up all the attributes for the space. */ |
| if (! bfd_som_set_section_attributes (space_asect, space.is_defined, |
| space.is_private, space.sort_key, |
| space.space_number)) |
| goto error_return; |
| |
| /* If the space has no subspaces, then we're done. */ |
| if (space.subspace_quantity == 0) |
| continue; |
| |
| /* Now, read in the first subspace for this space. */ |
| if (bfd_seek (abfd, |
| (current_offset + file_hdr->subspace_location |
| + space.subspace_index * sizeof ext_subspace), |
| SEEK_SET) != 0) |
| goto error_return; |
| amt = sizeof ext_subspace; |
| if (bfd_bread (&ext_subspace, amt, abfd) != amt) |
| goto error_return; |
| /* Seek back to the start of the subspaces for loop below. */ |
| if (bfd_seek (abfd, |
| (current_offset + file_hdr->subspace_location |
| + space.subspace_index * sizeof ext_subspace), |
| SEEK_SET) != 0) |
| goto error_return; |
| |
| som_swap_subspace_dictionary_in (&ext_subspace, &subspace); |
| |
| /* Setup the start address and file loc from the first subspace |
| record. */ |
| space_asect->vma = subspace.subspace_start; |
| space_asect->filepos = subspace.file_loc_init_value + current_offset; |
| space_asect->alignment_power = exact_log2 (subspace.alignment); |
| if (space_asect->alignment_power == (unsigned) -1) |
| goto error_return; |
| |
| /* Initialize save_subspace so we can reliably determine if this |
| loop placed any useful values into it. */ |
| memset (&save_subspace, 0, sizeof (save_subspace)); |
| |
| /* Loop over the rest of the subspaces, building up more sections. */ |
| for (subspace_index = 0; subspace_index < space.subspace_quantity; |
| subspace_index++) |
| { |
| asection *subspace_asect; |
| char *subspace_name; |
| |
| /* Read in the next subspace. */ |
| amt = sizeof ext_subspace; |
| if (bfd_bread (&ext_subspace, amt, abfd) != amt) |
| goto error_return; |
| |
| som_swap_subspace_dictionary_in (&ext_subspace, &subspace); |
| |
| /* Setup the subspace name string. */ |
| if (subspace.name >= file_hdr->space_strings_size) |
| goto error_return; |
| |
| subspace_name = subspace.name + space_strings; |
| |
| amt = strlen (subspace_name) + 1; |
| newname = bfd_alloc (abfd, amt); |
| if (!newname) |
| goto error_return; |
| strcpy (newname, subspace_name); |
| |
| /* Make a section out of this subspace. */ |
| subspace_asect = bfd_make_section_anyway (abfd, newname); |
| if (!subspace_asect) |
| goto error_return; |
| |
| /* Store private information about the section. */ |
| if (! bfd_som_set_subsection_attributes (subspace_asect, space_asect, |
| subspace.access_control_bits, |
| subspace.sort_key, |
| subspace.quadrant, |
| subspace.is_comdat, |
| subspace.is_common, |
| subspace.dup_common)) |
| goto error_return; |
| |
| /* Keep an easy mapping between subspaces and sections. |
| Note we do not necessarily read the subspaces in the |
| same order in which they appear in the object file. |
| |
| So to make the target index come out correctly, we |
| store the location of the subspace header in target |
| index, then sort using the location of the subspace |
| header as the key. Then we can assign correct |
| subspace indices. */ |
| total_subspaces++; |
| subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace); |
| |
| /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified |
| by the access_control_bits in the subspace header. */ |
| switch (subspace.access_control_bits >> 4) |
| { |
| /* Readonly data. */ |
| case 0x0: |
| subspace_asect->flags |= SEC_DATA | SEC_READONLY; |
| break; |
| |
| /* Normal data. */ |
| case 0x1: |
| subspace_asect->flags |= SEC_DATA; |
| break; |
| |
| /* Readonly code and the gateways. |
| Gateways have other attributes which do not map |
| into anything BFD knows about. */ |
| case 0x2: |
| case 0x4: |
| case 0x5: |
| case 0x6: |
| case 0x7: |
| subspace_asect->flags |= SEC_CODE | SEC_READONLY; |
| break; |
| |
| /* dynamic (writable) code. */ |
| case 0x3: |
| subspace_asect->flags |= SEC_CODE; |
| break; |
| } |
| |
| if (subspace.is_comdat || subspace.is_common || subspace.dup_common) |
| subspace_asect->flags |= SEC_LINK_ONCE; |
| |
| if (subspace.subspace_length > 0) |
| subspace_asect->flags |= SEC_HAS_CONTENTS; |
| |
| if (subspace.is_loadable) |
| subspace_asect->flags |= SEC_ALLOC | SEC_LOAD; |
| else |
| subspace_asect->flags |= SEC_DEBUGGING; |
| |
| if (subspace.code_only) |
| subspace_asect->flags |= SEC_CODE; |
| |
| /* Both file_loc_init_value and initialization_length will |
| be zero for a BSS like subspace. */ |
| if (subspace.file_loc_init_value == 0 |
| && subspace.initialization_length == 0) |
| subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS); |
| |
| /* This subspace has relocations. |
| The fixup_request_quantity is a byte count for the number of |
| entries in the relocation stream; it is not the actual number |
| of relocations in the subspace. */ |
| if (subspace.fixup_request_quantity != 0) |
| { |
| subspace_asect->flags |= SEC_RELOC; |
| subspace_asect->rel_filepos = subspace.fixup_request_index; |
| som_section_data (subspace_asect)->reloc_size |
| = subspace.fixup_request_quantity; |
| /* We can not determine this yet. When we read in the |
| relocation table the correct value will be filled in. */ |
| subspace_asect->reloc_count = (unsigned) -1; |
| } |
| |
| /* Update save_subspace if appropriate. */ |
| if (subspace.file_loc_init_value > save_subspace.file_loc_init_value) |
| save_subspace = subspace; |
| |
| subspace_asect->vma = subspace.subspace_start; |
| subspace_asect->size = subspace.subspace_length; |
| subspace_asect->filepos = (subspace.file_loc_init_value |
| + current_offset); |
| subspace_asect->alignment_power = exact_log2 (subspace.alignment); |
| if (subspace_asect->alignment_power == (unsigned) -1) |
| goto error_return; |
| |
| /* Keep track of the accumulated sizes of the sections. */ |
| space_size += subspace.subspace_length; |
| } |
| |
| /* This can happen for a .o which defines symbols in otherwise |
| empty subspaces. */ |
| if (!save_subspace.file_loc_init_value) |
| space_asect->size = 0; |
| else |
| { |
| if (file_hdr->a_magic != RELOC_MAGIC) |
| { |
| /* Setup the size for the space section based upon the info |
| in the last subspace of the space. */ |
| space_asect->size = (save_subspace.subspace_start |
| - space_asect->vma |
| + save_subspace.subspace_length); |
| } |
| else |
| { |
| /* The subspace_start field is not initialised in relocatable |
| only objects, so it cannot be used for length calculations. |
| Instead we use the space_size value which we have been |
| accumulating. This isn't an accurate estimate since it |
| ignores alignment and ordering issues. */ |
| space_asect->size = space_size; |
| } |
| } |
| } |
| /* Now that we've read in all the subspace records, we need to assign |
| a target index to each subspace. */ |
| if (_bfd_mul_overflow (total_subspaces, sizeof (asection *), &amt)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| goto error_return; |
| } |
| subspace_sections = bfd_malloc (amt); |
| if (subspace_sections == NULL) |
| goto error_return; |
| |
| for (i = 0, section = abfd->sections; section; section = section->next) |
| { |
| if (!som_is_subspace (section)) |
| continue; |
| |
| subspace_sections[i] = section; |
| i++; |
| } |
| qsort (subspace_sections, total_subspaces, |
| sizeof (asection *), compare_subspaces); |
| |
| /* subspace_sections is now sorted in the order in which the subspaces |
| appear in the object file. Assign an index to each one now. */ |
| for (i = 0; i < total_subspaces; i++) |
| subspace_sections[i]->target_index = i; |
| |
| free (space_strings); |
| free (subspace_sections); |
| return true; |
| |
| error_return: |
| free (space_strings); |
| free (subspace_sections); |
| return false; |
| } |
| |
| |
| /* Read in a SOM object and make it into a BFD. */ |
| |
| static bfd_cleanup |
| som_object_p (bfd *abfd) |
| { |
| struct som_external_header ext_file_hdr; |
| struct som_header file_hdr; |
| struct som_exec_auxhdr *aux_hdr_ptr = NULL; |
| unsigned long current_offset = 0; |
| struct som_external_lst_header ext_lst_header; |
| struct som_external_som_entry ext_som_entry; |
| size_t amt; |
| unsigned int loc; |
| #define ENTRY_SIZE sizeof (struct som_external_som_entry) |
| |
| amt = sizeof (struct som_external_header); |
| if (bfd_bread (&ext_file_hdr, amt, abfd) != amt) |
| { |
| if (bfd_get_error () != bfd_error_system_call) |
| bfd_set_error (bfd_error_wrong_format); |
| return NULL; |
| } |
| |
| som_swap_header_in (&ext_file_hdr, &file_hdr); |
| |
| if (!_PA_RISC_ID (file_hdr.system_id)) |
| { |
| bfd_set_error (bfd_error_wrong_format); |
| return NULL; |
| } |
| |
| switch (file_hdr.a_magic) |
| { |
| case RELOC_MAGIC: |
| case EXEC_MAGIC: |
| case SHARE_MAGIC: |
| case DEMAND_MAGIC: |
| case DL_MAGIC: |
| case SHL_MAGIC: |
| #ifdef SHARED_MAGIC_CNX |
| case SHARED_MAGIC_CNX: |
| #endif |
| break; |
| |
| case EXECLIBMAGIC: |
| /* Read the lst header and determine where the SOM directory begins. */ |
| |
| if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0) |
| { |
| if (bfd_get_error () != bfd_error_system_call) |
| bfd_set_error (bfd_error_wrong_format); |
| return NULL; |
| } |
| |
| amt = sizeof (struct som_external_lst_header); |
| if (bfd_bread (&ext_lst_header, amt, abfd) != amt) |
| { |
| if (bfd_get_error () != bfd_error_system_call) |
| bfd_set_error (bfd_error_wrong_format); |
| return NULL; |
| } |
| |
| /* Position to and read the first directory entry. */ |
| loc = bfd_getb32 (ext_lst_header.dir_loc); |
| if (bfd_seek (abfd, loc, SEEK_SET) != 0) |
| { |
| if (bfd_get_error () != bfd_error_system_call) |
| bfd_set_error (bfd_error_wrong_format); |
| return NULL; |
| } |
| |
| amt = ENTRY_SIZE; |
| if (bfd_bread (&ext_som_entry, amt, abfd) != amt) |
| { |
| if (bfd_get_error () != bfd_error_system_call) |
| bfd_set_error (bfd_error_wrong_format); |
| return NULL; |
| } |
| |
| /* Now position to the first SOM. */ |
| current_offset = bfd_getb32 (ext_som_entry.location); |
| if (bfd_seek (abfd, current_offset, SEEK_SET) != 0) |
| { |
| if (bfd_get_error () != bfd_error_system_call) |
| bfd_set_error (bfd_error_wrong_format); |
| return NULL; |
| } |
| |
| /* And finally, re-read the som header. */ |
| amt = sizeof (struct som_external_header); |
| if (bfd_bread (&ext_file_hdr, amt, abfd) != amt) |
| { |
| if (bfd_get_error () != bfd_error_system_call) |
| bfd_set_error (bfd_error_wrong_format); |
| return NULL; |
| } |
| |
| som_swap_header_in (&ext_file_hdr, &file_hdr); |
| |
| break; |
| |
| default: |
| bfd_set_error (bfd_error_wrong_format); |
| return NULL; |
| } |
| |
| if (file_hdr.version_id != OLD_VERSION_ID |
| && file_hdr.version_id != NEW_VERSION_ID) |
| { |
| bfd_set_error (bfd_error_wrong_format); |
| return NULL; |
| } |
| |
| /* If the aux_header_size field in the file header is zero, then this |
| object is an incomplete executable (a .o file). Do not try to read |
| a non-existant auxiliary header. */ |
| if (file_hdr.aux_header_size != 0) |
| { |
| struct som_external_exec_auxhdr ext_exec_auxhdr; |
| |
| aux_hdr_ptr = bfd_zalloc (abfd, |
| (bfd_size_type) sizeof (*aux_hdr_ptr)); |
| if (aux_hdr_ptr == NULL) |
| return NULL; |
| amt = sizeof (struct som_external_exec_auxhdr); |
| if (bfd_bread (&ext_exec_auxhdr, amt, abfd) != amt) |
| { |
| if (bfd_get_error () != bfd_error_system_call) |
| bfd_set_error (bfd_error_wrong_format); |
| return NULL; |
| } |
| som_swap_exec_auxhdr_in (&ext_exec_auxhdr, aux_hdr_ptr); |
| } |
| |
| if (!setup_sections (abfd, &file_hdr, current_offset)) |
| { |
| /* setup_sections does not bubble up a bfd error code. */ |
| bfd_set_error (bfd_error_bad_value); |
| return NULL; |
| } |
| |
| /* This appears to be a valid SOM object. Do some initialization. */ |
| return som_object_setup (abfd, &file_hdr, aux_hdr_ptr, current_offset); |
| } |
| |
| /* Create a SOM object. */ |
| |
| static bool |
| som_mkobject (bfd *abfd) |
| { |
| /* Allocate memory to hold backend information. */ |
| abfd->tdata.som_data = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_data_struct)); |
| if (abfd->tdata.som_data == NULL) |
| return false; |
| return true; |
| } |
| |
| /* Initialize some information in the file header. This routine makes |
| not attempt at doing the right thing for a full executable; it |
| is only meant to handle relocatable objects. */ |
| |
| static bool |
| som_prep_headers (bfd *abfd) |
| { |
| struct som_header *file_hdr; |
| asection *section; |
| size_t amt = sizeof (struct som_header); |
| |
| /* Make and attach a file header to the BFD. */ |
| file_hdr = bfd_zalloc (abfd, amt); |
| if (file_hdr == NULL) |
| return false; |
| obj_som_file_hdr (abfd) = file_hdr; |
| |
| if (abfd->flags & (EXEC_P | DYNAMIC)) |
| { |
| /* Make and attach an exec header to the BFD. */ |
| amt = sizeof (struct som_exec_auxhdr); |
| obj_som_exec_hdr (abfd) = bfd_zalloc (abfd, amt); |
| if (obj_som_exec_hdr (abfd) == NULL) |
| return false; |
| |
| if (abfd->flags & D_PAGED) |
| file_hdr->a_magic = DEMAND_MAGIC; |
| else if (abfd->flags & WP_TEXT) |
| file_hdr->a_magic = SHARE_MAGIC; |
| #ifdef SHL_MAGIC |
| else if (abfd->flags & DYNAMIC) |
| file_hdr->a_magic = SHL_MAGIC; |
| #endif |
| else |
| file_hdr->a_magic = EXEC_MAGIC; |
| } |
| else |
| file_hdr->a_magic = RELOC_MAGIC; |
| |
| /* These fields are optional, and embedding timestamps is not always |
| a wise thing to do, it makes comparing objects during a multi-stage |
| bootstrap difficult. */ |
| file_hdr->file_time.secs = 0; |
| file_hdr->file_time.nanosecs = 0; |
| |
| file_hdr->entry_space = 0; |
| file_hdr->entry_subspace = 0; |
| file_hdr->entry_offset = 0; |
| file_hdr->presumed_dp = 0; |
| |
| /* Now iterate over the sections translating information from |
| BFD sections to SOM spaces/subspaces. */ |
| for (section = abfd->sections; section != NULL; section = section->next) |
| { |
| /* Ignore anything which has not been marked as a space or |
| subspace. */ |
| if (!som_is_space (section) && !som_is_subspace (section)) |
| continue; |
| |
| if (som_is_space (section)) |
| { |
| /* Allocate space for the space dictionary. */ |
| amt = sizeof (struct som_space_dictionary_record); |
| som_section_data (section)->space_dict = bfd_zalloc (abfd, amt); |
| if (som_section_data (section)->space_dict == NULL) |
| return false; |
| /* Set space attributes. Note most attributes of SOM spaces |
| are set based on the subspaces it contains. */ |
| som_section_data (section)->space_dict->loader_fix_index = -1; |
| som_section_data (section)->space_dict->init_pointer_index = -1; |
| |
| /* Set more attributes that were stuffed away in private data. */ |
| som_section_data (section)->space_dict->sort_key = |
| som_section_data (section)->copy_data->sort_key; |
| som_section_data (section)->space_dict->is_defined = |
| som_section_data (section)->copy_data->is_defined; |
| som_section_data (section)->space_dict->is_private = |
| som_section_data (section)->copy_data->is_private; |
| som_section_data (section)->space_dict->space_number = |
| som_section_data (section)->copy_data->space_number; |
| } |
| else |
| { |
| /* Allocate space for the subspace dictionary. */ |
| amt = sizeof (struct som_subspace_dictionary_record); |
| som_section_data (section)->subspace_dict = bfd_zalloc (abfd, amt); |
| if (som_section_data (section)->subspace_dict == NULL) |
| return false; |
| |
| /* Set subspace attributes. Basic stuff is done here, additional |
| attributes are filled in later as more information becomes |
| available. */ |
| if (section->flags & SEC_ALLOC) |
| som_section_data (section)->subspace_dict->is_loadable = 1; |
| |
| if (section->flags & SEC_CODE) |
| som_section_data (section)->subspace_dict->code_only = 1; |
| |
| som_section_data (section)->subspace_dict->subspace_start = |
| section->vma; |
| som_section_data (section)->subspace_dict->subspace_length = |
| section->size; |
| som_section_data (section)->subspace_dict->initialization_length = |
| section->size; |
| som_section_data (section)->subspace_dict->alignment = |
| 1 << section->alignment_power; |
| |
| /* Set more attributes that were stuffed away in private data. */ |
| som_section_data (section)->subspace_dict->sort_key = |
| som_section_data (section)->copy_data->sort_key; |
| som_section_data (section)->subspace_dict->access_control_bits = |
| som_section_data (section)->copy_data->access_control_bits; |
| som_section_data (section)->subspace_dict->quadrant = |
| som_section_data (section)->copy_data->quadrant; |
| som_section_data (section)->subspace_dict->is_comdat = |
| som_section_data (section)->copy_data->is_comdat; |
| som_section_data (section)->subspace_dict->is_common = |
| som_section_data (section)->copy_data->is_common; |
| som_section_data (section)->subspace_dict->dup_common = |
| som_section_data (section)->copy_data->dup_common; |
| } |
| } |
| return true; |
| } |
| |
| /* Return TRUE if the given section is a SOM space, FALSE otherwise. */ |
| |
| static bool |
| som_is_space (asection *section) |
| { |
| /* If no copy data is available, then it's neither a space nor a |
| subspace. */ |
| if (som_section_data (section)->copy_data == NULL) |
| return false; |
| |
| /* If the containing space isn't the same as the given section, |
| then this isn't a space. */ |
| if (som_section_data (section)->copy_data->container != section |
| && (som_section_data (section)->copy_data->container->output_section |
| != section)) |
| return false; |
| |
| /* OK. Must be a space. */ |
| return true; |
| } |
| |
| /* Return TRUE if the given section is a SOM subspace, FALSE otherwise. */ |
| |
| static bool |
| som_is_subspace (asection *section) |
| { |
| /* If no copy data is available, then it's neither a space nor a |
| subspace. */ |
| if (som_section_data (section)->copy_data == NULL) |
| return false; |
| |
| /* If the containing space is the same as the given section, |
| then this isn't a subspace. */ |
| if (som_section_data (section)->copy_data->container == section |
| || (som_section_data (section)->copy_data->container->output_section |
| == section)) |
| return false; |
| |
| /* OK. Must be a subspace. */ |
| return true; |
| } |
| |
| /* Return TRUE if the given space contains the given subspace. It |
| is safe to assume space really is a space, and subspace really |
| is a subspace. */ |
| |
| static bool |
| som_is_container (asection *space, asection *subspace) |
| { |
| return (som_section_data (subspace)->copy_data->container == space) |
| || (som_section_data (subspace)->copy_data->container->output_section |
| == space); |
| } |
| |
| /* Count and return the number of spaces attached to the given BFD. */ |
| |
| static unsigned long |
| som_count_spaces (bfd *abfd) |
| { |
| int count = 0; |
| asection *section; |
| |
| for (section = abfd->sections; section != NULL; section = section->next) |
| count += som_is_space (section); |
| |
| return count; |
| } |
| |
| /* Count the number of subspaces attached to the given BFD. */ |
