| /* Symbol table lookup for the GNU debugger, GDB. |
| |
| Copyright (C) 1986-2024 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "dwarf2/call-site.h" |
| #include "symtab.h" |
| #include "event-top.h" |
| #include "gdbtypes.h" |
| #include "gdbcore.h" |
| #include "frame.h" |
| #include "target.h" |
| #include "value.h" |
| #include "symfile.h" |
| #include "objfiles.h" |
| #include "gdbsupport/gdb_regex.h" |
| #include "expression.h" |
| #include "language.h" |
| #include "demangle.h" |
| #include "inferior.h" |
| #include "source.h" |
| #include "filenames.h" |
| #include "objc-lang.h" |
| #include "d-lang.h" |
| #include "ada-lang.h" |
| #include "go-lang.h" |
| #include "p-lang.h" |
| #include "addrmap.h" |
| #include "cli/cli-utils.h" |
| #include "cli/cli-style.h" |
| #include "cli/cli-cmds.h" |
| #include "fnmatch.h" |
| #include "hashtab.h" |
| #include "typeprint.h" |
| |
| #include "gdbsupport/gdb_obstack.h" |
| #include "block.h" |
| #include "dictionary.h" |
| |
| #include <sys/types.h> |
| #include <fcntl.h> |
| #include <sys/stat.h> |
| #include <ctype.h> |
| #include "cp-abi.h" |
| #include "cp-support.h" |
| #include "observable.h" |
| #include "solist.h" |
| #include "macrotab.h" |
| #include "macroscope.h" |
| |
| #include "parser-defs.h" |
| #include "completer.h" |
| #include "progspace-and-thread.h" |
| #include <optional> |
| #include "filename-seen-cache.h" |
| #include "arch-utils.h" |
| #include <algorithm> |
| #include <string_view> |
| #include "gdbsupport/pathstuff.h" |
| #include "gdbsupport/common-utils.h" |
| #include <optional> |
| |
| /* Forward declarations for local functions. */ |
| |
| static void rbreak_command (const char *, int); |
| |
| static int find_line_common (const linetable *, int, int *, int); |
| |
| static struct block_symbol |
| lookup_symbol_aux (const char *name, |
| symbol_name_match_type match_type, |
| const struct block *block, |
| const domain_search_flags domain, |
| enum language language, |
| struct field_of_this_result *); |
| |
| static |
| struct block_symbol lookup_local_symbol (const char *name, |
| symbol_name_match_type match_type, |
| const struct block *block, |
| const domain_search_flags domain, |
| const struct language_defn *langdef); |
| |
| static struct block_symbol |
| lookup_symbol_in_objfile (struct objfile *objfile, |
| enum block_enum block_index, |
| const char *name, |
| const domain_search_flags domain); |
| |
| static void set_main_name (program_space *pspace, const char *name, |
| language lang); |
| |
| /* Type of the data stored on the program space. */ |
| |
| struct main_info |
| { |
| /* Name of "main". */ |
| |
| std::string name_of_main; |
| |
| /* Language of "main". */ |
| |
| enum language language_of_main = language_unknown; |
| }; |
| |
| /* Program space key for finding name and language of "main". */ |
| |
| static const registry<program_space>::key<main_info> main_progspace_key; |
| |
| /* The default symbol cache size. |
| There is no extra cpu cost for large N (except when flushing the cache, |
| which is rare). The value here is just a first attempt. A better default |
| value may be higher or lower. A prime number can make up for a bad hash |
| computation, so that's why the number is what it is. */ |
| #define DEFAULT_SYMBOL_CACHE_SIZE 1021 |
| |
| /* The maximum symbol cache size. |
| There's no method to the decision of what value to use here, other than |
| there's no point in allowing a user typo to make gdb consume all memory. */ |
| #define MAX_SYMBOL_CACHE_SIZE (1024*1024) |
| |
| /* symbol_cache_lookup returns this if a previous lookup failed to find the |
| symbol in any objfile. */ |
| #define SYMBOL_LOOKUP_FAILED \ |
| ((struct block_symbol) {(struct symbol *) 1, NULL}) |
| #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1) |
| |
| /* Recording lookups that don't find the symbol is just as important, if not |
| more so, than recording found symbols. */ |
| |
| enum symbol_cache_slot_state |
| { |
| SYMBOL_SLOT_UNUSED, |
| SYMBOL_SLOT_NOT_FOUND, |
| SYMBOL_SLOT_FOUND |
| }; |
| |
| struct symbol_cache_slot |
| { |
| enum symbol_cache_slot_state state; |
| |
| /* The objfile that was current when the symbol was looked up. |
| This is only needed for global blocks, but for simplicity's sake |
| we allocate the space for both. If data shows the extra space used |
| for static blocks is a problem, we can split things up then. |
| |
| Global blocks need cache lookup to include the objfile context because |
| we need to account for gdbarch_iterate_over_objfiles_in_search_order |
| which can traverse objfiles in, effectively, any order, depending on |
| the current objfile, thus affecting which symbol is found. Normally, |
| only the current objfile is searched first, and then the rest are |
| searched in recorded order; but putting cache lookup inside |
| gdbarch_iterate_over_objfiles_in_search_order would be awkward. |
| Instead we just make the current objfile part of the context of |
| cache lookup. This means we can record the same symbol multiple times, |
| each with a different "current objfile" that was in effect when the |
| lookup was saved in the cache, but cache space is pretty cheap. */ |
| const struct objfile *objfile_context; |
| |
| /* The domain that was searched for initially. This must exactly |
| match. */ |
| domain_search_flags domain; |
| |
| union |
| { |
| struct block_symbol found; |
| char *name; |
| } value; |
| }; |
| |
| /* Clear out SLOT. */ |
| |
| static void |
| symbol_cache_clear_slot (struct symbol_cache_slot *slot) |
| { |
| if (slot->state == SYMBOL_SLOT_NOT_FOUND) |
| xfree (slot->value.name); |
| slot->state = SYMBOL_SLOT_UNUSED; |
| } |
| |
| /* Symbols don't specify global vs static block. |
| So keep them in separate caches. */ |
| |
| struct block_symbol_cache |
| { |
| unsigned int hits; |
| unsigned int misses; |
| unsigned int collisions; |
| |
| /* SYMBOLS is a variable length array of this size. |
| One can imagine that in general one cache (global/static) should be a |
| fraction of the size of the other, but there's no data at the moment |
| on which to decide. */ |
| unsigned int size; |
| |
| struct symbol_cache_slot symbols[1]; |
| }; |
| |
| /* Clear all slots of BSC and free BSC. */ |
| |
| static void |
| destroy_block_symbol_cache (struct block_symbol_cache *bsc) |
| { |
| if (bsc != nullptr) |
| { |
| for (unsigned int i = 0; i < bsc->size; i++) |
| symbol_cache_clear_slot (&bsc->symbols[i]); |
| xfree (bsc); |
| } |
| } |
| |
| /* The symbol cache. |
| |
| Searching for symbols in the static and global blocks over multiple objfiles |
| again and again can be slow, as can searching very big objfiles. This is a |
| simple cache to improve symbol lookup performance, which is critical to |
| overall gdb performance. |
| |
| Symbols are hashed on the name, its domain, and block. |
| They are also hashed on their objfile for objfile-specific lookups. */ |
| |
| struct symbol_cache |
| { |
| symbol_cache () = default; |
| |
| ~symbol_cache () |
| { |
| destroy_block_symbol_cache (global_symbols); |
| destroy_block_symbol_cache (static_symbols); |
| } |
| |
| struct block_symbol_cache *global_symbols = nullptr; |
| struct block_symbol_cache *static_symbols = nullptr; |
| }; |
| |
| /* Program space key for finding its symbol cache. */ |
| |
| static const registry<program_space>::key<symbol_cache> symbol_cache_key; |
| |
| /* When non-zero, print debugging messages related to symtab creation. */ |
| unsigned int symtab_create_debug = 0; |
| |
| /* When non-zero, print debugging messages related to symbol lookup. */ |
| unsigned int symbol_lookup_debug = 0; |
| |
| /* The size of the cache is staged here. */ |
| static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE; |
| |
| /* The current value of the symbol cache size. |
| This is saved so that if the user enters a value too big we can restore |
| the original value from here. */ |
| static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE; |
| |
| /* True if a file may be known by two different basenames. |
| This is the uncommon case, and significantly slows down gdb. |
| Default set to "off" to not slow down the common case. */ |
| bool basenames_may_differ = false; |
| |
| /* Allow the user to configure the debugger behavior with respect |
| to multiple-choice menus when more than one symbol matches during |
| a symbol lookup. */ |
| |
| const char multiple_symbols_ask[] = "ask"; |
| const char multiple_symbols_all[] = "all"; |
| const char multiple_symbols_cancel[] = "cancel"; |
| static const char *const multiple_symbols_modes[] = |
| { |
| multiple_symbols_ask, |
| multiple_symbols_all, |
| multiple_symbols_cancel, |
| NULL |
| }; |
| static const char *multiple_symbols_mode = multiple_symbols_all; |
| |
| /* When TRUE, ignore the prologue-end flag in linetable_entry when searching |
| for the SAL past a function prologue. */ |
| static bool ignore_prologue_end_flag = false; |
| |
| /* Read-only accessor to AUTO_SELECT_MODE. */ |
| |
| const char * |
| multiple_symbols_select_mode (void) |
| { |
| return multiple_symbols_mode; |
| } |
| |
| /* Return the name of a domain_enum. */ |
| |
| const char * |
| domain_name (domain_enum e) |
| { |
| switch (e) |
| { |
| #define SYM_DOMAIN(X) \ |
| case X ## _DOMAIN: return #X "_DOMAIN"; |
| #include "sym-domains.def" |
| #undef SYM_DOMAIN |
| default: gdb_assert_not_reached ("bad domain_enum"); |
| } |
| } |
| |
| /* See symtab.h. */ |
| |
| std::string |
| domain_name (domain_search_flags flags) |
| { |
| static constexpr domain_search_flags::string_mapping mapping[] = { |
| #define SYM_DOMAIN(X) \ |
| MAP_ENUM_FLAG (SEARCH_ ## X ## _DOMAIN), |
| #include "sym-domains.def" |
| #undef SYM_DOMAIN |
| }; |
| |
| return flags.to_string (mapping); |
| } |
| |
| /* See symtab.h. */ |
| |
| domain_search_flags |
| from_scripting_domain (int val) |
| { |
| if ((val & SCRIPTING_SEARCH_FLAG) == 0) |
| { |
| /* VAL should be one of the domain constants. Verify this and |
| convert it to a search constant. */ |
| switch (val) |
| { |
| #define SYM_DOMAIN(X) \ |
| case X ## _DOMAIN: break; |
| #include "sym-domains.def" |
| #undef SYM_DOMAIN |
| default: |
| error (_("unrecognized domain constant")); |
| } |
| domain_search_flags result = to_search_flags ((domain_enum) val); |
| if (val == VAR_DOMAIN) |
| { |
| /* This matches the historical practice. */ |
| result |= SEARCH_TYPE_DOMAIN | SEARCH_FUNCTION_DOMAIN; |
| } |
| return result; |
| } |
| else |
| { |
| /* VAL is several search constants or'd together. Verify |
| this. */ |
| val &= ~SCRIPTING_SEARCH_FLAG; |
| int check = val; |
| #define SYM_DOMAIN(X) \ |
| check &= ~ (int) SEARCH_ ## X ## _DOMAIN; |
| #include "sym-domains.def" |
| #undef SYM_DOMAIN |
| if (check != 0) |
| error (_("unrecognized domain constant")); |
| return (domain_search_flag) val; |
| } |
| } |
| |
| /* See symtab.h. */ |
| |
| struct symbol * |
| search_symbol_list (const char *name, int num, struct symbol **syms) |
| { |
| for (int i = 0; i < num; ++i) |
| { |
| if (strcmp (name, syms[i]->natural_name ()) == 0) |
| return syms[i]; |
| } |
| return nullptr; |
| } |
| |
| /* See symtab.h. */ |
| |
| CORE_ADDR |
| linetable_entry::pc (const struct objfile *objfile) const |
| { |
| return CORE_ADDR (m_pc) + objfile->text_section_offset (); |
| } |
| |
| /* See symtab.h. */ |
| |
| call_site * |
| compunit_symtab::find_call_site (CORE_ADDR pc) const |
| { |
| if (m_call_site_htab == nullptr) |
| return nullptr; |
| |
| CORE_ADDR delta = this->objfile ()->text_section_offset (); |
| unrelocated_addr unrelocated_pc = (unrelocated_addr) (pc - delta); |
| |
| struct call_site call_site_local (unrelocated_pc, nullptr, nullptr); |
| void **slot |
| = htab_find_slot (m_call_site_htab, &call_site_local, NO_INSERT); |
| if (slot != nullptr) |
| return (call_site *) *slot; |
| |
| /* See if the arch knows another PC we should try. On some |
| platforms, GCC emits a DWARF call site that is offset from the |
| actual return location. */ |
| struct gdbarch *arch = objfile ()->arch (); |
| CORE_ADDR new_pc = gdbarch_update_call_site_pc (arch, pc); |
| if (pc == new_pc) |
| return nullptr; |
| |
| unrelocated_pc = (unrelocated_addr) (new_pc - delta); |
| call_site new_call_site_local (unrelocated_pc, nullptr, nullptr); |
| slot = htab_find_slot (m_call_site_htab, &new_call_site_local, NO_INSERT); |
| if (slot == nullptr) |
| return nullptr; |
| |
| return (call_site *) *slot; |
| } |
| |
| /* See symtab.h. */ |
| |
| void |
| compunit_symtab::set_call_site_htab (htab_up call_site_htab) |
| { |
| gdb_assert (m_call_site_htab == nullptr); |
| m_call_site_htab = call_site_htab.release (); |
| } |
| |
| /* See symtab.h. */ |
| |
| void |
| compunit_symtab::set_primary_filetab (symtab *primary_filetab) |
| { |
| symtab *prev_filetab = nullptr; |
| |
| /* Move PRIMARY_FILETAB to the head of the filetab list. */ |
| for (symtab *filetab : this->filetabs ()) |
| { |
| if (filetab == primary_filetab) |
| { |
| if (prev_filetab != nullptr) |
| { |
| prev_filetab->next = primary_filetab->next; |
| primary_filetab->next = m_filetabs; |
| m_filetabs = primary_filetab; |
| } |
| |
| break; |
| } |
| |
| prev_filetab = filetab; |
| } |
| |
| gdb_assert (primary_filetab == m_filetabs); |
| } |
| |
| /* See symtab.h. */ |
| |
| struct symtab * |
| compunit_symtab::primary_filetab () const |
| { |
| gdb_assert (m_filetabs != nullptr); |
| |
| /* The primary file symtab is the first one in the list. */ |
| return m_filetabs; |
| } |
| |
| /* See symtab.h. */ |
| |
| enum language |
| compunit_symtab::language () const |
| { |
| struct symtab *symtab = primary_filetab (); |
| |
| /* The language of the compunit symtab is the language of its |
| primary source file. */ |
| return symtab->language (); |
| } |
| |
| /* See symtab.h. */ |
| |
| void |
| compunit_symtab::forget_cached_source_info () |
| { |
| for (symtab *s : filetabs ()) |
| s->release_fullname (); |
| } |
| |
| /* See symtab.h. */ |
| |
| void |
| compunit_symtab::finalize () |
| { |
| this->forget_cached_source_info (); |
| if (m_call_site_htab != nullptr) |
| htab_delete (m_call_site_htab); |
| } |
| |
| /* The relocated address of the minimal symbol, using the section |
| offsets from OBJFILE. */ |
| |
| CORE_ADDR |
| minimal_symbol::value_address (objfile *objfile) const |
| { |
| if (this->maybe_copied (objfile)) |
| return this->get_maybe_copied_address (objfile); |
| else |
| return (CORE_ADDR (this->unrelocated_address ()) |
| + objfile->section_offsets[this->section_index ()]); |
| } |
| |
| /* See symtab.h. */ |
| |
| bool |
| minimal_symbol::data_p () const |
| { |
| return m_type == mst_data |
| || m_type == mst_bss |
| || m_type == mst_abs |
| || m_type == mst_file_data |
| || m_type == mst_file_bss; |
| } |
| |
| /* See symtab.h. */ |
| |
| bool |
| minimal_symbol::text_p () const |
| { |
| return m_type == mst_text |
| || m_type == mst_text_gnu_ifunc |
| || m_type == mst_data_gnu_ifunc |
| || m_type == mst_slot_got_plt |
| || m_type == mst_solib_trampoline |
| || m_type == mst_file_text; |
| } |
| |
| /* See symtab.h. */ |
| |
| bool |
| minimal_symbol::maybe_copied (objfile *objfile) const |
| { |
| return (objfile->object_format_has_copy_relocs |
| && (objfile->flags & OBJF_MAINLINE) == 0 |
| && (m_type == mst_data || m_type == mst_bss)); |
| } |
| |
| /* See whether FILENAME matches SEARCH_NAME using the rule that we |
| advertise to the user. (The manual's description of linespecs |
| describes what we advertise). Returns true if they match, false |
| otherwise. */ |
| |
| bool |
| compare_filenames_for_search (const char *filename, const char *search_name) |
| { |
| int len = strlen (filename); |
| size_t search_len = strlen (search_name); |
| |
| if (len < search_len) |
| return false; |
| |
| /* The tail of FILENAME must match. */ |
| if (FILENAME_CMP (filename + len - search_len, search_name) != 0) |
| return false; |
| |
| /* Either the names must completely match, or the character |
| preceding the trailing SEARCH_NAME segment of FILENAME must be a |
| directory separator. |
| |
| The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c" |
| cannot match FILENAME "/path//dir/file.c" - as user has requested |
| absolute path. The sama applies for "c:\file.c" possibly |
| incorrectly hypothetically matching "d:\dir\c:\file.c". |
| |
| The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c" |
| compatible with SEARCH_NAME "file.c". In such case a compiler had |
| to put the "c:file.c" name into debug info. Such compatibility |
| works only on GDB built for DOS host. */ |
| return (len == search_len |
| || (!IS_ABSOLUTE_PATH (search_name) |
| && IS_DIR_SEPARATOR (filename[len - search_len - 1])) |
| || (HAS_DRIVE_SPEC (filename) |
| && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len])); |
| } |
| |
| /* Same as compare_filenames_for_search, but for glob-style patterns. |
| Heads up on the order of the arguments. They match the order of |
| compare_filenames_for_search, but it's the opposite of the order of |
| arguments to gdb_filename_fnmatch. */ |
| |
| bool |
| compare_glob_filenames_for_search (const char *filename, |
| const char *search_name) |
| { |
| /* We rely on the property of glob-style patterns with FNM_FILE_NAME that |
| all /s have to be explicitly specified. */ |
| int file_path_elements = count_path_elements (filename); |
| int search_path_elements = count_path_elements (search_name); |
| |
| if (search_path_elements > file_path_elements) |
| return false; |
| |
| if (IS_ABSOLUTE_PATH (search_name)) |
| { |
| return (search_path_elements == file_path_elements |
| && gdb_filename_fnmatch (search_name, filename, |
| FNM_FILE_NAME | FNM_NOESCAPE) == 0); |
| } |
| |
| { |
| const char *file_to_compare |
| = strip_leading_path_elements (filename, |
| file_path_elements - search_path_elements); |
| |
| return gdb_filename_fnmatch (search_name, file_to_compare, |
| FNM_FILE_NAME | FNM_NOESCAPE) == 0; |
| } |
| } |
| |
| /* Check for a symtab of a specific name by searching some symtabs. |
| This is a helper function for callbacks of iterate_over_symtabs. |
| |
| If NAME is not absolute, then REAL_PATH is NULL |
| If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME. |
| |
| The return value, NAME, REAL_PATH and CALLBACK are identical to the |
| `map_symtabs_matching_filename' method of quick_symbol_functions. |
| |
| FIRST and AFTER_LAST indicate the range of compunit symtabs to search. |
| Each symtab within the specified compunit symtab is also searched. |
| AFTER_LAST is one past the last compunit symtab to search; NULL means to |
| search until the end of the list. */ |
| |
| bool |
| iterate_over_some_symtabs (const char *name, |
| const char *real_path, |
| struct compunit_symtab *first, |
| struct compunit_symtab *after_last, |
| gdb::function_view<bool (symtab *)> callback) |
| { |
| struct compunit_symtab *cust; |
| const char* base_name = lbasename (name); |
| |
| for (cust = first; cust != NULL && cust != after_last; cust = cust->next) |
| { |
| /* Skip included compunits. */ |
| if (cust->user != nullptr) |
| continue; |
| |
| for (symtab *s : cust->filetabs ()) |
| { |
| if (compare_filenames_for_search (s->filename, name)) |
| { |
| if (callback (s)) |
| return true; |
| continue; |
| } |
| |
| /* Before we invoke realpath, which can get expensive when many |
| files are involved, do a quick comparison of the basenames. */ |
| if (! basenames_may_differ |
| && FILENAME_CMP (base_name, lbasename (s->filename)) != 0) |
| continue; |
| |
| if (compare_filenames_for_search (symtab_to_fullname (s), name)) |
| { |
| if (callback (s)) |
| return true; |
| continue; |
| } |
| |
| /* If the user gave us an absolute path, try to find the file in |
| this symtab and use its absolute path. */ |
| if (real_path != NULL) |
| { |
| const char *fullname = symtab_to_fullname (s); |
| |
| gdb_assert (IS_ABSOLUTE_PATH (real_path)); |
| gdb_assert (IS_ABSOLUTE_PATH (name)); |
| gdb::unique_xmalloc_ptr<char> fullname_real_path |
| = gdb_realpath (fullname); |
| fullname = fullname_real_path.get (); |
| if (FILENAME_CMP (real_path, fullname) == 0) |
| { |
| if (callback (s)) |
| return true; |
| continue; |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /* Check for a symtab of a specific name; first in symtabs, then in |
| psymtabs. *If* there is no '/' in the name, a match after a '/' |
| in the symtab filename will also work. |
| |
| Calls CALLBACK with each symtab that is found. If CALLBACK returns |
| true, the search stops. */ |
| |
| void |
| iterate_over_symtabs (const char *name, |
| gdb::function_view<bool (symtab *)> callback) |
| { |
| gdb::unique_xmalloc_ptr<char> real_path; |
| |
| /* Here we are interested in canonicalizing an absolute path, not |
| absolutizing a relative path. */ |
| if (IS_ABSOLUTE_PATH (name)) |
| { |
| real_path = gdb_realpath (name); |
| gdb_assert (IS_ABSOLUTE_PATH (real_path.get ())); |
| } |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| if (iterate_over_some_symtabs (name, real_path.get (), |
| objfile->compunit_symtabs, NULL, |
| callback)) |
| return; |
| } |
| |
| /* Same search rules as above apply here, but now we look thru the |
| psymtabs. */ |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| if (objfile->map_symtabs_matching_filename (name, real_path.get (), |
| callback)) |
| return; |
| } |
| } |
| |
| /* A wrapper for iterate_over_symtabs that returns the first matching |
| symtab, or NULL. */ |
| |
| struct symtab * |
| lookup_symtab (const char *name) |
| { |
| struct symtab *result = NULL; |
| |
| iterate_over_symtabs (name, [&] (symtab *symtab) |
| { |
| result = symtab; |
| return true; |
| }); |
| |
| return result; |
| } |
| |
| |
| /* Mangle a GDB method stub type. This actually reassembles the pieces of the |
| full method name, which consist of the class name (from T), the unadorned |
| method name from METHOD_ID, and the signature for the specific overload, |
| specified by SIGNATURE_ID. Note that this function is g++ specific. */ |
| |
| char * |
| gdb_mangle_name (struct type *type, int method_id, int signature_id) |
| { |
| int mangled_name_len; |
| char *mangled_name; |
| struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); |
| struct fn_field *method = &f[signature_id]; |
| const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); |
| const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); |
| const char *newname = type->name (); |
| |
| /* Does the form of physname indicate that it is the full mangled name |
| of a constructor (not just the args)? */ |
| int is_full_physname_constructor; |
| |
| int is_constructor; |
| int is_destructor = is_destructor_name (physname); |
| /* Need a new type prefix. */ |
| const char *const_prefix = method->is_const ? "C" : ""; |
| const char *volatile_prefix = method->is_volatile ? "V" : ""; |
| char buf[20]; |
| int len = (newname == NULL ? 0 : strlen (newname)); |
| |
| /* Nothing to do if physname already contains a fully mangled v3 abi name |
| or an operator name. */ |
| if ((physname[0] == '_' && physname[1] == 'Z') |
| || is_operator_name (field_name)) |
| return xstrdup (physname); |
| |
| is_full_physname_constructor = is_constructor_name (physname); |
| |
| is_constructor = is_full_physname_constructor |
| || (newname && strcmp (field_name, newname) == 0); |
| |
| if (!is_destructor) |
| is_destructor = (startswith (physname, "__dt")); |
| |
| if (is_destructor || is_full_physname_constructor) |
| { |
| mangled_name = (char *) xmalloc (strlen (physname) + 1); |
| strcpy (mangled_name, physname); |
| return mangled_name; |
| } |
| |
| if (len == 0) |
| { |
| xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix); |
| } |
| else if (physname[0] == 't' || physname[0] == 'Q') |
| { |
| /* The physname for template and qualified methods already includes |
| the class name. */ |
| xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix); |
| newname = NULL; |
| len = 0; |
| } |
| else |
| { |
| xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix, |
| volatile_prefix, len); |
| } |
| mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) |
| + strlen (buf) + len + strlen (physname) + 1); |
| |
| mangled_name = (char *) xmalloc (mangled_name_len); |
| if (is_constructor) |
| mangled_name[0] = '\0'; |
| else |
| strcpy (mangled_name, field_name); |
| |
| strcat (mangled_name, buf); |
| /* If the class doesn't have a name, i.e. newname NULL, then we just |
| mangle it using 0 for the length of the class. Thus it gets mangled |
| as something starting with `::' rather than `classname::'. */ |
| if (newname != NULL) |
| strcat (mangled_name, newname); |
| |
| strcat (mangled_name, physname); |
| return (mangled_name); |
| } |
| |
| /* See symtab.h. */ |
| |
| void |
| general_symbol_info::set_demangled_name (const char *name, |
| struct obstack *obstack) |
| { |
| if (language () == language_ada) |
| { |
| if (name == NULL) |
| { |
| ada_mangled = 0; |
| language_specific.obstack = obstack; |
| } |
| else |
| { |
| ada_mangled = 1; |
| language_specific.demangled_name = name; |
| } |
| } |
| else |
| language_specific.demangled_name = name; |
| } |
| |
| |
| /* Initialize the language dependent portion of a symbol |
| depending upon the language for the symbol. */ |
| |
| void |
| general_symbol_info::set_language (enum language language, |
| struct obstack *obstack) |
| { |
| m_language = language; |
| if (language == language_cplus |
| || language == language_d |
| || language == language_go |
| || language == language_objc |
| || language == language_fortran) |
| { |
| set_demangled_name (NULL, obstack); |
| } |
| else if (language == language_ada) |
| { |
| gdb_assert (ada_mangled == 0); |
| language_specific.obstack = obstack; |
| } |
| else |
| { |
| memset (&language_specific, 0, sizeof (language_specific)); |
| } |
| } |
| |
| /* Functions to initialize a symbol's mangled name. */ |
| |
| /* Objects of this type are stored in the demangled name hash table. */ |
| struct demangled_name_entry |
| { |
| demangled_name_entry (std::string_view mangled_name) |
| : mangled (mangled_name) {} |
| |
| std::string_view mangled; |
| enum language language; |
| gdb::unique_xmalloc_ptr<char> demangled; |
| }; |
| |
| /* Hash function for the demangled name hash. */ |
| |
| static hashval_t |
| hash_demangled_name_entry (const void *data) |
| { |
| const struct demangled_name_entry *e |
| = (const struct demangled_name_entry *) data; |
| |
| return gdb::string_view_hash () (e->mangled); |
| } |
| |
| /* Equality function for the demangled name hash. */ |
| |
| static int |
| eq_demangled_name_entry (const void *a, const void *b) |
| { |
| const struct demangled_name_entry *da |
| = (const struct demangled_name_entry *) a; |
| const struct demangled_name_entry *db |
| = (const struct demangled_name_entry *) b; |
| |
| return da->mangled == db->mangled; |
| } |
| |
| static void |
| free_demangled_name_entry (void *data) |
| { |
| struct demangled_name_entry *e |
| = (struct demangled_name_entry *) data; |
| |
| e->~demangled_name_entry(); |
| } |
| |
| /* Create the hash table used for demangled names. Each hash entry is |
| a pair of strings; one for the mangled name and one for the demangled |
| name. The entry is hashed via just the mangled name. */ |
| |
| static void |
| create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd) |
| { |
| /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. |
| The hash table code will round this up to the next prime number. |
| Choosing a much larger table size wastes memory, and saves only about |
| 1% in symbol reading. However, if the minsym count is already |
