|  | /* PPC GNU/Linux native support. | 
|  |  | 
|  | Copyright (C) 1988-2025 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "extract-store-integer.h" | 
|  | #include "frame.h" | 
|  | #include "inferior.h" | 
|  | #include "gdbthread.h" | 
|  | #include "gdbcore.h" | 
|  | #include "regcache.h" | 
|  | #include "regset.h" | 
|  | #include "target.h" | 
|  | #include "linux-nat.h" | 
|  | #include <sys/types.h> | 
|  | #include <signal.h> | 
|  | #include <sys/user.h> | 
|  | #include <sys/ioctl.h> | 
|  | #include <sys/uio.h> | 
|  | #include "gdbsupport/gdb_wait.h" | 
|  | #include <fcntl.h> | 
|  | #include <sys/procfs.h> | 
|  | #include "nat/gdb_ptrace.h" | 
|  | #include "nat/linux-ptrace.h" | 
|  | #include "inf-ptrace.h" | 
|  | #include <algorithm> | 
|  | #include <unordered_map> | 
|  | #include <list> | 
|  |  | 
|  | /* Prototypes for supply_gregset etc.  */ | 
|  | #include "gregset.h" | 
|  | #include "ppc-tdep.h" | 
|  | #include "ppc-linux-tdep.h" | 
|  |  | 
|  | /* Required when using the AUXV.  */ | 
|  | #include "elf/common.h" | 
|  | #include "auxv.h" | 
|  |  | 
|  | #include "arch/ppc-linux-common.h" | 
|  | #include "arch/ppc-linux-tdesc.h" | 
|  | #include "nat/ppc-linux.h" | 
|  | #include "linux-tdep.h" | 
|  | #include "expop.h" | 
|  |  | 
|  | /* Similarly for the hardware watchpoint support.  These requests are used | 
|  | when the PowerPC HWDEBUG ptrace interface is not available.  */ | 
|  | #ifndef PTRACE_GET_DEBUGREG | 
|  | #define PTRACE_GET_DEBUGREG    25 | 
|  | #endif | 
|  | #ifndef PTRACE_SET_DEBUGREG | 
|  | #define PTRACE_SET_DEBUGREG    26 | 
|  | #endif | 
|  | #ifndef PTRACE_GETSIGINFO | 
|  | #define PTRACE_GETSIGINFO    0x4202 | 
|  | #endif | 
|  |  | 
|  | /* These requests are used when the PowerPC HWDEBUG ptrace interface is | 
|  | available.  It exposes the debug facilities of PowerPC processors, as well | 
|  | as additional features of BookE processors, such as ranged breakpoints and | 
|  | watchpoints and hardware-accelerated condition evaluation.  */ | 
|  | #ifndef PPC_PTRACE_GETHWDBGINFO | 
|  |  | 
|  | /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG | 
|  | ptrace interface is not present in ptrace.h, so we'll have to pretty much | 
|  | include it all here so that the code at least compiles on older systems.  */ | 
|  | #define PPC_PTRACE_GETHWDBGINFO 0x89 | 
|  | #define PPC_PTRACE_SETHWDEBUG   0x88 | 
|  | #define PPC_PTRACE_DELHWDEBUG   0x87 | 
|  |  | 
|  | struct ppc_debug_info | 
|  | { | 
|  | uint32_t version;               /* Only version 1 exists to date.  */ | 
|  | uint32_t num_instruction_bps; | 
|  | uint32_t num_data_bps; | 
|  | uint32_t num_condition_regs; | 
|  | uint32_t data_bp_alignment; | 
|  | uint32_t sizeof_condition;      /* size of the DVC register.  */ | 
|  | uint64_t features; | 
|  | }; | 
|  |  | 
|  | /* Features will have bits indicating whether there is support for:  */ | 
|  | #define PPC_DEBUG_FEATURE_INSN_BP_RANGE         0x1 | 
|  | #define PPC_DEBUG_FEATURE_INSN_BP_MASK          0x2 | 
|  | #define PPC_DEBUG_FEATURE_DATA_BP_RANGE         0x4 | 
|  | #define PPC_DEBUG_FEATURE_DATA_BP_MASK          0x8 | 
|  |  | 
|  | struct ppc_hw_breakpoint | 
|  | { | 
|  | uint32_t version;               /* currently, version must be 1 */ | 
|  | uint32_t trigger_type;          /* only some combinations allowed */ | 
|  | uint32_t addr_mode;             /* address match mode */ | 
|  | uint32_t condition_mode;        /* break/watchpoint condition flags */ | 
|  | uint64_t addr;                  /* break/watchpoint address */ | 
|  | uint64_t addr2;                 /* range end or mask */ | 
|  | uint64_t condition_value;       /* contents of the DVC register */ | 
|  | }; | 
|  |  | 
|  | /* Trigger type.  */ | 
|  | #define PPC_BREAKPOINT_TRIGGER_EXECUTE  0x1 | 
|  | #define PPC_BREAKPOINT_TRIGGER_READ     0x2 | 
|  | #define PPC_BREAKPOINT_TRIGGER_WRITE    0x4 | 
|  | #define PPC_BREAKPOINT_TRIGGER_RW       0x6 | 
|  |  | 
|  | /* Address mode.  */ | 
|  | #define PPC_BREAKPOINT_MODE_EXACT               0x0 | 
|  | #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE     0x1 | 
|  | #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE     0x2 | 
|  | #define PPC_BREAKPOINT_MODE_MASK                0x3 | 
|  |  | 
|  | /* Condition mode.  */ | 
|  | #define PPC_BREAKPOINT_CONDITION_NONE   0x0 | 
|  | #define PPC_BREAKPOINT_CONDITION_AND    0x1 | 
|  | #define PPC_BREAKPOINT_CONDITION_EXACT  0x1 | 
|  | #define PPC_BREAKPOINT_CONDITION_OR     0x2 | 
|  | #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3 | 
|  | #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000 | 
|  | #define PPC_BREAKPOINT_CONDITION_BE_SHIFT       16 | 
|  | #define PPC_BREAKPOINT_CONDITION_BE(n)  \ | 
|  | (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT)) | 
|  | #endif /* PPC_PTRACE_GETHWDBGINFO */ | 
|  |  | 
|  | /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider | 
|  | watchpoint (up to 512 bytes).  */ | 
|  | #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR | 
|  | #define PPC_DEBUG_FEATURE_DATA_BP_DAWR	0x10 | 
|  | #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */ | 
|  |  | 
|  | /* Feature defined on Linux kernel v5.1: Second watchpoint support.  */ | 
|  | #ifndef PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 | 
|  | #define PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 0x20 | 
|  | #endif /* PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 */ | 
|  |  | 
|  | /* The version of the PowerPC HWDEBUG kernel interface that we will use, if | 
|  | available.  */ | 
|  | #define PPC_DEBUG_CURRENT_VERSION 1 | 
|  |  | 
|  | /* Similarly for the general-purpose (gp0 -- gp31) | 
|  | and floating-point registers (fp0 -- fp31).  */ | 
|  | #ifndef PTRACE_GETREGS | 
|  | #define PTRACE_GETREGS 12 | 
|  | #endif | 
|  | #ifndef PTRACE_SETREGS | 
|  | #define PTRACE_SETREGS 13 | 
|  | #endif | 
|  | #ifndef PTRACE_GETFPREGS | 
|  | #define PTRACE_GETFPREGS 14 | 
|  | #endif | 
|  | #ifndef PTRACE_SETFPREGS | 
|  | #define PTRACE_SETFPREGS 15 | 
|  | #endif | 
|  |  | 
|  | /* This oddity is because the Linux kernel defines elf_vrregset_t as | 
|  | an array of 33 16 bytes long elements.  I.e. it leaves out vrsave. | 
|  | However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return | 
|  | the vrsave as an extra 4 bytes at the end.  I opted for creating a | 
|  | flat array of chars, so that it is easier to manipulate for gdb. | 
|  |  | 
|  | There are 32 vector registers 16 bytes longs, plus a VSCR register | 
|  | which is only 4 bytes long, but is fetched as a 16 bytes | 
|  | quantity.  Up to here we have the elf_vrregset_t structure. | 
|  | Appended to this there is space for the VRSAVE register: 4 bytes. | 
|  | Even though this vrsave register is not included in the regset | 
|  | typedef, it is handled by the ptrace requests. | 
|  |  | 
|  | The layout is like this (where x is the actual value of the vscr reg): */ | 
|  |  | 
|  | /* | 
|  | Big-Endian: | 
|  | |.|.|.|.|.....|.|.|.|.||.|.|.|x||.| | 
|  | <------->     <-------><-------><-> | 
|  | VR0           VR31     VSCR    VRSAVE | 
|  | Little-Endian: | 
|  | |.|.|.|.|.....|.|.|.|.||X|.|.|.||.| | 
|  | <------->     <-------><-------><-> | 
|  | VR0           VR31     VSCR    VRSAVE | 
|  | */ | 
|  |  | 
|  | typedef char gdb_vrregset_t[PPC_LINUX_SIZEOF_VRREGSET]; | 
|  |  | 
|  | /* This is the layout of the POWER7 VSX registers and the way they overlap | 
|  | with the existing FPR and VMX registers. | 
|  |  | 
|  | VSR doubleword 0               VSR doubleword 1 | 
|  | ---------------------------------------------------------------- | 
|  | VSR[0]  |             FPR[0]            |                              | | 
|  | ---------------------------------------------------------------- | 
|  | VSR[1]  |             FPR[1]            |                              | | 
|  | ---------------------------------------------------------------- | 
|  | |              ...              |                              | | 
|  | |              ...              |                              | | 
|  | ---------------------------------------------------------------- | 
|  | VSR[30] |             FPR[30]           |                              | | 
|  | ---------------------------------------------------------------- | 
|  | VSR[31] |             FPR[31]           |                              | | 
|  | ---------------------------------------------------------------- | 
|  | VSR[32] |                             VR[0]                            | | 
|  | ---------------------------------------------------------------- | 
|  | VSR[33] |                             VR[1]                            | | 
|  | ---------------------------------------------------------------- | 
|  | |                              ...                             | | 
|  | |                              ...                             | | 
|  | ---------------------------------------------------------------- | 
|  | VSR[62] |                             VR[30]                           | | 
|  | ---------------------------------------------------------------- | 
|  | VSR[63] |                             VR[31]                           | | 
|  | ---------------------------------------------------------------- | 
|  |  | 
|  | VSX has 64 128bit registers.  The first 32 registers overlap with | 
|  | the FP registers (doubleword 0) and hence extend them with additional | 
|  | 64 bits (doubleword 1).  The other 32 regs overlap with the VMX | 
|  | registers.  */ | 
|  | typedef char gdb_vsxregset_t[PPC_LINUX_SIZEOF_VSXREGSET]; | 
|  |  | 
|  | /* On PPC processors that support the Signal Processing Extension | 
|  | (SPE) APU, the general-purpose registers are 64 bits long. | 
|  | However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER | 
|  | ptrace calls only access the lower half of each register, to allow | 
|  | them to behave the same way they do on non-SPE systems.  There's a | 
|  | separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that | 
|  | read and write the top halves of all the general-purpose registers | 
|  | at once, along with some SPE-specific registers. | 
|  |  | 
|  | GDB itself continues to claim the general-purpose registers are 32 | 
|  | bits long.  It has unnamed raw registers that hold the upper halves | 
|  | of the gprs, and the full 64-bit SIMD views of the registers, | 
|  | 'ev0' -- 'ev31', are pseudo-registers that splice the top and | 
|  | bottom halves together. | 
|  |  | 
|  | This is the structure filled in by PTRACE_GETEVRREGS and written to | 
|  | the inferior's registers by PTRACE_SETEVRREGS.  */ | 
|  | struct gdb_evrregset_t | 
|  | { | 
|  | unsigned long evr[32]; | 
|  | unsigned long long acc; | 
|  | unsigned long spefscr; | 
|  | }; | 
|  |  | 
|  | /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and | 
|  | PTRACE_SETVSXREGS requests, for reading and writing the VSX | 
|  | POWER7 registers 0 through 31.  Zero if we've tried one of them and | 
|  | gotten an error.  Note that VSX registers 32 through 63 overlap | 
|  | with VR registers 0 through 31.  */ | 
|  | int have_ptrace_getsetvsxregs = 1; | 
|  |  | 
|  | /* Non-zero if our kernel may support the PTRACE_GETVRREGS and | 
|  | PTRACE_SETVRREGS requests, for reading and writing the Altivec | 
|  | registers.  Zero if we've tried one of them and gotten an | 
|  | error.  */ | 
|  | int have_ptrace_getvrregs = 1; | 
|  |  | 
|  | /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and | 
|  | PTRACE_SETEVRREGS requests, for reading and writing the SPE | 
|  | registers.  Zero if we've tried one of them and gotten an | 
|  | error.  */ | 
|  | int have_ptrace_getsetevrregs = 1; | 
|  |  | 
|  | /* Non-zero if our kernel may support the PTRACE_GETREGS and | 
|  | PTRACE_SETREGS requests, for reading and writing the | 
|  | general-purpose registers.  Zero if we've tried one of | 
|  | them and gotten an error.  */ | 
|  | int have_ptrace_getsetregs = 1; | 
|  |  | 
|  | /* Non-zero if our kernel may support the PTRACE_GETFPREGS and | 
|  | PTRACE_SETFPREGS requests, for reading and writing the | 
|  | floating-pointers registers.  Zero if we've tried one of | 
|  | them and gotten an error.  */ | 
|  | int have_ptrace_getsetfpregs = 1; | 
|  |  | 
|  | /* Private arch info associated with each thread lwp_info object, used | 
|  | for debug register handling.  */ | 
|  |  | 
|  | struct arch_lwp_info | 
|  | { | 
|  | /* When true, indicates that the debug registers installed in the | 
|  | thread no longer correspond to the watchpoints and breakpoints | 
|  | requested by GDB.  */ | 
|  | bool debug_regs_stale; | 
|  |  | 
|  | /* We need a back-reference to the PTID of the thread so that we can | 
|  | cleanup the debug register state of the thread in | 
|  | low_delete_thread.  */ | 
|  | ptid_t lwp_ptid; | 
|  | }; | 
|  |  | 
|  | /* Class used to detect which set of ptrace requests that | 
|  | ppc_linux_nat_target will use to install and remove hardware | 
|  | breakpoints and watchpoints. | 
|  |  | 
|  | The interface is only detected once, testing the ptrace calls.  The | 
|  | result can indicate that no interface is available. | 
|  |  | 
|  | The Linux kernel provides two different sets of ptrace requests to | 
|  | handle hardware watchpoints and breakpoints for Power: | 
|  |  | 
|  | - PPC_PTRACE_GETHWDBGINFO, PPC_PTRACE_SETHWDEBUG, and | 
|  | PPC_PTRACE_DELHWDEBUG. | 
|  |  | 
|  | Or | 
|  |  | 
|  | - PTRACE_SET_DEBUGREG and PTRACE_GET_DEBUGREG | 
|  |  | 
|  | The first set is the more flexible one and allows setting watchpoints | 
|  | with a variable watched region length and, for BookE processors, | 
|  | multiple types of debug registers (e.g. hardware breakpoints and | 
|  | hardware-assisted conditions for watchpoints).  The second one only | 
|  | allows setting one debug register, a watchpoint, so we only use it if | 
|  | the first one is not available.  */ | 
|  |  | 
|  | class ppc_linux_dreg_interface | 
|  | { | 
|  | public: | 
|  |  | 
|  | ppc_linux_dreg_interface () | 
|  | : m_interface (), m_hwdebug_info () | 
|  | { | 
|  | }; | 
|  |  | 
|  | DISABLE_COPY_AND_ASSIGN (ppc_linux_dreg_interface); | 
|  |  | 
|  | /* One and only one of these three functions returns true, indicating | 
|  | whether the corresponding interface is the one we detected.  The | 
|  | interface must already have been detected as a precondition.  */ | 
|  |  | 
|  | bool hwdebug_p () | 
|  | { | 
|  | gdb_assert (detected_p ()); | 
|  | return *m_interface == HWDEBUG; | 
|  | } | 
|  |  | 
|  | bool debugreg_p () | 
|  | { | 
|  | gdb_assert (detected_p ()); | 
|  | return *m_interface == DEBUGREG; | 
|  | } | 
|  |  | 
|  | bool unavailable_p () | 
|  | { | 
|  | gdb_assert (detected_p ()); | 