| |
| static unsigned long |
| som_count_subspaces (bfd *abfd) |
| { |
| int count = 0; |
| asection *section; |
| |
| for (section = abfd->sections; section != NULL; section = section->next) |
| count += som_is_subspace (section); |
| |
| return count; |
| } |
| |
| /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2. |
| |
| We desire symbols to be ordered starting with the symbol with the |
| highest relocation count down to the symbol with the lowest relocation |
| count. Doing so compacts the relocation stream. */ |
| |
| static int |
| compare_syms (const void *arg1, const void *arg2) |
| { |
| asymbol **sym1 = (asymbol **) arg1; |
| asymbol **sym2 = (asymbol **) arg2; |
| unsigned int count1, count2; |
| |
| /* Get relocation count for each symbol. Note that the count |
| is stored in the udata pointer for section symbols! */ |
| if ((*sym1)->flags & BSF_SECTION_SYM) |
| count1 = (*sym1)->udata.i; |
| else |
| count1 = som_symbol_data (*sym1)->reloc_count; |
| |
| if ((*sym2)->flags & BSF_SECTION_SYM) |
| count2 = (*sym2)->udata.i; |
| else |
| count2 = som_symbol_data (*sym2)->reloc_count; |
| |
| /* Return the appropriate value. */ |
| if (count1 < count2) |
| return 1; |
| else if (count1 > count2) |
| return -1; |
| return 0; |
| } |
| |
| /* Return -1, 0, 1 indicating the relative ordering of subspace1 |
| and subspace. */ |
| |
| static int |
| compare_subspaces (const void *arg1, const void *arg2) |
| { |
| asection **subspace1 = (asection **) arg1; |
| asection **subspace2 = (asection **) arg2; |
| |
| if ((*subspace1)->target_index < (*subspace2)->target_index) |
| return -1; |
| else if ((*subspace2)->target_index < (*subspace1)->target_index) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /* Perform various work in preparation for emitting the fixup stream. */ |
| |
| static bool |
| som_prep_for_fixups (bfd *abfd, asymbol **syms, unsigned long num_syms) |
| { |
| unsigned long i; |
| asection *section; |
| asymbol **sorted_syms; |
| size_t amt; |
| |
| if (num_syms == 0) |
| return true; |
| |
| /* Most SOM relocations involving a symbol have a length which is |
| dependent on the index of the symbol. So symbols which are |
| used often in relocations should have a small index. */ |
| |
| /* First initialize the counters for each symbol. */ |
| for (i = 0; i < num_syms; i++) |
| { |
| /* Handle a section symbol; these have no pointers back to the |
| SOM symbol info. So we just use the udata field to hold the |
| relocation count. */ |
| if (som_symbol_data (syms[i]) == NULL |
| || syms[i]->flags & BSF_SECTION_SYM) |
| { |
| syms[i]->flags |= BSF_SECTION_SYM; |
| syms[i]->udata.i = 0; |
| } |
| else |
| som_symbol_data (syms[i])->reloc_count = 0; |
| } |
| |
| /* Now that the counters are initialized, make a weighted count |
| of how often a given symbol is used in a relocation. */ |
| for (section = abfd->sections; section != NULL; section = section->next) |
| { |
| int j; |
| |
| /* Does this section have any relocations? */ |
| if ((int) section->reloc_count <= 0) |
| continue; |
| |
| /* Walk through each relocation for this section. */ |
| for (j = 1; j < (int) section->reloc_count; j++) |
| { |
| arelent *reloc = section->orelocation[j]; |
| int scale; |
| |
| /* A relocation against a symbol in the *ABS* section really |
| does not have a symbol. Likewise if the symbol isn't associated |
| with any section. */ |
| if (reloc->sym_ptr_ptr == NULL |
| || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section)) |
| continue; |
| |
| /* Scaling to encourage symbols involved in R_DP_RELATIVE |
| and R_CODE_ONE_SYMBOL relocations to come first. These |
| two relocations have single byte versions if the symbol |
| index is very small. */ |
| if (reloc->howto->type == R_DP_RELATIVE |
| || reloc->howto->type == R_CODE_ONE_SYMBOL) |
| scale = 2; |
| else |
| scale = 1; |
| |
| /* Handle section symbols by storing the count in the udata |
| field. It will not be used and the count is very important |
| for these symbols. */ |
| if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM) |
| { |
| (*reloc->sym_ptr_ptr)->udata.i = |
| (*reloc->sym_ptr_ptr)->udata.i + scale; |
| continue; |
| } |
| |
| /* A normal symbol. Increment the count. */ |
| som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale; |
| } |
| } |
| |
| /* Sort a copy of the symbol table, rather than the canonical |
| output symbol table. */ |
| if (_bfd_mul_overflow (num_syms, sizeof (asymbol *), &amt)) |
| { |
| bfd_set_error (bfd_error_no_memory); |
| return false; |
| } |
| sorted_syms = bfd_zalloc (abfd, amt); |
| if (sorted_syms == NULL) |
| return false; |
| memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *)); |
| qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms); |
| obj_som_sorted_syms (abfd) = sorted_syms; |
| |
| /* Compute the symbol indexes, they will be needed by the relocation |
| code. */ |
| for (i = 0; i < num_syms; i++) |
| { |
| /* A section symbol. Again, there is no pointer to backend symbol |
| information, so we reuse the udata field again. */ |
| if (sorted_syms[i]->flags & BSF_SECTION_SYM) |
| sorted_syms[i]->udata.i = i; |
| else |
| som_symbol_data (sorted_syms[i])->index = i; |
| } |
| return true; |
| } |
| |
| static bool |
| som_write_fixups (bfd *abfd, |
| unsigned long current_offset, |
| unsigned int *total_reloc_sizep) |
| { |
| unsigned int i, j; |
| /* Chunk of memory that we can use as buffer space, then throw |
| away. */ |
| unsigned char tmp_space[SOM_TMP_BUFSIZE]; |
| unsigned char *p; |
| unsigned int total_reloc_size = 0; |
| unsigned int subspace_reloc_size = 0; |
| unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total; |
| asection *section = abfd->sections; |
| size_t amt; |
| |
| memset (tmp_space, 0, SOM_TMP_BUFSIZE); |
| p = tmp_space; |
| |
| /* All the fixups for a particular subspace are emitted in a single |
| stream. All the subspaces for a particular space are emitted |
| as a single stream. |
| |
| So, to get all the locations correct one must iterate through all the |
| spaces, for each space iterate through its subspaces and output a |
| fixups stream. */ |
| for (i = 0; i < num_spaces; i++) |
| { |
| asection *subsection; |
| |
| /* Find a space. */ |
| while (section && !som_is_space (section)) |
| section = section->next; |
| if (!section) |
| break; |
| |
| /* Now iterate through each of its subspaces. */ |
| for (subsection = abfd->sections; |
| subsection != NULL; |
| subsection = subsection->next) |
| { |
| unsigned int reloc_offset; |
| unsigned int current_rounding_mode; |
| #ifndef NO_PCREL_MODES |
| unsigned int current_call_mode; |
| #endif |
| |
| /* Find a subspace of this space. */ |
| if (!som_is_subspace (subsection) |
| || !som_is_container (section, subsection)) |
| continue; |
| |
| /* If this subspace does not have real data, then we are |
| finished with it. */ |
| if ((subsection->flags & SEC_HAS_CONTENTS) == 0) |
| { |
| som_section_data (subsection)->subspace_dict->fixup_request_index |
| = -1; |
| continue; |
| } |
| |
| /* This subspace has some relocations. Put the relocation stream |
| index into the subspace record. */ |
| som_section_data (subsection)->subspace_dict->fixup_request_index |
| = total_reloc_size; |
| |
| /* To make life easier start over with a clean slate for |
| each subspace. Seek to the start of the relocation stream |
| for this subspace in preparation for writing out its fixup |
| stream. */ |
| if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0) |
| return false; |
| |
| /* Buffer space has already been allocated. Just perform some |
| initialization here. */ |
| p = tmp_space; |
| subspace_reloc_size = 0; |
| reloc_offset = 0; |
| som_initialize_reloc_queue (reloc_queue); |
| current_rounding_mode = R_N_MODE; |
| #ifndef NO_PCREL_MODES |
| current_call_mode = R_SHORT_PCREL_MODE; |
| #endif |
| |
| /* Translate each BFD relocation into one or more SOM |
| relocations. */ |
| for (j = 0; j < subsection->reloc_count; j++) |
| { |
| arelent *bfd_reloc = subsection->orelocation[j]; |
| unsigned int skip; |
| int sym_num; |
| |
| if (bfd_reloc->address < reloc_offset) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA+%#" PRIx64 "): " |
| "%s relocation offset out of order"), |
| abfd, subsection, (uint64_t) bfd_reloc->address, |
| bfd_reloc->howto->name); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| if (!bfd_reloc_offset_in_range (bfd_reloc->howto, |
| abfd, subsection, |
| bfd_reloc->address)) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA+%#" PRIx64 "): " |
| "%s relocation offset out of range"), |
| abfd, subsection, (uint64_t) bfd_reloc->address, |
| bfd_reloc->howto->name); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| /* Get the symbol number. Remember it's stored in a |
| special place for section symbols. */ |
| if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM) |
| sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i; |
| else |
| sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index; |
| |
| /* If there is not enough room for the next couple relocations, |
| then dump the current buffer contents now. Also reinitialize |
| the relocation queue. |
| |
| A single BFD relocation would probably only ever |
| translate into at most 20 bytes of SOM relocations. |
| However with fuzzed object files and resulting silly |
| values for "skip" below, som_reloc_skip can emit 262 |
| bytes. Leave lots of space for growth. */ |
| if (p - tmp_space + 512 > SOM_TMP_BUFSIZE) |
| { |
| amt = p - tmp_space; |
| if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt) |
| return false; |
| |
| p = tmp_space; |
| som_initialize_reloc_queue (reloc_queue); |
| } |
| |
| /* Emit R_NO_RELOCATION fixups to map any bytes which were |
| skipped. */ |
| skip = bfd_reloc->address - reloc_offset; |
| p = som_reloc_skip (abfd, skip, p, |
| &subspace_reloc_size, reloc_queue); |
| |
| /* Update reloc_offset for the next iteration. */ |
| reloc_offset = bfd_reloc->address + bfd_reloc->howto->size; |
| |
| /* Now the actual relocation we care about. */ |
| switch (bfd_reloc->howto->type) |
| { |
| case R_PCREL_CALL: |
| case R_ABS_CALL: |
| p = som_reloc_call (abfd, p, &subspace_reloc_size, |
| bfd_reloc, sym_num, reloc_queue); |
| break; |
| |
| case R_CODE_ONE_SYMBOL: |
| case R_DP_RELATIVE: |
| /* Account for any addend. */ |
| if (bfd_reloc->addend) |
| p = som_reloc_addend (abfd, bfd_reloc->addend, p, |
| &subspace_reloc_size, reloc_queue); |
| |
| if (sym_num < 0x20) |
| { |
| bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p); |
| subspace_reloc_size += 1; |
| p += 1; |
| } |
| else if (sym_num < 0x100) |
| { |
| bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p); |
| bfd_put_8 (abfd, sym_num, p + 1); |
| p = try_prev_fixup (abfd, &subspace_reloc_size, p, |
| 2, reloc_queue); |
| } |
| else if (sym_num < 0x10000000) |
| { |
| bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p); |
| bfd_put_8 (abfd, sym_num >> 16, p + 1); |
| bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2); |
| p = try_prev_fixup (abfd, &subspace_reloc_size, |
| p, 4, reloc_queue); |
| } |
| else |
| abort (); |
| break; |
| |
| case R_DATA_GPREL: |
| /* Account for any addend. */ |
| if (bfd_reloc->addend) |
| p = som_reloc_addend (abfd, bfd_reloc->addend, p, |
| &subspace_reloc_size, reloc_queue); |
| |
| if (sym_num < 0x10000000) |
| { |
| bfd_put_8 (abfd, bfd_reloc->howto->type, p); |
| bfd_put_8 (abfd, sym_num >> 16, p + 1); |
| bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2); |
| p = try_prev_fixup (abfd, &subspace_reloc_size, |
| p, 4, reloc_queue); |
| } |
| else |
| abort (); |
| break; |
| |
| case R_DATA_ONE_SYMBOL: |
| case R_DATA_PLABEL: |
| case R_CODE_PLABEL: |
| case R_DLT_REL: |
| /* Account for any addend using R_DATA_OVERRIDE. */ |
| if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL |
| && bfd_reloc->addend) |
| p = som_reloc_addend (abfd, bfd_reloc->addend, p, |
| &subspace_reloc_size, reloc_queue); |
| |
| if (sym_num < 0x100) |
| { |
| bfd_put_8 (abfd, bfd_reloc->howto->type, p); |
| bfd_put_8 (abfd, sym_num, p + 1); |
| p = try_prev_fixup (abfd, &subspace_reloc_size, p, |
| 2, reloc_queue); |
| } |
| else if (sym_num < 0x10000000) |
| { |
| bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p); |
| bfd_put_8 (abfd, sym_num >> 16, p + 1); |
| bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2); |
| p = try_prev_fixup (abfd, &subspace_reloc_size, |
| p, 4, reloc_queue); |
| } |
| else |
| abort (); |
| break; |
| |
| case R_ENTRY: |
| { |
| unsigned int tmp; |
| arelent *tmp_reloc = NULL; |
| bfd_put_8 (abfd, R_ENTRY, p); |
| |
| /* R_ENTRY relocations have 64 bits of associated |
| data. Unfortunately the addend field of a bfd |
| relocation is only 32 bits. So, we split up |
| the 64bit unwind information and store part in |
| the R_ENTRY relocation, and the rest in the R_EXIT |
| relocation. */ |
| bfd_put_32 (abfd, bfd_reloc->addend, p + 1); |
| |
| /* Find the next R_EXIT relocation. */ |
| for (tmp = j; tmp < subsection->reloc_count; tmp++) |
| { |
| tmp_reloc = subsection->orelocation[tmp]; |
| if (tmp_reloc->howto->type == R_EXIT) |
| break; |
| } |
| |
| if (tmp == subsection->reloc_count) |
| abort (); |
| |
| bfd_put_32 (abfd, tmp_reloc->addend, p + 5); |
| p = try_prev_fixup (abfd, &subspace_reloc_size, |
| p, 9, reloc_queue); |
| break; |
| } |
| |
| case R_N_MODE: |
| case R_S_MODE: |
| case R_D_MODE: |
| case R_R_MODE: |
| /* If this relocation requests the current rounding |
| mode, then it is redundant. */ |
| if (bfd_reloc->howto->type != current_rounding_mode) |
| { |
| bfd_put_8 (abfd, bfd_reloc->howto->type, p); |
| subspace_reloc_size += 1; |
| p += 1; |
| current_rounding_mode = bfd_reloc->howto->type; |
| } |
| break; |
| |
| #ifndef NO_PCREL_MODES |
| case R_LONG_PCREL_MODE: |
| case R_SHORT_PCREL_MODE: |
| if (bfd_reloc->howto->type != current_call_mode) |
| { |
| bfd_put_8 (abfd, bfd_reloc->howto->type, p); |
| subspace_reloc_size += 1; |
| p += 1; |
| current_call_mode = bfd_reloc->howto->type; |
| } |
| break; |
| #endif |
| |
| case R_EXIT: |
| case R_ALT_ENTRY: |
| case R_FSEL: |
| case R_LSEL: |
| case R_RSEL: |
| case R_BEGIN_BRTAB: |
| case R_END_BRTAB: |
| case R_BEGIN_TRY: |
| case R_N0SEL: |
| case R_N1SEL: |
| bfd_put_8 (abfd, bfd_reloc->howto->type, p); |
| subspace_reloc_size += 1; |
| p += 1; |
| break; |
| |
| case R_END_TRY: |
| /* The end of an exception handling region. The reloc's |
| addend contains the offset of the exception handling |
| code. */ |
| if (bfd_reloc->addend == 0) |
| bfd_put_8 (abfd, bfd_reloc->howto->type, p); |
| else if (bfd_reloc->addend < 1024) |
| { |
| bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p); |
| bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1); |
| p = try_prev_fixup (abfd, &subspace_reloc_size, |
| p, 2, reloc_queue); |
| } |
| else |
| { |
| bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p); |
| bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1); |
| bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2); |
| p = try_prev_fixup (abfd, &subspace_reloc_size, |
| p, 4, reloc_queue); |
| } |
| break; |
| |
| case R_COMP1: |
| /* The only time we generate R_COMP1, R_COMP2 and |
| R_CODE_EXPR relocs is for the difference of two |
| symbols. Hence we can cheat here. */ |
| bfd_put_8 (abfd, bfd_reloc->howto->type, p); |
| bfd_put_8 (abfd, 0x44, p + 1); |
| p = try_prev_fixup (abfd, &subspace_reloc_size, |
| p, 2, reloc_queue); |
| break; |
| |
| case R_COMP2: |
| /* The only time we generate R_COMP1, R_COMP2 and |
| R_CODE_EXPR relocs is for the difference of two |
| symbols. Hence we can cheat here. */ |
| bfd_put_8 (abfd, bfd_reloc->howto->type, p); |
| bfd_put_8 (abfd, 0x80, p + 1); |
| bfd_put_8 (abfd, sym_num >> 16, p + 2); |
| bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3); |
| p = try_prev_fixup (abfd, &subspace_reloc_size, |
| p, 5, reloc_queue); |
| break; |
| |
| case R_CODE_EXPR: |
| case R_DATA_EXPR: |
| /* The only time we generate R_COMP1, R_COMP2 and |
| R_CODE_EXPR relocs is for the difference of two |
| symbols. Hence we can cheat here. */ |
| bfd_put_8 (abfd, bfd_reloc->howto->type, p); |
| subspace_reloc_size += 1; |
| p += 1; |
| break; |
| |
| /* Put a "R_RESERVED" relocation in the stream if |
| we hit something we do not understand. The linker |
| will complain loudly if this ever happens. */ |
| default: |
| bfd_put_8 (abfd, 0xff, p); |
| subspace_reloc_size += 1; |
| p += 1; |
| break; |
| } |
| } |
| |
| /* Last BFD relocation for a subspace has been processed. |
| Map the rest of the subspace with R_NO_RELOCATION fixups. */ |
| p = som_reloc_skip (abfd, subsection->size - reloc_offset, |
| p, &subspace_reloc_size, reloc_queue); |
| |
| /* Scribble out the relocations. */ |
| amt = p - tmp_space; |
| if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt) |
| return false; |
| p = tmp_space; |
| |
| total_reloc_size += subspace_reloc_size; |
| som_section_data (subsection)->subspace_dict->fixup_request_quantity |
| = subspace_reloc_size; |
| } |
| section = section->next; |
| } |
| *total_reloc_sizep = total_reloc_size; |
| return true; |
| } |
| |
| /* Write out the space/subspace string table. */ |
| |
| static bool |
| som_write_space_strings (bfd *abfd, |
| unsigned long current_offset, |
| unsigned int *string_sizep) |
| { |
| /* Chunk of memory that we can use as buffer space, then throw |
| away. */ |
| size_t tmp_space_size = SOM_TMP_BUFSIZE; |
| char *tmp_space = bfd_malloc (tmp_space_size); |
| char *p = tmp_space; |
| unsigned int strings_size = 0; |
| asection *section; |
| size_t amt; |
| bfd_size_type res; |
| |
| if (tmp_space == NULL) |
| return false; |
| |
| /* Seek to the start of the space strings in preparation for writing |
| them out. */ |
| if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0) |
| return false; |
| |
| /* Walk through all the spaces and subspaces (order is not important) |
| building up and writing string table entries for their names. */ |
| for (section = abfd->sections; section != NULL; section = section->next) |
| { |
| size_t length; |
| |
| /* Only work with space/subspaces; avoid any other sections |
| which might have been made (.text for example). */ |
| if (!som_is_space (section) && !som_is_subspace (section)) |
| continue; |
| |
| /* Get the length of the space/subspace name. */ |
| length = strlen (section->name); |
| |
| /* If there is not enough room for the next entry, then dump the |
| current buffer contents now and maybe allocate a larger |
| buffer. Each entry will take 4 bytes to hold the string |
| length + the string itself + null terminator. */ |
| if (p - tmp_space + 5 + length > tmp_space_size) |
| { |
| /* Flush buffer before refilling or reallocating. */ |
| amt = p - tmp_space; |
| if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt) |
| return false; |
| |
| /* Reallocate if now empty buffer still too small. */ |
| if (5 + length > tmp_space_size) |
