| /* Print values for GNU debugger GDB. | 
 |  | 
 |    Copyright (C) 1986-2022 Free Software Foundation, Inc. | 
 |  | 
 |    This file is part of GDB. | 
 |  | 
 |    This program is free software; you can redistribute it and/or modify | 
 |    it under the terms of the GNU General Public License as published by | 
 |    the Free Software Foundation; either version 3 of the License, or | 
 |    (at your option) any later version. | 
 |  | 
 |    This program is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |    GNU General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU General Public License | 
 |    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "defs.h" | 
 | #include "frame.h" | 
 | #include "symtab.h" | 
 | #include "gdbtypes.h" | 
 | #include "value.h" | 
 | #include "language.h" | 
 | #include "c-lang.h" | 
 | #include "expression.h" | 
 | #include "gdbcore.h" | 
 | #include "gdbcmd.h" | 
 | #include "target.h" | 
 | #include "breakpoint.h" | 
 | #include "demangle.h" | 
 | #include "gdb-demangle.h" | 
 | #include "valprint.h" | 
 | #include "annotate.h" | 
 | #include "symfile.h"		/* for overlay functions */ | 
 | #include "objfiles.h"		/* ditto */ | 
 | #include "completer.h"		/* for completion functions */ | 
 | #include "ui-out.h" | 
 | #include "block.h" | 
 | #include "disasm.h" | 
 | #include "target-float.h" | 
 | #include "observable.h" | 
 | #include "solist.h" | 
 | #include "parser-defs.h" | 
 | #include "charset.h" | 
 | #include "arch-utils.h" | 
 | #include "cli/cli-utils.h" | 
 | #include "cli/cli-option.h" | 
 | #include "cli/cli-script.h" | 
 | #include "cli/cli-style.h" | 
 | #include "gdbsupport/format.h" | 
 | #include "source.h" | 
 | #include "gdbsupport/byte-vector.h" | 
 | #include "gdbsupport/gdb_optional.h" | 
 | #include "safe-ctype.h" | 
 | #include "gdbsupport/rsp-low.h" | 
 |  | 
 | /* Chain containing all defined memory-tag subcommands.  */ | 
 |  | 
 | static struct cmd_list_element *memory_tag_list; | 
 |  | 
 | /* Last specified output format.  */ | 
 |  | 
 | static char last_format = 0; | 
 |  | 
 | /* Last specified examination size.  'b', 'h', 'w' or `q'.  */ | 
 |  | 
 | static char last_size = 'w'; | 
 |  | 
 | /* Last specified count for the 'x' command.  */ | 
 |  | 
 | static int last_count; | 
 |  | 
 | /* Last specified tag-printing option.  */ | 
 |  | 
 | static bool last_print_tags = false; | 
 |  | 
 | /* Default address to examine next, and associated architecture.  */ | 
 |  | 
 | static struct gdbarch *next_gdbarch; | 
 | static CORE_ADDR next_address; | 
 |  | 
 | /* Number of delay instructions following current disassembled insn.  */ | 
 |  | 
 | static int branch_delay_insns; | 
 |  | 
 | /* Last address examined.  */ | 
 |  | 
 | static CORE_ADDR last_examine_address; | 
 |  | 
 | /* Contents of last address examined. | 
 |    This is not valid past the end of the `x' command!  */ | 
 |  | 
 | static value_ref_ptr last_examine_value; | 
 |  | 
 | /* Largest offset between a symbolic value and an address, that will be | 
 |    printed as `0x1234 <symbol+offset>'.  */ | 
 |  | 
 | static unsigned int max_symbolic_offset = UINT_MAX; | 
 | static void | 
 | show_max_symbolic_offset (struct ui_file *file, int from_tty, | 
 | 			  struct cmd_list_element *c, const char *value) | 
 | { | 
 |   fprintf_filtered (file, | 
 | 		    _("The largest offset that will be " | 
 | 		      "printed in <symbol+1234> form is %s.\n"), | 
 | 		    value); | 
 | } | 
 |  | 
 | /* Append the source filename and linenumber of the symbol when | 
 |    printing a symbolic value as `<symbol at filename:linenum>' if set.  */ | 
 | static bool print_symbol_filename = false; | 
 | static void | 
 | show_print_symbol_filename (struct ui_file *file, int from_tty, | 
 | 			    struct cmd_list_element *c, const char *value) | 
 | { | 
 |   fprintf_filtered (file, _("Printing of source filename and " | 
 | 			    "line number with <symbol> is %s.\n"), | 
 | 		    value); | 
 | } | 
 |  | 
 | /* Number of auto-display expression currently being displayed. | 
 |    So that we can disable it if we get a signal within it. | 
 |    -1 when not doing one.  */ | 
 |  | 
 | static int current_display_number; | 
 |  | 
 | /* Last allocated display number.  */ | 
 |  | 
 | static int display_number; | 
 |  | 
 | struct display | 
 |   { | 
 |     display (const char *exp_string_, expression_up &&exp_, | 
 | 	     const struct format_data &format_, struct program_space *pspace_, | 
 | 	     const struct block *block_) | 
 |       : exp_string (exp_string_), | 
 | 	exp (std::move (exp_)), | 
 | 	number (++display_number), | 
 | 	format (format_), | 
 | 	pspace (pspace_), | 
 | 	block (block_), | 
 | 	enabled_p (true) | 
 |     { | 
 |     } | 
 |  | 
 |     /* The expression as the user typed it.  */ | 
 |     std::string exp_string; | 
 |  | 
 |     /* Expression to be evaluated and displayed.  */ | 
 |     expression_up exp; | 
 |  | 
 |     /* Item number of this auto-display item.  */ | 
 |     int number; | 
 |  | 
 |     /* Display format specified.  */ | 
 |     struct format_data format; | 
 |  | 
 |     /* Program space associated with `block'.  */ | 
 |     struct program_space *pspace; | 
 |  | 
 |     /* Innermost block required by this expression when evaluated.  */ | 
 |     const struct block *block; | 
 |  | 
 |     /* Status of this display (enabled or disabled).  */ | 
 |     bool enabled_p; | 
 |   }; | 
 |  | 
 | /* Expressions whose values should be displayed automatically each | 
 |    time the program stops.  */ | 
 |  | 
 | static std::vector<std::unique_ptr<struct display>> all_displays; | 
 |  | 
 | /* Prototypes for local functions.  */ | 
 |  | 
 | static void do_one_display (struct display *); | 
 |  | 
 |  | 
 | /* Decode a format specification.  *STRING_PTR should point to it. | 
 |    OFORMAT and OSIZE are used as defaults for the format and size | 
 |    if none are given in the format specification. | 
 |    If OSIZE is zero, then the size field of the returned value | 
 |    should be set only if a size is explicitly specified by the | 
 |    user. | 
 |    The structure returned describes all the data | 
 |    found in the specification.  In addition, *STRING_PTR is advanced | 
 |    past the specification and past all whitespace following it.  */ | 
 |  | 
 | static struct format_data | 
 | decode_format (const char **string_ptr, int oformat, int osize) | 
 | { | 
 |   struct format_data val; | 
 |   const char *p = *string_ptr; | 
 |  | 
 |   val.format = '?'; | 
 |   val.size = '?'; | 
 |   val.count = 1; | 
 |   val.raw = 0; | 
 |   val.print_tags = false; | 
 |  | 
 |   if (*p == '-') | 
 |     { | 
 |       val.count = -1; | 
 |       p++; | 
 |     } | 
 |   if (*p >= '0' && *p <= '9') | 
 |     val.count *= atoi (p); | 
 |   while (*p >= '0' && *p <= '9') | 
 |     p++; | 
 |  | 
 |   /* Now process size or format letters that follow.  */ | 
 |  | 
 |   while (1) | 
 |     { | 
 |       if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g') | 
 | 	val.size = *p++; | 
 |       else if (*p == 'r') | 
 | 	{ | 
 | 	  val.raw = 1; | 
 | 	  p++; | 
 | 	} | 
 |       else if (*p == 'm') | 
 | 	{ | 
 | 	  val.print_tags = true; | 
 | 	  p++; | 
 | 	} | 
 |       else if (*p >= 'a' && *p <= 'z') | 
 | 	val.format = *p++; | 
 |       else | 
 | 	break; | 
 |     } | 
 |  | 
 |   *string_ptr = skip_spaces (p); | 
 |  | 
 |   /* Set defaults for format and size if not specified.  */ | 
 |   if (val.format == '?') | 
 |     { | 
 |       if (val.size == '?') | 
 | 	{ | 
 | 	  /* Neither has been specified.  */ | 
 | 	  val.format = oformat; | 
 | 	  val.size = osize; | 
 | 	} | 
 |       else | 
 | 	/* If a size is specified, any format makes a reasonable | 
 | 	   default except 'i'.  */ | 
 | 	val.format = oformat == 'i' ? 'x' : oformat; | 
 |     } | 
 |   else if (val.size == '?') | 
 |     switch (val.format) | 
 |       { | 
 |       case 'a': | 
 | 	/* Pick the appropriate size for an address.  This is deferred | 
 | 	   until do_examine when we know the actual architecture to use. | 
 | 	   A special size value of 'a' is used to indicate this case.  */ | 
 | 	val.size = osize ? 'a' : osize; | 
 | 	break; | 
 |       case 'f': | 
 | 	/* Floating point has to be word or giantword.  */ | 
 | 	if (osize == 'w' || osize == 'g') | 
 | 	  val.size = osize; | 
 | 	else | 
 | 	  /* Default it to giantword if the last used size is not | 
 | 	     appropriate.  */ | 
 | 	  val.size = osize ? 'g' : osize; | 
 | 	break; | 
 |       case 'c': | 
 | 	/* Characters default to one byte.  */ | 
 | 	val.size = osize ? 'b' : osize; | 
 | 	break; | 
 |       case 's': | 
 | 	/* Display strings with byte size chars unless explicitly | 
 | 	   specified.  */ | 
 | 	val.size = '\0'; | 
 | 	break; | 
 |  | 
 |       default: | 
 | 	/* The default is the size most recently specified.  */ | 
 | 	val.size = osize; | 
 |       } | 
 |  | 
 |   return val; | 
 | } | 
 |  | 
 | /* Print value VAL on stream according to OPTIONS. | 
 |    Do not end with a newline. | 
 |    SIZE is the letter for the size of datum being printed. | 
 |    This is used to pad hex numbers so they line up.  SIZE is 0 | 
 |    for print / output and set for examine.  */ | 
 |  | 
 | static void | 
 | print_formatted (struct value *val, int size, | 
 | 		 const struct value_print_options *options, | 
 | 		 struct ui_file *stream) | 
 | { | 
 |   struct type *type = check_typedef (value_type (val)); | 
 |   int len = TYPE_LENGTH (type); | 
 |  | 
 |   if (VALUE_LVAL (val) == lval_memory) | 
 |     next_address = value_address (val) + len; | 
 |  | 
 |   if (size) | 
 |     { | 
 |       switch (options->format) | 
 | 	{ | 
 | 	case 's': | 
 | 	  { | 
 | 	    struct type *elttype = value_type (val); | 
 |  | 
 | 	    next_address = (value_address (val) | 
 | 			    + val_print_string (elttype, NULL, | 
 | 						value_address (val), -1, | 
 | 						stream, options) * len); | 
 | 	  } | 
 | 	  return; | 
 |  | 
 | 	case 'i': | 
 | 	  /* We often wrap here if there are long symbolic names.  */ | 
 | 	  wrap_here ("    "); | 
 | 	  next_address = (value_address (val) | 
 | 			  + gdb_print_insn (type->arch (), | 
 | 					    value_address (val), stream, | 
 | 					    &branch_delay_insns)); | 
 | 	  return; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (options->format == 0 || options->format == 's' | 
 |       || type->code () == TYPE_CODE_VOID | 
 |       || type->code () == TYPE_CODE_REF | 
 |       || type->code () == TYPE_CODE_ARRAY | 
 |       || type->code () == TYPE_CODE_STRING | 
 |       || type->code () == TYPE_CODE_STRUCT | 
 |       || type->code () == TYPE_CODE_UNION | 
 |       || type->code () == TYPE_CODE_NAMESPACE) | 
 |     value_print (val, stream, options); | 
 |   else | 
 |     /* User specified format, so don't look to the type to tell us | 
 |        what to do.  */ | 
 |     value_print_scalar_formatted (val, options, size, stream); | 
 | } | 
 |  | 
 | /* Return builtin floating point type of same length as TYPE. | 
 |    If no such type is found, return TYPE itself.  */ | 
 | static struct type * | 
 | float_type_from_length (struct type *type) | 
 | { | 
 |   struct gdbarch *gdbarch = type->arch (); | 
 |   const struct builtin_type *builtin = builtin_type (gdbarch); | 
 |  | 
 |   if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float)) | 
 |     type = builtin->builtin_float; | 
 |   else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double)) | 
 |     type = builtin->builtin_double; | 
 |   else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double)) | 
 |     type = builtin->builtin_long_double; | 
 |  | 
 |   return type; | 
 | } | 
 |  | 
 | /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR, | 
 |    according to OPTIONS and SIZE on STREAM.  Formats s and i are not | 
 |    supported at this level.  */ | 
 |  | 
 | void | 
 | print_scalar_formatted (const gdb_byte *valaddr, struct type *type, | 
 | 			const struct value_print_options *options, | 
 | 			int size, struct ui_file *stream) | 
 | { | 
 |   struct gdbarch *gdbarch = type->arch (); | 
 |   unsigned int len = TYPE_LENGTH (type); | 
 |   enum bfd_endian byte_order = type_byte_order (type); | 
 |  | 
 |   /* String printing should go through val_print_scalar_formatted.  */ | 
 |   gdb_assert (options->format != 's'); | 
 |  | 
 |   /* If the value is a pointer, and pointers and addresses are not the | 
 |      same, then at this point, the value's length (in target bytes) is | 
 |      gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type).  */ | 
 |   if (type->code () == TYPE_CODE_PTR) | 
 |     len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT; | 
 |  | 
 |   /* If we are printing it as unsigned, truncate it in case it is actually | 
 |      a negative signed value (e.g. "print/u (short)-1" should print 65535 | 
 |      (if shorts are 16 bits) instead of 4294967295).  */ | 
 |   if (options->format != 'c' | 
 |       && (options->format != 'd' || type->is_unsigned ())) | 
 |     { | 
 |       if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG) | 
 | 	valaddr += TYPE_LENGTH (type) - len; | 
 |     } | 
 |  | 
 |   /* Allow LEN == 0, and in this case, don't assume that VALADDR is | 
 |      valid.  */ | 
 |   const gdb_byte zero = 0; | 
 |   if (len == 0) | 
 |     { | 
 |       len = 1; | 
 |       valaddr = &zero; | 
 |     } | 
 |  | 
 |   if (size != 0 && (options->format == 'x' || options->format == 't')) | 
 |     { | 
 |       /* Truncate to fit.  */ | 
 |       unsigned newlen; | 
 |       switch (size) | 
 | 	{ | 
 | 	case 'b': | 
 | 	  newlen = 1; | 
 | 	  break; | 
 | 	case 'h': | 
 | 	  newlen = 2; | 
 | 	  break; | 
 | 	case 'w': | 
 | 	  newlen = 4; | 
 | 	  break; | 
 | 	case 'g': | 
 | 	  newlen = 8; | 
 | 	  break; | 
 | 	default: | 
 | 	  error (_("Undefined output size \"%c\"."), size); | 
 | 	} | 
 |       if (newlen < len && byte_order == BFD_ENDIAN_BIG) | 
 | 	valaddr += len - newlen; | 
 |       len = newlen; | 
 |     } | 
 |  | 
 |   /* Historically gdb has printed floats by first casting them to a | 
 |      long, and then printing the long.  PR cli/16242 suggests changing | 
 |      this to using C-style hex float format. | 
 |  | 
 |      Biased range types and sub-word scalar types must also be handled | 
 |      here; the value is correctly computed by unpack_long.  */ | 
 |   gdb::byte_vector converted_bytes; | 
 |   /* Some cases below will unpack the value again.  In the biased | 
 |      range case, we want to avoid this, so we store the unpacked value | 
 |      here for possible use later.  */ | 
 |   gdb::optional<LONGEST> val_long; | 
 |   if (((type->code () == TYPE_CODE_FLT | 
 | 	|| is_fixed_point_type (type)) | 
 |        && (options->format == 'o' | 
 | 	   || options->format == 'x' | 
 | 	   || options->format == 't' | 
 | 	   || options->format == 'z' | 
 | 	   || options->format == 'd' | 
 | 	   || options->format == 'u')) | 
 |       || (type->code () == TYPE_CODE_RANGE && type->bounds ()->bias != 0) | 
 |       || type->bit_size_differs_p ()) | 
 |     { | 
 |       val_long.emplace (unpack_long (type, valaddr)); | 
 |       converted_bytes.resize (TYPE_LENGTH (type)); | 
 |       store_signed_integer (converted_bytes.data (), TYPE_LENGTH (type), | 
 | 			    byte_order, *val_long); | 
 |       valaddr = converted_bytes.data (); | 
 |     } | 
 |  | 
 |   /* Printing a non-float type as 'f' will interpret the data as if it were | 
 |      of a floating-point type of the same length, if that exists.  Otherwise, | 
