|  | /* Abstraction of GNU v3 abi. | 
|  | Contributed by Jim Blandy <jimb@redhat.com> | 
|  |  | 
|  | Copyright (C) 2001-2023 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "defs.h" | 
|  | #include "language.h" | 
|  | #include "value.h" | 
|  | #include "cp-abi.h" | 
|  | #include "cp-support.h" | 
|  | #include "demangle.h" | 
|  | #include "dwarf2.h" | 
|  | #include "objfiles.h" | 
|  | #include "valprint.h" | 
|  | #include "c-lang.h" | 
|  | #include "typeprint.h" | 
|  | #include <algorithm> | 
|  | #include "cli/cli-style.h" | 
|  | #include "dwarf2/loc.h" | 
|  | #include "inferior.h" | 
|  |  | 
|  | static struct cp_abi_ops gnu_v3_abi_ops; | 
|  |  | 
|  | /* A gdbarch key for std::type_info, in the event that it can't be | 
|  | found in the debug info.  */ | 
|  |  | 
|  | static const registry<gdbarch>::key<struct type> std_type_info_gdbarch_data; | 
|  |  | 
|  |  | 
|  | static int | 
|  | gnuv3_is_vtable_name (const char *name) | 
|  | { | 
|  | return startswith (name, "_ZTV"); | 
|  | } | 
|  |  | 
|  | static int | 
|  | gnuv3_is_operator_name (const char *name) | 
|  | { | 
|  | return startswith (name, CP_OPERATOR_STR); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* To help us find the components of a vtable, we build ourselves a | 
|  | GDB type object representing the vtable structure.  Following the | 
|  | V3 ABI, it goes something like this: | 
|  |  | 
|  | struct gdb_gnu_v3_abi_vtable { | 
|  |  | 
|  | / * An array of virtual call and virtual base offsets.  The real | 
|  | length of this array depends on the class hierarchy; we use | 
|  | negative subscripts to access the elements.  Yucky, but | 
|  | better than the alternatives.  * / | 
|  | ptrdiff_t vcall_and_vbase_offsets[0]; | 
|  |  | 
|  | / * The offset from a virtual pointer referring to this table | 
|  | to the top of the complete object.  * / | 
|  | ptrdiff_t offset_to_top; | 
|  |  | 
|  | / * The type_info pointer for this class.  This is really a | 
|  | std::type_info *, but GDB doesn't really look at the | 
|  | type_info object itself, so we don't bother to get the type | 
|  | exactly right.  * / | 
|  | void *type_info; | 
|  |  | 
|  | / * Virtual table pointers in objects point here.  * / | 
|  |  | 
|  | / * Virtual function pointers.  Like the vcall/vbase array, the | 
|  | real length of this table depends on the class hierarchy.  * / | 
|  | void (*virtual_functions[0]) (); | 
|  |  | 
|  | }; | 
|  |  | 
|  | The catch, of course, is that the exact layout of this table | 
|  | depends on the ABI --- word size, endianness, alignment, etc.  So | 
|  | the GDB type object is actually a per-architecture kind of thing. | 
|  |  | 
|  | vtable_type_gdbarch_data is a gdbarch per-architecture data pointer | 
|  | which refers to the struct type * for this structure, laid out | 
|  | appropriately for the architecture.  */ | 
|  | static const registry<gdbarch>::key<struct type> vtable_type_gdbarch_data; | 
|  |  | 
|  |  | 
|  | /* Human-readable names for the numbers of the fields above.  */ | 
|  | enum { | 
|  | vtable_field_vcall_and_vbase_offsets, | 
|  | vtable_field_offset_to_top, | 
|  | vtable_field_type_info, | 
|  | vtable_field_virtual_functions | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable', | 
|  | described above, laid out appropriately for ARCH. | 
|  |  | 
|  | We use this function as the gdbarch per-architecture data | 
|  | initialization function.  */ | 
|  | static struct type * | 
|  | get_gdb_vtable_type (struct gdbarch *arch) | 
|  | { | 
|  | struct type *t; | 
|  | int offset; | 
|  |  | 
|  | struct type *result = vtable_type_gdbarch_data.get (arch); | 
|  | if (result != nullptr) | 
|  | return result; | 
|  |  | 
|  | struct type *void_ptr_type | 
|  | = builtin_type (arch)->builtin_data_ptr; | 
|  | struct type *ptr_to_void_fn_type | 
|  | = builtin_type (arch)->builtin_func_ptr; | 
|  |  | 
|  | type_allocator alloc (arch); | 
|  |  | 
|  | /* ARCH can't give us the true ptrdiff_t type, so we guess.  */ | 
|  | struct type *ptrdiff_type | 
|  | = init_integer_type (alloc, gdbarch_ptr_bit (arch), 0, "ptrdiff_t"); | 
|  |  | 
|  | t = alloc.new_type (TYPE_CODE_STRUCT, 0, nullptr); | 
|  |  | 
|  | /* We assume no padding is necessary, since GDB doesn't know | 
|  | anything about alignment at the moment.  If this assumption bites | 
|  | us, we should add a gdbarch method which, given a type, returns | 
|  | the alignment that type requires, and then use that here.  */ | 
|  |  | 
|  | /* Build the field list.  */ | 
|  | t->alloc_fields (4); | 
|  |  | 
|  | offset = 0; | 
|  |  | 
|  | /* ptrdiff_t vcall_and_vbase_offsets[0]; */ | 
|  | { | 
|  | struct field &field0 = t->field (0); | 
|  | field0.set_name ("vcall_and_vbase_offsets"); | 
|  | field0.set_type (lookup_array_range_type (ptrdiff_type, 0, -1)); | 
|  | field0.set_loc_bitpos (offset * TARGET_CHAR_BIT); | 
|  | offset += field0.type ()->length (); | 
|  | } | 
|  |  | 
|  | /* ptrdiff_t offset_to_top; */ | 
|  | { | 
|  | struct field &field1 = t->field (1); | 
|  | field1.set_name ("offset_to_top"); | 
|  | field1.set_type (ptrdiff_type); | 
|  | field1.set_loc_bitpos (offset * TARGET_CHAR_BIT); | 
|  | offset += field1.type ()->length (); | 
|  | } | 
|  |  | 
|  | /* void *type_info; */ | 
|  | { | 
|  | struct field &field2 = t->field (2); | 
|  | field2.set_name ("type_info"); | 
|  | field2.set_type (void_ptr_type); | 
|  | field2.set_loc_bitpos (offset * TARGET_CHAR_BIT); | 
|  | offset += field2.type ()->length (); | 
|  | } | 
|  |  | 
|  | /* void (*virtual_functions[0]) (); */ | 
|  | { | 
|  | struct field &field3 = t->field (3); | 
|  | field3.set_name ("virtual_functions"); | 
|  | field3.set_type (lookup_array_range_type (ptr_to_void_fn_type, 0, -1)); | 
|  | field3.set_loc_bitpos (offset * TARGET_CHAR_BIT); | 
|  | offset += field3.type ()->length (); | 
|  | } | 
|  |  | 
|  | t->set_length (offset); | 
|  |  | 
|  | t->set_name ("gdb_gnu_v3_abi_vtable"); | 
|  | INIT_CPLUS_SPECIFIC (t); | 
|  |  | 
|  | result = make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE); | 
|  | vtable_type_gdbarch_data.set (arch, result); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Return the ptrdiff_t type used in the vtable type.  */ | 
|  | static struct type * | 
|  | vtable_ptrdiff_type (struct gdbarch *gdbarch) | 
|  | { | 
|  | struct type *vtable_type = get_gdb_vtable_type (gdbarch); | 
|  |  | 
|  | /* The "offset_to_top" field has the appropriate (ptrdiff_t) type.  */ | 
|  | return vtable_type->field (vtable_field_offset_to_top).type (); | 
|  | } | 
|  |  | 
|  | /* Return the offset from the start of the imaginary `struct | 
|  | gdb_gnu_v3_abi_vtable' object to the vtable's "address point" | 
|  | (i.e., where objects' virtual table pointers point).  */ | 
|  | static int | 
|  | vtable_address_point_offset (struct gdbarch *gdbarch) | 
|  | { | 
|  | struct type *vtable_type = get_gdb_vtable_type (gdbarch); | 
|  |  | 
|  | return (vtable_type->field (vtable_field_virtual_functions).loc_bitpos () | 
|  | / TARGET_CHAR_BIT); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Determine whether structure TYPE is a dynamic class.  Cache the | 
|  | result.  */ | 
|  |  | 
|  | static int | 
|  | gnuv3_dynamic_class (struct type *type) | 
|  | { | 
|  | int fieldnum, fieldelem; | 
|  |  | 