| { |
| /* Ensure a minimum growth factor to avoid O(n**2) space |
| consumption for n strings. The optimal minimum |
| factor seems to be 2, as no other value can guarantee |
| wasting less than 50% space. (Note that we cannot |
| deallocate space allocated by `alloca' without |
| returning from this function.) The same technique is |
| used a few more times below when a buffer is |
| reallocated. */ |
| if (2 * tmp_space_size < length + 5) |
| tmp_space_size = length + 5; |
| else |
| tmp_space_size = 2 * tmp_space_size; |
| tmp_space = xrealloc (tmp_space, tmp_space_size); |
| } |
| |
| /* Reset to beginning of the (possibly new) buffer space. */ |
| p = tmp_space; |
| } |
| |
| /* First element in a string table entry is the length of the |
| string. Alignment issues are already handled. */ |
| bfd_put_32 (abfd, (bfd_vma) length, p); |
| p += 4; |
| strings_size += 4; |
| |
| /* Record the index in the space/subspace records. */ |
| if (som_is_space (section)) |
| som_section_data (section)->space_dict->name = strings_size; |
| else |
| som_section_data (section)->subspace_dict->name = strings_size; |
| |
| /* Next comes the string itself + a null terminator. */ |
| strcpy (p, section->name); |
| p += length + 1; |
| strings_size += length + 1; |
| |
| /* Always align up to the next word boundary. */ |
| while (strings_size % 4) |
| { |
| bfd_put_8 (abfd, 0, p); |
| p++; |
| strings_size++; |
| } |
| } |
| |
| /* Done with the space/subspace strings. Write out any information |
| contained in a partial block. */ |
| amt = p - tmp_space; |
| res = bfd_bwrite ((void *) &tmp_space[0], amt, abfd); |
| free (tmp_space); |
| if (res != amt) |
| return false; |
| *string_sizep = strings_size; |
| return true; |
| } |
| |
| /* Write out the symbol string table. */ |
| |
| static bool |
| som_write_symbol_strings (bfd *abfd, |
| unsigned long current_offset, |
| asymbol **syms, |
| unsigned int num_syms, |
| unsigned int *string_sizep, |
| struct som_compilation_unit *compilation_unit) |
| { |
| unsigned int i; |
| /* Chunk of memory that we can use as buffer space, then throw |
| away. */ |
| size_t tmp_space_size = SOM_TMP_BUFSIZE; |
| char *tmp_space = bfd_malloc (tmp_space_size); |
| char *p = tmp_space; |
| unsigned int strings_size = 0; |
| size_t amt; |
| bfd_size_type res; |
| |
| if (tmp_space == NULL) |
| return false; |
| |
| /* This gets a bit gruesome because of the compilation unit. The |
| strings within the compilation unit are part of the symbol |
| strings, but don't have symbol_dictionary entries. So, manually |
| write them and update the compilation unit header. On input, the |
| compilation unit header contains local copies of the strings. |
| Move them aside. */ |
| |
| /* Seek to the start of the space strings in preparation for writing |
| them out. */ |
| if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0) |
| return false; |
| |
| if (compilation_unit) |
| { |
| for (i = 0; i < 4; i++) |
| { |
| struct som_name_pt *name; |
| size_t length; |
| |
| switch (i) |
| { |
| case 0: |
| name = &compilation_unit->name; |
| break; |
| case 1: |
| name = &compilation_unit->language_name; |
| break; |
| case 2: |
| name = &compilation_unit->product_id; |
| break; |
| case 3: |
| name = &compilation_unit->version_id; |
| break; |
| default: |
| abort (); |
| } |
| |
| length = strlen (name->name); |
| |
| /* If there is not enough room for the next entry, then dump |
| the current buffer contents now and maybe allocate a |
| larger buffer. */ |
| if (p - tmp_space + 5 + length > tmp_space_size) |
| { |
| /* Flush buffer before refilling or reallocating. */ |
| amt = p - tmp_space; |
| if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt) |
| return false; |
| |
| /* Reallocate if now empty buffer still too small. */ |
| if (5 + length > tmp_space_size) |
| { |
| /* See alloca above for discussion of new size. */ |
| if (2 * tmp_space_size < 5 + length) |
| tmp_space_size = 5 + length; |
| else |
| tmp_space_size = 2 * tmp_space_size; |
| tmp_space = xrealloc (tmp_space, tmp_space_size); |
| } |
| |
| /* Reset to beginning of the (possibly new) buffer |
| space. */ |
| p = tmp_space; |
| } |
| |
| /* First element in a string table entry is the length of |
| the string. This must always be 4 byte aligned. This is |
| also an appropriate time to fill in the string index |
| field in the symbol table entry. */ |
| bfd_put_32 (abfd, (bfd_vma) length, p); |
| strings_size += 4; |
| p += 4; |
| |
| /* Next comes the string itself + a null terminator. */ |
| strcpy (p, name->name); |
| |
| name->strx = strings_size; |
| |
| p += length + 1; |
| strings_size += length + 1; |
| |
| /* Always align up to the next word boundary. */ |
| while (strings_size % 4) |
| { |
| bfd_put_8 (abfd, 0, p); |
| strings_size++; |
| p++; |
| } |
| } |
| } |
| |
| for (i = 0; i < num_syms; i++) |
| { |
| size_t length = strlen (syms[i]->name); |
| |
| /* If there is not enough room for the next entry, then dump the |
| current buffer contents now and maybe allocate a larger buffer. */ |
| if (p - tmp_space + 5 + length > tmp_space_size) |
| { |
| /* Flush buffer before refilling or reallocating. */ |
| amt = p - tmp_space; |
| if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt) |
| return false; |
| |
| /* Reallocate if now empty buffer still too small. */ |
| if (5 + length > tmp_space_size) |
| { |
| /* See alloca above for discussion of new size. */ |
| if (2 * tmp_space_size < 5 + length) |
| tmp_space_size = 5 + length; |
| else |
| tmp_space_size = 2 * tmp_space_size; |
| tmp_space = xrealloc (tmp_space, tmp_space_size); |
| } |
| |
| /* Reset to beginning of the (possibly new) buffer space. */ |
| p = tmp_space; |
| } |
| |
| /* First element in a string table entry is the length of the |
| string. This must always be 4 byte aligned. This is also |
| an appropriate time to fill in the string index field in the |
| symbol table entry. */ |
| bfd_put_32 (abfd, (bfd_vma) length, p); |
| strings_size += 4; |
| p += 4; |
| |
| /* Next comes the string itself + a null terminator. */ |
| strcpy (p, syms[i]->name); |
| |
| som_symbol_data (syms[i])->stringtab_offset = strings_size; |
| p += length + 1; |
| strings_size += length + 1; |
| |
| /* Always align up to the next word boundary. */ |
| while (strings_size % 4) |
| { |
| bfd_put_8 (abfd, 0, p); |
| strings_size++; |
| p++; |
| } |
| } |
| |
| /* Scribble out any partial block. */ |
| amt = p - tmp_space; |
| res = bfd_bwrite ((void *) &tmp_space[0], amt, abfd); |
| free (tmp_space); |
| if (res != amt) |
| return false; |
| |
| *string_sizep = strings_size; |
| return true; |
| } |
| |
| /* Compute variable information to be placed in the SOM headers, |
| space/subspace dictionaries, relocation streams, etc. Begin |
| writing parts of the object file. */ |
| |
| static bool |
| som_begin_writing (bfd *abfd) |
| { |
| unsigned long current_offset = 0; |
| unsigned int strings_size = 0; |
| unsigned long num_spaces, num_subspaces, i; |
| asection *section; |
| unsigned int total_subspaces = 0; |
| struct som_exec_auxhdr *exec_header = NULL; |
| |
| /* The file header will always be first in an object file, |
| everything else can be in random locations. To keep things |
| "simple" BFD will lay out the object file in the manner suggested |
| by the PRO ABI for PA-RISC Systems. */ |
| |
| /* Before any output can really begin offsets for all the major |
| portions of the object file must be computed. So, starting |
| with the initial file header compute (and sometimes write) |
| each portion of the object file. */ |
| |
| /* Make room for the file header, it's contents are not complete |
| yet, so it can not be written at this time. */ |
| current_offset += sizeof (struct som_external_header); |
| |
| /* Any auxiliary headers will follow the file header. Right now |
| we support only the copyright and version headers. */ |
| obj_som_file_hdr (abfd)->aux_header_location = current_offset; |
| obj_som_file_hdr (abfd)->aux_header_size = 0; |
| if (abfd->flags & (EXEC_P | DYNAMIC)) |
| { |
| /* Parts of the exec header will be filled in later, so |
| delay writing the header itself. Fill in the defaults, |
| and write it later. */ |
| current_offset += sizeof (struct som_external_exec_auxhdr); |
| obj_som_file_hdr (abfd)->aux_header_size |
| += sizeof (struct som_external_exec_auxhdr); |
| exec_header = obj_som_exec_hdr (abfd); |
| exec_header->som_auxhdr.type = EXEC_AUX_ID; |
| exec_header->som_auxhdr.length = 40; |
| } |
| if (obj_som_version_hdr (abfd) != NULL) |
| { |
| struct som_external_string_auxhdr ext_string_auxhdr; |
| bfd_size_type len; |
| |
| if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0) |
| return false; |
| |
| /* Write the aux_id structure and the string length. */ |
| len = sizeof (struct som_external_string_auxhdr); |
| obj_som_file_hdr (abfd)->aux_header_size += len; |
| current_offset += len; |
| som_swap_string_auxhdr_out |
| (obj_som_version_hdr (abfd), &ext_string_auxhdr); |
| if (bfd_bwrite (&ext_string_auxhdr, len, abfd) != len) |
| return false; |
| |
| /* Write the version string. */ |
| len = obj_som_version_hdr (abfd)->header_id.length - 4; |
| obj_som_file_hdr (abfd)->aux_header_size += len; |
| current_offset += len; |
| if (bfd_bwrite ((void *) obj_som_version_hdr (abfd)->string, len, abfd) |
| != len) |
| return false; |
| } |
| |
| if (obj_som_copyright_hdr (abfd) != NULL) |
| { |
| struct som_external_string_auxhdr ext_string_auxhdr; |
| bfd_size_type len; |
| |
| if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0) |
| return false; |
| |
| /* Write the aux_id structure and the string length. */ |
| len = sizeof (struct som_external_string_auxhdr); |
| obj_som_file_hdr (abfd)->aux_header_size += len; |
| current_offset += len; |
| som_swap_string_auxhdr_out |
| (obj_som_copyright_hdr (abfd), &ext_string_auxhdr); |
| if (bfd_bwrite (&ext_string_auxhdr, len, abfd) != len) |
| return false; |
| |
| /* Write the copyright string. */ |
| len = obj_som_copyright_hdr (abfd)->header_id.length - 4; |
| obj_som_file_hdr (abfd)->aux_header_size += len; |
| current_offset += len; |
| if (bfd_bwrite ((void *) obj_som_copyright_hdr (abfd)->string, len, abfd) |
| != len) |
| return false; |
| } |
| |
| /* Next comes the initialization pointers; we have no initialization |
| pointers, so current offset does not change. */ |
| obj_som_file_hdr (abfd)->init_array_location = current_offset; |
| obj_som_file_hdr (abfd)->init_array_total = 0; |
| |
| /* Next are the space records. These are fixed length records. |
| |
| Count the number of spaces to determine how much room is needed |
| in the object file for the space records. |
| |
| The names of the spaces are stored in a separate string table, |
| and the index for each space into the string table is computed |
| below. Therefore, it is not possible to write the space headers |
| at this time. */ |
| num_spaces = som_count_spaces (abfd); |
| obj_som_file_hdr (abfd)->space_location = current_offset; |
| obj_som_file_hdr (abfd)->space_total = num_spaces; |
| current_offset += |
| num_spaces * sizeof (struct som_external_space_dictionary_record); |
| |
| /* Next are the subspace records. These are fixed length records. |
| |
| Count the number of subspaes to determine how much room is needed |
| in the object file for the subspace records. |
| |
| A variety if fields in the subspace record are still unknown at |
| this time (index into string table, fixup stream location/size, etc). */ |
| num_subspaces = som_count_subspaces (abfd); |
| obj_som_file_hdr (abfd)->subspace_location = current_offset; |
| obj_som_file_hdr (abfd)->subspace_total = num_subspaces; |
| current_offset |
| += num_subspaces * sizeof (struct som_external_subspace_dictionary_record); |
| |
| /* Next is the string table for the space/subspace names. We will |
| build and write the string table on the fly. At the same time |
| we will fill in the space/subspace name index fields. */ |
| |
| /* The string table needs to be aligned on a word boundary. */ |
| if (current_offset % 4) |
| current_offset += (4 - (current_offset % 4)); |
| |
| /* Mark the offset of the space/subspace string table in the |
| file header. */ |
| obj_som_file_hdr (abfd)->space_strings_location = current_offset; |
| |
| /* Scribble out the space strings. */ |
| if (! som_write_space_strings (abfd, current_offset, &strings_size)) |
| return false; |
| |
| /* Record total string table size in the header and update the |
| current offset. */ |
| obj_som_file_hdr (abfd)->space_strings_size = strings_size; |
| current_offset += strings_size; |
| |
| /* Next is the compilation unit. */ |
| obj_som_file_hdr (abfd)->compiler_location = current_offset; |
| obj_som_file_hdr (abfd)->compiler_total = 0; |
| if (obj_som_compilation_unit (abfd)) |
| { |
| obj_som_file_hdr (abfd)->compiler_total = 1; |
| current_offset += sizeof (struct som_external_compilation_unit); |
| } |
| |
| /* Now compute the file positions for the loadable subspaces, taking |
| care to make sure everything stays properly aligned. */ |
| |
| section = abfd->sections; |
| for (i = 0; i < num_spaces; i++) |
| { |
| asection *subsection; |
| int first_subspace; |
| unsigned int subspace_offset = 0; |
| |
| /* Find a space. */ |
| while (!som_is_space (section)) |
| section = section->next; |
| |
| first_subspace = 1; |
| /* Now look for all its subspaces. */ |
| for (subsection = abfd->sections; |
| subsection != NULL; |
| subsection = subsection->next) |
| { |
| |
| if (!som_is_subspace (subsection) |
| || !som_is_container (section, subsection) |
| || (subsection->flags & SEC_ALLOC) == 0) |
| continue; |
| |
| /* If this is the first subspace in the space, and we are |
| building an executable, then take care to make sure all |
| the alignments are correct and update the exec header. */ |
| if (first_subspace |
| && (abfd->flags & (EXEC_P | DYNAMIC))) |
| { |
| /* Demand paged executables have each space aligned to a |
| page boundary. Sharable executables (write-protected |
| text) have just the private (aka data & bss) space aligned |
| to a page boundary. Ugh. Not true for HPUX. |
| |
| The HPUX kernel requires the text to always be page aligned |
| within the file regardless of the executable's type. */ |
| if (abfd->flags & (D_PAGED | DYNAMIC) |
| || (subsection->flags & SEC_CODE) |
| || ((abfd->flags & WP_TEXT) |
| && (subsection->flags & SEC_DATA))) |
| current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE); |
| |
| /* Update the exec header. */ |
| if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0) |
| { |
| exec_header->exec_tmem = section->vma; |
| exec_header->exec_tfile = current_offset; |
| } |
| if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0) |
| { |
| exec_header->exec_dmem = section->vma; |
| exec_header->exec_dfile = current_offset; |
| } |
| |
| /* Keep track of exactly where we are within a particular |
| space. This is necessary as the braindamaged HPUX |
| loader will create holes between subspaces *and* |
| subspace alignments are *NOT* preserved. What a crock. */ |
| subspace_offset = subsection->vma; |
| |
| /* Only do this for the first subspace within each space. */ |
| first_subspace = 0; |
| } |
| else if (abfd->flags & (EXEC_P | DYNAMIC)) |
| { |
| /* The braindamaged HPUX loader may have created a hole |
| between two subspaces. It is *not* sufficient to use |
| the alignment specifications within the subspaces to |
| account for these holes -- I've run into at least one |
| case where the loader left one code subspace unaligned |
| in a final executable. |
| |
| To combat this we keep a current offset within each space, |
| and use the subspace vma fields to detect and preserve |
| holes. What a crock! |
| |
| ps. This is not necessary for unloadable space/subspaces. */ |
| current_offset += subsection->vma - subspace_offset; |
| if (subsection->flags & SEC_CODE) |
| exec_header->exec_tsize += subsection->vma - subspace_offset; |
| else |
| exec_header->exec_dsize += subsection->vma - subspace_offset; |
| subspace_offset += subsection->vma - subspace_offset; |
| } |
| |
| subsection->target_index = total_subspaces++; |
| /* This is real data to be loaded from the file. */ |
| if (subsection->flags & SEC_LOAD) |
| { |
| /* Update the size of the code & data. */ |
| if (abfd->flags & (EXEC_P | DYNAMIC) |
| && subsection->flags & SEC_CODE) |
| exec_header->exec_tsize += subsection->size; |
| else if (abfd->flags & (EXEC_P | DYNAMIC) |
| && subsection->flags & SEC_DATA) |
| exec_header->exec_dsize += subsection->size; |
| som_section_data (subsection)->subspace_dict->file_loc_init_value |
| = current_offset; |
| subsection->filepos = current_offset; |
| current_offset += subsection->size; |
| subspace_offset += subsection->size; |
| } |
| /* Looks like uninitialized data. */ |
| else |
| { |
| /* Update the size of the bss section. */ |
| if (abfd->flags & (EXEC_P | DYNAMIC)) |
| exec_header->exec_bsize += subsection->size; |
| |
| som_section_data (subsection)->subspace_dict->file_loc_init_value |
| = 0; |
| som_section_data (subsection)->subspace_dict-> |
| initialization_length = 0; |
| } |
| } |
| /* Goto the next section. */ |
| section = section->next; |
| } |
| |
| /* Finally compute the file positions for unloadable subspaces. |
| If building an executable, start the unloadable stuff on its |
| own page. */ |
| |
| if (abfd->flags & (EXEC_P | DYNAMIC)) |
| current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE); |
| |
| obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset; |
| section = abfd->sections; |
| for (i = 0; i < num_spaces; i++) |
| { |
| asection *subsection; |
| |
| /* Find a space. */ |
| while (!som_is_space (section)) |
| section = section->next; |
| |
| if (abfd->flags & (EXEC_P | DYNAMIC)) |
| current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE); |
| |
| /* Now look for all its subspaces. */ |
| for (subsection = abfd->sections; |
| subsection != NULL; |
| subsection = subsection->next) |
| { |
| |
| if (!som_is_subspace (subsection) |
| || !som_is_container (section, subsection) |
| || (subsection->flags & SEC_ALLOC) != 0) |
| continue; |
| |
| subsection->target_index = total_subspaces++; |
| /* This is real data to be loaded from the file. */ |
| if ((subsection->flags & SEC_LOAD) == 0) |
| { |
| som_section_data (subsection)->subspace_dict->file_loc_init_value |
| = current_offset; |
| subsection->filepos = current_offset; |
| current_offset += subsection->size; |
| } |
| /* Looks like uninitialized data. */ |
| else |
| { |
| som_section_data (subsection)->subspace_dict->file_loc_init_value |
| = 0; |
| som_section_data (subsection)->subspace_dict-> |
| initialization_length = subsection->size; |
| } |
| } |
| /* Goto the next section. */ |
| section = section->next; |
| } |
| |
| /* If building an executable, then make sure to seek to and write |
| one byte at the end of the file to make sure any necessary |