| initialized (e.g. because symbol name setting was deferred to |
| a background thread) we can initialize the hashtable with a count |
| based on that, because we will almost certainly have at least that |
| many entries. If we have a nonzero number but less than 256, |
| we still stay with 256 to have some space for psymbols, etc. */ |
| |
| /* htab will expand the table when it is 3/4th full, so we account for that |
| here. +2 to round up. */ |
| int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4; |
| int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count); |
| |
| per_bfd->demangled_names_hash.reset (htab_create_alloc |
| (count, hash_demangled_name_entry, eq_demangled_name_entry, |
| free_demangled_name_entry, xcalloc, xfree)); |
| } |
| |
| /* See symtab.h */ |
| |
| gdb::unique_xmalloc_ptr<char> |
| symbol_find_demangled_name (struct general_symbol_info *gsymbol, |
| const char *mangled) |
| { |
| gdb::unique_xmalloc_ptr<char> demangled; |
| int i; |
| |
| if (gsymbol->language () != language_unknown) |
| { |
| const struct language_defn *lang = language_def (gsymbol->language ()); |
| |
| lang->sniff_from_mangled_name (mangled, &demangled); |
| return demangled; |
| } |
| |
| for (i = language_unknown; i < nr_languages; ++i) |
| { |
| enum language l = (enum language) i; |
| const struct language_defn *lang = language_def (l); |
| |
| if (lang->sniff_from_mangled_name (mangled, &demangled)) |
| { |
| gsymbol->m_language = l; |
| return demangled; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* Set both the mangled and demangled (if any) names for GSYMBOL based |
| on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the |
| objfile's obstack; but if COPY_NAME is 0 and if NAME is |
| NUL-terminated, then this function assumes that NAME is already |
| correctly saved (either permanently or with a lifetime tied to the |
| objfile), and it will not be copied. |
| |
| The hash table corresponding to OBJFILE is used, and the memory |
| comes from the per-BFD storage_obstack. LINKAGE_NAME is copied, |
| so the pointer can be discarded after calling this function. */ |
| |
| void |
| general_symbol_info::compute_and_set_names (std::string_view linkage_name, |
| bool copy_name, |
| objfile_per_bfd_storage *per_bfd, |
| std::optional<hashval_t> hash) |
| { |
| struct demangled_name_entry **slot; |
| |
| if (language () == language_ada) |
| { |
| /* In Ada, we do the symbol lookups using the mangled name, so |
| we can save some space by not storing the demangled name. */ |
| if (!copy_name) |
| m_name = linkage_name.data (); |
| else |
| m_name = obstack_strndup (&per_bfd->storage_obstack, |
| linkage_name.data (), |
| linkage_name.length ()); |
| set_demangled_name (NULL, &per_bfd->storage_obstack); |
| |
| return; |
| } |
| |
| if (per_bfd->demangled_names_hash == NULL) |
| create_demangled_names_hash (per_bfd); |
| |
| struct demangled_name_entry entry (linkage_name); |
| if (!hash.has_value ()) |
| hash = hash_demangled_name_entry (&entry); |
| slot = ((struct demangled_name_entry **) |
| htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (), |
| &entry, *hash, INSERT)); |
| |
| /* The const_cast is safe because the only reason it is already |
| initialized is if we purposefully set it from a background |
| thread to avoid doing the work here. However, it is still |
| allocated from the heap and needs to be freed by us, just |
| like if we called symbol_find_demangled_name here. If this is |
| nullptr, we call symbol_find_demangled_name below, but we put |
| this smart pointer here to be sure that we don't leak this name. */ |
| gdb::unique_xmalloc_ptr<char> demangled_name |
| (const_cast<char *> (language_specific.demangled_name)); |
| |
| /* If this name is not in the hash table, add it. */ |
| if (*slot == NULL |
| /* A C version of the symbol may have already snuck into the table. |
| This happens to, e.g., main.init (__go_init_main). Cope. */ |
| || (language () == language_go && (*slot)->demangled == nullptr)) |
| { |
| /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME |
| to true if the string might not be nullterminated. We have to make |
| this copy because demangling needs a nullterminated string. */ |
| std::string_view linkage_name_copy; |
| if (copy_name) |
| { |
| char *alloc_name = (char *) alloca (linkage_name.length () + 1); |
| memcpy (alloc_name, linkage_name.data (), linkage_name.length ()); |
| alloc_name[linkage_name.length ()] = '\0'; |
| |
| linkage_name_copy = std::string_view (alloc_name, |
| linkage_name.length ()); |
| } |
| else |
| linkage_name_copy = linkage_name; |
| |
| if (demangled_name.get () == nullptr) |
| demangled_name |
| = symbol_find_demangled_name (this, linkage_name_copy.data ()); |
| |
| /* Suppose we have demangled_name==NULL, copy_name==0, and |
| linkage_name_copy==linkage_name. In this case, we already have the |
| mangled name saved, and we don't have a demangled name. So, |
| you might think we could save a little space by not recording |
| this in the hash table at all. |
| |
| It turns out that it is actually important to still save such |
| an entry in the hash table, because storing this name gives |
| us better bcache hit rates for partial symbols. */ |
| if (!copy_name) |
| { |
| *slot |
| = ((struct demangled_name_entry *) |
| obstack_alloc (&per_bfd->storage_obstack, |
| sizeof (demangled_name_entry))); |
| new (*slot) demangled_name_entry (linkage_name); |
| } |
| else |
| { |
| /* If we must copy the mangled name, put it directly after |
| the struct so we can have a single allocation. */ |
| *slot |
| = ((struct demangled_name_entry *) |
| obstack_alloc (&per_bfd->storage_obstack, |
| sizeof (demangled_name_entry) |
| + linkage_name.length () + 1)); |
| char *mangled_ptr = reinterpret_cast<char *> (*slot + 1); |
| memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ()); |
| mangled_ptr [linkage_name.length ()] = '\0'; |
| new (*slot) demangled_name_entry |
| (std::string_view (mangled_ptr, linkage_name.length ())); |
| } |
| (*slot)->demangled = std::move (demangled_name); |
| (*slot)->language = language (); |
| } |
| else if (language () == language_unknown) |
| m_language = (*slot)->language; |
| |
| m_name = (*slot)->mangled.data (); |
| set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack); |
| } |
| |
| /* See symtab.h. */ |
| |
| const char * |
| general_symbol_info::natural_name () const |
| { |
| switch (language ()) |
| { |
| case language_cplus: |
| case language_d: |
| case language_go: |
| case language_objc: |
| case language_fortran: |
| case language_rust: |
| if (language_specific.demangled_name != nullptr) |
| return language_specific.demangled_name; |
| break; |
| case language_ada: |
| return ada_decode_symbol (this); |
| default: |
| break; |
| } |
| return linkage_name (); |
| } |
| |
| /* See symtab.h. */ |
| |
| const char * |
| general_symbol_info::demangled_name () const |
| { |
| const char *dem_name = NULL; |
| |
| switch (language ()) |
| { |
| case language_cplus: |
| case language_d: |
| case language_go: |
| case language_objc: |
| case language_fortran: |
| case language_rust: |
| dem_name = language_specific.demangled_name; |
| break; |
| case language_ada: |
| dem_name = ada_decode_symbol (this); |
| break; |
| default: |
| break; |
| } |
| return dem_name; |
| } |
| |
| /* See symtab.h. */ |
| |
| const char * |
| general_symbol_info::search_name () const |
| { |
| if (language () == language_ada) |
| return linkage_name (); |
| else |
| return natural_name (); |
| } |
| |
| /* See symtab.h. */ |
| |
| struct obj_section * |
| general_symbol_info::obj_section (const struct objfile *objfile) const |
| { |
| if (section_index () >= 0) |
| return &objfile->sections_start[section_index ()]; |
| return nullptr; |
| } |
| |
| /* See symtab.h. */ |
| |
| bool |
| symbol_matches_search_name (const struct general_symbol_info *gsymbol, |
| const lookup_name_info &name) |
| { |
| symbol_name_matcher_ftype *name_match |
| = language_def (gsymbol->language ())->get_symbol_name_matcher (name); |
| return name_match (gsymbol->search_name (), name, NULL); |
| } |
| |
| |
| |
| /* Return true if the two sections are the same, or if they could |
| plausibly be copies of each other, one in an original object |
| file and another in a separated debug file. */ |
| |
| bool |
| matching_obj_sections (struct obj_section *obj_first, |
| struct obj_section *obj_second) |
| { |
| asection *first = obj_first? obj_first->the_bfd_section : NULL; |
| asection *second = obj_second? obj_second->the_bfd_section : NULL; |
| |
| /* If they're the same section, then they match. */ |
| if (first == second) |
| return true; |
| |
| /* If either is NULL, give up. */ |
| if (first == NULL || second == NULL) |
| return false; |
| |
| /* This doesn't apply to absolute symbols. */ |
| if (first->owner == NULL || second->owner == NULL) |
| return false; |
| |
| /* If they're in the same object file, they must be different sections. */ |
| if (first->owner == second->owner) |
| return false; |
| |
| /* Check whether the two sections are potentially corresponding. They must |
| have the same size, address, and name. We can't compare section indexes, |
| which would be more reliable, because some sections may have been |
| stripped. */ |
| if (bfd_section_size (first) != bfd_section_size (second)) |
| return false; |
| |
| /* In-memory addresses may start at a different offset, relativize them. */ |
| if (bfd_section_vma (first) - bfd_get_start_address (first->owner) |
| != bfd_section_vma (second) - bfd_get_start_address (second->owner)) |
| return false; |
| |
| if (bfd_section_name (first) == NULL |
| || bfd_section_name (second) == NULL |
| || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0) |
| return false; |
| |
| /* Otherwise check that they are in corresponding objfiles. */ |
| |
| struct objfile *obj = NULL; |
| for (objfile *objfile : current_program_space->objfiles ()) |
| if (objfile->obfd == first->owner) |
| { |
| obj = objfile; |
| break; |
| } |
| gdb_assert (obj != NULL); |
| |
| if (obj->separate_debug_objfile != NULL |
| && obj->separate_debug_objfile->obfd == second->owner) |
| return true; |
| if (obj->separate_debug_objfile_backlink != NULL |
| && obj->separate_debug_objfile_backlink->obfd == second->owner) |
| return true; |
| |
| return false; |
| } |
| |
| /* Hash function for the symbol cache. */ |
| |
| static unsigned int |
| hash_symbol_entry (const struct objfile *objfile_context, |
| const char *name, domain_search_flags domain) |
| { |
| unsigned int hash = (uintptr_t) objfile_context; |
| |
| if (name != NULL) |
| hash += htab_hash_string (name); |
| |
| hash += domain * 7; |
| |
| return hash; |
| } |
| |
| /* Equality function for the symbol cache. */ |
| |
| static int |
| eq_symbol_entry (const struct symbol_cache_slot *slot, |
| const struct objfile *objfile_context, |
| const char *name, domain_search_flags domain) |
| { |
| const char *slot_name; |
| |
| if (slot->state == SYMBOL_SLOT_UNUSED) |
| return 0; |
| |
| if (slot->objfile_context != objfile_context) |
| return 0; |
| |
| domain_search_flags slot_domain = slot->domain; |
| if (slot->state == SYMBOL_SLOT_NOT_FOUND) |
| slot_name = slot->value.name; |
| else |
| slot_name = slot->value.found.symbol->search_name (); |
| |
| /* NULL names match. */ |
| if (slot_name == NULL && name == NULL) |
| { |
| /* But there's no point in calling symbol_matches_domain in the |
| SYMBOL_SLOT_FOUND case. */ |
| if (slot_domain != domain) |
| return 0; |
| } |
| else if (slot_name != NULL && name != NULL) |
| { |
| /* It's important that we use the same comparison that was done |
| the first time through. If the slot records a found symbol, |
| then this means using the symbol name comparison function of |
| the symbol's language with symbol->search_name (). See |
| dictionary.c. |
| |
| If the slot records a not-found symbol, then require a precise match. |
| We could still be lax with whitespace like strcmp_iw though. */ |
| |
| if (slot_domain != domain) |
| return 0; |
| |
| if (slot->state == SYMBOL_SLOT_NOT_FOUND) |
| { |
| if (strcmp (slot_name, name) != 0) |
| return 0; |
| } |
| else |
| { |
| struct symbol *sym = slot->value.found.symbol; |
| lookup_name_info lookup_name (name, symbol_name_match_type::FULL); |
| |
| if (!symbol_matches_search_name (sym, lookup_name)) |
| return 0; |
| } |
| } |
| else |
| { |
| /* Only one name is NULL. */ |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Given a cache of size SIZE, return the size of the struct (with variable |
| length array) in bytes. */ |
| |
| static size_t |
| symbol_cache_byte_size (unsigned int size) |
| { |
| return (sizeof (struct block_symbol_cache) |
| + ((size - 1) * sizeof (struct symbol_cache_slot))); |
| } |
| |
| /* Resize CACHE. */ |
| |
| static void |
| resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size) |
| { |
| /* If there's no change in size, don't do anything. |
| All caches have the same size, so we can just compare with the size |
| of the global symbols cache. */ |
| if ((cache->global_symbols != NULL |
| && cache->global_symbols->size == new_size) |
| || (cache->global_symbols == NULL |
| && new_size == 0)) |
| return; |
| |
| destroy_block_symbol_cache (cache->global_symbols); |
| destroy_block_symbol_cache (cache->static_symbols); |
| |
| if (new_size == 0) |
| { |
| cache->global_symbols = NULL; |
| cache->static_symbols = NULL; |
| } |
| else |
| { |
| size_t total_size = symbol_cache_byte_size (new_size); |
| |
| cache->global_symbols |
| = (struct block_symbol_cache *) xcalloc (1, total_size); |
| cache->static_symbols |
| = (struct block_symbol_cache *) xcalloc (1, total_size); |
| cache->global_symbols->size = new_size; |
| cache->static_symbols->size = new_size; |
| } |
| } |
| |
| /* Return the symbol cache of PSPACE. |
| Create one if it doesn't exist yet. */ |
| |
| static struct symbol_cache * |
| get_symbol_cache (struct program_space *pspace) |
| { |
| struct symbol_cache *cache = symbol_cache_key.get (pspace); |
| |
| if (cache == NULL) |
| { |
| cache = symbol_cache_key.emplace (pspace); |
| resize_symbol_cache (cache, symbol_cache_size); |
| } |
| |
| return cache; |
| } |
| |
| /* Set the size of the symbol cache in all program spaces. */ |
| |
| static void |
| set_symbol_cache_size (unsigned int new_size) |
| { |
| for (struct program_space *pspace : program_spaces) |
| { |
| struct symbol_cache *cache = symbol_cache_key.get (pspace); |
| |
| /* The pspace could have been created but not have a cache yet. */ |
| if (cache != NULL) |
| resize_symbol_cache (cache, new_size); |
| } |
| } |
| |
| /* Called when symbol-cache-size is set. */ |
| |
| static void |
| set_symbol_cache_size_handler (const char *args, int from_tty, |
| struct cmd_list_element *c) |
| { |
| if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE) |
| { |
| /* Restore the previous value. |
| This is the value the "show" command prints. */ |
| new_symbol_cache_size = symbol_cache_size; |
| |
| error (_("Symbol cache size is too large, max is %u."), |
| MAX_SYMBOL_CACHE_SIZE); |
| } |
| symbol_cache_size = new_symbol_cache_size; |
| |
| set_symbol_cache_size (symbol_cache_size); |
| } |
| |
| /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE. |
| OBJFILE_CONTEXT is the current objfile, which may be NULL. |
| The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup |
| failed (and thus this one will too), or NULL if the symbol is not present |
| in the cache. |
| *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which |
| can be used to save the result of a full lookup attempt. */ |
| |
| static struct block_symbol |
| symbol_cache_lookup (struct symbol_cache *cache, |
| struct objfile *objfile_context, enum block_enum block, |
| const char *name, domain_search_flags domain, |
| struct block_symbol_cache **bsc_ptr, |
| struct symbol_cache_slot **slot_ptr) |
| { |
| struct block_symbol_cache *bsc; |
| unsigned int hash; |
| struct symbol_cache_slot *slot; |
| |
| if (block == GLOBAL_BLOCK) |
| bsc = cache->global_symbols; |
| else |
| bsc = cache->static_symbols; |
| if (bsc == NULL) |
| { |
| *bsc_ptr = NULL; |
| *slot_ptr = NULL; |
| return {}; |
| } |
| |
| hash = hash_symbol_entry (objfile_context, name, domain); |
| slot = bsc->symbols + hash % bsc->size; |
| |
| *bsc_ptr = bsc; |
| *slot_ptr = slot; |
| |
| if (eq_symbol_entry (slot, objfile_context, name, domain)) |
| { |
| symbol_lookup_debug_printf ("%s block symbol cache hit%s for %s, %s", |
| block == GLOBAL_BLOCK ? "Global" : "Static", |
| slot->state == SYMBOL_SLOT_NOT_FOUND |
| ? " (not found)" : "", name, |
| domain_name (domain).c_str ()); |
| ++bsc->hits; |
| if (slot->state == SYMBOL_SLOT_NOT_FOUND) |
| return SYMBOL_LOOKUP_FAILED; |
| return slot->value.found; |
| } |
| |
| /* Symbol is not present in the cache. */ |
| |
| symbol_lookup_debug_printf ("%s block symbol cache miss for %s, %s", |
| block == GLOBAL_BLOCK ? "Global" : "Static", |
| name, domain_name (domain).c_str ()); |
| ++bsc->misses; |
| return {}; |
| } |
| |
| /* Mark SYMBOL as found in SLOT. |
| OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL |
| if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not* |
| necessarily the objfile the symbol was found in. */ |
| |
| static void |
| symbol_cache_mark_found (struct block_symbol_cache *bsc, |
| struct symbol_cache_slot *slot, |
| struct objfile *objfile_context, |
| struct symbol *symbol, |
| const struct block *block, |
| domain_search_flags domain) |
| { |
| if (bsc == NULL) |
| return; |
| if (slot->state != SYMBOL_SLOT_UNUSED) |
| { |
| ++bsc->collisions; |
| symbol_cache_clear_slot (slot); |
| } |
| slot->state = SYMBOL_SLOT_FOUND; |
| slot->objfile_context = objfile_context; |
| slot->value.found.symbol = symbol; |
| slot->value.found.block = block; |
| slot->domain = domain; |
| } |
| |
| /* Mark symbol NAME, DOMAIN as not found in SLOT. |
| OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL |
| if it's not needed to distinguish lookups (STATIC_BLOCK). */ |
| |
| static void |
| symbol_cache_mark_not_found (struct block_symbol_cache *bsc, |
| struct symbol_cache_slot *slot, |
| struct objfile *objfile_context, |
| const char *name, domain_search_flags domain) |
| { |
| if (bsc == NULL) |
| return; |
| if (slot->state != SYMBOL_SLOT_UNUSED) |
| { |
| ++bsc->collisions; |
| symbol_cache_clear_slot (slot); |
| } |
| slot->state = SYMBOL_SLOT_NOT_FOUND; |
| slot->objfile_context = objfile_context; |
| slot->value.name = xstrdup (name); |
| slot->domain = domain; |
| } |
| |
| /* Flush the symbol cache of PSPACE. */ |
| |
| static void |
| symbol_cache_flush (struct program_space *pspace) |
| { |
| ada_clear_symbol_cache (pspace); |
| struct symbol_cache *cache = symbol_cache_key.get (pspace); |
| int pass; |
| |
| if (cache == NULL) |
| return; |
| if (cache->global_symbols == NULL) |
| { |
| gdb_assert (symbol_cache_size == 0); |
| gdb_assert (cache->static_symbols == NULL); |
| return; |
| } |
| |
| /* If the cache is untouched since the last flush, early exit. |
| This is important for performance during the startup of a program linked |
| with 100s (or 1000s) of shared libraries. */ |
| if (cache->global_symbols->misses == 0 |
| && cache->static_symbols->misses == 0) |
| return; |
| |
| gdb_assert (cache->global_symbols->size == symbol_cache_size); |
| gdb_assert (cache->static_symbols->size == symbol_cache_size); |
| |
| for (pass = 0; pass < 2; ++pass) |
| { |
| struct block_symbol_cache *bsc |
| = pass == 0 ? cache->global_symbols : cache->static_symbols; |
| unsigned int i; |
| |
| for (i = 0; i < bsc->size; ++i) |
| symbol_cache_clear_slot (&bsc->symbols[i]); |
| } |
| |
| cache->global_symbols->hits = 0; |
| cache->global_symbols->misses = 0; |
| cache->global_symbols->collisions = 0; |
| cache->static_symbols->hits = 0; |
| cache->static_symbols->misses = 0; |
| cache->static_symbols->collisions = 0; |
| } |
| |
| /* Dump CACHE. */ |
| |
| static void |
| symbol_cache_dump (const struct symbol_cache *cache) |
| { |
| int pass; |
| |
| if (cache->global_symbols == NULL) |
| { |
| gdb_printf (" <disabled>\n"); |
| return; |
| } |
| |
| for (pass = 0; pass < 2; ++pass) |
| { |
| const struct block_symbol_cache *bsc |
| = pass == 0 ? cache->global_symbols : cache->static_symbols; |
| unsigned int i; |
| |
| if (pass == 0) |
| gdb_printf ("Global symbols:\n"); |
| else |
| gdb_printf ("Static symbols:\n"); |
| |
| for (i = 0; i < bsc->size; ++i) |
| { |
| const struct symbol_cache_slot *slot = &bsc->symbols[i]; |
| |
| QUIT; |
| |
| switch (slot->state) |
| { |
| case SYMBOL_SLOT_UNUSED: |
| break; |
| case SYMBOL_SLOT_NOT_FOUND: |
| gdb_printf (" [%4u] = %s, %s %s (not found)\n", i, |
| host_address_to_string (slot->objfile_context), |
| slot->value.name, |
| domain_name (slot->domain).c_str ()); |
| break; |
| case SYMBOL_SLOT_FOUND: |
| { |
| struct symbol *found = slot->value.found.symbol; |
| const struct objfile *context = slot->objfile_context; |
| |
| gdb_printf (" [%4u] = %s, %s %s\n", i, |
| host_address_to_string (context), |
| found->print_name (), |
| domain_name (found->domain ())); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| /* The "mt print symbol-cache" command. */ |
| |
| static void |
| maintenance_print_symbol_cache (const char *args, int from_tty) |
| { |
| for (struct program_space *pspace : program_spaces) |
| { |
| struct symbol_cache *cache; |
| |
| gdb_printf (_("Symbol cache for pspace %d\n%s:\n"), |
| pspace->num, |
| pspace->symfile_object_file != NULL |
| ? objfile_name (pspace->symfile_object_file) |
| : "(no object file)"); |
| |
| /* If the cache hasn't been created yet, avoid creating one. */ |
| cache = symbol_cache_key.get (pspace); |
| if (cache == NULL) |
| gdb_printf (" <empty>\n"); |
| else |
| symbol_cache_dump (cache); |
| } |
| } |
| |
| /* The "mt flush-symbol-cache" command. */ |
| |
| static void |
| maintenance_flush_symbol_cache (const char *args, int from_tty) |
| { |
| for (struct program_space *pspace : program_spaces) |
| { |
| symbol_cache_flush (pspace); |
| } |
| } |
| |
| /* Print usage statistics of CACHE. */ |
| |
| static void |
| symbol_cache_stats (struct symbol_cache *cache) |
| { |
| int pass; |
| |
| if (cache->global_symbols == NULL) |
| { |
| gdb_printf (" <disabled>\n"); |
| return; |
| } |
| |
| for (pass = 0; pass < 2; ++pass) |
| { |
| const struct block_symbol_cache *bsc |
| = pass == 0 ? cache->global_symbols : cache->static_symbols; |
| |
| QUIT; |
| |
| if (pass == 0) |
| gdb_printf ("Global block cache stats:\n"); |
| else |
| gdb_printf ("Static block cache stats:\n"); |
| |
| gdb_printf (" size: %u\n", bsc->size); |
| gdb_printf (" hits: %u\n", bsc->hits); |
| gdb_printf (" misses: %u\n", bsc->misses); |
| gdb_printf (" collisions: %u\n", bsc->collisions); |
| } |
| } |
| |
| /* The "mt print symbol-cache-statistics" command. */ |
| |
| static void |
| maintenance_print_symbol_cache_statistics (const char *args, int from_tty) |
| { |
| for (struct program_space *pspace : program_spaces) |
| { |
| struct symbol_cache *cache; |
| |
| gdb_printf (_("Symbol cache statistics for pspace %d\n%s:\n"), |
| pspace->num, |
| pspace->symfile_object_file != NULL |
| ? objfile_name (pspace->symfile_object_file) |
| : "(no object file)"); |
| |
| /* If the cache hasn't been created yet, avoid creating one. */ |
| cache = symbol_cache_key.get (pspace); |
| if (cache == NULL) |
| gdb_printf (" empty, no stats available\n"); |
| else |
| symbol_cache_stats (cache); |
| } |
| } |
| |
| /* This module's 'new_objfile' observer. */ |
| |
| static void |
| symtab_new_objfile_observer (struct objfile *objfile) |
| { |
| symbol_cache_flush (objfile->pspace ()); |
| } |
| |
| /* This module's 'all_objfiles_removed' observer. */ |
| |
| static void |
| symtab_all_objfiles_removed (program_space *pspace) |
| { |
| symbol_cache_flush (pspace); |
| |
| /* Forget everything we know about the main function. */ |
| set_main_name (pspace, nullptr, language_unknown); |
| } |
| |
| /* This module's 'free_objfile' observer. */ |
| |
| static void |
| symtab_free_objfile_observer (struct objfile *objfile) |
| { |
| symbol_cache_flush (objfile->pspace ()); |
| } |
| |
| /* See symtab.h. */ |
| |
| void |
| fixup_symbol_section (struct symbol *sym, struct objfile *objfile) |
| { |
| gdb_assert (sym != nullptr); |
| gdb_assert (sym->is_objfile_owned ()); |
| gdb_assert (objfile != nullptr); |
| gdb_assert (sym->section_index () == -1); |
| |
| /* Note that if this ends up as -1, fixup_section will handle that |
| reasonably well. So, it's fine to use the objfile's section |
| index without doing the check that is done by the wrapper macros |
| like SECT_OFF_TEXT. */ |
| int fallback; |
| switch (sym->aclass ()) |
| { |
| case LOC_STATIC: |
| fallback = objfile->sect_index_data; |
| break; |
| |
| case LOC_LABEL: |
| fallback = objfile->sect_index_text; |
| break; |
| |
| default: |
| /* Nothing else will be listed in the minsyms -- no use looking |
| it up. */ |
| return; |
| } |
| |
| CORE_ADDR addr = sym->value_address (); |
| |
| struct minimal_symbol *msym; |
| |
| /* First, check whether a minimal symbol with the same name exists |
| and points to the same address. The address check is required |
| e.g. on PowerPC64, where the minimal symbol for a function will |
| point to the function descriptor, while the debug symbol will |
| point to the actual function code. */ |
| msym = lookup_minimal_symbol_by_pc_name (addr, sym->linkage_name (), |
| objfile); |
| if (msym) |
| sym->set_section_index (msym->section_index ()); |
| else |
| { |
| /* Static, function-local variables do appear in the linker |
| (minimal) symbols, but are frequently given names that won't |
| be found via lookup_minimal_symbol(). E.g., it has been |
| observed in frv-uclinux (ELF) executables that a static, |
| function-local variable named "foo" might appear in the |
| linker symbols as "foo.6" or "foo.3". Thus, there is no |
| point in attempting to extend the lookup-by-name mechanism to |
| handle this case due to the fact that there can be multiple |
| names. |
| |
| So, instead, search the section table when lookup by name has |
| failed. The ``addr'' and ``endaddr'' fields may have already |
| been relocated. If so, the relocation offset needs to be |
| subtracted from these values when performing the comparison. |
| We unconditionally subtract it, because, when no relocation |
| has been performed, the value will simply be zero. |
| |
| The address of the symbol whose section we're fixing up HAS |
| NOT BEEN adjusted (relocated) yet. It can't have been since |
| the section isn't yet known and knowing the section is |
| necessary in order to add the correct relocation value. In |
| other words, we wouldn't even be in this function (attempting |
| to compute the section) if it were already known. |
| |
| Note that it is possible to search the minimal symbols |
| (subtracting the relocation value if necessary) to find the |
| matching minimal symbol, but this is overkill and much less |
| efficient. It is not necessary to find the matching minimal |
| symbol, only its section. |
| |
| Note that this technique (of doing a section table search) |
| can fail when unrelocated section addresses overlap. For |
| this reason, we still attempt a lookup by name prior to doing |
| a search of the section table. */ |
| |
| for (obj_section *s : objfile->sections ()) |
| { |
| if ((bfd_section_flags (s->the_bfd_section) & SEC_ALLOC) == 0) |
| continue; |
| |
| int idx = s - objfile->sections_start; |
| CORE_ADDR offset = objfile->section_offsets[idx]; |
| |
| if (fallback == -1) |
| fallback = idx; |
