|  | /* Target-dependent code for FT32. | 
|  |  | 
|  | Copyright (C) 2009-2022 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "defs.h" | 
|  | #include "frame.h" | 
|  | #include "frame-unwind.h" | 
|  | #include "frame-base.h" | 
|  | #include "symtab.h" | 
|  | #include "gdbtypes.h" | 
|  | #include "gdbcmd.h" | 
|  | #include "gdbcore.h" | 
|  | #include "value.h" | 
|  | #include "inferior.h" | 
|  | #include "symfile.h" | 
|  | #include "objfiles.h" | 
|  | #include "osabi.h" | 
|  | #include "language.h" | 
|  | #include "arch-utils.h" | 
|  | #include "regcache.h" | 
|  | #include "trad-frame.h" | 
|  | #include "dis-asm.h" | 
|  | #include "record.h" | 
|  |  | 
|  | #include "opcode/ft32.h" | 
|  |  | 
|  | #include "ft32-tdep.h" | 
|  | #include "gdb/sim-ft32.h" | 
|  | #include <algorithm> | 
|  |  | 
|  | #define RAM_BIAS  0x800000  /* Bias added to RAM addresses.  */ | 
|  |  | 
|  | /* Use an invalid address -1 as 'not available' marker.  */ | 
|  | enum { REG_UNAVAIL = (CORE_ADDR) (-1) }; | 
|  |  | 
|  | struct ft32_frame_cache | 
|  | { | 
|  | /* Base address of the frame */ | 
|  | CORE_ADDR base; | 
|  | /* Function this frame belongs to */ | 
|  | CORE_ADDR pc; | 
|  | /* Total size of this frame */ | 
|  | LONGEST framesize; | 
|  | /* Saved registers in this frame */ | 
|  | CORE_ADDR saved_regs[FT32_NUM_REGS]; | 
|  | /* Saved SP in this frame */ | 
|  | CORE_ADDR saved_sp; | 
|  | /* Has the new frame been LINKed.  */ | 
|  | bfd_boolean established; | 
|  | }; | 
|  |  | 
|  | /* Implement the "frame_align" gdbarch method.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | ft32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | 
|  | { | 
|  | /* Align to the size of an instruction (so that they can safely be | 
|  | pushed onto the stack.  */ | 
|  | return sp & ~1; | 
|  | } | 
|  |  | 
|  |  | 
|  | constexpr gdb_byte ft32_break_insn[] = { 0x02, 0x00, 0x34, 0x00 }; | 
|  |  | 
|  | typedef BP_MANIPULATION (ft32_break_insn) ft32_breakpoint; | 
|  |  | 
|  | /* FT32 register names.  */ | 
|  |  | 
|  | static const char *const ft32_register_names[] = | 
|  | { | 
|  | "fp", "sp", | 
|  | "r0", "r1", "r2", "r3",  "r4", "r5", "r6", "r7", | 
|  | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | 
|  | "r16", "r17", "r18", "r19",  "r20", "r21", "r22", "r23", | 
|  | "r24", "r25", "r26", "r27", "r28", "cc", | 
|  | "pc" | 
|  | }; | 
|  |  | 
|  | /* Implement the "register_name" gdbarch method.  */ | 
|  |  | 
|  | static const char * | 
|  | ft32_register_name (struct gdbarch *gdbarch, int reg_nr) | 
|  | { | 
|  | if (reg_nr < 0) | 
|  | return NULL; | 
|  | if (reg_nr >= FT32_NUM_REGS) | 
|  | return NULL; | 
|  | return ft32_register_names[reg_nr]; | 
|  | } | 
|  |  | 
|  | /* Implement the "register_type" gdbarch method.  */ | 
|  |  | 
|  | static struct type * | 
|  | ft32_register_type (struct gdbarch *gdbarch, int reg_nr) | 
|  | { | 
|  | if (reg_nr == FT32_PC_REGNUM) | 
|  | { | 
|  | ft32_gdbarch_tdep *tdep = gdbarch_tdep<ft32_gdbarch_tdep> (gdbarch); | 
|  | return tdep->pc_type; | 
|  | } | 
|  | else if (reg_nr == FT32_SP_REGNUM || reg_nr == FT32_FP_REGNUM) | 
|  | return builtin_type (gdbarch)->builtin_data_ptr; | 
|  | else | 
|  | return builtin_type (gdbarch)->builtin_int32; | 
|  | } | 
|  |  | 
|  | /* Write into appropriate registers a function return value | 
|  | of type TYPE, given in virtual format.  */ | 
|  |  | 
|  | static void | 