| zeros are filled in. Ugh. */ |
| if (abfd->flags & (EXEC_P | DYNAMIC)) |
| current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE); |
| if (bfd_seek (abfd, (file_ptr) current_offset - 1, SEEK_SET) != 0) |
| return false; |
| if (bfd_bwrite ((void *) "", (bfd_size_type) 1, abfd) != 1) |
| return false; |
| |
| obj_som_file_hdr (abfd)->unloadable_sp_size |
| = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location; |
| |
| /* Loader fixups are not supported in any way shape or form. */ |
| obj_som_file_hdr (abfd)->loader_fixup_location = 0; |
| obj_som_file_hdr (abfd)->loader_fixup_total = 0; |
| |
| /* Done. Store the total size of the SOM so far. */ |
| obj_som_file_hdr (abfd)->som_length = current_offset; |
| |
| return true; |
| } |
| |
| /* Finally, scribble out the various headers to the disk. */ |
| |
| static bool |
| som_finish_writing (bfd *abfd) |
| { |
| int num_spaces = som_count_spaces (abfd); |
| asymbol **syms = bfd_get_outsymbols (abfd); |
| int i, num_syms; |
| int subspace_index = 0; |
| file_ptr location; |
| asection *section; |
| unsigned long current_offset; |
| unsigned int strings_size, total_reloc_size; |
| size_t amt; |
| struct som_external_header ext_header; |
| |
| /* We must set up the version identifier here as objcopy/strip copy |
| private BFD data too late for us to handle this in som_begin_writing. */ |
| if (obj_som_exec_data (abfd) |
| && obj_som_exec_data (abfd)->version_id) |
| obj_som_file_hdr (abfd)->version_id = obj_som_exec_data (abfd)->version_id; |
| else |
| obj_som_file_hdr (abfd)->version_id = NEW_VERSION_ID; |
| |
| /* Next is the symbol table. These are fixed length records. |
| |
| Count the number of symbols to determine how much room is needed |
| in the object file for the symbol table. |
| |
| The names of the symbols are stored in a separate string table, |
| and the index for each symbol name into the string table is computed |
| below. Therefore, it is not possible to write the symbol table |
| at this time. |
| |
| These used to be output before the subspace contents, but they |
| were moved here to work around a stupid bug in the hpux linker |
| (fixed in hpux10). */ |
| current_offset = obj_som_file_hdr (abfd)->som_length; |
| |
| /* Make sure we're on a word boundary. */ |
| if (current_offset % 4) |
| current_offset += (4 - (current_offset % 4)); |
| |
| num_syms = bfd_get_symcount (abfd); |
| obj_som_file_hdr (abfd)->symbol_location = current_offset; |
| obj_som_file_hdr (abfd)->symbol_total = num_syms; |
| current_offset += |
| num_syms * sizeof (struct som_external_symbol_dictionary_record); |
| |
| /* Next are the symbol strings. |
| Align them to a word boundary. */ |
| if (current_offset % 4) |
| current_offset += (4 - (current_offset % 4)); |
| obj_som_file_hdr (abfd)->symbol_strings_location = current_offset; |
| |
| /* Scribble out the symbol strings. */ |
| if (! som_write_symbol_strings (abfd, current_offset, syms, |
| num_syms, &strings_size, |
| obj_som_compilation_unit (abfd))) |
| return false; |
| |
| /* Record total string table size in header and update the |
| current offset. */ |
| obj_som_file_hdr (abfd)->symbol_strings_size = strings_size; |
| current_offset += strings_size; |
| |
| /* Do prep work before handling fixups. */ |
| if (!som_prep_for_fixups (abfd, |
| bfd_get_outsymbols (abfd), |
| bfd_get_symcount (abfd))) |
| return false; |
| |
| /* At the end of the file is the fixup stream which starts on a |
| word boundary. */ |
| if (current_offset % 4) |
| current_offset += (4 - (current_offset % 4)); |
| obj_som_file_hdr (abfd)->fixup_request_location = current_offset; |
| |
| /* Write the fixups and update fields in subspace headers which |
| relate to the fixup stream. */ |
| if (! som_write_fixups (abfd, current_offset, &total_reloc_size)) |
| return false; |
| |
| /* Record the total size of the fixup stream in the file header. */ |
| obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size; |
| |
| /* Done. Store the total size of the SOM. */ |
| obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size; |
| |
| /* Now that the symbol table information is complete, build and |
| write the symbol table. */ |
| if (! som_build_and_write_symbol_table (abfd)) |
| return false; |
| |
| /* Subspaces are written first so that we can set up information |
| about them in their containing spaces as the subspace is written. */ |
| |
| /* Seek to the start of the subspace dictionary records. */ |
| location = obj_som_file_hdr (abfd)->subspace_location; |
| if (bfd_seek (abfd, location, SEEK_SET) != 0) |
| return false; |
| |
| section = abfd->sections; |
| /* Now for each loadable space write out records for its subspaces. */ |
| for (i = 0; i < num_spaces; i++) |
| { |
| asection *subsection; |
| |
| /* Find a space. */ |
| while (!som_is_space (section)) |
| section = section->next; |
| |
| /* Now look for all its subspaces. */ |
| for (subsection = abfd->sections; |
| subsection != NULL; |
| subsection = subsection->next) |
| { |
| struct som_external_subspace_dictionary_record ext_subspace_dict; |
| |
| /* Skip any section which does not correspond to a space |
| or subspace. Or does not have SEC_ALLOC set (and therefore |
| has no real bits on the disk). */ |
| if (!som_is_subspace (subsection) |
| || !som_is_container (section, subsection) |
| || (subsection->flags & SEC_ALLOC) == 0) |
| continue; |
| |
| /* If this is the first subspace for this space, then save |
| the index of the subspace in its containing space. Also |
| set "is_loadable" in the containing space. */ |
| |
| if (som_section_data (section)->space_dict->subspace_quantity == 0) |
| { |
| som_section_data (section)->space_dict->is_loadable = 1; |
| som_section_data (section)->space_dict->subspace_index |
| = subspace_index; |
| } |
| |
| /* Increment the number of subspaces seen and the number of |
| subspaces contained within the current space. */ |
| subspace_index++; |
| som_section_data (section)->space_dict->subspace_quantity++; |
| |
| /* Mark the index of the current space within the subspace's |
| dictionary record. */ |
| som_section_data (subsection)->subspace_dict->space_index = i; |
| |
| /* Dump the current subspace header. */ |
| som_swap_subspace_dictionary_record_out |
| (som_section_data (subsection)->subspace_dict, &ext_subspace_dict); |
| amt = sizeof (struct som_subspace_dictionary_record); |
| if (bfd_bwrite (&ext_subspace_dict, amt, abfd) != amt) |
| return false; |
| } |
| /* Goto the next section. */ |
| section = section->next; |
| } |
| |
| /* Now repeat the process for unloadable subspaces. */ |
| section = abfd->sections; |
| /* Now for each space write out records for its subspaces. */ |
| for (i = 0; i < num_spaces; i++) |
| { |
| asection *subsection; |
| |
| /* Find a space. */ |
| while (!som_is_space (section)) |
| section = section->next; |
| |
| /* Now look for all its subspaces. */ |
| for (subsection = abfd->sections; |
| subsection != NULL; |
| subsection = subsection->next) |
| { |
| struct som_external_subspace_dictionary_record ext_subspace_dict; |
| |
| /* Skip any section which does not correspond to a space or |
| subspace, or which SEC_ALLOC set (and therefore handled |
| in the loadable spaces/subspaces code above). */ |
| |
| if (!som_is_subspace (subsection) |
| || !som_is_container (section, subsection) |
| || (subsection->flags & SEC_ALLOC) != 0) |
| continue; |
| |
| /* If this is the first subspace for this space, then save |
| the index of the subspace in its containing space. Clear |
| "is_loadable". */ |
| |
| if (som_section_data (section)->space_dict->subspace_quantity == 0) |
| { |
| som_section_data (section)->space_dict->is_loadable = 0; |
| som_section_data (section)->space_dict->subspace_index |
| = subspace_index; |
| } |
| |
| /* Increment the number of subspaces seen and the number of |
| subspaces contained within the current space. */ |
| som_section_data (section)->space_dict->subspace_quantity++; |
| subspace_index++; |
| |
| /* Mark the index of the current space within the subspace's |
| dictionary record. */ |
| som_section_data (subsection)->subspace_dict->space_index = i; |
| |
| /* Dump this subspace header. */ |
| som_swap_subspace_dictionary_record_out |
| (som_section_data (subsection)->subspace_dict, &ext_subspace_dict); |
| amt = sizeof (struct som_subspace_dictionary_record); |
| if (bfd_bwrite (&ext_subspace_dict, amt, abfd) != amt) |
| return false; |
| } |
| /* Goto the next section. */ |
| section = section->next; |
| } |
| |
| /* All the subspace dictionary records are written, and all the |
| fields are set up in the space dictionary records. |
| |
| Seek to the right location and start writing the space |
| dictionary records. */ |
| location = obj_som_file_hdr (abfd)->space_location; |
| if (bfd_seek (abfd, location, SEEK_SET) != 0) |
| return false; |
| |
| section = abfd->sections; |
| for (i = 0; i < num_spaces; i++) |
| { |
| struct som_external_space_dictionary_record ext_space_dict; |
| |
| /* Find a space. */ |
| while (!som_is_space (section)) |
| section = section->next; |
| |
| /* Dump its header. */ |
| som_swap_space_dictionary_out (som_section_data (section)->space_dict, |
| &ext_space_dict); |
| amt = sizeof (struct som_external_space_dictionary_record); |
| if (bfd_bwrite (&ext_space_dict, amt, abfd) != amt) |
| return false; |
| |
| /* Goto the next section. */ |
| section = section->next; |
| } |
| |
| /* Write the compilation unit record if there is one. */ |
| if (obj_som_compilation_unit (abfd)) |
| { |
| struct som_external_compilation_unit ext_comp_unit; |
| |
| location = obj_som_file_hdr (abfd)->compiler_location; |
| if (bfd_seek (abfd, location, SEEK_SET) != 0) |
| return false; |
| |
| som_swap_compilation_unit_out |
| (obj_som_compilation_unit (abfd), &ext_comp_unit); |
| |
| amt = sizeof (struct som_external_compilation_unit); |
| if (bfd_bwrite (&ext_comp_unit, amt, abfd) != amt) |
| return false; |
| } |
| |
| /* Setting of the system_id has to happen very late now that copying of |
| BFD private data happens *after* section contents are set. */ |
| if ((abfd->flags & (EXEC_P | DYNAMIC)) && obj_som_exec_data (abfd)) |
| obj_som_file_hdr (abfd)->system_id = obj_som_exec_data (abfd)->system_id; |
| else if (bfd_get_mach (abfd) == pa20) |
| obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC2_0; |
| else if (bfd_get_mach (abfd) == pa11) |
| obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_1; |
| else |
| obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_0; |
| |
| /* Swap and compute the checksum for the file header just before writing |
| the header to disk. */ |
| som_swap_header_out (obj_som_file_hdr (abfd), &ext_header); |
| bfd_putb32 (som_compute_checksum (&ext_header), ext_header.checksum); |
| |
| /* Only thing left to do is write out the file header. It is always |
| at location zero. Seek there and write it. */ |
| if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0) |
| return false; |
| amt = sizeof (struct som_external_header); |
| if (bfd_bwrite (&ext_header, amt, abfd) != amt) |
| return false; |
| |
| /* Now write the exec header. */ |
| if (abfd->flags & (EXEC_P | DYNAMIC)) |
| { |
| long tmp, som_length; |
| struct som_exec_auxhdr *exec_header; |
| struct som_external_exec_auxhdr ext_exec_header; |
| |
| exec_header = obj_som_exec_hdr (abfd); |
| exec_header->exec_entry = bfd_get_start_address (abfd); |
| if (obj_som_exec_data (abfd)) |
| exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags; |
| |
| /* Oh joys. Ram some of the BSS data into the DATA section |
| to be compatible with how the hp linker makes objects |
| (saves memory space). */ |
| tmp = exec_header->exec_dsize; |
| tmp = SOM_ALIGN (tmp, PA_PAGESIZE); |
| exec_header->exec_bsize -= (tmp - exec_header->exec_dsize); |
| if (exec_header->exec_bsize < 0) |
| exec_header->exec_bsize = 0; |
| exec_header->exec_dsize = tmp; |
| |
| /* Now perform some sanity checks. The idea is to catch bogons now and |
| inform the user, instead of silently generating a bogus file. */ |
| som_length = obj_som_file_hdr (abfd)->som_length; |
| if (exec_header->exec_tfile + exec_header->exec_tsize > som_length |
| || exec_header->exec_dfile + exec_header->exec_dsize > som_length) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| som_swap_exec_auxhdr_out (exec_header, &ext_exec_header); |
| |
| if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location, |
| SEEK_SET) != 0) |
| return false; |
| |
| amt = sizeof (ext_exec_header); |
| if (bfd_bwrite (&ext_exec_header, amt, abfd) != amt) |
| return false; |
| } |
| return true; |
| } |
| |
| /* Compute and return the checksum for a SOM file header. */ |
| |
| static uint32_t |
| som_compute_checksum (struct som_external_header *hdr) |
| { |
| size_t count, i; |
| uint32_t checksum; |
| uint32_t *buffer = (uint32_t *) hdr; |
| |
| checksum = 0; |
| count = sizeof (*hdr) / sizeof (*buffer); |
| for (i = 0; i < count; i++) |
| checksum ^= *(buffer + i); |
| |
| return checksum; |
| } |
| |
| static void |
| som_bfd_derive_misc_symbol_info (bfd *abfd ATTRIBUTE_UNUSED, |
| asymbol *sym, |
| struct som_misc_symbol_info *info) |
| { |
| /* Initialize. */ |
| memset (info, 0, sizeof (struct som_misc_symbol_info)); |
| |
| /* The HP SOM linker requires detailed type information about |
| all symbols (including undefined symbols!). Unfortunately, |
| the type specified in an import/export statement does not |
| always match what the linker wants. Severe braindamage. */ |
| |
| /* Section symbols will not have a SOM symbol type assigned to |
| them yet. Assign all section symbols type ST_DATA. */ |
| if (sym->flags & BSF_SECTION_SYM) |
| info->symbol_type = ST_DATA; |
| else |
| { |
| /* For BFD style common, the linker will choke unless we set the |
| type and scope to ST_STORAGE and SS_UNSAT, respectively. */ |
| if (bfd_is_com_section (sym->section)) |
| { |
| info->symbol_type = ST_STORAGE; |
| info->symbol_scope = SS_UNSAT; |
| } |
| |
| /* It is possible to have a symbol without an associated |
| type. This happens if the user imported the symbol |
| without a type and the symbol was never defined |
| locally. If BSF_FUNCTION is set for this symbol, then |
| assign it type ST_CODE (the HP linker requires undefined |
| external functions to have type ST_CODE rather than ST_ENTRY). */ |
| else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN |
| || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE) |
| && bfd_is_und_section (sym->section) |
| && sym->flags & BSF_FUNCTION) |
| info->symbol_type = ST_CODE; |
| |
| /* Handle function symbols which were defined in this file. |
| They should have type ST_ENTRY. Also retrieve the argument |
| relocation bits from the SOM backend information. */ |
| else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY |
| || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE |
| && (sym->flags & BSF_FUNCTION)) |
| || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN |
| && (sym->flags & BSF_FUNCTION))) |
| { |
| info->symbol_type = ST_ENTRY; |
| info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc; |
| info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level; |
| } |
| |
| /* For unknown symbols set the symbol's type based on the symbol's |
| section (ST_DATA for DATA sections, ST_CODE for CODE sections). */ |
| else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN) |
| { |
| if (bfd_is_abs_section (sym->section)) |
| info->symbol_type = ST_ABSOLUTE; |
| else if (sym->section->flags & SEC_CODE) |
| info->symbol_type = ST_CODE; |
| else |
| info->symbol_type = ST_DATA; |
| } |
| |
| /* From now on it's a very simple mapping. */ |
| else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE) |
| info->symbol_type = ST_ABSOLUTE; |
| else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE) |
| info->symbol_type = ST_CODE; |
| else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA) |
| info->symbol_type = ST_DATA; |
| else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE) |
| info->symbol_type = ST_MILLICODE; |
| else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL) |
| info->symbol_type = ST_PLABEL; |
| else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG) |
| info->symbol_type = ST_PRI_PROG; |
| else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG) |
| info->symbol_type = ST_SEC_PROG; |
| } |
| |
| /* Now handle the symbol's scope. Exported data which is not |
| in the common section has scope SS_UNIVERSAL. Note scope |
| of common symbols was handled earlier! */ |
| if (bfd_is_com_section (sym->section)) |
| ; |
| else if (bfd_is_und_section (sym->section)) |
| info->symbol_scope = SS_UNSAT; |
| else if (sym->flags & (BSF_EXPORT | BSF_WEAK)) |
| info->symbol_scope = SS_UNIVERSAL; |
| /* Anything else which is not in the common section has scope |
| SS_LOCAL. */ |
| else |
| info->symbol_scope = SS_LOCAL; |
| |
| /* Now set the symbol_info field. It has no real meaning |
| for undefined or common symbols, but the HP linker will |
| choke if it's not set to some "reasonable" value. We |
| use zero as a reasonable value. */ |
| if (bfd_is_com_section (sym->section) |
| || bfd_is_und_section (sym->section) |
| || bfd_is_abs_section (sym->section)) |
| info->symbol_info = 0; |
| /* For all other symbols, the symbol_info field contains the |
| subspace index of the space this symbol is contained in. */ |
| else |
| info->symbol_info = sym->section->target_index; |
| |
| /* Set the symbol's value. */ |
| info->symbol_value = sym->value + sym->section->vma; |
| |
| /* The secondary_def field is for "weak" symbols. */ |
| if (sym->flags & BSF_WEAK) |
| info->secondary_def = true; |
| else |
| info->secondary_def = false; |
| |
| /* The is_comdat, is_common and dup_common fields provide various |
| flavors of common. |
| |
| For data symbols, setting IS_COMMON provides Fortran style common |
| (duplicate definitions and overlapped initialization). Setting both |
| IS_COMMON and DUP_COMMON provides Cobol style common (duplicate |
| definitions as long as they are all the same length). In a shared |
| link data symbols retain their IS_COMMON and DUP_COMMON flags. |
| An IS_COMDAT data symbol is similar to a IS_COMMON | DUP_COMMON |
| symbol except in that it loses its IS_COMDAT flag in a shared link. |
| |
| For code symbols, IS_COMDAT and DUP_COMMON have effect. Universal |
| DUP_COMMON code symbols are not exported from shared libraries. |
| IS_COMDAT symbols are exported but they lose their IS_COMDAT flag. |
| |
| We take a simplified approach to setting the is_comdat, is_common |
| and dup_common flags in symbols based on the flag settings of their |
| subspace. This avoids having to add directives like `.comdat' but |
| the linker behavior is probably undefined if there is more than one |
| universal symbol (comdat key sysmbol) in a subspace. |
| |
| The behavior of these flags is not well documentmented, so there |
| may be bugs and some surprising interactions with other flags. */ |