| |
| if (s->addr () - offset <= addr && addr < s->endaddr () - offset) |
| { |
| sym->set_section_index (idx); |
| return; |
| } |
| } |
| |
| /* If we didn't find the section, assume it is in the first |
| section. If there is no allocated section, then it hardly |
| matters what we pick, so just pick zero. */ |
| if (fallback == -1) |
| sym->set_section_index (0); |
| else |
| sym->set_section_index (fallback); |
| } |
| } |
| |
| /* See symtab.h. */ |
| |
| demangle_for_lookup_info::demangle_for_lookup_info |
| (const lookup_name_info &lookup_name, language lang) |
| { |
| demangle_result_storage storage; |
| |
| if (lookup_name.ignore_parameters () && lang == language_cplus) |
| { |
| gdb::unique_xmalloc_ptr<char> without_params |
| = cp_remove_params_if_any (lookup_name.c_str (), |
| lookup_name.completion_mode ()); |
| |
| if (without_params != NULL) |
| { |
| if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME) |
| m_demangled_name = demangle_for_lookup (without_params.get (), |
| lang, storage); |
| return; |
| } |
| } |
| |
| if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME) |
| m_demangled_name = lookup_name.c_str (); |
| else |
| m_demangled_name = demangle_for_lookup (lookup_name.c_str (), |
| lang, storage); |
| } |
| |
| /* See symtab.h. */ |
| |
| const lookup_name_info & |
| lookup_name_info::match_any () |
| { |
| /* Lookup any symbol that "" would complete. I.e., this matches all |
| symbol names. */ |
| static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL, |
| true); |
| |
| return lookup_name; |
| } |
| |
| /* See symtab.h. */ |
| |
| unsigned int |
| lookup_name_info::search_name_hash (language lang) const |
| { |
| /* This works around an obscure problem. If currently in Ada mode, |
| and the name is wrapped in '<...>' (indicating verbatim mode), |
| force the use of the Ada language here so that the '<' and '>' |
| will be removed. */ |
| if (current_language->la_language == language_ada && ada ().verbatim_p ()) |
| lang = language_ada; |
| |
| /* Only compute each language's hash once. */ |
| if (!m_demangled_hashes_p[lang]) |
| { |
| m_demangled_hashes[lang] |
| = ::search_name_hash (lang, language_lookup_name (lang)); |
| m_demangled_hashes_p[lang] = true; |
| } |
| return m_demangled_hashes[lang]; |
| } |
| |
| /* Compute the demangled form of NAME as used by the various symbol |
| lookup functions. The result can either be the input NAME |
| directly, or a pointer to a buffer owned by the STORAGE object. |
| |
| For Ada, this function just returns NAME, unmodified. |
| Normally, Ada symbol lookups are performed using the encoded name |
| rather than the demangled name, and so it might seem to make sense |
| for this function to return an encoded version of NAME. |
| Unfortunately, we cannot do this, because this function is used in |
| circumstances where it is not appropriate to try to encode NAME. |
| For instance, when displaying the frame info, we demangle the name |
| of each parameter, and then perform a symbol lookup inside our |
| function using that demangled name. In Ada, certain functions |
| have internally-generated parameters whose name contain uppercase |
| characters. Encoding those name would result in those uppercase |
| characters to become lowercase, and thus cause the symbol lookup |
| to fail. */ |
| |
| const char * |
| demangle_for_lookup (const char *name, enum language lang, |
| demangle_result_storage &storage) |
| { |
| /* If we are using C++, D, or Go, demangle the name before doing a |
| lookup, so we can always binary search. */ |
| if (lang == language_cplus) |
| { |
| gdb::unique_xmalloc_ptr<char> demangled_name |
| = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS); |
| if (demangled_name != NULL) |
| return storage.set_malloc_ptr (std::move (demangled_name)); |
| |
| /* If we were given a non-mangled name, canonicalize it |
| according to the language (so far only for C++). */ |
| gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name); |
| if (canon != nullptr) |
| return storage.set_malloc_ptr (std::move (canon)); |
| } |
| else if (lang == language_d) |
| { |
| gdb::unique_xmalloc_ptr<char> demangled_name = d_demangle (name, 0); |
| if (demangled_name != NULL) |
| return storage.set_malloc_ptr (std::move (demangled_name)); |
| } |
| else if (lang == language_go) |
| { |
| gdb::unique_xmalloc_ptr<char> demangled_name |
| = language_def (language_go)->demangle_symbol (name, 0); |
| if (demangled_name != NULL) |
| return storage.set_malloc_ptr (std::move (demangled_name)); |
| } |
| |
| return name; |
| } |
| |
| /* See symtab.h. */ |
| |
| unsigned int |
| search_name_hash (enum language language, const char *search_name) |
| { |
| return language_def (language)->search_name_hash (search_name); |
| } |
| |
| /* See symtab.h. |
| |
| This function (or rather its subordinates) have a bunch of loops and |
| it would seem to be attractive to put in some QUIT's (though I'm not really |
| sure whether it can run long enough to be really important). But there |
| are a few calls for which it would appear to be bad news to quit |
| out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note |
| that there is C++ code below which can error(), but that probably |
| doesn't affect these calls since they are looking for a known |
| variable and thus can probably assume it will never hit the C++ |
| code). */ |
| |
| struct block_symbol |
| lookup_symbol_in_language (const char *name, const struct block *block, |
| const domain_search_flags domain, |
| enum language lang, |
| struct field_of_this_result *is_a_field_of_this) |
| { |
| SYMBOL_LOOKUP_SCOPED_DEBUG_ENTER_EXIT; |
| |
| demangle_result_storage storage; |
| const char *modified_name = demangle_for_lookup (name, lang, storage); |
| |
| return lookup_symbol_aux (modified_name, |
| symbol_name_match_type::FULL, |
| block, domain, lang, |
| is_a_field_of_this); |
| } |
| |
| /* See symtab.h. */ |
| |
| struct block_symbol |
| lookup_symbol (const char *name, const struct block *block, |
| domain_search_flags domain, |
| struct field_of_this_result *is_a_field_of_this) |
| { |
| return lookup_symbol_in_language (name, block, domain, |
| current_language->la_language, |
| is_a_field_of_this); |
| } |
| |
| /* See symtab.h. */ |
| |
| struct block_symbol |
| lookup_symbol_search_name (const char *search_name, const struct block *block, |
| domain_search_flags domain) |
| { |
| return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME, |
| block, domain, language_asm, NULL); |
| } |
| |
| /* See symtab.h. */ |
| |
| struct block_symbol |
| lookup_language_this (const struct language_defn *lang, |
| const struct block *block) |
| { |
| if (lang->name_of_this () == NULL || block == NULL) |
| return {}; |
| |
| symbol_lookup_debug_printf_v ("lookup_language_this (%s, %s (objfile %s))", |
| lang->name (), host_address_to_string (block), |
| objfile_debug_name (block->objfile ())); |
| |
| lookup_name_info this_name (lang->name_of_this (), |
| symbol_name_match_type::SEARCH_NAME); |
| |
| while (block) |
| { |
| struct symbol *sym; |
| |
| sym = block_lookup_symbol (block, this_name, SEARCH_VFT); |
| if (sym != NULL) |
| { |
| symbol_lookup_debug_printf_v |
| ("lookup_language_this (...) = %s (%s, block %s)", |
| sym->print_name (), host_address_to_string (sym), |
| host_address_to_string (block)); |
| return (struct block_symbol) {sym, block}; |
| } |
| if (block->function ()) |
| break; |
| block = block->superblock (); |
| } |
| |
| symbol_lookup_debug_printf_v ("lookup_language_this (...) = NULL"); |
| return {}; |
| } |
| |
| /* Given TYPE, a structure/union, |
| return 1 if the component named NAME from the ultimate target |
| structure/union is defined, otherwise, return 0. */ |
| |
| static int |
| check_field (struct type *type, const char *name, |
| struct field_of_this_result *is_a_field_of_this) |
| { |
| int i; |
| |
| /* The type may be a stub. */ |
| type = check_typedef (type); |
| |
| for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--) |
| { |
| const char *t_field_name = type->field (i).name (); |
| |
| if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
| { |
| is_a_field_of_this->type = type; |
| is_a_field_of_this->field = &type->field (i); |
| return 1; |
| } |
| } |
| |
| /* C++: If it was not found as a data field, then try to return it |
| as a pointer to a method. */ |
| |
| for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) |
| { |
| if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) |
| { |
| is_a_field_of_this->type = type; |
| is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i); |
| return 1; |
| } |
| } |
| |
| for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) |
| if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Behave like lookup_symbol except that NAME is the natural name |
| (e.g., demangled name) of the symbol that we're looking for. */ |
| |
| static struct block_symbol |
| lookup_symbol_aux (const char *name, symbol_name_match_type match_type, |
| const struct block *block, |
| const domain_search_flags domain, enum language language, |
| struct field_of_this_result *is_a_field_of_this) |
| { |
| SYMBOL_LOOKUP_SCOPED_DEBUG_ENTER_EXIT; |
| |
| struct block_symbol result; |
| const struct language_defn *langdef; |
| |
| if (symbol_lookup_debug) |
| { |
| struct objfile *objfile = (block == nullptr |
| ? nullptr : block->objfile ()); |
| |
| symbol_lookup_debug_printf |
| ("demangled symbol name = \"%s\", block @ %s (objfile %s)", |
| name, host_address_to_string (block), |
| objfile != NULL ? objfile_debug_name (objfile) : "NULL"); |
| symbol_lookup_debug_printf |
| ("domain name = \"%s\", language = \"%s\")", |
| domain_name (domain).c_str (), language_str (language)); |
| } |
| |
| /* Make sure we do something sensible with is_a_field_of_this, since |
| the callers that set this parameter to some non-null value will |
| certainly use it later. If we don't set it, the contents of |
| is_a_field_of_this are undefined. */ |
| if (is_a_field_of_this != NULL) |
| memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this)); |
| |
| langdef = language_def (language); |
| |
| /* Search specified block and its superiors. Don't search |
| STATIC_BLOCK or GLOBAL_BLOCK. */ |
| |
| result = lookup_local_symbol (name, match_type, block, domain, langdef); |
| if (result.symbol != NULL) |
| { |
| symbol_lookup_debug_printf |
| ("found symbol @ %s (using lookup_local_symbol)", |
| host_address_to_string (result.symbol)); |
| return result; |
| } |
| |
| /* If requested to do so by the caller and if appropriate for LANGUAGE, |
| check to see if NAME is a field of `this'. */ |
| |
| /* Don't do this check if we are searching for a struct. It will |
| not be found by check_field, but will be found by other |
| means. */ |
| if (is_a_field_of_this != NULL && (domain & SEARCH_STRUCT_DOMAIN) == 0) |
| { |
| result = lookup_language_this (langdef, block); |
| |
| if (result.symbol) |
| { |
| struct type *t = result.symbol->type (); |
| |
| /* I'm not really sure that type of this can ever |
| be typedefed; just be safe. */ |
| t = check_typedef (t); |
| if (t->is_pointer_or_reference ()) |
| t = t->target_type (); |
| |
| if (t->code () != TYPE_CODE_STRUCT |
| && t->code () != TYPE_CODE_UNION) |
| error (_("Internal error: `%s' is not an aggregate"), |
| langdef->name_of_this ()); |
| |
| if (check_field (t, name, is_a_field_of_this)) |
| { |
| symbol_lookup_debug_printf ("no symbol found"); |
| return {}; |
| } |
| } |
| } |
| |
| /* Now do whatever is appropriate for LANGUAGE to look |
| up static and global variables. */ |
| |
| result = langdef->lookup_symbol_nonlocal (name, block, domain); |
| if (result.symbol != NULL) |
| { |
| symbol_lookup_debug_printf |
| ("found symbol @ %s (using language lookup_symbol_nonlocal)", |
| host_address_to_string (result.symbol)); |
| return result; |
| } |
| |
| /* Now search all static file-level symbols. Not strictly correct, |
| but more useful than an error. */ |
| |
| result = lookup_static_symbol (name, domain); |
| symbol_lookup_debug_printf |
| ("found symbol @ %s (using lookup_static_symbol)", |
| result.symbol != NULL ? host_address_to_string (result.symbol) : "NULL"); |
| return result; |
| } |
| |
| /* Check to see if the symbol is defined in BLOCK or its superiors. |
| Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ |
| |
| static struct block_symbol |
| lookup_local_symbol (const char *name, |
| symbol_name_match_type match_type, |
| const struct block *block, |
| const domain_search_flags domain, |
| const struct language_defn *langdef) |
| { |
| if (block == nullptr) |
| return {}; |
| |
| const char *scope = block->scope (); |
| |
| while (!block->is_global_block () && !block->is_static_block ()) |
| { |
| struct symbol *sym = lookup_symbol_in_block (name, match_type, |
| block, domain); |
| if (sym != NULL) |
| return (struct block_symbol) {sym, block}; |
| |
| struct symbol *function = block->function (); |
| if (function != nullptr && function->is_template_function ()) |
| { |
| struct template_symbol *templ = (struct template_symbol *) function; |
| sym = search_symbol_list (name, |
| templ->n_template_arguments, |
| templ->template_arguments); |
| if (sym != nullptr) |
| return (struct block_symbol) {sym, block}; |
| } |
| |
| struct block_symbol blocksym |
| = langdef->lookup_symbol_local (scope, name, block, domain); |
| if (blocksym.symbol != nullptr) |
| return blocksym; |
| |
| if (block->inlined_p ()) |
| break; |
| block = block->superblock (); |
| } |
| |
| /* We've reached the end of the function without finding a result. */ |
| |
| return {}; |
| } |
| |
| /* See symtab.h. */ |
| |
| struct symbol * |
| lookup_symbol_in_block (const char *name, symbol_name_match_type match_type, |
| const struct block *block, |
| const domain_search_flags domain) |
| { |
| struct symbol *sym; |
| |
| if (symbol_lookup_debug) |
| { |
| struct objfile *objfile |
| = block == nullptr ? nullptr : block->objfile (); |
| |
| symbol_lookup_debug_printf_v |
| ("lookup_symbol_in_block (%s, %s (objfile %s), %s)", |
| name, host_address_to_string (block), |
| objfile != nullptr ? objfile_debug_name (objfile) : "NULL", |
| domain_name (domain).c_str ()); |
| } |
| |
| lookup_name_info lookup_name (name, match_type); |
| sym = block_lookup_symbol (block, lookup_name, domain); |
| if (sym) |
| { |
| symbol_lookup_debug_printf_v ("lookup_symbol_in_block (...) = %s", |
| host_address_to_string (sym)); |
| return sym; |
| } |
| |
| symbol_lookup_debug_printf_v ("lookup_symbol_in_block (...) = NULL"); |
| return NULL; |
| } |
| |
| /* See symtab.h. */ |
| |
| struct block_symbol |
| lookup_global_symbol_from_objfile (struct objfile *main_objfile, |
| enum block_enum block_index, |
| const char *name, |
| const domain_search_flags domain) |
| { |
| gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); |
| |
| for (objfile *objfile : main_objfile->separate_debug_objfiles ()) |
| { |
| struct block_symbol result |
| = lookup_symbol_in_objfile (objfile, block_index, name, domain); |
| |
| if (result.symbol != nullptr) |
| return result; |
| } |
| |
| return {}; |
| } |
| |
| /* Check to see if the symbol is defined in one of the OBJFILE's |
| symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, |
| depending on whether or not we want to search global symbols or |
| static symbols. */ |
| |
| static struct block_symbol |
| lookup_symbol_in_objfile_symtabs (struct objfile *objfile, |
| enum block_enum block_index, const char *name, |
| const domain_search_flags domain) |
| { |
| gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); |
| |
| symbol_lookup_debug_printf_v |
| ("lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)", |
| objfile_debug_name (objfile), |
| block_index == GLOBAL_BLOCK ? "GLOBAL_BLOCK" : "STATIC_BLOCK", |
| name, domain_name (domain).c_str ()); |
| |
| struct block_symbol other; |
| other.symbol = NULL; |
| for (compunit_symtab *cust : objfile->compunits ()) |
| { |
| const struct blockvector *bv; |
| const struct block *block; |
| struct block_symbol result; |
| |
| bv = cust->blockvector (); |
| block = bv->block (block_index); |
| result.symbol = block_lookup_symbol_primary (block, name, domain); |
| result.block = block; |
| if (result.symbol == NULL) |
| continue; |
| if (best_symbol (result.symbol, domain)) |
| { |
| other = result; |
| break; |
| } |
| if (result.symbol->matches (domain)) |
| { |
| struct symbol *better |
| = better_symbol (other.symbol, result.symbol, domain); |
| if (better != other.symbol) |
| { |
| other.symbol = better; |
| other.block = block; |
| } |
| } |
| } |
| |
| if (other.symbol != NULL) |
| { |
| symbol_lookup_debug_printf_v |
| ("lookup_symbol_in_objfile_symtabs (...) = %s (block %s)", |
| host_address_to_string (other.symbol), |
| host_address_to_string (other.block)); |
| return other; |
| } |
| |
| symbol_lookup_debug_printf_v |
| ("lookup_symbol_in_objfile_symtabs (...) = NULL"); |
| return {}; |
| } |
| |
| /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols. |
| Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE |
| and all associated separate debug objfiles. |
| |
| Normally we only look in OBJFILE, and not any separate debug objfiles |
| because the outer loop will cause them to be searched too. This case is |
| different. Here we're called from search_symbols where it will only |
| call us for the objfile that contains a matching minsym. */ |
| |
| static struct block_symbol |
| lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile, |
| const char *linkage_name, |
| domain_search_flags domain) |
| { |
| enum language lang = current_language->la_language; |
| struct objfile *main_objfile; |
| |
| demangle_result_storage storage; |
| const char *modified_name = demangle_for_lookup (linkage_name, lang, storage); |
| |
| if (objfile->separate_debug_objfile_backlink) |
| main_objfile = objfile->separate_debug_objfile_backlink; |
| else |
| main_objfile = objfile; |
| |
| for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ()) |
| { |
| struct block_symbol result; |
| |
| result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK, |
| modified_name, domain); |
| if (result.symbol == NULL) |
| result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK, |
| modified_name, domain); |
| if (result.symbol != NULL) |
| return result; |
| } |
| |
| return {}; |
| } |
| |
| /* A helper function that throws an exception when a symbol was found |
| in a psymtab but not in a symtab. */ |
| |
| [[noreturn]] static void |
| error_in_psymtab_expansion (enum block_enum block_index, const char *name, |
| struct compunit_symtab *cust) |
| { |
| error (_("\ |
| Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\ |
| %s may be an inlined function, or may be a template function\n \ |
| (if a template, try specifying an instantiation: %s<type>)."), |
| block_index == GLOBAL_BLOCK ? "global" : "static", |
| name, |
| symtab_to_filename_for_display (cust->primary_filetab ()), |
| name, name); |
| } |
| |
| /* A helper function for various lookup routines that interfaces with |
| the "quick" symbol table functions. */ |
| |
| static struct block_symbol |
| lookup_symbol_via_quick_fns (struct objfile *objfile, |
| enum block_enum block_index, const char *name, |
| const domain_search_flags domain) |
| { |
| struct compunit_symtab *cust; |
| const struct blockvector *bv; |
| const struct block *block; |
| struct block_symbol result; |
| |
| symbol_lookup_debug_printf_v |
| ("lookup_symbol_via_quick_fns (%s, %s, %s, %s)", |
| objfile_debug_name (objfile), |
| block_index == GLOBAL_BLOCK ? "GLOBAL_BLOCK" : "STATIC_BLOCK", |
| name, domain_name (domain).c_str ()); |
| |
| lookup_name_info lookup_name (name, symbol_name_match_type::FULL); |
| cust = objfile->lookup_symbol (block_index, lookup_name, domain); |
| if (cust == NULL) |
| { |
| symbol_lookup_debug_printf_v |
| ("lookup_symbol_via_quick_fns (...) = NULL"); |
| return {}; |
| } |
| |
| bv = cust->blockvector (); |
| block = bv->block (block_index); |
| result.symbol = block_lookup_symbol (block, lookup_name, domain); |
| if (result.symbol == NULL) |
| error_in_psymtab_expansion (block_index, name, cust); |
| |
| symbol_lookup_debug_printf_v |
| ("lookup_symbol_via_quick_fns (...) = %s (block %s)", |
| host_address_to_string (result.symbol), |
| host_address_to_string (block)); |
| |
| result.block = block; |
| return result; |
| } |
| |
| /* See language.h. */ |
| |
| struct block_symbol |
| language_defn::lookup_symbol_nonlocal (const char *name, |
| const struct block *block, |
| const domain_search_flags domain) const |
| { |
| struct block_symbol result; |
| |
| /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip |
| the current objfile. Searching the current objfile first is useful |
| for both matching user expectations as well as performance. */ |
| |
| result = lookup_symbol_in_static_block (name, block, domain); |
| if (result.symbol != NULL) |
| return result; |
| |
| /* If we didn't find a definition for a builtin type in the static block, |
| search for it now. This is actually the right thing to do and can be |
| a massive performance win. E.g., when debugging a program with lots of |
| shared libraries we could search all of them only to find out the |
| builtin type isn't defined in any of them. This is common for types |
| like "void". */ |
| if ((domain & SEARCH_TYPE_DOMAIN) != 0) |
| { |
| struct gdbarch *gdbarch; |
| |
| if (block == NULL) |
| gdbarch = current_inferior ()->arch (); |
| else |
| gdbarch = block->gdbarch (); |
| result.symbol = language_lookup_primitive_type_as_symbol (this, |
| gdbarch, name); |
| result.block = NULL; |
| if (result.symbol != NULL) |
| return result; |
| } |
| |
| return lookup_global_symbol (name, block, domain); |
| } |
| |
| /* See symtab.h. */ |
| |
| struct block_symbol |
| lookup_symbol_in_static_block (const char *name, |
| const struct block *block, |
| const domain_search_flags domain) |
| { |
| if (block == nullptr) |
| return {}; |
| |
| const struct block *static_block = block->static_block (); |
| struct symbol *sym; |
| |
| if (static_block == NULL) |
| return {}; |
| |
| if (symbol_lookup_debug) |
| { |
| struct objfile *objfile = (block == nullptr |
| ? nullptr : block->objfile ()); |
| |
| symbol_lookup_debug_printf |
| ("lookup_symbol_in_static_block (%s, %s (objfile %s), %s)", |
| name, host_address_to_string (block), |
| objfile != nullptr ? objfile_debug_name (objfile) : "NULL", |
| domain_name (domain).c_str ()); |
| } |
| |
| sym = lookup_symbol_in_block (name, |
| symbol_name_match_type::FULL, |
| static_block, domain); |
| symbol_lookup_debug_printf ("lookup_symbol_in_static_block (...) = %s", |
| sym != NULL |
| ? host_address_to_string (sym) : "NULL"); |
| return (struct block_symbol) {sym, static_block}; |
| } |
| |
| /* Perform the standard symbol lookup of NAME in OBJFILE: |
| 1) First search expanded symtabs, and if not found |
| 2) Search the "quick" symtabs (partial or .gdb_index). |
| BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */ |
| |
| static struct block_symbol |
| lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index, |
| const char *name, const domain_search_flags domain) |
| { |
| struct block_symbol result; |
| |
| gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); |
| |
| symbol_lookup_debug_printf ("lookup_symbol_in_objfile (%s, %s, %s, %s)", |
| objfile_debug_name (objfile), |
| block_index == GLOBAL_BLOCK |
| ? "GLOBAL_BLOCK" : "STATIC_BLOCK", |
| name, domain_name (domain).c_str ()); |
| |
| result = lookup_symbol_in_objfile_symtabs (objfile, block_index, |
| name, domain); |
| if (result.symbol != NULL) |
| { |
| symbol_lookup_debug_printf |
| ("lookup_symbol_in_objfile (...) = %s (in symtabs)", |
| host_address_to_string (result.symbol)); |
| return result; |
| } |
| |
| result = lookup_symbol_via_quick_fns (objfile, block_index, |
| name, domain); |
| symbol_lookup_debug_printf ("lookup_symbol_in_objfile (...) = %s%s", |
| result.symbol != NULL |
| ? host_address_to_string (result.symbol) |
| : "NULL", |
| result.symbol != NULL ? " (via quick fns)" |
| : ""); |
| return result; |
| } |
| |
| /* This function contains the common code of lookup_{global,static}_symbol. |
| OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is |
| the objfile to start the lookup in. */ |
| |
| static struct block_symbol |
| lookup_global_or_static_symbol (const char *name, |
| enum block_enum block_index, |
| struct objfile *objfile, |
| const domain_search_flags domain) |
| { |
| struct symbol_cache *cache = get_symbol_cache (current_program_space); |
| struct block_symbol result; |
| struct block_symbol_cache *bsc; |
| struct symbol_cache_slot *slot; |
| |
| gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); |
| gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK); |
| |
| /* First see if we can find the symbol in the cache. |
| This works because we use the current objfile to qualify the lookup. */ |
| result = symbol_cache_lookup (cache, objfile, block_index, name, domain, |
| &bsc, &slot); |
| if (result.symbol != NULL) |
| { |
| if (SYMBOL_LOOKUP_FAILED_P (result)) |
| return {}; |
| return result; |
| } |
| |
| /* Do a global search (of global blocks, heh). */ |
| if (result.symbol == NULL) |
| gdbarch_iterate_over_objfiles_in_search_order |
| (objfile != NULL ? objfile->arch () : current_inferior ()->arch (), |
| [&result, block_index, name, domain] (struct objfile *objfile_iter) |
| { |
| result = lookup_symbol_in_objfile (objfile_iter, block_index, |
| name, domain); |
| return result.symbol != nullptr; |
| }, |
| objfile); |
| |
| if (result.symbol != NULL) |
| symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block, |
| domain); |
| else |
| symbol_cache_mark_not_found (bsc, slot, objfile, name, domain); |
| |
| return result; |
| } |
| |
| /* See symtab.h. */ |
| |
| struct block_symbol |
| lookup_static_symbol (const char *name, const domain_search_flags domain) |
| { |
| return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain); |
| } |
| |
| /* See symtab.h. */ |
| |
| struct block_symbol |
| lookup_global_symbol (const char *name, |
| const struct block *block, |
| const domain_search_flags domain) |
| { |
| /* If a block was passed in, we want to search the corresponding |
| global block first. This yields "more expected" behavior, and is |
| needed to support 'FILENAME'::VARIABLE lookups. */ |
| const struct block *global_block |
| = block == nullptr ? nullptr : block->global_block (); |
| symbol *sym = NULL; |
| if (global_block != nullptr) |
| { |
| sym = lookup_symbol_in_block (name, |
| symbol_name_match_type::FULL, |
| global_block, domain); |
| if (sym != NULL && best_symbol (sym, domain)) |
| return { sym, global_block }; |
| } |
| |
| struct objfile *objfile = nullptr; |
| if (block != nullptr) |
| { |
| objfile = block->objfile (); |
| if (objfile->separate_debug_objfile_backlink != nullptr) |
| objfile = objfile->separate_debug_objfile_backlink; |
| } |
| |
| block_symbol bs |
| = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain); |
| if (better_symbol (sym, bs.symbol, domain) == sym) |
| return { sym, global_block }; |
| else |
| return bs; |
| } |
| |
| /* See symtab.h. */ |
| |
| bool |
| symbol::matches (domain_search_flags flags) const |
| { |
| /* C++ has a typedef for every tag, and the types are in the struct |
| domain. */ |
| if (language () == language_cplus && (flags & SEARCH_TYPE_DOMAIN) != 0) |
| flags |= SEARCH_STRUCT_DOMAIN; |
| |
| return search_flags_matches (flags, m_domain); |
| } |
| |
| /* See symtab.h. */ |
| |
| struct type * |