|  | return *m_interface == UNAVAILABLE; | 
|  | } | 
|  |  | 
|  | /* Returns the debug register capabilities of the target.  Should only | 
|  | be called if the interface is HWDEBUG.  */ | 
|  | const struct ppc_debug_info &hwdebug_info () | 
|  | { | 
|  | gdb_assert (hwdebug_p ()); | 
|  |  | 
|  | return m_hwdebug_info; | 
|  | } | 
|  |  | 
|  | /* Returns true if the interface has already been detected.  This is | 
|  | useful for cases when we know there is no work to be done if the | 
|  | interface hasn't been detected yet.  */ | 
|  | bool detected_p () | 
|  | { | 
|  | return m_interface.has_value (); | 
|  | } | 
|  |  | 
|  | /* Detect the available interface, if any, if it hasn't been detected | 
|  | before, using PTID for the necessary ptrace calls.  */ | 
|  |  | 
|  | void detect (const ptid_t &ptid) | 
|  | { | 
|  | if (m_interface.has_value ()) | 
|  | return; | 
|  |  | 
|  | gdb_assert (ptid.lwp_p ()); | 
|  |  | 
|  | bool no_features = false; | 
|  |  | 
|  | if (ptrace (PPC_PTRACE_GETHWDBGINFO, ptid.lwp (), 0, &m_hwdebug_info) | 
|  | >= 0) | 
|  | { | 
|  | /* If there are no advertised features, we don't use the | 
|  | HWDEBUG interface and try the DEBUGREG interface instead. | 
|  | It shouldn't be necessary to do this, however, when the | 
|  | kernel is configured without CONFIG_HW_BREAKPOINTS (selected | 
|  | by CONFIG_PERF_EVENTS), there is a bug that causes | 
|  | watchpoints installed with the HWDEBUG interface not to | 
|  | trigger.  When this is the case, features will be zero, | 
|  | which we use as an indicator to fall back to the DEBUGREG | 
|  | interface.  */ | 
|  | if (m_hwdebug_info.features != 0) | 
|  | { | 
|  | m_interface.emplace (HWDEBUG); | 
|  | return; | 
|  | } | 
|  | else | 
|  | no_features = true; | 
|  | } | 
|  |  | 
|  | /* EIO indicates that the request is invalid, so we try DEBUGREG | 
|  | next.  Technically, it can also indicate other failures, but we | 
|  | can't differentiate those. | 
|  |  | 
|  | Other errors could happen for various reasons.  We could get an | 
|  | ESRCH if the traced thread was killed by a signal.  Trying to | 
|  | detect the interface with another thread in the future would be | 
|  | complicated, as callers would have to handle an "unknown | 
|  | interface" case.  It's also unclear if raising an exception | 
|  | here would be safe. | 
|  |  | 
|  | Other errors, such as ENODEV, could be more permanent and cause | 
|  | a failure for any thread. | 
|  |  | 
|  | For simplicity, with all errors other than EIO, we set the | 
|  | interface to UNAVAILABLE and don't try DEBUGREG.  If DEBUGREG | 
|  | fails too, we'll also set the interface to UNAVAILABLE.  It's | 
|  | unlikely that trying the DEBUGREG interface with this same thread | 
|  | would work, for errors other than EIO.  This means that these | 
|  | errors will cause hardware watchpoints and breakpoints to become | 
|  | unavailable throughout a GDB session.  */ | 
|  |  | 
|  | if (no_features || errno == EIO) | 
|  | { | 
|  | unsigned long wp; | 
|  |  | 
|  | if (ptrace (PTRACE_GET_DEBUGREG, ptid.lwp (), 0, &wp) >= 0) | 
|  | { | 
|  | m_interface.emplace (DEBUGREG); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (errno != EIO) | 
|  | warning (_("Error when detecting the debug register interface. " | 
|  | "Debug registers will be unavailable.")); | 
|  |  | 
|  | m_interface.emplace (UNAVAILABLE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | private: | 
|  |  | 
|  | /* HWDEBUG represents the set of calls PPC_PTRACE_GETHWDBGINFO, | 
|  | PPC_PTRACE_SETHWDEBUG and PPC_PTRACE_DELHWDEBUG. | 
|  |  | 
|  | DEBUGREG represents the set of calls PTRACE_SET_DEBUGREG and | 
|  | PTRACE_GET_DEBUGREG. | 
|  |  | 
|  | UNAVAILABLE can indicate that the kernel doesn't support any of the | 
|  | two sets of requests or that there was an error when we tried to | 
|  | detect which interface is available.  */ | 
|  |  | 
|  | enum debug_reg_interface | 
|  | { | 
|  | UNAVAILABLE, | 
|  | HWDEBUG, | 
|  | DEBUGREG | 
|  | }; | 
|  |  | 
|  | /* The interface option.  Initialized if has_value () returns true.  */ | 
|  | std::optional<enum debug_reg_interface> m_interface; | 
|  |  | 
|  | /* The info returned by the kernel with PPC_PTRACE_GETHWDBGINFO.  Only | 
|  | valid if we determined that the interface is HWDEBUG.  */ | 
|  | struct ppc_debug_info m_hwdebug_info; | 
|  | }; | 
|  |  | 
|  | /* Per-process information.  This includes the hardware watchpoints and | 
|  | breakpoints that GDB requested to this target.  */ | 
|  |  | 
|  | struct ppc_linux_process_info | 
|  | { | 
|  | /* The list of hardware watchpoints and breakpoints that GDB requested | 
|  | for this process. | 
|  |  | 
|  | Only used when the interface is HWDEBUG.  */ | 
|  | std::list<struct ppc_hw_breakpoint> requested_hw_bps; | 
|  |  | 
|  | /* The watchpoint value that GDB requested for this process. | 
|  |  | 
|  | Only used when the interface is DEBUGREG.  */ | 
|  | std::optional<long> requested_wp_val; | 
|  | }; | 
|  |  | 
|  | struct ppc_linux_nat_target final : public linux_nat_target | 
|  | { | 
|  | /* Add our register access methods.  */ | 
|  | void fetch_registers (struct regcache *, int) override; | 
|  | void store_registers (struct regcache *, int) override; | 
|  |  | 
|  | /* Add our breakpoint/watchpoint methods.  */ | 
|  | int can_use_hw_breakpoint (enum bptype, int, int) override; | 
|  |  | 
|  | int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) | 
|  | override; | 
|  |  | 
|  | int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) | 
|  | override; | 
|  |  | 
|  | int region_ok_for_hw_watchpoint (CORE_ADDR, int) override; | 
|  |  | 
|  | int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type, | 
|  | struct expression *) override; | 
|  |  | 
|  | int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type, | 
|  | struct expression *) override; | 
|  |  | 
|  | int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type) | 
|  | override; | 
|  |  | 
|  | int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type) | 
|  | override; | 
|  |  | 
|  | bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override; | 
|  |  | 
|  | bool can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *) | 
|  | override; | 
|  |  | 
|  | int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override; | 
|  |  | 
|  | int ranged_break_num_registers () override; | 
|  |  | 
|  | const struct target_desc *read_description ()  override; | 
|  |  | 
|  | int auxv_parse (const gdb_byte **readptr, | 
|  | const gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp) | 
|  | override; | 
|  |  | 
|  | /* Override linux_nat_target low methods.  */ | 
|  | bool low_stopped_by_watchpoint () override; | 
|  |  | 
|  | bool low_stopped_data_address (CORE_ADDR *) override; | 
|  |  | 
|  | void low_new_thread (struct lwp_info *lp) override; | 
|  |  | 
|  | void low_delete_thread (arch_lwp_info *) override; | 
|  |  | 
|  | void low_new_fork (struct lwp_info *, pid_t) override; | 
|  |  | 
|  | void low_new_clone (struct lwp_info *, pid_t) override; | 
|  |  | 
|  | void low_init_process (pid_t pid) override; | 
|  |  | 
|  | void low_forget_process (pid_t pid) override; | 
|  |  | 
|  | void low_prepare_to_resume (struct lwp_info *) override; | 
|  |  | 
|  | private: | 
|  |  | 
|  | void copy_thread_dreg_state (const ptid_t &parent_ptid, | 
|  | const ptid_t &child_ptid); | 
|  |  | 
|  | void mark_thread_stale (struct lwp_info *lp); | 
|  |  | 
|  | void mark_debug_registers_changed (pid_t pid); | 
|  |  | 
|  | void register_hw_breakpoint (pid_t pid, | 
|  | const struct ppc_hw_breakpoint &bp); | 
|  |  | 
|  | void clear_hw_breakpoint (pid_t pid, | 
|  | const struct ppc_hw_breakpoint &a); | 
|  |  | 
|  | void register_wp (pid_t pid, long wp_value); | 
|  |  | 
|  | void clear_wp (pid_t pid); | 
|  |  | 
|  | bool can_use_watchpoint_cond_accel (void); | 
|  |  | 
|  | void calculate_dvc (CORE_ADDR addr, int len, | 
|  | CORE_ADDR data_value, | 
|  | uint32_t *condition_mode, | 
|  | uint64_t *condition_value); | 
|  |  | 
|  | int check_condition (CORE_ADDR watch_addr, | 
|  | struct expression *cond, | 
|  | CORE_ADDR *data_value, int *len); | 
|  |  | 
|  | int num_memory_accesses (const std::vector<value_ref_ptr> &chain); | 
|  |  | 
|  | int get_trigger_type (enum target_hw_bp_type type); | 
|  |  | 
|  | void create_watchpoint_request (struct ppc_hw_breakpoint *p, | 
|  | CORE_ADDR addr, | 
|  | int len, | 
|  | enum target_hw_bp_type type, | 
|  | struct expression *cond, | 
|  | int insert); | 
|  |  | 
|  | bool hwdebug_point_cmp (const struct ppc_hw_breakpoint &a, | 
|  | const struct ppc_hw_breakpoint &b); | 
|  |  | 
|  | void init_arch_lwp_info (struct lwp_info *lp); | 
|  |  | 
|  | arch_lwp_info *get_arch_lwp_info (struct lwp_info *lp); | 
|  |  | 
|  | /* The ptrace interface we'll use to install hardware watchpoints and | 
|  | breakpoints (debug registers).  */ | 
|  | ppc_linux_dreg_interface m_dreg_interface; | 
|  |  | 
|  | /* A map from pids to structs containing info specific to each | 
|  | process.  */ | 
|  | std::unordered_map<pid_t, ppc_linux_process_info> m_process_info; | 
|  |  | 
|  | /* Callable object to hash ptids by their lwp number.  */ | 
|  | struct ptid_hash | 
|  | { | 
|  | std::size_t operator() (const ptid_t &ptid) const | 
|  | { | 
|  | return std::hash<long>{} (ptid.lwp ()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /* A map from ptid_t objects to a list of pairs of slots and hardware | 
|  | breakpoint objects.  This keeps track of which hardware breakpoints | 
|  | and watchpoints were last installed in each slot of each thread. | 
|  |  | 
|  | Only used when the interface is HWDEBUG.  */ | 
|  | std::unordered_map <ptid_t, | 
|  | std::list<std::pair<long, ppc_hw_breakpoint>>, | 
|  | ptid_hash> m_installed_hw_bps; | 
|  | }; | 
|  |  | 
|  | static ppc_linux_nat_target the_ppc_linux_nat_target; | 
|  |  | 
|  | /* registers layout, as presented by the ptrace interface: | 
|  | PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7, | 
|  | PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15, | 
|  | PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23, | 
|  | PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31, | 
|  | PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, | 
|  | PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14, | 
|  | PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, | 
|  | PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30, | 
|  | PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, | 
|  | PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46, | 
|  | PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, | 
|  | PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62, | 
|  | PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */ | 
|  |  | 
|  | static int | 
|  | ppc_register_u_addr (struct gdbarch *gdbarch, int regno) | 
|  | { | 
|  | int u_addr = -1; | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  | /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace | 
|  | interface, and not the wordsize of the program's ABI.  */ | 
|  | int wordsize = sizeof (long); | 
|  |  | 
|  | /* General purpose registers occupy 1 slot each in the buffer.  */ | 
|  | if (regno >= tdep->ppc_gp0_regnum | 
|  | && regno < tdep->ppc_gp0_regnum + ppc_num_gprs) | 
|  | u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize); | 
|  |  | 
|  | /* Floating point regs: eight bytes each in both 32- and 64-bit | 
|  | ptrace interfaces.  Thus, two slots each in 32-bit interface, one | 
|  | slot each in 64-bit interface.  */ | 
|  | if (tdep->ppc_fp0_regnum >= 0 | 
|  | && regno >= tdep->ppc_fp0_regnum | 
|  | && regno < tdep->ppc_fp0_regnum + ppc_num_fprs) | 
|  | u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8); | 
|  |  | 
|  | /* UISA special purpose registers: 1 slot each.  */ | 
|  | if (regno == gdbarch_pc_regnum (gdbarch)) | 
|  | u_addr = PT_NIP * wordsize; | 
|  | if (regno == tdep->ppc_lr_regnum) | 
|  | u_addr = PT_LNK * wordsize; | 
|  | if (regno == tdep->ppc_cr_regnum) | 
|  | u_addr = PT_CCR * wordsize; | 
|  | if (regno == tdep->ppc_xer_regnum) | 
|  | u_addr = PT_XER * wordsize; | 
|  | if (regno == tdep->ppc_ctr_regnum) | 
|  | u_addr = PT_CTR * wordsize; | 
|  | #ifdef PT_MQ | 
|  | if (regno == tdep->ppc_mq_regnum) | 
|  | u_addr = PT_MQ * wordsize; | 
|  | #endif | 
|  | if (regno == tdep->ppc_ps_regnum) | 
|  | u_addr = PT_MSR * wordsize; | 
|  | if (regno == PPC_ORIG_R3_REGNUM) | 
|  | u_addr = PT_ORIG_R3 * wordsize; | 
|  | if (regno == PPC_TRAP_REGNUM) | 
|  | u_addr = PT_TRAP * wordsize; | 
|  | if (tdep->ppc_fpscr_regnum >= 0 | 
|  | && regno == tdep->ppc_fpscr_regnum) | 
|  | { | 
|  | /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the | 
|  | kernel headers incorrectly contained the 32-bit definition of | 
|  | PT_FPSCR.  For the 32-bit definition, floating-point | 
|  | registers occupy two 32-bit "slots", and the FPSCR lives in | 
|  | the second half of such a slot-pair (hence +1).  For 64-bit, | 
|  | the FPSCR instead occupies the full 64-bit 2-word-slot and | 
|  | hence no adjustment is necessary.  Hack around this.  */ | 
|  | if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1)) | 
|  | u_addr = (48 + 32) * wordsize; | 
|  | /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit | 
|  | slot and not just its second word.  The PT_FPSCR supplied when | 
|  | GDB is compiled as a 32-bit app doesn't reflect this.  */ | 
|  | else if (wordsize == 4 && register_size (gdbarch, regno) == 8 | 
|  | && PT_FPSCR == (48 + 2*32 + 1)) | 
|  | u_addr = (48 + 2*32) * wordsize; | 
|  | else | 
|  | u_addr = PT_FPSCR * wordsize; | 
|  | } | 
|  | return u_addr; | 
|  | } | 
|  |  | 
|  | /* The Linux kernel ptrace interface for POWER7 VSX registers uses the | 
|  | registers set mechanism, as opposed to the interface for all the | 
|  | other registers, that stores/fetches each register individually.  */ | 
|  | static void | 
|  | fetch_vsx_registers (struct regcache *regcache, int tid, int regno) | 
|  | { | 
|  | int ret; | 
|  | gdb_vsxregset_t regs; | 
|  | const struct regset *vsxregset = ppc_linux_vsxregset (); | 
|  |  | 
|  | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); | 
|  | if (ret < 0) | 
|  | { | 
|  | if (errno == EIO) | 
|  | { | 
|  | have_ptrace_getsetvsxregs = 0; | 
|  | return; | 
|  | } | 
|  | perror_with_name (_("Unable to fetch VSX registers")); | 
|  | } | 
|  |  | 
|  | vsxregset->supply_regset (vsxregset, regcache, regno, ®s, | 
|  | PPC_LINUX_SIZEOF_VSXREGSET); | 
|  | } | 
|  |  | 
|  | /* The Linux kernel ptrace interface for AltiVec registers uses the | 
|  | registers set mechanism, as opposed to the interface for all the | 