| if (som_section_data (sym->section) |
| && som_section_data (sym->section)->subspace_dict |
| && info->symbol_scope == SS_UNIVERSAL |
| && (info->symbol_type == ST_ENTRY |
| || info->symbol_type == ST_CODE |
| || info->symbol_type == ST_DATA)) |
| { |
| info->is_comdat |
| = som_section_data (sym->section)->subspace_dict->is_comdat; |
| info->is_common |
| = som_section_data (sym->section)->subspace_dict->is_common; |
| info->dup_common |
| = som_section_data (sym->section)->subspace_dict->dup_common; |
| } |
| } |
| |
| /* Build and write, in one big chunk, the entire symbol table for |
| this BFD. */ |
| |
| static bool |
| som_build_and_write_symbol_table (bfd *abfd) |
| { |
| unsigned int num_syms = bfd_get_symcount (abfd); |
| file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location; |
| asymbol **bfd_syms = obj_som_sorted_syms (abfd); |
| struct som_external_symbol_dictionary_record *som_symtab = NULL; |
| unsigned int i; |
| bfd_size_type symtab_size; |
| size_t amt; |
| |
| /* Compute total symbol table size and allocate a chunk of memory |
| to hold the symbol table as we build it. */ |
| if (_bfd_mul_overflow (num_syms, |
| sizeof (struct som_external_symbol_dictionary_record), |
| &amt)) |
| { |
| bfd_set_error (bfd_error_no_memory); |
| return false; |
| } |
| som_symtab = bfd_zmalloc (amt); |
| if (som_symtab == NULL && num_syms != 0) |
| goto error_return; |
| |
| /* Walk over each symbol. */ |
| for (i = 0; i < num_syms; i++) |
| { |
| struct som_misc_symbol_info info; |
| unsigned int flags; |
| |
| /* This is really an index into the symbol strings table. |
| By the time we get here, the index has already been |
| computed and stored into the name field in the BFD symbol. */ |
| bfd_putb32 (som_symbol_data (bfd_syms[i])->stringtab_offset, |
| som_symtab[i].name); |
| |
| /* Derive SOM information from the BFD symbol. */ |
| som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info); |
| |
| /* Now use it. */ |
| flags = (info.symbol_type << SOM_SYMBOL_TYPE_SH) |
| | (info.symbol_scope << SOM_SYMBOL_SCOPE_SH) |
| | (info.arg_reloc << SOM_SYMBOL_ARG_RELOC_SH) |
| | (3 << SOM_SYMBOL_XLEAST_SH) |
| | (info.secondary_def ? SOM_SYMBOL_SECONDARY_DEF : 0) |
| | (info.is_common ? SOM_SYMBOL_IS_COMMON : 0) |
| | (info.dup_common ? SOM_SYMBOL_DUP_COMMON : 0); |
| bfd_putb32 (flags, som_symtab[i].flags); |
| |
| flags = (info.symbol_info << SOM_SYMBOL_SYMBOL_INFO_SH) |
| | (info.is_comdat ? SOM_SYMBOL_IS_COMDAT : 0); |
| bfd_putb32 (flags, som_symtab[i].info); |
| bfd_putb32 (info.symbol_value | info.priv_level, |
| som_symtab[i].symbol_value); |
| } |
| |
| /* Everything is ready, seek to the right location and |
| scribble out the symbol table. */ |
| if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0) |
| goto error_return; |
| |
| symtab_size = num_syms; |
| symtab_size *= sizeof (struct som_external_symbol_dictionary_record); |
| if (bfd_bwrite ((void *) som_symtab, symtab_size, abfd) != symtab_size) |
| goto error_return; |
| |
| free (som_symtab); |
| return true; |
| |
| error_return: |
| free (som_symtab); |
| return false; |
| } |
| |
| /* Write an object in SOM format. */ |
| |
| static bool |
| som_write_object_contents (bfd *abfd) |
| { |
| if (! abfd->output_has_begun) |
| { |
| /* Set up fixed parts of the file, space, and subspace headers. |
| Notify the world that output has begun. */ |
| som_prep_headers (abfd); |
| abfd->output_has_begun = true; |
| /* Start writing the object file. This include all the string |
| tables, fixup streams, and other portions of the object file. */ |
| som_begin_writing (abfd); |
| } |
| |
| return som_finish_writing (abfd); |
| } |
| |
| /* Read and save the string table associated with the given BFD. */ |
| |
| static bool |
| som_slurp_string_table (bfd *abfd) |
| { |
| char *stringtab; |
| bfd_size_type amt; |
| |
| /* Use the saved version if its available. */ |
| if (obj_som_stringtab (abfd) != NULL) |
| return true; |
| |
| /* I don't think this can currently happen, and I'm not sure it should |
| really be an error, but it's better than getting unpredictable results |
| from the host's malloc when passed a size of zero. */ |
| if (obj_som_stringtab_size (abfd) == 0) |
| { |
| bfd_set_error (bfd_error_no_symbols); |
| return false; |
| } |
| |
| /* Allocate and read in the string table. */ |
| if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) != 0) |
| return false; |
| amt = obj_som_stringtab_size (abfd); |
| stringtab = (char *) _bfd_malloc_and_read (abfd, amt + 1, amt); |
| if (stringtab == NULL) |
| return false; |
| /* Make sure that the strings are zero-terminated. */ |
| stringtab[amt] = 0; |
| |
| /* Save our results and return success. */ |
| obj_som_stringtab (abfd) = stringtab; |
| return true; |
| } |
| |
| /* Return the amount of data (in bytes) required to hold the symbol |
| table for this object. */ |
| |
| static long |
| som_get_symtab_upper_bound (bfd *abfd) |
| { |
| if (!som_slurp_symbol_table (abfd)) |
| return -1; |
| |
| return (bfd_get_symcount (abfd) + 1) * sizeof (asymbol *); |
| } |
| |
| /* Convert from a SOM subspace index to a BFD section. */ |
| |
| asection * |
| bfd_section_from_som_symbol |
| (bfd *abfd, struct som_external_symbol_dictionary_record *symbol) |
| { |
| asection *section; |
| unsigned int flags = bfd_getb32 (symbol->flags); |
| unsigned int symbol_type = (flags >> SOM_SYMBOL_TYPE_SH) & SOM_SYMBOL_TYPE_MASK; |
| |
| /* The meaning of the symbol_info field changes for functions |
| within executables. So only use the quick symbol_info mapping for |
| incomplete objects and non-function symbols in executables. */ |
| if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 |
| || (symbol_type != ST_ENTRY |
| && symbol_type != ST_PRI_PROG |
| && symbol_type != ST_SEC_PROG |
| && symbol_type != ST_MILLICODE)) |
| { |
| int idx = (bfd_getb32 (symbol->info) >> SOM_SYMBOL_SYMBOL_INFO_SH) |
| & SOM_SYMBOL_SYMBOL_INFO_MASK; |
| |
| for (section = abfd->sections; section != NULL; section = section->next) |
| if (section->target_index == idx && som_is_subspace (section)) |
| return section; |
| } |
| else |
| { |
| unsigned int value = bfd_getb32 (symbol->symbol_value); |
| |
| /* For executables we will have to use the symbol's address and |
| find out what section would contain that address. Yuk. */ |
| for (section = abfd->sections; section; section = section->next) |
| if (value >= section->vma |
| && value <= section->vma + section->size |
| && som_is_subspace (section)) |
| return section; |
| } |
| |
| /* Could be a symbol from an external library (such as an OMOS |
| shared library). Don't abort. */ |
| return bfd_abs_section_ptr; |
| } |
| |
| /* Read and save the symbol table associated with the given BFD. */ |
| |
| static unsigned int |
| som_slurp_symbol_table (bfd *abfd) |
| { |
| unsigned int symbol_count = bfd_get_symcount (abfd); |
| size_t symsize = sizeof (struct som_external_symbol_dictionary_record); |
| char *stringtab; |
| struct som_external_symbol_dictionary_record *buf = NULL, *bufp, *endbufp; |
| som_symbol_type *sym, *symbase = NULL; |
| size_t amt; |
| |
| /* Return saved value if it exists. */ |
| if (obj_som_symtab (abfd) != NULL) |
| goto successful_return; |
| |
| /* Special case. This is *not* an error. */ |
| if (symbol_count == 0) |
| goto successful_return; |
| |
| if (!som_slurp_string_table (abfd)) |
| goto error_return; |
| |
| stringtab = obj_som_stringtab (abfd); |
| |
| /* Read in the external SOM representation. */ |
| if (_bfd_mul_overflow (symbol_count, symsize, &amt)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| goto error_return; |
| } |
| if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) != 0) |
| goto error_return; |
| buf = (struct som_external_symbol_dictionary_record *) |
| _bfd_malloc_and_read (abfd, amt, amt); |
| if (buf == NULL) |
| goto error_return; |
| |
| if (_bfd_mul_overflow (symbol_count, sizeof (som_symbol_type), &amt)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| goto error_return; |
| } |
| symbase = bfd_zmalloc (amt); |
| if (symbase == NULL) |
| goto error_return; |
| |
| /* Iterate over all the symbols and internalize them. */ |
| endbufp = buf + symbol_count; |
| for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp) |
| { |
| unsigned int flags = bfd_getb32 (bufp->flags); |
| unsigned int symbol_type = |
| (flags >> SOM_SYMBOL_TYPE_SH) & SOM_SYMBOL_TYPE_MASK; |
| unsigned int symbol_scope = |
| (flags >> SOM_SYMBOL_SCOPE_SH) & SOM_SYMBOL_SCOPE_MASK; |
| bfd_vma offset; |
| |
| /* I don't think we care about these. */ |
| if (symbol_type == ST_SYM_EXT || symbol_type == ST_ARG_EXT) |
| continue; |
| |
| /* Set some private data we care about. */ |
| if (symbol_type == ST_NULL) |
| som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN; |
| else if (symbol_type == ST_ABSOLUTE) |
| som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE; |
| else if (symbol_type == ST_DATA) |
| som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA; |
| else if (symbol_type == ST_CODE) |
| som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE; |
| else if (symbol_type == ST_PRI_PROG) |
| som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG; |
| else if (symbol_type == ST_SEC_PROG) |
| som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG; |
| else if (symbol_type == ST_ENTRY) |
| som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY; |
| else if (symbol_type == ST_MILLICODE) |
| som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE; |
| else if (symbol_type == ST_PLABEL) |
| som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL; |
| else |
| som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN; |
| som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = |
| (flags >> SOM_SYMBOL_ARG_RELOC_SH) & SOM_SYMBOL_ARG_RELOC_MASK; |
| |
| /* Some reasonable defaults. */ |
| sym->symbol.the_bfd = abfd; |
| offset = bfd_getb32 (bufp->name); |
| if (offset < obj_som_stringtab_size (abfd)) |
| sym->symbol.name = offset + stringtab; |
| else |
| { |
| bfd_set_error (bfd_error_bad_value); |
| goto error_return; |
| } |
| sym->symbol.value = bfd_getb32 (bufp->symbol_value); |
| sym->symbol.section = NULL; |
| sym->symbol.flags = 0; |
| |
| switch (symbol_type) |
| { |
| case ST_ENTRY: |
| case ST_MILLICODE: |
| sym->symbol.flags |= BSF_FUNCTION; |
| som_symbol_data (sym)->tc_data.ap.hppa_priv_level = |
| sym->symbol.value & 0x3; |
| sym->symbol.value &= ~0x3; |
| break; |
| |
| case ST_STUB: |
| case ST_CODE: |
| case ST_PRI_PROG: |
| case ST_SEC_PROG: |
| som_symbol_data (sym)->tc_data.ap.hppa_priv_level = |
| sym->symbol.value & 0x3; |
| sym->symbol.value &= ~0x3; |
| /* If the symbol's scope is SS_UNSAT, then these are |
| undefined function symbols. */ |
| if (symbol_scope == SS_UNSAT) |
| sym->symbol.flags |= BSF_FUNCTION; |
| |
| default: |
| break; |
| } |
| |
| /* Handle scoping and section information. */ |
| switch (symbol_scope) |
| { |
| /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols, |
| so the section associated with this symbol can't be known. */ |
| case SS_EXTERNAL: |
| if (symbol_type != ST_STORAGE) |
| sym->symbol.section = bfd_und_section_ptr; |
| else |
| sym->symbol.section = bfd_com_section_ptr; |
| sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL); |
| break; |
| |
| case SS_UNSAT: |
| if (symbol_type != ST_STORAGE) |
| sym->symbol.section = bfd_und_section_ptr; |
| else |
| sym->symbol.section = bfd_com_section_ptr; |
| break; |
| |
| case SS_UNIVERSAL: |
| sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL); |
| sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp); |
| sym->symbol.value -= sym->symbol.section->vma; |
| break; |
| |
| case SS_LOCAL: |
| sym->symbol.flags |= BSF_LOCAL; |
| sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp); |
| sym->symbol.value -= sym->symbol.section->vma; |
| break; |
| |
| default: |
| sym->symbol.section = bfd_und_section_ptr; |
| break; |
| } |
| |
| /* Check for a weak symbol. */ |
| if (flags & SOM_SYMBOL_SECONDARY_DEF) |
| sym->symbol.flags |= BSF_WEAK; |
| /* Mark section symbols and symbols used by the debugger. |
| Note $START$ is a magic code symbol, NOT a section symbol. */ |
| if (sym->symbol.name[0] == '$' |
| && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$' |
| && !strcmp (sym->symbol.name, sym->symbol.section->name)) |
| sym->symbol.flags |= BSF_SECTION_SYM; |
| else if (startswith (sym->symbol.name, "L$0\002")) |
| { |
| sym->symbol.flags |= BSF_SECTION_SYM; |
| sym->symbol.name = sym->symbol.section->name; |
| } |
| else if (startswith (sym->symbol.name, "L$0\001")) |
| sym->symbol.flags |= BSF_DEBUGGING; |
| /* Note increment at bottom of loop, since we skip some symbols |
| we can not include it as part of the for statement. */ |
| sym++; |
| } |
| |
| /* We modify the symbol count to record the number of BFD symbols we |
| created. */ |
| abfd->symcount = sym - symbase; |
| |
| /* Save our results and return success. */ |
| obj_som_symtab (abfd) = symbase; |
| successful_return: |
| free (buf); |
| return true; |
| |
| error_return: |
| free (symbase); |
| free (buf); |
| return false; |
| } |
| |
| /* Canonicalize a SOM symbol table. Return the number of entries |
| in the symbol table. */ |
| |
| static long |
| som_canonicalize_symtab (bfd *abfd, asymbol **location) |
| { |
| int i; |
| som_symbol_type *symbase; |
| |
| if (!som_slurp_symbol_table (abfd)) |
| return -1; |
| |
| i = bfd_get_symcount (abfd); |
| symbase = obj_som_symtab (abfd); |
| |
| for (; i > 0; i--, location++, symbase++) |
| *location = &symbase->symbol; |
| |
| /* Final null pointer. */ |
| *location = 0; |
| return (bfd_get_symcount (abfd)); |
| } |
| |
| /* Make a SOM symbol. There is nothing special to do here. */ |
| |
| static asymbol * |
| som_make_empty_symbol (bfd *abfd) |
| { |
| size_t amt = sizeof (som_symbol_type); |
| som_symbol_type *new_symbol_type = bfd_zalloc (abfd, amt); |
| |
| if (new_symbol_type == NULL) |
| return NULL; |
| new_symbol_type->symbol.the_bfd = abfd; |
| |
| return &new_symbol_type->symbol; |
| } |
| |
| /* Print symbol information. */ |
| |
| static void |
| som_print_symbol (bfd *abfd, |
| void *afile, |
| asymbol *symbol, |
| bfd_print_symbol_type how) |
| { |
| FILE *file = (FILE *) afile; |
| |
| switch (how) |
| { |
| case bfd_print_symbol_name: |
| fprintf (file, "%s", symbol->name); |
| break; |
| case bfd_print_symbol_more: |
| fprintf (file, "som %08" PRIx64 " %x", |
| (uint64_t) symbol->value, symbol->flags); |
| break; |
| case bfd_print_symbol_all: |
| { |
| const char *section_name; |
| |
| section_name = symbol->section ? symbol->section->name : "(*none*)"; |
| bfd_print_symbol_vandf (abfd, (void *) file, symbol); |
| fprintf (file, " %s\t%s", section_name, symbol->name); |
| break; |
| } |
| } |
| } |
| |
| static bool |
| som_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, |
| const char *name) |
| { |
| return name[0] == 'L' && name[1] == '$'; |
| } |
| |
| /* Count or process variable-length SOM fixup records. |
| |
| To avoid code duplication we use this code both to compute the number |
| of relocations requested by a stream, and to internalize the stream. |
| |
| When computing the number of relocations requested by a stream the |
| variables rptr, section, and symbols have no meaning. |
| |
| Return the number of relocations requested by the fixup stream. When |
| not just counting |
| |
| This needs at least two or three more passes to get it cleaned up. */ |
| |
| static unsigned int |
| som_set_reloc_info (unsigned char *fixup, |
| unsigned int end, |
| arelent *internal_relocs, |
| asection *section, |
| asymbol **symbols, |
| unsigned int symcount, |
| bool just_count) |
| { |
| unsigned int deallocate_contents = 0; |
| unsigned char *end_fixups = &fixup[end]; |
| int variables[26], stack[20], count, prev_fixup, *sp, saved_unwind_bits; |
| arelent *rptr = internal_relocs; |
| unsigned int offset = 0; |
| |
| #define var(c) variables[(c) - 'A'] |
| #define push(v) (*sp++ = (v)) |
| #define pop() (*--sp) |
| #define emptystack() (sp == stack) |
| |
| som_initialize_reloc_queue (reloc_queue); |
| memset (variables, 0, sizeof (variables)); |
| memset (stack, 0, sizeof (stack)); |
| count = 0; |
| prev_fixup = 0; |
| saved_unwind_bits = 0; |
| sp = stack; |
| |
| while (fixup < end_fixups) |
| { |
| const char *cp; |
| unsigned int op; |
| const struct fixup_format *fp; |
| |
| /* Save pointer to the start of this fixup. We'll use |
| it later to determine if it is necessary to put this fixup |
| on the queue. */ |
| unsigned char *save_fixup = fixup; |
| |
| /* Get the fixup code and its associated format. */ |
| op = *fixup++; |
| fp = &som_fixup_formats[op]; |
| |
| /* Handle a request for a previous fixup. */ |
| if (*fp->format == 'P') |
| { |
| if (!reloc_queue[fp->D].reloc) |
| /* The back-reference doesn't exist. This is a broken |
| object file, likely fuzzed. Just ignore the fixup. */ |
| continue; |
| |
| /* Get pointer to the beginning of the prev fixup, move |
| the repeated fixup to the head of the queue. */ |
| fixup = reloc_queue[fp->D].reloc; |
| som_reloc_queue_fix (reloc_queue, fp->D); |
| prev_fixup = 1; |
| |
| /* Get the fixup code and its associated format. */ |
| op = *fixup++; |
| fp = &som_fixup_formats[op]; |
| } |
| |
| /* If this fixup will be passed to BFD, set some reasonable defaults. */ |
| if (! just_count |
| && som_hppa_howto_table[op].type != R_NO_RELOCATION |
| && som_hppa_howto_table[op].type != R_DATA_OVERRIDE) |
| { |
| rptr->address = offset; |
| rptr->howto = &som_hppa_howto_table[op]; |
| rptr->addend = 0; |
| rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; |
| } |
| |
| /* Set default input length to 0. Get the opcode class index |
| into D. */ |
| var ('L') = 0; |
| var ('D') = fp->D; |
| var ('U') = saved_unwind_bits; |
| |
| /* Get the opcode format. */ |
| cp = fp->format; |
| |
| /* Process the format string. Parsing happens in two phases, |
| parse RHS, then assign to LHS. Repeat until no more |
| characters in the format string. */ |
| while (*cp) |
| { |
| /* The variable this pass is going to compute a value for. */ |
| unsigned int varname = *cp++; |
| const int *subop; |
| int c; |
| |
| /* Start processing RHS. Continue until a NULL or '=' is found. */ |
| do |
| { |
| unsigned v; |
| |
| c = *cp++; |
| |
| /* If this is a variable, push it on the stack. */ |
| if (ISUPPER (c)) |
| push (var (c)); |
| |
| /* If this is a lower case letter, then it represents |
| additional data from the fixup stream to be pushed onto |
| the stack. */ |
| else if (ISLOWER (c)) |
| { |
| int bits = (c - 'a') * 8; |
| for (v = 0; c > 'a' && fixup < end_fixups; --c) |
| v = (v << 8) | *fixup++; |
| if (varname == 'V') |
| v = sign_extend (v, bits); |
| push (v); |
| } |
| |
| /* A decimal constant. Push it on the stack. */ |
| else if (ISDIGIT (c)) |
| { |
| v = c - '0'; |
| while (ISDIGIT (*cp)) |
| v = (v * 10) + (*cp++ - '0'); |