| lookup_transparent_type (const char *name, domain_search_flags flags) |
| { |
| return current_language->lookup_transparent_type (name, flags); |
| } |
| |
| /* A helper for basic_lookup_transparent_type that interfaces with the |
| "quick" symbol table functions. */ |
| |
| static struct type * |
| basic_lookup_transparent_type_quick (struct objfile *objfile, |
| enum block_enum block_index, |
| domain_search_flags flags, |
| const lookup_name_info &name) |
| { |
| struct compunit_symtab *cust; |
| const struct blockvector *bv; |
| const struct block *block; |
| struct symbol *sym; |
| |
| cust = objfile->lookup_symbol (block_index, name, flags); |
| if (cust == NULL) |
| return NULL; |
| |
| bv = cust->blockvector (); |
| block = bv->block (block_index); |
| |
| sym = block_find_symbol (block, name, flags, nullptr); |
| if (sym == nullptr) |
| error_in_psymtab_expansion (block_index, name.c_str (), cust); |
| gdb_assert (!TYPE_IS_OPAQUE (sym->type ())); |
| return sym->type (); |
| } |
| |
| /* Subroutine of basic_lookup_transparent_type to simplify it. |
| Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE. |
| BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */ |
| |
| static struct type * |
| basic_lookup_transparent_type_1 (struct objfile *objfile, |
| enum block_enum block_index, |
| domain_search_flags flags, |
| const lookup_name_info &name) |
| { |
| const struct blockvector *bv; |
| const struct block *block; |
| const struct symbol *sym; |
| |
| for (compunit_symtab *cust : objfile->compunits ()) |
| { |
| bv = cust->blockvector (); |
| block = bv->block (block_index); |
| sym = block_find_symbol (block, name, flags, nullptr); |
| if (sym != nullptr) |
| { |
| gdb_assert (!TYPE_IS_OPAQUE (sym->type ())); |
| return sym->type (); |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* The standard implementation of lookup_transparent_type. This code |
| was modeled on lookup_symbol -- the parts not relevant to looking |
| up types were just left out. In particular it's assumed here that |
| types are available in STRUCT_DOMAIN and only in file-static or |
| global blocks. */ |
| |
| struct type * |
| basic_lookup_transparent_type (const char *name, domain_search_flags flags) |
| { |
| struct type *t; |
| |
| lookup_name_info lookup_name (name, symbol_name_match_type::FULL); |
| |
| /* Now search all the global symbols. Do the symtab's first, then |
| check the psymtab's. If a psymtab indicates the existence |
| of the desired name as a global, then do psymtab-to-symtab |
| conversion on the fly and return the found symbol. */ |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, |
| flags, lookup_name); |
| if (t) |
| return t; |
| } |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, |
| flags, lookup_name); |
| if (t) |
| return t; |
| } |
| |
| /* Now search the static file-level symbols. |
| Not strictly correct, but more useful than an error. |
| Do the symtab's first, then |
| check the psymtab's. If a psymtab indicates the existence |
| of the desired name as a file-level static, then do psymtab-to-symtab |
| conversion on the fly and return the found symbol. */ |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, |
| flags, lookup_name); |
| if (t) |
| return t; |
| } |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, |
| flags, lookup_name); |
| if (t) |
| return t; |
| } |
| |
| return (struct type *) 0; |
| } |
| |
| /* See symtab.h. */ |
| |
| bool |
| iterate_over_symbols (const struct block *block, |
| const lookup_name_info &name, |
| const domain_search_flags domain, |
| gdb::function_view<symbol_found_callback_ftype> callback) |
| { |
| for (struct symbol *sym : block_iterator_range (block, &name)) |
| { |
| if (sym->matches (domain)) |
| { |
| struct block_symbol block_sym = {sym, block}; |
| |
| if (!callback (&block_sym)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* See symtab.h. */ |
| |
| bool |
| iterate_over_symbols_terminated |
| (const struct block *block, |
| const lookup_name_info &name, |
| const domain_search_flags domain, |
| gdb::function_view<symbol_found_callback_ftype> callback) |
| { |
| if (!iterate_over_symbols (block, name, domain, callback)) |
| return false; |
| struct block_symbol block_sym = {nullptr, block}; |
| return callback (&block_sym); |
| } |
| |
| /* Find the compunit symtab associated with PC and SECTION. |
| This will read in debug info as necessary. */ |
| |
| struct compunit_symtab * |
| find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section) |
| { |
| struct compunit_symtab *best_cust = NULL; |
| CORE_ADDR best_cust_range = 0; |
| |
| /* If we know that this is not a text address, return failure. This is |
| necessary because we loop based on the block's high and low code |
| addresses, which do not include the data ranges, and because |
| we call find_pc_sect_psymtab which has a similar restriction based |
| on the partial_symtab's texthigh and textlow. */ |
| bound_minimal_symbol msymbol |
| = lookup_minimal_symbol_by_pc_section (pc, section); |
| if (msymbol.minsym && msymbol.minsym->data_p ()) |
| return NULL; |
| |
| /* Search all symtabs for the one whose file contains our address, and which |
| is the smallest of all the ones containing the address. This is designed |
| to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 |
| and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from |
| 0x1000-0x4000, but for address 0x2345 we want to return symtab b. |
| |
| This happens for native ecoff format, where code from included files |
| gets its own symtab. The symtab for the included file should have |
| been read in already via the dependency mechanism. |
| It might be swifter to create several symtabs with the same name |
| like xcoff does (I'm not sure). |
| |
| It also happens for objfiles that have their functions reordered. |
| For these, the symtab we are looking for is not necessarily read in. */ |
| |
| for (objfile *obj_file : current_program_space->objfiles ()) |
| { |
| for (compunit_symtab *cust : obj_file->compunits ()) |
| { |
| const struct blockvector *bv = cust->blockvector (); |
| const struct block *global_block = bv->global_block (); |
| CORE_ADDR start = global_block->start (); |
| CORE_ADDR end = global_block->end (); |
| bool in_range_p = start <= pc && pc < end; |
| if (!in_range_p) |
| continue; |
| |
| if (bv->map () != nullptr) |
| { |
| if (bv->map ()->find (pc) == nullptr) |
| continue; |
| |
| return cust; |
| } |
| |
| CORE_ADDR range = end - start; |
| if (best_cust != nullptr |
| && range >= best_cust_range) |
| /* Cust doesn't have a smaller range than best_cust, skip it. */ |
| continue; |
| |
| /* For an objfile that has its functions reordered, |
| find_pc_psymtab will find the proper partial symbol table |
| and we simply return its corresponding symtab. */ |
| /* In order to better support objfiles that contain both |
| stabs and coff debugging info, we continue on if a psymtab |
| can't be found. */ |
| struct compunit_symtab *result |
| = obj_file->find_pc_sect_compunit_symtab (msymbol, pc, |
| section, 0); |
| if (result != nullptr) |
| return result; |
| |
| if (section != 0) |
| { |
| struct symbol *found_sym = nullptr; |
| |
| for (int b_index = GLOBAL_BLOCK; |
| b_index <= STATIC_BLOCK && found_sym == nullptr; |
| ++b_index) |
| { |
| const struct block *b = bv->block (b_index); |
| for (struct symbol *sym : block_iterator_range (b)) |
| { |
| if (matching_obj_sections (sym->obj_section (obj_file), |
| section)) |
| { |
| found_sym = sym; |
| break; |
| } |
| } |
| } |
| if (found_sym == nullptr) |
| continue; /* No symbol in this symtab matches |
| section. */ |
| } |
| |
| /* Cust is best found sofar, save it. */ |
| best_cust = cust; |
| best_cust_range = range; |
| } |
| } |
| |
| if (best_cust != NULL) |
| return best_cust; |
| |
| /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */ |
| |
| for (objfile *objf : current_program_space->objfiles ()) |
| { |
| struct compunit_symtab *result |
| = objf->find_pc_sect_compunit_symtab (msymbol, pc, section, 1); |
| if (result != NULL) |
| return result; |
| } |
| |
| return NULL; |
| } |
| |
| /* Find the compunit symtab associated with PC. |
| This will read in debug info as necessary. |
| Backward compatibility, no section. */ |
| |
| struct compunit_symtab * |
| find_pc_compunit_symtab (CORE_ADDR pc) |
| { |
| return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc)); |
| } |
| |
| /* See symtab.h. */ |
| |
| struct symbol * |
| find_symbol_at_address (CORE_ADDR address) |
| { |
| /* A helper function to search a given symtab for a symbol matching |
| ADDR. */ |
| auto search_symtab = [] (compunit_symtab *symtab, CORE_ADDR addr) -> symbol * |
| { |
| const struct blockvector *bv = symtab->blockvector (); |
| |
| for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i) |
| { |
| const struct block *b = bv->block (i); |
| |
| for (struct symbol *sym : block_iterator_range (b)) |
| { |
| if (sym->aclass () == LOC_STATIC |
| && sym->value_address () == addr) |
| return sym; |
| } |
| } |
| return nullptr; |
| }; |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| /* If this objfile was read with -readnow, then we need to |
| search the symtabs directly. */ |
| if ((objfile->flags & OBJF_READNOW) != 0) |
| { |
| for (compunit_symtab *symtab : objfile->compunits ()) |
| { |
| struct symbol *sym = search_symtab (symtab, address); |
| if (sym != nullptr) |
| return sym; |
| } |
| } |
| else |
| { |
| struct compunit_symtab *symtab |
| = objfile->find_compunit_symtab_by_address (address); |
| if (symtab != NULL) |
| { |
| struct symbol *sym = search_symtab (symtab, address); |
| if (sym != nullptr) |
| return sym; |
| } |
| } |
| } |
| |
| return NULL; |
| } |
| |
| |
| |
| /* Find the source file and line number for a given PC value and SECTION. |
| Return a structure containing a symtab pointer, a line number, |
| and a pc range for the entire source line. |
| The value's .pc field is NOT the specified pc. |
| NOTCURRENT nonzero means, if specified pc is on a line boundary, |
| use the line that ends there. Otherwise, in that case, the line |
| that begins there is used. */ |
| |
| /* The big complication here is that a line may start in one file, and end just |
| before the start of another file. This usually occurs when you #include |
| code in the middle of a subroutine. To properly find the end of a line's PC |
| range, we must search all symtabs associated with this compilation unit, and |
| find the one whose first PC is closer than that of the next line in this |
| symtab. */ |
| |
| struct symtab_and_line |
| find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent) |
| { |
| struct compunit_symtab *cust; |
| const linetable *l; |
| int len; |
| const linetable_entry *item; |
| const struct blockvector *bv; |
| |
| /* Info on best line seen so far, and where it starts, and its file. */ |
| |
| const linetable_entry *best = NULL; |
| CORE_ADDR best_end = 0; |
| struct symtab *best_symtab = 0; |
| |
| /* Store here the first line number |
| of a file which contains the line at the smallest pc after PC. |
| If we don't find a line whose range contains PC, |
| we will use a line one less than this, |
| with a range from the start of that file to the first line's pc. */ |
| const linetable_entry *alt = NULL; |
| |
| /* Info on best line seen in this file. */ |
| |
| const linetable_entry *prev; |
| |
| /* If this pc is not from the current frame, |
| it is the address of the end of a call instruction. |
| Quite likely that is the start of the following statement. |
| But what we want is the statement containing the instruction. |
| Fudge the pc to make sure we get that. */ |
| |
| /* It's tempting to assume that, if we can't find debugging info for |
| any function enclosing PC, that we shouldn't search for line |
| number info, either. However, GAS can emit line number info for |
| assembly files --- very helpful when debugging hand-written |
| assembly code. In such a case, we'd have no debug info for the |
| function, but we would have line info. */ |
| |
| if (notcurrent) |
| pc -= 1; |
| |
| /* elz: added this because this function returned the wrong |
| information if the pc belongs to a stub (import/export) |
| to call a shlib function. This stub would be anywhere between |
| two functions in the target, and the line info was erroneously |
| taken to be the one of the line before the pc. */ |
| |
| /* RT: Further explanation: |
| |
| * We have stubs (trampolines) inserted between procedures. |
| * |
| * Example: "shr1" exists in a shared library, and a "shr1" stub also |
| * exists in the main image. |
| * |
| * In the minimal symbol table, we have a bunch of symbols |
| * sorted by start address. The stubs are marked as "trampoline", |
| * the others appear as text. E.g.: |
| * |
| * Minimal symbol table for main image |
| * main: code for main (text symbol) |
| * shr1: stub (trampoline symbol) |
| * foo: code for foo (text symbol) |
| * ... |
| * Minimal symbol table for "shr1" image: |
| * ... |
| * shr1: code for shr1 (text symbol) |
| * ... |
| * |
| * So the code below is trying to detect if we are in the stub |
| * ("shr1" stub), and if so, find the real code ("shr1" trampoline), |
| * and if found, do the symbolization from the real-code address |
| * rather than the stub address. |
| * |
| * Assumptions being made about the minimal symbol table: |
| * 1. lookup_minimal_symbol_by_pc() will return a trampoline only |
| * if we're really in the trampoline.s If we're beyond it (say |
| * we're in "foo" in the above example), it'll have a closer |
| * symbol (the "foo" text symbol for example) and will not |
| * return the trampoline. |
| * 2. lookup_minimal_symbol_text() will find a real text symbol |
| * corresponding to the trampoline, and whose address will |
| * be different than the trampoline address. I put in a sanity |
| * check for the address being the same, to avoid an |
| * infinite recursion. |
| */ |
| bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (pc); |
| if (msymbol.minsym != NULL) |
| if (msymbol.minsym->type () == mst_solib_trampoline) |
| { |
| bound_minimal_symbol mfunsym |
| = lookup_minimal_symbol_text (current_program_space, |
| msymbol.minsym->linkage_name (), |
| nullptr); |
| |
| if (mfunsym.minsym == NULL) |
| /* I eliminated this warning since it is coming out |
| * in the following situation: |
| * gdb shmain // test program with shared libraries |
| * (gdb) break shr1 // function in shared lib |
| * Warning: In stub for ... |
| * In the above situation, the shared lib is not loaded yet, |
| * so of course we can't find the real func/line info, |
| * but the "break" still works, and the warning is annoying. |
| * So I commented out the warning. RT */ |
| /* warning ("In stub for %s; unable to find real function/line info", |
| msymbol->linkage_name ()); */ |
| ; |
| /* fall through */ |
| else if (mfunsym.value_address () |
| == msymbol.value_address ()) |
| /* Avoid infinite recursion */ |
| /* See above comment about why warning is commented out. */ |
| /* warning ("In stub for %s; unable to find real function/line info", |
| msymbol->linkage_name ()); */ |
| ; |
| /* fall through */ |
| else |
| { |
| /* Detect an obvious case of infinite recursion. If this |
| should occur, we'd like to know about it, so error out, |
| fatally. */ |
| if (mfunsym.value_address () == pc) |
| internal_error (_("Infinite recursion detected in find_pc_sect_line;" |
| "please file a bug report")); |
| |
| return find_pc_line (mfunsym.value_address (), 0); |
| } |
| } |
| |
| symtab_and_line val; |
| val.pspace = current_program_space; |
| |
| cust = find_pc_sect_compunit_symtab (pc, section); |
| if (cust == NULL) |
| { |
| /* If no symbol information, return previous pc. */ |
| if (notcurrent) |
| pc++; |
| val.pc = pc; |
| return val; |
| } |
| |
| bv = cust->blockvector (); |
| struct objfile *objfile = cust->objfile (); |
| |
| /* Look at all the symtabs that share this blockvector. |
| They all have the same apriori range, that we found was right; |
| but they have different line tables. */ |
| |
| for (symtab *iter_s : cust->filetabs ()) |
| { |
| /* Find the best line in this symtab. */ |
| l = iter_s->linetable (); |
| if (!l) |
| continue; |
| len = l->nitems; |
| if (len <= 0) |
| { |
| /* I think len can be zero if the symtab lacks line numbers |
| (e.g. gcc -g1). (Either that or the LINETABLE is NULL; |
| I'm not sure which, and maybe it depends on the symbol |
| reader). */ |
| continue; |
| } |
| |
| prev = NULL; |
| item = l->item; /* Get first line info. */ |
| |
| /* Is this file's first line closer than the first lines of other files? |
| If so, record this file, and its first line, as best alternate. */ |
| if (item->pc (objfile) > pc |
| && (!alt || item->unrelocated_pc () < alt->unrelocated_pc ())) |
| alt = item; |
| |
| auto pc_compare = [] (const unrelocated_addr &comp_pc, |
| const struct linetable_entry & lhs) |
| { |
| return comp_pc < lhs.unrelocated_pc (); |
| }; |
| |
| const linetable_entry *first = item; |
| const linetable_entry *last = item + len; |
| item = (std::upper_bound |
| (first, last, |
| unrelocated_addr (pc - objfile->text_section_offset ()), |
| pc_compare)); |
| if (item != first) |
| { |
| prev = item - 1; /* Found a matching item. */ |
| /* At this point, prev is a line whose address is <= pc. However, we |
| don't know if ITEM is pointing to the same statement or not. */ |
| while (item != last && prev->line == item->line && !item->is_stmt) |
| item++; |
| } |
| |
| /* At this point, prev points at the line whose start addr is <= pc, and |
| item points at the next statement. If we ran off the end of the linetable |
| (pc >= start of the last line), then prev == item. If pc < start of |
| the first line, prev will not be set. */ |
| |
| /* Is this file's best line closer than the best in the other files? |
| If so, record this file, and its best line, as best so far. Don't |
| save prev if it represents the end of a function (i.e. line number |
| 0) instead of a real line. */ |
| |
| if (prev && prev->line |
| && (!best || prev->unrelocated_pc () > best->unrelocated_pc ())) |
| { |
| best = prev; |
| best_symtab = iter_s; |
| |
| /* If during the binary search we land on a non-statement entry, |
| scan backward through entries at the same address to see if |
| there is an entry marked as is-statement. In theory this |
| duplication should have been removed from the line table |
| during construction, this is just a double check. If the line |
| table has had the duplication removed then this should be |
| pretty cheap. */ |
| if (!best->is_stmt) |
| { |
| const linetable_entry *tmp = best; |
| while (tmp > first |
| && (tmp - 1)->unrelocated_pc () == tmp->unrelocated_pc () |
| && (tmp - 1)->line != 0 && !tmp->is_stmt) |
| --tmp; |
| if (tmp->is_stmt) |
| best = tmp; |
| } |
| |
| /* Discard BEST_END if it's before the PC of the current BEST. */ |
| if (best_end <= best->pc (objfile)) |
| best_end = 0; |
| } |
| |
| /* If another line (denoted by ITEM) is in the linetable and its |
| PC is after BEST's PC, but before the current BEST_END, then |
| use ITEM's PC as the new best_end. */ |
| if (best && item < last |
| && item->unrelocated_pc () > best->unrelocated_pc () |
| && (best_end == 0 || best_end > item->pc (objfile))) |
| best_end = item->pc (objfile); |
| } |
| |
| if (!best_symtab) |
| { |
| /* If we didn't find any line number info, just return zeros. |
| We used to return alt->line - 1 here, but that could be |
| anywhere; if we don't have line number info for this PC, |
| don't make some up. */ |
| val.pc = pc; |
| } |
| else if (best->line == 0) |
| { |
| /* If our best fit is in a range of PC's for which no line |
| number info is available (line number is zero) then we didn't |
| find any valid line information. */ |
| val.pc = pc; |
| } |
| else |
| { |
| val.is_stmt = best->is_stmt; |
| val.symtab = best_symtab; |
| val.line = best->line; |
| val.pc = best->pc (objfile); |
| if (best_end && (!alt || best_end < alt->pc (objfile))) |
| val.end = best_end; |
| else if (alt) |
| val.end = alt->pc (objfile); |
| else |
| val.end = bv->global_block ()->end (); |
| } |
| val.section = section; |
| return val; |
| } |
| |
| /* Backward compatibility (no section). */ |
| |
| struct symtab_and_line |
| find_pc_line (CORE_ADDR pc, int notcurrent) |
| { |
| struct obj_section *section; |
| |
| section = find_pc_overlay (pc); |
| if (!pc_in_unmapped_range (pc, section)) |
| return find_pc_sect_line (pc, section, notcurrent); |
| |
| /* If the original PC was an unmapped address then we translate this to a |
| mapped address in order to lookup the sal. However, as the user |
| passed us an unmapped address it makes more sense to return a result |
| that has the pc and end fields translated to unmapped addresses. */ |
| pc = overlay_mapped_address (pc, section); |
| symtab_and_line sal = find_pc_sect_line (pc, section, notcurrent); |
| sal.pc = overlay_unmapped_address (sal.pc, section); |
| sal.end = overlay_unmapped_address (sal.end, section); |
| return sal; |
| } |
| |
| /* Compare two symtab_and_line entries. Return true if both have |
| the same line number and the same symtab pointer. That means we |
| are dealing with two entries from the same line and from the same |
| source file. |
| |
| Return false otherwise. */ |
| |
| static bool |
| sal_line_symtab_matches_p (const symtab_and_line &sal1, |
| const symtab_and_line &sal2) |
| { |
| return sal1.line == sal2.line && sal1.symtab == sal2.symtab; |
| } |
| |
| /* See symtah.h. */ |
| |
| std::optional<CORE_ADDR> |
| find_line_range_start (CORE_ADDR pc) |
| { |
| struct symtab_and_line current_sal = find_pc_line (pc, 0); |
| |
| if (current_sal.line == 0) |
| return {}; |
| |
| struct symtab_and_line prev_sal = find_pc_line (current_sal.pc - 1, 0); |
| |
| /* If the previous entry is for a different line, that means we are already |
| at the entry with the start PC for this line. */ |
| if (!sal_line_symtab_matches_p (prev_sal, current_sal)) |
| return current_sal.pc; |
| |
| /* Otherwise, keep looking for entries for the same line but with |
| smaller PC's. */ |
| bool done = false; |
| CORE_ADDR prev_pc; |
| while (!done) |
| { |
| prev_pc = prev_sal.pc; |
| |
| prev_sal = find_pc_line (prev_pc - 1, 0); |
| |
| /* Did we notice a line change? If so, we are done searching. */ |
| if (!sal_line_symtab_matches_p (prev_sal, current_sal)) |
| done = true; |
| } |
| |
| return prev_pc; |
| } |
| |
| /* See symtab.h. */ |
| |
| struct symtab * |
| find_pc_line_symtab (CORE_ADDR pc) |
| { |
| struct symtab_and_line sal; |
| |
| /* This always passes zero for NOTCURRENT to find_pc_line. |
| There are currently no callers that ever pass non-zero. */ |
| sal = find_pc_line (pc, 0); |
| return sal.symtab; |
| } |
| |
| /* Find line number LINE in any symtab whose name is the same as |
| SYMTAB. |
| |
| If found, return the symtab that contains the linetable in which it was |
| found, set *INDEX to the index in the linetable of the best entry |
| found, and set *EXACT_MATCH to true if the value returned is an |
| exact match. |
| |
| If not found, return NULL. */ |
| |
| struct symtab * |
| find_line_symtab (struct symtab *sym_tab, int line, |
| int *index, bool *exact_match) |
| { |
| int exact = 0; /* Initialized here to avoid a compiler warning. */ |
| |
| /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE |
| so far seen. */ |
| |
| int best_index; |
| const struct linetable *best_linetable; |
| struct symtab *best_symtab; |
| |
| /* First try looking it up in the given symtab. */ |
| best_linetable = sym_tab->linetable (); |
| best_symtab = sym_tab; |
| best_index = find_line_common (best_linetable, line, &exact, 0); |
| if (best_index < 0 || !exact) |
| { |
| /* Didn't find an exact match. So we better keep looking for |
| another symtab with the same name. In the case of xcoff, |
| multiple csects for one source file (produced by IBM's FORTRAN |
| compiler) produce multiple symtabs (this is unavoidable |
| assuming csects can be at arbitrary places in memory and that |
| the GLOBAL_BLOCK of a symtab has a begin and end address). */ |
| |
| /* BEST is the smallest linenumber > LINE so far seen, |
| or 0 if none has been seen so far. |
| BEST_INDEX and BEST_LINETABLE identify the item for it. */ |
| int best; |
| |
| if (best_index >= 0) |
| best = best_linetable->item[best_index].line; |
| else |
| best = 0; |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| objfile->expand_symtabs_with_fullname (symtab_to_fullname (sym_tab)); |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| for (compunit_symtab *cu : objfile->compunits ()) |
| { |
| for (symtab *s : cu->filetabs ()) |
| { |
| const struct linetable *l; |
| int ind; |
| |
| if (FILENAME_CMP (sym_tab->filename, s->filename) != 0) |
| continue; |
| if (FILENAME_CMP (symtab_to_fullname (sym_tab), |
| symtab_to_fullname (s)) != 0) |
| continue; |
| l = s->linetable (); |
| ind = find_line_common (l, line, &exact, 0); |
| if (ind >= 0) |
| { |
| if (exact) |
| { |
| best_index = ind; |
| best_linetable = l; |
| best_symtab = s; |
| goto done; |
| } |
| if (best == 0 || l->item[ind].line < best) |
| { |
| best = l->item[ind].line; |
| best_index = ind; |
| best_linetable = l; |
| best_symtab = s; |
| } |
| } |
| } |
| } |
| } |
| } |
| done: |
| if (best_index < 0) |
| return NULL; |
| |
| if (index) |
| *index = best_index; |
| if (exact_match) |
| *exact_match = (exact != 0); |
| |
| return best_symtab; |
| } |
| |
| /* Given SYMTAB, returns all the PCs function in the symtab that |
| exactly match LINE. Returns an empty vector if there are no exact |
| matches, but updates BEST_ITEM in this case. */ |
| |
| std::vector<CORE_ADDR> |
| find_pcs_for_symtab_line (struct symtab *symtab, int line, |
| const linetable_entry **best_item) |
| { |
| int start = 0; |
| std::vector<CORE_ADDR> result; |
| struct objfile *objfile = symtab->compunit ()->objfile (); |
| |
| /* First, collect all the PCs that are at this line. */ |
| while (1) |
| { |
| int was_exact; |
| int idx; |
| |
| idx = find_line_common (symtab->linetable (), line, &was_exact, |
| start); |
| if (idx < 0) |
| break; |
| |
| if (!was_exact) |
| { |
| const linetable_entry *item = &symtab->linetable ()->item[idx]; |
| |
| if (*best_item == NULL |
| || (item->line < (*best_item)->line && item->is_stmt)) |
| *best_item = item; |
| |
| break; |
| } |
| |
| result.push_back (symtab->linetable ()->item[idx].pc (objfile)); |
| start = idx + 1; |
| } |
| |
| return result; |
| } |
| |
| |
| /* Set the PC value for a given source file and line number and return true. |
| Returns false for invalid line number (and sets the PC to 0). |
| The source file is specified with a struct symtab. */ |
| |
| bool |
| find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) |
| { |
| const struct linetable *l; |
| int ind; |
| |
| *pc = 0; |
| if (symtab == 0) |
| return false; |
| |
| symtab = find_line_symtab (symtab, line, &ind, NULL); |
| if (symtab != NULL) |
| { |
| l = symtab->linetable (); |
| *pc = l->item[ind].pc (symtab->compunit ()->objfile ()); |
| return true; |
| } |
| else |
| return false; |
| } |
| |
| /* Find the range of pc values in a line. |
| Store the starting pc of the line into *STARTPTR |
| and the ending pc (start of next line) into *ENDPTR. |
| Returns true to indicate success. |
| Returns false if could not find the specified line. */ |
| |
| bool |
| find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, |
| CORE_ADDR *endptr) |
| { |
| CORE_ADDR startaddr; |
| struct symtab_and_line found_sal; |
| |
| startaddr = sal.pc; |