 |      the data is printed as integer.  */ | 
 |   char format = options->format; | 
 |   if (format == 'f' && type->code () != TYPE_CODE_FLT) | 
 |     { | 
 |       type = float_type_from_length (type); | 
 |       if (type->code () != TYPE_CODE_FLT) | 
 | 	format = 0; | 
 |     } | 
 |  | 
 |   switch (format) | 
 |     { | 
 |     case 'o': | 
 |       print_octal_chars (stream, valaddr, len, byte_order); | 
 |       break; | 
 |     case 'd': | 
 |       print_decimal_chars (stream, valaddr, len, true, byte_order); | 
 |       break; | 
 |     case 'u': | 
 |       print_decimal_chars (stream, valaddr, len, false, byte_order); | 
 |       break; | 
 |     case 0: | 
 |       if (type->code () != TYPE_CODE_FLT) | 
 | 	{ | 
 | 	  print_decimal_chars (stream, valaddr, len, !type->is_unsigned (), | 
 | 			       byte_order); | 
 | 	  break; | 
 | 	} | 
 |       /* FALLTHROUGH */ | 
 |     case 'f': | 
 |       print_floating (valaddr, type, stream); | 
 |       break; | 
 |  | 
 |     case 't': | 
 |       print_binary_chars (stream, valaddr, len, byte_order, size > 0); | 
 |       break; | 
 |     case 'x': | 
 |       print_hex_chars (stream, valaddr, len, byte_order, size > 0); | 
 |       break; | 
 |     case 'z': | 
 |       print_hex_chars (stream, valaddr, len, byte_order, true); | 
 |       break; | 
 |     case 'c': | 
 |       { | 
 | 	struct value_print_options opts = *options; | 
 |  | 
 | 	if (!val_long.has_value ()) | 
 | 	  val_long.emplace (unpack_long (type, valaddr)); | 
 |  | 
 | 	opts.format = 0; | 
 | 	if (type->is_unsigned ()) | 
 | 	  type = builtin_type (gdbarch)->builtin_true_unsigned_char; | 
 | 	else | 
 | 	  type = builtin_type (gdbarch)->builtin_true_char; | 
 |  | 
 | 	value_print (value_from_longest (type, *val_long), stream, &opts); | 
 |       } | 
 |       break; | 
 |  | 
 |     case 'a': | 
 |       { | 
 | 	if (!val_long.has_value ()) | 
 | 	  val_long.emplace (unpack_long (type, valaddr)); | 
 | 	print_address (gdbarch, *val_long, stream); | 
 |       } | 
 |       break; | 
 |  | 
 |     default: | 
 |       error (_("Undefined output format \"%c\"."), format); | 
 |     } | 
 | } | 
 |  | 
 | /* Specify default address for `x' command. | 
 |    The `info lines' command uses this.  */ | 
 |  | 
 | void | 
 | set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr) | 
 | { | 
 |   struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; | 
 |  | 
 |   next_gdbarch = gdbarch; | 
 |   next_address = addr; | 
 |  | 
 |   /* Make address available to the user as $_.  */ | 
 |   set_internalvar (lookup_internalvar ("_"), | 
 | 		   value_from_pointer (ptr_type, addr)); | 
 | } | 
 |  | 
 | /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM, | 
 |    after LEADIN.  Print nothing if no symbolic name is found nearby. | 
 |    Optionally also print source file and line number, if available. | 
 |    DO_DEMANGLE controls whether to print a symbol in its native "raw" form, | 
 |    or to interpret it as a possible C++ name and convert it back to source | 
 |    form.  However note that DO_DEMANGLE can be overridden by the specific | 
 |    settings of the demangle and asm_demangle variables.  Returns | 
 |    non-zero if anything was printed; zero otherwise.  */ | 
 |  | 
 | int | 
 | print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr, | 
 | 			struct ui_file *stream, | 
 | 			int do_demangle, const char *leadin) | 
 | { | 
 |   std::string name, filename; | 
 |   int unmapped = 0; | 
 |   int offset = 0; | 
 |   int line = 0; | 
 |  | 
 |   if (build_address_symbolic (gdbarch, addr, do_demangle, false, &name, | 
 | 			      &offset, &filename, &line, &unmapped)) | 
 |     return 0; | 
 |  | 
 |   fputs_filtered (leadin, stream); | 
 |   if (unmapped) | 
 |     fputs_filtered ("<*", stream); | 
 |   else | 
 |     fputs_filtered ("<", stream); | 
 |   fputs_styled (name.c_str (), function_name_style.style (), stream); | 
 |   if (offset != 0) | 
 |     fprintf_filtered (stream, "%+d", offset); | 
 |  | 
 |   /* Append source filename and line number if desired.  Give specific | 
 |      line # of this addr, if we have it; else line # of the nearest symbol.  */ | 
 |   if (print_symbol_filename && !filename.empty ()) | 
 |     { | 
 |       fputs_filtered (line == -1 ? " in " : " at ", stream); | 
 |       fputs_styled (filename.c_str (), file_name_style.style (), stream); | 
 |       if (line != -1) | 
 | 	fprintf_filtered (stream, ":%d", line); | 
 |     } | 
 |   if (unmapped) | 
 |     fputs_filtered ("*>", stream); | 
 |   else | 
 |     fputs_filtered (">", stream); | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /* See valprint.h.  */ | 
 |  | 
 | int | 
 | build_address_symbolic (struct gdbarch *gdbarch, | 
 | 			CORE_ADDR addr,  /* IN */ | 
 | 			bool do_demangle, /* IN */ | 
 | 			bool prefer_sym_over_minsym, /* IN */ | 
 | 			std::string *name, /* OUT */ | 
 | 			int *offset,     /* OUT */ | 
 | 			std::string *filename, /* OUT */ | 
 | 			int *line,       /* OUT */ | 
 | 			int *unmapped)   /* OUT */ | 
 | { | 
 |   struct bound_minimal_symbol msymbol; | 
 |   struct symbol *symbol; | 
 |   CORE_ADDR name_location = 0; | 
 |   struct obj_section *section = NULL; | 
 |   const char *name_temp = ""; | 
 |    | 
 |   /* Let's say it is mapped (not unmapped).  */ | 
 |   *unmapped = 0; | 
 |  | 
 |   /* Determine if the address is in an overlay, and whether it is | 
 |      mapped.  */ | 
 |   if (overlay_debugging) | 
 |     { | 
 |       section = find_pc_overlay (addr); | 
 |       if (pc_in_unmapped_range (addr, section)) | 
 | 	{ | 
 | 	  *unmapped = 1; | 
 | 	  addr = overlay_mapped_address (addr, section); | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Try to find the address in both the symbol table and the minsyms.  | 
 |      In most cases, we'll prefer to use the symbol instead of the | 
 |      minsym.  However, there are cases (see below) where we'll choose | 
 |      to use the minsym instead.  */ | 
 |  | 
 |   /* This is defective in the sense that it only finds text symbols.  So | 
 |      really this is kind of pointless--we should make sure that the | 
 |      minimal symbols have everything we need (by changing that we could | 
 |      save some memory, but for many debug format--ELF/DWARF or | 
 |      anything/stabs--it would be inconvenient to eliminate those minimal | 
 |      symbols anyway).  */ | 
 |   msymbol = lookup_minimal_symbol_by_pc_section (addr, section); | 
 |   symbol = find_pc_sect_function (addr, section); | 
 |  | 
 |   if (symbol) | 
 |     { | 
 |       /* If this is a function (i.e. a code address), strip out any | 
 | 	 non-address bits.  For instance, display a pointer to the | 
 | 	 first instruction of a Thumb function as <function>; the | 
 | 	 second instruction will be <function+2>, even though the | 
 | 	 pointer is <function+3>.  This matches the ISA behavior.  */ | 
 |       addr = gdbarch_addr_bits_remove (gdbarch, addr); | 
 |  | 
 |       name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol)); | 
 |       if (do_demangle || asm_demangle) | 
 | 	name_temp = symbol->print_name (); | 
 |       else | 
 | 	name_temp = symbol->linkage_name (); | 
 |     } | 
 |  | 
 |   if (msymbol.minsym != NULL | 
 |       && MSYMBOL_HAS_SIZE (msymbol.minsym) | 
 |       && MSYMBOL_SIZE (msymbol.minsym) == 0 | 
 |       && MSYMBOL_TYPE (msymbol.minsym) != mst_text | 
 |       && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc | 
 |       && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text) | 
 |     msymbol.minsym = NULL; | 
 |  | 
 |   if (msymbol.minsym != NULL) | 
 |     { | 
 |       /* Use the minsym if no symbol is found. | 
 |        | 
 | 	 Additionally, use the minsym instead of a (found) symbol if | 
 | 	 the following conditions all hold: | 
 | 	   1) The prefer_sym_over_minsym flag is false. | 
 | 	   2) The minsym address is identical to that of the address under | 
 | 	      consideration. | 
 | 	   3) The symbol address is not identical to that of the address | 
 | 	      under consideration.  */ | 
 |       if (symbol == NULL || | 
 | 	   (!prefer_sym_over_minsym | 
 | 	    && BMSYMBOL_VALUE_ADDRESS (msymbol) == addr | 
 | 	    && name_location != addr)) | 
 | 	{ | 
 | 	  /* If this is a function (i.e. a code address), strip out any | 
 | 	     non-address bits.  For instance, display a pointer to the | 
 | 	     first instruction of a Thumb function as <function>; the | 
 | 	     second instruction will be <function+2>, even though the | 
 | 	     pointer is <function+3>.  This matches the ISA behavior.  */ | 
 | 	  if (MSYMBOL_TYPE (msymbol.minsym) == mst_text | 
 | 	      || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc | 
 | 	      || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text | 
 | 	      || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline) | 
 | 	    addr = gdbarch_addr_bits_remove (gdbarch, addr); | 
 |  | 
 | 	  symbol = 0; | 
 | 	  name_location = BMSYMBOL_VALUE_ADDRESS (msymbol); | 
 | 	  if (do_demangle || asm_demangle) | 
 | 	    name_temp = msymbol.minsym->print_name (); | 
 | 	  else | 
 | 	    name_temp = msymbol.minsym->linkage_name (); | 
 | 	} | 
 |     } | 
 |   if (symbol == NULL && msymbol.minsym == NULL) | 
 |     return 1; | 
 |  | 
 |   /* If the nearest symbol is too far away, don't print anything symbolic.  */ | 
 |  | 
 |   /* For when CORE_ADDR is larger than unsigned int, we do math in | 
 |      CORE_ADDR.  But when we detect unsigned wraparound in the | 
 |      CORE_ADDR math, we ignore this test and print the offset, | 
 |      because addr+max_symbolic_offset has wrapped through the end | 
 |      of the address space back to the beginning, giving bogus comparison.  */ | 
 |   if (addr > name_location + max_symbolic_offset | 
 |       && name_location + max_symbolic_offset > name_location) | 
 |     return 1; | 
 |  | 
 |   *offset = (LONGEST) addr - name_location; | 
 |  | 
 |   *name = name_temp; | 
 |  | 
 |   if (print_symbol_filename) | 
 |     { | 
 |       struct symtab_and_line sal; | 
 |  | 
 |       sal = find_pc_sect_line (addr, section, 0); | 
 |  | 
 |       if (sal.symtab) | 
 | 	{ | 
 | 	  *filename = symtab_to_filename_for_display (sal.symtab); | 
 | 	  *line = sal.line; | 
 | 	} | 
 |     } | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | /* Print address ADDR symbolically on STREAM. | 
 |    First print it as a number.  Then perhaps print | 
 |    <SYMBOL + OFFSET> after the number.  */ | 
 |  | 
 | void | 
 | print_address (struct gdbarch *gdbarch, | 
 | 	       CORE_ADDR addr, struct ui_file *stream) | 
 | { | 
 |   fputs_styled (paddress (gdbarch, addr), address_style.style (), stream); | 
 |   print_address_symbolic (gdbarch, addr, stream, asm_demangle, " "); | 
 | } | 
 |  | 
 | /* Return a prefix for instruction address: | 
 |    "=> " for current instruction, else "   ".  */ | 
 |  | 
 | const char * | 
 | pc_prefix (CORE_ADDR addr) | 
 | { | 
 |   if (has_stack_frames ()) | 
 |     { | 
 |       struct frame_info *frame; | 
 |       CORE_ADDR pc; | 
 |  | 
 |       frame = get_selected_frame (NULL); | 
 |       if (get_frame_pc_if_available (frame, &pc) && pc == addr) | 
 | 	return "=> "; | 
 |     } | 
 |   return "   "; | 
 | } | 
 |  | 
 | /* Print address ADDR symbolically on STREAM.  Parameter DEMANGLE | 
 |    controls whether to print the symbolic name "raw" or demangled. | 
 |    Return non-zero if anything was printed; zero otherwise.  */ | 
 |  | 
 | int | 
 | print_address_demangle (const struct value_print_options *opts, | 
 | 			struct gdbarch *gdbarch, CORE_ADDR addr, | 
 | 			struct ui_file *stream, int do_demangle) | 
 | { | 
 |   if (opts->addressprint) | 
 |     { | 
 |       fputs_styled (paddress (gdbarch, addr), address_style.style (), stream); | 
 |       print_address_symbolic (gdbarch, addr, stream, do_demangle, " "); | 
 |     } | 
 |   else | 
 |     { | 
 |       return print_address_symbolic (gdbarch, addr, stream, do_demangle, ""); | 
 |     } | 
 |   return 1; | 
 | } | 
 |  | 
 |  | 
 | /* Find the address of the instruction that is INST_COUNT instructions before | 
 |    the instruction at ADDR. | 
 |    Since some architectures have variable-length instructions, we can't just | 
 |    simply subtract INST_COUNT * INSN_LEN from ADDR.  Instead, we use line | 
 |    number information to locate the nearest known instruction boundary, | 
 |    and disassemble forward from there.  If we go out of the symbol range | 
 |    during disassembling, we return the lowest address we've got so far and | 
 |    set the number of instructions read to INST_READ.  */ | 
 |  | 
 | static CORE_ADDR | 
 | find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr, | 
 | 			   int inst_count, int *inst_read) | 
 | { | 
 |   /* The vector PCS is used to store instruction addresses within | 
 |      a pc range.  */ | 
 |   CORE_ADDR loop_start, loop_end, p; | 
 |   std::vector<CORE_ADDR> pcs; | 
 |   struct symtab_and_line sal; | 
 |  | 
 |   *inst_read = 0; | 
 |   loop_start = loop_end = addr; | 
 |  | 
 |   /* In each iteration of the outer loop, we get a pc range that ends before | 
 |      LOOP_START, then we count and store every instruction address of the range | 
 |      iterated in the loop. | 
 |      If the number of instructions counted reaches INST_COUNT, return the | 
 |      stored address that is located INST_COUNT instructions back from ADDR. | 
 |      If INST_COUNT is not reached, we subtract the number of counted | 
 |      instructions from INST_COUNT, and go to the next iteration.  */ | 
 |   do | 
 |     { | 
 |       pcs.clear (); | 
 |       sal = find_pc_sect_line (loop_start, NULL, 1); | 
 |       if (sal.line <= 0) | 
 | 	{ | 
 | 	  /* We reach here when line info is not available.  In this case, | 
 | 	     we print a message and just exit the loop.  The return value | 
 | 	     is calculated after the loop.  */ | 
 | 	  printf_filtered (_("No line number information available " | 
 | 			     "for address ")); | 
 | 	  wrap_here ("  "); | 
 | 	  print_address (gdbarch, loop_start - 1, gdb_stdout); | 
 | 	  printf_filtered ("\n"); | 
 | 	  break; | 
 | 	} | 
 |  | 
 |       loop_end = loop_start; | 
 |       loop_start = sal.pc; | 
 |  | 
 |       /* This loop pushes instruction addresses in the range from | 
 | 	 LOOP_START to LOOP_END.  */ | 
 |       for (p = loop_start; p < loop_end;) | 
 | 	{ | 
 | 	  pcs.push_back (p); | 
 | 	  p += gdb_insn_length (gdbarch, p); | 
 | 	} | 
 |  | 
 |       inst_count -= pcs.size (); | 
 |       *inst_read += pcs.size (); | 
 |     } | 
 |   while (inst_count > 0); | 
 |  | 
 |   /* After the loop, the vector PCS has instruction addresses of the last | 
 |      source line we processed, and INST_COUNT has a negative value. | 
 |      We return the address at the index of -INST_COUNT in the vector for | 
 |      the reason below. | 
 |      Let's assume the following instruction addresses and run 'x/-4i 0x400e'. | 
 |        Line X of File | 
 | 	  0x4000 | 
 | 	  0x4001 | 
 | 	  0x4005 | 
 |        Line Y of File | 
 | 	  0x4009 | 
 | 	  0x400c | 
 |        => 0x400e | 
 | 	  0x4011 | 
 |      find_instruction_backward is called with INST_COUNT = 4 and expected to | 
 |      return 0x4001.  When we reach here, INST_COUNT is set to -1 because | 
 |      it was subtracted by 2 (from Line Y) and 3 (from Line X).  The value | 
 |      4001 is located at the index 1 of the last iterated line (= Line X), | 
 |      which is simply calculated by -INST_COUNT. | 