|  | type = check_typedef (type); | 
|  | gdb_assert (type->code () == TYPE_CODE_STRUCT | 
|  | || type->code () == TYPE_CODE_UNION); | 
|  |  | 
|  | if (type->code () == TYPE_CODE_UNION) | 
|  | return 0; | 
|  |  | 
|  | if (TYPE_CPLUS_DYNAMIC (type)) | 
|  | return TYPE_CPLUS_DYNAMIC (type) == 1; | 
|  |  | 
|  | ALLOCATE_CPLUS_STRUCT_TYPE (type); | 
|  |  | 
|  | for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++) | 
|  | if (BASETYPE_VIA_VIRTUAL (type, fieldnum) | 
|  | || gnuv3_dynamic_class (type->field (fieldnum).type ())) | 
|  | { | 
|  | TYPE_CPLUS_DYNAMIC (type) = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++) | 
|  | for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum); | 
|  | fieldelem++) | 
|  | { | 
|  | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum); | 
|  |  | 
|  | if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem)) | 
|  | { | 
|  | TYPE_CPLUS_DYNAMIC (type) = 1; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | TYPE_CPLUS_DYNAMIC (type) = -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Find the vtable for a value of CONTAINER_TYPE located at | 
|  | CONTAINER_ADDR.  Return a value of the correct vtable type for this | 
|  | architecture, or NULL if CONTAINER does not have a vtable.  */ | 
|  |  | 
|  | static struct value * | 
|  | gnuv3_get_vtable (struct gdbarch *gdbarch, | 
|  | struct type *container_type, CORE_ADDR container_addr) | 
|  | { | 
|  | struct type *vtable_type = get_gdb_vtable_type (gdbarch); | 
|  | struct type *vtable_pointer_type; | 
|  | struct value *vtable_pointer; | 
|  | CORE_ADDR vtable_address; | 
|  |  | 
|  | container_type = check_typedef (container_type); | 
|  | gdb_assert (container_type->code () == TYPE_CODE_STRUCT); | 
|  |  | 
|  | /* If this type does not have a virtual table, don't read the first | 
|  | field.  */ | 
|  | if (!gnuv3_dynamic_class (container_type)) | 
|  | return NULL; | 
|  |  | 
|  | /* We do not consult the debug information to find the virtual table. | 
|  | The ABI specifies that it is always at offset zero in any class, | 
|  | and debug information may not represent it. | 
|  |  | 
|  | We avoid using value_contents on principle, because the object might | 
|  | be large.  */ | 
|  |  | 
|  | /* Find the type "pointer to virtual table".  */ | 
|  | vtable_pointer_type = lookup_pointer_type (vtable_type); | 
|  |  | 
|  | /* Load it from the start of the class.  */ | 
|  | vtable_pointer = value_at (vtable_pointer_type, container_addr); | 
|  | vtable_address = value_as_address (vtable_pointer); | 
|  |  | 
|  | /* Correct it to point at the start of the virtual table, rather | 
|  | than the address point.  */ | 
|  | return value_at_lazy (vtable_type, | 
|  | vtable_address | 
|  | - vtable_address_point_offset (gdbarch)); | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct type * | 
|  | gnuv3_rtti_type (struct value *value, | 
|  | int *full_p, LONGEST *top_p, int *using_enc_p) | 
|  | { | 
|  | struct gdbarch *gdbarch; | 
|  | struct type *values_type = check_typedef (value->type ()); | 
|  | struct value *vtable; | 
|  | struct minimal_symbol *vtable_symbol; | 
|  | const char *vtable_symbol_name; | 
|  | const char *class_name; | 
|  | struct type *run_time_type; | 
|  | LONGEST offset_to_top; | 
|  | const char *atsign; | 
|  |  | 
|  | /* We only have RTTI for dynamic class objects.  */ | 
|  | if (values_type->code () != TYPE_CODE_STRUCT | 
|  | || !gnuv3_dynamic_class (values_type)) | 
|  | return NULL; | 
|  |  | 
|  | /* Determine architecture.  */ | 
|  | gdbarch = values_type->arch (); | 
|  |  | 
|  | if (using_enc_p) | 
|  | *using_enc_p = 0; | 
|  |  | 
|  | vtable = gnuv3_get_vtable (gdbarch, values_type, | 
|  | value_as_address (value_addr (value))); | 
|  | if (vtable == NULL) | 
|  | return NULL; | 
|  |  | 
|  | /* Find the linker symbol for this vtable.  */ | 
|  | vtable_symbol | 
|  | = lookup_minimal_symbol_by_pc (vtable->address () | 
|  | + vtable->embedded_offset ()).minsym; | 
|  | if (! vtable_symbol) | 
|  | return NULL; | 
|  |  | 
|  | /* The symbol's demangled name should be something like "vtable for | 
|  | CLASS", where CLASS is the name of the run-time type of VALUE. | 
|  | If we didn't like this approach, we could instead look in the | 
|  | type_info object itself to get the class name.  But this way | 
|  | should work just as well, and doesn't read target memory.  */ | 
|  | vtable_symbol_name = vtable_symbol->demangled_name (); | 
|  | if (vtable_symbol_name == NULL | 
|  | || !startswith (vtable_symbol_name, "vtable for ")) | 
|  | { | 
|  | warning (_("can't find linker symbol for virtual table for `%s' value"), | 
|  | TYPE_SAFE_NAME (values_type)); | 
|  | if (vtable_symbol_name) | 
|  | warning (_("  found `%s' instead"), vtable_symbol_name); | 
|  | return NULL; | 
|  | } | 
|  | class_name = vtable_symbol_name + 11; | 
|  |  | 
|  | /* Strip off @plt and version suffixes.  */ | 
|  | atsign = strchr (class_name, '@'); | 
|  | if (atsign != NULL) | 
|  | { | 
|  | char *copy; | 
|  |  | 
|  | copy = (char *) alloca (atsign - class_name + 1); | 
|  | memcpy (copy, class_name, atsign - class_name); | 
|  | copy[atsign - class_name] = '\0'; | 
|  | class_name = copy; | 
|  | } | 
|  |  | 
|  | /* Try to look up the class name as a type name.  */ | 
|  | /* FIXME: chastain/2003-11-26: block=NULL is bogus.  See pr gdb/1465.  */ | 
|  | run_time_type = cp_lookup_rtti_type (class_name, NULL); | 
|  | if (run_time_type == NULL) | 
|  | return NULL; | 
|  |  | 
|  | /* Get the offset from VALUE to the top of the complete object. | 
|  | NOTE: this is the reverse of the meaning of *TOP_P.  */ | 
|  | offset_to_top | 
|  | = value_as_long (value_field (vtable, vtable_field_offset_to_top)); | 
|  |  | 
|  | if (full_p) | 
|  | *full_p = (- offset_to_top == value->embedded_offset () | 
|  | && (value->enclosing_type ()->length () | 
|  | >= run_time_type->length ())); | 
|  | if (top_p) | 
|  | *top_p = - offset_to_top; | 
|  | return run_time_type; | 
|  | } | 
|  |  | 
|  | /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual | 
|  | function, of type FNTYPE.  */ | 
|  |  | 
|  | static struct value * | 
|  | gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container, | 
|  | struct type *fntype, int vtable_index) | 
|  | { | 
|  | struct value *vtable, *vfn; | 
|  |  | 
|  | /* Every class with virtual functions must have a vtable.  */ | 
|  | vtable = gnuv3_get_vtable (gdbarch, container->type (), | 
|  | value_as_address (value_addr (container))); | 
|  | gdb_assert (vtable != NULL); | 
|  |  | 
|  | /* Fetch the appropriate function pointer from the vtable.  */ | 
|  | vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions), | 
|  | vtable_index); | 
|  |  | 
|  | /* If this architecture uses function descriptors directly in the vtable, | 
|  | then the address of the vtable entry is actually a "function pointer" | 
|  | (i.e. points to the descriptor).  We don't need to scale the index | 
|  | by the size of a function descriptor; GCC does that before outputting | 
|  | debug information.  */ | 
|  | if (gdbarch_vtable_function_descriptors (gdbarch)) | 
|  | vfn = value_addr (vfn); | 
|  |  | 
|  | /* Cast the function pointer to the appropriate type.  */ | 
|  | vfn = value_cast (lookup_pointer_type (fntype), vfn); | 
|  |  | 
|  | return vfn; | 