| push (v); |
| } |
| else |
| /* An operator. Pop two values from the stack and |
| use them as operands to the given operation. Push |
| the result of the operation back on the stack. */ |
| switch (c) |
| { |
| case '+': |
| v = pop (); |
| v += pop (); |
| push (v); |
| break; |
| case '*': |
| v = pop (); |
| v *= pop (); |
| push (v); |
| break; |
| case '<': |
| v = pop (); |
| v = pop () << v; |
| push (v); |
| break; |
| default: |
| abort (); |
| } |
| } |
| while (*cp && *cp != '='); |
| |
| /* Move over the equal operator. */ |
| cp++; |
| |
| /* Pop the RHS off the stack. */ |
| c = pop (); |
| |
| /* Perform the assignment. */ |
| var (varname) = c; |
| |
| /* Handle side effects. and special 'O' stack cases. */ |
| switch (varname) |
| { |
| /* Consume some bytes from the input space. */ |
| case 'L': |
| offset += c; |
| break; |
| /* A symbol to use in the relocation. Make a note |
| of this if we are not just counting. */ |
| case 'S': |
| if (!just_count && symbols != NULL && (unsigned int) c < symcount) |
| rptr->sym_ptr_ptr = &symbols[c]; |
| break; |
| /* Argument relocation bits for a function call. */ |
| case 'R': |
| if (! just_count) |
| { |
| unsigned int tmp = var ('R'); |
| rptr->addend = 0; |
| |
| if ((som_hppa_howto_table[op].type == R_PCREL_CALL |
| && R_PCREL_CALL + 10 > op) |
| || (som_hppa_howto_table[op].type == R_ABS_CALL |
| && R_ABS_CALL + 10 > op)) |
| { |
| /* Simple encoding. */ |
| if (tmp > 4) |
| { |
| tmp -= 5; |
| rptr->addend |= 1; |
| } |
| if (tmp == 4) |
| rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2; |
| else if (tmp == 3) |
| rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4; |
| else if (tmp == 2) |
| rptr->addend |= 1 << 8 | 1 << 6; |
| else if (tmp == 1) |
| rptr->addend |= 1 << 8; |
| } |
| else |
| { |
| unsigned int tmp1, tmp2; |
| |
| /* First part is easy -- low order two bits are |
| directly copied, then shifted away. */ |
| rptr->addend = tmp & 0x3; |
| tmp >>= 2; |
| |
| /* Diving the result by 10 gives us the second |
| part. If it is 9, then the first two words |
| are a double precision paramater, else it is |
| 3 * the first arg bits + the 2nd arg bits. */ |
| tmp1 = tmp / 10; |
| tmp -= tmp1 * 10; |
| if (tmp1 == 9) |
| rptr->addend += (0xe << 6); |
| else |
| { |
| /* Get the two pieces. */ |
| tmp2 = tmp1 / 3; |
| tmp1 -= tmp2 * 3; |
| /* Put them in the addend. */ |
| rptr->addend += (tmp2 << 8) + (tmp1 << 6); |
| } |
| |
| /* What's left is the third part. It's unpacked |
| just like the second. */ |
| if (tmp == 9) |
| rptr->addend += (0xe << 2); |
| else |
| { |
| tmp2 = tmp / 3; |
| tmp -= tmp2 * 3; |
| rptr->addend += (tmp2 << 4) + (tmp << 2); |
| } |
| } |
| rptr->addend = HPPA_R_ADDEND (rptr->addend, 0); |
| } |
| break; |
| /* Handle the linker expression stack. */ |
| case 'O': |
| switch (op) |
| { |
| case R_COMP1: |
| subop = comp1_opcodes; |
| break; |
| case R_COMP2: |
| subop = comp2_opcodes; |
| break; |
| case R_COMP3: |
| subop = comp3_opcodes; |
| break; |
| default: |
| abort (); |
| } |
| while (*subop <= (unsigned char) c) |
| ++subop; |
| --subop; |
| break; |
| /* The lower 32unwind bits must be persistent. */ |
| case 'U': |
| saved_unwind_bits = var ('U'); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* If we used a previous fixup, clean up after it. */ |
| if (prev_fixup) |
| { |
| fixup = save_fixup + 1; |
| prev_fixup = 0; |
| } |
| /* Queue it. */ |
| else if (fixup > save_fixup + 1) |
| som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue); |
| |
| /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION |
| fixups to BFD. */ |
| if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE |
| && som_hppa_howto_table[op].type != R_NO_RELOCATION) |
| { |
| /* Done with a single reloction. Loop back to the top. */ |
| if (! just_count) |
| { |
| if (som_hppa_howto_table[op].type == R_ENTRY) |
| rptr->addend = var ('T'); |
| else if (som_hppa_howto_table[op].type == R_EXIT) |
| rptr->addend = var ('U'); |
| else if (som_hppa_howto_table[op].type == R_PCREL_CALL |
| || som_hppa_howto_table[op].type == R_ABS_CALL) |
| ; |
| else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL) |
| { |
| /* Try what was specified in R_DATA_OVERRIDE first |
| (if anything). Then the hard way using the |
| section contents. */ |
| rptr->addend = var ('V'); |
| |
| if (rptr->addend == 0 && !section->contents) |
| { |
| /* Got to read the damn contents first. We don't |
| bother saving the contents (yet). Add it one |
| day if the need arises. */ |
| bfd_byte *contents; |
| if (!bfd_malloc_and_get_section (section->owner, section, |
| &contents)) |
| { |
| free (contents); |
| return (unsigned) -1; |
| } |
| section->contents = contents; |
| deallocate_contents = 1; |
| } |
| if (rptr->addend == 0 |
| && offset - var ('L') <= section->size |
| && section->size - (offset - var ('L')) >= 4) |
| rptr->addend = bfd_get_32 (section->owner, |
| (section->contents |
| + offset - var ('L'))); |
| |
| } |
| else |
| rptr->addend = var ('V'); |
| rptr++; |
| } |
| count++; |
| /* Now that we've handled a "full" relocation, reset |
| some state. */ |
| memset (variables, 0, sizeof (variables)); |
| memset (stack, 0, sizeof (stack)); |
| } |
| } |
| if (deallocate_contents) |
| { |
| free (section->contents); |
| section->contents = NULL; |
| } |
| |
| return count; |
| |
| #undef var |
| #undef push |
| #undef pop |
| #undef emptystack |
| } |
| |
| /* Read in the relocs (aka fixups in SOM terms) for a section. |
| |
| som_get_reloc_upper_bound calls this routine with JUST_COUNT |
| set to TRUE to indicate it only needs a count of the number |
| of actual relocations. */ |
| |
| static bool |
| som_slurp_reloc_table (bfd *abfd, |
| asection *section, |
| asymbol **symbols, |
| bool just_count) |
| { |
| unsigned char *external_relocs; |
| unsigned int fixup_stream_size; |
| arelent *internal_relocs; |
| unsigned int num_relocs; |
| size_t amt; |
| |
| fixup_stream_size = som_section_data (section)->reloc_size; |
| /* If there were no relocations, then there is nothing to do. */ |
| if (section->reloc_count == 0) |
| return true; |
| |
| /* If reloc_count is -1, then the relocation stream has not been |
| parsed. We must do so now to know how many relocations exist. */ |
| if (section->reloc_count == (unsigned) -1) |
| { |
| /* Read in the external forms. */ |
| if (bfd_seek (abfd, obj_som_reloc_filepos (abfd) + section->rel_filepos, |
| SEEK_SET) != 0) |
| return false; |
| amt = fixup_stream_size; |
| external_relocs = _bfd_malloc_and_read (abfd, amt, amt); |
| if (external_relocs == NULL) |
| return false; |
| |
| /* Let callers know how many relocations found. |
| also save the relocation stream as we will |
| need it again. */ |
| section->reloc_count = som_set_reloc_info (external_relocs, |
| fixup_stream_size, |
| NULL, NULL, NULL, 0, true); |
| |
| som_section_data (section)->reloc_stream = external_relocs; |
| } |
| |
| /* If the caller only wanted a count, then return now. */ |
| if (just_count) |
| return true; |
| |
| num_relocs = section->reloc_count; |
| external_relocs = som_section_data (section)->reloc_stream; |
| /* Return saved information about the relocations if it is available. */ |
| if (section->relocation != NULL) |
| return true; |
| |
| if (_bfd_mul_overflow (num_relocs, sizeof (arelent), &amt)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| return false; |
| } |
| internal_relocs = bfd_zalloc (abfd, amt); |
| if (internal_relocs == NULL) |
| return false; |
| |
| /* Process and internalize the relocations. */ |
| som_set_reloc_info (external_relocs, fixup_stream_size, |
| internal_relocs, section, symbols, |
| bfd_get_symcount (abfd), false); |
| |
| /* We're done with the external relocations. Free them. */ |
| free (external_relocs); |
| som_section_data (section)->reloc_stream = NULL; |
| |
| /* Save our results and return success. */ |
| section->relocation = internal_relocs; |
| return true; |
| } |
| |
| /* Return the number of bytes required to store the relocation |
| information associated with the given section. */ |
| |
| static long |
| som_get_reloc_upper_bound (bfd *abfd, sec_ptr asect) |
| { |
| /* If section has relocations, then read in the relocation stream |
| and parse it to determine how many relocations exist. */ |
| if (asect->flags & SEC_RELOC) |
| { |
| if (! som_slurp_reloc_table (abfd, asect, NULL, true)) |
| return -1; |
| return (asect->reloc_count + 1) * sizeof (arelent *); |
| } |
| |
| /* There are no relocations. Return enough space to hold the |
| NULL pointer which will be installed if som_canonicalize_reloc |
| is called. */ |
| return sizeof (arelent *); |
| } |
| |
| /* Convert relocations from SOM (external) form into BFD internal |
| form. Return the number of relocations. */ |
| |
| static long |
| som_canonicalize_reloc (bfd *abfd, |
| sec_ptr section, |
| arelent **relptr, |
| asymbol **symbols) |
| { |
| arelent *tblptr; |
| int count; |
| |
| if (! som_slurp_reloc_table (abfd, section, symbols, false)) |
| return -1; |
| |
| count = section->reloc_count; |
| tblptr = section->relocation; |
| |
| while (count--) |
| *relptr++ = tblptr++; |
| |
| *relptr = NULL; |
| return section->reloc_count; |
| } |
| |
| extern const bfd_target hppa_som_vec; |
| |
| /* A hook to set up object file dependent section information. */ |
| |
| static bool |
| som_new_section_hook (bfd *abfd, asection *newsect) |
| { |
| if (!newsect->used_by_bfd) |
| { |
| size_t amt = sizeof (struct som_section_data_struct); |
| |
| newsect->used_by_bfd = bfd_zalloc (abfd, amt); |
| if (!newsect->used_by_bfd) |
| return false; |
| } |
| newsect->alignment_power = 3; |
| |
| /* We allow more than three sections internally. */ |
| return _bfd_generic_new_section_hook (abfd, newsect); |
| } |
| |
| /* Copy any private info we understand from the input symbol |
| to the output symbol. */ |
| |
| static bool |
| som_bfd_copy_private_symbol_data (bfd *ibfd, |
| asymbol *isymbol, |
| bfd *obfd, |
| asymbol *osymbol) |
| { |
| struct som_symbol *input_symbol = (struct som_symbol *) isymbol; |
| struct som_symbol *output_symbol = (struct som_symbol *) osymbol; |
| |
| /* One day we may try to grok other private data. */ |
| if (ibfd->xvec->flavour != bfd_target_som_flavour |
| || obfd->xvec->flavour != bfd_target_som_flavour) |
| return false; |
| |
| /* The only private information we need to copy is the argument relocation |
| bits. */ |
| output_symbol->tc_data.ap.hppa_arg_reloc = |
| input_symbol->tc_data.ap.hppa_arg_reloc; |
| |
| return true; |
| } |
| |
| /* Copy any private info we understand from the input section |
| to the output section. */ |
| |
| static bool |
| som_bfd_copy_private_section_data (bfd *ibfd, |
| asection *isection, |
| bfd *obfd, |
| asection *osection) |
| { |
| size_t amt; |
| |
| /* One day we may try to grok other private data. */ |
| if (ibfd->xvec->flavour != bfd_target_som_flavour |
| || obfd->xvec->flavour != bfd_target_som_flavour |
| || (!som_is_space (isection) && !som_is_subspace (isection))) |
| return true; |
| |
| amt = sizeof (struct som_copyable_section_data_struct); |
| som_section_data (osection)->copy_data = bfd_zalloc (obfd, amt); |
| if (som_section_data (osection)->copy_data == NULL) |
| return false; |
| |
| memcpy (som_section_data (osection)->copy_data, |
| som_section_data (isection)->copy_data, |
| sizeof (struct som_copyable_section_data_struct)); |
| |
| /* Reparent if necessary. */ |
| if (som_section_data (osection)->copy_data->container) |
| { |
| if (som_section_data (osection)->copy_data->container->output_section) |
| som_section_data (osection)->copy_data->container = |
| som_section_data (osection)->copy_data->container->output_section; |
| else |
| { |
| /* User has specified a subspace without its containing space. */ |
| _bfd_error_handler (_("%pB[%pA]: no output section for space %pA"), |
| obfd, osection, som_section_data (osection)->copy_data->container); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Copy any private info we understand from the input bfd |
| to the output bfd. */ |
| |
| static bool |
| som_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd) |
| { |
| /* One day we may try to grok other private data. */ |
| if (ibfd->xvec->flavour != bfd_target_som_flavour |
| || obfd->xvec->flavour != bfd_target_som_flavour) |
| return true; |
| |
| /* Allocate some memory to hold the data we need. */ |
| obj_som_exec_data (obfd) = bfd_zalloc (obfd, (bfd_size_type) sizeof (struct som_exec_data)); |
| if (obj_som_exec_data (obfd) == NULL) |
| return false; |
| |
| /* Now copy the data. */ |
| memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd), |
| sizeof (struct som_exec_data)); |
| |
| return true; |
| } |
| |
| /* Display the SOM header. */ |
| |
| static bool |
| som_bfd_print_private_bfd_data (bfd *abfd, void *farg) |
| { |
| struct som_exec_auxhdr *exec_header; |
| struct som_aux_id* auxhdr; |
| FILE *f; |
| |
| f = (FILE *) farg; |
| |
| exec_header = obj_som_exec_hdr (abfd); |
| if (exec_header) |
| { |
| fprintf (f, _("\nExec Auxiliary Header\n")); |
| fprintf (f, " flags "); |
| auxhdr = &exec_header->som_auxhdr; |
| if (auxhdr->mandatory) |
| fprintf (f, "mandatory "); |
| if (auxhdr->copy) |
| fprintf (f, "copy "); |
| if (auxhdr->append) |
| fprintf (f, "append "); |
| if (auxhdr->ignore) |
| fprintf (f, "ignore "); |
| fprintf (f, "\n"); |
| fprintf (f, " type %#x\n", auxhdr->type); |
| fprintf (f, " length %#x\n", auxhdr->length); |
| |
| /* Note that, depending on the HP-UX version, the following fields can be |
| either ints, or longs. */ |
| |
| fprintf (f, " text size %#lx\n", (long) exec_header->exec_tsize); |
| fprintf (f, " text memory offset %#lx\n", (long) exec_header->exec_tmem); |
| fprintf (f, " text file offset %#lx\n", (long) exec_header->exec_tfile); |
| fprintf (f, " data size %#lx\n", (long) exec_header->exec_dsize); |
| fprintf (f, " data memory offset %#lx\n", (long) exec_header->exec_dmem); |
| fprintf (f, " data file offset %#lx\n", (long) exec_header->exec_dfile); |
| fprintf (f, " bss size %#lx\n", (long) exec_header->exec_bsize); |
| fprintf (f, " entry point %#lx\n", (long) exec_header->exec_entry); |
| fprintf (f, " loader flags %#lx\n", (long) exec_header->exec_flags); |
| fprintf (f, " bss initializer %#lx\n", (long) exec_header->exec_bfill); |
| } |
| |
| return true; |
| } |
| |
| /* Set backend info for sections which can not be described |
| in the BFD data structures. */ |
| |
| bool |
| bfd_som_set_section_attributes (asection *section, |
| int defined, |
| int private, |
| unsigned int sort_key, |
| int spnum) |
| { |
| /* Allocate memory to hold the magic information. */ |
| if (som_section_data (section)->copy_data == NULL) |
| { |
| size_t amt = sizeof (struct som_copyable_section_data_struct); |
| |
| som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt); |
| if (som_section_data (section)->copy_data == NULL) |
| return false; |
| } |
| som_section_data (section)->copy_data->sort_key = sort_key; |
| som_section_data (section)->copy_data->is_defined = defined; |
| som_section_data (section)->copy_data->is_private = private; |
| som_section_data (section)->copy_data->container = section; |
| som_section_data (section)->copy_data->space_number = spnum; |
| return true; |
| } |
| |
| /* Set backend info for subsections which can not be described |
| in the BFD data structures. */ |
| |
| bool |
| bfd_som_set_subsection_attributes (asection *section, |
| asection *container, |
| int access_ctr, |
| unsigned int sort_key, |
| int quadrant, |
| int comdat, |
| int common, |
| int dup_common) |
| { |
| /* Allocate memory to hold the magic information. */ |
| if (som_section_data (section)->copy_data == NULL) |
| { |
| size_t amt = sizeof (struct som_copyable_section_data_struct); |
| |
| som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt); |
| if (som_section_data (section)->copy_data == NULL) |
| return false; |
| } |
| som_section_data (section)->copy_data->sort_key = sort_key; |
| som_section_data (section)->copy_data->access_control_bits = access_ctr; |
| som_section_data (section)->copy_data->quadrant = quadrant; |
| som_section_data (section)->copy_data->container = container; |
| som_section_data (section)->copy_data->is_comdat = comdat; |
| som_section_data (section)->copy_data->is_common = common; |
| som_section_data (section)->copy_data->dup_common = dup_common; |
| return true; |
| } |
| |
| /* Set the full SOM symbol type. SOM needs far more symbol information |
| than any other object file format I'm aware of. It is mandatory |
| to be able to know if a symbol is an entry point, millicode, data, |
| code, absolute, storage request, or procedure label. If you get |
| the symbol type wrong your program will not link. */ |
| |
| void |
| bfd_som_set_symbol_type (asymbol *symbol, unsigned int type) |
| { |
| som_symbol_data (symbol)->som_type = type; |
| } |
| |
| /* Attach an auxiliary header to the BFD backend so that it may be |
| written into the object file. */ |
| |
| bool |
| bfd_som_attach_aux_hdr (bfd *abfd, int type, char *string) |
| { |
| size_t amt; |
| |
| if (type == VERSION_AUX_ID) |
| { |
| size_t len = strlen (string); |
| int pad = 0; |
| |
| if (len % 4) |
| pad = (4 - (len % 4)); |
| amt = sizeof (struct som_string_auxhdr) + len + pad; |
| obj_som_version_hdr (abfd) = bfd_zalloc (abfd, amt); |
| if (!obj_som_version_hdr (abfd)) |
| return false; |
| obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID; |
| obj_som_version_hdr (abfd)->header_id.length = 4 + len + pad; |
| obj_som_version_hdr (abfd)->string_length = len; |
| memcpy (obj_som_version_hdr (abfd)->string, string, len); |
| memset (obj_som_version_hdr (abfd)->string + len, 0, pad); |
| } |
| else if (type == COPYRIGHT_AUX_ID) |
| { |
| size_t len = strlen (string); |
| int pad = 0; |
| |
| if (len % 4) |
| pad = (4 - (len % 4)); |
| amt = sizeof (struct som_string_auxhdr) + len + pad; |
| obj_som_copyright_hdr (abfd) = bfd_zalloc (abfd, amt); |
| if (!obj_som_copyright_hdr (abfd)) |
| return false; |
| obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID; |
| obj_som_copyright_hdr (abfd)->header_id.length = len + pad + 4; |
| obj_som_copyright_hdr (abfd)->string_length = len; |
| memcpy (obj_som_copyright_hdr (abfd)->string, string, len); |
| memset (obj_som_copyright_hdr (abfd)->string + len, 0, pad); |
| } |
| return true; |
| } |
| |
| /* Attach a compilation unit header to the BFD backend so that it may be |
| written into the object file. */ |
| |
| bool |
| bfd_som_attach_compilation_unit (bfd *abfd, |
| const char *name, |
| const char *language_name, |
| const char *product_id, |
| const char *version_id) |
| { |
| struct som_compilation_unit *n; |
| |
| n = (struct som_compilation_unit *) bfd_zalloc |
| (abfd, (bfd_size_type) sizeof (*n)); |
| if (n == NULL) |
| return false; |
| |
| #define STRDUP(f) \ |
| if (f != NULL) \ |
| { \ |
| n->f.name = bfd_alloc (abfd, (bfd_size_type) strlen (f) + 1); \ |