|  | other registers, that stores/fetches each register individually.  */ | 
|  | static void | 
|  | fetch_altivec_registers (struct regcache *regcache, int tid, | 
|  | int regno) | 
|  | { | 
|  | int ret; | 
|  | gdb_vrregset_t regs; | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | const struct regset *vrregset = ppc_linux_vrregset (gdbarch); | 
|  |  | 
|  | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); | 
|  | if (ret < 0) | 
|  | { | 
|  | if (errno == EIO) | 
|  | { | 
|  | have_ptrace_getvrregs = 0; | 
|  | return; | 
|  | } | 
|  | perror_with_name (_("Unable to fetch AltiVec registers")); | 
|  | } | 
|  |  | 
|  | vrregset->supply_regset (vrregset, regcache, regno, ®s, | 
|  | PPC_LINUX_SIZEOF_VRREGSET); | 
|  | } | 
|  |  | 
|  | /* Fetch the top 32 bits of TID's general-purpose registers and the | 
|  | SPE-specific registers, and place the results in EVRREGSET.  If we | 
|  | don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with | 
|  | zeros. | 
|  |  | 
|  | All the logic to deal with whether or not the PTRACE_GETEVRREGS and | 
|  | PTRACE_SETEVRREGS requests are supported is isolated here, and in | 
|  | set_spe_registers.  */ | 
|  | static void | 
|  | get_spe_registers (int tid, struct gdb_evrregset_t *evrregset) | 
|  | { | 
|  | if (have_ptrace_getsetevrregs) | 
|  | { | 
|  | if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0) | 
|  | return; | 
|  | else | 
|  | { | 
|  | /* EIO means that the PTRACE_GETEVRREGS request isn't supported; | 
|  | we just return zeros.  */ | 
|  | if (errno == EIO) | 
|  | have_ptrace_getsetevrregs = 0; | 
|  | else | 
|  | /* Anything else needs to be reported.  */ | 
|  | perror_with_name (_("Unable to fetch SPE registers")); | 
|  | } | 
|  | } | 
|  |  | 
|  | memset (evrregset, 0, sizeof (*evrregset)); | 
|  | } | 
|  |  | 
|  | /* Supply values from TID for SPE-specific raw registers: the upper | 
|  | halves of the GPRs, the accumulator, and the spefscr.  REGNO must | 
|  | be the number of an upper half register, acc, spefscr, or -1 to | 
|  | supply the values of all registers.  */ | 
|  | static void | 
|  | fetch_spe_register (struct regcache *regcache, int tid, int regno) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  | struct gdb_evrregset_t evrregs; | 
|  |  | 
|  | gdb_assert (sizeof (evrregs.evr[0]) | 
|  | == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); | 
|  | gdb_assert (sizeof (evrregs.acc) | 
|  | == register_size (gdbarch, tdep->ppc_acc_regnum)); | 
|  | gdb_assert (sizeof (evrregs.spefscr) | 
|  | == register_size (gdbarch, tdep->ppc_spefscr_regnum)); | 
|  |  | 
|  | get_spe_registers (tid, &evrregs); | 
|  |  | 
|  | if (regno == -1) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ppc_num_gprs; i++) | 
|  | regcache->raw_supply (tdep->ppc_ev0_upper_regnum + i, &evrregs.evr[i]); | 
|  | } | 
|  | else if (tdep->ppc_ev0_upper_regnum <= regno | 
|  | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | 
|  | regcache->raw_supply (regno, | 
|  | &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); | 
|  |  | 
|  | if (regno == -1 | 
|  | || regno == tdep->ppc_acc_regnum) | 
|  | regcache->raw_supply (tdep->ppc_acc_regnum, &evrregs.acc); | 
|  |  | 
|  | if (regno == -1 | 
|  | || regno == tdep->ppc_spefscr_regnum) | 
|  | regcache->raw_supply (tdep->ppc_spefscr_regnum, &evrregs.spefscr); | 
|  | } | 
|  |  | 
|  | /* Use ptrace to fetch all registers from the register set with note | 
|  | type REGSET_ID, size REGSIZE, and layout described by REGSET, from | 
|  | process/thread TID and supply their values to REGCACHE.  If ptrace | 
|  | returns ENODATA to indicate the regset is unavailable, mark the | 
|  | registers as unavailable in REGCACHE.  */ | 
|  |  | 
|  | static void | 
|  | fetch_regset (struct regcache *regcache, int tid, | 
|  | int regset_id, int regsetsize, const struct regset *regset) | 
|  | { | 
|  | void *buf = alloca (regsetsize); | 
|  | struct iovec iov; | 
|  |  | 
|  | iov.iov_base = buf; | 
|  | iov.iov_len = regsetsize; | 
|  |  | 
|  | if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0) | 
|  | { | 
|  | if (errno == ENODATA) | 
|  | regset->supply_regset (regset, regcache, -1, NULL, regsetsize); | 
|  | else | 
|  | perror_with_name (_("Couldn't get register set")); | 
|  | } | 
|  | else | 
|  | regset->supply_regset (regset, regcache, -1, buf, regsetsize); | 
|  | } | 
|  |  | 
|  | /* Use ptrace to store register REGNUM of the regset with note type | 
|  | REGSET_ID, size REGSETSIZE, and layout described by REGSET, from | 
|  | REGCACHE back to process/thread TID.  If REGNUM is -1 all registers | 
|  | in the set are collected and stored.  */ | 
|  |  | 
|  | static void | 
|  | store_regset (const struct regcache *regcache, int tid, int regnum, | 
|  | int regset_id, int regsetsize, const struct regset *regset) | 
|  | { | 
|  | void *buf = alloca (regsetsize); | 
|  | struct iovec iov; | 
|  |  | 
|  | iov.iov_base = buf; | 
|  | iov.iov_len = regsetsize; | 
|  |  | 
|  | /* Make sure that the buffer that will be stored has up to date values | 
|  | for the registers that won't be collected.  */ | 
|  | if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0) | 
|  | perror_with_name (_("Couldn't get register set")); | 
|  |  | 
|  | regset->collect_regset (regset, regcache, regnum, buf, regsetsize); | 
|  |  | 
|  | if (ptrace (PTRACE_SETREGSET, tid, regset_id, &iov) < 0) | 
|  | perror_with_name (_("Couldn't set register set")); | 
|  | } | 
|  |  | 
|  | /* Check whether the kernel provides a register set with number | 
|  | REGSET_ID of size REGSETSIZE for process/thread TID.  */ | 
|  |  | 
|  | static bool | 
|  | check_regset (int tid, int regset_id, int regsetsize) | 
|  | { | 
|  | void *buf = alloca (regsetsize); | 
|  | struct iovec iov; | 
|  |  | 
|  | iov.iov_base = buf; | 
|  | iov.iov_len = regsetsize; | 
|  |  | 
|  | if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) >= 0 | 
|  | || errno == ENODATA) | 
|  | return true; | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void | 
|  | fetch_register (struct regcache *regcache, int tid, int regno) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  | /* This isn't really an address.  But ptrace thinks of it as one.  */ | 
|  | CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); | 
|  | int bytes_transferred; | 
|  | gdb_byte buf[PPC_MAX_REGISTER_SIZE]; | 
|  |  | 
|  | if (altivec_register_p (gdbarch, regno)) | 
|  | { | 
|  | /* If this is the first time through, or if it is not the first | 
|  | time through, and we have confirmed that there is kernel | 
|  | support for such a ptrace request, then go and fetch the | 
|  | register.  */ | 
|  | if (have_ptrace_getvrregs) | 
|  | { | 
|  | fetch_altivec_registers (regcache, tid, regno); | 
|  | return; | 
|  | } | 
|  | /* If we have discovered that there is no ptrace support for | 
|  | AltiVec registers, fall through and return zeroes, because | 
|  | regaddr will be -1 in this case.  */ | 
|  | } | 
|  | else if (vsx_register_p (gdbarch, regno)) | 
|  | { | 
|  | if (have_ptrace_getsetvsxregs) | 
|  | { | 
|  | fetch_vsx_registers (regcache, tid, regno); | 
|  | return; | 
|  | } | 
|  | } | 
|  | else if (spe_register_p (gdbarch, regno)) | 
|  | { | 
|  | fetch_spe_register (regcache, tid, regno); | 
|  | return; | 
|  | } | 
|  | else if (regno == PPC_DSCR_REGNUM) | 
|  | { | 
|  | gdb_assert (tdep->ppc_dscr_regnum != -1); | 
|  |  | 
|  | fetch_regset (regcache, tid, NT_PPC_DSCR, | 
|  | PPC_LINUX_SIZEOF_DSCRREGSET, | 
|  | &ppc32_linux_dscrregset); | 
|  | return; | 
|  | } | 
|  | else if (regno == PPC_PPR_REGNUM) | 
|  | { | 
|  | gdb_assert (tdep->ppc_ppr_regnum != -1); | 
|  |  | 
|  | fetch_regset (regcache, tid, NT_PPC_PPR, | 
|  | PPC_LINUX_SIZEOF_PPRREGSET, | 
|  | &ppc32_linux_pprregset); | 
|  | return; | 
|  | } | 
|  | else if (regno == PPC_TAR_REGNUM) | 
|  | { | 
|  | gdb_assert (tdep->ppc_tar_regnum != -1); | 
|  |  | 
|  | fetch_regset (regcache, tid, NT_PPC_TAR, | 
|  | PPC_LINUX_SIZEOF_TARREGSET, | 
|  | &ppc32_linux_tarregset); | 
|  | return; | 
|  | } | 
|  | else if (PPC_IS_EBB_REGNUM (regno)) | 
|  | { | 
|  | gdb_assert (tdep->have_ebb); | 
|  |  | 
|  | fetch_regset (regcache, tid, NT_PPC_EBB, | 
|  | PPC_LINUX_SIZEOF_EBBREGSET, | 
|  | &ppc32_linux_ebbregset); | 
|  | return; | 
|  | } | 
|  | else if (PPC_IS_PMU_REGNUM (regno)) | 
|  | { | 
|  | gdb_assert (tdep->ppc_mmcr0_regnum != -1); | 
|  |  | 
|  | fetch_regset (regcache, tid, NT_PPC_PMU, | 
|  | PPC_LINUX_SIZEOF_PMUREGSET, | 
|  | &ppc32_linux_pmuregset); | 
|  | return; | 
|  | } | 
|  | else if (PPC_IS_TMSPR_REGNUM (regno)) | 
|  | { | 
|  | gdb_assert (tdep->have_htm_spr); | 
|  |  | 
|  | fetch_regset (regcache, tid, NT_PPC_TM_SPR, | 
|  | PPC_LINUX_SIZEOF_TM_SPRREGSET, | 
|  | &ppc32_linux_tm_sprregset); | 
|  | return; | 
|  | } | 
|  | else if (PPC_IS_CKPTGP_REGNUM (regno)) | 
|  | { | 
|  | gdb_assert (tdep->have_htm_core); | 
|  |  | 
|  | const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch); | 
|  | fetch_regset (regcache, tid, NT_PPC_TM_CGPR, | 
|  | (tdep->wordsize == 4? | 
|  | PPC32_LINUX_SIZEOF_CGPRREGSET | 
|  | : PPC64_LINUX_SIZEOF_CGPRREGSET), | 
|  | cgprregset); | 
|  | return; | 
|  | } | 
|  | else if (PPC_IS_CKPTFP_REGNUM (regno)) | 
|  | { | 
|  | gdb_assert (tdep->have_htm_fpu); | 
|  |  | 
|  | fetch_regset (regcache, tid, NT_PPC_TM_CFPR, | 
|  | PPC_LINUX_SIZEOF_CFPRREGSET, | 
|  | &ppc32_linux_cfprregset); | 
|  | return; | 
|  | } | 
|  | else if (PPC_IS_CKPTVMX_REGNUM (regno)) | 
|  | { | 
|  | gdb_assert (tdep->have_htm_altivec); | 
|  |  | 
|  | const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch); | 
|  | fetch_regset (regcache, tid, NT_PPC_TM_CVMX, | 
|  | PPC_LINUX_SIZEOF_CVMXREGSET, | 
|  | cvmxregset); | 
|  | return; | 
|  | } | 
|  | else if (PPC_IS_CKPTVSX_REGNUM (regno)) | 
|  | { | 
|  | gdb_assert (tdep->have_htm_vsx); | 
|  |  | 
|  | fetch_regset (regcache, tid, NT_PPC_TM_CVSX, | 
|  | PPC_LINUX_SIZEOF_CVSXREGSET, | 
|  | &ppc32_linux_cvsxregset); | 
|  | return; | 
|  | } | 
|  | else if (regno == PPC_CPPR_REGNUM) | 
|  | { | 
|  | gdb_assert (tdep->ppc_cppr_regnum != -1); | 
|  |  | 
|  | fetch_regset (regcache, tid, NT_PPC_TM_CPPR, | 
|  | PPC_LINUX_SIZEOF_CPPRREGSET, | 
|  | &ppc32_linux_cpprregset); | 
|  | return; | 
|  | } | 
|  | else if (regno == PPC_CDSCR_REGNUM) | 
|  | { | 
|  | gdb_assert (tdep->ppc_cdscr_regnum != -1); | 
|  |  | 
|  | fetch_regset (regcache, tid, NT_PPC_TM_CDSCR, | 
|  | PPC_LINUX_SIZEOF_CDSCRREGSET, | 
|  | &ppc32_linux_cdscrregset); | 
|  | return; | 
|  | } | 
|  | else if (regno == PPC_CTAR_REGNUM) | 
|  | { | 
|  | gdb_assert (tdep->ppc_ctar_regnum != -1); | 
|  |  | 
|  | fetch_regset (regcache, tid, NT_PPC_TM_CTAR, | 
|  | PPC_LINUX_SIZEOF_CTARREGSET, | 
|  | &ppc32_linux_ctarregset); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (regaddr == -1) | 
|  | { | 
|  | memset (buf, '\0', register_size (gdbarch, regno));   /* Supply zeroes */ | 
|  | regcache->raw_supply (regno, buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Read the raw register using sizeof(long) sized chunks.  On a | 
|  | 32-bit platform, 64-bit floating-point registers will require two | 
|  | transfers.  */ | 
|  | for (bytes_transferred = 0; | 
|  | bytes_transferred < register_size (gdbarch, regno); | 
|  | bytes_transferred += sizeof (long)) | 
|  | { | 
|  | long l; | 
|  |  | 
|  | errno = 0; | 
|  | l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0); | 
|  | regaddr += sizeof (long); | 
|  | if (errno != 0) | 
|  | { | 
|  | char message[128]; | 
|  | xsnprintf (message, sizeof (message), "reading register %s (#%d)", | 
|  | gdbarch_register_name (gdbarch, regno), regno); | 
|  | perror_with_name (message); | 
|  | } | 
|  | memcpy (&buf[bytes_transferred], &l, sizeof (l)); | 
|  | } | 
|  |  | 
|  | /* Now supply the register.  Keep in mind that the regcache's idea | 
|  | of the register's size may not be a multiple of sizeof | 
|  | (long).  */ | 
|  | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) | 
|  | { | 
|  | /* Little-endian values are always found at the left end of the | 
|  | bytes transferred.  */ | 
|  | regcache->raw_supply (regno, buf); | 
|  | } | 
|  | else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | 
|  | { | 
|  | /* Big-endian values are found at the right end of the bytes | 
|  | transferred.  */ | 
|  | size_t padding = (bytes_transferred - register_size (gdbarch, regno)); | 
|  | regcache->raw_supply (regno, buf + padding); | 
|  | } | 
|  | else | 
|  | internal_error (_("fetch_register: unexpected byte order: %d"), | 
|  | gdbarch_byte_order (gdbarch)); | 
|  | } | 
|  |  | 
|  | /* This function actually issues the request to ptrace, telling | 
|  | it to get all general-purpose registers and put them into the | 
|  | specified regset. | 
|  |  | 
|  | If the ptrace request does not exist, this function returns 0 | 
|  | and properly sets the have_ptrace_* flag.  If the request fails, | 
|  | this function calls perror_with_name.  Otherwise, if the request | 
|  | succeeds, then the regcache gets filled and 1 is returned.  */ | 
|  | static int | 
|  | fetch_all_gp_regs (struct regcache *regcache, int tid) | 
|  | { | 
|  | gdb_gregset_t gregset; | 
|  |  | 
|  | if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) | 
|  | { | 
|  | if (errno == EIO) | 
|  | { | 
|  | have_ptrace_getsetregs = 0; | 
|  | return 0; | 
|  | } | 
|  | perror_with_name (_("Couldn't get general-purpose registers")); | 
|  | } | 
|  |  | 
|  | supply_gregset (regcache, (const gdb_gregset_t *) &gregset); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* This is a wrapper for the fetch_all_gp_regs function.  It is | 
|  | responsible for verifying if this target has the ptrace request | 
|  | that can be used to fetch all general-purpose registers at one | 
|  | shot.  If it doesn't, then we should fetch them using the | 
|  | old-fashioned way, which is to iterate over the registers and | 
|  | request them one by one.  */ | 
|  | static void | 
|  | fetch_gp_regs (struct regcache *regcache, int tid) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  | int i; | 
|  |  | 
|  | if (have_ptrace_getsetregs) | 
|  | if (fetch_all_gp_regs (regcache, tid)) | 
|  | return; | 
|  |  | 
|  | /* If we've hit this point, it doesn't really matter which | 
|  | architecture we are using.  We just need to read the | 
|  | registers in the "old-fashioned way".  */ | 
|  | for (i = 0; i < ppc_num_gprs; i++) | 
|  | fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i); | 
|  | } | 
|  |  | 
|  | /* This function actually issues the request to ptrace, telling | 
|  | it to get all floating-point registers and put them into the | 
|  | specified regset. | 
|  |  | 