|  | ft32_store_return_value (struct type *type, struct regcache *regcache, | 
|  | const gdb_byte *valbuf) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR regval; | 
|  | int len = TYPE_LENGTH (type); | 
|  |  | 
|  | /* Things always get returned in RET1_REGNUM, RET2_REGNUM.  */ | 
|  | regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order); | 
|  | regcache_cooked_write_unsigned (regcache, FT32_R0_REGNUM, regval); | 
|  | if (len > 4) | 
|  | { | 
|  | regval = extract_unsigned_integer (valbuf + 4, | 
|  | len - 4, byte_order); | 
|  | regcache_cooked_write_unsigned (regcache, FT32_R1_REGNUM, regval); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Fetch a single 32-bit instruction from address a. If memory contains | 
|  | a compressed instruction pair, return the expanded instruction.  */ | 
|  |  | 
|  | static ULONGEST | 
|  | ft32_fetch_instruction (CORE_ADDR a, int *isize, | 
|  | enum bfd_endian byte_order) | 
|  | { | 
|  | unsigned int sc[2]; | 
|  | ULONGEST inst; | 
|  |  | 
|  | CORE_ADDR a4 = a & ~3; | 
|  | inst = read_code_unsigned_integer (a4, 4, byte_order); | 
|  | *isize = ft32_decode_shortcode (a4, inst, sc) ? 2 : 4; | 
|  | if (*isize == 2) | 
|  | return sc[1 & (a >> 1)]; | 
|  | else | 
|  | return inst; | 
|  | } | 
|  |  | 
|  | /* Decode the instructions within the given address range.  Decide | 
|  | when we must have reached the end of the function prologue.  If a | 
|  | frame_info pointer is provided, fill in its saved_regs etc. | 
|  |  | 
|  | Returns the address of the first instruction after the prologue.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | ft32_analyze_prologue (CORE_ADDR start_addr, CORE_ADDR end_addr, | 
|  | struct ft32_frame_cache *cache, | 
|  | struct gdbarch *gdbarch) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR next_addr; | 
|  | ULONGEST inst; | 
|  | int isize = 0; | 
|  | int regnum, pushreg; | 
|  | struct bound_minimal_symbol msymbol; | 
|  | const int first_saved_reg = 13;	/* The first saved register.  */ | 
|  | /* PROLOGS are addresses of the subroutine prologs, PROLOGS[n] | 
|  | is the address of __prolog_$rN. | 
|  | __prolog_$rN pushes registers from 13 through n inclusive. | 
|  | So for example CALL __prolog_$r15 is equivalent to: | 
|  | PUSH $r13 | 
|  | PUSH $r14 | 
|  | PUSH $r15 | 
|  | Note that PROLOGS[0] through PROLOGS[12] are unused.  */ | 
|  | CORE_ADDR prologs[32]; | 
|  |  | 
|  | cache->saved_regs[FT32_PC_REGNUM] = 0; | 
|  | cache->framesize = 0; | 
|  |  | 
|  | for (regnum = first_saved_reg; regnum < 32; regnum++) | 
|  | { | 
|  | char prolog_symbol[32]; | 
|  |  | 
|  | snprintf (prolog_symbol, sizeof (prolog_symbol), "__prolog_$r%02d", | 
|  | regnum); | 
|  | msymbol = lookup_minimal_symbol (prolog_symbol, NULL, NULL); | 
|  | if (msymbol.minsym) | 
|  | prologs[regnum] = msymbol.value_address (); | 
|  | else | 
|  | prologs[regnum] = 0; | 
|  | } | 
|  |  | 
|  | if (start_addr >= end_addr) | 
|  | return end_addr; | 
|  |  | 
|  | cache->established = 0; | 
|  | for (next_addr = start_addr; next_addr < end_addr; next_addr += isize) | 
|  | { | 
|  | inst = ft32_fetch_instruction (next_addr, &isize, byte_order); | 
|  |  | 
|  | if (FT32_IS_PUSH (inst)) | 
|  | { | 
|  | pushreg = FT32_PUSH_REG (inst); | 
|  | cache->framesize += 4; | 
|  | cache->saved_regs[FT32_R0_REGNUM + pushreg] = cache->framesize; | 
|  | } | 
|  | else if (FT32_IS_CALL (inst)) | 
|  | { | 
|  | for (regnum = first_saved_reg; regnum < 32; regnum++) | 