|  | } | 
|  |  | 
|  | /* GNU v3 implementation of value_virtual_fn_field.  See cp-abi.h | 
|  | for a description of the arguments.  */ | 
|  |  | 
|  | static struct value * | 
|  | gnuv3_virtual_fn_field (struct value **value_p, | 
|  | struct fn_field *f, int j, | 
|  | struct type *vfn_base, int offset) | 
|  | { | 
|  | struct type *values_type = check_typedef ((*value_p)->type ()); | 
|  | struct gdbarch *gdbarch; | 
|  |  | 
|  | /* Some simple sanity checks.  */ | 
|  | if (values_type->code () != TYPE_CODE_STRUCT) | 
|  | error (_("Only classes can have virtual functions.")); | 
|  |  | 
|  | /* Determine architecture.  */ | 
|  | gdbarch = values_type->arch (); | 
|  |  | 
|  | /* Cast our value to the base class which defines this virtual | 
|  | function.  This takes care of any necessary `this' | 
|  | adjustments.  */ | 
|  | if (vfn_base != values_type) | 
|  | *value_p = value_cast (vfn_base, *value_p); | 
|  |  | 
|  | return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j), | 
|  | TYPE_FN_FIELD_VOFFSET (f, j)); | 
|  | } | 
|  |  | 
|  | /* Compute the offset of the baseclass which is | 
|  | the INDEXth baseclass of class TYPE, | 
|  | for value at VALADDR (in host) at ADDRESS (in target). | 
|  | The result is the offset of the baseclass value relative | 
|  | to (the address of)(ARG) + OFFSET. | 
|  |  | 
|  | -1 is returned on error.  */ | 
|  |  | 
|  | static int | 
|  | gnuv3_baseclass_offset (struct type *type, int index, | 
|  | const bfd_byte *valaddr, LONGEST embedded_offset, | 
|  | CORE_ADDR address, const struct value *val) | 
|  | { | 
|  | struct gdbarch *gdbarch; | 
|  | struct type *ptr_type; | 
|  | struct value *vtable; | 
|  | struct value *vbase_array; | 
|  | long int cur_base_offset, base_offset; | 
|  |  | 
|  | /* Determine architecture.  */ | 
|  | gdbarch = type->arch (); | 
|  | ptr_type = builtin_type (gdbarch)->builtin_data_ptr; | 
|  |  | 
|  | /* If it isn't a virtual base, this is easy.  The offset is in the | 
|  | type definition.  */ | 
|  | if (!BASETYPE_VIA_VIRTUAL (type, index)) | 
|  | return TYPE_BASECLASS_BITPOS (type, index) / 8; | 
|  |  | 
|  | /* If we have a DWARF expression for the offset, evaluate it.  */ | 
|  | if (type->field (index).loc_kind () == FIELD_LOC_KIND_DWARF_BLOCK) | 
|  | { | 
|  | struct dwarf2_property_baton baton; | 
|  | baton.property_type | 
|  | = lookup_pointer_type (type->field (index).type ()); | 
|  | baton.locexpr = *type->field (index).loc_dwarf_block (); | 
|  |  | 
|  | struct dynamic_prop prop; | 
|  | prop.set_locexpr (&baton); | 
|  |  | 
|  | struct property_addr_info addr_stack; | 
|  | addr_stack.type = type; | 
|  | /* Note that we don't set "valaddr" here.  Doing so causes | 
|  | regressions.  FIXME.  */ | 
|  | addr_stack.addr = address + embedded_offset; | 
|  | addr_stack.next = nullptr; | 
|  |  | 
|  | CORE_ADDR result; | 
|  | if (dwarf2_evaluate_property (&prop, nullptr, &addr_stack, &result, | 
|  | {addr_stack.addr})) | 
|  | return (int) (result - addr_stack.addr); | 
|  | } | 
|  |  | 
|  | /* To access a virtual base, we need to use the vbase offset stored in | 
|  | our vtable.  Recent GCC versions provide this information.  If it isn't | 
|  | available, we could get what we needed from RTTI, or from drawing the | 
|  | complete inheritance graph based on the debug info.  Neither is | 
|  | worthwhile.  */ | 
|  | cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8; | 
|  | if (cur_base_offset >= - vtable_address_point_offset (gdbarch)) | 
|  | error (_("Expected a negative vbase offset (old compiler?)")); | 
|  |  | 
|  | cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch); | 
|  | if ((- cur_base_offset) % ptr_type->length () != 0) | 
|  | error (_("Misaligned vbase offset.")); | 
|  | cur_base_offset = cur_base_offset / ((int) ptr_type->length ()); | 
|  |  | 
|  | vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset); | 
|  | gdb_assert (vtable != NULL); | 
|  | vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets); | 
|  | base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset)); | 
|  | return base_offset; | 
|  | } | 
|  |  | 
|  | /* Locate a virtual method in DOMAIN or its non-virtual base classes | 
|  | which has virtual table index VOFFSET.  The method has an associated | 
|  | "this" adjustment of ADJUSTMENT bytes.  */ | 
|  |  | 
|  | static const char * | 
|  | gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset, | 
|  | LONGEST adjustment) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Search this class first.  */ | 
|  | if (adjustment == 0) | 
|  | { | 
|  | int len; | 
|  |  | 
|  | len = TYPE_NFN_FIELDS (domain); | 
|  | for (i = 0; i < len; i++) | 
|  | { | 
|  | int len2, j; | 
|  | struct fn_field *f; | 
|  |  | 
|  | f = TYPE_FN_FIELDLIST1 (domain, i); | 
|  | len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i); | 
|  |  | 
|  | check_stub_method_group (domain, i); | 
|  | for (j = 0; j < len2; j++) | 
|  | if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset) | 
|  | return TYPE_FN_FIELD_PHYSNAME (f, j); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Next search non-virtual bases.  If it's in a virtual base, | 
|  | we're out of luck.  */ | 
|  | for (i = 0; i < TYPE_N_BASECLASSES (domain); i++) | 
|  | { | 
|  | int pos; | 
|  | struct type *basetype; | 
|  |  | 
|  | if (BASETYPE_VIA_VIRTUAL (domain, i)) | 
|  | continue; | 
|  |  | 
|  | pos = TYPE_BASECLASS_BITPOS (domain, i) / 8; | 
|  | basetype = domain->field (i).type (); | 
|  | /* Recurse with a modified adjustment.  We don't need to adjust | 
|  | voffset.  */ | 
|  | if (adjustment >= pos && adjustment < pos + basetype->length ()) | 
|  | return gnuv3_find_method_in (basetype, voffset, adjustment - pos); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Decode GNU v3 method pointer.  */ | 
|  |  | 
|  | static int | 
|  | gnuv3_decode_method_ptr (struct gdbarch *gdbarch, | 
|  | const gdb_byte *contents, | 
|  | CORE_ADDR *value_p, | 
|  | LONGEST *adjustment_p) | 
|  | { | 
|  | struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr; | 
|  | struct type *offset_type = vtable_ptrdiff_type (gdbarch); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR ptr_value; | 
|  | LONGEST voffset, adjustment; | 
|  | int vbit; | 
|  |  | 
|  | /* Extract the pointer to member.  The first element is either a pointer | 
|  | or a vtable offset.  For pointers, we need to use extract_typed_address | 
|  | to allow the back-end to convert the pointer to a GDB address -- but | 
|  | vtable offsets we must handle as integers.  At this point, we do not | 
|  | yet know which case we have, so we extract the value under both | 
|  | interpretations and choose the right one later on.  */ | 
|  | ptr_value = extract_typed_address (contents, funcptr_type); | 
|  | voffset = extract_signed_integer (contents, | 
|  | funcptr_type->length (), byte_order); | 
|  | contents += funcptr_type->length (); | 
|  | adjustment = extract_signed_integer (contents, | 
|  | offset_type->length (), byte_order); | 
|  |  | 
|  | if (!gdbarch_vbit_in_delta (gdbarch)) | 
|  | { | 
|  | vbit = voffset & 1; | 
|  | voffset = voffset ^ vbit; | 
|  | } | 
|  | else | 
|  | { | 
|  | vbit = adjustment & 1; | 
|  | adjustment = adjustment >> 1; | 
|  | } | 
|  |  | 
|  | *value_p = vbit? voffset : ptr_value; | 