 |      The case when the length of PCS is 0 means that we reached an area for | 
 |      which line info is not available.  In such case, we return LOOP_START, | 
 |      which was the lowest instruction address that had line info.  */ | 
 |   p = pcs.size () > 0 ? pcs[-inst_count] : loop_start; | 
 |  | 
 |   /* INST_READ includes all instruction addresses in a pc range.  Need to | 
 |      exclude the beginning part up to the address we're returning.  That | 
 |      is, exclude {0x4000} in the example above.  */ | 
 |   if (inst_count < 0) | 
 |     *inst_read += inst_count; | 
 |  | 
 |   return p; | 
 | } | 
 |  | 
 | /* Backward read LEN bytes of target memory from address MEMADDR + LEN, | 
 |    placing the results in GDB's memory from MYADDR + LEN.  Returns | 
 |    a count of the bytes actually read.  */ | 
 |  | 
 | static int | 
 | read_memory_backward (struct gdbarch *gdbarch, | 
 | 		      CORE_ADDR memaddr, gdb_byte *myaddr, int len) | 
 | { | 
 |   int errcode; | 
 |   int nread;      /* Number of bytes actually read.  */ | 
 |  | 
 |   /* First try a complete read.  */ | 
 |   errcode = target_read_memory (memaddr, myaddr, len); | 
 |   if (errcode == 0) | 
 |     { | 
 |       /* Got it all.  */ | 
 |       nread = len; | 
 |     } | 
 |   else | 
 |     { | 
 |       /* Loop, reading one byte at a time until we get as much as we can.  */ | 
 |       memaddr += len; | 
 |       myaddr += len; | 
 |       for (nread = 0; nread < len; ++nread) | 
 | 	{ | 
 | 	  errcode = target_read_memory (--memaddr, --myaddr, 1); | 
 | 	  if (errcode != 0) | 
 | 	    { | 
 | 	      /* The read was unsuccessful, so exit the loop.  */ | 
 | 	      printf_filtered (_("Cannot access memory at address %s\n"), | 
 | 			       paddress (gdbarch, memaddr)); | 
 | 	      break; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   return nread; | 
 | } | 
 |  | 
 | /* Returns true if X (which is LEN bytes wide) is the number zero.  */ | 
 |  | 
 | static int | 
 | integer_is_zero (const gdb_byte *x, int len) | 
 | { | 
 |   int i = 0; | 
 |  | 
 |   while (i < len && x[i] == 0) | 
 |     ++i; | 
 |   return (i == len); | 
 | } | 
 |  | 
 | /* Find the start address of a string in which ADDR is included. | 
 |    Basically we search for '\0' and return the next address, | 
 |    but if OPTIONS->PRINT_MAX is smaller than the length of a string, | 
 |    we stop searching and return the address to print characters as many as | 
 |    PRINT_MAX from the string.  */ | 
 |  | 
 | static CORE_ADDR | 
 | find_string_backward (struct gdbarch *gdbarch, | 
 | 		      CORE_ADDR addr, int count, int char_size, | 
 | 		      const struct value_print_options *options, | 
 | 		      int *strings_counted) | 
 | { | 
 |   const int chunk_size = 0x20; | 
 |   int read_error = 0; | 
 |   int chars_read = 0; | 
 |   int chars_to_read = chunk_size; | 
 |   int chars_counted = 0; | 
 |   int count_original = count; | 
 |   CORE_ADDR string_start_addr = addr; | 
 |  | 
 |   gdb_assert (char_size == 1 || char_size == 2 || char_size == 4); | 
 |   gdb::byte_vector buffer (chars_to_read * char_size); | 
 |   while (count > 0 && read_error == 0) | 
 |     { | 
 |       int i; | 
 |  | 
 |       addr -= chars_to_read * char_size; | 
 |       chars_read = read_memory_backward (gdbarch, addr, buffer.data (), | 
 | 					 chars_to_read * char_size); | 
 |       chars_read /= char_size; | 
 |       read_error = (chars_read == chars_to_read) ? 0 : 1; | 
 |       /* Searching for '\0' from the end of buffer in backward direction.  */ | 
 |       for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted) | 
 | 	{ | 
 | 	  int offset = (chars_to_read - i - 1) * char_size; | 
 |  | 
 | 	  if (integer_is_zero (&buffer[offset], char_size) | 
 | 	      || chars_counted == options->print_max) | 
 | 	    { | 
 | 	      /* Found '\0' or reached print_max.  As OFFSET is the offset to | 
 | 		 '\0', we add CHAR_SIZE to return the start address of | 
 | 		 a string.  */ | 
 | 	      --count; | 
 | 	      string_start_addr = addr + offset + char_size; | 
 | 	      chars_counted = 0; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Update STRINGS_COUNTED with the actual number of loaded strings.  */ | 
 |   *strings_counted = count_original - count; | 
 |  | 
 |   if (read_error != 0) | 
 |     { | 
 |       /* In error case, STRING_START_ADDR is pointing to the string that | 
 | 	 was last successfully loaded.  Rewind the partially loaded string.  */ | 
 |       string_start_addr -= chars_counted * char_size; | 
 |     } | 
 |  | 
 |   return string_start_addr; | 
 | } | 
 |  | 
 | /* Examine data at address ADDR in format FMT. | 
 |    Fetch it from memory and print on gdb_stdout.  */ | 
 |  | 
 | static void | 
 | do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr) | 
 | { | 
 |   char format = 0; | 
 |   char size; | 
 |   int count = 1; | 
 |   struct type *val_type = NULL; | 
 |   int i; | 
 |   int maxelts; | 
 |   struct value_print_options opts; | 
 |   int need_to_update_next_address = 0; | 
 |   CORE_ADDR addr_rewound = 0; | 
 |  | 
 |   format = fmt.format; | 
 |   size = fmt.size; | 
 |   count = fmt.count; | 
 |   next_gdbarch = gdbarch; | 
 |   next_address = addr; | 
 |  | 
 |   /* Instruction format implies fetch single bytes | 
 |      regardless of the specified size. | 
 |      The case of strings is handled in decode_format, only explicit | 
 |      size operator are not changed to 'b'.  */ | 
 |   if (format == 'i') | 
 |     size = 'b'; | 
 |  | 
 |   if (size == 'a') | 
 |     { | 
 |       /* Pick the appropriate size for an address.  */ | 
 |       if (gdbarch_ptr_bit (next_gdbarch) == 64) | 
 | 	size = 'g'; | 
 |       else if (gdbarch_ptr_bit (next_gdbarch) == 32) | 
 | 	size = 'w'; | 
 |       else if (gdbarch_ptr_bit (next_gdbarch) == 16) | 
 | 	size = 'h'; | 
 |       else | 
 | 	/* Bad value for gdbarch_ptr_bit.  */ | 
 | 	internal_error (__FILE__, __LINE__, | 
 | 			_("failed internal consistency check")); | 
 |     } | 
 |  | 
 |   if (size == 'b') | 
 |     val_type = builtin_type (next_gdbarch)->builtin_int8; | 
 |   else if (size == 'h') | 
 |     val_type = builtin_type (next_gdbarch)->builtin_int16; | 
 |   else if (size == 'w') | 
 |     val_type = builtin_type (next_gdbarch)->builtin_int32; | 
 |   else if (size == 'g') | 
 |     val_type = builtin_type (next_gdbarch)->builtin_int64; | 
 |  | 
 |   if (format == 's') | 
 |     { | 
 |       struct type *char_type = NULL; | 
 |  | 
 |       /* Search for "char16_t"  or "char32_t" types or fall back to 8-bit char | 
 | 	 if type is not found.  */ | 
 |       if (size == 'h') | 
 | 	char_type = builtin_type (next_gdbarch)->builtin_char16; | 
 |       else if (size == 'w') | 
 | 	char_type = builtin_type (next_gdbarch)->builtin_char32; | 
 |       if (char_type) | 
 | 	val_type = char_type; | 
 |       else | 
 | 	{ | 
 | 	  if (size != '\0' && size != 'b') | 
 | 	    warning (_("Unable to display strings with " | 
 | 		       "size '%c', using 'b' instead."), size); | 
 | 	  size = 'b'; | 
 | 	  val_type = builtin_type (next_gdbarch)->builtin_int8; | 
 | 	} | 
 |     } | 
 |  | 
 |   maxelts = 8; | 
 |   if (size == 'w') | 
 |     maxelts = 4; | 
 |   if (size == 'g') | 
 |     maxelts = 2; | 
 |   if (format == 's' || format == 'i') | 
 |     maxelts = 1; | 
 |  | 
 |   get_formatted_print_options (&opts, format); | 
 |  | 
 |   if (count < 0) | 
 |     { | 
 |       /* This is the negative repeat count case. | 
 | 	 We rewind the address based on the given repeat count and format, | 
 | 	 then examine memory from there in forward direction.  */ | 
 |  | 
 |       count = -count; | 
 |       if (format == 'i') | 
 | 	{ | 
 | 	  next_address = find_instruction_backward (gdbarch, addr, count, | 
 | 						    &count); | 
 | 	} | 
 |       else if (format == 's') | 
 | 	{ | 
 | 	  next_address = find_string_backward (gdbarch, addr, count, | 
 | 					       TYPE_LENGTH (val_type), | 
 | 					       &opts, &count); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  next_address = addr - count * TYPE_LENGTH (val_type); | 
 | 	} | 
 |  | 
 |       /* The following call to print_formatted updates next_address in every | 
 | 	 iteration.  In backward case, we store the start address here | 
 | 	 and update next_address with it before exiting the function.  */ | 
 |       addr_rewound = (format == 's' | 
 | 		      ? next_address - TYPE_LENGTH (val_type) | 
 | 		      : next_address); | 
 |       need_to_update_next_address = 1; | 
 |     } | 
 |  | 
 |   /* Whether we need to print the memory tag information for the current | 
 |      address range.  */ | 
 |   bool print_range_tag = true; | 
 |   uint32_t gsize = gdbarch_memtag_granule_size (gdbarch); | 
 |  | 
 |   /* Print as many objects as specified in COUNT, at most maxelts per line, | 
 |      with the address of the next one at the start of each line.  */ | 
 |  | 
 |   while (count > 0) | 
 |     { | 
 |       QUIT; | 
 |  | 
 |       CORE_ADDR tag_laddr = 0, tag_haddr = 0; | 
 |  | 
 |       /* Print the memory tag information if requested.  */ | 
 |       if (fmt.print_tags && print_range_tag | 
 | 	  && target_supports_memory_tagging ()) | 
 | 	{ | 
 | 	  tag_laddr = align_down (next_address, gsize); | 
 | 	  tag_haddr = align_down (next_address + gsize, gsize); | 
 |  | 
 | 	  struct value *v_addr | 
 | 	    = value_from_ulongest (builtin_type (gdbarch)->builtin_data_ptr, | 
 | 				   tag_laddr); | 
 |  | 
 | 	  if (gdbarch_tagged_address_p (target_gdbarch (), v_addr)) | 
 | 	    { | 
 | 	      /* Fetch the allocation tag.  */ | 
 | 	      struct value *tag | 
 | 		= gdbarch_get_memtag (gdbarch, v_addr, memtag_type::allocation); | 
 | 	      std::string atag | 
 | 		= gdbarch_memtag_to_string (gdbarch, tag); | 
 |  | 
 | 	      if (!atag.empty ()) | 
 | 		{ | 
 | 		  printf_filtered (_("<Allocation Tag %s for range [%s,%s)>\n"), | 
 | 				   atag.c_str (), | 
 | 				   paddress (gdbarch, tag_laddr), | 
 | 				   paddress (gdbarch, tag_haddr)); | 
 | 		} | 
 | 	    } | 
 | 	  print_range_tag = false; | 
 | 	} | 
 |  | 
 |       if (format == 'i') | 
 | 	fputs_filtered (pc_prefix (next_address), gdb_stdout); | 
 |       print_address (next_gdbarch, next_address, gdb_stdout); | 
 |       printf_filtered (":"); | 
 |       for (i = maxelts; | 
 | 	   i > 0 && count > 0; | 
 | 	   i--, count--) | 
 | 	{ | 
 | 	  printf_filtered ("\t"); | 
 | 	  /* Note that print_formatted sets next_address for the next | 
 | 	     object.  */ | 
 | 	  last_examine_address = next_address; | 
 |  | 
 | 	  /* The value to be displayed is not fetched greedily. | 
 | 	     Instead, to avoid the possibility of a fetched value not | 
 | 	     being used, its retrieval is delayed until the print code | 
 | 	     uses it.  When examining an instruction stream, the | 
 | 	     disassembler will perform its own memory fetch using just | 
 | 	     the address stored in LAST_EXAMINE_VALUE.  FIXME: Should | 
 | 	     the disassembler be modified so that LAST_EXAMINE_VALUE | 
 | 	     is left with the byte sequence from the last complete | 
 | 	     instruction fetched from memory?  */ | 
 | 	  last_examine_value | 
 | 	    = release_value (value_at_lazy (val_type, next_address)); | 
 |  | 
 | 	  print_formatted (last_examine_value.get (), size, &opts, gdb_stdout); | 
 |  | 
 | 	  /* Display any branch delay slots following the final insn.  */ | 
 | 	  if (format == 'i' && count == 1) | 
 | 	    count += branch_delay_insns; | 
 |  | 
 | 	  /* Update the tag range based on the current address being | 
 | 	     processed.  */ | 
 | 	  if (tag_haddr <= next_address) | 
 | 	      print_range_tag = true; | 
 | 	} | 
 |       printf_filtered ("\n"); | 
 |     } | 
 |  | 
 |   if (need_to_update_next_address) | 
 |     next_address = addr_rewound; | 
 | } | 
 |  | 
 | static void | 
 | validate_format (struct format_data fmt, const char *cmdname) | 
 | { | 
 |   if (fmt.size != 0) | 
 |     error (_("Size letters are meaningless in \"%s\" command."), cmdname); | 
 |   if (fmt.count != 1) | 
 |     error (_("Item count other than 1 is meaningless in \"%s\" command."), | 
 | 	   cmdname); | 
 |   if (fmt.format == 'i') | 
 |     error (_("Format letter \"%c\" is meaningless in \"%s\" command."), | 
 | 	   fmt.format, cmdname); | 
 | } | 
 |  | 
 | /* Parse print command format string into *OPTS and update *EXPP. | 
 |    CMDNAME should name the current command.  */ | 
 |  | 
 | void | 
 | print_command_parse_format (const char **expp, const char *cmdname, | 
 | 			    value_print_options *opts) | 
 | { | 
 |   const char *exp = *expp; | 
 |  | 
 |   /* opts->raw value might already have been set by 'set print raw-values' | 
 |      or by using 'print -raw-values'. | 
 |      So, do not set opts->raw to 0, only set it to 1 if /r is given.  */ | 
 |   if (exp && *exp == '/') | 
 |     { | 
 |       format_data fmt; | 
 |  | 
 |       exp++; | 
 |       fmt = decode_format (&exp, last_format, 0); | 
 |       validate_format (fmt, cmdname); | 
 |       last_format = fmt.format; | 
 |  | 
 |       opts->format = fmt.format; | 
 |       opts->raw = opts->raw || fmt.raw; | 
 |     } | 
 |   else | 
 |     { | 
 |       opts->format = 0; | 
 |     } | 
 |  | 
 |   *expp = exp; | 
 | } | 
 |  | 
 | /* See valprint.h.  */ | 
 |  | 
 | void | 
 | print_value (value *val, const value_print_options &opts) | 
 | { | 
 |   int histindex = record_latest_value (val); | 
 |  | 
 |   annotate_value_history_begin (histindex, value_type (val)); | 
 |  | 
 |   printf_filtered ("$%d = ", histindex); | 
 |  | 
 |   annotate_value_history_value (); | 
 |  | 
 |   print_formatted (val, 0, &opts, gdb_stdout); | 
 |   printf_filtered ("\n"); | 
 |  | 
 |   annotate_value_history_end (); | 
 | } | 
 |  | 
 | /* Returns true if memory tags should be validated.  False otherwise.  */ | 
 |  | 
 | static bool | 
 | should_validate_memtags (struct value *value) | 
 | { | 
 |   gdb_assert (value != nullptr && value_type (value) != nullptr); | 
 |  | 
 |   if (!target_supports_memory_tagging ()) | 
 |     return false; | 
 |  | 
 |   enum type_code code = value_type (value)->code (); | 
 |  | 
 |   /* Skip non-address values.  */ | 
 |   if (code != TYPE_CODE_PTR | 
 |       && !TYPE_IS_REFERENCE (value_type (value))) | 
 |     return false; | 
 |  | 
 |   /* OK, we have an address value.  Check we have a complete value we | 
 |      can extract.  */ | 
 |   if (value_optimized_out (value) | 
 |       || !value_entirely_available (value)) | 
 |     return false; | 
 |  | 
 |   /* We do.  Check whether it includes any tags.  */ | 
 |   return gdbarch_tagged_address_p (target_gdbarch (), value); | 
 | } | 
 |  | 
 | /* Helper for parsing arguments for print_command_1.  */ | 
 |  | 
 | static struct value * | 
 | process_print_command_args (const char *args, value_print_options *print_opts, | 
 | 			    bool voidprint) | 
 | { | 
 |   get_user_print_options (print_opts); | 
 |   /* Override global settings with explicit options, if any.  */ | 
 |   auto group = make_value_print_options_def_group (print_opts); | 
 |   gdb::option::process_options | 
 |     (&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group); | 
 |  | 
 |   print_command_parse_format (&args, "print", print_opts); | 
 |  | 
 |   const char *exp = args; | 
 |  | 
 |   if (exp != nullptr && *exp) | 
 |     { | 
 |       /* VOIDPRINT is true to indicate that we do want to print a void | 
 | 	 value, so invert it for parse_expression.  */ | 
 |       expression_up expr = parse_expression (exp, nullptr, !voidprint); | 