|  | { | 
|  | if ((4 * (inst & 0x3ffff)) == prologs[regnum]) | 
|  | { | 
|  | for (pushreg = first_saved_reg; pushreg <= regnum; | 
|  | pushreg++) | 
|  | { | 
|  | cache->framesize += 4; | 
|  | cache->saved_regs[FT32_R0_REGNUM + pushreg] = | 
|  | cache->framesize; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | else | 
|  | break; | 
|  | } | 
|  | for (regnum = FT32_R0_REGNUM; regnum < FT32_PC_REGNUM; regnum++) | 
|  | { | 
|  | if (cache->saved_regs[regnum] != REG_UNAVAIL) | 
|  | cache->saved_regs[regnum] = | 
|  | cache->framesize - cache->saved_regs[regnum]; | 
|  | } | 
|  | cache->saved_regs[FT32_PC_REGNUM] = cache->framesize; | 
|  |  | 
|  | /* It is a LINK?  */ | 
|  | if (next_addr < end_addr) | 
|  | { | 
|  | inst = ft32_fetch_instruction (next_addr, &isize, byte_order); | 
|  | if (FT32_IS_LINK (inst)) | 
|  | { | 
|  | cache->established = 1; | 
|  | for (regnum = FT32_R0_REGNUM; regnum < FT32_PC_REGNUM; regnum++) | 
|  | { | 
|  | if (cache->saved_regs[regnum] != REG_UNAVAIL) | 
|  | cache->saved_regs[regnum] += 4; | 
|  | } | 
|  | cache->saved_regs[FT32_PC_REGNUM] = cache->framesize + 4; | 
|  | cache->saved_regs[FT32_FP_REGNUM] = 0; | 
|  | cache->framesize += FT32_LINK_SIZE (inst); | 
|  | next_addr += isize; | 
|  | } | 
|  | } | 
|  |  | 
|  | return next_addr; | 
|  | } | 
|  |  | 
|  | /* Find the end of function prologue.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | ft32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | CORE_ADDR func_addr = 0, func_end = 0; | 
|  | const char *func_name; | 
|  |  | 
|  | /* See if we can determine the end of the prologue via the symbol table. | 
|  | If so, then return either PC, or the PC after the prologue, whichever | 
|  | is greater.  */ | 
|  | if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end)) | 
|  | { | 
|  | CORE_ADDR post_prologue_pc | 
|  | = skip_prologue_using_sal (gdbarch, func_addr); | 
|  | if (post_prologue_pc != 0) | 
|  | return std::max (pc, post_prologue_pc); | 
|  | else | 
|  | { | 
|  | /* Can't determine prologue from the symbol table, need to examine | 
|  | instructions.  */ | 
|  | struct symtab_and_line sal; | 
|  | struct symbol *sym; | 
|  | struct ft32_frame_cache cache; | 
|  | CORE_ADDR plg_end; | 
|  |  | 
|  | memset (&cache, 0, sizeof cache); | 
|  |  | 
|  | plg_end = ft32_analyze_prologue (func_addr, | 
|  | func_end, &cache, gdbarch); | 
|  | /* Found a function.  */ | 
|  | sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL).symbol; | 
|  | /* Don't use line number debug info for assembly source files.  */ | 
|  | if ((sym != NULL) && sym->language () != language_asm) | 
|  | { | 
|  | sal = find_pc_line (func_addr, 0); | 
|  | if (sal.end && sal.end < func_end) | 
|  | { | 
|  | /* Found a line number, use it as end of prologue.  */ | 
|  | return sal.end; | 
|  | } | 
|  | } | 
|  | /* No useable line symbol.  Use result of prologue parsing method.  */ | 
|  | return plg_end; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* No function symbol -- just return the PC.  */ | 
|  | return pc; | 
|  | } | 
|  |  | 
|  | /* Implementation of `pointer_to_address' gdbarch method. | 
|  |  | 
|  | On FT32 address space zero is RAM, address space 1 is flash. | 
|  | RAM appears at address RAM_BIAS, flash at address 0.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | ft32_pointer_to_address (struct gdbarch *gdbarch, | 