|  | *adjustment_p = adjustment; | 
|  | return vbit; | 
|  | } | 
|  |  | 
|  | /* GNU v3 implementation of cplus_print_method_ptr.  */ | 
|  |  | 
|  | static void | 
|  | gnuv3_print_method_ptr (const gdb_byte *contents, | 
|  | struct type *type, | 
|  | struct ui_file *stream) | 
|  | { | 
|  | struct type *self_type = TYPE_SELF_TYPE (type); | 
|  | struct gdbarch *gdbarch = self_type->arch (); | 
|  | CORE_ADDR ptr_value; | 
|  | LONGEST adjustment; | 
|  | int vbit; | 
|  |  | 
|  | /* Extract the pointer to member.  */ | 
|  | vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment); | 
|  |  | 
|  | /* Check for NULL.  */ | 
|  | if (ptr_value == 0 && vbit == 0) | 
|  | { | 
|  | gdb_printf (stream, "NULL"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Search for a virtual method.  */ | 
|  | if (vbit) | 
|  | { | 
|  | CORE_ADDR voffset; | 
|  | const char *physname; | 
|  |  | 
|  | /* It's a virtual table offset, maybe in this class.  Search | 
|  | for a field with the correct vtable offset.  First convert it | 
|  | to an index, as used in TYPE_FN_FIELD_VOFFSET.  */ | 
|  | voffset = ptr_value / vtable_ptrdiff_type (gdbarch)->length (); | 
|  |  | 
|  | physname = gnuv3_find_method_in (self_type, voffset, adjustment); | 
|  |  | 
|  | /* If we found a method, print that.  We don't bother to disambiguate | 
|  | possible paths to the method based on the adjustment.  */ | 
|  | if (physname) | 
|  | { | 
|  | gdb::unique_xmalloc_ptr<char> demangled_name | 
|  | = gdb_demangle (physname, DMGL_ANSI | DMGL_PARAMS); | 
|  |  | 
|  | gdb_printf (stream, "&virtual "); | 
|  | if (demangled_name == NULL) | 
|  | gdb_puts (physname, stream); | 
|  | else | 
|  | gdb_puts (demangled_name.get (), stream); | 
|  | return; | 
|  | } | 
|  | } | 
|  | else if (ptr_value != 0) | 
|  | { | 
|  | /* Found a non-virtual function: print out the type.  */ | 
|  | gdb_puts ("(", stream); | 
|  | c_print_type (type, "", stream, -1, 0, current_language->la_language, | 
|  | &type_print_raw_options); | 
|  | gdb_puts (") ", stream); | 
|  | } | 
|  |  | 
|  | /* We didn't find it; print the raw data.  */ | 
|  | if (vbit) | 
|  | { | 
|  | gdb_printf (stream, "&virtual table offset "); | 
|  | print_longest (stream, 'd', 1, ptr_value); | 
|  | } | 
|  | else | 
|  | { | 
|  | struct value_print_options opts; | 
|  |  | 
|  | get_user_print_options (&opts); | 
|  | print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle); | 
|  | } | 
|  |  | 
|  | if (adjustment) | 
|  | { | 
|  | gdb_printf (stream, ", this adjustment "); | 
|  | print_longest (stream, 'd', 1, adjustment); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* GNU v3 implementation of cplus_method_ptr_size.  */ | 
|  |  | 
|  | static int | 
|  | gnuv3_method_ptr_size (struct type *type) | 
|  | { | 
|  | return 2 * builtin_type (type->arch ())->builtin_data_ptr->length (); | 
|  | } | 
|  |  | 
|  | /* GNU v3 implementation of cplus_make_method_ptr.  */ | 
|  |  | 
|  | static void | 
|  | gnuv3_make_method_ptr (struct type *type, gdb_byte *contents, | 
|  | CORE_ADDR value, int is_virtual) | 
|  | { | 
|  | struct gdbarch *gdbarch = type->arch (); | 
|  | int size = builtin_type (gdbarch)->builtin_data_ptr->length (); | 
|  | enum bfd_endian byte_order = type_byte_order (type); | 
|  |  | 
|  | /* FIXME drow/2006-12-24: The adjustment of "this" is currently | 
|  | always zero, since the method pointer is of the correct type. | 
|  | But if the method pointer came from a base class, this is | 
|  | incorrect - it should be the offset to the base.  The best | 
|  | fix might be to create the pointer to member pointing at the | 
|  | base class and cast it to the derived class, but that requires | 
|  | support for adjusting pointers to members when casting them - | 
|  | not currently supported by GDB.  */ | 
|  |  | 
|  | if (!gdbarch_vbit_in_delta (gdbarch)) | 
|  | { | 
|  | store_unsigned_integer (contents, size, byte_order, value | is_virtual); | 
|  | store_unsigned_integer (contents + size, size, byte_order, 0); | 
|  | } | 
|  | else | 
|  | { | 
|  | store_unsigned_integer (contents, size, byte_order, value); | 
|  | store_unsigned_integer (contents + size, size, byte_order, is_virtual); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* GNU v3 implementation of cplus_method_ptr_to_value.  */ | 
|  |  | 
|  | static struct value * | 
|  | gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr) | 
|  | { | 
|  | struct gdbarch *gdbarch; | 
|  | const gdb_byte *contents = method_ptr->contents ().data (); | 
|  | CORE_ADDR ptr_value; | 
|  | struct type *self_type, *final_type, *method_type; | 
|  | LONGEST adjustment; | 
|  | int vbit; | 
|  |  | 
|  | self_type = TYPE_SELF_TYPE (check_typedef (method_ptr->type ())); | 
|  | final_type = lookup_pointer_type (self_type); | 
|  |  | 
|  | method_type = check_typedef (method_ptr->type ())->target_type (); | 
|  |  | 
|  | /* Extract the pointer to member.  */ | 
|  | gdbarch = self_type->arch (); | 
|  | vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment); | 
|  |  | 
|  | /* First convert THIS to match the containing type of the pointer to | 
|  | member.  This cast may adjust the value of THIS.  */ | 
|  | *this_p = value_cast (final_type, *this_p); | 
|  |  | 
|  | /* Then apply whatever adjustment is necessary.  This creates a somewhat | 
|  | strange pointer: it claims to have type FINAL_TYPE, but in fact it | 
|  | might not be a valid FINAL_TYPE.  For instance, it might be a | 
|  | base class of FINAL_TYPE.  And if it's not the primary base class, | 
|  | then printing it out as a FINAL_TYPE object would produce some pretty | 
|  | garbage. | 
|  |  | 
|  | But we don't really know the type of the first argument in | 
|  | METHOD_TYPE either, which is why this happens.  We can't | 
|  | dereference this later as a FINAL_TYPE, but once we arrive in the | 
|  | called method we'll have debugging information for the type of | 
|  | "this" - and that'll match the value we produce here. | 
|  |  | 
|  | You can provoke this case by casting a Base::* to a Derived::*, for | 
|  | instance.  */ | 
|  | *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p); | 
|  | *this_p = value_ptradd (*this_p, adjustment); | 
|  | *this_p = value_cast (final_type, *this_p); | 
|  |  | 
|  | if (vbit) | 
|  | { | 
|  | LONGEST voffset; | 
|  |  | 
|  | voffset = ptr_value / vtable_ptrdiff_type (gdbarch)->length (); | 
|  | return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p), | 
|  | method_type, voffset); | 
|  | } | 
|  | else | 
|  | return value_from_pointer (lookup_pointer_type (method_type), ptr_value); | 
|  | } | 
|  |  | 
|  | /* Objects of this type are stored in a hash table and a vector when | 
|  | printing the vtables for a class.  */ | 
|  |  | 
|  | struct value_and_voffset | 
|  | { | 
|  | /* The value representing the object.  */ | 
|  | struct value *value; | 
|  |  | 
|  | /* The maximum vtable offset we've found for any object at this | 
|  | offset in the outermost object.  */ | 
|  | int max_voffset; | 
|  | }; | 
|  |  | 
|  | /* Hash function for value_and_voffset.  */ | 
|  |  | 
|  | static hashval_t | 
|  | hash_value_and_voffset (const void *p) | 
|  | { | 
|  | const struct value_and_voffset *o = (const struct value_and_voffset *) p; | 
|  |  | 