| if (n->f.name == NULL) \ |
| return false; \ |
| strcpy (n->f.name, f); \ |
| } |
| |
| STRDUP (name); |
| STRDUP (language_name); |
| STRDUP (product_id); |
| STRDUP (version_id); |
| |
| #undef STRDUP |
| |
| obj_som_compilation_unit (abfd) = n; |
| |
| return true; |
| } |
| |
| static bool |
| som_get_section_contents (bfd *abfd, |
| sec_ptr section, |
| void *location, |
| file_ptr offset, |
| bfd_size_type count) |
| { |
| if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0)) |
| return true; |
| if ((bfd_size_type) (offset+count) > section->size |
| || bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) != 0 |
| || bfd_bread (location, count, abfd) != count) |
| return false; /* On error. */ |
| return true; |
| } |
| |
| static bool |
| som_set_section_contents (bfd *abfd, |
| sec_ptr section, |
| const void *location, |
| file_ptr offset, |
| bfd_size_type count) |
| { |
| if (! abfd->output_has_begun) |
| { |
| /* Set up fixed parts of the file, space, and subspace headers. |
| Notify the world that output has begun. */ |
| som_prep_headers (abfd); |
| abfd->output_has_begun = true; |
| /* Start writing the object file. This include all the string |
| tables, fixup streams, and other portions of the object file. */ |
| som_begin_writing (abfd); |
| } |
| |
| /* Only write subspaces which have "real" contents (eg. the contents |
| are not generated at run time by the OS). */ |
| if (!som_is_subspace (section) |
| || ((section->flags & SEC_HAS_CONTENTS) == 0)) |
| return true; |
| |
| /* Seek to the proper offset within the object file and write the |
| data. */ |
| offset += som_section_data (section)->subspace_dict->file_loc_init_value; |
| if (bfd_seek (abfd, offset, SEEK_SET) != 0) |
| return false; |
| |
| if (bfd_bwrite (location, count, abfd) != count) |
| return false; |
| return true; |
| } |
| |
| static bool |
| som_set_arch_mach (bfd *abfd, |
| enum bfd_architecture arch, |
| unsigned long machine) |
| { |
| /* Allow any architecture to be supported by the SOM backend. */ |
| return bfd_default_set_arch_mach (abfd, arch, machine); |
| } |
| |
| static bool |
| som_find_nearest_line (bfd *abfd, |
| asymbol **symbols, |
| asection *section, |
| bfd_vma offset, |
| const char **filename_ptr, |
| const char **functionname_ptr, |
| unsigned int *line_ptr, |
| unsigned int *discriminator_ptr) |
| { |
| bool found; |
| asymbol *func; |
| bfd_vma low_func; |
| asymbol **p; |
| |
| if (discriminator_ptr) |
| *discriminator_ptr = 0; |
| |
| if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, |
| & found, filename_ptr, |
| functionname_ptr, line_ptr, |
| & somdata (abfd).line_info)) |
| return false; |
| |
| if (found) |
| return true; |
| |
| if (symbols == NULL) |
| return false; |
| |
| /* Fallback: find function name from symbols table. */ |
| func = NULL; |
| low_func = 0; |
| |
| for (p = symbols; *p != NULL; p++) |
| { |
| som_symbol_type *q = (som_symbol_type *) *p; |
| |
| if (q->som_type == SYMBOL_TYPE_ENTRY |
| && q->symbol.section == section |
| && q->symbol.value >= low_func |
| && q->symbol.value <= offset) |
| { |
| func = (asymbol *) q; |
| low_func = q->symbol.value; |
| } |
| } |
| |
| if (func == NULL) |
| return false; |
| |
| *filename_ptr = NULL; |
| *functionname_ptr = bfd_asymbol_name (func); |
| *line_ptr = 0; |
| |
| return true; |
| } |
| |
| static int |
| som_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info ATTRIBUTE_UNUSED) |
| { |
| _bfd_error_handler (_("som_sizeof_headers unimplemented")); |
| abort (); |
| return 0; |
| } |
| |
| /* Return the single-character symbol type corresponding to |
| SOM section S, or '?' for an unknown SOM section. */ |
| |
| static char |
| som_section_type (const char *s) |
| { |
| const struct section_to_type *t; |
| |
| for (t = &stt[0]; t->section; t++) |
| if (!strcmp (s, t->section)) |
| return t->type; |
| return '?'; |
| } |
| |
| static int |
| som_decode_symclass (asymbol *symbol) |
| { |
| char c; |
| |
| /* If the symbol did not have a scope specified, |
| then it will not have associated section. */ |
| if (symbol == NULL || symbol->section == NULL) |
| return '?'; |
| |
| if (bfd_is_com_section (symbol->section)) |
| return 'C'; |
| if (bfd_is_und_section (symbol->section)) |
| { |
| if (symbol->flags & BSF_WEAK) |
| { |
| /* If weak, determine if it's specifically an object |
| or non-object weak. */ |
| if (symbol->flags & BSF_OBJECT) |
| return 'v'; |
| else |
| return 'w'; |
| } |
| else |
| return 'U'; |
| } |
| if (bfd_is_ind_section (symbol->section)) |
| return 'I'; |
| if (symbol->flags & BSF_WEAK) |
| { |
| /* If weak, determine if it's specifically an object |
| or non-object weak. */ |
| if (symbol->flags & BSF_OBJECT) |
| return 'V'; |
| else |
| return 'W'; |
| } |
| if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL))) |
| return '?'; |
| |
| if (bfd_is_abs_section (symbol->section) |
| || (som_symbol_data (symbol) != NULL |
| && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE)) |
| c = 'a'; |
| else if (symbol->section) |
| c = som_section_type (symbol->section->name); |
| else |
| return '?'; |
| if (symbol->flags & BSF_GLOBAL) |
| c = TOUPPER (c); |
| return c; |
| } |
| |
| /* Return information about SOM symbol SYMBOL in RET. */ |
| |
| static void |
| som_get_symbol_info (bfd *ignore_abfd ATTRIBUTE_UNUSED, |
| asymbol *symbol, |
| symbol_info *ret) |
| { |
| ret->type = som_decode_symclass (symbol); |
| if (ret->type != 'U') |
| ret->value = symbol->value + symbol->section->vma; |
| else |
| ret->value = 0; |
| ret->name = symbol->name; |
| } |
| |
| /* Count the number of symbols in the archive symbol table. Necessary |
| so that we can allocate space for all the carsyms at once. */ |
| |
| static bool |
| som_bfd_count_ar_symbols (bfd *abfd, |
| struct som_lst_header *lst_header, |
| symindex *count) |
| { |
| unsigned int i; |
| unsigned char *hash_table; |
| size_t amt; |
| file_ptr lst_filepos; |
| |
| lst_filepos = bfd_tell (abfd) - sizeof (struct som_external_lst_header); |
| |
| /* Read in the hash table. The hash table is an array of 32-bit |
| file offsets which point to the hash chains. */ |
| if (_bfd_mul_overflow (lst_header->hash_size, 4, &amt)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| return false; |
| } |
| hash_table = _bfd_malloc_and_read (abfd, amt, amt); |
| if (hash_table == NULL && lst_header->hash_size != 0) |
| goto error_return; |
| |
| /* Don't forget to initialize the counter! */ |
| *count = 0; |
| |
| /* Walk each chain counting the number of symbols found on that particular |
| chain. */ |
| for (i = 0; i < lst_header->hash_size; i++) |
| { |
| struct som_external_lst_symbol_record ext_lst_symbol; |
| unsigned int hash_val = bfd_getb32 (hash_table + 4 * i); |
| |
| /* An empty chain has zero as it's file offset. */ |
| if (hash_val == 0) |
| continue; |
| |
| /* Seek to the first symbol in this hash chain. */ |
| if (bfd_seek (abfd, lst_filepos + hash_val, SEEK_SET) != 0) |
| goto error_return; |
| |
| /* Read in this symbol and update the counter. */ |
| amt = sizeof (ext_lst_symbol); |
| if (bfd_bread ((void *) &ext_lst_symbol, amt, abfd) != amt) |
| goto error_return; |
| |
| (*count)++; |
| |
| /* Now iterate through the rest of the symbols on this chain. */ |
| while (1) |
| { |
| unsigned int next_entry = bfd_getb32 (ext_lst_symbol.next_entry); |
| |
| if (next_entry == 0) |
| break; |
| |
| /* Assume symbols on a chain are in increasing file offset |
| order. Otherwise we can loop here with fuzzed input. */ |
| if (next_entry < hash_val + sizeof (ext_lst_symbol)) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| goto error_return; |
| } |
| hash_val = next_entry; |
| |
| /* Seek to the next symbol. */ |
| if (bfd_seek (abfd, lst_filepos + next_entry, SEEK_SET) != 0) |
| goto error_return; |
| |
| /* Read the symbol in and update the counter. */ |
| amt = sizeof (ext_lst_symbol); |
| if (bfd_bread ((void *) &ext_lst_symbol, amt, abfd) != amt) |
| goto error_return; |
| |
| (*count)++; |
| } |
| } |
| free (hash_table); |
| return true; |
| |
| error_return: |
| free (hash_table); |
| return false; |
| } |
| |
| /* Fill in the canonical archive symbols (SYMS) from the archive described |
| by ABFD and LST_HEADER. */ |
| |
| static bool |
| som_bfd_fill_in_ar_symbols (bfd *abfd, |
| struct som_lst_header *lst_header, |
| carsym **syms) |
| { |
| unsigned int i; |
| carsym *set = syms[0]; |
| unsigned char *hash_table; |
| struct som_external_som_entry *som_dict = NULL; |
| size_t amt; |
| file_ptr lst_filepos; |
| unsigned int string_loc; |
| |
| lst_filepos = bfd_tell (abfd) - sizeof (struct som_external_lst_header); |
| |
| /* Read in the hash table. The has table is an array of 32bit file offsets |
| which point to the hash chains. */ |
| if (_bfd_mul_overflow (lst_header->hash_size, 4, &amt)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| return false; |
| } |
| hash_table = _bfd_malloc_and_read (abfd, amt, amt); |
| if (hash_table == NULL && lst_header->hash_size != 0) |
| goto error_return; |
| |
| /* Seek to and read in the SOM dictionary. We will need this to fill |
| in the carsym's filepos field. */ |
| if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) != 0) |
| goto error_return; |
| |
| if (_bfd_mul_overflow (lst_header->module_count, |
| sizeof (struct som_external_som_entry), &amt)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| goto error_return; |
| } |
| som_dict = (struct som_external_som_entry *) |
| _bfd_malloc_and_read (abfd, amt, amt); |
| if (som_dict == NULL && lst_header->module_count != 0) |
| goto error_return; |
| |
| string_loc = lst_header->string_loc; |
| |
| /* Walk each chain filling in the carsyms as we go along. */ |
| for (i = 0; i < lst_header->hash_size; i++) |
| { |
| struct som_external_lst_symbol_record lst_symbol; |
| unsigned int hash_val; |
| size_t len; |
| unsigned char ext_len[4]; |
| char *name; |
| unsigned int ndx; |
| |
| /* An empty chain has zero as it's file offset. */ |
| hash_val = bfd_getb32 (hash_table + 4 * i); |
| if (hash_val == 0) |
| continue; |
| |
| /* Seek to and read the first symbol on the chain. */ |
| if (bfd_seek (abfd, lst_filepos + hash_val, SEEK_SET) != 0) |
| goto error_return; |
| |
| amt = sizeof (lst_symbol); |
| if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt) |
| goto error_return; |
| |
| /* Get the name of the symbol, first get the length which is stored |
| as a 32bit integer just before the symbol. |
| |
| One might ask why we don't just read in the entire string table |
| and index into it. Well, according to the SOM ABI the string |
| index can point *anywhere* in the archive to save space, so just |
| using the string table would not be safe. */ |
| if (bfd_seek (abfd, (lst_filepos + string_loc |
| + bfd_getb32 (lst_symbol.name) - 4), SEEK_SET) != 0) |
| goto error_return; |
| |
| if (bfd_bread (&ext_len, (bfd_size_type) 4, abfd) != 4) |
| goto error_return; |
| len = bfd_getb32 (ext_len); |
| |
| /* Allocate space for the name and null terminate it too. */ |
| if (len == (size_t) -1) |
| { |
| bfd_set_error (bfd_error_no_memory); |
| goto error_return; |
| } |
| name = (char *) _bfd_alloc_and_read (abfd, len + 1, len); |
| if (!name) |
| goto error_return; |
| name[len] = 0; |
| set->name = name; |
| |
| /* Fill in the file offset. Note that the "location" field points |
| to the SOM itself, not the ar_hdr in front of it. */ |
| ndx = bfd_getb32 (lst_symbol.som_index); |
| if (ndx >= lst_header->module_count) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| goto error_return; |
| } |
| set->file_offset |
| = bfd_getb32 (som_dict[ndx].location) - sizeof (struct ar_hdr); |
| |
| /* Go to the next symbol. */ |
| set++; |
| |
| /* Iterate through the rest of the chain. */ |
| while (1) |
| { |
| unsigned int next_entry = bfd_getb32 (lst_symbol.next_entry); |
| |
| if (next_entry == 0) |
| break; |
| |
| /* Seek to the next symbol and read it in. */ |
| if (bfd_seek (abfd, lst_filepos + next_entry, SEEK_SET) != 0) |
| goto error_return; |
| |
| amt = sizeof (lst_symbol); |
| if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt) |
| goto error_return; |
| |
| /* Seek to the name length & string and read them in. */ |
| if (bfd_seek (abfd, lst_filepos + string_loc |
| + bfd_getb32 (lst_symbol.name) - 4, SEEK_SET) != 0) |
| goto error_return; |
| |
| if (bfd_bread (&ext_len, (bfd_size_type) 4, abfd) != 4) |
| goto error_return; |
| len = bfd_getb32 (ext_len); |
| |
| /* Allocate space for the name and null terminate it too. */ |
| if (len == (size_t) -1) |
| { |
| bfd_set_error (bfd_error_no_memory); |
| goto error_return; |
| } |
| name = (char *) _bfd_alloc_and_read (abfd, len + 1, len); |
| if (!name) |
| goto error_return; |
| name[len] = 0; |
| set->name = name; |
| |
| /* Fill in the file offset. Note that the "location" field points |
| to the SOM itself, not the ar_hdr in front of it. */ |
| ndx = bfd_getb32 (lst_symbol.som_index); |
| if (ndx >= lst_header->module_count) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| goto error_return; |
| } |
| set->file_offset |
| = bfd_getb32 (som_dict[ndx].location) - sizeof (struct ar_hdr); |
| |
| /* Go on to the next symbol. */ |
| set++; |
| } |
| } |
| /* If we haven't died by now, then we successfully read the entire |
| archive symbol table. */ |
| free (hash_table); |
| free (som_dict); |
| return true; |
| |
| error_return: |
| free (hash_table); |
| free (som_dict); |
| return false; |
| } |
| |
| /* Read in the LST from the archive. */ |
| |
| static bool |
| som_slurp_armap (bfd *abfd) |
| { |
| struct som_external_lst_header ext_lst_header; |
| struct som_lst_header lst_header; |
| struct ar_hdr ar_header; |
| unsigned int parsed_size; |
| struct artdata *ardata = bfd_ardata (abfd); |
| char nextname[17]; |
| size_t amt = 16; |
| int i = bfd_bread ((void *) nextname, amt, abfd); |
| |
| /* Special cases. */ |
| if (i == 0) |
| return true; |
| if (i != 16) |
| return false; |
| |
| if (bfd_seek (abfd, (file_ptr) -16, SEEK_CUR) != 0) |
| return false; |
| |
| /* For archives without .o files there is no symbol table. */ |
| if (! startswith (nextname, "/ ")) |
| { |
| abfd->has_armap = false; |
| return true; |
| } |
| |
| /* Read in and sanity check the archive header. */ |
| amt = sizeof (struct ar_hdr); |
| if (bfd_bread ((void *) &ar_header, amt, abfd) != amt) |
| return false; |
| |
| if (strncmp (ar_header.ar_fmag, ARFMAG, 2)) |
| { |
| bfd_set_error (bfd_error_malformed_archive); |
| return false; |
| } |
| |
| /* How big is the archive symbol table entry? */ |
| errno = 0; |
| parsed_size = strtol (ar_header.ar_size, NULL, 10); |
| if (errno != 0) |
| { |
| bfd_set_error (bfd_error_malformed_archive); |
| return false; |
| } |
| |
| /* Save off the file offset of the first real user data. */ |
| ardata->first_file_filepos = bfd_tell (abfd) + parsed_size; |
| |
| /* Read in the library symbol table. We'll make heavy use of this |
| in just a minute. */ |
| amt = sizeof (struct som_external_lst_header); |
| if (bfd_bread ((void *) &ext_lst_header, amt, abfd) != amt) |
| return false; |
| |
| som_swap_lst_header_in (&ext_lst_header, &lst_header); |
| |
| /* Sanity check. */ |
| if (lst_header.a_magic != LIBMAGIC) |
| { |
| bfd_set_error (bfd_error_malformed_archive); |
| return false; |
| } |
| |
| /* Count the number of symbols in the library symbol table. */ |
| if (! som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)) |
| return false; |
| |
| /* Get back to the start of the library symbol table. */ |
| if (bfd_seek (abfd, (ardata->first_file_filepos - parsed_size |
| + sizeof (struct som_external_lst_header)), |
| SEEK_SET) != 0) |
| return false; |
| |
| /* Initialize the cache and allocate space for the library symbols. */ |
| ardata->cache = 0; |
| if (_bfd_mul_overflow (ardata->symdef_count, sizeof (carsym), &amt)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| return false; |
| } |
| ardata->symdefs = bfd_alloc (abfd, amt); |
| if (!ardata->symdefs) |
| return false; |
| |
| /* Now fill in the canonical archive symbols. */ |
| if (! som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)) |
| return false; |
| |
| /* Seek back to the "first" file in the archive. Note the "first" |
| file may be the extended name table. */ |
| if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) != 0) |
| return false; |
| |
| /* Notify the generic archive code that we have a symbol map. */ |
| abfd->has_armap = true; |
| return true; |
| } |
| |
| /* Begin preparing to write a SOM library symbol table. |
| |
| As part of the prep work we need to determine the number of symbols |
| and the size of the associated string section. */ |
| |
| static bool |
| som_bfd_prep_for_ar_write (bfd *abfd, |
| unsigned int *num_syms, |
| unsigned int *stringsize) |
| { |
| bfd *curr_bfd = abfd->archive_head; |
| |
| /* Some initialization. */ |
| *num_syms = 0; |
| *stringsize = 0; |
| |
| /* Iterate over each BFD within this archive. */ |
| while (curr_bfd != NULL) |
| { |
| unsigned int curr_count, i; |
| som_symbol_type *sym; |
| |
| /* Don't bother for non-SOM objects. */ |
| if (curr_bfd->format != bfd_object |
| || curr_bfd->xvec->flavour != bfd_target_som_flavour) |
| { |
| curr_bfd = curr_bfd->archive_next; |
| continue; |
| } |
| |
| /* Make sure the symbol table has been read, then snag a pointer |
| to it. It's a little slimey to grab the symbols via obj_som_symtab, |
| but doing so avoids allocating lots of extra memory. */ |
| if (! som_slurp_symbol_table (curr_bfd)) |
| return false; |
| |
| sym = obj_som_symtab (curr_bfd); |
| curr_count = bfd_get_symcount (curr_bfd); |
| |
| /* Examine each symbol to determine if it belongs in the |
| library symbol table. */ |
| for (i = 0; i < curr_count; i++, sym++) |
| { |
| struct som_misc_symbol_info info; |
| |
| /* Derive SOM information from the BFD symbol. */ |
| som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info); |
| |
| /* Should we include this symbol? */ |
| if (info.symbol_type == ST_NULL |
| || info.symbol_type == ST_SYM_EXT |
| || info.symbol_type == ST_ARG_EXT) |
| continue; |
| |
| /* Only global symbols and unsatisfied commons. */ |
| if (info.symbol_scope != SS_UNIVERSAL |
| && info.symbol_type != ST_STORAGE) |
| continue; |
| |
| /* Do no include undefined symbols. */ |
| if (bfd_is_und_section (sym->symbol.section)) |
| continue; |
| |
| /* Bump the various counters, being careful to honor |
| alignment considerations in the string table. */ |
| (*num_syms)++; |
| *stringsize += strlen (sym->symbol.name) + 5; |
| while (*stringsize % 4) |
| (*stringsize)++; |
| } |
| |
| curr_bfd = curr_bfd->archive_next; |
| } |
| return true; |
| } |
| |
| /* Hash a symbol name based on the hashing algorithm presented in the |
| SOM ABI. */ |
| |
| static unsigned int |
| som_bfd_ar_symbol_hash (asymbol *symbol) |
| { |
| unsigned int len = strlen (symbol->name); |
| |
| /* Names with length 1 are special. */ |
| if (len == 1) |