 |       return evaluate_expression (expr.get ()); | 
 |     } | 
 |  | 
 |   return access_value_history (0); | 
 | } | 
 |  | 
 | /* Implementation of the "print" and "call" commands.  */ | 
 |  | 
 | static void | 
 | print_command_1 (const char *args, int voidprint) | 
 | { | 
 |   value_print_options print_opts; | 
 |  | 
 |   struct value *val = process_print_command_args (args, &print_opts, voidprint); | 
 |  | 
 |   if (voidprint || (val && value_type (val) && | 
 | 		    value_type (val)->code () != TYPE_CODE_VOID)) | 
 |     { | 
 |       /* If memory tagging validation is on, check if the tag is valid.  */ | 
 |       if (print_opts.memory_tag_violations) | 
 | 	{ | 
 | 	  try | 
 | 	    { | 
 | 	      if (should_validate_memtags (val) | 
 | 		  && !gdbarch_memtag_matches_p (target_gdbarch (), val)) | 
 | 		{ | 
 | 		  /* Fetch the logical tag.  */ | 
 | 		  struct value *tag | 
 | 		    = gdbarch_get_memtag (target_gdbarch (), val, | 
 | 					  memtag_type::logical); | 
 | 		  std::string ltag | 
 | 		    = gdbarch_memtag_to_string (target_gdbarch (), tag); | 
 |  | 
 | 		  /* Fetch the allocation tag.  */ | 
 | 		  tag = gdbarch_get_memtag (target_gdbarch (), val, | 
 | 					    memtag_type::allocation); | 
 | 		  std::string atag | 
 | 		    = gdbarch_memtag_to_string (target_gdbarch (), tag); | 
 |  | 
 | 		  printf_filtered (_("Logical tag (%s) does not match the " | 
 | 				     "allocation tag (%s).\n"), | 
 | 				   ltag.c_str (), atag.c_str ()); | 
 | 		} | 
 | 	    } | 
 | 	  catch (gdb_exception_error &ex) | 
 | 	    { | 
 | 	      if (ex.error == TARGET_CLOSE_ERROR) | 
 | 		throw; | 
 |  | 
 | 	      fprintf_filtered (gdb_stderr, | 
 | 				_("Could not validate memory tag: %s\n"), | 
 | 				ex.message->c_str ()); | 
 | 	    } | 
 | 	} | 
 |  | 
 |       print_value (val, print_opts); | 
 |     } | 
 | } | 
 |  | 
 | /* Called from command completion function to skip over /FMT | 
 |    specifications, allowing the rest of the line to be completed.  Returns | 
 |    true if the /FMT is at the end of the current line and there is nothing | 
 |    left to complete, otherwise false is returned. | 
 |  | 
 |    In either case *ARGS can be updated to point after any part of /FMT that | 
 |    is present. | 
 |  | 
 |    This function is designed so that trying to complete '/' will offer no | 
 |    completions, the user needs to insert the format specification | 
 |    themselves.  Trying to complete '/FMT' (where FMT is any non-empty set | 
 |    of alpha-numeric characters) will cause readline to insert a single | 
 |    space, setting the user up to enter the expression.  */ | 
 |  | 
 | static bool | 
 | skip_over_slash_fmt (completion_tracker &tracker, const char **args) | 
 | { | 
 |   const char *text = *args; | 
 |  | 
 |   if (text[0] == '/') | 
 |     { | 
 |       bool in_fmt; | 
 |       tracker.set_use_custom_word_point (true); | 
 |  | 
 |       if (text[1] == '\0') | 
 | 	{ | 
 | 	  /* The user tried to complete after typing just the '/' character | 
 | 	     of the /FMT string.  Step the completer past the '/', but we | 
 | 	     don't offer any completions.  */ | 
 | 	  in_fmt = true; | 
 | 	  ++text; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  /* The user has typed some characters after the '/', we assume | 
 | 	     this is a complete /FMT string, first skip over it.  */ | 
 | 	  text = skip_to_space (text); | 
 |  | 
 | 	  if (*text == '\0') | 
 | 	    { | 
 | 	      /* We're at the end of the input string.  The user has typed | 
 | 		 '/FMT' and asked for a completion.  Push an empty | 
 | 		 completion string, this will cause readline to insert a | 
 | 		 space so the user now has '/FMT '.  */ | 
 | 	      in_fmt = true; | 
 | 	      tracker.add_completion (make_unique_xstrdup (text)); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      /* The user has already typed things after the /FMT, skip the | 
 | 		 whitespace and return false.  Whoever called this function | 
 | 		 should then try to complete what comes next.  */ | 
 | 	      in_fmt = false; | 
 | 	      text = skip_spaces (text); | 
 | 	    } | 
 | 	} | 
 |  | 
 |       tracker.advance_custom_word_point_by (text - *args); | 
 |       *args = text; | 
 |       return in_fmt; | 
 |     } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /* See valprint.h.  */ | 
 |  | 
 | void | 
 | print_command_completer (struct cmd_list_element *ignore, | 
 | 			 completion_tracker &tracker, | 
 | 			 const char *text, const char * /*word*/) | 
 | { | 
 |   const auto group = make_value_print_options_def_group (nullptr); | 
 |   if (gdb::option::complete_options | 
 |       (tracker, &text, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group)) | 
 |     return; | 
 |  | 
 |   if (skip_over_slash_fmt (tracker, &text)) | 
 |     return; | 
 |  | 
 |   const char *word = advance_to_expression_complete_word_point (tracker, text); | 
 |   expression_completer (ignore, tracker, text, word); | 
 | } | 
 |  | 
 | static void | 
 | print_command (const char *exp, int from_tty) | 
 | { | 
 |   print_command_1 (exp, true); | 
 | } | 
 |  | 
 | /* Same as print, except it doesn't print void results.  */ | 
 | static void | 
 | call_command (const char *exp, int from_tty) | 
 | { | 
 |   print_command_1 (exp, false); | 
 | } | 
 |  | 
 | /* Implementation of the "output" command.  */ | 
 |  | 
 | void | 
 | output_command (const char *exp, int from_tty) | 
 | { | 
 |   char format = 0; | 
 |   struct value *val; | 
 |   struct format_data fmt; | 
 |   struct value_print_options opts; | 
 |  | 
 |   fmt.size = 0; | 
 |   fmt.raw = 0; | 
 |  | 
 |   if (exp && *exp == '/') | 
 |     { | 
 |       exp++; | 
 |       fmt = decode_format (&exp, 0, 0); | 
 |       validate_format (fmt, "output"); | 
 |       format = fmt.format; | 
 |     } | 
 |  | 
 |   expression_up expr = parse_expression (exp); | 
 |  | 
 |   val = evaluate_expression (expr.get ()); | 
 |  | 
 |   annotate_value_begin (value_type (val)); | 
 |  | 
 |   get_formatted_print_options (&opts, format); | 
 |   opts.raw = fmt.raw; | 
 |   print_formatted (val, fmt.size, &opts, gdb_stdout); | 
 |  | 
 |   annotate_value_end (); | 
 |  | 
 |   wrap_here (""); | 
 |   gdb_flush (gdb_stdout); | 
 | } | 
 |  | 
 | static void | 
 | set_command (const char *exp, int from_tty) | 
 | { | 
 |   expression_up expr = parse_expression (exp); | 
 |  | 
 |   switch (expr->op->opcode ()) | 
 |     { | 
 |     case UNOP_PREINCREMENT: | 
 |     case UNOP_POSTINCREMENT: | 
 |     case UNOP_PREDECREMENT: | 
 |     case UNOP_POSTDECREMENT: | 
 |     case BINOP_ASSIGN: | 
 |     case BINOP_ASSIGN_MODIFY: | 
 |     case BINOP_COMMA: | 
 |       break; | 
 |     default: | 
 |       warning | 
 | 	(_("Expression is not an assignment (and might have no effect)")); | 
 |     } | 
 |  | 
 |   evaluate_expression (expr.get ()); | 
 | } | 
 |  | 
 | static void | 
 | info_symbol_command (const char *arg, int from_tty) | 
 | { | 
 |   struct minimal_symbol *msymbol; | 
 |   struct obj_section *osect; | 
 |   CORE_ADDR addr, sect_addr; | 
 |   int matches = 0; | 
 |   unsigned int offset; | 
 |  | 
 |   if (!arg) | 
 |     error_no_arg (_("address")); | 
 |  | 
 |   addr = parse_and_eval_address (arg); | 
 |   for (objfile *objfile : current_program_space->objfiles ()) | 
 |     ALL_OBJFILE_OSECTIONS (objfile, osect) | 
 |       { | 
 | 	/* Only process each object file once, even if there's a separate | 
 | 	   debug file.  */ | 
 | 	if (objfile->separate_debug_objfile_backlink) | 
 | 	  continue; | 
 |  | 
 | 	sect_addr = overlay_mapped_address (addr, osect); | 
 |  | 
 | 	if (osect->addr () <= sect_addr && sect_addr < osect->endaddr () | 
 | 	    && (msymbol | 
 | 		= lookup_minimal_symbol_by_pc_section (sect_addr, | 
 | 						       osect).minsym)) | 
 | 	  { | 
 | 	    const char *obj_name, *mapped, *sec_name, *msym_name; | 
 | 	    const char *loc_string; | 
 |  | 
 | 	    matches = 1; | 
 | 	    offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol); | 
 | 	    mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped"); | 
 | 	    sec_name = osect->the_bfd_section->name; | 
 | 	    msym_name = msymbol->print_name (); | 
 |  | 
 | 	    /* Don't print the offset if it is zero. | 
 | 	       We assume there's no need to handle i18n of "sym + offset".  */ | 
 | 	    std::string string_holder; | 
 | 	    if (offset) | 
 | 	      { | 
 | 		string_holder = string_printf ("%s + %u", msym_name, offset); | 
 | 		loc_string = string_holder.c_str (); | 
 | 	      } | 
 | 	    else | 
 | 	      loc_string = msym_name; | 
 |  | 
 | 	    gdb_assert (osect->objfile && objfile_name (osect->objfile)); | 
 | 	    obj_name = objfile_name (osect->objfile); | 
 |  | 
 | 	    if (current_program_space->multi_objfile_p ()) | 
 | 	      if (pc_in_unmapped_range (addr, osect)) | 
 | 		if (section_is_overlay (osect)) | 
 | 		  printf_filtered (_("%s in load address range of " | 
 | 				     "%s overlay section %s of %s\n"), | 
 | 				   loc_string, mapped, sec_name, obj_name); | 
 | 		else | 
 | 		  printf_filtered (_("%s in load address range of " | 
 | 				     "section %s of %s\n"), | 
 | 				   loc_string, sec_name, obj_name); | 
 | 	      else | 
 | 		if (section_is_overlay (osect)) | 
 | 		  printf_filtered (_("%s in %s overlay section %s of %s\n"), | 
 | 				   loc_string, mapped, sec_name, obj_name); | 
 | 		else | 
 | 		  printf_filtered (_("%s in section %s of %s\n"), | 
 | 				   loc_string, sec_name, obj_name); | 
 | 	    else | 
 | 	      if (pc_in_unmapped_range (addr, osect)) | 
 | 		if (section_is_overlay (osect)) | 
 | 		  printf_filtered (_("%s in load address range of %s overlay " | 
 | 				     "section %s\n"), | 
 | 				   loc_string, mapped, sec_name); | 
 | 		else | 
 | 		  printf_filtered | 
 | 		    (_("%s in load address range of section %s\n"), | 
 | 		     loc_string, sec_name); | 
 | 	      else | 
 | 		if (section_is_overlay (osect)) | 
 | 		  printf_filtered (_("%s in %s overlay section %s\n"), | 
 | 				   loc_string, mapped, sec_name); | 
 | 		else | 
 | 		  printf_filtered (_("%s in section %s\n"), | 
 | 				   loc_string, sec_name); | 
 | 	  } | 
 |       } | 
 |   if (matches == 0) | 
 |     printf_filtered (_("No symbol matches %s.\n"), arg); | 
 | } | 
 |  | 
 | static void | 
 | info_address_command (const char *exp, int from_tty) | 
 | { | 
 |   struct gdbarch *gdbarch; | 
 |   int regno; | 
 |   struct symbol *sym; | 
 |   struct bound_minimal_symbol msymbol; | 
 |   long val; | 
 |   struct obj_section *section; | 
 |   CORE_ADDR load_addr, context_pc = 0; | 
 |   struct field_of_this_result is_a_field_of_this; | 
 |  | 
 |   if (exp == 0) | 
 |     error (_("Argument required.")); | 
 |  | 
 |   sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN, | 
 | 		       &is_a_field_of_this).symbol; | 
 |   if (sym == NULL) | 
 |     { | 
 |       if (is_a_field_of_this.type != NULL) | 
 | 	{ | 
 | 	  printf_filtered ("Symbol \""); | 
 | 	  fprintf_symbol_filtered (gdb_stdout, exp, | 
 | 				   current_language->la_language, DMGL_ANSI); | 
 | 	  printf_filtered ("\" is a field of the local class variable "); | 
 | 	  if (current_language->la_language == language_objc) | 
 | 	    printf_filtered ("`self'\n");	/* ObjC equivalent of "this" */ | 
 | 	  else | 
 | 	    printf_filtered ("`this'\n"); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       msymbol = lookup_bound_minimal_symbol (exp); | 
 |  | 
 |       if (msymbol.minsym != NULL) | 
 | 	{ | 
 | 	  struct objfile *objfile = msymbol.objfile; | 
 |  | 
 | 	  gdbarch = objfile->arch (); | 
 | 	  load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol); | 
 |  | 
 | 	  printf_filtered ("Symbol \""); | 
 | 	  fprintf_symbol_filtered (gdb_stdout, exp, | 
 | 				   current_language->la_language, DMGL_ANSI); | 
 | 	  printf_filtered ("\" is at "); | 
 | 	  fputs_styled (paddress (gdbarch, load_addr), address_style.style (), | 
 | 			gdb_stdout); | 
 | 	  printf_filtered (" in a file compiled without debugging"); | 
 | 	  section = msymbol.minsym->obj_section (objfile); | 
 | 	  if (section_is_overlay (section)) | 
 | 	    { | 
 | 	      load_addr = overlay_unmapped_address (load_addr, section); | 
 | 	      printf_filtered (",\n -- loaded at "); | 
 | 	      fputs_styled (paddress (gdbarch, load_addr), | 
 | 			    address_style.style (), | 
 | 			    gdb_stdout); | 
 | 	      printf_filtered (" in overlay section %s", | 
 | 			       section->the_bfd_section->name); | 
 | 	    } | 
 | 	  printf_filtered (".\n"); | 
 | 	} | 
 |       else | 
 | 	error (_("No symbol \"%s\" in current context."), exp); | 
 |       return; | 
 |     } | 
 |  | 
 |   printf_filtered ("Symbol \""); | 
 |   fputs_filtered (sym->print_name (), gdb_stdout); | 
 |   printf_filtered ("\" is "); | 
 |   val = SYMBOL_VALUE (sym); | 
 |   if (SYMBOL_OBJFILE_OWNED (sym)) | 
 |     section = sym->obj_section (symbol_objfile (sym)); | 
 |   else | 
 |     section = NULL; | 
 |   gdbarch = symbol_arch (sym); | 
 |  | 
 |   if (SYMBOL_COMPUTED_OPS (sym) != NULL) | 
 |     { | 
 |       SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc, | 
 | 						    gdb_stdout); | 
 |       printf_filtered (".\n"); | 
 |       return; | 
 |     } | 
 |  | 
 |   switch (SYMBOL_CLASS (sym)) | 
 |     { | 
 |     case LOC_CONST: | 
 |     case LOC_CONST_BYTES: | 
 |       printf_filtered ("constant"); | 
 |       break; | 
 |  | 
 |     case LOC_LABEL: | 
 |       printf_filtered ("a label at address "); | 
 |       load_addr = SYMBOL_VALUE_ADDRESS (sym); | 
 |       fputs_styled (paddress (gdbarch, load_addr), address_style.style (), | 
 | 		    gdb_stdout); | 
 |       if (section_is_overlay (section)) | 
 | 	{ | 
 | 	  load_addr = overlay_unmapped_address (load_addr, section); | 
 | 	  printf_filtered (",\n -- loaded at "); | 
 | 	  fputs_styled (paddress (gdbarch, load_addr), address_style.style (), | 
 | 			gdb_stdout); | 
 | 	  printf_filtered (" in overlay section %s", | 
 | 			   section->the_bfd_section->name); | 
 | 	} | 
 |       break; | 
 |  | 
 |     case LOC_COMPUTED: | 
 |       gdb_assert_not_reached ("LOC_COMPUTED variable missing a method"); | 
 |  | 
 |     case LOC_REGISTER: | 
 |       /* GDBARCH is the architecture associated with the objfile the symbol | 
 | 	 is defined in; the target architecture may be different, and may | 
 | 	 provide additional registers.  However, we do not know the target | 
 | 	 architecture at this point.  We assume the objfile architecture | 
 | 	 will contain all the standard registers that occur in debug info | 
 | 	 in that objfile.  */ | 
 |       regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch); | 
 |  | 
 |       if (SYMBOL_IS_ARGUMENT (sym)) | 
 | 	printf_filtered (_("an argument in register %s"), | 
 | 			 gdbarch_register_name (gdbarch, regno)); | 
 |       else | 
 | 	printf_filtered (_("a variable in register %s"), | 
 | 			 gdbarch_register_name (gdbarch, regno)); | 
 |       break; | 
 |  | 
 |     case LOC_STATIC: | 
 |       printf_filtered (_("static storage at address ")); | 
 |       load_addr = SYMBOL_VALUE_ADDRESS (sym); | 
 |       fputs_styled (paddress (gdbarch, load_addr), address_style.style (), | 
 | 		    gdb_stdout); | 
 |       if (section_is_overlay (section)) | 
 | 	{ | 
 | 	  load_addr = overlay_unmapped_address (load_addr, section); | 
 | 	  printf_filtered (_(",\n -- loaded at ")); | 
 | 	  fputs_styled (paddress (gdbarch, load_addr), address_style.style (), | 
 | 			gdb_stdout); | 
 | 	  printf_filtered (_(" in overlay section %s"), | 