|  | return o->value->address () + o->value->embedded_offset (); | 
|  | } | 
|  |  | 
|  | /* Equality function for value_and_voffset.  */ | 
|  |  | 
|  | static int | 
|  | eq_value_and_voffset (const void *a, const void *b) | 
|  | { | 
|  | const struct value_and_voffset *ova = (const struct value_and_voffset *) a; | 
|  | const struct value_and_voffset *ovb = (const struct value_and_voffset *) b; | 
|  |  | 
|  | return (ova->value->address () + ova->value->embedded_offset () | 
|  | == ovb->value->address () + ovb->value->embedded_offset ()); | 
|  | } | 
|  |  | 
|  | /* Comparison function for value_and_voffset.  */ | 
|  |  | 
|  | static bool | 
|  | compare_value_and_voffset (const struct value_and_voffset *va, | 
|  | const struct value_and_voffset *vb) | 
|  | { | 
|  | CORE_ADDR addra = (va->value->address () | 
|  | + va->value->embedded_offset ()); | 
|  | CORE_ADDR addrb = (vb->value->address () | 
|  | + vb->value->embedded_offset ()); | 
|  |  | 
|  | return addra < addrb; | 
|  | } | 
|  |  | 
|  | /* A helper function used when printing vtables.  This determines the | 
|  | key (most derived) sub-object at each address and also computes the | 
|  | maximum vtable offset seen for the corresponding vtable.  Updates | 
|  | OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if | 
|  | needed.  VALUE is the object to examine.  */ | 
|  |  | 
|  | static void | 
|  | compute_vtable_size (htab_t offset_hash, | 
|  | std::vector<value_and_voffset *> *offset_vec, | 
|  | struct value *value) | 
|  | { | 
|  | int i; | 
|  | struct type *type = check_typedef (value->type ()); | 
|  | void **slot; | 
|  | struct value_and_voffset search_vo, *current_vo; | 
|  |  | 
|  | gdb_assert (type->code () == TYPE_CODE_STRUCT); | 
|  |  | 
|  | /* If the object is not dynamic, then we are done; as it cannot have | 
|  | dynamic base types either.  */ | 
|  | if (!gnuv3_dynamic_class (type)) | 
|  | return; | 
|  |  | 
|  | /* Update the hash and the vec, if needed.  */ | 
|  | search_vo.value = value; | 
|  | slot = htab_find_slot (offset_hash, &search_vo, INSERT); | 
|  | if (*slot) | 
|  | current_vo = (struct value_and_voffset *) *slot; | 
|  | else | 
|  | { | 
|  | current_vo = XNEW (struct value_and_voffset); | 
|  | current_vo->value = value; | 
|  | current_vo->max_voffset = -1; | 
|  | *slot = current_vo; | 
|  | offset_vec->push_back (current_vo); | 
|  | } | 
|  |  | 
|  | /* Update the value_and_voffset object with the highest vtable | 
|  | offset from this class.  */ | 
|  | for (i = 0; i < TYPE_NFN_FIELDS (type); ++i) | 
|  | { | 
|  | int j; | 
|  | struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i); | 
|  |  | 
|  | for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j) | 
|  | { | 
|  | if (TYPE_FN_FIELD_VIRTUAL_P (fn, j)) | 
|  | { | 
|  | int voffset = TYPE_FN_FIELD_VOFFSET (fn, j); | 
|  |  | 
|  | if (voffset > current_vo->max_voffset) | 
|  | current_vo->max_voffset = voffset; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Recurse into base classes.  */ | 
|  | for (i = 0; i < TYPE_N_BASECLASSES (type); ++i) | 
|  | compute_vtable_size (offset_hash, offset_vec, value_field (value, i)); | 
|  | } | 
|  |  | 
|  | /* Helper for gnuv3_print_vtable that prints a single vtable.  */ | 
|  |  | 
|  | static void | 
|  | print_one_vtable (struct gdbarch *gdbarch, struct value *value, | 
|  | int max_voffset, | 
|  | struct value_print_options *opts) | 
|  | { | 
|  | int i; | 
|  | struct type *type = check_typedef (value->type ()); | 
|  | struct value *vtable; | 
|  | CORE_ADDR vt_addr; | 
|  |  | 
|  | vtable = gnuv3_get_vtable (gdbarch, type, | 
|  | value->address () | 
|  | + value->embedded_offset ()); | 
|  | vt_addr = value_field (vtable, | 
|  | vtable_field_virtual_functions)->address (); | 
|  |  | 
|  | gdb_printf (_("vtable for '%s' @ %s (subobject @ %s):\n"), | 
|  | TYPE_SAFE_NAME (type), | 
|  | paddress (gdbarch, vt_addr), | 
|  | paddress (gdbarch, (value->address () | 
|  | + value->embedded_offset ()))); | 
|  |  | 
|  | for (i = 0; i <= max_voffset; ++i) | 
|  | { | 
|  | /* Initialize it just to avoid a GCC false warning.  */ | 
|  | CORE_ADDR addr = 0; | 
|  | int got_error = 0; | 
|  | struct value *vfn; | 
|  |  | 
|  | gdb_printf ("[%d]: ", i); | 
|  |  | 
|  | vfn = value_subscript (value_field (vtable, | 
|  | vtable_field_virtual_functions), | 
|  | i); | 
|  |  | 
|  | if (gdbarch_vtable_function_descriptors (gdbarch)) | 
|  | vfn = value_addr (vfn); | 
|  |  | 
|  | try | 
|  | { | 
|  | addr = value_as_address (vfn); | 
|  | } | 
|  | catch (const gdb_exception_error &ex) | 
|  | { | 
|  | fprintf_styled (gdb_stdout, metadata_style.style (), | 
|  | _("<error: %s>"), ex.what ()); | 
|  | got_error = 1; | 
|  | } | 
|  |  | 
|  | if (!got_error) | 
|  | print_function_pointer_address (opts, gdbarch, addr, gdb_stdout); | 
|  | gdb_printf ("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Implementation of the print_vtable method.  */ | 
|  |  | 
|  | static void | 
|  | gnuv3_print_vtable (struct value *value) | 
|  | { | 
|  | struct gdbarch *gdbarch; | 
|  | struct type *type; | 
|  | struct value *vtable; | 
|  | struct value_print_options opts; | 
|  | int count; | 
|  |  | 
|  | value = coerce_ref (value); | 
|  | type = check_typedef (value->type ()); | 
|  | if (type->code () == TYPE_CODE_PTR) | 
|  | { | 
|  | value = value_ind (value); | 
|  | type = check_typedef (value->type ()); | 
|  | } | 
|  |  | 
|  | get_user_print_options (&opts); | 
|  |  | 
|  | /* Respect 'set print object'.  */ | 
|  | if (opts.objectprint) | 
|  | { | 
|  | value = value_full_object (value, NULL, 0, 0, 0); | 
|  | type = check_typedef (value->type ()); | 
|  | } | 
|  |  | 
|  | gdbarch = type->arch (); | 
|  |  | 
|  | vtable = NULL; | 
|  | if (type->code () == TYPE_CODE_STRUCT) | 
|  | vtable = gnuv3_get_vtable (gdbarch, type, | 
|  | value_as_address (value_addr (value))); | 
|  |  | 
|  | if (!vtable) | 
|  | { | 
|  | gdb_printf (_("This object does not have a virtual function table\n")); | 
|  | return; | 
|  | } | 
|  |  | 
|  | htab_up offset_hash (htab_create_alloc (1, hash_value_and_voffset, | 
|  | eq_value_and_voffset, | 
|  | xfree, xcalloc, xfree)); | 
|  | std::vector<value_and_voffset *> result_vec; | 
|  |  | 
|  | compute_vtable_size (offset_hash.get (), &result_vec, value); | 
|  | std::sort (result_vec.begin (), result_vec.end (), | 
|  | compare_value_and_voffset); | 
|  |  | 
|  | count = 0; | 
|  | for (value_and_voffset *iter : result_vec) | 
|  | { | 
|  | if (iter->max_voffset >= 0) | 
|  | { | 
|  | if (count > 0) | 
|  | gdb_printf ("\n"); | 
|  | print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts); | 
|  | ++count; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return a GDB type representing `struct std::type_info', laid out | 
|  | appropriately for ARCH. | 
|  |  | 
|  | We use this function as the gdbarch per-architecture data | 
|  | initialization function.  */ | 
|  |  | 
|  | static struct type * | 
|  | build_std_type_info_type (struct gdbarch *arch) | 
|  | { | 
|  | struct type *t; | 
|  | int offset; | 
|  | struct type *void_ptr_type | 
|  | = builtin_type (arch)->builtin_data_ptr; | 
|  | struct type *char_type | 
|  | = builtin_type (arch)->builtin_char; | 
|  | struct type *char_ptr_type | 
|  | = make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL); | 