| if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) |
| return false; |
| |
| /* This whole function is based on address. For example, if line 10 has |
| two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then |
| "info line *0x123" should say the line goes from 0x100 to 0x200 |
| and "info line *0x355" should say the line goes from 0x300 to 0x400. |
| This also insures that we never give a range like "starts at 0x134 |
| and ends at 0x12c". */ |
| |
| found_sal = find_pc_sect_line (startaddr, sal.section, 0); |
| if (found_sal.line != sal.line) |
| { |
| /* The specified line (sal) has zero bytes. */ |
| *startptr = found_sal.pc; |
| *endptr = found_sal.pc; |
| } |
| else |
| { |
| *startptr = found_sal.pc; |
| *endptr = found_sal.end; |
| } |
| return true; |
| } |
| |
| /* Given a line table and a line number, return the index into the line |
| table for the pc of the nearest line whose number is >= the specified one. |
| Return -1 if none is found. The value is >= 0 if it is an index. |
| START is the index at which to start searching the line table. |
| |
| Set *EXACT_MATCH nonzero if the value returned is an exact match. */ |
| |
| static int |
| find_line_common (const linetable *l, int lineno, |
| int *exact_match, int start) |
| { |
| int i; |
| int len; |
| |
| /* BEST is the smallest linenumber > LINENO so far seen, |
| or 0 if none has been seen so far. |
| BEST_INDEX identifies the item for it. */ |
| |
| int best_index = -1; |
| int best = 0; |
| |
| *exact_match = 0; |
| |
| if (lineno <= 0) |
| return -1; |
| if (l == 0) |
| return -1; |
| |
| len = l->nitems; |
| for (i = start; i < len; i++) |
| { |
| const linetable_entry *item = &(l->item[i]); |
| |
| /* Ignore non-statements. */ |
| if (!item->is_stmt) |
| continue; |
| |
| if (item->line == lineno) |
| { |
| /* Return the first (lowest address) entry which matches. */ |
| *exact_match = 1; |
| return i; |
| } |
| |
| if (item->line > lineno && (best == 0 || item->line < best)) |
| { |
| best = item->line; |
| best_index = i; |
| } |
| } |
| |
| /* If we got here, we didn't get an exact match. */ |
| return best_index; |
| } |
| |
| bool |
| find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) |
| { |
| struct symtab_and_line sal; |
| |
| sal = find_pc_line (pc, 0); |
| *startptr = sal.pc; |
| *endptr = sal.end; |
| return sal.symtab != 0; |
| } |
| |
| /* Helper for find_function_start_sal. Does most of the work, except |
| setting the sal's symbol. */ |
| |
| static symtab_and_line |
| find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section, |
| bool funfirstline) |
| { |
| symtab_and_line sal = find_pc_sect_line (func_addr, section, 0); |
| |
| if (funfirstline && sal.symtab != NULL |
| && (sal.symtab->compunit ()->locations_valid () |
| || sal.symtab->language () == language_asm)) |
| { |
| struct gdbarch *gdbarch = sal.symtab->compunit ()->objfile ()->arch (); |
| |
| sal.pc = func_addr; |
| if (gdbarch_skip_entrypoint_p (gdbarch)) |
| sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc); |
| return sal; |
| } |
| |
| /* We always should have a line for the function start address. |
| If we don't, something is odd. Create a plain SAL referring |
| just the PC and hope that skip_prologue_sal (if requested) |
| can find a line number for after the prologue. */ |
| if (sal.pc < func_addr) |
| { |
| sal = {}; |
| sal.pspace = current_program_space; |
| sal.pc = func_addr; |
| sal.section = section; |
| } |
| |
| if (funfirstline) |
| skip_prologue_sal (&sal); |
| |
| return sal; |
| } |
| |
| /* See symtab.h. */ |
| |
| symtab_and_line |
| find_function_start_sal (CORE_ADDR func_addr, obj_section *section, |
| bool funfirstline) |
| { |
| symtab_and_line sal |
| = find_function_start_sal_1 (func_addr, section, funfirstline); |
| |
| /* find_function_start_sal_1 does a linetable search, so it finds |
| the symtab and linenumber, but not a symbol. Fill in the |
| function symbol too. */ |
| sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section); |
| |
| return sal; |
| } |
| |
| /* See symtab.h. */ |
| |
| symtab_and_line |
| find_function_start_sal (symbol *sym, bool funfirstline) |
| { |
| symtab_and_line sal |
| = find_function_start_sal_1 (sym->value_block ()->entry_pc (), |
| sym->obj_section (sym->objfile ()), |
| funfirstline); |
| sal.symbol = sym; |
| return sal; |
| } |
| |
| |
| /* Given a function start address FUNC_ADDR and SYMTAB, find the first |
| address for that function that has an entry in SYMTAB's line info |
| table. If such an entry cannot be found, return FUNC_ADDR |
| unaltered. */ |
| |
| static CORE_ADDR |
| skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab) |
| { |
| CORE_ADDR func_start, func_end; |
| const struct linetable *l; |
| int i; |
| |
| /* Give up if this symbol has no lineinfo table. */ |
| l = symtab->linetable (); |
| if (l == NULL) |
| return func_addr; |
| |
| /* Get the range for the function's PC values, or give up if we |
| cannot, for some reason. */ |
| if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end)) |
| return func_addr; |
| |
| struct objfile *objfile = symtab->compunit ()->objfile (); |
| |
| /* Linetable entries are ordered by PC values, see the commentary in |
| symtab.h where `struct linetable' is defined. Thus, the first |
| entry whose PC is in the range [FUNC_START..FUNC_END[ is the |
| address we are looking for. */ |
| for (i = 0; i < l->nitems; i++) |
| { |
| const linetable_entry *item = &(l->item[i]); |
| CORE_ADDR item_pc = item->pc (objfile); |
| |
| /* Don't use line numbers of zero, they mark special entries in |
| the table. See the commentary on symtab.h before the |
| definition of struct linetable. */ |
| if (item->line > 0 && func_start <= item_pc && item_pc < func_end) |
| return item_pc; |
| } |
| |
| return func_addr; |
| } |
| |
| /* Try to locate the address where a breakpoint should be placed past the |
| prologue of function starting at FUNC_ADDR using the line table. |
| |
| Return the address associated with the first entry in the line-table for |
| the function starting at FUNC_ADDR which has prologue_end set to true if |
| such entry exist, otherwise return an empty optional. */ |
| |
| static std::optional<CORE_ADDR> |
| skip_prologue_using_linetable (CORE_ADDR func_addr) |
| { |
| CORE_ADDR start_pc, end_pc; |
| |
| if (!find_pc_partial_function (func_addr, nullptr, &start_pc, &end_pc)) |
| return {}; |
| |
| const struct symtab_and_line prologue_sal = find_pc_line (start_pc, 0); |
| if (prologue_sal.symtab != nullptr |
| && prologue_sal.symtab->language () != language_asm) |
| { |
| const linetable *linetable = prologue_sal.symtab->linetable (); |
| |
| struct objfile *objfile = prologue_sal.symtab->compunit ()->objfile (); |
| |
| unrelocated_addr unrel_start |
| = unrelocated_addr (start_pc - objfile->text_section_offset ()); |
| unrelocated_addr unrel_end |
| = unrelocated_addr (end_pc - objfile->text_section_offset ()); |
| |
| auto it = std::lower_bound |
| (linetable->item, linetable->item + linetable->nitems, unrel_start, |
| [] (const linetable_entry <e, unrelocated_addr pc) |
| { |
| return lte.unrelocated_pc () < pc; |
| }); |
| |
| for (; |
| (it < linetable->item + linetable->nitems |
| && it->unrelocated_pc () < unrel_end); |
| it++) |
| if (it->prologue_end) |
| return {it->pc (objfile)}; |
| } |
| |
| return {}; |
| } |
| |
| /* Adjust SAL to the first instruction past the function prologue. |
| If the PC was explicitly specified, the SAL is not changed. |
| If the line number was explicitly specified then the SAL can still be |
| updated, unless the language for SAL is assembler, in which case the SAL |
| will be left unchanged. |
| If SAL is already past the prologue, then do nothing. */ |
| |
| void |
| skip_prologue_sal (struct symtab_and_line *sal) |
| { |
| struct symbol *sym; |
| struct symtab_and_line start_sal; |
| CORE_ADDR pc, saved_pc; |
| struct obj_section *section; |
| const char *name; |
| struct objfile *objfile; |
| struct gdbarch *gdbarch; |
| const struct block *b, *function_block; |
| int force_skip, skip; |
| |
| /* Do not change the SAL if PC was specified explicitly. */ |
| if (sal->explicit_pc) |
| return; |
| |
| /* In assembly code, if the user asks for a specific line then we should |
| not adjust the SAL. The user already has instruction level |
| visibility in this case, so selecting a line other than one requested |
| is likely to be the wrong choice. */ |
| if (sal->symtab != nullptr |
| && sal->explicit_line |
| && sal->symtab->language () == language_asm) |
| return; |
| |
| scoped_restore_current_pspace_and_thread restore_pspace_thread; |
| |
| switch_to_program_space_and_thread (sal->pspace); |
| |
| sym = find_pc_sect_function (sal->pc, sal->section); |
| if (sym != NULL) |
| { |
| objfile = sym->objfile (); |
| pc = sym->value_block ()->entry_pc (); |
| section = sym->obj_section (objfile); |
| name = sym->linkage_name (); |
| } |
| else |
| { |
| bound_minimal_symbol msymbol |
| = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section); |
| |
| if (msymbol.minsym == NULL) |
| return; |
| |
| objfile = msymbol.objfile; |
| pc = msymbol.value_address (); |
| section = msymbol.minsym->obj_section (objfile); |
| name = msymbol.minsym->linkage_name (); |
| } |
| |
| gdbarch = objfile->arch (); |
| |
| /* Process the prologue in two passes. In the first pass try to skip the |
| prologue (SKIP is true) and verify there is a real need for it (indicated |
| by FORCE_SKIP). If no such reason was found run a second pass where the |
| prologue is not skipped (SKIP is false). */ |
| |
| skip = 1; |
| force_skip = 1; |
| |
| /* Be conservative - allow direct PC (without skipping prologue) only if we |
| have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not |
| have to be set by the caller so we use SYM instead. */ |
| if (sym != NULL |
| && sym->symtab ()->compunit ()->locations_valid ()) |
| force_skip = 0; |
| |
| saved_pc = pc; |
| do |
| { |
| pc = saved_pc; |
| |
| /* Check if the compiler explicitly indicated where a breakpoint should |
| be placed to skip the prologue. */ |
| if (!ignore_prologue_end_flag && skip) |
| { |
| std::optional<CORE_ADDR> linetable_pc |
| = skip_prologue_using_linetable (pc); |
| if (linetable_pc) |
| { |
| pc = *linetable_pc; |
| start_sal = find_pc_sect_line (pc, section, 0); |
| force_skip = 1; |
| continue; |
| } |
| } |
| |
| /* If the function is in an unmapped overlay, use its unmapped LMA address, |
| so that gdbarch_skip_prologue has something unique to work on. */ |
| if (section_is_overlay (section) && !section_is_mapped (section)) |
| pc = overlay_unmapped_address (pc, section); |
| |
| /* Skip "first line" of function (which is actually its prologue). */ |
| pc += gdbarch_deprecated_function_start_offset (gdbarch); |
| if (gdbarch_skip_entrypoint_p (gdbarch)) |
| pc = gdbarch_skip_entrypoint (gdbarch, pc); |
| if (skip) |
| pc = gdbarch_skip_prologue_noexcept (gdbarch, pc); |
| |
| /* For overlays, map pc back into its mapped VMA range. */ |
| pc = overlay_mapped_address (pc, section); |
| |
| /* Calculate line number. */ |
| start_sal = find_pc_sect_line (pc, section, 0); |
| |
| /* Check if gdbarch_skip_prologue left us in mid-line, and the next |
| line is still part of the same function. */ |
| if (skip && start_sal.pc != pc |
| && (sym ? (sym->value_block ()->entry_pc () <= start_sal.end |
| && start_sal.end < sym->value_block()->end ()) |
| : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym |
| == lookup_minimal_symbol_by_pc_section (pc, section).minsym))) |
| { |
| /* First pc of next line */ |
| pc = start_sal.end; |
| /* Recalculate the line number (might not be N+1). */ |
| start_sal = find_pc_sect_line (pc, section, 0); |
| } |
| |
| /* On targets with executable formats that don't have a concept of |
| constructors (ELF with .init has, PE doesn't), gcc emits a call |
| to `__main' in `main' between the prologue and before user |
| code. */ |
| if (gdbarch_skip_main_prologue_p (gdbarch) |
| && name && strcmp_iw (name, "main") == 0) |
| { |
| pc = gdbarch_skip_main_prologue (gdbarch, pc); |
| /* Recalculate the line number (might not be N+1). */ |
| start_sal = find_pc_sect_line (pc, section, 0); |
| force_skip = 1; |
| } |
| } |
| while (!force_skip && skip--); |
| |
| /* If we still don't have a valid source line, try to find the first |
| PC in the lineinfo table that belongs to the same function. This |
| happens with COFF debug info, which does not seem to have an |
| entry in lineinfo table for the code after the prologue which has |
| no direct relation to source. For example, this was found to be |
| the case with the DJGPP target using "gcc -gcoff" when the |
| compiler inserted code after the prologue to make sure the stack |
| is aligned. */ |
| if (!force_skip && sym && start_sal.symtab == NULL) |
| { |
| pc = skip_prologue_using_lineinfo (pc, sym->symtab ()); |
| /* Recalculate the line number. */ |
| start_sal = find_pc_sect_line (pc, section, 0); |
| } |
| |
| /* If we're already past the prologue, leave SAL unchanged. Otherwise |
| forward SAL to the end of the prologue. */ |
| if (sal->pc >= pc) |
| return; |
| |
| sal->pc = pc; |
| sal->section = section; |
| sal->symtab = start_sal.symtab; |
| sal->line = start_sal.line; |
| sal->end = start_sal.end; |
| |
| /* Check if we are now inside an inlined function. If we can, |
| use the call site of the function instead. */ |
| b = block_for_pc_sect (sal->pc, sal->section); |
| function_block = NULL; |
| while (b != NULL) |
| { |
| if (b->function () != NULL && b->inlined_p ()) |
| function_block = b; |
| else if (b->function () != NULL) |
| break; |
| b = b->superblock (); |
| } |
| if (function_block != NULL |
| && function_block->function ()->line () != 0) |
| { |
| sal->line = function_block->function ()->line (); |
| sal->symtab = function_block->function ()->symtab (); |
| } |
| } |
| |
| /* Given PC at the function's start address, attempt to find the |
| prologue end using SAL information. Return zero if the skip fails. |
| |
| A non-optimized prologue traditionally has one SAL for the function |
| and a second for the function body. A single line function has |
| them both pointing at the same line. |
| |
| An optimized prologue is similar but the prologue may contain |
| instructions (SALs) from the instruction body. Need to skip those |
| while not getting into the function body. |
| |
| The functions end point and an increasing SAL line are used as |
| indicators of the prologue's endpoint. |
| |
| This code is based on the function refine_prologue_limit |
| (found in ia64). */ |
| |
| CORE_ADDR |
| skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr) |
| { |
| struct symtab_and_line prologue_sal; |
| CORE_ADDR start_pc; |
| CORE_ADDR end_pc; |
| const struct block *bl; |
| |
| /* Get an initial range for the function. */ |
| find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc); |
| start_pc += gdbarch_deprecated_function_start_offset (gdbarch); |
| |
| prologue_sal = find_pc_line (start_pc, 0); |
| if (prologue_sal.line != 0) |
| { |
| /* For languages other than assembly, treat two consecutive line |
| entries at the same address as a zero-instruction prologue. |
| The GNU assembler emits separate line notes for each instruction |
| in a multi-instruction macro, but compilers generally will not |
| do this. */ |
| if (prologue_sal.symtab->language () != language_asm) |
| { |
| struct objfile *objfile |
| = prologue_sal.symtab->compunit ()->objfile (); |
| const linetable *linetable = prologue_sal.symtab->linetable (); |
| gdb_assert (linetable->nitems > 0); |
| int idx = 0; |
| |
| /* Skip any earlier lines, and any end-of-sequence marker |
| from a previous function. */ |
| while (idx + 1 < linetable->nitems |
| && (linetable->item[idx].pc (objfile) != prologue_sal.pc |
| || linetable->item[idx].line == 0)) |
| idx++; |
| |
| if (idx + 1 < linetable->nitems |
| && linetable->item[idx+1].line != 0 |
| && linetable->item[idx+1].pc (objfile) == start_pc) |
| return start_pc; |
| } |
| |
| /* If there is only one sal that covers the entire function, |
| then it is probably a single line function, like |
| "foo(){}". */ |
| if (prologue_sal.end >= end_pc) |
| return 0; |
| |
| while (prologue_sal.end < end_pc) |
| { |
| struct symtab_and_line sal; |
| |
| sal = find_pc_line (prologue_sal.end, 0); |
| if (sal.line == 0) |
| break; |
| /* Assume that a consecutive SAL for the same (or larger) |
| line mark the prologue -> body transition. */ |
| if (sal.line >= prologue_sal.line) |
| break; |
| /* Likewise if we are in a different symtab altogether |
| (e.g. within a file included via #include). */ |
| if (sal.symtab != prologue_sal.symtab) |
| break; |
| |
| /* The line number is smaller. Check that it's from the |
| same function, not something inlined. If it's inlined, |
| then there is no point comparing the line numbers. */ |
| bl = block_for_pc (prologue_sal.end); |
| while (bl) |
| { |
| if (bl->inlined_p ()) |
| break; |
| if (bl->function ()) |
| { |
| bl = NULL; |
| break; |
| } |
| bl = bl->superblock (); |
| } |
| if (bl != NULL) |
| break; |
| |
| /* The case in which compiler's optimizer/scheduler has |
| moved instructions into the prologue. We look ahead in |
| the function looking for address ranges whose |
| corresponding line number is less the first one that we |
| found for the function. This is more conservative then |
| refine_prologue_limit which scans a large number of SALs |
| looking for any in the prologue. */ |
| prologue_sal = sal; |
| } |
| } |
| |
| if (prologue_sal.end < end_pc) |
| /* Return the end of this line, or zero if we could not find a |
| line. */ |
| return prologue_sal.end; |
| else |
| /* Don't return END_PC, which is past the end of the function. */ |
| return prologue_sal.pc; |
| } |
| |
| /* See symtab.h. */ |
| |
| std::optional<CORE_ADDR> |
| find_epilogue_using_linetable (CORE_ADDR func_addr) |
| { |
| CORE_ADDR start_pc, end_pc; |
| |
| if (!find_pc_partial_function (func_addr, nullptr, &start_pc, &end_pc)) |
| return {}; |
| |
| /* While the standard allows for multiple points marked with epilogue_begin |
| in the same function, for performance reasons, this function will only |
| find the last address that sets this flag for a given block. |
| |
| The lines of a function can be described by several line tables in case |
| there are different files involved. There's a corner case where a |
| function epilogue is in a different file than a function start, and using |
| start_pc as argument to find_pc_line will mean we won't find the |
| epilogue. Instead, use "end_pc - 1" to maximize our chances of picking |
| the line table containing an epilogue. */ |
| const struct symtab_and_line sal = find_pc_line (end_pc - 1, 0); |
| if (sal.symtab != nullptr && sal.symtab->language () != language_asm) |
| { |
| struct objfile *objfile = sal.symtab->compunit ()->objfile (); |
| unrelocated_addr unrel_start |
| = unrelocated_addr (start_pc - objfile->text_section_offset ()); |
| unrelocated_addr unrel_end |
| = unrelocated_addr (end_pc - objfile->text_section_offset ()); |
| |
| const linetable *linetable = sal.symtab->linetable (); |
| if (linetable == nullptr || linetable->nitems == 0) |
| { |
| /* Empty line table. */ |
| return {}; |
| } |
| |
| /* Find the first linetable entry after the current function. Note that |
| this also may be an end_sequence entry. */ |
| auto it = std::lower_bound |
| (linetable->item, linetable->item + linetable->nitems, unrel_end, |
| [] (const linetable_entry <e, unrelocated_addr pc) |
| { |
| return lte.unrelocated_pc () < pc; |
| }); |
| if (it == linetable->item + linetable->nitems) |
| { |
| /* We couldn't find either: |
| - a linetable entry starting the function after the current |
| function, or |
| - an end_sequence entry that terminates the current function |
| at unrel_end. |
| |
| This can happen when the linetable doesn't describe the full |
| extent of the function. This can be triggered with: |
| - compiler-generated debug info, in the cornercase that the pc |
| with which we call find_pc_line resides in a different file |
| than unrel_end, or |
| - invalid dwarf assembly debug info. |
| In the former case, there's no point in iterating further, simply |
| return "not found". In the latter case, there's no current |
| incentive to attempt to support this, so handle this |
| conservatively and do the same. */ |
| return {}; |
| } |
| |
| if (unrel_end < it->unrelocated_pc ()) |
| { |
| /* We found a line entry that starts past the end of the |
| function. This can happen if the previous entry straddles |
| two functions, which shouldn't happen with compiler-generated |
| debug info. Handle the corner case conservatively. */ |
| return {}; |
| } |
| gdb_assert (unrel_end == it->unrelocated_pc ()); |
| |
| /* Move to the last linetable entry of the current function. */ |
| if (it == &linetable->item[0]) |
| { |
| /* Doing it-- would introduce undefined behaviour, avoid it by |
| explicitly handling this case. */ |
| return {}; |
| } |
| it--; |
| if (it->unrelocated_pc () < unrel_start) |
| { |
| /* Not in the current function. */ |
| return {}; |
| } |
| gdb_assert (it->unrelocated_pc () < unrel_end); |
| |
| /* We're at the the last linetable entry of the current function. This |
| is probably where the epilogue begins, but since the DWARF 5 spec |
| doesn't guarantee it, we iterate backwards through the current |
| function until we either find the epilogue beginning, or are sure |
| that it doesn't exist. */ |
| for (; it >= &linetable->item[0]; it--) |
| { |
| if (it->unrelocated_pc () < unrel_start) |
| { |
| /* No longer in the current function. */ |
| break; |
| } |
| |
| if (it->epilogue_begin) |
| { |
| /* Found the beginning of the epilogue. */ |
| return {it->pc (objfile)}; |
| } |
| |
| if (it == &linetable->item[0]) |
| { |
| /* No more entries in the current function. |
| Doing it-- would introduce undefined behaviour, avoid it by |
| explicitly handling this case. */ |
| break; |
| } |
| } |
| } |
| |
| return {}; |
| } |
| |
| /* See symtab.h. */ |
| |
| symbol * |
| find_function_alias_target (bound_minimal_symbol msymbol) |
| { |
| CORE_ADDR func_addr; |
| if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr)) |
| return NULL; |
| |
| symbol *sym = find_pc_function (func_addr); |
| if (sym != NULL |
| && sym->aclass () == LOC_BLOCK |
| && sym->value_block ()->entry_pc () == func_addr) |
| return sym; |
| |
| return NULL; |
| } |
| |
| |
| /* If P is of the form "operator[ \t]+..." where `...' is |
| some legitimate operator text, return a pointer to the |
| beginning of the substring of the operator text. |
| Otherwise, return "". */ |
| |
| static const char * |
| operator_chars (const char *p, const char **end) |
| { |
| *end = ""; |
| if (!startswith (p, CP_OPERATOR_STR)) |
| return *end; |
| p += CP_OPERATOR_LEN; |
| |
| /* Don't get faked out by `operator' being part of a longer |
| identifier. */ |
| if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') |
| return *end; |
| |
| /* Allow some whitespace between `operator' and the operator symbol. */ |
| while (*p == ' ' || *p == '\t') |
| p++; |
| |
| /* Recognize 'operator TYPENAME'. */ |
| |
| if (isalpha (*p) || *p == '_' || *p == '$') |
| { |
| const char *q = p + 1; |
| |
| while (isalnum (*q) || *q == '_' || *q == '$') |
| q++; |
| *end = q; |
| return p; |
| } |
| |
| while (*p) |
| switch (*p) |
| { |
| case '\\': /* regexp quoting */ |
| if (p[1] == '*') |
| { |
| if (p[2] == '=') /* 'operator\*=' */ |
| *end = p + 3; |
| else /* 'operator\*' */ |
| *end = p + 2; |
| return p; |
| } |
| else if (p[1] == '[') |
| { |
| if (p[2] == ']') |
| error (_("mismatched quoting on brackets, " |
| "try 'operator\\[\\]'")); |
| else if (p[2] == '\\' && p[3] == ']') |
| { |
| *end = p + 4; /* 'operator\[\]' */ |
| return p; |
| } |
| else |
| error (_("nothing is allowed between '[' and ']'")); |
| } |
| else |
| { |
| /* Gratuitous quote: skip it and move on. */ |
| p++; |
| continue; |
| } |
| break; |
| case '!': |
| case '=': |
| case '*': |
| case '/': |
| case '%': |
| case '^': |
| if (p[1] == '=') |
| *end = p + 2; |
| else |
| *end = p + 1; |
| return p; |
| case '<': |
| case '>': |
| case '+': |
| case '-': |
| case '&': |
| case '|': |
| if (p[0] == '-' && p[1] == '>') |
| { |
| /* Struct pointer member operator 'operator->'. */ |
| if (p[2] == '*') |
| { |
| *end = p + 3; /* 'operator->*' */ |
| return p; |
| } |
| else if (p[2] == '\\') |
| { |
| *end = p + 4; /* Hopefully 'operator->\*' */ |
| return p; |
| } |
| else |
| { |
| *end = p + 2; /* 'operator->' */ |
| return p; |
| } |
| } |
| if (p[1] == '=' || p[1] == p[0]) |
| *end = p + 2; |
| else |
| *end = p + 1; |
| return p; |
| case '~': |
| case ',': |
| *end = p + 1; |
| return p; |
| case '(': |
| if (p[1] != ')') |
| error (_("`operator ()' must be specified " |
| "without whitespace in `()'")); |
| *end = p + 2; |
| return p; |
| case '?': |
| if (p[1] != ':') |
| error (_("`operator ?:' must be specified " |
| "without whitespace in `?:'")); |
| *end = p + 2; |
| return p; |
| case '[': |
| if (p[1] != ']') |
| error (_("`operator []' must be specified " |
| "without whitespace in `[]'")); |
| *end = p + 2; |
| return p; |
| default: |
| error (_("`operator %s' not supported"), p); |
| break; |
| } |
| |
| *end = ""; |
| return *end; |
| } |
| |
| |
| /* See class declaration. */ |
| |
| info_sources_filter::info_sources_filter (match_on match_type, |
| const char *regexp) |
| : m_match_type (match_type), |
| m_regexp (regexp) |
| { |
| /* Setup the compiled regular expression M_C_REGEXP based on M_REGEXP. */ |
| if (m_regexp != nullptr && *m_regexp != '\0') |
| { |
| gdb_assert (m_regexp != nullptr); |
| |
| int cflags = REG_NOSUB; |
| #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM |
| cflags |= REG_ICASE; |
| #endif |
| m_c_regexp.emplace (m_regexp, cflags, _("Invalid regexp")); |
| } |
| } |
| |
| /* See class declaration. */ |
| |
| bool |
| info_sources_filter::matches (const char *fullname) const |
| { |
| /* Does it match regexp? */ |
| if (m_c_regexp.has_value ()) |
| { |
| const char *to_match; |
| std::string dirname; |
| |
| switch (m_match_type) |
| { |
| case match_on::DIRNAME: |
| dirname = ldirname (fullname); |
| to_match = dirname.c_str (); |
| break; |
| case match_on::BASENAME: |
| to_match = lbasename (fullname); |
| break; |
| case match_on::FULLNAME: |
| to_match = fullname; |
| break; |
| default: |
| gdb_assert_not_reached ("bad m_match_type"); |
| } |
| |
| if (m_c_regexp->exec (to_match, 0, NULL, 0) != 0) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Data structure to maintain the state used for printing the results of |
| the 'info sources' command. */ |
| |
| struct output_source_filename_data |
| { |
| /* Create an object for displaying the results of the 'info sources' |
| command to UIOUT. FILTER must remain valid and unchanged for the |
| lifetime of this object as this object retains a reference to FILTER. */ |
| output_source_filename_data (struct ui_out *uiout, |
| const info_sources_filter &filter) |
| : m_filter (filter), |
| m_uiout (uiout) |
| { /* Nothing. */ } |
| |
| DISABLE_COPY_AND_ASSIGN (output_source_filename_data); |
| |
| /* Reset enough state of this object so we can match against a new set of |
| files. The existing regular expression is retained though. */ |
| void reset_output () |
| { |
| m_first = true; |
| m_filename_seen_cache.clear (); |
| } |
| |
| /* Worker for sources_info, outputs the file name formatted for either |
| cli or mi (based on the current_uiout). In cli mode displays |