|  | If the ptrace request does not exist, this function returns 0 | 
|  | and properly sets the have_ptrace_* flag.  If the request fails, | 
|  | this function calls perror_with_name.  Otherwise, if the request | 
|  | succeeds, then the regcache gets filled and 1 is returned.  */ | 
|  | static int | 
|  | fetch_all_fp_regs (struct regcache *regcache, int tid) | 
|  | { | 
|  | gdb_fpregset_t fpregs; | 
|  |  | 
|  | if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) | 
|  | { | 
|  | if (errno == EIO) | 
|  | { | 
|  | have_ptrace_getsetfpregs = 0; | 
|  | return 0; | 
|  | } | 
|  | perror_with_name (_("Couldn't get floating-point registers")); | 
|  | } | 
|  |  | 
|  | supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* This is a wrapper for the fetch_all_fp_regs function.  It is | 
|  | responsible for verifying if this target has the ptrace request | 
|  | that can be used to fetch all floating-point registers at one | 
|  | shot.  If it doesn't, then we should fetch them using the | 
|  | old-fashioned way, which is to iterate over the registers and | 
|  | request them one by one.  */ | 
|  | static void | 
|  | fetch_fp_regs (struct regcache *regcache, int tid) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  | int i; | 
|  |  | 
|  | if (have_ptrace_getsetfpregs) | 
|  | if (fetch_all_fp_regs (regcache, tid)) | 
|  | return; | 
|  |  | 
|  | /* If we've hit this point, it doesn't really matter which | 
|  | architecture we are using.  We just need to read the | 
|  | registers in the "old-fashioned way".  */ | 
|  | for (i = 0; i < ppc_num_fprs; i++) | 
|  | fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i); | 
|  | } | 
|  |  | 
|  | static void | 
|  | fetch_ppc_registers (struct regcache *regcache, int tid) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | fetch_gp_regs (regcache, tid); | 
|  | if (tdep->ppc_fp0_regnum >= 0) | 
|  | fetch_fp_regs (regcache, tid); | 
|  | fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); | 
|  | if (tdep->ppc_ps_regnum != -1) | 
|  | fetch_register (regcache, tid, tdep->ppc_ps_regnum); | 
|  | if (tdep->ppc_cr_regnum != -1) | 
|  | fetch_register (regcache, tid, tdep->ppc_cr_regnum); | 
|  | if (tdep->ppc_lr_regnum != -1) | 
|  | fetch_register (regcache, tid, tdep->ppc_lr_regnum); | 
|  | if (tdep->ppc_ctr_regnum != -1) | 
|  | fetch_register (regcache, tid, tdep->ppc_ctr_regnum); | 
|  | if (tdep->ppc_xer_regnum != -1) | 
|  | fetch_register (regcache, tid, tdep->ppc_xer_regnum); | 
|  | if (tdep->ppc_mq_regnum != -1) | 
|  | fetch_register (regcache, tid, tdep->ppc_mq_regnum); | 
|  | if (ppc_linux_trap_reg_p (gdbarch)) | 
|  | { | 
|  | fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM); | 
|  | fetch_register (regcache, tid, PPC_TRAP_REGNUM); | 
|  | } | 
|  | if (tdep->ppc_fpscr_regnum != -1) | 
|  | fetch_register (regcache, tid, tdep->ppc_fpscr_regnum); | 
|  | if (have_ptrace_getvrregs) | 
|  | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | 
|  | fetch_altivec_registers (regcache, tid, -1); | 
|  | if (have_ptrace_getsetvsxregs) | 
|  | if (tdep->ppc_vsr0_upper_regnum != -1) | 
|  | fetch_vsx_registers (regcache, tid, -1); | 
|  | if (tdep->ppc_ev0_upper_regnum >= 0) | 
|  | fetch_spe_register (regcache, tid, -1); | 
|  | if (tdep->ppc_ppr_regnum != -1) | 
|  | fetch_regset (regcache, tid, NT_PPC_PPR, | 
|  | PPC_LINUX_SIZEOF_PPRREGSET, | 
|  | &ppc32_linux_pprregset); | 
|  | if (tdep->ppc_dscr_regnum != -1) | 
|  | fetch_regset (regcache, tid, NT_PPC_DSCR, | 
|  | PPC_LINUX_SIZEOF_DSCRREGSET, | 
|  | &ppc32_linux_dscrregset); | 
|  | if (tdep->ppc_tar_regnum != -1) | 
|  | fetch_regset (regcache, tid, NT_PPC_TAR, | 
|  | PPC_LINUX_SIZEOF_TARREGSET, | 
|  | &ppc32_linux_tarregset); | 
|  | if (tdep->have_ebb) | 
|  | fetch_regset (regcache, tid, NT_PPC_EBB, | 
|  | PPC_LINUX_SIZEOF_EBBREGSET, | 
|  | &ppc32_linux_ebbregset); | 
|  | if (tdep->ppc_mmcr0_regnum != -1) | 
|  | fetch_regset (regcache, tid, NT_PPC_PMU, | 
|  | PPC_LINUX_SIZEOF_PMUREGSET, | 
|  | &ppc32_linux_pmuregset); | 
|  | if (tdep->have_htm_spr) | 
|  | fetch_regset (regcache, tid, NT_PPC_TM_SPR, | 
|  | PPC_LINUX_SIZEOF_TM_SPRREGSET, | 
|  | &ppc32_linux_tm_sprregset); | 
|  | if (tdep->have_htm_core) | 
|  | { | 
|  | const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch); | 
|  | fetch_regset (regcache, tid, NT_PPC_TM_CGPR, | 
|  | (tdep->wordsize == 4? | 
|  | PPC32_LINUX_SIZEOF_CGPRREGSET | 
|  | : PPC64_LINUX_SIZEOF_CGPRREGSET), | 
|  | cgprregset); | 
|  | } | 
|  | if (tdep->have_htm_fpu) | 
|  | fetch_regset (regcache, tid, NT_PPC_TM_CFPR, | 
|  | PPC_LINUX_SIZEOF_CFPRREGSET, | 
|  | &ppc32_linux_cfprregset); | 
|  | if (tdep->have_htm_altivec) | 
|  | { | 
|  | const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch); | 
|  | fetch_regset (regcache, tid, NT_PPC_TM_CVMX, | 
|  | PPC_LINUX_SIZEOF_CVMXREGSET, | 
|  | cvmxregset); | 
|  | } | 
|  | if (tdep->have_htm_vsx) | 
|  | fetch_regset (regcache, tid, NT_PPC_TM_CVSX, | 
|  | PPC_LINUX_SIZEOF_CVSXREGSET, | 
|  | &ppc32_linux_cvsxregset); | 
|  | if (tdep->ppc_cppr_regnum != -1) | 
|  | fetch_regset (regcache, tid, NT_PPC_TM_CPPR, | 
|  | PPC_LINUX_SIZEOF_CPPRREGSET, | 
|  | &ppc32_linux_cpprregset); | 
|  | if (tdep->ppc_cdscr_regnum != -1) | 
|  | fetch_regset (regcache, tid, NT_PPC_TM_CDSCR, | 
|  | PPC_LINUX_SIZEOF_CDSCRREGSET, | 
|  | &ppc32_linux_cdscrregset); | 
|  | if (tdep->ppc_ctar_regnum != -1) | 
|  | fetch_regset (regcache, tid, NT_PPC_TM_CTAR, | 
|  | PPC_LINUX_SIZEOF_CTARREGSET, | 
|  | &ppc32_linux_ctarregset); | 
|  | } | 
|  |  | 
|  | /* Fetch registers from the child process.  Fetch all registers if | 
|  | regno == -1, otherwise fetch all general registers or all floating | 
|  | point registers depending upon the value of regno.  */ | 
|  | void | 
|  | ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno) | 
|  | { | 
|  | pid_t tid = get_ptrace_pid (regcache->ptid ()); | 
|  |  | 
|  | if (regno == -1) | 
|  | fetch_ppc_registers (regcache, tid); | 
|  | else | 
|  | fetch_register (regcache, tid, regno); | 
|  | } | 
|  |  | 
|  | static void | 
|  | store_vsx_registers (const struct regcache *regcache, int tid, int regno) | 
|  | { | 
|  | int ret; | 
|  | gdb_vsxregset_t regs; | 
|  | const struct regset *vsxregset = ppc_linux_vsxregset (); | 
|  |  | 
|  | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); | 
|  | if (ret < 0) | 
|  | { | 
|  | if (errno == EIO) | 
|  | { | 
|  | have_ptrace_getsetvsxregs = 0; | 
|  | return; | 
|  | } | 
|  | perror_with_name (_("Unable to fetch VSX registers")); | 
|  | } | 
|  |  | 
|  | vsxregset->collect_regset (vsxregset, regcache, regno, ®s, | 
|  | PPC_LINUX_SIZEOF_VSXREGSET); | 
|  |  | 
|  | ret = ptrace (PTRACE_SETVSXREGS, tid, 0, ®s); | 
|  | if (ret < 0) | 
|  | perror_with_name (_("Unable to store VSX registers")); | 
|  | } | 
|  |  | 
|  | static void | 
|  | store_altivec_registers (const struct regcache *regcache, int tid, | 
|  | int regno) | 
|  | { | 
|  | int ret; | 
|  | gdb_vrregset_t regs; | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | const struct regset *vrregset = ppc_linux_vrregset (gdbarch); | 
|  |  | 
|  | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); | 
|  | if (ret < 0) | 
|  | { | 
|  | if (errno == EIO) | 
|  | { | 
|  | have_ptrace_getvrregs = 0; | 
|  | return; | 
|  | } | 
|  | perror_with_name (_("Unable to fetch AltiVec registers")); | 
|  | } | 
|  |  | 
|  | vrregset->collect_regset (vrregset, regcache, regno, ®s, | 
|  | PPC_LINUX_SIZEOF_VRREGSET); | 
|  |  | 
|  | ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s); | 
|  | if (ret < 0) | 
|  | perror_with_name (_("Unable to store AltiVec registers")); | 
|  | } | 
|  |  | 
|  | /* Assuming TID refers to an SPE process, set the top halves of TID's | 
|  | general-purpose registers and its SPE-specific registers to the | 
|  | values in EVRREGSET.  If we don't support PTRACE_SETEVRREGS, do | 
|  | nothing. | 
|  |  | 
|  | All the logic to deal with whether or not the PTRACE_GETEVRREGS and | 
|  | PTRACE_SETEVRREGS requests are supported is isolated here, and in | 
|  | get_spe_registers.  */ | 
|  | static void | 
|  | set_spe_registers (int tid, struct gdb_evrregset_t *evrregset) | 
|  | { | 
|  | if (have_ptrace_getsetevrregs) | 
|  | { | 
|  | if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0) | 
|  | return; | 
|  | else | 
|  | { | 
|  | /* EIO means that the PTRACE_SETEVRREGS request isn't | 
|  | supported; we fail silently, and don't try the call | 
|  | again.  */ | 
|  | if (errno == EIO) | 
|  | have_ptrace_getsetevrregs = 0; | 
|  | else | 
|  | /* Anything else needs to be reported.  */ | 
|  | perror_with_name (_("Unable to set SPE registers")); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Write GDB's value for the SPE-specific raw register REGNO to TID. | 
|  | If REGNO is -1, write the values of all the SPE-specific | 
|  | registers.  */ | 
|  | static void | 
|  | store_spe_register (const struct regcache *regcache, int tid, int regno) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  | struct gdb_evrregset_t evrregs; | 
|  |  | 
|  | gdb_assert (sizeof (evrregs.evr[0]) | 
|  | == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); | 
|  | gdb_assert (sizeof (evrregs.acc) | 
|  | == register_size (gdbarch, tdep->ppc_acc_regnum)); | 
|  | gdb_assert (sizeof (evrregs.spefscr) | 
|  | == register_size (gdbarch, tdep->ppc_spefscr_regnum)); | 
|  |  | 
|  | if (regno == -1) | 
|  | /* Since we're going to write out every register, the code below | 
|  | should store to every field of evrregs; if that doesn't happen, | 
|  | make it obvious by initializing it with suspicious values.  */ | 
|  | memset (&evrregs, 42, sizeof (evrregs)); | 
|  | else | 
|  | /* We can only read and write the entire EVR register set at a | 
|  | time, so to write just a single register, we do a | 
|  | read-modify-write maneuver.  */ | 
|  | get_spe_registers (tid, &evrregs); | 
|  |  | 
|  | if (regno == -1) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ppc_num_gprs; i++) | 
|  | regcache->raw_collect (tdep->ppc_ev0_upper_regnum + i, | 
|  | &evrregs.evr[i]); | 
|  | } | 
|  | else if (tdep->ppc_ev0_upper_regnum <= regno | 
|  | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | 
|  | regcache->raw_collect (regno, | 
|  | &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); | 
|  |  | 
|  | if (regno == -1 | 
|  | || regno == tdep->ppc_acc_regnum) | 
|  | regcache->raw_collect (tdep->ppc_acc_regnum, | 
|  | &evrregs.acc); | 
|  |  | 
|  | if (regno == -1 | 
|  | || regno == tdep->ppc_spefscr_regnum) | 
|  | regcache->raw_collect (tdep->ppc_spefscr_regnum, | 
|  | &evrregs.spefscr); | 
|  |  | 
|  | /* Write back the modified register set.  */ | 
|  | set_spe_registers (tid, &evrregs); | 
|  | } | 
|  |  | 
|  | static void | 
|  | store_register (const struct regcache *regcache, int tid, int regno) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  | /* This isn't really an address.  But ptrace thinks of it as one.  */ | 
|  | CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); | 
|  | int i; | 
|  | size_t bytes_to_transfer; | 
|  | gdb_byte buf[PPC_MAX_REGISTER_SIZE]; | 
|  |  | 
|  | if (altivec_register_p (gdbarch, regno)) | 
|  | { | 
|  | store_altivec_registers (regcache, tid, regno); | 
|  | return; | 
|  | } | 
|  | else if (vsx_register_p (gdbarch, regno)) | 
|  | { | 
|  | store_vsx_registers (regcache, tid, regno); | 
|  | return; | 
|  | } | 
|  | else if (spe_register_p (gdbarch, regno)) | 
|  | { | 
|  | store_spe_register (regcache, tid, regno); | 
|  | return; | 
|  | } | 
|  | else if (regno == PPC_DSCR_REGNUM) | 
|  | { | 
|  | gdb_assert (tdep->ppc_dscr_regnum != -1); | 
|  |  | 
|  | store_regset (regcache, tid, regno, NT_PPC_DSCR, | 
|  | PPC_LINUX_SIZEOF_DSCRREGSET, | 
|  | &ppc32_linux_dscrregset); | 
|  | return; | 
|  | } | 
|  | else if (regno == PPC_PPR_REGNUM) | 
|  | { | 
|  | gdb_assert (tdep->ppc_ppr_regnum != -1); | 
|  |  | 
|  | store_regset (regcache, tid, regno, NT_PPC_PPR, | 
|  | PPC_LINUX_SIZEOF_PPRREGSET, | 
|  | &ppc32_linux_pprregset); | 
|  | return; | 
|  | } | 
|  | else if (regno == PPC_TAR_REGNUM) | 
|  | { | 
|  | gdb_assert (tdep->ppc_tar_regnum != -1); | 
|  |  | 
|  | store_regset (regcache, tid, regno, NT_PPC_TAR, | 
|  | PPC_LINUX_SIZEOF_TARREGSET, | 
|  | &ppc32_linux_tarregset); | 
|  | return; | 
|  | } | 
|  | else if (PPC_IS_EBB_REGNUM (regno)) | 
|  | { | 
|  | gdb_assert (tdep->have_ebb); | 
|  |  | 
|  | store_regset (regcache, tid, regno, NT_PPC_EBB, | 
|  | PPC_LINUX_SIZEOF_EBBREGSET, | 
|  | &ppc32_linux_ebbregset); | 
|  | return; | 
|  | } | 
|  | else if (PPC_IS_PMU_REGNUM (regno)) | 
|  | { | 
|  | gdb_assert (tdep->ppc_mmcr0_regnum != -1); | 
|  |  | 
|  | store_regset (regcache, tid, regno, NT_PPC_PMU, | 
|  | PPC_LINUX_SIZEOF_PMUREGSET, | 
|  | &ppc32_linux_pmuregset); | 
|  | return; | 
|  | } | 
|  | else if (PPC_IS_TMSPR_REGNUM (regno)) | 
|  | { | 
|  | gdb_assert (tdep->have_htm_spr); | 
|  |  | 
|  | store_regset (regcache, tid, regno, NT_PPC_TM_SPR, | 
|  | PPC_LINUX_SIZEOF_TM_SPRREGSET, | 
|  | &ppc32_linux_tm_sprregset); | 
|  | return; | 
|  | } | 
|  | else if (PPC_IS_CKPTGP_REGNUM (regno)) | 
|  | { | 
|  | gdb_assert (tdep->have_htm_core); | 
|  |  | 
|  | const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch); | 
|  | store_regset (regcache, tid, regno, NT_PPC_TM_CGPR, | 
|  | (tdep->wordsize == 4? | 
|  | PPC32_LINUX_SIZEOF_CGPRREGSET | 
|  | : PPC64_LINUX_SIZEOF_CGPRREGSET), | 
|  | cgprregset); | 
|  | return; | 
|  | } | 
|  | else if (PPC_IS_CKPTFP_REGNUM (regno)) | 
|  | { | 
|  | gdb_assert (tdep->have_htm_fpu); | 
|  |  | 
|  | store_regset (regcache, tid, regno, NT_PPC_TM_CFPR, | 
|  | PPC_LINUX_SIZEOF_CFPRREGSET, | 
|  | &ppc32_linux_cfprregset); | 
|  | return; | 
|  | } | 
|  | else if (PPC_IS_CKPTVMX_REGNUM (regno)) | 
|  | { | 
|  | gdb_assert (tdep->have_htm_altivec); | 
|  |  | 
|  | const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch); | 
|  | store_regset (regcache, tid, regno, NT_PPC_TM_CVMX, | 
|  | PPC_LINUX_SIZEOF_CVMXREGSET, | 
|  | cvmxregset); | 
|  | return; | 
|  | } | 
|  | else if (PPC_IS_CKPTVSX_REGNUM (regno)) | 
|  | { | 
|  | gdb_assert (tdep->have_htm_vsx); | 
|  |  | 
|  | store_regset (regcache, tid, regno, NT_PPC_TM_CVSX, | 
|  | PPC_LINUX_SIZEOF_CVSXREGSET, | 
|  | &ppc32_linux_cvsxregset); | 
|  | return; | 
|  | } | 
|  | else if (regno == PPC_CPPR_REGNUM) | 
|  | { | 
|  | gdb_assert (tdep->ppc_cppr_regnum != -1); | 
|  |  | 
|  | store_regset (regcache, tid, regno, NT_PPC_TM_CPPR, | 
|  | PPC_LINUX_SIZEOF_CPPRREGSET, | 
|  | &ppc32_linux_cpprregset); | 
|  | return; | 
|  | } | 
|  | else if (regno == PPC_CDSCR_REGNUM) | 
|  | { | 
|  | gdb_assert (tdep->ppc_cdscr_regnum != -1); | 
|  |  | 