 | 			   section->the_bfd_section->name); | 
 | 	} | 
 |       break; | 
 |  | 
 |     case LOC_REGPARM_ADDR: | 
 |       /* Note comment at LOC_REGISTER.  */ | 
 |       regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch); | 
 |       printf_filtered (_("address of an argument in register %s"), | 
 | 		       gdbarch_register_name (gdbarch, regno)); | 
 |       break; | 
 |  | 
 |     case LOC_ARG: | 
 |       printf_filtered (_("an argument at offset %ld"), val); | 
 |       break; | 
 |  | 
 |     case LOC_LOCAL: | 
 |       printf_filtered (_("a local variable at frame offset %ld"), val); | 
 |       break; | 
 |  | 
 |     case LOC_REF_ARG: | 
 |       printf_filtered (_("a reference argument at offset %ld"), val); | 
 |       break; | 
 |  | 
 |     case LOC_TYPEDEF: | 
 |       printf_filtered (_("a typedef")); | 
 |       break; | 
 |  | 
 |     case LOC_BLOCK: | 
 |       printf_filtered (_("a function at address ")); | 
 |       load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)); | 
 |       fputs_styled (paddress (gdbarch, load_addr), address_style.style (), | 
 | 		    gdb_stdout); | 
 |       if (section_is_overlay (section)) | 
 | 	{ | 
 | 	  load_addr = overlay_unmapped_address (load_addr, section); | 
 | 	  printf_filtered (_(",\n -- loaded at ")); | 
 | 	  fputs_styled (paddress (gdbarch, load_addr), address_style.style (), | 
 | 			gdb_stdout); | 
 | 	  printf_filtered (_(" in overlay section %s"), | 
 | 			   section->the_bfd_section->name); | 
 | 	} | 
 |       break; | 
 |  | 
 |     case LOC_UNRESOLVED: | 
 |       { | 
 | 	struct bound_minimal_symbol msym; | 
 |  | 
 | 	msym = lookup_bound_minimal_symbol (sym->linkage_name ()); | 
 | 	if (msym.minsym == NULL) | 
 | 	  printf_filtered ("unresolved"); | 
 | 	else | 
 | 	  { | 
 | 	    section = msym.obj_section (); | 
 |  | 
 | 	    if (section | 
 | 		&& (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0) | 
 | 	      { | 
 | 		load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym); | 
 | 		printf_filtered (_("a thread-local variable at offset %s " | 
 | 				   "in the thread-local storage for `%s'"), | 
 | 				 paddress (gdbarch, load_addr), | 
 | 				 objfile_name (section->objfile)); | 
 | 	      } | 
 | 	    else | 
 | 	      { | 
 | 		load_addr = BMSYMBOL_VALUE_ADDRESS (msym); | 
 | 		printf_filtered (_("static storage at address ")); | 
 | 		fputs_styled (paddress (gdbarch, load_addr), | 
 | 			      address_style.style (), gdb_stdout); | 
 | 		if (section_is_overlay (section)) | 
 | 		  { | 
 | 		    load_addr = overlay_unmapped_address (load_addr, section); | 
 | 		    printf_filtered (_(",\n -- loaded at ")); | 
 | 		    fputs_styled (paddress (gdbarch, load_addr), | 
 | 				  address_style.style (), | 
 | 				  gdb_stdout); | 
 | 		    printf_filtered (_(" in overlay section %s"), | 
 | 				     section->the_bfd_section->name); | 
 | 		  } | 
 | 	      } | 
 | 	  } | 
 |       } | 
 |       break; | 
 |  | 
 |     case LOC_OPTIMIZED_OUT: | 
 |       printf_filtered (_("optimized out")); | 
 |       break; | 
 |  | 
 |     default: | 
 |       printf_filtered (_("of unknown (botched) type")); | 
 |       break; | 
 |     } | 
 |   printf_filtered (".\n"); | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | x_command (const char *exp, int from_tty) | 
 | { | 
 |   struct format_data fmt; | 
 |   struct value *val; | 
 |  | 
 |   fmt.format = last_format ? last_format : 'x'; | 
 |   fmt.print_tags = last_print_tags; | 
 |   fmt.size = last_size; | 
 |   fmt.count = 1; | 
 |   fmt.raw = 0; | 
 |  | 
 |   /* If there is no expression and no format, use the most recent | 
 |      count.  */ | 
 |   if (exp == nullptr && last_count > 0) | 
 |     fmt.count = last_count; | 
 |  | 
 |   if (exp && *exp == '/') | 
 |     { | 
 |       const char *tmp = exp + 1; | 
 |  | 
 |       fmt = decode_format (&tmp, last_format, last_size); | 
 |       exp = (char *) tmp; | 
 |     } | 
 |  | 
 |   last_count = fmt.count; | 
 |  | 
 |   /* If we have an expression, evaluate it and use it as the address.  */ | 
 |  | 
 |   if (exp != 0 && *exp != 0) | 
 |     { | 
 |       expression_up expr = parse_expression (exp); | 
 |       /* Cause expression not to be there any more if this command is | 
 | 	 repeated with Newline.  But don't clobber a user-defined | 
 | 	 command's definition.  */ | 
 |       if (from_tty) | 
 | 	set_repeat_arguments (""); | 
 |       val = evaluate_expression (expr.get ()); | 
 |       if (TYPE_IS_REFERENCE (value_type (val))) | 
 | 	val = coerce_ref (val); | 
 |       /* In rvalue contexts, such as this, functions are coerced into | 
 | 	 pointers to functions.  This makes "x/i main" work.  */ | 
 |       if (value_type (val)->code () == TYPE_CODE_FUNC | 
 | 	   && VALUE_LVAL (val) == lval_memory) | 
 | 	next_address = value_address (val); | 
 |       else | 
 | 	next_address = value_as_address (val); | 
 |  | 
 |       next_gdbarch = expr->gdbarch; | 
 |     } | 
 |  | 
 |   if (!next_gdbarch) | 
 |     error_no_arg (_("starting display address")); | 
 |  | 
 |   do_examine (fmt, next_gdbarch, next_address); | 
 |  | 
 |   /* If the examine succeeds, we remember its size and format for next | 
 |      time.  Set last_size to 'b' for strings.  */ | 
 |   if (fmt.format == 's') | 
 |     last_size = 'b'; | 
 |   else | 
 |     last_size = fmt.size; | 
 |   last_format = fmt.format; | 
 |  | 
 |   /* Remember tag-printing setting.  */ | 
 |   last_print_tags = fmt.print_tags; | 
 |  | 
 |   /* Set a couple of internal variables if appropriate.  */ | 
 |   if (last_examine_value != nullptr) | 
 |     { | 
 |       /* Make last address examined available to the user as $_.  Use | 
 | 	 the correct pointer type.  */ | 
 |       struct type *pointer_type | 
 | 	= lookup_pointer_type (value_type (last_examine_value.get ())); | 
 |       set_internalvar (lookup_internalvar ("_"), | 
 | 		       value_from_pointer (pointer_type, | 
 | 					   last_examine_address)); | 
 |  | 
 |       /* Make contents of last address examined available to the user | 
 | 	 as $__.  If the last value has not been fetched from memory | 
 | 	 then don't fetch it now; instead mark it by voiding the $__ | 
 | 	 variable.  */ | 
 |       if (value_lazy (last_examine_value.get ())) | 
 | 	clear_internalvar (lookup_internalvar ("__")); | 
 |       else | 
 | 	set_internalvar (lookup_internalvar ("__"), last_examine_value.get ()); | 
 |     } | 
 | } | 
 |  | 
 | /* Command completion for the 'display' and 'x' commands.  */ | 
 |  | 
 | static void | 
 | display_and_x_command_completer (struct cmd_list_element *ignore, | 
 | 				 completion_tracker &tracker, | 
 | 				 const char *text, const char * /*word*/) | 
 | { | 
 |   if (skip_over_slash_fmt (tracker, &text)) | 
 |     return; | 
 |  | 
 |   const char *word = advance_to_expression_complete_word_point (tracker, text); | 
 |   expression_completer (ignore, tracker, text, word); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /* Add an expression to the auto-display chain. | 
 |    Specify the expression.  */ | 
 |  | 
 | static void | 
 | display_command (const char *arg, int from_tty) | 
 | { | 
 |   struct format_data fmt; | 
 |   struct display *newobj; | 
 |   const char *exp = arg; | 
 |  | 
 |   if (exp == 0) | 
 |     { | 
 |       do_displays (); | 
 |       return; | 
 |     } | 
 |  | 
 |   if (*exp == '/') | 
 |     { | 
 |       exp++; | 
 |       fmt = decode_format (&exp, 0, 0); | 
 |       if (fmt.size && fmt.format == 0) | 
 | 	fmt.format = 'x'; | 
 |       if (fmt.format == 'i' || fmt.format == 's') | 
 | 	fmt.size = 'b'; | 
 |     } | 
 |   else | 
 |     { | 
 |       fmt.format = 0; | 
 |       fmt.size = 0; | 
 |       fmt.count = 0; | 
 |       fmt.raw = 0; | 
 |     } | 
 |  | 
 |   innermost_block_tracker tracker; | 
 |   expression_up expr = parse_expression (exp, &tracker); | 
 |  | 
 |   newobj = new display (exp, std::move (expr), fmt, | 
 | 			current_program_space, tracker.block ()); | 
 |   all_displays.emplace_back (newobj); | 
 |  | 
 |   if (from_tty) | 
 |     do_one_display (newobj); | 
 |  | 
 |   dont_repeat (); | 
 | } | 
 |  | 
 | /* Clear out the display_chain.  Done when new symtabs are loaded, | 
 |    since this invalidates the types stored in many expressions.  */ | 
 |  | 
 | void | 
 | clear_displays () | 
 | { | 
 |   all_displays.clear (); | 
 | } | 
 |  | 
 | /* Delete the auto-display DISPLAY.  */ | 
 |  | 
 | static void | 
 | delete_display (struct display *display) | 
 | { | 
 |   gdb_assert (display != NULL); | 
 |  | 
 |   auto iter = std::find_if (all_displays.begin (), | 
 | 			    all_displays.end (), | 
 | 			    [=] (const std::unique_ptr<struct display> &item) | 
 | 			    { | 
 | 			      return item.get () == display; | 
 | 			    }); | 
 |   gdb_assert (iter != all_displays.end ()); | 
 |   all_displays.erase (iter); | 
 | } | 
 |  | 
 | /* Call FUNCTION on each of the displays whose numbers are given in | 
 |    ARGS.  DATA is passed unmodified to FUNCTION.  */ | 
 |  | 
 | static void | 
 | map_display_numbers (const char *args, | 
 | 		     gdb::function_view<void (struct display *)> function) | 
 | { | 
 |   int num; | 
 |  | 
 |   if (args == NULL) | 
 |     error_no_arg (_("one or more display numbers")); | 
 |  | 
 |   number_or_range_parser parser (args); | 
 |  | 
 |   while (!parser.finished ()) | 
 |     { | 
 |       const char *p = parser.cur_tok (); | 
 |  | 
 |       num = parser.get_number (); | 
 |       if (num == 0) | 
 | 	warning (_("bad display number at or near '%s'"), p); | 
 |       else | 
 | 	{ | 
 | 	  auto iter = std::find_if (all_displays.begin (), | 
 | 				    all_displays.end (), | 
 | 				    [=] (const std::unique_ptr<display> &item) | 
 | 				    { | 
 | 				      return item->number == num; | 
 | 				    }); | 
 | 	  if (iter == all_displays.end ()) | 
 | 	    printf_filtered (_("No display number %d.\n"), num); | 
 | 	  else | 
 | 	    function (iter->get ()); | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | /* "undisplay" command.  */ | 
 |  | 
 | static void | 
 | undisplay_command (const char *args, int from_tty) | 
 | { | 
 |   if (args == NULL) | 
 |     { | 
 |       if (query (_("Delete all auto-display expressions? "))) | 
 | 	clear_displays (); | 
 |       dont_repeat (); | 
 |       return; | 
 |     } | 
 |  | 
 |   map_display_numbers (args, delete_display); | 
 |   dont_repeat (); | 
 | } | 
 |  | 
 | /* Display a single auto-display.   | 
 |    Do nothing if the display cannot be printed in the current context, | 
 |    or if the display is disabled.  */ | 
 |  | 
 | static void | 
 | do_one_display (struct display *d) | 
 | { | 
 |   int within_current_scope; | 
 |  | 
 |   if (!d->enabled_p) | 
 |     return; | 
 |  | 
 |   /* The expression carries the architecture that was used at parse time. | 
 |      This is a problem if the expression depends on architecture features | 
 |      (e.g. register numbers), and the current architecture is now different. | 
 |      For example, a display statement like "display/i $pc" is expected to | 
 |      display the PC register of the current architecture, not the arch at | 
 |      the time the display command was given.  Therefore, we re-parse the | 
 |      expression if the current architecture has changed.  */ | 
 |   if (d->exp != NULL && d->exp->gdbarch != get_current_arch ()) | 
 |     { | 
 |       d->exp.reset (); | 
 |       d->block = NULL; | 
 |     } | 
 |  | 
 |   if (d->exp == NULL) | 
 |     { | 
 |  | 
 |       try | 
 | 	{ | 
 | 	  innermost_block_tracker tracker; | 
 | 	  d->exp = parse_expression (d->exp_string.c_str (), &tracker); | 
 | 	  d->block = tracker.block (); | 
 | 	} | 
 |       catch (const gdb_exception &ex) | 
 | 	{ | 
 | 	  /* Can't re-parse the expression.  Disable this display item.  */ | 
 | 	  d->enabled_p = false; | 
 | 	  warning (_("Unable to display \"%s\": %s"), | 
 | 		   d->exp_string.c_str (), ex.what ()); | 
 | 	  return; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (d->block) | 
 |     { | 
 |       if (d->pspace == current_program_space) | 
 | 	within_current_scope = contained_in (get_selected_block (0), d->block, | 
 | 					     true); | 
 |       else | 
 | 	within_current_scope = 0; | 
 |     } | 
 |   else | 
 |     within_current_scope = 1; | 
 |   if (!within_current_scope) | 
 |     return; | 
 |  | 
 |   scoped_restore save_display_number | 
 |     = make_scoped_restore (¤t_display_number, d->number); | 
 |  | 
 |   annotate_display_begin (); | 
 |   printf_filtered ("%d", d->number); | 
 |   annotate_display_number_end (); | 
 |   printf_filtered (": "); | 
 |   if (d->format.size) | 
 |     { | 
 |  | 
 |       annotate_display_format (); | 
 |  | 
 |       printf_filtered ("x/"); | 
 |       if (d->format.count != 1) | 
 | 	printf_filtered ("%d", d->format.count); | 
 |       printf_filtered ("%c", d->format.format); | 
 |       if (d->format.format != 'i' && d->format.format != 's') | 
 | 	printf_filtered ("%c", d->format.size); | 
 |       printf_filtered (" "); | 
 |  | 
 |       annotate_display_expression (); | 
 |  | 
 |       puts_filtered (d->exp_string.c_str ()); | 
 |       annotate_display_expression_end (); | 
 |  | 
 |       if (d->format.count != 1 || d->format.format == 'i') | 
 | 	printf_filtered ("\n"); | 
 |       else | 
 | 	printf_filtered ("  "); | 
 |  | 
 |       annotate_display_value (); | 
 |  | 
 |       try | 
 | 	{ | 
 | 	  struct value *val; | 
 | 	  CORE_ADDR addr; | 
 |  | 
 | 	  val = evaluate_expression (d->exp.get ()); | 
 | 	  addr = value_as_address (val); | 
 | 	  if (d->format.format == 'i') | 
 | 	    addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr); | 
 | 	  do_examine (d->format, d->exp->gdbarch, addr); | 
 | 	} | 
 |       catch (const gdb_exception_error &ex) | 
 | 	{ | 
 | 	  fprintf_filtered (gdb_stdout, _("%p[<error: %s>%p]\n"), | 
 | 			    metadata_style.style ().ptr (), ex.what (), | 
 | 			    nullptr); | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       struct value_print_options opts; | 
 |  | 
 |       annotate_display_format (); | 
 |  | 
 |       if (d->format.format) | 
 | 	printf_filtered ("/%c ", d->format.format); | 
 |  | 
 |       annotate_display_expression (); | 
 |  | 
 |       puts_filtered (d->exp_string.c_str ()); | 
 |       annotate_display_expression_end (); | 
 |  | 
 |       printf_filtered (" = "); | 
 |  | 
 |       annotate_display_expression (); | 
 |  | 
 |       get_formatted_print_options (&opts, d->format.format); | 
 |       opts.raw = d->format.raw; | 
 |  | 
 |       try | 
 | 	{ | 
 | 	  struct value *val; | 
 |  | 
 | 	  val = evaluate_expression (d->exp.get ()); | 
 | 	  print_formatted (val, d->format.size, &opts, gdb_stdout); | 
 | 	} | 
 |       catch (const gdb_exception_error &ex) | 
 | 	{ | 
 | 	  fprintf_styled (gdb_stdout, metadata_style.style (), | 
 | 			  _("<error: %s>"), ex.what ()); | 
 | 	} | 
 |  | 
 |       printf_filtered ("\n"); | 
 |     } | 
 |  | 
 |   annotate_display_end (); | 
 |  | 
 |   gdb_flush (gdb_stdout); | 
 | } | 
 |  | 
 | /* Display all of the values on the auto-display chain which can be | 
 |    evaluated in the current scope.  */ | 
 |  | 
 | void | 
 | do_displays (void) | 
 | { | 
 |   for (auto &d : all_displays) | 
 |     do_one_display (d.get ()); | 
 | } | 
 |  | 
 | /* Delete the auto-display which we were in the process of displaying. | 
 |    This is done when there is an error or a signal.  */ | 
 |  | 
 | void | 
 | disable_display (int num) | 
 | { | 