| return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0]; |
| |
| return ((len & 0x7f) << 24) | (symbol->name[1] << 16) |
| | (symbol->name[len - 2] << 8) | symbol->name[len - 1]; |
| } |
| |
| /* Do the bulk of the work required to write the SOM library |
| symbol table. */ |
| |
| static bool |
| som_bfd_ar_write_symbol_stuff (bfd *abfd, |
| unsigned int nsyms, |
| unsigned int string_size, |
| struct som_external_lst_header lst, |
| unsigned elength) |
| { |
| char *strings = NULL, *p; |
| struct som_external_lst_symbol_record *lst_syms = NULL, *curr_lst_sym; |
| bfd *curr_bfd; |
| unsigned char *hash_table = NULL; |
| struct som_external_som_entry *som_dict = NULL; |
| struct som_external_lst_symbol_record **last_hash_entry = NULL; |
| unsigned int curr_som_offset, som_index = 0; |
| size_t amt; |
| unsigned int module_count; |
| unsigned int hash_size; |
| |
| hash_size = bfd_getb32 (lst.hash_size); |
| if (_bfd_mul_overflow (hash_size, 4, &amt)) |
| { |
| bfd_set_error (bfd_error_no_memory); |
| return false; |
| } |
| hash_table = bfd_zmalloc (amt); |
| if (hash_table == NULL && hash_size != 0) |
| goto error_return; |
| |
| module_count = bfd_getb32 (lst.module_count); |
| if (_bfd_mul_overflow (module_count, |
| sizeof (struct som_external_som_entry), &amt)) |
| { |
| bfd_set_error (bfd_error_no_memory); |
| goto error_return; |
| } |
| som_dict = bfd_zmalloc (amt); |
| if (som_dict == NULL && module_count != 0) |
| goto error_return; |
| |
| if (_bfd_mul_overflow (hash_size, |
| sizeof (struct som_external_lst_symbol_record *), |
| &amt)) |
| { |
| bfd_set_error (bfd_error_no_memory); |
| goto error_return; |
| } |
| last_hash_entry = bfd_zmalloc (amt); |
| if (last_hash_entry == NULL && hash_size != 0) |
| goto error_return; |
| |
| /* Symbols have som_index fields, so we have to keep track of the |
| index of each SOM in the archive. |
| |
| The SOM dictionary has (among other things) the absolute file |
| position for the SOM which a particular dictionary entry |
| describes. We have to compute that information as we iterate |
| through the SOMs/symbols. */ |
| som_index = 0; |
| |
| /* We add in the size of the archive header twice as the location |
| in the SOM dictionary is the actual offset of the SOM, not the |
| archive header before the SOM. */ |
| curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + bfd_getb32 (lst.file_end); |
| |
| /* Make room for the archive header and the contents of the |
| extended string table. Note that elength includes the size |
| of the archive header for the extended name table! */ |
| if (elength) |
| curr_som_offset += elength; |
| |
| /* Make sure we're properly aligned. */ |
| curr_som_offset = (curr_som_offset + 0x1) & ~0x1; |
| |
| /* FIXME should be done with buffers just like everything else... */ |
| if (_bfd_mul_overflow (nsyms, |
| sizeof (struct som_external_lst_symbol_record), &amt)) |
| { |
| bfd_set_error (bfd_error_no_memory); |
| goto error_return; |
| } |
| lst_syms = bfd_malloc (amt); |
| if (lst_syms == NULL && nsyms != 0) |
| goto error_return; |
| strings = bfd_malloc (string_size); |
| if (strings == NULL && string_size != 0) |
| goto error_return; |
| |
| p = strings; |
| curr_lst_sym = lst_syms; |
| |
| curr_bfd = abfd->archive_head; |
| while (curr_bfd != NULL) |
| { |
| unsigned int curr_count, i; |
| som_symbol_type *sym; |
| |
| /* Don't bother for non-SOM objects. */ |
| if (curr_bfd->format != bfd_object |
| || curr_bfd->xvec->flavour != bfd_target_som_flavour) |
| { |
| curr_bfd = curr_bfd->archive_next; |
| continue; |
| } |
| |
| /* Make sure the symbol table has been read, then snag a pointer |
| to it. It's a little slimey to grab the symbols via obj_som_symtab, |
| but doing so avoids allocating lots of extra memory. */ |
| if (! som_slurp_symbol_table (curr_bfd)) |
| goto error_return; |
| |
| sym = obj_som_symtab (curr_bfd); |
| curr_count = bfd_get_symcount (curr_bfd); |
| |
| for (i = 0; i < curr_count; i++, sym++) |
| { |
| struct som_misc_symbol_info info; |
| struct som_external_lst_symbol_record *last; |
| unsigned int symbol_pos; |
| unsigned int slen; |
| unsigned int symbol_key; |
| unsigned int flags; |
| |
| /* Derive SOM information from the BFD symbol. */ |
| som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info); |
| |
| /* Should we include this symbol? */ |
| if (info.symbol_type == ST_NULL |
| || info.symbol_type == ST_SYM_EXT |
| || info.symbol_type == ST_ARG_EXT) |
| continue; |
| |
| /* Only global symbols and unsatisfied commons. */ |
| if (info.symbol_scope != SS_UNIVERSAL |
| && info.symbol_type != ST_STORAGE) |
| continue; |
| |
| /* Do no include undefined symbols. */ |
| if (bfd_is_und_section (sym->symbol.section)) |
| continue; |
| |
| /* If this is the first symbol from this SOM, then update |
| the SOM dictionary too. */ |
| if (bfd_getb32 (som_dict[som_index].location) == 0) |
| { |
| bfd_putb32 (curr_som_offset, som_dict[som_index].location); |
| bfd_putb32 (arelt_size (curr_bfd), som_dict[som_index].length); |
| } |
| |
| symbol_key = som_bfd_ar_symbol_hash (&sym->symbol); |
| |
| /* Fill in the lst symbol record. */ |
| flags = 0; |
| if (info.secondary_def) |
| flags |= LST_SYMBOL_SECONDARY_DEF; |
| flags |= info.symbol_type << LST_SYMBOL_SYMBOL_TYPE_SH; |
| flags |= info.symbol_scope << LST_SYMBOL_SYMBOL_SCOPE_SH; |
| if (bfd_is_com_section (sym->symbol.section)) |
| flags |= LST_SYMBOL_IS_COMMON; |
| if (info.dup_common) |
| flags |= LST_SYMBOL_DUP_COMMON; |
| flags |= 3 << LST_SYMBOL_XLEAST_SH; |
| flags |= info.arg_reloc << LST_SYMBOL_ARG_RELOC_SH; |
| bfd_putb32 (flags, curr_lst_sym->flags); |
| bfd_putb32 (p - strings + 4, curr_lst_sym->name); |
| bfd_putb32 (0, curr_lst_sym->qualifier_name); |
| bfd_putb32 (info.symbol_info, curr_lst_sym->symbol_info); |
| bfd_putb32 (info.symbol_value | info.priv_level, |
| curr_lst_sym->symbol_value); |
| bfd_putb32 (0, curr_lst_sym->symbol_descriptor); |
| curr_lst_sym->reserved = 0; |
| bfd_putb32 (som_index, curr_lst_sym->som_index); |
| bfd_putb32 (symbol_key, curr_lst_sym->symbol_key); |
| bfd_putb32 (0, curr_lst_sym->next_entry); |
| |
| /* Insert into the hash table. */ |
| symbol_pos = |
| (curr_lst_sym - lst_syms) |
| * sizeof (struct som_external_lst_symbol_record) |
| + hash_size * 4 |
| + module_count * sizeof (struct som_external_som_entry) |
| + sizeof (struct som_external_lst_header); |
| last = last_hash_entry[symbol_key % hash_size]; |
| if (last != NULL) |
| { |
| /* There is already something at the head of this hash chain, |
| so tack this symbol onto the end of the chain. */ |
| bfd_putb32 (symbol_pos, last->next_entry); |
| } |
| else |
| /* First entry in this hash chain. */ |
| bfd_putb32 (symbol_pos, hash_table + 4 * (symbol_key % hash_size)); |
| |
| /* Keep track of the last symbol we added to this chain so we can |
| easily update its next_entry pointer. */ |
| last_hash_entry[symbol_key % hash_size] = curr_lst_sym; |
| |
| /* Update the string table. */ |
| slen = strlen (sym->symbol.name); |
| bfd_put_32 (abfd, slen, p); |
| p += 4; |
| slen++; /* Nul terminator. */ |
| memcpy (p, sym->symbol.name, slen); |
| p += slen; |
| while (slen % 4) |
| { |
| bfd_put_8 (abfd, 0, p); |
| p++; |
| slen++; |
| } |
| BFD_ASSERT (p <= strings + string_size); |
| |
| /* Head to the next symbol. */ |
| curr_lst_sym++; |
| } |
| |
| /* Keep track of where each SOM will finally reside; then look |
| at the next BFD. */ |
| curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr); |
| |
| /* A particular object in the archive may have an odd length; the |
| linker requires objects begin on an even boundary. So round |
| up the current offset as necessary. */ |
| curr_som_offset = (curr_som_offset + 0x1) &~ (unsigned) 1; |
| curr_bfd = curr_bfd->archive_next; |
| som_index++; |
| } |
| |
| /* Now scribble out the hash table. */ |
| amt = (size_t) hash_size * 4; |
| if (bfd_bwrite ((void *) hash_table, amt, abfd) != amt) |
| goto error_return; |
| |
| /* Then the SOM dictionary. */ |
| amt = (size_t) module_count * sizeof (struct som_external_som_entry); |
| if (bfd_bwrite ((void *) som_dict, amt, abfd) != amt) |
| goto error_return; |
| |
| /* The library symbols. */ |
| amt = (size_t) nsyms * sizeof (struct som_external_lst_symbol_record); |
| if (bfd_bwrite ((void *) lst_syms, amt, abfd) != amt) |
| goto error_return; |
| |
| /* And finally the strings. */ |
| amt = string_size; |
| if (bfd_bwrite ((void *) strings, amt, abfd) != amt) |
| goto error_return; |
| |
| free (hash_table); |
| free (som_dict); |
| free (last_hash_entry); |
| free (lst_syms); |
| free (strings); |
| return true; |
| |
| error_return: |
| free (hash_table); |
| free (som_dict); |
| free (last_hash_entry); |
| free (lst_syms); |
| free (strings); |
| |
| return false; |
| } |
| |
| /* Write out the LST for the archive. |
| |
| You'll never believe this is really how armaps are handled in SOM... */ |
| |
| static bool |
| som_write_armap (bfd *abfd, |
| unsigned int elength, |
| struct orl *map ATTRIBUTE_UNUSED, |
| unsigned int orl_count ATTRIBUTE_UNUSED, |
| int stridx ATTRIBUTE_UNUSED) |
| { |
| bfd *curr_bfd; |
| struct stat statbuf; |
| unsigned int i, lst_size, nsyms, stringsize; |
| struct ar_hdr hdr; |
| struct som_external_lst_header lst; |
| unsigned char *p; |
| size_t amt; |
| unsigned int csum; |
| unsigned int module_count; |
| |
| /* We'll use this for the archive's date and mode later. */ |
| if (stat (bfd_get_filename (abfd), &statbuf) != 0) |
| { |
| bfd_set_error (bfd_error_system_call); |
| return false; |
| } |
| /* Fudge factor. */ |
| bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60; |
| |
| /* Account for the lst header first. */ |
| lst_size = sizeof (struct som_external_lst_header); |
| |
| /* Start building the LST header. */ |
| /* FIXME: Do we need to examine each element to determine the |
| largest id number? */ |
| bfd_putb16 (CPU_PA_RISC1_0, &lst.system_id); |
| bfd_putb16 (LIBMAGIC, &lst.a_magic); |
| bfd_putb32 (VERSION_ID, &lst.version_id); |
| bfd_putb32 (0, &lst.file_time.secs); |
| bfd_putb32 (0, &lst.file_time.nanosecs); |
| |
| bfd_putb32 (lst_size, &lst.hash_loc); |
| bfd_putb32 (SOM_LST_HASH_SIZE, &lst.hash_size); |
| |
| /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */ |
| lst_size += 4 * SOM_LST_HASH_SIZE; |
| |
| /* We need to count the number of SOMs in this archive. */ |
| curr_bfd = abfd->archive_head; |
| module_count = 0; |
| while (curr_bfd != NULL) |
| { |
| /* Only true SOM objects count. */ |
| if (curr_bfd->format == bfd_object |
| && curr_bfd->xvec->flavour == bfd_target_som_flavour) |
| module_count++; |
| curr_bfd = curr_bfd->archive_next; |
| } |
| bfd_putb32 (module_count, &lst.module_count); |
| bfd_putb32 (module_count, &lst.module_limit); |
| bfd_putb32 (lst_size, &lst.dir_loc); |
| lst_size += sizeof (struct som_external_som_entry) * module_count; |
| |
| /* We don't support import/export tables, auxiliary headers, |
| or free lists yet. Make the linker work a little harder |
| to make our life easier. */ |
| |
| bfd_putb32 (0, &lst.export_loc); |
| bfd_putb32 (0, &lst.export_count); |
| bfd_putb32 (0, &lst.import_loc); |
| bfd_putb32 (0, &lst.aux_loc); |
| bfd_putb32 (0, &lst.aux_size); |
| |
| /* Count how many symbols we will have on the hash chains and the |
| size of the associated string table. */ |
| if (! som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize)) |
| return false; |
| |
| lst_size += sizeof (struct som_external_lst_symbol_record) * nsyms; |
| |
| /* For the string table. One day we might actually use this info |
| to avoid small seeks/reads when reading archives. */ |
| bfd_putb32 (lst_size, &lst.string_loc); |
| bfd_putb32 (stringsize, &lst.string_size); |
| lst_size += stringsize; |
| |
| /* SOM ABI says this must be zero. */ |
| bfd_putb32 (0, &lst.free_list); |
| bfd_putb32 (lst_size, &lst.file_end); |
| |
| /* Compute the checksum. Must happen after the entire lst header |
| has filled in. */ |
| p = (unsigned char *) &lst; |
| csum = 0; |
| for (i = 0; i < sizeof (struct som_external_lst_header) - sizeof (int); |
| i += 4) |
| csum ^= bfd_getb32 (&p[i]); |
| bfd_putb32 (csum, &lst.checksum); |
| |
| sprintf (hdr.ar_name, "/ "); |
| _bfd_ar_spacepad (hdr.ar_date, sizeof (hdr.ar_date), "%-12ld", |
| bfd_ardata (abfd)->armap_timestamp); |
| _bfd_ar_spacepad (hdr.ar_uid, sizeof (hdr.ar_uid), "%ld", |
| statbuf.st_uid); |
| _bfd_ar_spacepad (hdr.ar_gid, sizeof (hdr.ar_gid), "%ld", |
| statbuf.st_gid); |
| _bfd_ar_spacepad (hdr.ar_mode, sizeof (hdr.ar_mode), "%-8o", |
| (unsigned int)statbuf.st_mode); |
| _bfd_ar_spacepad (hdr.ar_size, sizeof (hdr.ar_size), "%-10d", |
| (int) lst_size); |
| hdr.ar_fmag[0] = '`'; |
| hdr.ar_fmag[1] = '\012'; |
| |
| /* Turn any nulls into spaces. */ |
| for (i = 0; i < sizeof (struct ar_hdr); i++) |
| if (((char *) (&hdr))[i] == '\0') |
| (((char *) (&hdr))[i]) = ' '; |
| |
| /* Scribble out the ar header. */ |
| amt = sizeof (struct ar_hdr); |
| if (bfd_bwrite ((void *) &hdr, amt, abfd) != amt) |
| return false; |
| |
| /* Now scribble out the lst header. */ |
| amt = sizeof (struct som_external_lst_header); |
| if (bfd_bwrite ((void *) &lst, amt, abfd) != amt) |
| return false; |
| |
| /* Build and write the armap. */ |
| if (!som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength)) |
| return false; |
| |
| /* Done. */ |
| return true; |
| } |
| |
| /* Free all information we have cached for this BFD. We can always |
| read it again later if we need it. */ |
| |
| static bool |
| som_bfd_free_cached_info (bfd *abfd) |
| { |
| if (bfd_get_format (abfd) == bfd_object) |
| { |
| asection *o; |
| |
| #define FREE(x) do { free (x); x = NULL; } while (0) |
| /* Free the native string and symbol tables. */ |
| FREE (obj_som_symtab (abfd)); |
| FREE (obj_som_stringtab (abfd)); |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| /* Free the native relocations. */ |
| o->reloc_count = (unsigned) -1; |
| FREE (som_section_data (o)->reloc_stream); |
| /* Do not free the generic relocations as they are objalloc'ed. */ |
| } |
| #undef FREE |
| } |
| |
| return _bfd_generic_close_and_cleanup (abfd); |
| } |
| |
| /* End of miscellaneous support functions. */ |
| |
| /* Linker support functions. */ |
| |
| static bool |
| som_bfd_link_split_section (bfd *abfd ATTRIBUTE_UNUSED, asection *sec) |
| { |
| return som_is_subspace (sec) && sec->size > 240000; |
| } |
| |
| #define som_find_line _bfd_nosymbols_find_line |
| #define som_get_symbol_version_string _bfd_nosymbols_get_symbol_version_string |
| #define som_close_and_cleanup som_bfd_free_cached_info |
| #define som_read_ar_hdr _bfd_generic_read_ar_hdr |
| #define som_write_ar_hdr _bfd_generic_write_ar_hdr |
| #define som_openr_next_archived_file bfd_generic_openr_next_archived_file |
| #define som_get_elt_at_index _bfd_generic_get_elt_at_index |
| #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt |
| #define som_truncate_arname bfd_bsd_truncate_arname |
| #define som_slurp_extended_name_table _bfd_slurp_extended_name_table |
| #define som_construct_extended_name_table _bfd_archive_coff_construct_extended_name_table |
| #define som_update_armap_timestamp _bfd_bool_bfd_true |
| #define som_bfd_is_target_special_symbol _bfd_bool_bfd_asymbol_false |
| #define som_get_lineno _bfd_nosymbols_get_lineno |
| #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol |
| #define som_read_minisymbols _bfd_generic_read_minisymbols |
| #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol |
| #define som_get_section_contents_in_window _bfd_generic_get_section_contents_in_window |
| #define som_bfd_get_relocated_section_contents bfd_generic_get_relocated_section_contents |
| #define som_bfd_relax_section bfd_generic_relax_section |
| #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create |
| #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols |
| #define som_bfd_link_just_syms _bfd_generic_link_just_syms |
| #define som_bfd_copy_link_hash_symbol_type \ |
| _bfd_generic_copy_link_hash_symbol_type |
| #define som_bfd_final_link _bfd_generic_final_link |
| #define som_bfd_gc_sections bfd_generic_gc_sections |
| #define som_bfd_lookup_section_flags bfd_generic_lookup_section_flags |
| #define som_bfd_merge_sections bfd_generic_merge_sections |
| #define som_bfd_is_group_section bfd_generic_is_group_section |
| #define som_bfd_group_name bfd_generic_group_name |
| #define som_bfd_discard_group bfd_generic_discard_group |
| #define som_section_already_linked _bfd_generic_section_already_linked |
| #define som_bfd_define_common_symbol bfd_generic_define_common_symbol |
| #define som_bfd_link_hide_symbol _bfd_generic_link_hide_symbol |
| #define som_bfd_define_start_stop bfd_generic_define_start_stop |
| #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data |
| #define som_bfd_copy_private_header_data _bfd_generic_bfd_copy_private_header_data |
| #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags |
| #define som_find_inliner_info _bfd_nosymbols_find_inliner_info |
| #define som_bfd_link_check_relocs _bfd_generic_link_check_relocs |
| #define som_set_reloc _bfd_generic_set_reloc |
| |
| const bfd_target hppa_som_vec = |
| { |
| "som", /* Name. */ |
| bfd_target_som_flavour, |
| BFD_ENDIAN_BIG, /* Target byte order. */ |
| BFD_ENDIAN_BIG, /* Target headers byte order. */ |
| (HAS_RELOC | EXEC_P | /* Object flags. */ |
| HAS_LINENO | HAS_DEBUG | |
| HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC), |
| (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS | SEC_LINK_ONCE |
| | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* Section flags. */ |
| |
| /* Leading_symbol_char: is the first char of a user symbol |
| predictable, and if so what is it. */ |
| 0, |
| '/', /* AR_pad_char. */ |
| 14, /* AR_max_namelen. */ |
| 0, /* match priority. */ |
| TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols. */ |
| bfd_getb64, bfd_getb_signed_64, bfd_putb64, |
| bfd_getb32, bfd_getb_signed_32, bfd_putb32, |
| bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Data. */ |
| bfd_getb64, bfd_getb_signed_64, bfd_putb64, |
| bfd_getb32, bfd_getb_signed_32, bfd_putb32, |
| bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Headers. */ |
| {_bfd_dummy_target, |
| som_object_p, /* bfd_check_format. */ |
| bfd_generic_archive_p, |
| _bfd_dummy_target |
| }, |
| { |
| _bfd_bool_bfd_false_error, |
| som_mkobject, |
| _bfd_generic_mkarchive, |
| _bfd_bool_bfd_false_error |
| }, |
| { |
| _bfd_bool_bfd_false_error, |
| som_write_object_contents, |
| _bfd_write_archive_contents, |
| _bfd_bool_bfd_false_error, |
| }, |
| #undef som |
| |
| BFD_JUMP_TABLE_GENERIC (som), |
| BFD_JUMP_TABLE_COPY (som), |
| BFD_JUMP_TABLE_CORE (_bfd_nocore), |
| BFD_JUMP_TABLE_ARCHIVE (som), |
| BFD_JUMP_TABLE_SYMBOLS (som), |
| BFD_JUMP_TABLE_RELOCS (som), |
| BFD_JUMP_TABLE_WRITE (som), |
| BFD_JUMP_TABLE_LINK (som), |
| BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), |
| |
| NULL, |
| |
| NULL |
| }; |
| |