|  | store_regset (regcache, tid, regno, NT_PPC_TM_CDSCR, | 
|  | PPC_LINUX_SIZEOF_CDSCRREGSET, | 
|  | &ppc32_linux_cdscrregset); | 
|  | return; | 
|  | } | 
|  | else if (regno == PPC_CTAR_REGNUM) | 
|  | { | 
|  | gdb_assert (tdep->ppc_ctar_regnum != -1); | 
|  |  | 
|  | store_regset (regcache, tid, regno, NT_PPC_TM_CTAR, | 
|  | PPC_LINUX_SIZEOF_CTARREGSET, | 
|  | &ppc32_linux_ctarregset); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (regaddr == -1) | 
|  | return; | 
|  |  | 
|  | /* First collect the register.  Keep in mind that the regcache's | 
|  | idea of the register's size may not be a multiple of sizeof | 
|  | (long).  */ | 
|  | memset (buf, 0, sizeof buf); | 
|  | bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long)); | 
|  | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) | 
|  | { | 
|  | /* Little-endian values always sit at the left end of the buffer.  */ | 
|  | regcache->raw_collect (regno, buf); | 
|  | } | 
|  | else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | 
|  | { | 
|  | /* Big-endian values sit at the right end of the buffer.  */ | 
|  | size_t padding = (bytes_to_transfer - register_size (gdbarch, regno)); | 
|  | regcache->raw_collect (regno, buf + padding); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < bytes_to_transfer; i += sizeof (long)) | 
|  | { | 
|  | long l; | 
|  |  | 
|  | memcpy (&l, &buf[i], sizeof (l)); | 
|  | errno = 0; | 
|  | ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l); | 
|  | regaddr += sizeof (long); | 
|  |  | 
|  | if (errno == EIO | 
|  | && (regno == tdep->ppc_fpscr_regnum | 
|  | || regno == PPC_ORIG_R3_REGNUM | 
|  | || regno == PPC_TRAP_REGNUM)) | 
|  | { | 
|  | /* Some older kernel versions don't allow fpscr, orig_r3 | 
|  | or trap to be written.  */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (errno != 0) | 
|  | { | 
|  | char message[128]; | 
|  | xsnprintf (message, sizeof (message), "writing register %s (#%d)", | 
|  | gdbarch_register_name (gdbarch, regno), regno); | 
|  | perror_with_name (message); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This function actually issues the request to ptrace, telling | 
|  | it to store all general-purpose registers present in the specified | 
|  | regset. | 
|  |  | 
|  | If the ptrace request does not exist, this function returns 0 | 
|  | and properly sets the have_ptrace_* flag.  If the request fails, | 
|  | this function calls perror_with_name.  Otherwise, if the request | 
|  | succeeds, then the regcache is stored and 1 is returned.  */ | 
|  | static int | 
|  | store_all_gp_regs (const struct regcache *regcache, int tid, int regno) | 
|  | { | 
|  | gdb_gregset_t gregset; | 
|  |  | 
|  | if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) | 
|  | { | 
|  | if (errno == EIO) | 
|  | { | 
|  | have_ptrace_getsetregs = 0; | 
|  | return 0; | 
|  | } | 
|  | perror_with_name (_("Couldn't get general-purpose registers")); | 
|  | } | 
|  |  | 
|  | fill_gregset (regcache, &gregset, regno); | 
|  |  | 
|  | if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0) | 
|  | { | 
|  | if (errno == EIO) | 
|  | { | 
|  | have_ptrace_getsetregs = 0; | 
|  | return 0; | 
|  | } | 
|  | perror_with_name (_("Couldn't set general-purpose registers")); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* This is a wrapper for the store_all_gp_regs function.  It is | 
|  | responsible for verifying if this target has the ptrace request | 
|  | that can be used to store all general-purpose registers at one | 
|  | shot.  If it doesn't, then we should store them using the | 
|  | old-fashioned way, which is to iterate over the registers and | 
|  | store them one by one.  */ | 
|  | static void | 
|  | store_gp_regs (const struct regcache *regcache, int tid, int regno) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  | int i; | 
|  |  | 
|  | if (have_ptrace_getsetregs) | 
|  | if (store_all_gp_regs (regcache, tid, regno)) | 
|  | return; | 
|  |  | 
|  | /* If we hit this point, it doesn't really matter which | 
|  | architecture we are using.  We just need to store the | 
|  | registers in the "old-fashioned way".  */ | 
|  | for (i = 0; i < ppc_num_gprs; i++) | 
|  | store_register (regcache, tid, tdep->ppc_gp0_regnum + i); | 
|  | } | 
|  |  | 
|  | /* This function actually issues the request to ptrace, telling | 
|  | it to store all floating-point registers present in the specified | 
|  | regset. | 
|  |  | 
|  | If the ptrace request does not exist, this function returns 0 | 
|  | and properly sets the have_ptrace_* flag.  If the request fails, | 
|  | this function calls perror_with_name.  Otherwise, if the request | 
|  | succeeds, then the regcache is stored and 1 is returned.  */ | 
|  | static int | 
|  | store_all_fp_regs (const struct regcache *regcache, int tid, int regno) | 
|  | { | 
|  | gdb_fpregset_t fpregs; | 
|  |  | 
|  | if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) | 
|  | { | 
|  | if (errno == EIO) | 
|  | { | 
|  | have_ptrace_getsetfpregs = 0; | 
|  | return 0; | 
|  | } | 
|  | perror_with_name (_("Couldn't get floating-point registers")); | 
|  | } | 
|  |  | 
|  | fill_fpregset (regcache, &fpregs, regno); | 
|  |  | 
|  | if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0) | 
|  | { | 
|  | if (errno == EIO) | 
|  | { | 
|  | have_ptrace_getsetfpregs = 0; | 
|  | return 0; | 
|  | } | 
|  | perror_with_name (_("Couldn't set floating-point registers")); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* This is a wrapper for the store_all_fp_regs function.  It is | 
|  | responsible for verifying if this target has the ptrace request | 
|  | that can be used to store all floating-point registers at one | 
|  | shot.  If it doesn't, then we should store them using the | 
|  | old-fashioned way, which is to iterate over the registers and | 
|  | store them one by one.  */ | 
|  | static void | 
|  | store_fp_regs (const struct regcache *regcache, int tid, int regno) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  | int i; | 
|  |  | 
|  | if (have_ptrace_getsetfpregs) | 
|  | if (store_all_fp_regs (regcache, tid, regno)) | 
|  | return; | 
|  |  | 
|  | /* If we hit this point, it doesn't really matter which | 
|  | architecture we are using.  We just need to store the | 
|  | registers in the "old-fashioned way".  */ | 
|  | for (i = 0; i < ppc_num_fprs; i++) | 
|  | store_register (regcache, tid, tdep->ppc_fp0_regnum + i); | 
|  | } | 
|  |  | 
|  | static void | 
|  | store_ppc_registers (const struct regcache *regcache, int tid) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | store_gp_regs (regcache, tid, -1); | 
|  | if (tdep->ppc_fp0_regnum >= 0) | 
|  | store_fp_regs (regcache, tid, -1); | 
|  | store_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); | 
|  | if (tdep->ppc_ps_regnum != -1) | 
|  | store_register (regcache, tid, tdep->ppc_ps_regnum); | 
|  | if (tdep->ppc_cr_regnum != -1) | 
|  | store_register (regcache, tid, tdep->ppc_cr_regnum); | 
|  | if (tdep->ppc_lr_regnum != -1) | 
|  | store_register (regcache, tid, tdep->ppc_lr_regnum); | 
|  | if (tdep->ppc_ctr_regnum != -1) | 
|  | store_register (regcache, tid, tdep->ppc_ctr_regnum); | 
|  | if (tdep->ppc_xer_regnum != -1) | 
|  | store_register (regcache, tid, tdep->ppc_xer_regnum); | 
|  | if (tdep->ppc_mq_regnum != -1) | 
|  | store_register (regcache, tid, tdep->ppc_mq_regnum); | 
|  | if (tdep->ppc_fpscr_regnum != -1) | 
|  | store_register (regcache, tid, tdep->ppc_fpscr_regnum); | 
|  | if (ppc_linux_trap_reg_p (gdbarch)) | 
|  | { | 
|  | store_register (regcache, tid, PPC_ORIG_R3_REGNUM); | 
|  | store_register (regcache, tid, PPC_TRAP_REGNUM); | 
|  | } | 
|  | if (have_ptrace_getvrregs) | 
|  | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | 
|  | store_altivec_registers (regcache, tid, -1); | 
|  | if (have_ptrace_getsetvsxregs) | 
|  | if (tdep->ppc_vsr0_upper_regnum != -1) | 
|  | store_vsx_registers (regcache, tid, -1); | 
|  | if (tdep->ppc_ev0_upper_regnum >= 0) | 
|  | store_spe_register (regcache, tid, -1); | 
|  | if (tdep->ppc_ppr_regnum != -1) | 
|  | store_regset (regcache, tid, -1, NT_PPC_PPR, | 
|  | PPC_LINUX_SIZEOF_PPRREGSET, | 
|  | &ppc32_linux_pprregset); | 
|  | if (tdep->ppc_dscr_regnum != -1) | 
|  | store_regset (regcache, tid, -1, NT_PPC_DSCR, | 
|  | PPC_LINUX_SIZEOF_DSCRREGSET, | 
|  | &ppc32_linux_dscrregset); | 
|  | if (tdep->ppc_tar_regnum != -1) | 
|  | store_regset (regcache, tid, -1, NT_PPC_TAR, | 
|  | PPC_LINUX_SIZEOF_TARREGSET, | 
|  | &ppc32_linux_tarregset); | 
|  |  | 
|  | if (tdep->ppc_mmcr0_regnum != -1) | 
|  | store_regset (regcache, tid, -1, NT_PPC_PMU, | 
|  | PPC_LINUX_SIZEOF_PMUREGSET, | 
|  | &ppc32_linux_pmuregset); | 
|  |  | 
|  | if (tdep->have_htm_spr) | 
|  | store_regset (regcache, tid, -1, NT_PPC_TM_SPR, | 
|  | PPC_LINUX_SIZEOF_TM_SPRREGSET, | 
|  | &ppc32_linux_tm_sprregset); | 
|  |  | 
|  | /* Because the EBB and checkpointed HTM registers can be | 
|  | unavailable, attempts to store them here would cause this | 
|  | function to fail most of the time, so we ignore them.  */ | 
|  | } | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno) | 
|  | { | 
|  | pid_t tid = get_ptrace_pid (regcache->ptid ()); | 
|  |  | 
|  | if (regno >= 0) | 
|  | store_register (regcache, tid, regno); | 
|  | else | 
|  | store_ppc_registers (regcache, tid); | 
|  | } | 
|  |  | 
|  | /* Functions for transferring registers between a gregset_t or fpregset_t | 
|  | (see sys/ucontext.h) and gdb's regcache.  The word size is that used | 
|  | by the ptrace interface, not the current program's ABI.  Eg. if a | 
|  | powerpc64-linux gdb is being used to debug a powerpc32-linux app, we | 
|  | read or write 64-bit gregsets.  This is to suit the host libthread_db.  */ | 
|  |  | 
|  | void | 
|  | supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp) | 
|  | { | 
|  | const struct regset *regset = ppc_linux_gregset (sizeof (long)); | 
|  |  | 
|  | ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp)); | 
|  | } | 
|  |  | 
|  | void | 
|  | fill_gregset (const struct regcache *regcache, | 
|  | gdb_gregset_t *gregsetp, int regno) | 
|  | { | 
|  | const struct regset *regset = ppc_linux_gregset (sizeof (long)); | 
|  |  | 
|  | if (regno == -1) | 
|  | memset (gregsetp, 0, sizeof (*gregsetp)); | 
|  | ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp)); | 
|  | } | 
|  |  | 
|  | void | 
|  | supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp) | 
|  | { | 
|  | const struct regset *regset = ppc_linux_fpregset (); | 
|  |  | 
|  | ppc_supply_fpregset (regset, regcache, -1, | 
|  | fpregsetp, sizeof (*fpregsetp)); | 
|  | } | 
|  |  | 
|  | void | 
|  | fill_fpregset (const struct regcache *regcache, | 
|  | gdb_fpregset_t *fpregsetp, int regno) | 
|  | { | 
|  | const struct regset *regset = ppc_linux_fpregset (); | 
|  |  | 
|  | ppc_collect_fpregset (regset, regcache, regno, | 
|  | fpregsetp, sizeof (*fpregsetp)); | 
|  | } | 
|  |  | 
|  | int | 
|  | ppc_linux_nat_target::auxv_parse (const gdb_byte **readptr, | 
|  | const gdb_byte *endptr, CORE_ADDR *typep, | 
|  | CORE_ADDR *valp) | 
|  | { | 
|  | gdb_assert (inferior_ptid != null_ptid); | 
|  |  | 
|  | int tid = inferior_ptid.lwp (); | 
|  | if (tid == 0) | 
|  | tid = inferior_ptid.pid (); | 
|  |  | 
|  | int sizeof_auxv_field = ppc_linux_target_wordsize (tid); | 
|  |  | 
|  | bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ()); | 
|  | const gdb_byte *ptr = *readptr; | 
|  |  | 
|  | if (endptr == ptr) | 
|  | return 0; | 
|  |  | 
|  | if (endptr - ptr < sizeof_auxv_field * 2) | 
|  | return -1; | 
|  |  | 
|  | *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); | 
|  | ptr += sizeof_auxv_field; | 
|  | *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); | 
|  | ptr += sizeof_auxv_field; | 
|  |  | 
|  | *readptr = ptr; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | const struct target_desc * | 
|  | ppc_linux_nat_target::read_description () | 
|  | { | 
|  | if (inferior_ptid == null_ptid) | 
|  | return this->beneath ()->read_description (); | 
|  |  | 
|  | int tid = inferior_ptid.pid (); | 
|  |  | 
|  | if (have_ptrace_getsetevrregs) | 
|  | { | 
|  | struct gdb_evrregset_t evrregset; | 
|  |  | 
|  | if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0) | 
|  | return tdesc_powerpc_e500l; | 
|  |  | 
|  | /* EIO means that the PTRACE_GETEVRREGS request isn't supported. | 
|  | Anything else needs to be reported.  */ | 
|  | else if (errno != EIO) | 
|  | perror_with_name (_("Unable to fetch SPE registers")); | 
|  | } | 
|  |  | 
|  | struct ppc_linux_features features = ppc_linux_no_features; | 
|  |  | 
|  | features.wordsize = ppc_linux_target_wordsize (tid); | 
|  |  | 
|  | CORE_ADDR hwcap = linux_get_hwcap (); | 
|  | CORE_ADDR hwcap2 = linux_get_hwcap2 (); | 
|  |  | 
|  | if (have_ptrace_getsetvsxregs | 
|  | && (hwcap & PPC_FEATURE_HAS_VSX)) | 
|  | { | 
|  | gdb_vsxregset_t vsxregset; | 
|  |  | 
|  | if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0) | 
|  | features.vsx = true; | 
|  |  | 
|  | /* EIO means that the PTRACE_GETVSXREGS request isn't supported. | 
|  | Anything else needs to be reported.  */ | 
|  | else if (errno != EIO) | 
|  | perror_with_name (_("Unable to fetch VSX registers")); | 
|  | } | 
|  |  | 
|  | if (have_ptrace_getvrregs | 
|  | && (hwcap & PPC_FEATURE_HAS_ALTIVEC)) | 
|  | { | 
|  | gdb_vrregset_t vrregset; | 
|  |  | 
|  | if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0) | 
|  | features.altivec = true; | 
|  |  | 
|  | /* EIO means that the PTRACE_GETVRREGS request isn't supported. | 
|  | Anything else needs to be reported.  */ | 
|  | else if (errno != EIO) | 
|  | perror_with_name (_("Unable to fetch AltiVec registers")); | 
|  | } | 
|  |  | 
|  | features.isa205 = ppc_linux_has_isa205 (hwcap); | 
|  |  | 
|  | if ((hwcap2 & PPC_FEATURE2_DSCR) | 
|  | && check_regset (tid, NT_PPC_PPR, PPC_LINUX_SIZEOF_PPRREGSET) | 
|  | && check_regset (tid, NT_PPC_DSCR, PPC_LINUX_SIZEOF_DSCRREGSET)) | 
|  | { | 
|  | features.ppr_dscr = true; | 
|  | if ((hwcap2 & PPC_FEATURE2_ARCH_2_07) | 
|  | && (hwcap2 & PPC_FEATURE2_TAR) | 
|  | && (hwcap2 & PPC_FEATURE2_EBB) | 
|  | && check_regset (tid, NT_PPC_TAR, PPC_LINUX_SIZEOF_TARREGSET) | 
|  | && check_regset (tid, NT_PPC_EBB, PPC_LINUX_SIZEOF_EBBREGSET) | 
|  | && check_regset (tid, NT_PPC_PMU, PPC_LINUX_SIZEOF_PMUREGSET)) | 
|  | { | 
|  | features.isa207 = true; | 
|  | if ((hwcap2 & PPC_FEATURE2_HTM) | 
|  | && check_regset (tid, NT_PPC_TM_SPR, | 
|  | PPC_LINUX_SIZEOF_TM_SPRREGSET)) | 
|  | features.htm = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ppc_linux_match_description (features); | 
|  | } | 
|  |  | 
|  | /* Routines for installing hardware watchpoints and breakpoints.  When | 
|  | GDB requests a hardware watchpoint or breakpoint to be installed, we | 