 |   for (auto &d : all_displays) | 
 |     if (d->number == num) | 
 |       { | 
 | 	d->enabled_p = false; | 
 | 	return; | 
 |       } | 
 |   printf_filtered (_("No display number %d.\n"), num); | 
 | } | 
 |  | 
 | void | 
 | disable_current_display (void) | 
 | { | 
 |   if (current_display_number >= 0) | 
 |     { | 
 |       disable_display (current_display_number); | 
 |       fprintf_unfiltered (gdb_stderr, | 
 | 			  _("Disabling display %d to " | 
 | 			    "avoid infinite recursion.\n"), | 
 | 			  current_display_number); | 
 |     } | 
 |   current_display_number = -1; | 
 | } | 
 |  | 
 | static void | 
 | info_display_command (const char *ignore, int from_tty) | 
 | { | 
 |   if (all_displays.empty ()) | 
 |     printf_filtered (_("There are no auto-display expressions now.\n")); | 
 |   else | 
 |     printf_filtered (_("Auto-display expressions now in effect:\n\ | 
 | Num Enb Expression\n")); | 
 |  | 
 |   for (auto &d : all_displays) | 
 |     { | 
 |       printf_filtered ("%d:   %c  ", d->number, "ny"[(int) d->enabled_p]); | 
 |       if (d->format.size) | 
 | 	printf_filtered ("/%d%c%c ", d->format.count, d->format.size, | 
 | 			 d->format.format); | 
 |       else if (d->format.format) | 
 | 	printf_filtered ("/%c ", d->format.format); | 
 |       puts_filtered (d->exp_string.c_str ()); | 
 |       if (d->block && !contained_in (get_selected_block (0), d->block, true)) | 
 | 	printf_filtered (_(" (cannot be evaluated in the current context)")); | 
 |       printf_filtered ("\n"); | 
 |     } | 
 | } | 
 |  | 
 | /* Implementation of both the "disable display" and "enable display" | 
 |    commands.  ENABLE decides what to do.  */ | 
 |  | 
 | static void | 
 | enable_disable_display_command (const char *args, int from_tty, bool enable) | 
 | { | 
 |   if (args == NULL) | 
 |     { | 
 |       for (auto &d : all_displays) | 
 | 	d->enabled_p = enable; | 
 |       return; | 
 |     } | 
 |  | 
 |   map_display_numbers (args, | 
 | 		       [=] (struct display *d) | 
 | 		       { | 
 | 			 d->enabled_p = enable; | 
 | 		       }); | 
 | } | 
 |  | 
 | /* The "enable display" command.  */ | 
 |  | 
 | static void | 
 | enable_display_command (const char *args, int from_tty) | 
 | { | 
 |   enable_disable_display_command (args, from_tty, true); | 
 | } | 
 |  | 
 | /* The "disable display" command.  */ | 
 |  | 
 | static void | 
 | disable_display_command (const char *args, int from_tty) | 
 | { | 
 |   enable_disable_display_command (args, from_tty, false); | 
 | } | 
 |  | 
 | /* display_chain items point to blocks and expressions.  Some expressions in | 
 |    turn may point to symbols. | 
 |    Both symbols and blocks are obstack_alloc'd on objfile_stack, and are | 
 |    obstack_free'd when a shared library is unloaded. | 
 |    Clear pointers that are about to become dangling. | 
 |    Both .exp and .block fields will be restored next time we need to display | 
 |    an item by re-parsing .exp_string field in the new execution context.  */ | 
 |  | 
 | static void | 
 | clear_dangling_display_expressions (struct objfile *objfile) | 
 | { | 
 |   struct program_space *pspace; | 
 |  | 
 |   /* With no symbol file we cannot have a block or expression from it.  */ | 
 |   if (objfile == NULL) | 
 |     return; | 
 |   pspace = objfile->pspace; | 
 |   if (objfile->separate_debug_objfile_backlink) | 
 |     { | 
 |       objfile = objfile->separate_debug_objfile_backlink; | 
 |       gdb_assert (objfile->pspace == pspace); | 
 |     } | 
 |  | 
 |   for (auto &d : all_displays) | 
 |     { | 
 |       if (d->pspace != pspace) | 
 | 	continue; | 
 |  | 
 |       struct objfile *bl_objf = nullptr; | 
 |       if (d->block != nullptr) | 
 | 	{ | 
 | 	  bl_objf = block_objfile (d->block); | 
 | 	  if (bl_objf->separate_debug_objfile_backlink != nullptr) | 
 | 	    bl_objf = bl_objf->separate_debug_objfile_backlink; | 
 | 	} | 
 |  | 
 |       if (bl_objf == objfile | 
 | 	  || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile))) | 
 | 	{ | 
 | 	  d->exp.reset (); | 
 | 	  d->block = NULL; | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | /* Print the value in stack frame FRAME of a variable specified by a | 
 |    struct symbol.  NAME is the name to print; if NULL then VAR's print | 
 |    name will be used.  STREAM is the ui_file on which to print the | 
 |    value.  INDENT specifies the number of indent levels to print | 
 |    before printing the variable name. | 
 |  | 
 |    This function invalidates FRAME.  */ | 
 |  | 
 | void | 
 | print_variable_and_value (const char *name, struct symbol *var, | 
 | 			  struct frame_info *frame, | 
 | 			  struct ui_file *stream, int indent) | 
 | { | 
 |  | 
 |   if (!name) | 
 |     name = var->print_name (); | 
 |  | 
 |   fprintf_filtered (stream, "%*s%ps = ", 2 * indent, "", | 
 | 		    styled_string (variable_name_style.style (), name)); | 
 |  | 
 |   try | 
 |     { | 
 |       struct value *val; | 
 |       struct value_print_options opts; | 
 |  | 
 |       /* READ_VAR_VALUE needs a block in order to deal with non-local | 
 | 	 references (i.e. to handle nested functions).  In this context, we | 
 | 	 print variables that are local to this frame, so we can avoid passing | 
 | 	 a block to it.  */ | 
 |       val = read_var_value (var, NULL, frame); | 
 |       get_user_print_options (&opts); | 
 |       opts.deref_ref = 1; | 
 |       common_val_print_checked (val, stream, indent, &opts, current_language); | 
 |  | 
 |       /* common_val_print invalidates FRAME when a pretty printer calls inferior | 
 | 	 function.  */ | 
 |       frame = NULL; | 
 |     } | 
 |   catch (const gdb_exception_error &except) | 
 |     { | 
 |       fprintf_styled (stream, metadata_style.style (), | 
 | 		      "<error reading variable %s (%s)>", name, | 
 | 		      except.what ()); | 
 |     } | 
 |  | 
 |   fprintf_filtered (stream, "\n"); | 
 | } | 
 |  | 
 | /* Subroutine of ui_printf to simplify it. | 
 |    Print VALUE to STREAM using FORMAT. | 
 |    VALUE is a C-style string either on the target or | 
 |    in a GDB internal variable.  */ | 
 |  | 
 | static void | 
 | printf_c_string (struct ui_file *stream, const char *format, | 
 | 		 struct value *value) | 
 | { | 
 |   const gdb_byte *str; | 
 |  | 
 |   if (value_type (value)->code () != TYPE_CODE_PTR | 
 |       && VALUE_LVAL (value) == lval_internalvar | 
 |       && c_is_string_type_p (value_type (value))) | 
 |     { | 
 |       size_t len = TYPE_LENGTH (value_type (value)); | 
 |  | 
 |       /* Copy the internal var value to TEM_STR and append a terminating null | 
 | 	 character.  This protects against corrupted C-style strings that lack | 
 | 	 the terminating null char.  It also allows Ada-style strings (not | 
 | 	 null terminated) to be printed without problems.  */ | 
 |       gdb_byte *tem_str = (gdb_byte *) alloca (len + 1); | 
 |  | 
 |       memcpy (tem_str, value_contents (value).data (), len); | 
 |       tem_str [len] = 0; | 
 |       str = tem_str; | 
 |     } | 
 |   else | 
 |     { | 
 |       CORE_ADDR tem = value_as_address (value);; | 
 |  | 
 |       if (tem == 0) | 
 | 	{ | 
 | 	  DIAGNOSTIC_PUSH | 
 | 	  DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
 | 	  fprintf_filtered (stream, format, "(null)"); | 
 | 	  DIAGNOSTIC_POP | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       /* This is a %s argument.  Find the length of the string.  */ | 
 |       size_t len; | 
 |  | 
 |       for (len = 0;; len++) | 
 | 	{ | 
 | 	  gdb_byte c; | 
 |  | 
 | 	  QUIT; | 
 | 	  read_memory (tem + len, &c, 1); | 
 | 	  if (c == 0) | 
 | 	    break; | 
 | 	} | 
 |  | 
 |       /* Copy the string contents into a string inside GDB.  */ | 
 |       gdb_byte *tem_str = (gdb_byte *) alloca (len + 1); | 
 |  | 
 |       if (len != 0) | 
 | 	read_memory (tem, tem_str, len); | 
 |       tem_str[len] = 0; | 
 |       str = tem_str; | 
 |     } | 
 |  | 
 |   DIAGNOSTIC_PUSH | 
 |   DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
 |   fprintf_filtered (stream, format, (char *) str); | 
 |   DIAGNOSTIC_POP | 
 | } | 
 |  | 
 | /* Subroutine of ui_printf to simplify it. | 
 |    Print VALUE to STREAM using FORMAT. | 
 |    VALUE is a wide C-style string on the target or | 
 |    in a GDB internal variable.  */ | 
 |  | 
 | static void | 
 | printf_wide_c_string (struct ui_file *stream, const char *format, | 
 | 		      struct value *value) | 
 | { | 
 |   const gdb_byte *str; | 
 |   size_t len; | 
 |   struct gdbarch *gdbarch = value_type (value)->arch (); | 
 |   struct type *wctype = lookup_typename (current_language, | 
 | 					 "wchar_t", NULL, 0); | 
 |   int wcwidth = TYPE_LENGTH (wctype); | 
 |  | 
 |   if (VALUE_LVAL (value) == lval_internalvar | 
 |       && c_is_string_type_p (value_type (value))) | 
 |     { | 
 |       str = value_contents (value).data (); | 
 |       len = TYPE_LENGTH (value_type (value)); | 
 |     } | 
 |   else | 
 |     { | 
 |       CORE_ADDR tem = value_as_address (value); | 
 |  | 
 |       if (tem == 0) | 
 | 	{ | 
 | 	  DIAGNOSTIC_PUSH | 
 | 	  DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
 | 	  fprintf_filtered (stream, format, "(null)"); | 
 | 	  DIAGNOSTIC_POP | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       /* This is a %s argument.  Find the length of the string.  */ | 
 |       enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |       gdb_byte *buf = (gdb_byte *) alloca (wcwidth); | 
 |  | 
 |       for (len = 0;; len += wcwidth) | 
 | 	{ | 
 | 	  QUIT; | 
 | 	  read_memory (tem + len, buf, wcwidth); | 
 | 	  if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0) | 
 | 	    break; | 
 | 	} | 
 |  | 
 |       /* Copy the string contents into a string inside GDB.  */ | 
 |       gdb_byte *tem_str = (gdb_byte *) alloca (len + wcwidth); | 
 |  | 
 |       if (len != 0) | 
 | 	read_memory (tem, tem_str, len); | 
 |       memset (&tem_str[len], 0, wcwidth); | 
 |       str = tem_str; | 
 |     } | 
 |  | 
 |   auto_obstack output; | 
 |  | 
 |   convert_between_encodings (target_wide_charset (gdbarch), | 
 | 			     host_charset (), | 
 | 			     str, len, wcwidth, | 
 | 			     &output, translit_char); | 
 |   obstack_grow_str0 (&output, ""); | 
 |  | 
 |   DIAGNOSTIC_PUSH | 
 |   DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
 |   fprintf_filtered (stream, format, obstack_base (&output)); | 
 |   DIAGNOSTIC_POP | 
 | } | 
 |  | 
 | /* Subroutine of ui_printf to simplify it. | 
 |    Print VALUE, a floating point value, to STREAM using FORMAT.  */ | 
 |  | 
 | static void | 
 | printf_floating (struct ui_file *stream, const char *format, | 
 | 		 struct value *value, enum argclass argclass) | 
 | { | 
 |   /* Parameter data.  */ | 
 |   struct type *param_type = value_type (value); | 
 |   struct gdbarch *gdbarch = param_type->arch (); | 
 |  | 
 |   /* Determine target type corresponding to the format string.  */ | 
 |   struct type *fmt_type; | 
 |   switch (argclass) | 
 |     { | 
 |       case double_arg: | 
 | 	fmt_type = builtin_type (gdbarch)->builtin_double; | 
 | 	break; | 
 |       case long_double_arg: | 
 | 	fmt_type = builtin_type (gdbarch)->builtin_long_double; | 
 | 	break; | 
 |       case dec32float_arg: | 
 | 	fmt_type = builtin_type (gdbarch)->builtin_decfloat; | 
 | 	break; | 
 |       case dec64float_arg: | 
 | 	fmt_type = builtin_type (gdbarch)->builtin_decdouble; | 
 | 	break; | 
 |       case dec128float_arg: | 
 | 	fmt_type = builtin_type (gdbarch)->builtin_declong; | 
 | 	break; | 
 |       default: | 
 | 	gdb_assert_not_reached ("unexpected argument class"); | 
 |     } | 
 |  | 
 |   /* To match the traditional GDB behavior, the conversion is | 
 |      done differently depending on the type of the parameter: | 
 |  | 
 |      - if the parameter has floating-point type, it's value | 
 |        is converted to the target type; | 
 |  | 
 |      - otherwise, if the parameter has a type that is of the | 
 |        same size as a built-in floating-point type, the value | 
 |        bytes are interpreted as if they were of that type, and | 
 |        then converted to the target type (this is not done for | 
 |        decimal floating-point argument classes); | 
 |  | 
 |      - otherwise, if the source value has an integer value, | 
 |        it's value is converted to the target type; | 
 |  | 
 |      - otherwise, an error is raised. | 
 |  | 
 |      In either case, the result of the conversion is a byte buffer | 
 |      formatted in the target format for the target type.  */ | 
 |  | 
 |   if (fmt_type->code () == TYPE_CODE_FLT) | 
 |     { | 
 |       param_type = float_type_from_length (param_type); | 
 |       if (param_type != value_type (value)) | 
 | 	value = value_from_contents (param_type, | 
 | 				     value_contents (value).data ()); | 
 |     } | 
 |  | 
 |   value = value_cast (fmt_type, value); | 
 |  | 
 |   /* Convert the value to a string and print it.  */ | 
 |   std::string str | 
 |     = target_float_to_string (value_contents (value).data (), fmt_type, format); | 
 |   fputs_filtered (str.c_str (), stream); | 
 | } | 
 |  | 
 | /* Subroutine of ui_printf to simplify it. | 
 |    Print VALUE, a target pointer, to STREAM using FORMAT.  */ | 
 |  | 
 | static void | 
 | printf_pointer (struct ui_file *stream, const char *format, | 
 | 		struct value *value) | 
 | { | 
 |   /* We avoid the host's %p because pointers are too | 
 |      likely to be the wrong size.  The only interesting | 
 |      modifier for %p is a width; extract that, and then | 
 |      handle %p as glibc would: %#x or a literal "(nil)".  */ | 
 |  | 
 |   const char *p; | 
 |   char *fmt, *fmt_p; | 
 | #ifdef PRINTF_HAS_LONG_LONG | 
 |   long long val = value_as_long (value); | 
 | #else | 
 |   long val = value_as_long (value); | 
 | #endif | 
 |  | 
 |   fmt = (char *) alloca (strlen (format) + 5); | 
 |  | 
 |   /* Copy up to the leading %.  */ | 
 |   p = format; | 
 |   fmt_p = fmt; | 
 |   while (*p) | 
 |     { | 
 |       int is_percent = (*p == '%'); | 
 |  | 
 |       *fmt_p++ = *p++; | 
 |       if (is_percent) | 
 | 	{ | 
 | 	  if (*p == '%') | 
 | 	    *fmt_p++ = *p++; | 
 | 	  else | 
 | 	    break; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (val != 0) | 
 |     *fmt_p++ = '#'; | 
 |  | 
 |   /* Copy any width or flags.  Only the "-" flag is valid for pointers | 
 |      -- see the format_pieces constructor.  */ | 
 |   while (*p == '-' || (*p >= '0' && *p < '9')) | 
 |     *fmt_p++ = *p++; | 
 |  | 
 |   gdb_assert (*p == 'p' && *(p + 1) == '\0'); | 
 |   if (val != 0) | 
 |     { | 
 | #ifdef PRINTF_HAS_LONG_LONG | 
 |       *fmt_p++ = 'l'; | 
 | #endif | 
 |       *fmt_p++ = 'l'; | 
 |       *fmt_p++ = 'x'; | 
 |       *fmt_p++ = '\0'; | 
 |       DIAGNOSTIC_PUSH | 
 |       DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
 |       fprintf_filtered (stream, fmt, val); | 
 |       DIAGNOSTIC_POP | 
 |     } | 
 |   else | 
 |     { | 
 |       *fmt_p++ = 's'; | 
 |       *fmt_p++ = '\0'; | 
 |       DIAGNOSTIC_PUSH | 
 |       DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
 |       fprintf_filtered (stream, fmt, "(nil)"); | 
 |       DIAGNOSTIC_POP | 
 |     } | 
 | } | 
 |  | 
 | /* printf "printf format string" ARG to STREAM.  */ | 
 |  | 
 | static void | 
 | ui_printf (const char *arg, struct ui_file *stream) | 
 | { | 
 |   const char *s = arg; | 
 |   std::vector<struct value *> val_args; | 
 |  | 
 |   if (s == 0) | 
 |     error_no_arg (_("format-control string and values to print")); | 
 |  | 
 |   s = skip_spaces (s); | 