|  | struct type *type, const gdb_byte *buf) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR addr | 
|  | = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order); | 
|  |  | 
|  | if (TYPE_ADDRESS_CLASS_1 (type)) | 
|  | return addr; | 
|  | else | 
|  | return addr | RAM_BIAS; | 
|  | } | 
|  |  | 
|  | /* Implementation of `address_class_type_flags' gdbarch method. | 
|  |  | 
|  | This method maps DW_AT_address_class attributes to a | 
|  | type_instance_flag_value.  */ | 
|  |  | 
|  | static type_instance_flags | 
|  | ft32_address_class_type_flags (int byte_size, int dwarf2_addr_class) | 
|  | { | 
|  | /* The value 1 of the DW_AT_address_class attribute corresponds to the | 
|  | __flash__ qualifier, meaning pointer to data in FT32 program memory. | 
|  | */ | 
|  | if (dwarf2_addr_class == 1) | 
|  | return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Implementation of `address_class_type_flags_to_name' gdbarch method. | 
|  |  | 
|  | Convert a type_instance_flag_value to an address space qualifier.  */ | 
|  |  | 
|  | static const char* | 
|  | ft32_address_class_type_flags_to_name (struct gdbarch *gdbarch, | 
|  | type_instance_flags type_flags) | 
|  | { | 
|  | if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1) | 
|  | return "flash"; | 
|  | else | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Implementation of `address_class_name_to_type_flags' gdbarch method. | 
|  |  | 
|  | Convert an address space qualifier to a type_instance_flag_value.  */ | 
|  |  | 
|  | static bool | 
|  | ft32_address_class_name_to_type_flags (struct gdbarch *gdbarch, | 
|  | const char* name, | 
|  | type_instance_flags *type_flags_ptr) | 
|  | { | 
|  | if (strcmp (name, "flash") == 0) | 
|  | { | 
|  | *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; | 
|  | return true; | 
|  | } | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Given a return value in `regbuf' with a type `valtype', | 
|  | extract and copy its value into `valbuf'.  */ | 
|  |  | 
|  | static void | 
|  | ft32_extract_return_value (struct type *type, struct regcache *regcache, | 
|  | gdb_byte *dst) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | bfd_byte *valbuf = dst; | 
|  | int len = TYPE_LENGTH (type); | 
|  | ULONGEST tmp; | 
|  |  | 
|  | /* By using store_unsigned_integer we avoid having to do | 
|  | anything special for small big-endian values.  */ | 
|  | regcache_cooked_read_unsigned (regcache, FT32_R0_REGNUM, &tmp); | 
|  | store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp); | 
|  |  | 
|  | /* Ignore return values more than 8 bytes in size because the ft32 | 
|  | returns anything more than 8 bytes in the stack.  */ | 
|  | if (len > 4) | 
|  | { | 
|  | regcache_cooked_read_unsigned (regcache, FT32_R1_REGNUM, &tmp); | 
|  | store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Implement the "return_value" gdbarch method.  */ | 
|  |  | 
|  | static enum return_value_convention | 
|  | ft32_return_value (struct gdbarch *gdbarch, struct value *function, | 
|  | struct type *valtype, struct regcache *regcache, | 
|  | gdb_byte *readbuf, const gdb_byte *writebuf) | 
|  | { | 
|  | if (TYPE_LENGTH (valtype) > 8) | 
|  | return RETURN_VALUE_STRUCT_CONVENTION; | 
|  | else | 
|  | { | 
|  | if (readbuf != NULL) | 
|  | ft32_extract_return_value (valtype, regcache, readbuf); | 
|  | if (writebuf != NULL) | 
|  | ft32_store_return_value (valtype, regcache, writebuf); | 