|  | register the request for the pid of inferior_ptid in a map with one | 
|  | entry per process.  We then issue a stop request to all the threads of | 
|  | this process, and mark a per-thread flag indicating that their debug | 
|  | registers should be updated.  Right before they are next resumed, we | 
|  | remove all previously installed debug registers and install all the | 
|  | ones GDB requested.  We then update a map with one entry per thread | 
|  | that keeps track of what debug registers were last installed in each | 
|  | thread. | 
|  |  | 
|  | We use this second map to remove installed registers before installing | 
|  | the ones requested by GDB, and to copy the debug register state after | 
|  | a thread clones or forks, since depending on the kernel configuration, | 
|  | debug registers can be inherited.  */ | 
|  |  | 
|  | /* Check if we support and have enough resources to install a hardware | 
|  | watchpoint or breakpoint.  See the description in target.h.  */ | 
|  |  | 
|  | int | 
|  | ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt, | 
|  | int ot) | 
|  | { | 
|  | int total_hw_wp, total_hw_bp; | 
|  |  | 
|  | m_dreg_interface.detect (inferior_ptid); | 
|  |  | 
|  | if (m_dreg_interface.unavailable_p ()) | 
|  | return 0; | 
|  |  | 
|  | if (m_dreg_interface.hwdebug_p ()) | 
|  | { | 
|  | /* When PowerPC HWDEBUG ptrace interface is available, the number of | 
|  | available hardware watchpoints and breakpoints is stored at the | 
|  | hwdebug_info struct.  */ | 
|  | total_hw_bp = m_dreg_interface.hwdebug_info ().num_instruction_bps; | 
|  | total_hw_wp = m_dreg_interface.hwdebug_info ().num_data_bps; | 
|  | } | 
|  | else | 
|  | { | 
|  | gdb_assert (m_dreg_interface.debugreg_p ()); | 
|  |  | 
|  | /* With the DEBUGREG ptrace interface, we should consider having 1 | 
|  | hardware watchpoint and no hardware breakpoints.  */ | 
|  | total_hw_bp = 0; | 
|  | total_hw_wp = 1; | 
|  | } | 
|  |  | 
|  | if (type == bp_hardware_watchpoint || type == bp_read_watchpoint | 
|  | || type == bp_access_watchpoint || type == bp_watchpoint) | 
|  | { | 
|  | if (total_hw_wp == 0) | 
|  | return 0; | 
|  | else if (cnt + ot > total_hw_wp) | 
|  | return -1; | 
|  | else | 
|  | return 1; | 
|  | } | 
|  | else if (type == bp_hardware_breakpoint) | 
|  | { | 
|  | if (total_hw_bp == 0) | 
|  | return 0; | 
|  | else if (cnt > total_hw_bp) | 
|  | return -1; | 
|  | else | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Returns 1 if we can watch LEN bytes at address ADDR, 0 otherwise.  */ | 
|  |  | 
|  | int | 
|  | ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len) | 
|  | { | 
|  | /* Handle sub-8-byte quantities.  */ | 
|  | if (len <= 0) | 
|  | return 0; | 
|  |  | 
|  | m_dreg_interface.detect (inferior_ptid); | 
|  |  | 
|  | if (m_dreg_interface.unavailable_p ()) | 
|  | return 0; | 
|  |  | 
|  | /* The PowerPC HWDEBUG ptrace interface tells if there are alignment | 
|  | restrictions for watchpoints in the processors.  In that case, we use that | 
|  | information to determine the hardcoded watchable region for | 
|  | watchpoints.  */ | 
|  | if (m_dreg_interface.hwdebug_p ()) | 
|  | { | 
|  | const struct ppc_debug_info &hwdebug_info = (m_dreg_interface | 
|  | .hwdebug_info ()); | 
|  | int region_size = hwdebug_info.data_bp_alignment; | 
|  | int region_align = region_size; | 
|  |  | 
|  | /* Embedded DAC-based processors, like the PowerPC 440 have ranged | 
|  | watchpoints and can watch any access within an arbitrary memory | 
|  | region. This is useful to watch arrays and structs, for instance.  It | 
|  | takes two hardware watchpoints though.  */ | 
|  | if (len > 1 | 
|  | && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE | 
|  | && (linux_get_hwcap () & PPC_FEATURE_BOOKE)) | 
|  | return 2; | 
|  | /* Check if the processor provides DAWR interface.  */ | 
|  | if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR) | 
|  | { | 
|  | /* DAWR interface allows to watch up to 512 byte wide ranges.  */ | 
|  | region_size = 512; | 
|  | /* DAWR interface allows to watch up to 512 byte wide ranges which | 
|  | can't cross a 512 byte boundary on machines that don't have a | 
|  | second DAWR (P9 or less).  */ | 
|  | if (!(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_ARCH_31)) | 
|  | region_align = 512; | 
|  | } | 
|  | /* Server processors provide one hardware watchpoint and addr+len should | 
|  | fall in the watchable region provided by the ptrace interface.  */ | 
|  | if (region_align | 
|  | && (addr + len > (addr & ~(region_align - 1)) + region_size)) | 
|  | return 0; | 
|  | } | 
|  | /* addr+len must fall in the 8 byte watchable region for DABR-based | 
|  | processors (i.e., server processors).  Without the new PowerPC HWDEBUG | 
|  | ptrace interface, DAC-based processors (i.e., embedded processors) will | 
|  | use addresses aligned to 4-bytes due to the way the read/write flags are | 
|  | passed in the old ptrace interface.  */ | 
|  | else | 
|  | { | 
|  | gdb_assert (m_dreg_interface.debugreg_p ()); | 
|  |  | 
|  | if (((linux_get_hwcap () & PPC_FEATURE_BOOKE) | 
|  | && (addr + len) > (addr & ~3) + 4) | 
|  | || (addr + len) > (addr & ~7) + 8) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* This function compares two ppc_hw_breakpoint structs | 
|  | field-by-field.  */ | 
|  |  | 
|  | bool | 
|  | ppc_linux_nat_target::hwdebug_point_cmp (const struct ppc_hw_breakpoint &a, | 
|  | const struct ppc_hw_breakpoint &b) | 
|  | { | 
|  | return (a.trigger_type == b.trigger_type | 
|  | && a.addr_mode == b.addr_mode | 
|  | && a.condition_mode == b.condition_mode | 
|  | && a.addr == b.addr | 
|  | && a.addr2 == b.addr2 | 
|  | && a.condition_value == b.condition_value); | 
|  | } | 
|  |  | 
|  | /* Return the number of registers needed for a ranged breakpoint.  */ | 
|  |  | 
|  | int | 
|  | ppc_linux_nat_target::ranged_break_num_registers () | 
|  | { | 
|  | m_dreg_interface.detect (inferior_ptid); | 
|  |  | 
|  | return ((m_dreg_interface.hwdebug_p () | 
|  | && (m_dreg_interface.hwdebug_info ().features | 
|  | & PPC_DEBUG_FEATURE_INSN_BP_RANGE))? | 
|  | 2 : -1); | 
|  | } | 
|  |  | 
|  | /* Register the hardware breakpoint described by BP_TGT, to be inserted | 
|  | when the threads of inferior_ptid are resumed.  Returns 0 for success, | 
|  | or -1 if the HWDEBUG interface that we need for hardware breakpoints | 
|  | is not available.  */ | 
|  |  | 
|  | int | 
|  | ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch, | 
|  | struct bp_target_info *bp_tgt) | 
|  | { | 
|  | struct ppc_hw_breakpoint p; | 
|  |  | 
|  | m_dreg_interface.detect (inferior_ptid); | 
|  |  | 
|  | if (!m_dreg_interface.hwdebug_p ()) | 
|  | return -1; | 
|  |  | 
|  | p.version = PPC_DEBUG_CURRENT_VERSION; | 
|  | p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; | 
|  | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | 
|  | p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address); | 
|  | p.condition_value = 0; | 
|  |  | 
|  | if (bp_tgt->length) | 
|  | { | 
|  | p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | 
|  |  | 
|  | /* The breakpoint will trigger if the address of the instruction is | 
|  | within the defined range, as follows: p.addr <= address < p.addr2.  */ | 
|  | p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length; | 
|  | } | 
|  | else | 
|  | { | 
|  | p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; | 
|  | p.addr2 = 0; | 
|  | } | 
|  |  | 
|  | register_hw_breakpoint (inferior_ptid.pid (), p); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Clear a registration for the hardware breakpoint given by type BP_TGT. | 
|  | It will be removed from the threads of inferior_ptid when they are | 
|  | next resumed.  Returns 0 for success, or -1 if the HWDEBUG interface | 
|  | that we need for hardware breakpoints is not available.  */ | 
|  |  | 
|  | int | 
|  | ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch, | 
|  | struct bp_target_info *bp_tgt) | 
|  | { | 
|  | struct ppc_hw_breakpoint p; | 
|  |  | 
|  | m_dreg_interface.detect (inferior_ptid); | 
|  |  | 
|  | if (!m_dreg_interface.hwdebug_p ()) | 
|  | return -1; | 
|  |  | 
|  | p.version = PPC_DEBUG_CURRENT_VERSION; | 
|  | p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; | 
|  | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | 
|  | p.addr = (uint64_t) bp_tgt->placed_address; | 
|  | p.condition_value = 0; | 
|  |  | 
|  | if (bp_tgt->length) | 
|  | { | 
|  | p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | 
|  |  | 
|  | /* The breakpoint will trigger if the address of the instruction is within | 
|  | the defined range, as follows: p.addr <= address < p.addr2.  */ | 
|  | p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length; | 
|  | } | 
|  | else | 
|  | { | 
|  | p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; | 
|  | p.addr2 = 0; | 
|  | } | 
|  |  | 
|  | clear_hw_breakpoint (inferior_ptid.pid (), p); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return the trigger value to set in a ppc_hw_breakpoint object for a | 
|  | given hardware watchpoint TYPE.  We assume type is not hw_execute.  */ | 
|  |  | 
|  | int | 
|  | ppc_linux_nat_target::get_trigger_type (enum target_hw_bp_type type) | 
|  | { | 
|  | int t; | 
|  |  | 
|  | if (type == hw_read) | 
|  | t = PPC_BREAKPOINT_TRIGGER_READ; | 
|  | else if (type == hw_write) | 
|  | t = PPC_BREAKPOINT_TRIGGER_WRITE; | 
|  | else | 
|  | t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE; | 
|  |  | 
|  | return t; | 
|  | } | 
|  |  | 
|  | /* Register a new masked watchpoint at ADDR using the mask MASK, to be | 
|  | inserted when the threads of inferior_ptid are resumed.  RW may be | 
|  | hw_read for a read watchpoint, hw_write for a write watchpoint or | 
|  | hw_access for an access watchpoint.  */ | 
|  |  | 
|  | int | 
|  | ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr,  CORE_ADDR mask, | 
|  | target_hw_bp_type rw) | 
|  | { | 
|  | struct ppc_hw_breakpoint p; | 
|  |  | 
|  | gdb_assert (m_dreg_interface.hwdebug_p ()); | 
|  |  | 
|  | p.version = PPC_DEBUG_CURRENT_VERSION; | 
|  | p.trigger_type = get_trigger_type (rw); | 
|  | p.addr_mode = PPC_BREAKPOINT_MODE_MASK; | 
|  | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | 
|  | p.addr = addr; | 
|  | p.addr2 = mask; | 
|  | p.condition_value = 0; | 
|  |  | 
|  | register_hw_breakpoint (inferior_ptid.pid (), p); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Clear a registration for a masked watchpoint at ADDR with the mask | 
|  | MASK.  It will be removed from the threads of inferior_ptid when they | 
|  | are next resumed.  RW may be hw_read for a read watchpoint, hw_write | 
|  | for a write watchpoint or hw_access for an access watchpoint.  */ | 
|  |  | 
|  | int | 
|  | ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, | 
|  | target_hw_bp_type rw) | 
|  | { | 
|  | struct ppc_hw_breakpoint p; | 
|  |  | 
|  | gdb_assert (m_dreg_interface.hwdebug_p ()); | 
|  |  | 
|  | p.version = PPC_DEBUG_CURRENT_VERSION; | 
|  | p.trigger_type = get_trigger_type (rw); | 
|  | p.addr_mode = PPC_BREAKPOINT_MODE_MASK; | 
|  | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | 
|  | p.addr = addr; | 
|  | p.addr2 = mask; | 
|  | p.condition_value = 0; | 
|  |  | 
|  | clear_hw_breakpoint (inferior_ptid.pid (), p); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check whether we have at least one free DVC register for the threads | 
|  | of the pid of inferior_ptid.  */ | 
|  |  | 
|  | bool | 
|  | ppc_linux_nat_target::can_use_watchpoint_cond_accel (void) | 
|  | { | 
|  | m_dreg_interface.detect (inferior_ptid); | 
|  |  | 
|  | if (!m_dreg_interface.hwdebug_p ()) | 
|  | return false; | 
|  |  | 
|  | int cnt = m_dreg_interface.hwdebug_info ().num_condition_regs; | 
|  |  | 
|  | if (cnt == 0) | 
|  | return false; | 
|  |  | 
|  | auto process_it = m_process_info.find (inferior_ptid.pid ()); | 
|  |  | 
|  | /* No breakpoints, watchpoints, tracepoints, or catchpoints have been | 
|  | requested for this process, we have at least one free DVC register.  */ | 
|  | if (process_it == m_process_info.end ()) | 
|  | return true; | 
|  |  | 
|  | for (const ppc_hw_breakpoint &bp : process_it->second.requested_hw_bps) | 
|  | if (bp.condition_mode != PPC_BREAKPOINT_CONDITION_NONE) | 
|  | cnt--; | 
|  |  | 
|  | if (cnt <= 0) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Calculate the enable bits and the contents of the Data Value Compare | 
|  | debug register present in BookE processors. | 
|  |  | 
|  | ADDR is the address to be watched, LEN is the length of watched data | 
|  | and DATA_VALUE is the value which will trigger the watchpoint. | 
|  | On exit, CONDITION_MODE will hold the enable bits for the DVC, and | 
|  | CONDITION_VALUE will hold the value which should be put in the | 
|  | DVC register.  */ | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::calculate_dvc (CORE_ADDR addr, int len, | 
|  | CORE_ADDR data_value, | 
|  | uint32_t *condition_mode, | 
|  | uint64_t *condition_value) | 
|  | { | 
|  | const struct ppc_debug_info &hwdebug_info = (m_dreg_interface. | 
|  | hwdebug_info ()); | 
|  |  | 
|  | int i, num_byte_enable, align_offset, num_bytes_off_dvc, | 
|  | rightmost_enabled_byte; | 
|  | CORE_ADDR addr_end_data, addr_end_dvc; | 
|  |  | 
|  | /* The DVC register compares bytes within fixed-length windows which | 
|  | are word-aligned, with length equal to that of the DVC register. | 
|  | We need to calculate where our watch region is relative to that | 
|  | window and enable comparison of the bytes which fall within it.  */ | 
|  |  | 
|  | align_offset = addr % hwdebug_info.sizeof_condition; | 
|  | addr_end_data = addr + len; | 
|  | addr_end_dvc = (addr - align_offset | 
|  | + hwdebug_info.sizeof_condition); | 
|  | num_bytes_off_dvc = (addr_end_data > addr_end_dvc)? | 
|  | addr_end_data - addr_end_dvc : 0; | 
|  | num_byte_enable = len - num_bytes_off_dvc; | 
|  | /* Here, bytes are numbered from right to left.  */ | 
|  | rightmost_enabled_byte = (addr_end_data < addr_end_dvc)? | 
|  | addr_end_dvc - addr_end_data : 0; | 
|  |  | 
|  | *condition_mode = PPC_BREAKPOINT_CONDITION_AND; | 
|  | for (i = 0; i < num_byte_enable; i++) | 
|  | *condition_mode | 
|  | |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte); | 
|  |  | 
|  | /* Now we need to match the position within the DVC of the comparison | 
|  | value with where the watch region is relative to the window | 
|  | (i.e., the ALIGN_OFFSET).  */ | 
|  |  | 
|  | *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8 | 
|  | << rightmost_enabled_byte * 8); | 
|  | } | 
|  |  | 
|  | /* Return the number of memory locations that need to be accessed to | 