 |  | 
 |   /* A format string should follow, enveloped in double quotes.  */ | 
 |   if (*s++ != '"') | 
 |     error (_("Bad format string, missing '\"'.")); | 
 |  | 
 |   format_pieces fpieces (&s); | 
 |  | 
 |   if (*s++ != '"') | 
 |     error (_("Bad format string, non-terminated '\"'.")); | 
 |    | 
 |   s = skip_spaces (s); | 
 |  | 
 |   if (*s != ',' && *s != 0) | 
 |     error (_("Invalid argument syntax")); | 
 |  | 
 |   if (*s == ',') | 
 |     s++; | 
 |   s = skip_spaces (s); | 
 |  | 
 |   { | 
 |     int nargs_wanted; | 
 |     int i; | 
 |     const char *current_substring; | 
 |  | 
 |     nargs_wanted = 0; | 
 |     for (auto &&piece : fpieces) | 
 |       if (piece.argclass != literal_piece) | 
 | 	++nargs_wanted; | 
 |  | 
 |     /* Now, parse all arguments and evaluate them. | 
 |        Store the VALUEs in VAL_ARGS.  */ | 
 |  | 
 |     while (*s != '\0') | 
 |       { | 
 | 	const char *s1; | 
 |  | 
 | 	s1 = s; | 
 | 	val_args.push_back (parse_to_comma_and_eval (&s1)); | 
 |  | 
 | 	s = s1; | 
 | 	if (*s == ',') | 
 | 	  s++; | 
 |       } | 
 |  | 
 |     if (val_args.size () != nargs_wanted) | 
 |       error (_("Wrong number of arguments for specified format-string")); | 
 |  | 
 |     /* Now actually print them.  */ | 
 |     i = 0; | 
 |     for (auto &&piece : fpieces) | 
 |       { | 
 | 	current_substring = piece.string; | 
 | 	switch (piece.argclass) | 
 | 	  { | 
 | 	  case string_arg: | 
 | 	    printf_c_string (stream, current_substring, val_args[i]); | 
 | 	    break; | 
 | 	  case wide_string_arg: | 
 | 	    printf_wide_c_string (stream, current_substring, val_args[i]); | 
 | 	    break; | 
 | 	  case wide_char_arg: | 
 | 	    { | 
 | 	      struct gdbarch *gdbarch = value_type (val_args[i])->arch (); | 
 | 	      struct type *wctype = lookup_typename (current_language, | 
 | 						     "wchar_t", NULL, 0); | 
 | 	      struct type *valtype; | 
 | 	      const gdb_byte *bytes; | 
 |  | 
 | 	      valtype = value_type (val_args[i]); | 
 | 	      if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype) | 
 | 		  || valtype->code () != TYPE_CODE_INT) | 
 | 		error (_("expected wchar_t argument for %%lc")); | 
 |  | 
 | 	      bytes = value_contents (val_args[i]).data (); | 
 |  | 
 | 	      auto_obstack output; | 
 |  | 
 | 	      convert_between_encodings (target_wide_charset (gdbarch), | 
 | 					 host_charset (), | 
 | 					 bytes, TYPE_LENGTH (valtype), | 
 | 					 TYPE_LENGTH (valtype), | 
 | 					 &output, translit_char); | 
 | 	      obstack_grow_str0 (&output, ""); | 
 |  | 
 | 	      DIAGNOSTIC_PUSH | 
 | 	      DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
 | 	      fprintf_filtered (stream, current_substring, | 
 | 				obstack_base (&output)); | 
 | 	      DIAGNOSTIC_POP | 
 | 	    } | 
 | 	    break; | 
 | 	  case long_long_arg: | 
 | #ifdef PRINTF_HAS_LONG_LONG | 
 | 	    { | 
 | 	      long long val = value_as_long (val_args[i]); | 
 |  | 
 | 	      DIAGNOSTIC_PUSH | 
 | 	      DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
 | 	      fprintf_filtered (stream, current_substring, val); | 
 | 	      DIAGNOSTIC_POP | 
 | 	      break; | 
 | 	    } | 
 | #else | 
 | 	    error (_("long long not supported in printf")); | 
 | #endif | 
 | 	  case int_arg: | 
 | 	    { | 
 | 	      int val = value_as_long (val_args[i]); | 
 |  | 
 | 	      DIAGNOSTIC_PUSH | 
 | 	      DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
 | 	      fprintf_filtered (stream, current_substring, val); | 
 | 	      DIAGNOSTIC_POP | 
 | 	      break; | 
 | 	    } | 
 | 	  case long_arg: | 
 | 	    { | 
 | 	      long val = value_as_long (val_args[i]); | 
 |  | 
 | 	      DIAGNOSTIC_PUSH | 
 | 	      DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
 | 	      fprintf_filtered (stream, current_substring, val); | 
 | 	      DIAGNOSTIC_POP | 
 | 	      break; | 
 | 	    } | 
 | 	  case size_t_arg: | 
 | 	    { | 
 | 	      size_t val = value_as_long (val_args[i]); | 
 |  | 
 | 	      DIAGNOSTIC_PUSH | 
 | 	      DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
 | 	      fprintf_filtered (stream, current_substring, val); | 
 | 	      DIAGNOSTIC_POP | 
 | 	      break; | 
 | 	    } | 
 | 	  /* Handles floating-point values.  */ | 
 | 	  case double_arg: | 
 | 	  case long_double_arg: | 
 | 	  case dec32float_arg: | 
 | 	  case dec64float_arg: | 
 | 	  case dec128float_arg: | 
 | 	    printf_floating (stream, current_substring, val_args[i], | 
 | 			     piece.argclass); | 
 | 	    break; | 
 | 	  case ptr_arg: | 
 | 	    printf_pointer (stream, current_substring, val_args[i]); | 
 | 	    break; | 
 | 	  case literal_piece: | 
 | 	    /* Print a portion of the format string that has no | 
 | 	       directives.  Note that this will not include any | 
 | 	       ordinary %-specs, but it might include "%%".  That is | 
 | 	       why we use printf_filtered and not puts_filtered here. | 
 | 	       Also, we pass a dummy argument because some platforms | 
 | 	       have modified GCC to include -Wformat-security by | 
 | 	       default, which will warn here if there is no | 
 | 	       argument.  */ | 
 | 	    DIAGNOSTIC_PUSH | 
 | 	    DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL | 
 | 	    fprintf_filtered (stream, current_substring, 0); | 
 | 	    DIAGNOSTIC_POP | 
 | 	    break; | 
 | 	  default: | 
 | 	    internal_error (__FILE__, __LINE__, | 
 | 			    _("failed internal consistency check")); | 
 | 	  } | 
 | 	/* Maybe advance to the next argument.  */ | 
 | 	if (piece.argclass != literal_piece) | 
 | 	  ++i; | 
 |       } | 
 |   } | 
 | } | 
 |  | 
 | /* Implement the "printf" command.  */ | 
 |  | 
 | static void | 
 | printf_command (const char *arg, int from_tty) | 
 | { | 
 |   ui_printf (arg, gdb_stdout); | 
 |   reset_terminal_style (gdb_stdout); | 
 |   wrap_here (""); | 
 |   gdb_stdout->flush (); | 
 | } | 
 |  | 
 | /* Implement the "eval" command.  */ | 
 |  | 
 | static void | 
 | eval_command (const char *arg, int from_tty) | 
 | { | 
 |   string_file stb; | 
 |  | 
 |   ui_printf (arg, &stb); | 
 |  | 
 |   std::string expanded = insert_user_defined_cmd_args (stb.c_str ()); | 
 |  | 
 |   execute_command (expanded.c_str (), from_tty); | 
 | } | 
 |  | 
 | /* Convenience function for error checking in memory-tag commands.  */ | 
 |  | 
 | static void | 
 | show_addr_not_tagged (CORE_ADDR address) | 
 | { | 
 |   error (_("Address %s not in a region mapped with a memory tagging flag."), | 
 | 	 paddress (target_gdbarch (), address)); | 
 | } | 
 |  | 
 | /* Convenience function for error checking in memory-tag commands.  */ | 
 |  | 
 | static void | 
 | show_memory_tagging_unsupported (void) | 
 | { | 
 |   error (_("Memory tagging not supported or disabled by the current" | 
 | 	   " architecture.")); | 
 | } | 
 |  | 
 | /* Implement the "memory-tag" prefix command.  */ | 
 |  | 
 | static void | 
 | memory_tag_command (const char *arg, int from_tty) | 
 | { | 
 |   help_list (memory_tag_list, "memory-tag ", all_commands, gdb_stdout); | 
 | } | 
 |  | 
 | /* Helper for print-logical-tag and print-allocation-tag.  */ | 
 |  | 
 | static void | 
 | memory_tag_print_tag_command (const char *args, enum memtag_type tag_type) | 
 | { | 
 |   if (args == nullptr) | 
 |     error_no_arg (_("address or pointer")); | 
 |  | 
 |   /* Parse args into a value.  If the value is a pointer or an address, | 
 |      then fetch the logical or allocation tag.  */ | 
 |   value_print_options print_opts; | 
 |  | 
 |   struct value *val = process_print_command_args (args, &print_opts, true); | 
 |  | 
 |   /* If the address is not in a region memory mapped with a memory tagging | 
 |      flag, it is no use trying to access/manipulate its allocation tag. | 
 |  | 
 |      It is OK to manipulate the logical tag though.  */ | 
 |   if (tag_type == memtag_type::allocation | 
 |       && !gdbarch_tagged_address_p (target_gdbarch (), val)) | 
 |     show_addr_not_tagged (value_as_address (val)); | 
 |  | 
 |   struct value *tag_value | 
 |     = gdbarch_get_memtag (target_gdbarch (), val, tag_type); | 
 |   std::string tag = gdbarch_memtag_to_string (target_gdbarch (), tag_value); | 
 |  | 
 |   if (tag.empty ()) | 
 |     printf_filtered (_("%s tag unavailable.\n"), | 
 | 		     tag_type | 
 | 		       == memtag_type::logical? "Logical" : "Allocation"); | 
 |  | 
 |   struct value *v_tag = process_print_command_args (tag.c_str (), | 
 | 						    &print_opts, | 
 | 						    true); | 
 |   print_opts.output_format = 'x'; | 
 |   print_value (v_tag, print_opts); | 
 | } | 
 |  | 
 | /* Implement the "memory-tag print-logical-tag" command.  */ | 
 |  | 
 | static void | 
 | memory_tag_print_logical_tag_command (const char *args, int from_tty) | 
 | { | 
 |   if (!target_supports_memory_tagging ()) | 
 |     show_memory_tagging_unsupported (); | 
 |  | 
 |   memory_tag_print_tag_command (args, memtag_type::logical); | 
 | } | 
 |  | 
 | /* Implement the "memory-tag print-allocation-tag" command.  */ | 
 |  | 
 | static void | 
 | memory_tag_print_allocation_tag_command (const char *args, int from_tty) | 
 | { | 
 |   if (!target_supports_memory_tagging ()) | 
 |     show_memory_tagging_unsupported (); | 
 |  | 
 |   memory_tag_print_tag_command (args, memtag_type::allocation); | 
 | } | 
 |  | 
 | /* Parse ARGS and extract ADDR and TAG. | 
 |    ARGS should have format <expression> <tag bytes>.  */ | 
 |  | 
 | static void | 
 | parse_with_logical_tag_input (const char *args, struct value **val, | 
 | 			      gdb::byte_vector &tags, | 
 | 			      value_print_options *print_opts) | 
 | { | 
 |   /* Fetch the address.  */ | 
 |   std::string address_string = extract_string_maybe_quoted (&args); | 
 |  | 
 |   /* Parse the address into a value.  */ | 
 |   *val = process_print_command_args (address_string.c_str (), print_opts, | 
 | 				     true); | 
 |  | 
 |   /* Fetch the tag bytes.  */ | 
 |   std::string tag_string = extract_string_maybe_quoted (&args); | 
 |  | 
 |   /* Validate the input.  */ | 
 |   if (address_string.empty () || tag_string.empty ()) | 
 |     error (_("Missing arguments.")); | 
 |  | 
 |   if (tag_string.length () != 2) | 
 |     error (_("Error parsing tags argument. The tag should be 2 digits.")); | 
 |  | 
 |   tags = hex2bin (tag_string.c_str ()); | 
 | } | 
 |  | 
 | /* Implement the "memory-tag with-logical-tag" command.  */ | 
 |  | 
 | static void | 
 | memory_tag_with_logical_tag_command (const char *args, int from_tty) | 
 | { | 
 |   if (!target_supports_memory_tagging ()) | 
 |     show_memory_tagging_unsupported (); | 
 |  | 
 |   if (args == nullptr) | 
 |     error_no_arg (_("<address> <tag>")); | 
 |  | 
 |   gdb::byte_vector tags; | 
 |   struct value *val; | 
 |   value_print_options print_opts; | 
 |  | 
 |   /* Parse the input.  */ | 
 |   parse_with_logical_tag_input (args, &val, tags, &print_opts); | 
 |  | 
 |   /* Setting the logical tag is just a local operation that does not touch | 
 |      any memory from the target.  Given an input value, we modify the value | 
 |      to include the appropriate tag. | 
 |  | 
 |      For this reason we need to cast the argument value to a | 
 |      (void *) pointer.  This is so we have the right type for the gdbarch | 
 |      hook to manipulate the value and insert the tag. | 
 |  | 
 |      Otherwise, this would fail if, for example, GDB parsed the argument value | 
 |      into an int-sized value and the pointer value has a type of greater | 
 |      length.  */ | 
 |  | 
 |   /* Cast to (void *).  */ | 
 |   val = value_cast (builtin_type (target_gdbarch ())->builtin_data_ptr, | 
 | 		    val); | 
 |  | 
 |   /* Length doesn't matter for a logical tag.  Pass 0.  */ | 
 |   if (!gdbarch_set_memtags (target_gdbarch (), val, 0, tags, | 
 | 			    memtag_type::logical)) | 
 |     printf_filtered (_("Could not update the logical tag data.\n")); | 
 |   else | 
 |     { | 
 |       /* Always print it in hex format.  */ | 
 |       print_opts.output_format = 'x'; | 
 |       print_value (val, print_opts); | 
 |     } | 
 | } | 
 |  | 
 | /* Parse ARGS and extract ADDR, LENGTH and TAGS.  */ | 
 |  | 
 | static void | 
 | parse_set_allocation_tag_input (const char *args, struct value **val, | 
 | 				size_t *length, gdb::byte_vector &tags) | 
 | { | 
 |   /* Fetch the address.  */ | 
 |   std::string address_string = extract_string_maybe_quoted (&args); | 
 |  | 
 |   /* Parse the address into a value.  */ | 
 |   value_print_options print_opts; | 
 |   *val = process_print_command_args (address_string.c_str (), &print_opts, | 
 | 				     true); | 
 |  | 
 |   /* Fetch the length.  */ | 
 |   std::string length_string = extract_string_maybe_quoted (&args); | 
 |  | 
 |   /* Fetch the tag bytes.  */ | 
 |   std::string tags_string = extract_string_maybe_quoted (&args); | 
 |  | 
 |   /* Validate the input.  */ | 
 |   if (address_string.empty () || length_string.empty () || tags_string.empty ()) | 
 |     error (_("Missing arguments.")); | 
 |  | 
 |   errno = 0; | 
 |   const char *trailer = nullptr; | 
 |   LONGEST parsed_length = strtoulst (length_string.c_str (), &trailer, 10); | 
 |  | 
 |   if (errno != 0 || (trailer != nullptr && trailer[0] != '\0')) | 
 |     error (_("Error parsing length argument.")); | 
 |  | 
 |   if (parsed_length <= 0) | 
 |     error (_("Invalid zero or negative length.")); | 
 |  | 
 |   *length = parsed_length; | 
 |  | 
 |   if (tags_string.length () % 2) | 
 |     error (_("Error parsing tags argument. Tags should be 2 digits per byte.")); | 
 |  | 
 |   tags = hex2bin (tags_string.c_str ()); | 
 |  | 
 |   /* If the address is not in a region memory mapped with a memory tagging | 
 |      flag, it is no use trying to access/manipulate its allocation tag.  */ | 
 |   if (!gdbarch_tagged_address_p (target_gdbarch (), *val)) | 
 |     show_addr_not_tagged (value_as_address (*val)); | 
 | } | 
 |  | 
 | /* Implement the "memory-tag set-allocation-tag" command. | 
 |    ARGS should be in the format <address> <length> <tags>.  */ | 
 |  | 
 | static void | 
 | memory_tag_set_allocation_tag_command (const char *args, int from_tty) | 
 | { | 
 |   if (!target_supports_memory_tagging ()) | 
 |     show_memory_tagging_unsupported (); | 
 |  | 
 |   if (args == nullptr) | 
 |     error_no_arg (_("<starting address> <length> <tag bytes>")); | 
 |  | 
 |   gdb::byte_vector tags; | 
 |   size_t length = 0; | 
 |   struct value *val; | 
 |  | 
 |   /* Parse the input.  */ | 
 |   parse_set_allocation_tag_input (args, &val, &length, tags); | 
 |  | 
 |   if (!gdbarch_set_memtags (target_gdbarch (), val, length, tags, | 
 | 			    memtag_type::allocation)) | 
 |     printf_filtered (_("Could not update the allocation tag(s).\n")); | 
 |   else | 
 |     printf_filtered (_("Allocation tag(s) updated successfully.\n")); | 
 | } | 
 |  | 
 | /* Implement the "memory-tag check" command.  */ | 
 |  | 
 | static void | 
 | memory_tag_check_command (const char *args, int from_tty) | 
 | { | 
 |   if (!target_supports_memory_tagging ()) | 
 |     show_memory_tagging_unsupported (); | 
 |  | 
 |   if (args == nullptr) | 
 |     error (_("Argument required (address or pointer)")); | 
 |  | 
 |   /* Parse the expression into a value.  If the value is an address or | 
 |      pointer, then check its logical tag against the allocation tag.  */ | 
 |   value_print_options print_opts; | 
 |  | 
 |   struct value *val = process_print_command_args (args, &print_opts, true); | 
 |  | 
 |   /* If the address is not in a region memory mapped with a memory tagging | 