|  | return RETURN_VALUE_REGISTER_CONVENTION; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allocate and initialize a ft32_frame_cache object.  */ | 
|  |  | 
|  | static struct ft32_frame_cache * | 
|  | ft32_alloc_frame_cache (void) | 
|  | { | 
|  | struct ft32_frame_cache *cache; | 
|  | int i; | 
|  |  | 
|  | cache = FRAME_OBSTACK_ZALLOC (struct ft32_frame_cache); | 
|  |  | 
|  | for (i = 0; i < FT32_NUM_REGS; ++i) | 
|  | cache->saved_regs[i] = REG_UNAVAIL; | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | /* Populate a ft32_frame_cache object for this_frame.  */ | 
|  |  | 
|  | static struct ft32_frame_cache * | 
|  | ft32_frame_cache (struct frame_info *this_frame, void **this_cache) | 
|  | { | 
|  | struct ft32_frame_cache *cache; | 
|  | CORE_ADDR current_pc; | 
|  | int i; | 
|  |  | 
|  | if (*this_cache) | 
|  | return (struct ft32_frame_cache *) *this_cache; | 
|  |  | 
|  | cache = ft32_alloc_frame_cache (); | 
|  | *this_cache = cache; | 
|  |  | 
|  | cache->base = get_frame_register_unsigned (this_frame, FT32_FP_REGNUM); | 
|  | if (cache->base == 0) | 
|  | return cache; | 
|  |  | 
|  | cache->pc = get_frame_func (this_frame); | 
|  | current_pc = get_frame_pc (this_frame); | 
|  | if (cache->pc) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  |  | 
|  | ft32_analyze_prologue (cache->pc, current_pc, cache, gdbarch); | 
|  | if (!cache->established) | 
|  | cache->base = get_frame_register_unsigned (this_frame, FT32_SP_REGNUM); | 
|  | } | 
|  |  | 
|  | cache->saved_sp = cache->base - 4; | 
|  |  | 
|  | for (i = 0; i < FT32_NUM_REGS; ++i) | 
|  | if (cache->saved_regs[i] != REG_UNAVAIL) | 
|  | cache->saved_regs[i] = cache->base + cache->saved_regs[i]; | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | /* Given a GDB frame, determine the address of the calling function's | 
|  | frame.  This will be used to create a new GDB frame struct.  */ | 
|  |  | 
|  | static void | 
|  | ft32_frame_this_id (struct frame_info *this_frame, | 
|  | void **this_prologue_cache, struct frame_id *this_id) | 
|  | { | 
|  | struct ft32_frame_cache *cache = ft32_frame_cache (this_frame, | 
|  | this_prologue_cache); | 
|  |  | 
|  | /* This marks the outermost frame.  */ | 
|  | if (cache->base == 0) | 
|  | return; | 
|  |  | 
|  | *this_id = frame_id_build (cache->saved_sp, cache->pc); | 
|  | } | 
|  |  | 
|  | /* Get the value of register regnum in the previous stack frame.  */ | 
|  |  | 
|  | static struct value * | 
|  | ft32_frame_prev_register (struct frame_info *this_frame, | 
|  | void **this_prologue_cache, int regnum) | 
|  | { | 
|  | struct ft32_frame_cache *cache = ft32_frame_cache (this_frame, | 
|  | this_prologue_cache); | 
|  |  | 
|  | gdb_assert (regnum >= 0); | 
|  |  | 
|  | if (regnum == FT32_SP_REGNUM && cache->saved_sp) | 
|  | return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp); | 
|  |  | 
|  | if (regnum < FT32_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL) | 
|  | return frame_unwind_got_memory (this_frame, regnum, | 
|  | RAM_BIAS | cache->saved_regs[regnum]); | 
|  |  | 
|  | return frame_unwind_got_register (this_frame, regnum, regnum); | 
|  | } | 
|  |  | 
|  | static const struct frame_unwind ft32_frame_unwind = | 
|  | { | 
|  | "ft32 prologue", | 
|  | NORMAL_FRAME, | 
|  | default_frame_unwind_stop_reason, | 
|  | ft32_frame_this_id, | 
|  | ft32_frame_prev_register, | 
|  | NULL, | 
|  | default_frame_sniffer | 
|  | }; | 
|  |  | 