|  |  | 
|  | t = type_allocator (arch).new_type (TYPE_CODE_STRUCT, 0, nullptr); | 
|  |  | 
|  | t->alloc_fields (2); | 
|  |  | 
|  | offset = 0; | 
|  |  | 
|  | /* The vtable.  */ | 
|  | { | 
|  | struct field &field0 = t->field (0); | 
|  | field0.set_name ("_vptr.type_info"); | 
|  | field0.set_type (void_ptr_type); | 
|  | field0.set_loc_bitpos (offset * TARGET_CHAR_BIT); | 
|  | offset += field0.type ()->length (); | 
|  | } | 
|  |  | 
|  | /* The name.  */ | 
|  | { | 
|  | struct field &field1 = t->field (1); | 
|  | field1.set_name ("__name"); | 
|  | field1.set_type (char_ptr_type); | 
|  | field1.set_loc_bitpos (offset * TARGET_CHAR_BIT); | 
|  | offset += field1.type ()->length (); | 
|  | } | 
|  |  | 
|  | t->set_length (offset); | 
|  |  | 
|  | t->set_name ("gdb_gnu_v3_type_info"); | 
|  | INIT_CPLUS_SPECIFIC (t); | 
|  |  | 
|  | return t; | 
|  | } | 
|  |  | 
|  | /* Implement the 'get_typeid_type' method.  */ | 
|  |  | 
|  | static struct type * | 
|  | gnuv3_get_typeid_type (struct gdbarch *gdbarch) | 
|  | { | 
|  | struct symbol *typeinfo; | 
|  | struct type *typeinfo_type; | 
|  |  | 
|  | typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN, | 
|  | NULL).symbol; | 
|  | if (typeinfo == NULL) | 
|  | { | 
|  | typeinfo_type = std_type_info_gdbarch_data.get (gdbarch); | 
|  | if (typeinfo_type == nullptr) | 
|  | { | 
|  | typeinfo_type = build_std_type_info_type (gdbarch); | 
|  | std_type_info_gdbarch_data.set (gdbarch, typeinfo_type); | 
|  | } | 
|  | } | 
|  | else | 
|  | typeinfo_type = typeinfo->type (); | 
|  |  | 
|  | return typeinfo_type; | 
|  | } | 
|  |  | 
|  | /* Implement the 'get_typeid' method.  */ | 
|  |  | 
|  | static struct value * | 
|  | gnuv3_get_typeid (struct value *value) | 
|  | { | 
|  | struct type *typeinfo_type; | 
|  | struct type *type; | 
|  | struct gdbarch *gdbarch; | 
|  | struct value *result; | 
|  | std::string type_name; | 
|  | gdb::unique_xmalloc_ptr<char> canonical; | 
|  |  | 
|  | /* We have to handle values a bit trickily here, to allow this code | 
|  | to work properly with non_lvalue values that are really just | 
|  | disguised types.  */ | 
|  | if (value->lval () == lval_memory) | 
|  | value = coerce_ref (value); | 
|  |  | 
|  | type = check_typedef (value->type ()); | 
|  |  | 
|  | /* In the non_lvalue case, a reference might have slipped through | 
|  | here.  */ | 
|  | if (type->code () == TYPE_CODE_REF) | 
|  | type = check_typedef (type->target_type ()); | 
|  |  | 
|  | /* Ignore top-level cv-qualifiers.  */ | 
|  | type = make_cv_type (0, 0, type, NULL); | 
|  | gdbarch = type->arch (); | 
|  |  | 
|  | type_name = type_to_string (type); | 
|  | if (type_name.empty ()) | 
|  | error (_("cannot find typeinfo for unnamed type")); | 
|  |  | 
|  | /* We need to canonicalize the type name here, because we do lookups | 
|  | using the demangled name, and so we must match the format it | 
|  | uses.  E.g., GDB tends to use "const char *" as a type name, but | 
|  | the demangler uses "char const *".  */ | 
|  | canonical = cp_canonicalize_string (type_name.c_str ()); | 
|  | const char *name = (canonical == nullptr | 
|  | ? type_name.c_str () | 
|  | : canonical.get ()); | 
|  |  | 
|  | typeinfo_type = gnuv3_get_typeid_type (gdbarch); | 
|  |  | 
|  | /* We check for lval_memory because in the "typeid (type-id)" case, | 
|  | the type is passed via a not_lval value object.  */ | 
|  | if (type->code () == TYPE_CODE_STRUCT | 
|  | && value->lval () == lval_memory | 
|  | && gnuv3_dynamic_class (type)) | 
|  | { | 
|  | struct value *vtable, *typeinfo_value; | 
|  | CORE_ADDR address = value->address () + value->embedded_offset (); | 
|  |  | 
|  | vtable = gnuv3_get_vtable (gdbarch, type, address); | 
|  | if (vtable == NULL) | 
|  | error (_("cannot find typeinfo for object of type '%s'"), | 
|  | name); | 
|  | typeinfo_value = value_field (vtable, vtable_field_type_info); | 
|  | result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL), | 
|  | typeinfo_value)); | 
|  | } | 
|  | else | 
|  | { | 
|  | std::string sym_name = std::string ("typeinfo for ") + name; | 
|  | bound_minimal_symbol minsym | 
|  | = lookup_minimal_symbol (sym_name.c_str (), NULL, NULL); | 
|  |  | 
|  | if (minsym.minsym == NULL) | 
|  | error (_("could not find typeinfo symbol for '%s'"), name); | 
|  |  | 
|  | result = value_at_lazy (typeinfo_type, minsym.value_address ()); | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Implement the 'get_typename_from_type_info' method.  */ | 
|  |  | 
|  | static std::string | 
|  | gnuv3_get_typename_from_type_info (struct value *type_info_ptr) | 
|  | { | 
|  | struct gdbarch *gdbarch = type_info_ptr->type ()->arch (); | 
|  | struct bound_minimal_symbol typeinfo_sym; | 
|  | CORE_ADDR addr; | 
|  | const char *symname; | 
|  | const char *class_name; | 
|  | const char *atsign; | 
|  |  | 
|  | addr = value_as_address (type_info_ptr); | 
|  | typeinfo_sym = lookup_minimal_symbol_by_pc (addr); | 
|  | if (typeinfo_sym.minsym == NULL) | 
|  | error (_("could not find minimal symbol for typeinfo address %s"), | 
|  | paddress (gdbarch, addr)); | 
|  |  | 
|  | #define TYPEINFO_PREFIX "typeinfo for " | 
|  | #define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1) | 
|  | symname = typeinfo_sym.minsym->demangled_name (); | 
|  | if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX, | 
|  | TYPEINFO_PREFIX_LEN)) | 
|  | error (_("typeinfo symbol '%s' has unexpected name"), | 
|  | typeinfo_sym.minsym->linkage_name ()); | 
|  | class_name = symname + TYPEINFO_PREFIX_LEN; | 
|  |  | 
|  | /* Strip off @plt and version suffixes.  */ | 
|  | atsign = strchr (class_name, '@'); | 
|  | if (atsign != NULL) | 
|  | return std::string (class_name, atsign - class_name); | 
|  | return class_name; | 
|  | } | 
|  |  | 
|  | /* Implement the 'get_type_from_type_info' method.  */ | 
|  |  | 
|  | static struct type * | 
|  | gnuv3_get_type_from_type_info (struct value *type_info_ptr) | 
|  | { | 
|  | /* We have to parse the type name, since in general there is not a | 
|  | symbol for a type.  This is somewhat bogus since there may be a | 
|  | mis-parse.  Another approach might be to re-use the demangler's | 
|  | internal form to reconstruct the type somehow.  */ | 
|  | std::string type_name = gnuv3_get_typename_from_type_info (type_info_ptr); | 
|  | expression_up expr (parse_expression (type_name.c_str ())); | 
|  | struct value *type_val = expr->evaluate_type (); | 
|  | return type_val->type (); | 
|  | } | 
|  |  | 
|  | /* Determine if we are currently in a C++ thunk.  If so, get the address | 
|  | of the routine we are thunking to and continue to there instead.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | gnuv3_skip_trampoline (frame_info_ptr frame, CORE_ADDR stop_pc) | 
|  | { | 
|  | CORE_ADDR real_stop_pc, method_stop_pc, func_addr; | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | struct bound_minimal_symbol thunk_sym, fn_sym; | 
|  | struct obj_section *section; | 
|  | const char *thunk_name, *fn_name; | 
|  |  | 
|  | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); | 
|  | if (real_stop_pc == 0) | 
|  | real_stop_pc = stop_pc; | 
|  |  | 
|  | /* Find the linker symbol for this potential thunk.  */ | 
|  | thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc); | 