| FULLNAME with a comma separating this name from any previously |
| printed name (line breaks are added at the comma). In MI mode |
| outputs a tuple containing DISP_NAME (the files display name), |
| FULLNAME, and EXPANDED_P (true when this file is from a fully |
| expanded symtab, otherwise false). */ |
| void output (const char *disp_name, const char *fullname, bool expanded_p); |
| |
| /* An overload suitable for use as a callback to |
| quick_symbol_functions::map_symbol_filenames. */ |
| void operator() (const char *filename, const char *fullname) |
| { |
| /* The false here indicates that this file is from an unexpanded |
| symtab. */ |
| output (filename, fullname, false); |
| } |
| |
| /* Return true if at least one filename has been printed (after a call to |
| output) since either this object was created, or the last call to |
| reset_output. */ |
| bool printed_filename_p () const |
| { |
| return !m_first; |
| } |
| |
| private: |
| |
| /* Flag of whether we're printing the first one. */ |
| bool m_first = true; |
| |
| /* Cache of what we've seen so far. */ |
| filename_seen_cache m_filename_seen_cache; |
| |
| /* How source filename should be filtered. */ |
| const info_sources_filter &m_filter; |
| |
| /* The object to which output is sent. */ |
| struct ui_out *m_uiout; |
| }; |
| |
| /* See comment in class declaration above. */ |
| |
| void |
| output_source_filename_data::output (const char *disp_name, |
| const char *fullname, |
| bool expanded_p) |
| { |
| /* Since a single source file can result in several partial symbol |
| tables, we need to avoid printing it more than once. Note: if |
| some of the psymtabs are read in and some are not, it gets |
| printed both under "Source files for which symbols have been |
| read" and "Source files for which symbols will be read in on |
| demand". I consider this a reasonable way to deal with the |
| situation. I'm not sure whether this can also happen for |
| symtabs; it doesn't hurt to check. */ |
| |
| /* Was NAME already seen? If so, then don't print it again. */ |
| if (m_filename_seen_cache.seen (fullname)) |
| return; |
| |
| /* If the filter rejects this file then don't print it. */ |
| if (!m_filter.matches (fullname)) |
| return; |
| |
| ui_out_emit_tuple ui_emitter (m_uiout, nullptr); |
| |
| /* Print it and reset *FIRST. */ |
| if (!m_first) |
| m_uiout->text (", "); |
| m_first = false; |
| |
| m_uiout->wrap_hint (0); |
| if (m_uiout->is_mi_like_p ()) |
| { |
| m_uiout->field_string ("file", disp_name, file_name_style.style ()); |
| if (fullname != nullptr) |
| m_uiout->field_string ("fullname", fullname, |
| file_name_style.style ()); |
| m_uiout->field_string ("debug-fully-read", |
| (expanded_p ? "true" : "false")); |
| } |
| else |
| { |
| if (fullname == nullptr) |
| fullname = disp_name; |
| m_uiout->field_string ("fullname", fullname, |
| file_name_style.style ()); |
| } |
| } |
| |
| /* For the 'info sources' command, what part of the file names should we be |
| matching the user supplied regular expression against? */ |
| |
| struct filename_partial_match_opts |
| { |
| /* Only match the directory name part. */ |
| bool dirname = false; |
| |
| /* Only match the basename part. */ |
| bool basename = false; |
| }; |
| |
| using isrc_flag_option_def |
| = gdb::option::flag_option_def<filename_partial_match_opts>; |
| |
| static const gdb::option::option_def info_sources_option_defs[] = { |
| |
| isrc_flag_option_def { |
| "dirname", |
| [] (filename_partial_match_opts *opts) { return &opts->dirname; }, |
| N_("Show only the files having a dirname matching REGEXP."), |
| }, |
| |
| isrc_flag_option_def { |
| "basename", |
| [] (filename_partial_match_opts *opts) { return &opts->basename; }, |
| N_("Show only the files having a basename matching REGEXP."), |
| }, |
| |
| }; |
| |
| /* Create an option_def_group for the "info sources" options, with |
| ISRC_OPTS as context. */ |
| |
| static inline gdb::option::option_def_group |
| make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts) |
| { |
| return {{info_sources_option_defs}, isrc_opts}; |
| } |
| |
| /* Completer for "info sources". */ |
| |
| static void |
| info_sources_command_completer (cmd_list_element *ignore, |
| completion_tracker &tracker, |
| const char *text, const char *word) |
| { |
| const auto group = make_info_sources_options_def_group (nullptr); |
| if (gdb::option::complete_options |
| (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group)) |
| return; |
| } |
| |
| /* See symtab.h. */ |
| |
| void |
| info_sources_worker (struct ui_out *uiout, |
| bool group_by_objfile, |
| const info_sources_filter &filter) |
| { |
| output_source_filename_data data (uiout, filter); |
| |
| ui_out_emit_list results_emitter (uiout, "files"); |
| std::optional<ui_out_emit_tuple> output_tuple; |
| std::optional<ui_out_emit_list> sources_list; |
| |
| gdb_assert (group_by_objfile || uiout->is_mi_like_p ()); |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| if (group_by_objfile) |
| { |
| output_tuple.emplace (uiout, nullptr); |
| uiout->field_string ("filename", objfile_name (objfile), |
| file_name_style.style ()); |
| uiout->text (":\n"); |
| bool debug_fully_readin = !objfile->has_unexpanded_symtabs (); |
| if (uiout->is_mi_like_p ()) |
| { |
| const char *debug_info_state; |
| if (objfile_has_symbols (objfile)) |
| { |
| if (debug_fully_readin) |
| debug_info_state = "fully-read"; |
| else |
| debug_info_state = "partially-read"; |
| } |
| else |
| debug_info_state = "none"; |
| current_uiout->field_string ("debug-info", debug_info_state); |
| } |
| else |
| { |
| if (!debug_fully_readin) |
| uiout->text ("(Full debug information has not yet been read " |
| "for this file.)\n"); |
| if (!objfile_has_symbols (objfile)) |
| uiout->text ("(Objfile has no debug information.)\n"); |
| uiout->text ("\n"); |
| } |
| sources_list.emplace (uiout, "sources"); |
| } |
| |
| for (compunit_symtab *cu : objfile->compunits ()) |
| { |
| for (symtab *s : cu->filetabs ()) |
| { |
| const char *file = symtab_to_filename_for_display (s); |
| const char *fullname = symtab_to_fullname (s); |
| data.output (file, fullname, true); |
| } |
| } |
| |
| if (group_by_objfile) |
| { |
| objfile->map_symbol_filenames (data, true /* need_fullname */); |
| if (data.printed_filename_p ()) |
| uiout->text ("\n\n"); |
| data.reset_output (); |
| sources_list.reset (); |
| output_tuple.reset (); |
| } |
| } |
| |
| if (!group_by_objfile) |
| { |
| data.reset_output (); |
| map_symbol_filenames (data, true /*need_fullname*/); |
| } |
| } |
| |
| /* Implement the 'info sources' command. */ |
| |
| static void |
| info_sources_command (const char *args, int from_tty) |
| { |
| if (!have_full_symbols (current_program_space) |
| && !have_partial_symbols (current_program_space)) |
| error (_ ("No symbol table is loaded. Use the \"file\" command.")); |
| |
| filename_partial_match_opts match_opts; |
| auto group = make_info_sources_options_def_group (&match_opts); |
| gdb::option::process_options |
| (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group); |
| |
| if (match_opts.dirname && match_opts.basename) |
| error (_("You cannot give both -basename and -dirname to 'info sources'.")); |
| |
| const char *regex = nullptr; |
| if (args != NULL && *args != '\000') |
| regex = args; |
| |
| if ((match_opts.dirname || match_opts.basename) && regex == nullptr) |
| error (_("Missing REGEXP for 'info sources'.")); |
| |
| info_sources_filter::match_on match_type; |
| if (match_opts.dirname) |
| match_type = info_sources_filter::match_on::DIRNAME; |
| else if (match_opts.basename) |
| match_type = info_sources_filter::match_on::BASENAME; |
| else |
| match_type = info_sources_filter::match_on::FULLNAME; |
| |
| info_sources_filter filter (match_type, regex); |
| info_sources_worker (current_uiout, true, filter); |
| } |
| |
| /* Compare FILE against all the entries of FILENAMES. If BASENAMES is |
| true compare only lbasename of FILENAMES. */ |
| |
| static bool |
| file_matches (const char *file, |
| const std::vector<gdb::unique_xmalloc_ptr<char>> &filenames, |
| bool basenames) |
| { |
| if (filenames.empty ()) |
| return true; |
| |
| for (const auto &name : filenames) |
| { |
| const char *lname = (basenames ? lbasename (name.get ()) : name.get ()); |
| if (compare_filenames_for_search (file, lname)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Helper function for std::sort on symbol_search objects. Can only sort |
| symbols, not minimal symbols. */ |
| |
| int |
| symbol_search::compare_search_syms (const symbol_search &sym_a, |
| const symbol_search &sym_b) |
| { |
| int c; |
| |
| c = FILENAME_CMP (sym_a.symbol->symtab ()->filename, |
| sym_b.symbol->symtab ()->filename); |
| if (c != 0) |
| return c; |
| |
| if (sym_a.block != sym_b.block) |
| return sym_a.block - sym_b.block; |
| |
| return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ()); |
| } |
| |
| /* Returns true if the type_name of symbol_type of SYM matches TREG. |
| If SYM has no symbol_type or symbol_name, returns false. */ |
| |
| bool |
| treg_matches_sym_type_name (const compiled_regex &treg, |
| const struct symbol *sym) |
| { |
| struct type *sym_type; |
| std::string printed_sym_type_name; |
| |
| symbol_lookup_debug_printf_v ("treg_matches_sym_type_name, sym %s", |
| sym->natural_name ()); |
| |
| sym_type = sym->type (); |
| if (sym_type == NULL) |
| return false; |
| |
| { |
| scoped_switch_to_sym_language_if_auto l (sym); |
| |
| printed_sym_type_name = type_to_string (sym_type); |
| } |
| |
| symbol_lookup_debug_printf_v ("sym_type_name %s", |
| printed_sym_type_name.c_str ()); |
| |
| if (printed_sym_type_name.empty ()) |
| return false; |
| |
| return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0; |
| } |
| |
| /* See symtab.h. */ |
| |
| bool |
| global_symbol_searcher::is_suitable_msymbol |
| (const domain_search_flags kind, const minimal_symbol *msymbol) |
| { |
| switch (msymbol->type ()) |
| { |
| case mst_data: |
| case mst_bss: |
| case mst_file_data: |
| case mst_file_bss: |
| return (kind & SEARCH_VAR_DOMAIN) != 0; |
| case mst_text: |
| case mst_file_text: |
| case mst_solib_trampoline: |
| case mst_text_gnu_ifunc: |
| return (kind & SEARCH_FUNCTION_DOMAIN) != 0; |
| default: |
| return false; |
| } |
| } |
| |
| /* See symtab.h. */ |
| |
| bool |
| global_symbol_searcher::expand_symtabs |
| (objfile *objfile, const std::optional<compiled_regex> &preg) const |
| { |
| domain_search_flags kind = m_kind; |
| bool found_msymbol = false; |
| |
| auto do_file_match = [&] (const char *filename, bool basenames) |
| { |
| return file_matches (filename, m_filenames, basenames); |
| }; |
| gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher = nullptr; |
| if (!m_filenames.empty ()) |
| file_matcher = do_file_match; |
| |
| objfile->expand_symtabs_matching |
| (file_matcher, |
| &lookup_name_info::match_any (), |
| [&] (const char *symname) |
| { |
| return (!preg.has_value () |
| || preg->exec (symname, 0, NULL, 0) == 0); |
| }, |
| NULL, |
| SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK, |
| kind); |
| |
| /* Here, we search through the minimal symbol tables for functions and |
| variables that match, and force their symbols to be read. This is in |
| particular necessary for demangled variable names, which are no longer |
| put into the partial symbol tables. The symbol will then be found |
| during the scan of symtabs later. |
| |
| For functions, find_pc_symtab should succeed if we have debug info for |
| the function, for variables we have to call |
| lookup_symbol_in_objfile_from_linkage_name to determine if the |
| variable has debug info. If the lookup fails, set found_msymbol so |
| that we will rescan to print any matching symbols without debug info. |
| We only search the objfile the msymbol came from, we no longer search |
| all objfiles. In large programs (1000s of shared libs) searching all |
| objfiles is not worth the pain. */ |
| if (m_filenames.empty () |
| && (kind & (SEARCH_VAR_DOMAIN | SEARCH_FUNCTION_DOMAIN)) != 0) |
| { |
| for (minimal_symbol *msymbol : objfile->msymbols ()) |
| { |
| QUIT; |
| |
| if (msymbol->created_by_gdb) |
| continue; |
| |
| if (is_suitable_msymbol (kind, msymbol)) |
| { |
| if (!preg.has_value () |
| || preg->exec (msymbol->natural_name (), 0, |
| NULL, 0) == 0) |
| { |
| /* An important side-effect of these lookup functions is |
| to expand the symbol table if msymbol is found, later |
| in the process we will add matching symbols or |
| msymbols to the results list, and that requires that |
| the symbols tables are expanded. */ |
| if ((kind & SEARCH_FUNCTION_DOMAIN) != 0 |
| ? (find_pc_compunit_symtab |
| (msymbol->value_address (objfile)) == NULL) |
| : (lookup_symbol_in_objfile_from_linkage_name |
| (objfile, msymbol->linkage_name (), |
| SEARCH_VFT) |
| .symbol == NULL)) |
| found_msymbol = true; |
| } |
| } |
| } |
| } |
| |
| return found_msymbol; |
| } |
| |
| /* See symtab.h. */ |
| |
| bool |
| global_symbol_searcher::add_matching_symbols |
| (objfile *objfile, |
| const std::optional<compiled_regex> &preg, |
| const std::optional<compiled_regex> &treg, |
| std::set<symbol_search> *result_set) const |
| { |
| domain_search_flags kind = m_kind; |
| |
| /* Add matching symbols (if not already present). */ |
| for (compunit_symtab *cust : objfile->compunits ()) |
| { |
| const struct blockvector *bv = cust->blockvector (); |
| |
| for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK }) |
| { |
| const struct block *b = bv->block (block); |
| |
| for (struct symbol *sym : block_iterator_range (b)) |
| { |
| struct symtab *real_symtab = sym->symtab (); |
| |
| QUIT; |
| |
| /* Check first sole REAL_SYMTAB->FILENAME. It does |
| not need to be a substring of symtab_to_fullname as |
| it may contain "./" etc. */ |
| if (!(file_matches (real_symtab->filename, m_filenames, false) |
| || ((basenames_may_differ |
| || file_matches (lbasename (real_symtab->filename), |
| m_filenames, true)) |
| && file_matches (symtab_to_fullname (real_symtab), |
| m_filenames, false)))) |
| continue; |
| |
| if (!sym->matches (kind)) |
| continue; |
| |
| if (preg.has_value () && preg->exec (sym->natural_name (), 0, |
| nullptr, 0) != 0) |
| continue; |
| |
| if (((sym->domain () == VAR_DOMAIN |
| || sym->domain () == FUNCTION_DOMAIN) |
| && treg.has_value () |
| && !treg_matches_sym_type_name (*treg, sym))) |
| continue; |
| |
| if ((kind & SEARCH_VAR_DOMAIN) != 0) |
| { |
| if (sym->aclass () == LOC_UNRESOLVED |
| /* LOC_CONST can be used for more than |
| just enums, e.g., c++ static const |
| members. We only want to skip enums |
| here. */ |
| || (sym->aclass () == LOC_CONST |
| && (sym->type ()->code () == TYPE_CODE_ENUM))) |
| continue; |
| } |
| if (sym->domain () == MODULE_DOMAIN && sym->line () == 0) |
| continue; |
| |
| if (result_set->size () < m_max_search_results) |
| { |
| /* Match, insert if not already in the results. */ |
| symbol_search ss (block, sym); |
| if (result_set->find (ss) == result_set->end ()) |
| result_set->insert (ss); |
| } |
| else |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /* See symtab.h. */ |
| |
| bool |
| global_symbol_searcher::add_matching_msymbols |
| (objfile *objfile, const std::optional<compiled_regex> &preg, |
| std::vector<symbol_search> *results) const |
| { |
| domain_search_flags kind = m_kind; |
| |
| for (minimal_symbol *msymbol : objfile->msymbols ()) |
| { |
| QUIT; |
| |
| if (msymbol->created_by_gdb) |
| continue; |
| |
| if (is_suitable_msymbol (kind, msymbol)) |
| { |
| if (!preg.has_value () |
| || preg->exec (msymbol->natural_name (), 0, |
| NULL, 0) == 0) |
| { |
| /* For functions we can do a quick check of whether the |
| symbol might be found via find_pc_symtab. */ |
| if ((kind & SEARCH_FUNCTION_DOMAIN) == 0 |
| || (find_pc_compunit_symtab |
| (msymbol->value_address (objfile)) == NULL)) |
| { |
| if (lookup_symbol_in_objfile_from_linkage_name |
| (objfile, msymbol->linkage_name (), |
| SEARCH_VFT).symbol == NULL) |
| { |
| /* Matching msymbol, add it to the results list. */ |
| if (results->size () < m_max_search_results) |
| results->emplace_back (GLOBAL_BLOCK, msymbol, objfile); |
| else |
| return false; |
| } |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /* See symtab.h. */ |
| |
| std::vector<symbol_search> |
| global_symbol_searcher::search () const |
| { |
| std::optional<compiled_regex> preg; |
| std::optional<compiled_regex> treg; |
| |
| if (m_symbol_name_regexp != NULL) |
| { |
| const char *symbol_name_regexp = m_symbol_name_regexp; |
| std::string symbol_name_regexp_holder; |
| |
| /* Make sure spacing is right for C++ operators. |
| This is just a courtesy to make the matching less sensitive |
| to how many spaces the user leaves between 'operator' |
| and <TYPENAME> or <OPERATOR>. */ |
| const char *opend; |
| const char *opname = operator_chars (symbol_name_regexp, &opend); |
| |
| if (*opname) |
| { |
| int fix = -1; /* -1 means ok; otherwise number of |
| spaces needed. */ |
| |
| if (isalpha (*opname) || *opname == '_' || *opname == '$') |
| { |
| /* There should 1 space between 'operator' and 'TYPENAME'. */ |
| if (opname[-1] != ' ' || opname[-2] == ' ') |
| fix = 1; |
| } |
| else |
| { |
| /* There should 0 spaces between 'operator' and 'OPERATOR'. */ |
| if (opname[-1] == ' ') |
| fix = 0; |
| } |
| /* If wrong number of spaces, fix it. */ |
| if (fix >= 0) |
| { |
| symbol_name_regexp_holder |
| = string_printf ("operator%.*s%s", fix, " ", opname); |
| symbol_name_regexp = symbol_name_regexp_holder.c_str (); |
| } |
| } |
| |
| int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off |
| ? REG_ICASE : 0); |
| preg.emplace (symbol_name_regexp, cflags, |
| _("Invalid regexp")); |
| } |
| |
| if (m_symbol_type_regexp != NULL) |
| { |
| int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off |
| ? REG_ICASE : 0); |
| treg.emplace (m_symbol_type_regexp, cflags, |
| _("Invalid regexp")); |
| } |
| |
| bool found_msymbol = false; |
| std::set<symbol_search> result_set; |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| /* Expand symtabs within objfile that possibly contain matching |
| symbols. */ |
| found_msymbol |= expand_symtabs (objfile, preg); |
| |
| /* Find matching symbols within OBJFILE and add them in to the |
| RESULT_SET set. Use a set here so that we can easily detect |
| duplicates as we go, and can therefore track how many unique |
| matches we have found so far. */ |
| if (!add_matching_symbols (objfile, preg, treg, &result_set)) |
| break; |
| } |
| |
| /* Convert the result set into a sorted result list, as std::set is |
| defined to be sorted then no explicit call to std::sort is needed. */ |
| std::vector<symbol_search> result (result_set.begin (), result_set.end ()); |
| |
| /* If there are no debug symbols, then add matching minsyms. But if the |
| user wants to see symbols matching a type regexp, then never give a |
| minimal symbol, as we assume that a minimal symbol does not have a |
| type. */ |
| if ((found_msymbol |
| || (m_filenames.empty () && (m_kind & SEARCH_VAR_DOMAIN) != 0)) |
| && !m_exclude_minsyms |
| && !treg.has_value ()) |
| { |
| gdb_assert ((m_kind & (SEARCH_VAR_DOMAIN | SEARCH_FUNCTION_DOMAIN)) |
| != 0); |
| for (objfile *objfile : current_program_space->objfiles ()) |
| if (!add_matching_msymbols (objfile, preg, &result)) |
| break; |
| } |
| |
| return result; |
| } |
| |
| /* See symtab.h. */ |
| |
| std::string |
| symbol_to_info_string (struct symbol *sym, int block) |
| { |
| std::string str; |
| |
| gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK); |
| |
| if (block == STATIC_BLOCK |
| && (sym->domain () == VAR_DOMAIN |
| || sym->domain () == FUNCTION_DOMAIN)) |
| str += "static "; |
| |
| /* Typedef that is not a C++ class. */ |
| if (sym->domain () == TYPE_DOMAIN) |
| { |
| string_file tmp_stream; |
| |
| /* FIXME: For C (and C++) we end up with a difference in output here |
| between how a typedef is printed, and non-typedefs are printed. |
| The TYPEDEF_PRINT code places a ";" at the end in an attempt to |
| appear C-like, while TYPE_PRINT doesn't. |
| |
| For the struct printing case below, things are worse, we force |
| printing of the ";" in this function, which is going to be wrong |
| for languages that don't require a ";" between statements. */ |
| if (sym->type ()->code () == TYPE_CODE_TYPEDEF) |
| typedef_print (sym->type (), sym, &tmp_stream); |
| else |
| type_print (sym->type (), "", &tmp_stream, -1); |
| str += tmp_stream.string (); |
| } |
| /* variable, func, or typedef-that-is-c++-class. */ |
| else if (sym->domain () == VAR_DOMAIN || sym->domain () == STRUCT_DOMAIN |
| || sym->domain () == FUNCTION_DOMAIN) |
| { |
| string_file tmp_stream; |
| |
| type_print (sym->type (), |
| (sym->aclass () == LOC_TYPEDEF |
| ? "" : sym->print_name ()), |
| &tmp_stream, 0); |
| |
| str += tmp_stream.string (); |
| str += ";"; |
| } |
| /* Printing of modules is currently done here, maybe at some future |
| point we might want a language specific method to print the module |
| symbol so that we can customise the output more. */ |
| else if (sym->domain () == MODULE_DOMAIN) |
| str += sym->print_name (); |
| |
| return str; |
| } |
| |
| /* Helper function for symbol info commands, for example 'info |
| functions', 'info variables', etc. BLOCK is the type of block the |
| symbols was found in, either GLOBAL_BLOCK or STATIC_BLOCK. SYM is |
| the symbol we found. If LAST is not NULL, print file and line |
| number information for the symbol as well. Skip printing the |
| filename if it matches LAST. */ |
| |
| static void |
| print_symbol_info (struct symbol *sym, int block, const char *last) |
| { |
| scoped_switch_to_sym_language_if_auto l (sym); |
| struct symtab *s = sym->symtab (); |
| |
| if (last != NULL) |
| { |
| const char *s_filename = symtab_to_filename_for_display (s); |
| |
| if (filename_cmp (last, s_filename) != 0) |
| { |
| gdb_printf (_("\nFile %ps:\n"), |
| styled_string (file_name_style.style (), |
| s_filename)); |
| } |
| |
| if (sym->line () != 0) |
| gdb_printf ("%d:\t", sym->line ()); |
| else |
| gdb_puts ("\t"); |
| } |
| |
| std::string str = symbol_to_info_string (sym, block); |
| gdb_printf ("%s\n", str.c_str ()); |
| } |
| |
| /* This help function for symtab_symbol_info() prints information |
| for non-debugging symbols to gdb_stdout. */ |
| |
| static void |
| print_msymbol_info (bound_minimal_symbol msymbol) |
| { |
| struct gdbarch *gdbarch = msymbol.objfile->arch (); |
| const char *tmp; |
| |
| if (gdbarch_addr_bit (gdbarch) <= 32) |
| tmp = hex_string_custom (msymbol.value_address () |
| & (CORE_ADDR) 0xffffffff, |
| 8); |
| else |
| tmp = hex_string_custom (msymbol.value_address (), |
| 16); |
| |
| ui_file_style sym_style = (msymbol.minsym->text_p () |
| ? function_name_style.style () |
| : ui_file_style ()); |
| |
| gdb_printf (_("%ps %ps\n"), |
| styled_string (address_style.style (), tmp), |
| styled_string (sym_style, msymbol.minsym->print_name ())); |
| } |
| |
| /* This is the guts of the commands "info functions", "info types", and |
| "info variables". It calls search_symbols to find all matches and then |
| print_[m]symbol_info to print out some useful information about the |
| matches. */ |
| |
| static void |
| symtab_symbol_info (bool quiet, bool exclude_minsyms, |
| const char *regexp, domain_enum kind, |
| const char *t_regexp, int from_tty) |
| { |
| const char *last_filename = ""; |
| int first = 1; |
| |
| if (regexp != nullptr && *regexp == '\0') |
| regexp = nullptr; |
| |
| domain_search_flags flags = to_search_flags (kind); |
| if (kind == TYPE_DOMAIN) |
| flags |= SEARCH_STRUCT_DOMAIN; |
| |
| global_symbol_searcher spec (flags, regexp); |
| spec.set_symbol_type_regexp (t_regexp); |
| spec.set_exclude_minsyms (exclude_minsyms); |
| std::vector<symbol_search> symbols = spec.search (); |
| |
| if (!quiet) |
| { |
| const char *classname; |
| switch (kind) |
| { |
| case VAR_DOMAIN: |
| classname = "variable"; |
| break; |
| case FUNCTION_DOMAIN: |
| classname = "function"; |
| break; |
| case TYPE_DOMAIN: |
| classname = "type"; |
| break; |
| case MODULE_DOMAIN: |
| classname = "module"; |
| break; |
| default: |
| gdb_assert_not_reached ("invalid domain enum"); |
| } |
| |
| if (regexp != NULL) |
| { |
| if (t_regexp != NULL) |
| gdb_printf |
| (_("All %ss matching regular expression \"%s\"" |
| " with type matching regular expression \"%s\":\n"), |
| classname, regexp, t_regexp); |
| else |
| gdb_printf (_("All %ss matching regular expression \"%s\":\n"), |
| classname, regexp); |
| } |
| else |
| { |
| if (t_regexp != NULL) |
| gdb_printf |
| (_("All defined %ss" |
| " with type matching regular expression \"%s\" :\n"), |
| classname, t_regexp); |
| else |
| gdb_printf (_("All defined %ss:\n"), classname); |
| } |
| } |
| |
| for (const symbol_search &p : symbols) |
| { |
| QUIT; |
| |
| if (p.msymbol.minsym != NULL) |
| { |
| if (first) |
| { |
| if (!quiet) |
| gdb_printf (_("\nNon-debugging symbols:\n")); |
| first = 0; |
| } |
| print_msymbol_info (p.msymbol); |
| } |
| else |
| { |
| print_symbol_info (p.symbol, p.block, last_filename); |
| last_filename |
| = symtab_to_filename_for_display (p.symbol->symtab ()); |
| } |
| } |
| } |
| |
| /* Structure to hold the values of the options used by the 'info variables' |
| and 'info functions' commands. These correspond to the -q, -t, and -n |
| options. */ |
| |
| struct info_vars_funcs_options |
| { |
| bool quiet = false; |
| bool exclude_minsyms = false; |
| std::string type_regexp; |
| }; |
| |
| /* The options used by the 'info variables' and 'info functions' |
| commands. */ |
| |
| static const gdb::option::option_def info_vars_funcs_options_defs[] = { |
| gdb::option::boolean_option_def<info_vars_funcs_options> { |
| "q", |
| [] (info_vars_funcs_options *opt) { return &opt->quiet; }, |
| nullptr, /* show_cmd_cb */ |
| nullptr /* set_doc */ |
| }, |
| |
| gdb::option::boolean_option_def<info_vars_funcs_options> { |
| "n", |
| [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; }, |
| nullptr, /* show_cmd_cb */ |
| nullptr /* set_doc */ |
| }, |
| |
| gdb::option::string_option_def<info_vars_funcs_options> { |
| "t", |
| [] (info_vars_funcs_options *opt) { return &opt->type_regexp; }, |
| nullptr, /* show_cmd_cb */ |
| nullptr /* set_doc */ |
| } |
| }; |
| |
| /* Returns the option group used by 'info variables' and 'info |
| functions'. */ |
| |
| static gdb::option::option_def_group |
| make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts) |
| { |
| return {{info_vars_funcs_options_defs}, opts}; |
| } |
| |
| /* Command completer for 'info variables' and 'info functions'. */ |
| |
| static void |
| info_vars_funcs_command_completer (struct cmd_list_element *ignore, |
| completion_tracker &tracker, |
| const char *text, const char * /* word */) |
| { |
| const auto group |
| = make_info_vars_funcs_options_def_group (nullptr); |
| if (gdb::option::complete_options |
| (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group)) |
| return; |
| |
| const char *word = advance_to_expression_complete_word_point (tracker, text); |
| symbol_completer (ignore, tracker, text, word); |
| } |
| |
| /* Implement the 'info variables' command. */ |
| |
| static void |
| info_variables_command (const char *args, int from_tty) |
| { |
| info_vars_funcs_options opts; |
| auto grp = make_info_vars_funcs_options_def_group (&opts); |
| gdb::option::process_options |
| (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); |
| if (args != nullptr && *args == '\0') |
| args = nullptr; |
| |
| symtab_symbol_info |
| (opts.quiet, opts.exclude_minsyms, args, VAR_DOMAIN, |
| opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (), |
| from_tty); |
| } |
| |
| /* Implement the 'info functions' command. */ |
| |
| static void |
| info_functions_command (const char *args, int from_tty) |
| { |
| info_vars_funcs_options opts; |
| |
| auto grp = make_info_vars_funcs_options_def_group (&opts); |
| gdb::option::process_options |
| (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); |
| if (args != nullptr && *args == '\0') |
| args = nullptr; |
| |
| symtab_symbol_info |
| (opts.quiet, opts.exclude_minsyms, args, FUNCTION_DOMAIN, |
| opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (), |
| from_tty); |
| } |
| |
| /* Holds the -q option for the 'info types' command. */ |
| |
| struct info_types_options |
| { |
| bool quiet = false; |
| }; |
| |
| /* The options used by the 'info types' command. */ |
| |
| static const gdb::option::option_def info_types_options_defs[] = { |
| gdb::option::boolean_option_def<info_types_options> { |
| "q", |
| [] (info_types_options *opt) { return &opt->quiet; }, |
| nullptr, /* show_cmd_cb */ |
| nullptr /* set_doc */ |
| } |
| }; |
| |
| /* Returns the option group used by 'info types'. */ |
| |
| static gdb::option::option_def_group |
| make_info_types_options_def_group (info_types_options *opts) |
| { |
| return {{info_types_options_defs}, opts}; |
| } |
| |
| /* Implement the 'info types' command. */ |
| |
| static void |
| info_types_command (const char *args, int from_tty) |
| { |
| info_types_options opts; |
| |
| auto grp = make_info_types_options_def_group (&opts); |
| gdb::option::process_options |
| (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); |
| if (args != nullptr && *args == '\0') |
| args = nullptr; |
| symtab_symbol_info (opts.quiet, false, args, TYPE_DOMAIN, nullptr, |
| from_tty); |
| } |
| |
| /* Command completer for 'info types' command. */ |
| |
| static void |
| info_types_command_completer (struct cmd_list_element *ignore, |
| completion_tracker &tracker, |
| const char *text, const char * /* word */) |
| { |
| const auto group |
| = make_info_types_options_def_group (nullptr); |
| if (gdb::option::complete_options |
| (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group)) |
| return; |
| |
| const char *word = advance_to_expression_complete_word_point (tracker, text); |
| symbol_completer (ignore, tracker, text, word); |
| } |
| |
| /* Implement the 'info modules' command. */ |
| |
| static void |
| info_modules_command (const char *args, int from_tty) |
| { |
| info_types_options opts; |
| |
| auto grp = make_info_types_options_def_group (&opts); |
| gdb::option::process_options |
| (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); |
| if (args != nullptr && *args == '\0') |
| args = nullptr; |
| symtab_symbol_info (opts.quiet, true, args, MODULE_DOMAIN, nullptr, |
| from_tty); |
| } |
| |
| /* Implement the 'info main' command. */ |
| |
| static void |
| info_main_command (const char *args, int from_tty) |
| { |
| gdb_printf ("%s\n", main_name ()); |
| } |
| |
| static void |
| rbreak_command (const char *regexp, int from_tty) |
| { |
| std::string string; |
| gdb::unique_xmalloc_ptr<char> file_name; |
| |
| if (regexp != nullptr) |
| { |
| const char *colon = strchr (regexp, ':'); |
| |
| /* Ignore the colon if it is part of a Windows drive. */ |
| if (HAS_DRIVE_SPEC (regexp) |
| && (regexp[2] == '/' || regexp[2] == '\\')) |
| colon = strchr (STRIP_DRIVE_SPEC (regexp), ':'); |
| |
| if (colon && *(colon + 1) != ':') |
| { |
| int colon_index = colon - regexp; |
| while (colon_index > 0 && isspace (regexp[colon_index - 1])) |
| --colon_index; |
| |
| file_name = make_unique_xstrndup (regexp, colon_index); |
| regexp = skip_spaces (colon + 1); |
| } |
| } |
| |
| global_symbol_searcher spec (SEARCH_FUNCTION_DOMAIN, regexp); |
| if (file_name != nullptr) |
| spec.add_filename (std::move (file_name)); |
| std::vector<symbol_search> symbols = spec.search (); |
| |
| scoped_rbreak_breakpoints finalize; |
| for (const symbol_search &p : symbols) |
| { |
| if (p.msymbol.minsym == NULL) |
| { |
| struct symtab *symtab = p.symbol->symtab (); |
| const char *fullname = symtab_to_fullname (symtab); |
| |
| string = string_printf ("%s:'%s'", fullname, |
| p.symbol->linkage_name ()); |
| break_command (&string[0], from_tty); |
| print_symbol_info (p.symbol, p.block, nullptr); |
| } |
| else |
| { |
| string = string_printf ("'%s'", |
| p.msymbol.minsym->linkage_name ()); |
| |
| break_command (&string[0], from_tty); |
| gdb_printf ("<function, no debug info> %s;\n", |
| p.msymbol.minsym->print_name ()); |
| } |
| } |
| } |
| |
| |
| /* Evaluate if SYMNAME matches LOOKUP_NAME. */ |
| |
| static int |
| compare_symbol_name (const char *symbol_name, language symbol_language, |
| const lookup_name_info &lookup_name, |
| completion_match_result &match_res) |
| { |
| const language_defn *lang = language_def (symbol_language); |
| |
| symbol_name_matcher_ftype *name_match |
| = lang->get_symbol_name_matcher (lookup_name); |
| |
| return name_match (symbol_name, lookup_name, &match_res); |
| } |
| |
| /* See symtab.h. */ |
| |
| bool |
| completion_list_add_name (completion_tracker &tracker, |
| language symbol_language, |
| const char *symname, |
| const lookup_name_info &lookup_name, |
| const char *text, const char *word) |
| { |
| completion_match_result &match_res |
| = tracker.reset_completion_match_result (); |
| |
| /* Clip symbols that cannot match. */ |
| if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res)) |
| return false; |
| |
| /* Refresh SYMNAME from the match string. It's potentially |
| different depending on language. (E.g., on Ada, the match may be |
| the encoded symbol name wrapped in "<>"). */ |
| symname = match_res.match.match (); |
| gdb_assert (symname != NULL); |
| |
| /* We have a match for a completion, so add SYMNAME to the current list |
| of matches. Note that the name is moved to freshly malloc'd space. */ |
| |
| { |
| gdb::unique_xmalloc_ptr<char> completion |
| = make_completion_match_str (symname, text, word); |
| |
| /* Here we pass the match-for-lcd object to add_completion. Some |
| languages match the user text against substrings of symbol |
| names in some cases. E.g., in C++, "b push_ba" completes to |
| "std::vector::push_back", "std::string::push_back", etc., and |
| in this case we want the completion lowest common denominator |
| to be "push_back" instead of "std::". */ |
| tracker.add_completion (std::move (completion), |
| &match_res.match_for_lcd, text, word); |
| } |
| |
| return true; |
| } |
| |
| /* completion_list_add_name wrapper for struct symbol. */ |
| |
| static void |
| completion_list_add_symbol (completion_tracker &tracker, |
| symbol *sym, |
| const lookup_name_info &lookup_name, |
| const char *text, const char *word) |
| { |
| if (!completion_list_add_name (tracker, sym->language (), |
| sym->natural_name (), |
| lookup_name, text, word)) |
| return; |
| |
| /* C++ function symbols include the parameters within both the msymbol |
| name and the symbol name. The problem is that the msymbol name will |
| describe the parameters in the most basic way, with typedefs stripped |
| out, while the symbol name will represent the types as they appear in |
| the program. This means we will see duplicate entries in the |
| completion tracker. The following converts the symbol name back to |
| the msymbol name and removes the msymbol name from the completion |
| tracker. */ |
| if (sym->language () == language_cplus |
| && sym->aclass () == LOC_BLOCK) |
| { |
| /* The call to canonicalize returns the empty string if the input |
| string is already in canonical form, thanks to this we don't |
| remove the symbol we just added above. */ |
| gdb::unique_xmalloc_ptr<char> str |
| = cp_canonicalize_string_no_typedefs (sym->natural_name ()); |
| if (str != nullptr) |
| tracker.remove_completion (str.get ()); |
| } |
| } |
| |
| /* completion_list_add_name wrapper for struct minimal_symbol. */ |
| |
| static void |
| completion_list_add_msymbol (completion_tracker &tracker, |
| minimal_symbol *sym, |
| const lookup_name_info &lookup_name, |
| const char *text, const char *word) |
| { |
| completion_list_add_name (tracker, sym->language (), |
| sym->natural_name (), |
| lookup_name, text, word); |
| } |
| |
| |
| /* ObjC: In case we are completing on a selector, look as the msymbol |
| again and feed all the selectors into the mill. */ |
| |
| static void |
| completion_list_objc_symbol (completion_tracker &tracker, |
| struct minimal_symbol *msymbol, |
| const lookup_name_info &lookup_name, |
| const char *text, const char *word) |
| { |
| static char *tmp = NULL; |
| static unsigned int tmplen = 0; |
| |
| const char *method, *category, *selector; |
| char *tmp2 = NULL; |
| |
| method = msymbol->natural_name (); |
| |
| /* Is it a method? */ |
| if ((method[0] != '-') && (method[0] != '+')) |
| return; |
| |
| if (text[0] == '[') |
| /* Complete on shortened method method. */ |
| completion_list_add_name (tracker, language_objc, |
| method + 1, |
| lookup_name, |
| text, word); |
| |
| while ((strlen (method) + 1) >= tmplen) |
| { |
| if (tmplen == 0) |
| tmplen = 1024; |
| else |
| tmplen *= 2; |
| tmp = (char *) xrealloc (tmp, tmplen); |
| } |
| selector = strchr (method, ' '); |
| if (selector != NULL) |
| selector++; |
| |
| category = strchr (method, '('); |
| |
| if ((category != NULL) && (selector != NULL)) |
| { |
| memcpy (tmp, method, (category - method)); |
| tmp[category - method] = ' '; |
| memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); |
| completion_list_add_name (tracker, language_objc, tmp, |
| lookup_name, text, word); |
| if (text[0] == '[') |
| completion_list_add_name (tracker, language_objc, tmp + 1, |
| lookup_name, text, word); |
| } |
| |
| if (selector != NULL) |
| { |
| /* Complete on selector only. */ |
| strcpy (tmp, selector); |
| tmp2 = strchr (tmp, ']'); |
| if (tmp2 != NULL) |
| *tmp2 = '\0'; |
| |
| completion_list_add_name (tracker, language_objc, tmp, |
| lookup_name, text, word); |
| } |
| } |
| |
| /* Break the non-quoted text based on the characters which are in |
| symbols. FIXME: This should probably be language-specific. */ |
| |
| static const char * |
| language_search_unquoted_string (const char *text, const char *p) |
| { |
| for (; p > text; --p) |
| { |
| if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') |
| continue; |
| else |
| { |
| if ((current_language->la_language == language_objc)) |
| { |
| if (p[-1] == ':') /* Might be part of a method name. */ |
| continue; |
| else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) |
| p -= 2; /* Beginning of a method name. */ |
| else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') |
| { /* Might be part of a method name. */ |
| const char *t = p; |
| |
| /* Seeing a ' ' or a '(' is not conclusive evidence |
| that we are in the middle of a method name. However, |
| finding "-[" or "+[" should be pretty un-ambiguous. |
| Unfortunately we have to find it now to decide. */ |
| |
| while (t > text) |
| if (isalnum (t[-1]) || t[-1] == '_' || |
| t[-1] == ' ' || t[-1] == ':' || |
| t[-1] == '(' || t[-1] == ')') |
| --t; |
| else |
| break; |
| |
| if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) |
| p = t - 2; /* Method name detected. */ |
| /* Else we leave with p unchanged. */ |
| } |
| } |
| break; |
| } |
| } |
| return p; |
| } |
| |
| static void |
| completion_list_add_fields (completion_tracker &tracker, |
| struct symbol *sym, |
| const lookup_name_info &lookup_name, |
| const char *text, const char *word) |
| { |
| if (sym->aclass () == LOC_TYPEDEF) |
| { |
| struct type *t = sym->type (); |
| enum type_code c = t->code (); |
| int j; |
| |
| if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) |
| for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++) |
| if (t->field (j).name ()) |
| completion_list_add_name (tracker, sym->language (), |
| t->field (j).name (), |
| lookup_name, text, word); |
| } |
| } |
| |
| /* See symtab.h. */ |
| |
| bool |
| symbol_is_function_or_method (symbol *sym) |
| { |
| switch (sym->type ()->code ()) |
| { |
| case TYPE_CODE_FUNC: |
| case TYPE_CODE_METHOD: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /* See symtab.h. */ |
| |
| bool |
| symbol_is_function_or_method (minimal_symbol *msymbol) |
| { |
| switch (msymbol->type ()) |
| { |
| case mst_text: |
| case mst_text_gnu_ifunc: |
| case mst_solib_trampoline: |
| case mst_file_text: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /* See symtab.h. */ |
| |
| bound_minimal_symbol |
| find_gnu_ifunc (const symbol *sym) |
| { |
| if (sym->aclass () != LOC_BLOCK) |
| return {}; |
| |
| lookup_name_info lookup_name (sym->search_name (), |
| symbol_name_match_type::SEARCH_NAME); |
| struct objfile *objfile = sym->objfile (); |
| |
| CORE_ADDR address = sym->value_block ()->entry_pc (); |
| minimal_symbol *ifunc = NULL; |
| |
| iterate_over_minimal_symbols (objfile, lookup_name, |
| [&] (minimal_symbol *minsym) |
| { |
| if (minsym->type () == mst_text_gnu_ifunc |
| || minsym->type () == mst_data_gnu_ifunc) |
| { |
| CORE_ADDR msym_addr = minsym->value_address (objfile); |
| if (minsym->type () == mst_data_gnu_ifunc) |
| { |
| struct gdbarch *gdbarch = objfile->arch (); |
| msym_addr = gdbarch_convert_from_func_ptr_addr |
| (gdbarch, msym_addr, current_inferior ()->top_target ()); |
| } |
| if (msym_addr == address) |
| { |
| ifunc = minsym; |
| return true; |
| } |
| } |
| return false; |
| }); |
| |
| if (ifunc != NULL) |
| return {ifunc, objfile}; |
| return {}; |
| } |
| |
| /* Add matching symbols from SYMTAB to the current completion list. */ |
| |
| static void |
| add_symtab_completions (struct compunit_symtab *cust, |
| completion_tracker &tracker, |
| complete_symbol_mode mode, |
| const lookup_name_info &lookup_name, |
| const char *text, const char *word, |
| enum type_code code) |
| { |
| int i; |
| |
| if (cust == NULL) |
| return; |
| |
| for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) |
| { |
| QUIT; |
| |
| const struct block *b = cust->blockvector ()->block (i); |
| for (struct symbol *sym : block_iterator_range (b)) |
| { |
| if (completion_skip_symbol (mode, sym)) |
| continue; |
| |
| if (code == TYPE_CODE_UNDEF |
| || (sym->domain () == STRUCT_DOMAIN |
| && sym->type ()->code () == code)) |
| completion_list_add_symbol (tracker, sym, |
| lookup_name, |
| text, word); |
| } |
| } |
| } |
| |
| void |
| default_collect_symbol_completion_matches_break_on |
| (completion_tracker &tracker, complete_symbol_mode mode, |
| symbol_name_match_type name_match_type, |
| const char *text, const char *word, |
| const char *break_on, enum type_code code) |
| { |
| /* Problem: All of the symbols have to be copied because readline |
| frees them. I'm not going to worry about this; hopefully there |
| won't be that many. */ |
| |
| const struct block *b; |
| const struct block *surrounding_static_block, *surrounding_global_block; |
| /* The symbol we are completing on. Points in same buffer as text. */ |
| const char *sym_text; |
| |
| /* Now look for the symbol we are supposed to complete on. */ |
| if (mode == complete_symbol_mode::LINESPEC) |
| sym_text = text; |
| else |
| { |
| const char *p; |
| char quote_found; |
| const char *quote_pos = NULL; |
| |
| /* First see if this is a quoted string. */ |
| quote_found = '\0'; |
| for (p = text; *p != '\0'; ++p) |
| { |
| if (quote_found != '\0') |
| { |
| if (*p == quote_found) |
| /* Found close quote. */ |
| quote_found = '\0'; |
| else if (*p == '\\' && p[1] == quote_found) |
| /* A backslash followed by the quote character |
| doesn't end the string. */ |
| ++p; |
| } |
| else if (*p == '\'' || *p == '"') |
| { |
| quote_found = *p; |
| quote_pos = p; |
| } |
| } |
| if (quote_found == '\'') |
| /* A string within single quotes can be a symbol, so complete on it. */ |
| sym_text = quote_pos + 1; |
| else if (quote_found == '"') |
| /* A double-quoted string is never a symbol, nor does it make sense |
| to complete it any other way. */ |
| { |
| return; |
| } |
| else |
| { |
| /* It is not a quoted string. Break it based on the characters |
| which are in symbols. */ |
| while (p > text) |
| { |
| if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0' |
| || p[-1] == ':' || strchr (break_on, p[-1]) != NULL) |
| --p; |
| else |
| break; |
| } |
| sym_text = p; |
| } |
| } |
| |
| lookup_name_info lookup_name (sym_text, name_match_type, true); |
| |
| /* At this point scan through the misc symbol vectors and add each |
| symbol you find to the list. Eventually we want to ignore |
| anything that isn't a text symbol (everything else will be |
| handled by the psymtab code below). */ |
| |
| if (code == TYPE_CODE_UNDEF) |
| { |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| for (minimal_symbol *msymbol : objfile->msymbols ()) |
| { |
| QUIT; |
| |
| if (completion_skip_symbol (mode, msymbol)) |
| continue; |
| |
| completion_list_add_msymbol (tracker, msymbol, lookup_name, |
| sym_text, word); |
| |
| completion_list_objc_symbol (tracker, msymbol, lookup_name, |
| sym_text, word); |
| } |
| } |
| } |
| |
| /* Add completions for all currently loaded symbol tables. */ |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| for (compunit_symtab *cust : objfile->compunits ()) |
| add_symtab_completions (cust, tracker, mode, lookup_name, |
| sym_text, word, code); |
| } |
| |
| /* Look through the partial symtabs for all symbols which begin by |
| matching SYM_TEXT. Expand all CUs that you find to the list. */ |
| expand_symtabs_matching (NULL, |
| lookup_name, |
| NULL, |
| [&] (compunit_symtab *symtab) /* expansion notify */ |
| { |
| add_symtab_completions (symtab, |
| tracker, mode, lookup_name, |
| sym_text, word, code); |
| return true; |
| }, |
| SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK, |
| SEARCH_ALL_DOMAINS); |
| |
| /* Search upwards from currently selected frame (so that we can |
| complete on local vars). Also catch fields of types defined in |
| this places which match our text string. Only complete on types |
| visible from current context. */ |
| |
| b = get_selected_block (0); |
| surrounding_static_block = b == nullptr ? nullptr : b->static_block (); |
| surrounding_global_block = b == nullptr ? nullptr : b->global_block (); |
| if (surrounding_static_block != NULL) |
| while (b != surrounding_static_block) |
| { |
| QUIT; |
| |
| for (struct symbol *sym : block_iterator_range (b)) |
| { |
| if (code == TYPE_CODE_UNDEF) |
| { |
| completion_list_add_symbol (tracker, sym, lookup_name, |
| sym_text, word); |
| completion_list_add_fields (tracker, sym, lookup_name, |
| sym_text, word); |
| } |
| else if (sym->domain () == STRUCT_DOMAIN |
| && sym->type ()->code () == code) |
| completion_list_add_symbol (tracker, sym, lookup_name, |
| sym_text, word); |
| } |
| |
| /* Stop when we encounter an enclosing function. Do not stop for |
| non-inlined functions - the locals of the enclosing function |
| are in scope for a nested function. */ |
| if (b->function () != NULL && b->inlined_p ()) |
| break; |
| b = b->superblock (); |
| } |
| |
| /* Add fields from the file's types; symbols will be added below. */ |
| |
| if (code == TYPE_CODE_UNDEF) |
| { |
| if (surrounding_static_block != NULL) |
| for (struct symbol *sym : block_iterator_range (surrounding_static_block)) |
| completion_list_add_fields (tracker, sym, lookup_name, |
| sym_text, word); |
| |
| if (surrounding_global_block != NULL) |
| for (struct symbol *sym : block_iterator_range (surrounding_global_block)) |
| completion_list_add_fields (tracker, sym, lookup_name, |
| sym_text, word); |
| } |
| |
| /* Skip macros if we are completing a struct tag -- arguable but |
| usually what is expected. */ |
| if (current_language->macro_expansion () == macro_expansion_c |
| && code == TYPE_CODE_UNDEF) |
| { |
| gdb::unique_xmalloc_ptr<struct macro_scope> scope; |
| |
| /* This adds a macro's name to the current completion list. */ |
| auto add_macro_name = [&] (const char *macro_name, |
| const macro_definition *, |
| macro_source_file *, |
| int) |
| { |
| completion_list_add_name (tracker, language_c, macro_name, |
| lookup_name, sym_text, word); |
| }; |
| |
| /* Add any macros visible in the default scope. Note that this |
| may yield the occasional wrong result, because an expression |
| might be evaluated in a scope other than the default. For |
| example, if the user types "break file:line if <TAB>", the |
| resulting expression will be evaluated at "file:line" -- but |
| at there does not seem to be a way to detect this at |
| completion time. */ |
| scope = default_macro_scope (); |
| if (scope) |
| macro_for_each_in_scope (scope->file, scope->line, |
| add_macro_name); |
| |
| /* User-defined macros are always visible. */ |
| macro_for_each (macro_user_macros, add_macro_name); |
| } |
| } |
| |
| /* Collect all symbols (regardless of class) which begin by matching |
| TEXT. */ |
| |
| void |
| collect_symbol_completion_matches (completion_tracker &tracker, |
| complete_symbol_mode mode, |
| symbol_name_match_type name_match_type, |
| const char *text, const char *word) |
| { |
| current_language->collect_symbol_completion_matches (tracker, mode, |
| name_match_type, |
| text, word, |
| TYPE_CODE_UNDEF); |
| } |
| |
| /* Like collect_symbol_completion_matches, but only collect |
| STRUCT_DOMAIN symbols whose type code is CODE. */ |
| |
| void |
| collect_symbol_completion_matches_type (completion_tracker &tracker, |
| const char *text, const char *word, |
| enum type_code code) |
| { |
| complete_symbol_mode mode = complete_symbol_mode::EXPRESSION; |
| symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION; |
| |
| gdb_assert (code == TYPE_CODE_UNION |
| || code == TYPE_CODE_STRUCT |
| || code == TYPE_CODE_ENUM); |
| current_language->collect_symbol_completion_matches (tracker, mode, |
| name_match_type, |
| text, word, code); |
| } |
| |
| /* Like collect_symbol_completion_matches, but collects a list of |
| symbols defined in all source files named SRCFILE. */ |
| |
| void |
| collect_file_symbol_completion_matches (completion_tracker &tracker, |
| complete_symbol_mode mode, |
| symbol_name_match_type name_match_type, |
| const char *text, const char *word, |
| const char *srcfile) |
| { |
| /* The symbol we are completing on. Points in same buffer as text. */ |
| const char *sym_text; |
| |
| /* Now look for the symbol we are supposed to complete on. |
| FIXME: This should be language-specific. */ |
| if (mode == complete_symbol_mode::LINESPEC) |
| sym_text = text; |
| else |
| { |
| const char *p; |
| char quote_found; |
| const char *quote_pos = NULL; |
| |
| /* First see if this is a quoted string. */ |
| quote_found = '\0'; |
| for (p = text; *p != '\0'; ++p) |
| { |
| if (quote_found != '\0') |
| { |
| if (*p == quote_found) |
| /* Found close quote. */ |
| quote_found = '\0'; |
| else if (*p == '\\' && p[1] == quote_found) |
| /* A backslash followed by the quote character |
| doesn't end the string. */ |
| ++p; |
| } |
| else if (*p == '\'' || *p == '"') |
| { |
| quote_found = *p; |
| quote_pos = p; |
| } |
| } |
| if (quote_found == '\'') |
| /* A string within single quotes can be a symbol, so complete on it. */ |
| sym_text = quote_pos + 1; |
| else if (quote_found == '"') |
| /* A double-quoted string is never a symbol, nor does it make sense |
| to complete it any other way. */ |
| { |
| return; |
| } |
| else |
| { |
| /* Not a quoted string. */ |
| sym_text = language_search_unquoted_string (text, p); |
| } |
| } |
| |
| lookup_name_info lookup_name (sym_text, name_match_type, true); |
| |
| /* Go through symtabs for SRCFILE and check the externs and statics |
| for symbols which match. */ |
| iterate_over_symtabs (srcfile, [&] (symtab *s) |
| { |
| add_symtab_completions (s->compunit (), |
| tracker, mode, lookup_name, |
| sym_text, word, TYPE_CODE_UNDEF); |
| return false; |
| }); |
| } |
| |
| /* A helper function for make_source_files_completion_list. It adds |
| another file name to a list of possible completions, growing the |
| list as necessary. */ |
| |
| static void |
| add_filename_to_list (const char *fname, const char *text, const char *word, |
| completion_list *list) |
| { |
| list->emplace_back (make_completion_match_str (fname, text, word)); |
| } |
| |
| static int |
| not_interesting_fname (const char *fname) |
| { |
| static const char *illegal_aliens[] = { |
| "_globals_", /* inserted by coff_symtab_read */ |
| NULL |
| }; |
| int i; |
| |
| for (i = 0; illegal_aliens[i]; i++) |
| { |
| if (filename_cmp (fname, illegal_aliens[i]) == 0) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* An object of this type is passed as the callback argument to |
| map_partial_symbol_filenames. */ |
| struct add_partial_filename_data |
| { |
| struct filename_seen_cache *filename_seen_cache; |
| const char *text; |
| const char *word; |
| int text_len; |
| completion_list *list; |
| |
| void operator() (const char *filename, const char *fullname); |
| }; |
| |
| /* A callback for map_partial_symbol_filenames. */ |
| |
| void |
| add_partial_filename_data::operator() (const char *filename, |
| const char *fullname) |
| { |
| if (not_interesting_fname (filename)) |
| return; |
| if (!filename_seen_cache->seen (filename) |
| && filename_ncmp (filename, text, text_len) == 0) |
| { |
| /* This file matches for a completion; add it to the |
| current list of matches. */ |
| add_filename_to_list (filename, text, word, list); |
| } |
| else |
| { |
| const char *base_name = lbasename (filename); |
| |
| if (base_name != filename |
| && !filename_seen_cache->seen (base_name) |
| && filename_ncmp (base_name, text, text_len) == 0) |
| add_filename_to_list (base_name, text, word, list); |
| } |
| } |
| |
| /* Return a list of all source files whose names begin with matching |
| TEXT. The file names are looked up in the symbol tables of this |
| program. */ |
| |
| completion_list |
| make_source_files_completion_list (const char *text, const char *word) |
| { |
| size_t text_len = strlen (text); |
| completion_list list; |
| const char *base_name; |
| struct add_partial_filename_data datum; |
| |
| if (!have_full_symbols (current_program_space) |
| && !have_partial_symbols (current_program_space)) |
| return list; |
| |
| filename_seen_cache filenames_seen; |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| for (compunit_symtab *cu : objfile->compunits ()) |
| { |
| for (symtab *s : cu->filetabs ()) |
| { |
| if (not_interesting_fname (s->filename)) |
| continue; |
| if (!filenames_seen.seen (s->filename) |
| && filename_ncmp (s->filename, text, text_len) == 0) |
| { |
| /* This file matches for a completion; add it to the current |
| list of matches. */ |
| add_filename_to_list (s->filename, text, word, &list); |
| } |
| else |
| { |
| /* NOTE: We allow the user to type a base name when the |
| debug info records leading directories, but not the other |
| way around. This is what subroutines of breakpoint |
| command do when they parse file names. */ |
| base_name = lbasename (s->filename); |
| if (base_name != s->filename |
| && !filenames_seen.seen (base_name) |
| && filename_ncmp (base_name, text, text_len) == 0) |
| add_filename_to_list (base_name, text, word, &list); |
| } |
| } |
| } |
| } |
| |
| datum.filename_seen_cache = &filenames_seen; |
| datum.text = text; |
| datum.word = word; |
| datum.text_len = text_len; |
| datum.list = &list; |
| map_symbol_filenames (datum, false /*need_fullname*/); |
| |
| return list; |
| } |
| |
| /* Track MAIN */ |
| |
| /* Return the "main_info" object for the current program space. If |