 |      flag, it is no use trying to access/manipulate its allocation tag.  */ | 
 |   if (!gdbarch_tagged_address_p (target_gdbarch (), val)) | 
 |     show_addr_not_tagged (value_as_address (val)); | 
 |  | 
 |   CORE_ADDR addr = value_as_address (val); | 
 |  | 
 |   /* Check if the tag is valid.  */ | 
 |   if (!gdbarch_memtag_matches_p (target_gdbarch (), val)) | 
 |     { | 
 |       struct value *tag | 
 | 	= gdbarch_get_memtag (target_gdbarch (), val, memtag_type::logical); | 
 |       std::string ltag | 
 | 	= gdbarch_memtag_to_string (target_gdbarch (), tag); | 
 |  | 
 |       tag = gdbarch_get_memtag (target_gdbarch (), val, | 
 | 				memtag_type::allocation); | 
 |       std::string atag | 
 | 	= gdbarch_memtag_to_string (target_gdbarch (), tag); | 
 |  | 
 |       printf_filtered (_("Logical tag (%s) does not match" | 
 | 			 " the allocation tag (%s) for address %s.\n"), | 
 | 		       ltag.c_str (), atag.c_str (), | 
 | 		       paddress (target_gdbarch (), addr)); | 
 |     } | 
 |   else | 
 |     { | 
 |       struct value *tag | 
 | 	= gdbarch_get_memtag (target_gdbarch (), val, memtag_type::logical); | 
 |       std::string ltag | 
 | 	= gdbarch_memtag_to_string (target_gdbarch (), tag); | 
 |  | 
 |       printf_filtered (_("Memory tags for address %s match (%s).\n"), | 
 | 		       paddress (target_gdbarch (), addr), ltag.c_str ()); | 
 |     } | 
 | } | 
 |  | 
 | void _initialize_printcmd (); | 
 | void | 
 | _initialize_printcmd () | 
 | { | 
 |   struct cmd_list_element *c; | 
 |  | 
 |   current_display_number = -1; | 
 |  | 
 |   gdb::observers::free_objfile.attach (clear_dangling_display_expressions, | 
 | 				       "printcmd"); | 
 |  | 
 |   add_info ("address", info_address_command, | 
 | 	    _("Describe where symbol SYM is stored.\n\ | 
 | Usage: info address SYM")); | 
 |  | 
 |   add_info ("symbol", info_symbol_command, _("\ | 
 | Describe what symbol is at location ADDR.\n\ | 
 | Usage: info symbol ADDR\n\ | 
 | Only for symbols with fixed locations (global or static scope).")); | 
 |  | 
 |   c = add_com ("x", class_vars, x_command, _("\ | 
 | Examine memory: x/FMT ADDRESS.\n\ | 
 | ADDRESS is an expression for the memory address to examine.\n\ | 
 | FMT is a repeat count followed by a format letter and a size letter.\n\ | 
 | Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\ | 
 |   t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\ | 
 |   and z(hex, zero padded on the left).\n\ | 
 | Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\ | 
 | The specified number of objects of the specified size are printed\n\ | 
 | according to the format.  If a negative number is specified, memory is\n\ | 
 | examined backward from the address.\n\n\ | 
 | Defaults for format and size letters are those previously used.\n\ | 
 | Default count is 1.  Default address is following last thing printed\n\ | 
 | with this command or \"print\".")); | 
 |   set_cmd_completer_handle_brkchars (c, display_and_x_command_completer); | 
 |  | 
 |   add_info ("display", info_display_command, _("\ | 
 | Expressions to display when program stops, with code numbers.\n\ | 
 | Usage: info display")); | 
 |  | 
 |   add_cmd ("undisplay", class_vars, undisplay_command, _("\ | 
 | Cancel some expressions to be displayed when program stops.\n\ | 
 | Usage: undisplay [NUM]...\n\ | 
 | Arguments are the code numbers of the expressions to stop displaying.\n\ | 
 | No argument means cancel all automatic-display expressions.\n\ | 
 | \"delete display\" has the same effect as this command.\n\ | 
 | Do \"info display\" to see current list of code numbers."), | 
 | 	   &cmdlist); | 
 |  | 
 |   c = add_com ("display", class_vars, display_command, _("\ | 
 | Print value of expression EXP each time the program stops.\n\ | 
 | Usage: display[/FMT] EXP\n\ | 
 | /FMT may be used before EXP as in the \"print\" command.\n\ | 
 | /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\ | 
 | as in the \"x\" command, and then EXP is used to get the address to examine\n\ | 
 | and examining is done as in the \"x\" command.\n\n\ | 
 | With no argument, display all currently requested auto-display expressions.\n\ | 
 | Use \"undisplay\" to cancel display requests previously made.")); | 
 |   set_cmd_completer_handle_brkchars (c, display_and_x_command_completer); | 
 |  | 
 |   add_cmd ("display", class_vars, enable_display_command, _("\ | 
 | Enable some expressions to be displayed when program stops.\n\ | 
 | Usage: enable display [NUM]...\n\ | 
 | Arguments are the code numbers of the expressions to resume displaying.\n\ | 
 | No argument means enable all automatic-display expressions.\n\ | 
 | Do \"info display\" to see current list of code numbers."), &enablelist); | 
 |  | 
 |   add_cmd ("display", class_vars, disable_display_command, _("\ | 
 | Disable some expressions to be displayed when program stops.\n\ | 
 | Usage: disable display [NUM]...\n\ | 
 | Arguments are the code numbers of the expressions to stop displaying.\n\ | 
 | No argument means disable all automatic-display expressions.\n\ | 
 | Do \"info display\" to see current list of code numbers."), &disablelist); | 
 |  | 
 |   add_cmd ("display", class_vars, undisplay_command, _("\ | 
 | Cancel some expressions to be displayed when program stops.\n\ | 
 | Usage: delete display [NUM]...\n\ | 
 | Arguments are the code numbers of the expressions to stop displaying.\n\ | 
 | No argument means cancel all automatic-display expressions.\n\ | 
 | Do \"info display\" to see current list of code numbers."), &deletelist); | 
 |  | 
 |   add_com ("printf", class_vars, printf_command, _("\ | 
 | Formatted printing, like the C \"printf\" function.\n\ | 
 | Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\ | 
 | This supports most C printf format specifications, like %s, %d, etc.")); | 
 |  | 
 |   add_com ("output", class_vars, output_command, _("\ | 
 | Like \"print\" but don't put in value history and don't print newline.\n\ | 
 | Usage: output EXP\n\ | 
 | This is useful in user-defined commands.")); | 
 |  | 
 |   add_prefix_cmd ("set", class_vars, set_command, _("\ | 
 | Evaluate expression EXP and assign result to variable VAR.\n\ | 
 | Usage: set VAR = EXP\n\ | 
 | This uses assignment syntax appropriate for the current language\n\ | 
 | (VAR = EXP or VAR := EXP for example).\n\ | 
 | VAR may be a debugger \"convenience\" variable (names starting\n\ | 
 | with $), a register (a few standard names starting with $), or an actual\n\ | 
 | variable in the program being debugged.  EXP is any valid expression.\n\ | 
 | Use \"set variable\" for variables with names identical to set subcommands.\n\ | 
 | \n\ | 
 | With a subcommand, this command modifies parts of the gdb environment.\n\ | 
 | You can see these environment settings with the \"show\" command."), | 
 | 		  &setlist, 1, &cmdlist); | 
 |   if (dbx_commands) | 
 |     add_com ("assign", class_vars, set_command, _("\ | 
 | Evaluate expression EXP and assign result to variable VAR.\n\ | 
 | Usage: assign VAR = EXP\n\ | 
 | This uses assignment syntax appropriate for the current language\n\ | 
 | (VAR = EXP or VAR := EXP for example).\n\ | 
 | VAR may be a debugger \"convenience\" variable (names starting\n\ | 
 | with $), a register (a few standard names starting with $), or an actual\n\ | 
 | variable in the program being debugged.  EXP is any valid expression.\n\ | 
 | Use \"set variable\" for variables with names identical to set subcommands.\n\ | 
 | \nWith a subcommand, this command modifies parts of the gdb environment.\n\ | 
 | You can see these environment settings with the \"show\" command.")); | 
 |  | 
 |   /* "call" is the same as "set", but handy for dbx users to call fns.  */ | 
 |   c = add_com ("call", class_vars, call_command, _("\ | 
 | Call a function in the program.\n\ | 
 | Usage: call EXP\n\ | 
 | The argument is the function name and arguments, in the notation of the\n\ | 
 | current working language.  The result is printed and saved in the value\n\ | 
 | history, if it is not void.")); | 
 |   set_cmd_completer_handle_brkchars (c, print_command_completer); | 
 |  | 
 |   cmd_list_element *set_variable_cmd | 
 |     = add_cmd ("variable", class_vars, set_command, _("\ | 
 | Evaluate expression EXP and assign result to variable VAR.\n\ | 
 | Usage: set variable VAR = EXP\n\ | 
 | This uses assignment syntax appropriate for the current language\n\ | 
 | (VAR = EXP or VAR := EXP for example).\n\ | 
 | VAR may be a debugger \"convenience\" variable (names starting\n\ | 
 | with $), a register (a few standard names starting with $), or an actual\n\ | 
 | variable in the program being debugged.  EXP is any valid expression.\n\ | 
 | This may usually be abbreviated to simply \"set\"."), | 
 | 	       &setlist); | 
 |   add_alias_cmd ("var", set_variable_cmd, class_vars, 0, &setlist); | 
 |  | 
 |   const auto print_opts = make_value_print_options_def_group (nullptr); | 
 |  | 
 |   static const std::string print_help = gdb::option::build_help (_("\ | 
 | Print value of expression EXP.\n\ | 
 | Usage: print [[OPTION]... --] [/FMT] [EXP]\n\ | 
 | \n\ | 
 | Options:\n\ | 
 | %OPTIONS%\n\ | 
 | \n\ | 
 | Note: because this command accepts arbitrary expressions, if you\n\ | 
 | specify any command option, you must use a double dash (\"--\")\n\ | 
 | to mark the end of option processing.  E.g.: \"print -o -- myobj\".\n\ | 
 | \n\ | 
 | Variables accessible are those of the lexical environment of the selected\n\ | 
 | stack frame, plus all those whose scope is global or an entire file.\n\ | 
 | \n\ | 
 | $NUM gets previous value number NUM.  $ and $$ are the last two values.\n\ | 
 | $$NUM refers to NUM'th value back from the last one.\n\ | 
 | Names starting with $ refer to registers (with the values they would have\n\ | 
 | if the program were to return to the stack frame now selected, restoring\n\ | 
 | all registers saved by frames farther in) or else to debugger\n\ | 
 | \"convenience\" variables (any such name not a known register).\n\ | 
 | Use assignment expressions to give values to convenience variables.\n\ | 
 | \n\ | 
 | {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\ | 
 | @ is a binary operator for treating consecutive data objects\n\ | 
 | anywhere in memory as an array.  FOO@NUM gives an array whose first\n\ | 
 | element is FOO, whose second element is stored in the space following\n\ | 
 | where FOO is stored, etc.  FOO must be an expression whose value\n\ | 
 | resides in memory.\n\ | 
 | \n\ | 
 | EXP may be preceded with /FMT, where FMT is a format letter\n\ | 
 | but no count or size letter (see \"x\" command)."), | 
 | 					      print_opts); | 
 |  | 
 |   cmd_list_element *print_cmd | 
 |     = add_com ("print", class_vars, print_command, print_help.c_str ()); | 
 |   set_cmd_completer_handle_brkchars (print_cmd, print_command_completer); | 
 |   add_com_alias ("p", print_cmd, class_vars, 1); | 
 |   add_com_alias ("inspect", print_cmd, class_vars, 1); | 
 |  | 
 |   add_setshow_uinteger_cmd ("max-symbolic-offset", no_class, | 
 | 			    &max_symbolic_offset, _("\ | 
 | Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\ | 
 | Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\ | 
 | Tell GDB to only display the symbolic form of an address if the\n\ | 
 | offset between the closest earlier symbol and the address is less than\n\ | 
 | the specified maximum offset.  The default is \"unlimited\", which tells GDB\n\ | 
 | to always print the symbolic form of an address if any symbol precedes\n\ | 
 | it.  Zero is equivalent to \"unlimited\"."), | 
 | 			    NULL, | 
 | 			    show_max_symbolic_offset, | 
 | 			    &setprintlist, &showprintlist); | 
 |   add_setshow_boolean_cmd ("symbol-filename", no_class, | 
 | 			   &print_symbol_filename, _("\ | 
 | Set printing of source filename and line number with <SYMBOL>."), _("\ | 
 | Show printing of source filename and line number with <SYMBOL>."), NULL, | 
 | 			   NULL, | 
 | 			   show_print_symbol_filename, | 
 | 			   &setprintlist, &showprintlist); | 
 |  | 
 |   add_com ("eval", no_class, eval_command, _("\ | 
 | Construct a GDB command and then evaluate it.\n\ | 
 | Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\ | 
 | Convert the arguments to a string as \"printf\" would, but then\n\ | 
 | treat this string as a command line, and evaluate it.")); | 
 |  | 
 |   /* Memory tagging commands.  */ | 
 |   add_prefix_cmd ("memory-tag", class_vars, memory_tag_command, _("\ | 
 | Generic command for printing and manipulating memory tag properties."), | 
 | 		  &memory_tag_list, 0, &cmdlist); | 
 |   add_cmd ("print-logical-tag", class_vars, | 
 | 	   memory_tag_print_logical_tag_command, | 
 | 	   ("Print the logical tag from POINTER.\n\ | 
 | Usage: memory-tag print-logical-tag <POINTER>.\n\ | 
 | <POINTER> is an expression that evaluates to a pointer.\n\ | 
 | Print the logical tag contained in POINTER.  The tag interpretation is\n\ | 
 | architecture-specific."), | 
 | 	   &memory_tag_list); | 
 |   add_cmd ("print-allocation-tag", class_vars, | 
 | 	   memory_tag_print_allocation_tag_command, | 
 | 	   _("Print the allocation tag for ADDRESS.\n\ | 
 | Usage: memory-tag print-allocation-tag <ADDRESS>.\n\ | 
 | <ADDRESS> is an expression that evaluates to a memory address.\n\ | 
 | Print the allocation tag associated with the memory address ADDRESS.\n\ | 
 | The tag interpretation is architecture-specific."), | 
 | 	   &memory_tag_list); | 
 |   add_cmd ("with-logical-tag", class_vars, memory_tag_with_logical_tag_command, | 
 | 	   _("Print a POINTER with a specific logical TAG.\n\ | 
 | Usage: memory-tag with-logical-tag <POINTER> <TAG>\n\ | 
 | <POINTER> is an expression that evaluates to a pointer.\n\ | 
 | <TAG> is a sequence of hex bytes that is interpreted by the architecture\n\ | 
 | as a single memory tag."), | 
 | 	   &memory_tag_list); | 
 |   add_cmd ("set-allocation-tag", class_vars, | 
 | 	   memory_tag_set_allocation_tag_command, | 
 | 	   _("Set the allocation tag(s) for a memory range.\n\ | 
 | Usage: memory-tag set-allocation-tag <ADDRESS> <LENGTH> <TAG_BYTES>\n\ | 
 | <ADDRESS> is an expression that evaluates to a memory address\n\ | 
 | <LENGTH> is the number of bytes that is added to <ADDRESS> to calculate\n\ | 
 | the memory range.\n\ | 
 | <TAG_BYTES> is a sequence of hex bytes that is interpreted by the\n\ | 
 | architecture as one or more memory tags.\n\ | 
 | Sets the tags of the memory range [ADDRESS, ADDRESS + LENGTH)\n\ | 
 | to TAG_BYTES.\n\ | 
 | \n\ | 
 | If the number of tags is greater than or equal to the number of tag granules\n\ | 
 | in the [ADDRESS, ADDRESS + LENGTH) range, only the tags up to the\n\ | 
 | number of tag granules are updated.\n\ | 
 | \n\ | 
 | If the number of tags is less than the number of tag granules, then the\n\ | 
 | command is a fill operation.  The TAG_BYTES are interpreted as a pattern\n\ | 
 | that gets repeated until the number of tag granules in the memory range\n\ | 
 | [ADDRESS, ADDRESS + LENGTH) is updated."), | 
 | 	   &memory_tag_list); | 
 |   add_cmd ("check", class_vars, memory_tag_check_command, | 
 | 	   _("Validate a pointer's logical tag against the allocation tag.\n\ | 
 | Usage: memory-tag check <POINTER>\n\ | 
 | <POINTER> is an expression that evaluates to a pointer\n\ | 
 | Fetch the logical and allocation tags for POINTER and compare them\n\ | 
 | for equality.  If the tags do not match, print additional information about\n\ | 
 | the tag mismatch."), | 
 | 	   &memory_tag_list); | 
 | } |