|  | section = find_pc_section (real_stop_pc); | 
|  | if (thunk_sym.minsym == NULL || section == NULL) | 
|  | return 0; | 
|  |  | 
|  | /* The symbol's demangled name should be something like "virtual | 
|  | thunk to FUNCTION", where FUNCTION is the name of the function | 
|  | being thunked to.  */ | 
|  | thunk_name = thunk_sym.minsym->demangled_name (); | 
|  | if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL) | 
|  | return 0; | 
|  |  | 
|  | fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to "); | 
|  | fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile); | 
|  | if (fn_sym.minsym == NULL) | 
|  | return 0; | 
|  |  | 
|  | method_stop_pc = fn_sym.value_address (); | 
|  |  | 
|  | /* Some targets have minimal symbols pointing to function descriptors | 
|  | (powerpc 64 for example).  Make sure to retrieve the address | 
|  | of the real function from the function descriptor before passing on | 
|  | the address to other layers of GDB.  */ | 
|  | func_addr = gdbarch_convert_from_func_ptr_addr | 
|  | (gdbarch, method_stop_pc, current_inferior ()->top_target ()); | 
|  | if (func_addr != 0) | 
|  | method_stop_pc = func_addr; | 
|  |  | 
|  | real_stop_pc = gdbarch_skip_trampoline_code | 
|  | (gdbarch, frame, method_stop_pc); | 
|  | if (real_stop_pc == 0) | 
|  | real_stop_pc = method_stop_pc; | 
|  |  | 
|  | return real_stop_pc; | 
|  | } | 
|  |  | 
|  | /* A member function is in one these states.  */ | 
|  |  | 
|  | enum definition_style | 
|  | { | 
|  | DOES_NOT_EXIST_IN_SOURCE, | 
|  | DEFAULTED_INSIDE, | 
|  | DEFAULTED_OUTSIDE, | 
|  | DELETED, | 
|  | EXPLICIT, | 
|  | }; | 
|  |  | 
|  | /* Return how the given field is defined.  */ | 
|  |  | 
|  | static definition_style | 
|  | get_def_style (struct fn_field *fn, int fieldelem) | 
|  | { | 
|  | if (TYPE_FN_FIELD_DELETED (fn, fieldelem)) | 
|  | return DELETED; | 
|  |  | 
|  | if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem)) | 
|  | return DOES_NOT_EXIST_IN_SOURCE; | 
|  |  | 
|  | switch (TYPE_FN_FIELD_DEFAULTED (fn, fieldelem)) | 
|  | { | 
|  | case DW_DEFAULTED_no: | 
|  | return EXPLICIT; | 
|  | case DW_DEFAULTED_in_class: | 
|  | return DEFAULTED_INSIDE; | 
|  | case DW_DEFAULTED_out_of_class: | 
|  | return DEFAULTED_OUTSIDE; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return EXPLICIT; | 
|  | } | 
|  |  | 
|  | /* Helper functions to determine whether the given definition style | 
|  | denotes that the definition is user-provided or implicit. | 
|  | Being defaulted outside the class decl counts as an explicit | 
|  | user-definition, while being defaulted inside is implicit.  */ | 
|  |  | 
|  | static bool | 
|  | is_user_provided_def (definition_style def) | 
|  | { | 
|  | return def == EXPLICIT || def == DEFAULTED_OUTSIDE; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | is_implicit_def (definition_style def) | 
|  | { | 
|  | return def == DOES_NOT_EXIST_IN_SOURCE || def == DEFAULTED_INSIDE; | 
|  | } | 
|  |  | 
|  | /* Helper function to decide if METHOD_TYPE is a copy/move | 
|  | constructor type for CLASS_TYPE.  EXPECTED is the expected | 
|  | type code for the "right-hand-side" argument. | 
|  | This function is supposed to be used by the IS_COPY_CONSTRUCTOR_TYPE | 
|  | and IS_MOVE_CONSTRUCTOR_TYPE functions below.  Normally, you should | 
|  | not need to call this directly.  */ | 
|  |  | 
|  | static bool | 
|  | is_copy_or_move_constructor_type (struct type *class_type, | 
|  | struct type *method_type, | 
|  | type_code expected) | 
|  | { | 
|  | /* The method should take at least two arguments...  */ | 
|  | if (method_type->num_fields () < 2) | 
|  | return false; | 
|  |  | 
|  | /* ...and the second argument should be the same as the class | 
|  | type, with the expected type code...  */ | 
|  | struct type *arg_type = method_type->field (1).type (); | 
|  |  | 
|  | if (arg_type->code () != expected) | 
|  | return false; | 
|  |  | 
|  | struct type *target = check_typedef (arg_type->target_type ()); | 
|  | if (!(class_types_same_p (target, class_type))) | 
|  | return false; | 
|  |  | 
|  | /* ...and if any of the remaining arguments don't have a default value | 
|  | then this is not a copy or move constructor, but just a | 
|  | constructor.  */ | 
|  | for (int i = 2; i < method_type->num_fields (); i++) | 
|  | { | 
|  | arg_type = method_type->field (i).type (); | 
|  | /* FIXME aktemur/2019-10-31: As of this date, neither | 
|  | clang++-7.0.0 nor g++-8.2.0 produce a DW_AT_default_value | 
|  | attribute.  GDB is also not set to read this attribute, yet. | 
|  | Hence, we immediately return false if there are more than | 
|  | 2 parameters. | 
|  | GCC bug link: | 
|  | https://gcc.gnu.org/bugzilla/show_bug.cgi?id=42959 | 
|  | */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return true if METHOD_TYPE is a copy ctor type for CLASS_TYPE.  */ | 
|  |  | 
|  | static bool | 
|  | is_copy_constructor_type (struct type *class_type, | 
|  | struct type *method_type) | 
|  | { | 
|  | return is_copy_or_move_constructor_type (class_type, method_type, | 
|  | TYPE_CODE_REF); | 
|  | } | 
|  |  | 
|  | /* Return true if METHOD_TYPE is a move ctor type for CLASS_TYPE.  */ | 
|  |  | 
|  | static bool | 
|  | is_move_constructor_type (struct type *class_type, | 
|  | struct type *method_type) | 
|  | { | 
|  | return is_copy_or_move_constructor_type (class_type, method_type, | 
|  | TYPE_CODE_RVALUE_REF); | 
|  | } | 
|  |  | 
|  | /* Return pass-by-reference information for the given TYPE. | 
|  |  | 
|  | The rule in the v3 ABI document comes from section 3.1.1.  If the | 
|  | type has a non-trivial copy constructor or destructor, then the | 
|  | caller must make a copy (by calling the copy constructor if there | 
|  | is one or perform the copy itself otherwise), pass the address of | 
|  | the copy, and then destroy the temporary (if necessary). | 
|  |  | 
|  | For return values with non-trivial copy/move constructors or | 
|  | destructors, space will be allocated in the caller, and a pointer | 
|  | will be passed as the first argument (preceding "this"). | 
|  |  | 
|  | We don't have a bulletproof mechanism for determining whether a | 
|  | constructor or destructor is trivial.  For GCC and DWARF5 debug | 
|  | information, we can check the calling_convention attribute, | 
|  | the 'artificial' flag, the 'defaulted' attribute, and the | 
|  | 'deleted' attribute.  */ | 
|  |  | 
|  | static struct language_pass_by_ref_info | 
|  | gnuv3_pass_by_reference (struct type *type) | 
|  | { | 
|  | int fieldnum, fieldelem; | 
|  |  | 
|  | type = check_typedef (type); | 
|  |  | 
|  | /* Start with the default values.  */ | 
|  | struct language_pass_by_ref_info info; | 
|  |  | 
|  | bool has_cc_attr = false; | 
|  | bool is_pass_by_value = false; | 
|  | bool is_dynamic = false; | 
|  | definition_style cctor_def = DOES_NOT_EXIST_IN_SOURCE; | 
|  | definition_style dtor_def = DOES_NOT_EXIST_IN_SOURCE; | 
|  | definition_style mctor_def = DOES_NOT_EXIST_IN_SOURCE; | 
|  |  | 
|  | /* We're only interested in things that can have methods.  */ | 
|  | if (type->code () != TYPE_CODE_STRUCT | 
|  | && type->code () != TYPE_CODE_UNION) | 
|  | return info; | 
|  |  | 
|  | /* The compiler may have emitted the calling convention attribute. | 