| the object has not yet been created, create it and fill in some |
| default values. */ |
| |
| static main_info * |
| get_main_info (program_space *pspace) |
| { |
| main_info *info = main_progspace_key.get (pspace); |
| |
| if (info == NULL) |
| { |
| /* It may seem strange to store the main name in the progspace |
| and also in whatever objfile happens to see a main name in |
| its debug info. The reason for this is mainly historical: |
| gdb returned "main" as the name even if no function named |
| "main" was defined the program; and this approach lets us |
| keep compatibility. */ |
| info = main_progspace_key.emplace (pspace); |
| } |
| |
| return info; |
| } |
| |
| static void |
| set_main_name (program_space *pspace, const char *name, enum language lang) |
| { |
| main_info *info = get_main_info (pspace); |
| |
| if (!info->name_of_main.empty ()) |
| { |
| info->name_of_main.clear (); |
| info->language_of_main = language_unknown; |
| } |
| if (name != NULL) |
| { |
| info->name_of_main = name; |
| info->language_of_main = lang; |
| } |
| } |
| |
| /* Deduce the name of the main procedure, and set NAME_OF_MAIN |
| accordingly. */ |
| |
| static void |
| find_main_name (void) |
| { |
| const char *new_main_name; |
| program_space *pspace = current_program_space; |
| |
| /* First check the objfiles to see whether a debuginfo reader has |
| picked up the appropriate main name. Historically the main name |
| was found in a more or less random way; this approach instead |
| relies on the order of objfile creation -- which still isn't |
| guaranteed to get the correct answer, but is just probably more |
| accurate. */ |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| objfile->compute_main_name (); |
| |
| if (objfile->per_bfd->name_of_main != NULL) |
| { |
| set_main_name (pspace, |
| objfile->per_bfd->name_of_main, |
| objfile->per_bfd->language_of_main); |
| return; |
| } |
| } |
| |
| /* Try to see if the main procedure is in Ada. */ |
| /* FIXME: brobecker/2005-03-07: Another way of doing this would |
| be to add a new method in the language vector, and call this |
| method for each language until one of them returns a non-empty |
| name. This would allow us to remove this hard-coded call to |
| an Ada function. It is not clear that this is a better approach |
| at this point, because all methods need to be written in a way |
| such that false positives never be returned. For instance, it is |
| important that a method does not return a wrong name for the main |
| procedure if the main procedure is actually written in a different |
| language. It is easy to guaranty this with Ada, since we use a |
| special symbol generated only when the main in Ada to find the name |
| of the main procedure. It is difficult however to see how this can |
| be guarantied for languages such as C, for instance. This suggests |
| that order of call for these methods becomes important, which means |
| a more complicated approach. */ |
| new_main_name = ada_main_name (); |
| if (new_main_name != NULL) |
| { |
| set_main_name (pspace, new_main_name, language_ada); |
| return; |
| } |
| |
| new_main_name = d_main_name (); |
| if (new_main_name != NULL) |
| { |
| set_main_name (pspace, new_main_name, language_d); |
| return; |
| } |
| |
| new_main_name = go_main_name (); |
| if (new_main_name != NULL) |
| { |
| set_main_name (pspace, new_main_name, language_go); |
| return; |
| } |
| |
| new_main_name = pascal_main_name (); |
| if (new_main_name != NULL) |
| { |
| set_main_name (pspace, new_main_name, language_pascal); |
| return; |
| } |
| |
| /* The languages above didn't identify the name of the main procedure. |
| Fallback to "main". */ |
| |
| /* Try to find language for main in psymtabs. */ |
| bool symbol_found_p = false; |
| gdbarch_iterate_over_objfiles_in_search_order |
| (current_inferior ()->arch (), |
| [&symbol_found_p, pspace] (objfile *obj) |
| { |
| language lang |
| = obj->lookup_global_symbol_language ("main", |
| SEARCH_FUNCTION_DOMAIN, |
| &symbol_found_p); |
| if (symbol_found_p) |
| { |
| set_main_name (pspace, "main", lang); |
| return 1; |
| } |
| |
| return 0; |
| }, nullptr); |
| |
| if (symbol_found_p) |
| return; |
| |
| set_main_name (pspace, "main", language_unknown); |
| } |
| |
| /* See symtab.h. */ |
| |
| const char * |
| main_name () |
| { |
| main_info *info = get_main_info (current_program_space); |
| |
| if (info->name_of_main.empty ()) |
| find_main_name (); |
| |
| return info->name_of_main.c_str (); |
| } |
| |
| /* Return the language of the main function. If it is not known, |
| return language_unknown. */ |
| |
| enum language |
| main_language (void) |
| { |
| main_info *info = get_main_info (current_program_space); |
| |
| if (info->name_of_main.empty ()) |
| find_main_name (); |
| |
| return info->language_of_main; |
| } |
| |
| /* Return 1 if the supplied producer string matches the ARM RealView |
| compiler (armcc). */ |
| |
| bool |
| producer_is_realview (const char *producer) |
| { |
| static const char *const arm_idents[] = { |
| "ARM C Compiler, ADS", |
| "Thumb C Compiler, ADS", |
| "ARM C++ Compiler, ADS", |
| "Thumb C++ Compiler, ADS", |
| "ARM/Thumb C/C++ Compiler, RVCT", |
| "ARM C/C++ Compiler, RVCT" |
| }; |
| |
| if (producer == NULL) |
| return false; |
| |
| for (const char *ident : arm_idents) |
| if (startswith (producer, ident)) |
| return true; |
| |
| return false; |
| } |
| |
| |
| |
| /* The next index to hand out in response to a registration request. */ |
| |
| static int next_aclass_value = LOC_FINAL_VALUE; |
| |
| /* The maximum number of "aclass" registrations we support. This is |
| constant for convenience. */ |
| #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 11) |
| |
| /* The objects representing the various "aclass" values. The elements |
| from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent |
| elements are those registered at gdb initialization time. */ |
| |
| static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS]; |
| |
| /* The globally visible pointer. This is separate from 'symbol_impl' |
| so that it can be const. */ |
| |
| gdb::array_view<const struct symbol_impl> symbol_impls (symbol_impl); |
| |
| /* Make sure we saved enough room in struct symbol. */ |
| |
| static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS)); |
| |
| /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS |
| is the ops vector associated with this index. This returns the new |
| index, which should be used as the aclass_index field for symbols |
| of this type. */ |
| |
| int |
| register_symbol_computed_impl (enum address_class aclass, |
| const struct symbol_computed_ops *ops) |
| { |
| int result = next_aclass_value++; |
| |
| gdb_assert (aclass == LOC_COMPUTED); |
| gdb_assert (result < MAX_SYMBOL_IMPLS); |
| symbol_impl[result].aclass = aclass; |
| symbol_impl[result].ops_computed = ops; |
| |
| /* Sanity check OPS. */ |
| gdb_assert (ops != NULL); |
| gdb_assert (ops->tracepoint_var_ref != NULL); |
| gdb_assert (ops->describe_location != NULL); |
| gdb_assert (ops->get_symbol_read_needs != NULL); |
| gdb_assert (ops->read_variable != NULL); |
| |
| return result; |
| } |
| |
| /* Register a function with frame base type. ACLASS must be LOC_BLOCK. |
| OPS is the ops vector associated with this index. This returns the |
| new index, which should be used as the aclass_index field for symbols |
| of this type. */ |
| |
| int |
| register_symbol_block_impl (enum address_class aclass, |
| const struct symbol_block_ops *ops) |
| { |
| int result = next_aclass_value++; |
| |
| gdb_assert (aclass == LOC_BLOCK); |
| gdb_assert (result < MAX_SYMBOL_IMPLS); |
| symbol_impl[result].aclass = aclass; |
| symbol_impl[result].ops_block = ops; |
| |
| /* Sanity check OPS. */ |
| gdb_assert (ops != NULL); |
| gdb_assert (ops->find_frame_base_location != nullptr |
| || ops->get_block_value != nullptr); |
| |
| return result; |
| } |
| |
| /* Register a register symbol type. ACLASS must be LOC_REGISTER or |
| LOC_REGPARM_ADDR. OPS is the register ops vector associated with |
| this index. This returns the new index, which should be used as |
| the aclass_index field for symbols of this type. */ |
| |
| int |
| register_symbol_register_impl (enum address_class aclass, |
| const struct symbol_register_ops *ops) |
| { |
| int result = next_aclass_value++; |
| |
| gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR); |
| gdb_assert (result < MAX_SYMBOL_IMPLS); |
| symbol_impl[result].aclass = aclass; |
| symbol_impl[result].ops_register = ops; |
| |
| return result; |
| } |
| |
| /* Initialize elements of 'symbol_impl' for the constants in enum |
| address_class. */ |
| |
| static void |
| initialize_ordinary_address_classes (void) |
| { |
| int i; |
| |
| for (i = 0; i < LOC_FINAL_VALUE; ++i) |
| symbol_impl[i].aclass = (enum address_class) i; |
| } |
| |
| |
| |
| /* See symtab.h. */ |
| |
| struct objfile * |
| symbol::objfile () const |
| { |
| gdb_assert (is_objfile_owned ()); |
| return owner.symtab->compunit ()->objfile (); |
| } |
| |
| /* See symtab.h. */ |
| |
| struct gdbarch * |
| symbol::arch () const |
| { |
| if (!is_objfile_owned ()) |
| return owner.arch; |
| return owner.symtab->compunit ()->objfile ()->arch (); |
| } |
| |
| /* See symtab.h. */ |
| |
| struct symtab * |
| symbol::symtab () const |
| { |
| gdb_assert (is_objfile_owned ()); |
| return owner.symtab; |
| } |
| |
| /* See symtab.h. */ |
| |
| void |
| symbol::set_symtab (struct symtab *symtab) |
| { |
| gdb_assert (is_objfile_owned ()); |
| owner.symtab = symtab; |
| } |
| |
| /* See symtab.h. */ |
| |
| CORE_ADDR |
| symbol::get_maybe_copied_address () const |
| { |
| gdb_assert (this->maybe_copied); |
| gdb_assert (this->aclass () == LOC_STATIC); |
| |
| const char *linkage_name = this->linkage_name (); |
| bound_minimal_symbol minsym |
| = lookup_minimal_symbol_linkage (this->objfile ()->pspace (), linkage_name, |
| false); |
| if (minsym.minsym != nullptr) |
| return minsym.value_address (); |
| |
| return this->m_value.address; |
| } |
| |
| /* See symtab.h. */ |
| |
| CORE_ADDR |
| minimal_symbol::get_maybe_copied_address (objfile *objf) const |
| { |
| gdb_assert (this->maybe_copied (objf)); |
| gdb_assert ((objf->flags & OBJF_MAINLINE) == 0); |
| |
| const char *linkage_name = this->linkage_name (); |
| bound_minimal_symbol found |
| = lookup_minimal_symbol_linkage (objf->pspace (), linkage_name, true); |
| if (found.minsym != nullptr) |
| return found.value_address (); |
| |
| return (this->m_value.address |
| + objf->section_offsets[this->section_index ()]); |
| } |
| |
| |
| |
| /* Hold the sub-commands of 'info module'. */ |
| |
| static struct cmd_list_element *info_module_cmdlist = NULL; |
| |
| /* See symtab.h. */ |
| |
| std::vector<module_symbol_search> |
| search_module_symbols (const char *module_regexp, const char *regexp, |
| const char *type_regexp, domain_search_flags kind) |
| { |
| std::vector<module_symbol_search> results; |
| |
| /* Search for all modules matching MODULE_REGEXP. */ |
| global_symbol_searcher spec1 (SEARCH_MODULE_DOMAIN, module_regexp); |
| spec1.set_exclude_minsyms (true); |
| std::vector<symbol_search> modules = spec1.search (); |
| |
| /* Now search for all symbols of the required KIND matching the required |
| regular expressions. We figure out which ones are in which modules |
| below. */ |
| global_symbol_searcher spec2 (kind, regexp); |
| spec2.set_symbol_type_regexp (type_regexp); |
| spec2.set_exclude_minsyms (true); |
| std::vector<symbol_search> symbols = spec2.search (); |
| |
| /* Now iterate over all MODULES, checking to see which items from |
| SYMBOLS are in each module. */ |
| for (const symbol_search &p : modules) |
| { |
| QUIT; |
| |
| /* This is a module. */ |
| gdb_assert (p.symbol != nullptr); |
| |
| std::string prefix = p.symbol->print_name (); |
| prefix += "::"; |
| |
| for (const symbol_search &q : symbols) |
| { |
| if (q.symbol == nullptr) |
| continue; |
| |
| if (strncmp (q.symbol->print_name (), prefix.c_str (), |
| prefix.size ()) != 0) |
| continue; |
| |
| results.push_back ({p, q}); |
| } |
| } |
| |
| return results; |
| } |
| |
| /* Implement the core of both 'info module functions' and 'info module |
| variables'. */ |
| |
| static void |
| info_module_subcommand (bool quiet, const char *module_regexp, |
| const char *regexp, const char *type_regexp, |
| domain_search_flags kind) |
| { |
| gdb_assert (kind == SEARCH_FUNCTION_DOMAIN || kind == SEARCH_VAR_DOMAIN); |
| |
| /* Print a header line. Don't build the header line bit by bit as this |
| prevents internationalisation. */ |
| if (!quiet) |
| { |
| if (module_regexp == nullptr) |
| { |
| if (type_regexp == nullptr) |
| { |
| if (regexp == nullptr) |
| gdb_printf ((kind == SEARCH_VAR_DOMAIN |
| ? _("All variables in all modules:") |
| : _("All functions in all modules:"))); |
| else |
| gdb_printf |
| ((kind == SEARCH_VAR_DOMAIN |
| ? _("All variables matching regular expression" |
| " \"%s\" in all modules:") |
| : _("All functions matching regular expression" |
| " \"%s\" in all modules:")), |
| regexp); |
| } |
| else |
| { |
| if (regexp == nullptr) |
| gdb_printf |
| ((kind == SEARCH_VAR_DOMAIN |
| ? _("All variables with type matching regular " |
| "expression \"%s\" in all modules:") |
| : _("All functions with type matching regular " |
| "expression \"%s\" in all modules:")), |
| type_regexp); |
| else |
| gdb_printf |
| ((kind == SEARCH_VAR_DOMAIN |
| ? _("All variables matching regular expression " |
| "\"%s\",\n\twith type matching regular " |
| "expression \"%s\" in all modules:") |
| : _("All functions matching regular expression " |
| "\"%s\",\n\twith type matching regular " |
| "expression \"%s\" in all modules:")), |
| regexp, type_regexp); |
| } |
| } |
| else |
| { |
| if (type_regexp == nullptr) |
| { |
| if (regexp == nullptr) |
| gdb_printf |
| ((kind == SEARCH_VAR_DOMAIN |
| ? _("All variables in all modules matching regular " |
| "expression \"%s\":") |
| : _("All functions in all modules matching regular " |
| "expression \"%s\":")), |
| module_regexp); |
| else |
| gdb_printf |
| ((kind == SEARCH_VAR_DOMAIN |
| ? _("All variables matching regular expression " |
| "\"%s\",\n\tin all modules matching regular " |
| "expression \"%s\":") |
| : _("All functions matching regular expression " |
| "\"%s\",\n\tin all modules matching regular " |
| "expression \"%s\":")), |
| regexp, module_regexp); |
| } |
| else |
| { |
| if (regexp == nullptr) |
| gdb_printf |
| ((kind == SEARCH_VAR_DOMAIN |
| ? _("All variables with type matching regular " |
| "expression \"%s\"\n\tin all modules matching " |
| "regular expression \"%s\":") |
| : _("All functions with type matching regular " |
| "expression \"%s\"\n\tin all modules matching " |
| "regular expression \"%s\":")), |
| type_regexp, module_regexp); |
| else |
| gdb_printf |
| ((kind == SEARCH_VAR_DOMAIN |
| ? _("All variables matching regular expression " |
| "\"%s\",\n\twith type matching regular expression " |
| "\"%s\",\n\tin all modules matching regular " |
| "expression \"%s\":") |
| : _("All functions matching regular expression " |
| "\"%s\",\n\twith type matching regular expression " |
| "\"%s\",\n\tin all modules matching regular " |
| "expression \"%s\":")), |
| regexp, type_regexp, module_regexp); |
| } |
| } |
| gdb_printf ("\n"); |
| } |
| |
| /* Find all symbols of type KIND matching the given regular expressions |
| along with the symbols for the modules in which those symbols |
| reside. */ |
| std::vector<module_symbol_search> module_symbols |
| = search_module_symbols (module_regexp, regexp, type_regexp, kind); |
| |
| std::sort (module_symbols.begin (), module_symbols.end (), |
| [] (const module_symbol_search &a, const module_symbol_search &b) |
| { |
| if (a.first < b.first) |
| return true; |
| else if (a.first == b.first) |
| return a.second < b.second; |
| else |
| return false; |
| }); |
| |
| const char *last_filename = ""; |
| const symbol *last_module_symbol = nullptr; |
| for (const module_symbol_search &ms : module_symbols) |
| { |
| const symbol_search &p = ms.first; |
| const symbol_search &q = ms.second; |
| |
| gdb_assert (q.symbol != nullptr); |
| |
| if (last_module_symbol != p.symbol) |
| { |
| gdb_printf ("\n"); |
| gdb_printf (_("Module \"%s\":\n"), p.symbol->print_name ()); |
| last_module_symbol = p.symbol; |
| last_filename = ""; |
| } |
| |
| print_symbol_info (q.symbol, q.block, last_filename); |
| last_filename |
| = symtab_to_filename_for_display (q.symbol->symtab ()); |
| } |
| } |
| |
| /* Hold the option values for the 'info module .....' sub-commands. */ |
| |
| struct info_modules_var_func_options |
| { |
| bool quiet = false; |
| std::string type_regexp; |
| std::string module_regexp; |
| }; |
| |
| /* The options used by 'info module variables' and 'info module functions' |
| commands. */ |
| |
| static const gdb::option::option_def info_modules_var_func_options_defs [] = { |
| gdb::option::boolean_option_def<info_modules_var_func_options> { |
| "q", |
| [] (info_modules_var_func_options *opt) { return &opt->quiet; }, |
| nullptr, /* show_cmd_cb */ |
| nullptr /* set_doc */ |
| }, |
| |
| gdb::option::string_option_def<info_modules_var_func_options> { |
| "t", |
| [] (info_modules_var_func_options *opt) { return &opt->type_regexp; }, |
| nullptr, /* show_cmd_cb */ |
| nullptr /* set_doc */ |
| }, |
| |
| gdb::option::string_option_def<info_modules_var_func_options> { |
| "m", |
| [] (info_modules_var_func_options *opt) { return &opt->module_regexp; }, |
| nullptr, /* show_cmd_cb */ |
| nullptr /* set_doc */ |
| } |
| }; |
| |
| /* Return the option group used by the 'info module ...' sub-commands. */ |
| |
| static inline gdb::option::option_def_group |
| make_info_modules_var_func_options_def_group |
| (info_modules_var_func_options *opts) |
| { |
| return {{info_modules_var_func_options_defs}, opts}; |
| } |
| |
| /* Implements the 'info module functions' command. */ |
| |
| static void |
| info_module_functions_command (const char *args, int from_tty) |
| { |
| info_modules_var_func_options opts; |
| auto grp = make_info_modules_var_func_options_def_group (&opts); |
| gdb::option::process_options |
| (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); |
| if (args != nullptr && *args == '\0') |
| args = nullptr; |
| |
| info_module_subcommand |
| (opts.quiet, |
| opts.module_regexp.empty () ? nullptr : opts.module_regexp.c_str (), args, |
| opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (), |
| SEARCH_FUNCTION_DOMAIN); |
| } |
| |
| /* Implements the 'info module variables' command. */ |
| |
| static void |
| info_module_variables_command (const char *args, int from_tty) |
| { |
| info_modules_var_func_options opts; |
| auto grp = make_info_modules_var_func_options_def_group (&opts); |
| gdb::option::process_options |
| (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); |
| if (args != nullptr && *args == '\0') |
| args = nullptr; |
| |
| info_module_subcommand |
| (opts.quiet, |
| opts.module_regexp.empty () ? nullptr : opts.module_regexp.c_str (), args, |
| opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (), |
| SEARCH_VAR_DOMAIN); |
| } |
| |
| /* Command completer for 'info module ...' sub-commands. */ |
| |
| static void |
| info_module_var_func_command_completer (struct cmd_list_element *ignore, |
| completion_tracker &tracker, |
| const char *text, |
| const char * /* word */) |
| { |
| |
| const auto group = make_info_modules_var_func_options_def_group (nullptr); |
| if (gdb::option::complete_options |
| (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group)) |
| return; |
| |
| const char *word = advance_to_expression_complete_word_point (tracker, text); |
| symbol_completer (ignore, tracker, text, word); |
| } |
| |
| |
| |
| void _initialize_symtab (); |
| void |
| _initialize_symtab () |
| { |
| cmd_list_element *c; |
| |
| initialize_ordinary_address_classes (); |
| |
| c = add_info ("variables", info_variables_command, |
| info_print_args_help (_("\ |
| All global and static variable names or those matching REGEXPs.\n\ |
| Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\ |
| Prints the global and static variables.\n"), |
| _("global and static variables"), |
| true)); |
| set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer); |
| |
| c = add_info ("functions", info_functions_command, |
| info_print_args_help (_("\ |
| All function names or those matching REGEXPs.\n\ |
| Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\ |
| Prints the functions.\n"), |
| _("functions"), |
| true)); |
| set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer); |
| |
| c = add_info ("types", info_types_command, _("\ |
| All type names, or those matching REGEXP.\n\ |
| Usage: info types [-q] [REGEXP]\n\ |
| Print information about all types matching REGEXP, or all types if no\n\ |
| REGEXP is given. The optional flag -q disables printing of headers.")); |
| set_cmd_completer_handle_brkchars (c, info_types_command_completer); |
| |
| const auto info_sources_opts |
| = make_info_sources_options_def_group (nullptr); |
| |
| static std::string info_sources_help |
| = gdb::option::build_help (_("\ |
| All source files in the program or those matching REGEXP.\n\ |
| Usage: info sources [OPTION]... [REGEXP]\n\ |
| By default, REGEXP is used to match anywhere in the filename.\n\ |
| \n\ |
| Options:\n\ |
| %OPTIONS%"), |
| info_sources_opts); |
| |
| c = add_info ("sources", info_sources_command, info_sources_help.c_str ()); |
| set_cmd_completer_handle_brkchars (c, info_sources_command_completer); |
| |
| c = add_info ("modules", info_modules_command, |
| _("All module names, or those matching REGEXP.")); |
| set_cmd_completer_handle_brkchars (c, info_types_command_completer); |
| |
| add_info ("main", info_main_command, |
| _("Get main symbol to identify entry point into program.")); |
| |
| add_basic_prefix_cmd ("module", class_info, _("\ |
| Print information about modules."), |
| &info_module_cmdlist, 0, &infolist); |
| |
| c = add_cmd ("functions", class_info, info_module_functions_command, _("\ |
| Display functions arranged by modules.\n\ |
| Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\ |
| Print a summary of all functions within each Fortran module, grouped by\n\ |
| module and file. For each function the line on which the function is\n\ |
| defined is given along with the type signature and name of the function.\n\ |
| \n\ |
| If REGEXP is provided then only functions whose name matches REGEXP are\n\ |
| listed. If MODREGEXP is provided then only functions in modules matching\n\ |
| MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\ |
| type signature matches TYPEREGEXP are listed.\n\ |
| \n\ |
| The -q flag suppresses printing some header information."), |
| &info_module_cmdlist); |
| set_cmd_completer_handle_brkchars |
| (c, info_module_var_func_command_completer); |
| |
| c = add_cmd ("variables", class_info, info_module_variables_command, _("\ |
| Display variables arranged by modules.\n\ |
| Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\ |
| Print a summary of all variables within each Fortran module, grouped by\n\ |
| module and file. For each variable the line on which the variable is\n\ |
| defined is given along with the type and name of the variable.\n\ |
| \n\ |
| If REGEXP is provided then only variables whose name matches REGEXP are\n\ |
| listed. If MODREGEXP is provided then only variables in modules matching\n\ |
| MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\ |
| type matches TYPEREGEXP are listed.\n\ |
| \n\ |
| The -q flag suppresses printing some header information."), |
| &info_module_cmdlist); |
| set_cmd_completer_handle_brkchars |
| (c, info_module_var_func_command_completer); |
| |
| add_com ("rbreak", class_breakpoint, rbreak_command, |
| _("Set a breakpoint for all functions matching REGEXP.")); |
| |
| add_setshow_enum_cmd ("multiple-symbols", no_class, |
| multiple_symbols_modes, &multiple_symbols_mode, |
| _("\ |
| Set how the debugger handles ambiguities in expressions."), _("\ |
| Show how the debugger handles ambiguities in expressions."), _("\ |
| Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."), |
| NULL, NULL, &setlist, &showlist); |
| |
| add_setshow_boolean_cmd ("basenames-may-differ", class_obscure, |
| &basenames_may_differ, _("\ |
| Set whether a source file may have multiple base names."), _("\ |
| Show whether a source file may have multiple base names."), _("\ |
| (A \"base name\" is the name of a file with the directory part removed.\n\ |
| Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\ |
| If set, GDB will canonicalize file names (e.g., expand symlinks)\n\ |
| before comparing them. Canonicalization is an expensive operation,\n\ |
| but it allows the same file be known by more than one base name.\n\ |
| If not set (the default), all source files are assumed to have just\n\ |
| one base name, and gdb will do file name comparisons more efficiently."), |
| NULL, NULL, |
| &setlist, &showlist); |
| |
| add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug, |
| _("Set debugging of symbol table creation."), |
| _("Show debugging of symbol table creation."), _("\ |
| When enabled (non-zero), debugging messages are printed when building\n\ |
| symbol tables. A value of 1 (one) normally provides enough information.\n\ |
| A value greater than 1 provides more verbose information."), |
| NULL, |
| NULL, |
| &setdebuglist, &showdebuglist); |
| |
| add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug, |
| _("\ |
| Set debugging of symbol lookup."), _("\ |
| Show debugging of symbol lookup."), _("\ |
| When enabled (non-zero), symbol lookups are logged."), |
| NULL, NULL, |
| &setdebuglist, &showdebuglist); |
| |
| add_setshow_zuinteger_cmd ("symbol-cache-size", no_class, |
| &new_symbol_cache_size, |
| _("Set the size of the symbol cache."), |
| _("Show the size of the symbol cache."), _("\ |
| The size of the symbol cache.\n\ |
| If zero then the symbol cache is disabled."), |
| set_symbol_cache_size_handler, NULL, |
| &maintenance_set_cmdlist, |
| &maintenance_show_cmdlist); |
| |
| add_setshow_boolean_cmd ("ignore-prologue-end-flag", no_class, |
| &ignore_prologue_end_flag, |
| _("Set if the PROLOGUE-END flag is ignored."), |
| _("Show if the PROLOGUE-END flag is ignored."), |
| _("\ |
| The PROLOGUE-END flag from the line-table entries is used to place \ |
| breakpoints past the prologue of functions. Disabling its use forces \ |
| the use of prologue scanners."), |
| nullptr, nullptr, |
| &maintenance_set_cmdlist, |
| &maintenance_show_cmdlist); |
| |
| |
| add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache, |
| _("Dump the symbol cache for each program space."), |
| &maintenanceprintlist); |
| |
| add_cmd ("symbol-cache-statistics", class_maintenance, |
| maintenance_print_symbol_cache_statistics, |
| _("Print symbol cache statistics for each program space."), |
| &maintenanceprintlist); |
| |
| cmd_list_element *maintenance_flush_symbol_cache_cmd |
| = add_cmd ("symbol-cache", class_maintenance, |
| maintenance_flush_symbol_cache, |
| _("Flush the symbol cache for each program space."), |
| &maintenanceflushlist); |
| c = add_alias_cmd ("flush-symbol-cache", maintenance_flush_symbol_cache_cmd, |
| class_maintenance, 0, &maintenancelist); |
| deprecate_cmd (c, "maintenance flush symbol-cache"); |
| |
| gdb::observers::new_objfile.attach (symtab_new_objfile_observer, "symtab"); |
| gdb::observers::all_objfiles_removed.attach (symtab_all_objfiles_removed, |
| "symtab"); |
| gdb::observers::free_objfile.attach (symtab_free_objfile_observer, "symtab"); |
| } |