|  | /* Return the base address of this_frame.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | ft32_frame_base_address (struct frame_info *this_frame, void **this_cache) | 
|  | { | 
|  | struct ft32_frame_cache *cache = ft32_frame_cache (this_frame, | 
|  | this_cache); | 
|  |  | 
|  | return cache->base; | 
|  | } | 
|  |  | 
|  | static const struct frame_base ft32_frame_base = | 
|  | { | 
|  | &ft32_frame_unwind, | 
|  | ft32_frame_base_address, | 
|  | ft32_frame_base_address, | 
|  | ft32_frame_base_address | 
|  | }; | 
|  |  | 
|  | /* Allocate and initialize the ft32 gdbarch object.  */ | 
|  |  | 
|  | static struct gdbarch * | 
|  | ft32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | 
|  | { | 
|  | struct gdbarch *gdbarch; | 
|  | struct type *void_type; | 
|  | struct type *func_void_type; | 
|  |  | 
|  | /* If there is already a candidate, use it.  */ | 
|  | arches = gdbarch_list_lookup_by_info (arches, &info); | 
|  | if (arches != NULL) | 
|  | return arches->gdbarch; | 
|  |  | 
|  | /* Allocate space for the new architecture.  */ | 
|  | ft32_gdbarch_tdep *tdep = new ft32_gdbarch_tdep; | 
|  | gdbarch = gdbarch_alloc (&info, tdep); | 
|  |  | 
|  | /* Create a type for PC.  We can't use builtin types here, as they may not | 
|  | be defined.  */ | 
|  | void_type = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void"); | 
|  | func_void_type = make_function_type (void_type, NULL); | 
|  | tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL, | 
|  | func_void_type); | 
|  | tdep->pc_type->set_instance_flags (tdep->pc_type->instance_flags () | 
|  | | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1); | 
|  |  | 
|  | set_gdbarch_num_regs (gdbarch, FT32_NUM_REGS); | 
|  | set_gdbarch_sp_regnum (gdbarch, FT32_SP_REGNUM); | 
|  | set_gdbarch_pc_regnum (gdbarch, FT32_PC_REGNUM); | 
|  | set_gdbarch_register_name (gdbarch, ft32_register_name); | 
|  | set_gdbarch_register_type (gdbarch, ft32_register_type); | 
|  |  | 
|  | set_gdbarch_return_value (gdbarch, ft32_return_value); | 
|  |  | 
|  | set_gdbarch_pointer_to_address (gdbarch, ft32_pointer_to_address); | 
|  |  | 
|  | set_gdbarch_skip_prologue (gdbarch, ft32_skip_prologue); | 
|  | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | 
|  | set_gdbarch_breakpoint_kind_from_pc (gdbarch, ft32_breakpoint::kind_from_pc); | 
|  | set_gdbarch_sw_breakpoint_from_kind (gdbarch, ft32_breakpoint::bp_from_kind); | 
|  | set_gdbarch_frame_align (gdbarch, ft32_frame_align); | 
|  |  | 
|  | frame_base_set_default (gdbarch, &ft32_frame_base); | 
|  |  | 
|  | /* Hook in ABI-specific overrides, if they have been registered.  */ | 
|  | gdbarch_init_osabi (info, gdbarch); | 
|  |  | 
|  | /* Hook in the default unwinders.  */ | 
|  | frame_unwind_append_unwinder (gdbarch, &ft32_frame_unwind); | 
|  |  | 
|  | /* Support simple overlay manager.  */ | 
|  | set_gdbarch_overlay_update (gdbarch, simple_overlay_update); | 
|  |  | 
|  | set_gdbarch_address_class_type_flags (gdbarch, ft32_address_class_type_flags); | 
|  | set_gdbarch_address_class_name_to_type_flags | 
|  | (gdbarch, ft32_address_class_name_to_type_flags); | 
|  | set_gdbarch_address_class_type_flags_to_name | 
|  | (gdbarch, ft32_address_class_type_flags_to_name); | 
|  |  | 
|  | return gdbarch; | 
|  | } | 
|  |  | 
|  | /* Register this machine's init routine.  */ | 
|  |  | 
|  | void _initialize_ft32_tdep (); | 
|  | void | 
|  | _initialize_ft32_tdep () | 
|  | { | 
|  | gdbarch_register (bfd_arch_ft32, ft32_gdbarch_init); | 
|  | } |