|  | Note: GCC does not produce this attribute as of version 9.2.1. | 
|  | Bug link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92418  */ | 
|  | if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_value) | 
|  | { | 
|  | has_cc_attr = true; | 
|  | is_pass_by_value = true; | 
|  | /* Do not return immediately.  We have to find out if this type | 
|  | is copy_constructible and destructible.  */ | 
|  | } | 
|  |  | 
|  | if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_reference) | 
|  | { | 
|  | has_cc_attr = true; | 
|  | is_pass_by_value = false; | 
|  | } | 
|  |  | 
|  | /* A dynamic class has a non-trivial copy constructor. | 
|  | See c++98 section 12.8 Copying class objects [class.copy].  */ | 
|  | if (gnuv3_dynamic_class (type)) | 
|  | is_dynamic = true; | 
|  |  | 
|  | for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++) | 
|  | for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum); | 
|  | fieldelem++) | 
|  | { | 
|  | struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum); | 
|  | const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum); | 
|  | struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem); | 
|  |  | 
|  | if (name[0] == '~') | 
|  | { | 
|  | /* We've found a destructor. | 
|  | There should be at most one dtor definition.  */ | 
|  | gdb_assert (dtor_def == DOES_NOT_EXIST_IN_SOURCE); | 
|  | dtor_def = get_def_style (fn, fieldelem); | 
|  | } | 
|  | else if (is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem)) | 
|  | || TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem)) | 
|  | { | 
|  | /* FIXME drow/2007-09-23: We could do this using the name of | 
|  | the method and the name of the class instead of dealing | 
|  | with the mangled name.  We don't have a convenient function | 
|  | to strip off both leading scope qualifiers and trailing | 
|  | template arguments yet.  */ | 
|  | if (is_copy_constructor_type (type, fieldtype)) | 
|  | { | 
|  | /* There may be more than one cctors.  E.g.: one that | 
|  | take a const parameter and another that takes a | 
|  | non-const parameter.  Such as: | 
|  |  | 
|  | class K { | 
|  | K (const K &k)... | 
|  | K (K &k)... | 
|  | }; | 
|  |  | 
|  | It is sufficient for the type to be non-trivial | 
|  | even only one of the cctors is explicit. | 
|  | Therefore, update the cctor_def value in the | 
|  | implicit -> explicit direction, not backwards.  */ | 
|  |  | 
|  | if (is_implicit_def (cctor_def)) | 
|  | cctor_def = get_def_style (fn, fieldelem); | 
|  | } | 
|  | else if (is_move_constructor_type (type, fieldtype)) | 
|  | { | 
|  | /* Again, there may be multiple move ctors.  Update the | 
|  | mctor_def value if we found an explicit def and the | 
|  | existing one is not explicit.  Otherwise retain the | 
|  | existing value.  */ | 
|  | if (is_implicit_def (mctor_def)) | 
|  | mctor_def = get_def_style (fn, fieldelem); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool cctor_implicitly_deleted | 
|  | = (mctor_def != DOES_NOT_EXIST_IN_SOURCE | 
|  | && cctor_def == DOES_NOT_EXIST_IN_SOURCE); | 
|  |  | 
|  | bool cctor_explicitly_deleted = (cctor_def == DELETED); | 
|  |  | 
|  | if (cctor_implicitly_deleted || cctor_explicitly_deleted) | 
|  | info.copy_constructible = false; | 
|  |  | 
|  | if (dtor_def == DELETED) | 
|  | info.destructible = false; | 
|  |  | 
|  | info.trivially_destructible = is_implicit_def (dtor_def); | 
|  |  | 
|  | info.trivially_copy_constructible | 
|  | = (is_implicit_def (cctor_def) | 
|  | && !is_dynamic); | 
|  |  | 
|  | info.trivially_copyable | 
|  | = (info.trivially_copy_constructible | 
|  | && info.trivially_destructible | 
|  | && !is_user_provided_def (mctor_def)); | 
|  |  | 
|  | /* Even if all the constructors and destructors were artificial, one | 
|  | of them may have invoked a non-artificial constructor or | 
|  | destructor in a base class.  If any base class needs to be passed | 
|  | by reference, so does this class.  Similarly for members, which | 
|  | are constructed whenever this class is.  We do not need to worry | 
|  | about recursive loops here, since we are only looking at members | 
|  | of complete class type.  Also ignore any static members.  */ | 
|  | for (fieldnum = 0; fieldnum < type->num_fields (); fieldnum++) | 
|  | if (!type->field (fieldnum).is_static ()) | 
|  | { | 
|  | struct type *field_type = type->field (fieldnum).type (); | 
|  |  | 
|  | /* For arrays, make the decision based on the element type.  */ | 
|  | if (field_type->code () == TYPE_CODE_ARRAY) | 
|  | field_type = check_typedef (field_type->target_type ()); | 
|  |  | 
|  | struct language_pass_by_ref_info field_info | 
|  | = gnuv3_pass_by_reference (field_type); | 
|  |  | 
|  | if (!field_info.copy_constructible) | 
|  | info.copy_constructible = false; | 
|  | if (!field_info.destructible) | 
|  | info.destructible = false; | 
|  | if (!field_info.trivially_copyable) | 
|  | info.trivially_copyable = false; | 
|  | if (!field_info.trivially_copy_constructible) | 
|  | info.trivially_copy_constructible = false; | 
|  | if (!field_info.trivially_destructible) | 
|  | info.trivially_destructible = false; | 
|  | } | 
|  |  | 
|  | /* Consistency check.  */ | 
|  | if (has_cc_attr && info.trivially_copyable != is_pass_by_value) | 
|  | { | 
|  | /* DWARF CC attribute is not the same as the inferred value; | 
|  | use the DWARF attribute.  */ | 
|  | info.trivially_copyable = is_pass_by_value; | 
|  | } | 
|  |  | 
|  | return info; | 
|  | } | 
|  |  | 
|  | static void | 
|  | init_gnuv3_ops (void) | 
|  | { | 
|  | gnu_v3_abi_ops.shortname = "gnu-v3"; | 
|  | gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI"; | 
|  | gnu_v3_abi_ops.doc = "G++ Version 3 ABI"; | 
|  | gnu_v3_abi_ops.is_destructor_name = | 
|  | (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor; | 
|  | gnu_v3_abi_ops.is_constructor_name = | 
|  | (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor; | 
|  | gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name; | 
|  | gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name; | 
|  | gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type; | 
|  | gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field; | 
|  | gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset; | 
|  | gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr; | 
|  | gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size; | 
|  | gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr; | 
|  | gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value; | 
|  | gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable; | 
|  | gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid; | 
|  | gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type; | 
|  | gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info; | 
|  | gnu_v3_abi_ops.get_typename_from_type_info | 
|  | = gnuv3_get_typename_from_type_info; | 
|  | gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline; | 
|  | gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference; | 
|  | } | 
|  |  | 
|  | void _initialize_gnu_v3_abi (); | 
|  | void | 
|  | _initialize_gnu_v3_abi () | 
|  | { | 
|  | init_gnuv3_ops (); | 
|  |  | 
|  | register_cp_abi (&gnu_v3_abi_ops); | 
|  | set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname); | 
|  | } |