|  | evaluate the expression which generated the given value chain. | 
|  | Returns -1 if there's any register access involved, or if there are | 
|  | other kinds of values which are not acceptable in a condition | 
|  | expression (e.g., lval_computed or lval_internalvar).  */ | 
|  |  | 
|  | int | 
|  | ppc_linux_nat_target::num_memory_accesses (const std::vector<value_ref_ptr> | 
|  | &chain) | 
|  | { | 
|  | int found_memory_cnt = 0; | 
|  |  | 
|  | /* The idea here is that evaluating an expression generates a series | 
|  | of values, one holding the value of every subexpression.  (The | 
|  | expression a*b+c has five subexpressions: a, b, a*b, c, and | 
|  | a*b+c.)  GDB's values hold almost enough information to establish | 
|  | the criteria given above --- they identify memory lvalues, | 
|  | register lvalues, computed values, etcetera.  So we can evaluate | 
|  | the expression, and then scan the chain of values that leaves | 
|  | behind to determine the memory locations involved in the evaluation | 
|  | of an expression. | 
|  |  | 
|  | However, I don't think that the values returned by inferior | 
|  | function calls are special in any way.  So this function may not | 
|  | notice that an expression contains an inferior function call. | 
|  | FIXME.  */ | 
|  |  | 
|  | for (const value_ref_ptr &iter : chain) | 
|  | { | 
|  | struct value *v = iter.get (); | 
|  |  | 
|  | /* Constants and values from the history are fine.  */ | 
|  | if (v->lval () == not_lval || !v->deprecated_modifiable ()) | 
|  | continue; | 
|  | else if (v->lval () == lval_memory) | 
|  | { | 
|  | /* A lazy memory lvalue is one that GDB never needed to fetch; | 
|  | we either just used its address (e.g., `a' in `a.b') or | 
|  | we never needed it at all (e.g., `a' in `a,b').  */ | 
|  | if (!v->lazy ()) | 
|  | found_memory_cnt++; | 
|  | } | 
|  | /* Other kinds of values are not fine.  */ | 
|  | else | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return found_memory_cnt; | 
|  | } | 
|  |  | 
|  | /* Verifies whether the expression COND can be implemented using the | 
|  | DVC (Data Value Compare) register in BookE processors.  The expression | 
|  | must test the watch value for equality with a constant expression. | 
|  | If the function returns 1, DATA_VALUE will contain the constant against | 
|  | which the watch value should be compared and LEN will contain the size | 
|  | of the constant.  */ | 
|  |  | 
|  | int | 
|  | ppc_linux_nat_target::check_condition (CORE_ADDR watch_addr, | 
|  | struct expression *cond, | 
|  | CORE_ADDR *data_value, int *len) | 
|  | { | 
|  | int num_accesses_left, num_accesses_right; | 
|  | struct value *left_val, *right_val; | 
|  | std::vector<value_ref_ptr> left_chain, right_chain; | 
|  |  | 
|  | expr::equal_operation *eqop | 
|  | = dynamic_cast<expr::equal_operation *> (cond->op.get ()); | 
|  | if (eqop == nullptr) | 
|  | return 0; | 
|  | expr::operation *lhs = eqop->get_lhs (); | 
|  | expr::operation *rhs = eqop->get_rhs (); | 
|  |  | 
|  | fetch_subexp_value (cond, lhs, &left_val, NULL, &left_chain, false); | 
|  | num_accesses_left = num_memory_accesses (left_chain); | 
|  |  | 
|  | if (left_val == NULL || num_accesses_left < 0) | 
|  | return 0; | 
|  |  | 
|  | fetch_subexp_value (cond, rhs, &right_val, NULL, &right_chain, false); | 
|  | num_accesses_right = num_memory_accesses (right_chain); | 
|  |  | 
|  | if (right_val == NULL || num_accesses_right < 0) | 
|  | return 0; | 
|  |  | 
|  | if (num_accesses_left == 1 && num_accesses_right == 0 | 
|  | && left_val->lval () == lval_memory | 
|  | && left_val->address () == watch_addr) | 
|  | { | 
|  | *data_value = value_as_long (right_val); | 
|  |  | 
|  | /* DATA_VALUE is the constant in RIGHT_VAL, but actually has | 
|  | the same type as the memory region referenced by LEFT_VAL.  */ | 
|  | *len = check_typedef (left_val->type ())->length (); | 
|  | } | 
|  | else if (num_accesses_left == 0 && num_accesses_right == 1 | 
|  | && right_val->lval () == lval_memory | 
|  | && right_val->address () == watch_addr) | 
|  | { | 
|  | *data_value = value_as_long (left_val); | 
|  |  | 
|  | /* DATA_VALUE is the constant in LEFT_VAL, but actually has | 
|  | the same type as the memory region referenced by RIGHT_VAL.  */ | 
|  | *len = check_typedef (right_val->type ())->length (); | 
|  | } | 
|  | else | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Return true if the target is capable of using hardware to evaluate the | 
|  | condition expression, thus only triggering the watchpoint when it is | 
|  | true.  */ | 
|  |  | 
|  | bool | 
|  | ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr, | 
|  | int len, int rw, | 
|  | struct expression *cond) | 
|  | { | 
|  | CORE_ADDR data_value; | 
|  |  | 
|  | m_dreg_interface.detect (inferior_ptid); | 
|  |  | 
|  | return (m_dreg_interface.hwdebug_p () | 
|  | && (m_dreg_interface.hwdebug_info ().num_condition_regs > 0) | 
|  | && check_condition (addr, cond, &data_value, &len)); | 
|  | } | 
|  |  | 
|  | /* Set up P with the parameters necessary to request a watchpoint covering | 
|  | LEN bytes starting at ADDR and if possible with condition expression COND | 
|  | evaluated by hardware.  INSERT tells if we are creating a request for | 
|  | inserting or removing the watchpoint.  */ | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::create_watchpoint_request (struct ppc_hw_breakpoint *p, | 
|  | CORE_ADDR addr, int len, | 
|  | enum target_hw_bp_type type, | 
|  | struct expression *cond, | 
|  | int insert) | 
|  | { | 
|  | const struct ppc_debug_info &hwdebug_info = (m_dreg_interface | 
|  | .hwdebug_info ()); | 
|  |  | 
|  | if (len == 1 | 
|  | || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE)) | 
|  | { | 
|  | int use_condition; | 
|  | CORE_ADDR data_value; | 
|  |  | 
|  | use_condition = (insert? can_use_watchpoint_cond_accel () | 
|  | : hwdebug_info.num_condition_regs > 0); | 
|  | if (cond && use_condition && check_condition (addr, cond, | 
|  | &data_value, &len)) | 
|  | calculate_dvc (addr, len, data_value, &p->condition_mode, | 
|  | &p->condition_value); | 
|  | else | 
|  | { | 
|  | p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | 
|  | p->condition_value = 0; | 
|  | } | 
|  |  | 
|  | p->addr_mode = PPC_BREAKPOINT_MODE_EXACT; | 
|  | p->addr2 = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | 
|  | p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | 
|  | p->condition_value = 0; | 
|  |  | 
|  | /* The watchpoint will trigger if the address of the memory access is | 
|  | within the defined range, as follows: p->addr <= address < p->addr2. | 
|  |  | 
|  | Note that the above sentence just documents how ptrace interprets | 
|  | its arguments; the watchpoint is set to watch the range defined by | 
|  | the user _inclusively_, as specified by the user interface.  */ | 
|  | p->addr2 = (uint64_t) addr + len; | 
|  | } | 
|  |  | 
|  | p->version = PPC_DEBUG_CURRENT_VERSION; | 
|  | p->trigger_type = get_trigger_type (type); | 
|  | p->addr = (uint64_t) addr; | 
|  | } | 
|  |  | 
|  | /* Register a watchpoint, to be inserted when the threads of the group of | 
|  | inferior_ptid are next resumed.  Returns 0 on success, and -1 if there | 
|  | is no ptrace interface available to install the watchpoint.  */ | 
|  |  | 
|  | int | 
|  | ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len, | 
|  | enum target_hw_bp_type type, | 
|  | struct expression *cond) | 
|  | { | 
|  | m_dreg_interface.detect (inferior_ptid); | 
|  |  | 
|  | if (m_dreg_interface.unavailable_p ()) | 
|  | return -1; | 
|  |  | 
|  | if (m_dreg_interface.hwdebug_p ()) | 
|  | { | 
|  | struct ppc_hw_breakpoint p; | 
|  |  | 
|  | create_watchpoint_request (&p, addr, len, type, cond, 1); | 
|  |  | 
|  | register_hw_breakpoint (inferior_ptid.pid (), p); | 
|  | } | 
|  | else | 
|  | { | 
|  | gdb_assert (m_dreg_interface.debugreg_p ()); | 
|  |  | 
|  | long wp_value; | 
|  | long read_mode, write_mode; | 
|  |  | 
|  | if (linux_get_hwcap () & PPC_FEATURE_BOOKE) | 
|  | { | 
|  | /* PowerPC 440 requires only the read/write flags to be passed | 
|  | to the kernel.  */ | 
|  | read_mode = 1; | 
|  | write_mode = 2; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* PowerPC 970 and other DABR-based processors are required to pass | 
|  | the Breakpoint Translation bit together with the flags.  */ | 
|  | read_mode = 5; | 
|  | write_mode = 6; | 
|  | } | 
|  |  | 
|  | wp_value = addr & ~(read_mode | write_mode); | 
|  | switch (type) | 
|  | { | 
|  | case hw_read: | 
|  | /* Set read and translate bits.  */ | 
|  | wp_value |= read_mode; | 
|  | break; | 
|  | case hw_write: | 
|  | /* Set write and translate bits.  */ | 
|  | wp_value |= write_mode; | 
|  | break; | 
|  | case hw_access: | 
|  | /* Set read, write and translate bits.  */ | 
|  | wp_value |= read_mode | write_mode; | 
|  | break; | 
|  | } | 
|  |  | 
|  | register_wp (inferior_ptid.pid (), wp_value); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Clear a registration for a hardware watchpoint.  It will be removed | 
|  | from the threads of the group of inferior_ptid when they are next | 
|  | resumed.  */ | 
|  |  | 
|  | int | 
|  | ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len, | 
|  | enum target_hw_bp_type type, | 
|  | struct expression *cond) | 
|  | { | 
|  | gdb_assert (!m_dreg_interface.unavailable_p ()); | 
|  |  | 
|  | if (m_dreg_interface.hwdebug_p ()) | 
|  | { | 
|  | struct ppc_hw_breakpoint p; | 
|  |  | 
|  | create_watchpoint_request (&p, addr, len, type, cond, 0); | 
|  |  | 
|  | clear_hw_breakpoint (inferior_ptid.pid (), p); | 
|  | } | 
|  | else | 
|  | { | 
|  | gdb_assert (m_dreg_interface.debugreg_p ()); | 
|  |  | 
|  | clear_wp (inferior_ptid.pid ()); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Implement the "low_init_process" target_ops method.  */ | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::low_init_process (pid_t pid) | 
|  | { | 
|  | /* Set the hardware debug register capacity.  This requires the process to be | 
|  | ptrace-stopped, otherwise detection will fail and software watchpoints will | 
|  | be used instead of hardware.  If we allow this to be done lazily, we | 
|  | cannot guarantee that it's called when the process is ptrace-stopped, so | 
|  | do it now.  */ | 
|  | m_dreg_interface.detect (ptid_t (pid, pid)); | 
|  | } | 
|  |  | 
|  | /* Clean up the per-process info associated with PID.  When using the | 
|  | HWDEBUG interface, we also erase the per-thread state of installed | 
|  | debug registers for all the threads that belong to the group of PID. | 
|  |  | 
|  | Usually the thread state is cleaned up by low_delete_thread.  We also | 
|  | do it here because low_new_thread is not called for the initial LWP, | 
|  | so low_delete_thread won't be able to clean up this state.  */ | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::low_forget_process (pid_t pid) | 
|  | { | 
|  | if ((!m_dreg_interface.detected_p ()) | 
|  | || (m_dreg_interface.unavailable_p ())) | 
|  | return; | 
|  |  | 
|  | ptid_t pid_ptid (pid, 0, 0); | 
|  |  | 
|  | m_process_info.erase (pid); | 
|  |  | 
|  | if (m_dreg_interface.hwdebug_p ()) | 
|  | { | 
|  | for (auto it = m_installed_hw_bps.begin (); | 
|  | it != m_installed_hw_bps.end ();) | 
|  | { | 
|  | if (it->first.matches (pid_ptid)) | 
|  | it = m_installed_hw_bps.erase (it); | 
|  | else | 
|  | it++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Copy the per-process state associated with the pid of PARENT to the | 
|  | state of CHILD_PID.  GDB expects that a forked process will have the | 
|  | same hardware breakpoints and watchpoints as the parent. | 
|  |  | 
|  | If we're using the HWDEBUG interface, also copy the thread debug | 
|  | register state for the ptid of PARENT to the state for CHILD_PID. | 
|  |  | 
|  | Like for clone events, we assume the kernel will copy the debug | 
|  | registers from the parent thread to the child. The | 
|  | low_prepare_to_resume function is made to work even if it doesn't. | 
|  |  | 
|  | We copy the thread state here and not in low_new_thread since we don't | 
|  | have the pid of the parent in low_new_thread.  Even if we did, | 
|  | low_new_thread might not be called immediately after the fork event is | 
|  | detected.  For instance, with the checkpointing system (see | 
|  | linux-fork.c), the thread won't be added until GDB decides to switch | 
|  | to a new checkpointed process.  At that point, the debug register | 
|  | state of the parent thread is unlikely to correspond to the state it | 
|  | had at the point when it forked.  */ | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::low_new_fork (struct lwp_info *parent, | 
|  | pid_t child_pid) | 
|  | { | 
|  | if ((!m_dreg_interface.detected_p ()) | 
|  | || (m_dreg_interface.unavailable_p ())) | 
|  | return; | 
|  |  | 
|  | auto process_it = m_process_info.find (parent->ptid.pid ()); | 
|  |  | 
|  | if (process_it != m_process_info.end ()) | 
|  | m_process_info[child_pid] = m_process_info[parent->ptid.pid ()]; | 
|  |  | 
|  | if (m_dreg_interface.hwdebug_p ()) | 
|  | { | 
|  | ptid_t child_ptid (child_pid, child_pid, 0); | 
|  |  | 
|  | copy_thread_dreg_state (parent->ptid, child_ptid); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Copy the thread debug register state from the PARENT thread to the the | 
|  | state for CHILD_LWP, if we're using the HWDEBUG interface.  We assume | 
|  | the kernel copies the debug registers from one thread to another after | 
|  | a clone event.  The low_prepare_to_resume function is made to work | 
|  | even if it doesn't.  */ | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::low_new_clone (struct lwp_info *parent, | 
|  | pid_t child_lwp) | 
|  | { | 
|  | if ((!m_dreg_interface.detected_p ()) | 
|  | || (m_dreg_interface.unavailable_p ())) | 
|  | return; | 
|  |  | 
|  | if (m_dreg_interface.hwdebug_p ()) | 
|  | { | 
|  | ptid_t child_ptid (parent->ptid.pid (), child_lwp, 0); | 
|  |  | 
|  | copy_thread_dreg_state (parent->ptid, child_ptid); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Initialize the arch-specific thread state for LP so that it contains | 
|  | the ptid for lp, so that we can use it in low_delete_thread.  Mark the | 
|  | new thread LP as stale so that we update its debug registers before | 
|  | resuming it.  This is not called for the initial thread.  */ | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::low_new_thread (struct lwp_info *lp) | 
|  | { | 
|  | init_arch_lwp_info (lp); | 
|  |  | 
|  | mark_thread_stale (lp); | 
|  | } | 
|  |  | 
|  | /* Delete the per-thread debug register stale flag.  */ | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::low_delete_thread (struct arch_lwp_info | 
|  | *lp_arch_info) | 
|  | { | 
|  | if (lp_arch_info != NULL) | 
|  | { | 
|  | if (m_dreg_interface.detected_p () | 
|  | && m_dreg_interface.hwdebug_p ()) | 
|  | m_installed_hw_bps.erase (lp_arch_info->lwp_ptid); | 
|  |  | 
|  | xfree (lp_arch_info); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Install or delete debug registers in thread LP so that it matches what | 
|  | GDB requested before it is resumed.  */ | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::low_prepare_to_resume (struct lwp_info *lp) | 
|  | { | 
|  | if ((!m_dreg_interface.detected_p ()) | 
|  | || (m_dreg_interface.unavailable_p ())) | 
|  | return; | 
|  |  | 
|  | /* We have to re-install or clear the debug registers if we set the | 
|  | stale flag. | 
|  |  | 
|  | In addition, some kernels configurations can disable a hardware | 
|  | watchpoint after it is hit.  Usually, GDB will remove and re-install | 
|  | a hardware watchpoint when the thread stops if "breakpoint | 
|  | always-inserted" is off, or to single-step a watchpoint.  But so | 
|  | that we don't rely on this behavior, if we stop due to a hardware | 
|  | breakpoint or watchpoint, we also refresh our debug registers.  */ | 
|  |  | 
|  | arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp); | 
|  |  | 
|  | bool stale_dregs = (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT | 
|  | || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT | 
|  | || lp_arch_info->debug_regs_stale); | 
|  |  | 
|  | if (!stale_dregs) | 
|  | return; | 
|  |  | 
|  | gdb_assert (lp->ptid.lwp_p ()); | 
|  |  | 
|  | auto process_it = m_process_info.find (lp->ptid.pid ()); | 
|  |  | 
|  | if (m_dreg_interface.hwdebug_p ()) | 
|  | { | 
|  | /* First, delete any hardware watchpoint or breakpoint installed in | 
|  | the inferior and update the thread state.  */ | 
|  | auto installed_it = m_installed_hw_bps.find (lp->ptid); | 
|  |  | 
|  | if (installed_it != m_installed_hw_bps.end ()) | 
|  | { | 
|  | auto &bp_list = installed_it->second; | 
|  |  | 
|  | for (auto bp_it = bp_list.begin (); bp_it != bp_list.end ();) | 
|  | { | 
|  | /* We ignore ENOENT to account for various possible kernel | 
|  | behaviors, e.g. the kernel might or might not copy debug | 
|  | registers across forks and clones, and we always copy | 
|  | the debug register state when fork and clone events are | 
|  | detected.  */ | 
|  | if (ptrace (PPC_PTRACE_DELHWDEBUG, lp->ptid.lwp (), 0, | 
|  | bp_it->first) < 0) | 
|  | if (errno != ENOENT) | 
|  | perror_with_name (_("Error deleting hardware " | 
|  | "breakpoint or watchpoint")); | 
|  |  | 
|  | /* We erase the entries one at a time after successfully | 
|  | removing the corresponding slot form the thread so that | 
|  | if we throw an exception above in a future iteration the | 
|  | map remains consistent.  */ | 
|  | bp_it = bp_list.erase (bp_it); | 
|  | } | 
|  |  | 
|  | gdb_assert (bp_list.empty ()); | 
|  | } | 
|  |  | 
|  | /* Now we install all the requested hardware breakpoints and | 
|  | watchpoints and update the thread state.  */ | 
|  |  | 
|  | if (process_it != m_process_info.end ()) | 
|  | { | 
|  | auto &bp_list = m_installed_hw_bps[lp->ptid]; | 
|  |  | 
|  | for (ppc_hw_breakpoint bp | 
|  | : process_it->second.requested_hw_bps) | 
|  | { | 
|  | long slot = ptrace (PPC_PTRACE_SETHWDEBUG, lp->ptid.lwp (), | 
|  | 0, &bp); | 
|  |  | 
|  | if (slot < 0) | 
|  | perror_with_name (_("Error setting hardware " | 
|  | "breakpoint or watchpoint")); | 
|  |  | 
|  | /* Keep track of which slots we installed in this | 
|  | thread.  */ | 
|  | bp_list.emplace (bp_list.begin (), slot, bp); | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | gdb_assert (m_dreg_interface.debugreg_p ()); | 
|  |  | 
|  | /* Passing 0 to PTRACE_SET_DEBUGREG will clear the watchpoint.  We | 
|  | always clear the watchpoint instead of just overwriting it, in | 
|  | case there is a request for a new watchpoint, because on some | 
|  | older kernel versions and configurations simply overwriting the | 
|  | watchpoint after it was hit would not re-enable it.  */ | 
|  | if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, 0) < 0) | 
|  | perror_with_name (_("Error clearing hardware watchpoint")); | 
|  |  | 
|  | /* GDB requested a watchpoint to be installed.  */ | 
|  | if (process_it != m_process_info.end () | 
|  | && process_it->second.requested_wp_val.has_value ()) | 
|  | { | 
|  | long wp = *(process_it->second.requested_wp_val); | 
|  |  | 
|  | if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, wp) < 0) | 
|  | perror_with_name (_("Error setting hardware watchpoint")); | 
|  | } | 
|  | } | 
|  |  | 
|  | lp_arch_info->debug_regs_stale = false; | 
|  | } | 
|  |  | 
|  | /* Return true if INFERIOR_PTID is known to have been stopped by a | 
|  | hardware watchpoint, false otherwise.  If true is returned, write the | 
|  | address that the kernel reported as causing the SIGTRAP in ADDR_P.  */ | 
|  |  | 
|  | bool | 
|  | ppc_linux_nat_target::low_stopped_data_address (CORE_ADDR *addr_p) | 
|  | { | 
|  | siginfo_t siginfo; | 
|  |  | 
|  | if (!linux_nat_get_siginfo (inferior_ptid, &siginfo)) | 
|  | return false; | 
|  |  | 
|  | if (siginfo.si_signo != SIGTRAP | 
|  | || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */) | 
|  | return false; | 
|  |  | 
|  | gdb_assert (!m_dreg_interface.unavailable_p ()); | 
|  |  | 
|  | /* Check if this signal corresponds to a hardware breakpoint.  We only | 
|  | need to check this if we're using the HWDEBUG interface, since the | 
|  | DEBUGREG interface only allows setting one hardware watchpoint.  */ | 
|  | if (m_dreg_interface.hwdebug_p ()) | 
|  | { | 
|  | /* The index (or slot) of the *point is passed in the si_errno | 
|  | field.  Currently, this is only the case if the kernel was | 
|  | configured with CONFIG_PPC_ADV_DEBUG_REGS.  If not, we assume | 
|  | the kernel will set si_errno to a value that doesn't correspond | 
|  | to any real slot.  */ | 
|  | int slot = siginfo.si_errno; | 
|  |  | 
|  | auto installed_it = m_installed_hw_bps.find (inferior_ptid); | 
|  |  | 
|  | /* We must have installed slots for the thread if it got a | 
|  | TRAP_HWBKPT signal.  */ | 
|  | gdb_assert (installed_it != m_installed_hw_bps.end ()); | 
|  |  | 
|  | for (const auto & slot_bp_pair : installed_it->second) | 
|  | if (slot_bp_pair.first == slot | 
|  | && (slot_bp_pair.second.trigger_type | 
|  | == PPC_BREAKPOINT_TRIGGER_EXECUTE)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return true if INFERIOR_PTID is known to have been stopped by a | 
|  | hardware watchpoint, false otherwise.  */ | 
|  |  | 
|  | bool | 
|  | ppc_linux_nat_target::low_stopped_by_watchpoint () | 
|  | { | 
|  | CORE_ADDR addr; | 
|  | return low_stopped_data_address (&addr); | 
|  | } | 
|  |  | 
|  | bool | 
|  | ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr, | 
|  | CORE_ADDR start, | 
|  | int length) | 
|  | { | 
|  | gdb_assert (!m_dreg_interface.unavailable_p ()); | 
|  |  | 
|  | int mask; | 
|  |  | 
|  | if (m_dreg_interface.hwdebug_p () | 
|  | && (linux_get_hwcap () & PPC_FEATURE_BOOKE)) | 
|  | return start <= addr && start + length >= addr; | 
|  | else if (linux_get_hwcap () & PPC_FEATURE_BOOKE) | 
|  | mask = 3; | 
|  | else | 
|  | mask = 7; | 
|  |  | 
|  | addr &= ~mask; | 
|  |  | 
|  | /* Check whether [start, start+length-1] intersects [addr, addr+mask].  */ | 
|  | return start <= addr + mask && start + length - 1 >= addr; | 
|  | } | 
|  |  | 
|  | /* Return the number of registers needed for a masked hardware watchpoint.  */ | 
|  |  | 
|  | int | 
|  | ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr, | 
|  | CORE_ADDR mask) | 
|  | { | 
|  | m_dreg_interface.detect (inferior_ptid); | 
|  |  | 
|  | if (!m_dreg_interface.hwdebug_p () | 
|  | || (m_dreg_interface.hwdebug_info ().features | 
|  | & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0) | 
|  | return -1; | 
|  | else if ((mask & 0xC0000000) != 0xC0000000) | 
|  | { | 
|  | warning (_("The given mask covers kernel address space " | 
|  | "and cannot be used.\n")); | 
|  |  | 
|  | return -2; | 
|  | } | 
|  | else | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* Copy the per-thread debug register state, if any, from thread | 
|  | PARENT_PTID to thread CHILD_PTID, if the debug register being used is | 
|  | HWDEBUG.  */ | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::copy_thread_dreg_state (const ptid_t &parent_ptid, | 
|  | const ptid_t &child_ptid) | 
|  | { | 
|  | gdb_assert (m_dreg_interface.hwdebug_p ()); | 
|  |  | 
|  | auto installed_it = m_installed_hw_bps.find (parent_ptid); | 
|  |  | 
|  | if (installed_it != m_installed_hw_bps.end ()) | 
|  | m_installed_hw_bps[child_ptid] = m_installed_hw_bps[parent_ptid]; | 
|  | } | 
|  |  | 
|  | /* Mark the debug register stale flag for the new thread, if we have | 
|  | already detected which debug register interface we use.  */ | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::mark_thread_stale (struct lwp_info *lp) | 
|  | { | 
|  | if ((!m_dreg_interface.detected_p ()) | 
|  | || (m_dreg_interface.unavailable_p ())) | 
|  | return; | 
|  |  | 
|  | arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp); | 
|  |  | 
|  | lp_arch_info->debug_regs_stale = true; | 
|  | } | 
|  |  | 
|  | /* Mark all the threads of the group of PID as stale with respect to | 
|  | debug registers and issue a stop request to each such thread that | 
|  | isn't already stopped.  */ | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::mark_debug_registers_changed (pid_t pid) | 
|  | { | 
|  | /* We do this in two passes to make sure all threads are marked even if | 
|  | we get an exception when stopping one of them.  */ | 
|  |  | 
|  | iterate_over_lwps (ptid_t (pid), | 
|  | [this] (struct lwp_info *lp) -> int { | 
|  | this->mark_thread_stale (lp); | 
|  | return 0; | 
|  | }); | 
|  |  | 
|  | iterate_over_lwps (ptid_t (pid), | 
|  | [] (struct lwp_info *lp) -> int { | 
|  | if (!lwp_is_stopped (lp)) | 
|  | linux_stop_lwp (lp); | 
|  | return 0; | 
|  | }); | 
|  | } | 
|  |  | 
|  | /* Register a hardware breakpoint or watchpoint BP for the pid PID, then | 
|  | mark the stale flag for all threads of the group of PID, and issue a | 
|  | stop request for them.  The breakpoint or watchpoint will be installed | 
|  | the next time each thread is resumed.  Should only be used if the | 
|  | debug register interface is HWDEBUG.  */ | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::register_hw_breakpoint (pid_t pid, | 
|  | const struct | 
|  | ppc_hw_breakpoint &bp) | 
|  | { | 
|  | gdb_assert (m_dreg_interface.hwdebug_p ()); | 
|  |  | 
|  | m_process_info[pid].requested_hw_bps.push_back (bp); | 
|  |  | 
|  | mark_debug_registers_changed (pid); | 
|  | } | 
|  |  | 
|  | /* Clear a registration for a hardware breakpoint or watchpoint BP for | 
|  | the pid PID, then mark the stale flag for all threads of the group of | 
|  | PID, and issue a stop request for them.  The breakpoint or watchpoint | 
|  | will be removed the next time each thread is resumed.  Should only be | 
|  | used if the debug register interface is HWDEBUG.  */ | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::clear_hw_breakpoint (pid_t pid, | 
|  | const struct ppc_hw_breakpoint &bp) | 
|  | { | 
|  | gdb_assert (m_dreg_interface.hwdebug_p ()); | 
|  |  | 
|  | auto process_it = m_process_info.find (pid); | 
|  |  | 
|  | gdb_assert (process_it != m_process_info.end ()); | 
|  |  | 
|  | auto bp_it = std::find_if (process_it->second.requested_hw_bps.begin (), | 
|  | process_it->second.requested_hw_bps.end (), | 
|  | [&bp, this] | 
|  | (const struct ppc_hw_breakpoint &curr) | 
|  | { return hwdebug_point_cmp (bp, curr); } | 
|  | ); | 
|  |  | 
|  | /* If GDB is removing a watchpoint, it must have been inserted.  */ | 
|  | gdb_assert (bp_it != process_it->second.requested_hw_bps.end ()); | 
|  |  | 
|  | process_it->second.requested_hw_bps.erase (bp_it); | 
|  |  | 
|  | mark_debug_registers_changed (pid); | 
|  | } | 
|  |  | 
|  | /* Register the hardware watchpoint value WP_VALUE for the pid PID, | 
|  | then mark the stale flag for all threads of the group of PID, and | 
|  | issue a stop request for them.  The breakpoint or watchpoint will be | 
|  | installed the next time each thread is resumed.  Should only be used | 
|  | if the debug register interface is DEBUGREG.  */ | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::register_wp (pid_t pid, long wp_value) | 
|  | { | 
|  | gdb_assert (m_dreg_interface.debugreg_p ()); | 
|  |  | 
|  | /* Our other functions should have told GDB that we only have one | 
|  | hardware watchpoint with this interface.  */ | 
|  | gdb_assert (!m_process_info[pid].requested_wp_val.has_value ()); | 
|  |  | 
|  | m_process_info[pid].requested_wp_val.emplace (wp_value); | 
|  |  | 
|  | mark_debug_registers_changed (pid); | 
|  | } | 
|  |  | 
|  | /* Clear the hardware watchpoint registration for the pid PID, then mark | 
|  | the stale flag for all threads of the group of PID, and issue a stop | 
|  | request for them.  The breakpoint or watchpoint will be installed the | 
|  | next time each thread is resumed.  Should only be used if the debug | 
|  | register interface is DEBUGREG.  */ | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::clear_wp (pid_t pid) | 
|  | { | 
|  | gdb_assert (m_dreg_interface.debugreg_p ()); | 
|  |  | 
|  | auto process_it = m_process_info.find (pid); | 
|  |  | 
|  | gdb_assert (process_it != m_process_info.end ()); | 
|  | gdb_assert (process_it->second.requested_wp_val.has_value ()); | 
|  |  | 
|  | process_it->second.requested_wp_val.reset (); | 
|  |  | 
|  | mark_debug_registers_changed (pid); | 
|  | } | 
|  |  | 
|  | /* Initialize the arch-specific thread state for LWP, if it not already | 
|  | created.  */ | 
|  |  | 
|  | void | 
|  | ppc_linux_nat_target::init_arch_lwp_info (struct lwp_info *lp) | 
|  | { | 
|  | if (lwp_arch_private_info (lp) == NULL) | 
|  | { | 
|  | lwp_set_arch_private_info (lp, XCNEW (struct arch_lwp_info)); | 
|  | lwp_arch_private_info (lp)->debug_regs_stale = false; | 
|  | lwp_arch_private_info (lp)->lwp_ptid = lp->ptid; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Get the arch-specific thread state for LWP, creating it if | 
|  | necessary.  */ | 
|  |  | 
|  | arch_lwp_info * | 
|  | ppc_linux_nat_target::get_arch_lwp_info (struct lwp_info *lp) | 
|  | { | 
|  | init_arch_lwp_info (lp); | 
|  |  | 
|  | return lwp_arch_private_info (lp); | 
|  | } | 
|  |  | 
|  | void _initialize_ppc_linux_nat (); | 
|  | void | 
|  | _initialize_ppc_linux_nat () | 
|  | { | 
|  | linux_target = &the_ppc_linux_nat_target; | 
|  |  | 
|  | /* Register the target.  */ | 
|  | add_inf_child_target (linux_target); | 
|  | } |