blob: 02ce2acfe006d1191eec9caad4143093a535f58c [file] [log] [blame]
/* tc-cris.c -- Assembler code for the CRIS CPU core.
Copyright (C) 2000-2021 Free Software Foundation, Inc.
Contributed by Axis Communications AB, Lund, Sweden.
Originally written for GAS 1.38.1 by Mikael Asker.
Updates, BFDizing, GNUifying and ELF support by Hans-Peter Nilsson.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the
Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "as.h"
#include "safe-ctype.h"
#include "subsegs.h"
#include "opcode/cris.h"
#include "dwarf2dbg.h"
/* Conventions used here:
Generally speaking, pointers to binutils types such as "fragS" and
"expressionS" get parameter and variable names ending in "P", such as
"fragP", to harmonize with the rest of the binutils code. Other
pointers get a "p" suffix, such as "bufp". Any function or type-name
that could clash with a current or future binutils or GAS function get
a "cris_" prefix. */
#define SYNTAX_RELAX_REG_PREFIX "no_register_prefix"
#define SYNTAX_ENFORCE_REG_PREFIX "register_prefix"
#define SYNTAX_USER_SYM_LEADING_UNDERSCORE "leading_underscore"
#define SYNTAX_USER_SYM_NO_LEADING_UNDERSCORE "no_leading_underscore"
#define REGISTER_PREFIX_CHAR '$'
/* True for expressions where getting X_add_symbol and X_add_number is
enough to get the "base" and "offset"; no need to make_expr_symbol.
It's not enough to check if X_op_symbol is NULL; that misses unary
operations like O_uminus. */
#define SIMPLE_EXPR(EXP) \
((EXP)->X_op == O_constant || (EXP)->X_op == O_symbol)
/* Like in ":GOT", ":GOTOFF" etc. Other ports use '@', but that's in
line_separator_chars for CRIS, so we avoid it. */
#define RELOC_SUFFIX_CHAR ':'
/* This might be CRIS_INSN_NONE if we're assembling a prefix-insn only.
Note that some prefix-insns might be assembled as CRIS_INSN_NORMAL. */
enum cris_insn_kind
{
CRIS_INSN_NORMAL, CRIS_INSN_NONE, CRIS_INSN_BRANCH, CRIS_INSN_MUL
};
/* An instruction will have one of these prefixes.
Although the same bit-pattern, we handle BDAP with an immediate
expression (eventually quick or [pc+]) different from when we only have
register expressions. */
enum prefix_kind
{
PREFIX_NONE, PREFIX_BDAP_IMM, PREFIX_BDAP, PREFIX_BIAP, PREFIX_DIP,
PREFIX_PUSH
};
/* The prefix for an instruction. */
struct cris_prefix
{
enum prefix_kind kind;
int base_reg_number;
unsigned int opcode;
/* There might be an expression to be evaluated, like I in [rN+I]. */
expressionS expr;
/* If there's an expression, we might need a relocation. Here's the
type of what relocation to start relaxation with.
The relocation is assumed to start immediately after the prefix insn,
so we don't provide an offset. */
enum bfd_reloc_code_real reloc;
};
/* The description of the instruction being assembled. */
struct cris_instruction
{
/* If CRIS_INSN_NONE, then this insn is of zero length. */
enum cris_insn_kind insn_type;
/* If a special register was mentioned, this is its description, else
it is NULL. */
const struct cris_spec_reg *spec_reg;
unsigned int opcode;
/* An insn may have at most one expression; theoretically there could be
another in its prefix (but I don't see how that could happen). */
expressionS expr;
/* The expression might need a relocation. Here's one to start
relaxation with. */
enum bfd_reloc_code_real reloc;
/* The size in bytes of an immediate expression, or zero if
nonapplicable. */
int imm_oprnd_size;
};
enum cris_archs
{
arch_cris_unknown,
arch_crisv0, arch_crisv3, arch_crisv8, arch_crisv10,
arch_cris_any_v0_v10, arch_crisv32, arch_cris_common_v10_v32
};
static enum cris_archs cris_arch_from_string (const char **);
static int cris_insn_ver_valid_for_arch (enum cris_insn_version_usage,
enum cris_archs);
static void cris_process_instruction (char *, struct cris_instruction *,
struct cris_prefix *);
static int get_bwd_size_modifier (char **, int *);
static int get_bw_size_modifier (char **, int *);
static int get_gen_reg (char **, int *);
static int get_spec_reg (char **, const struct cris_spec_reg **);
static int get_sup_reg (char **, int *);
static int get_autoinc_prefix_or_indir_op (char **, struct cris_prefix *,
int *, int *, int *,
expressionS *);
static int get_3op_or_dip_prefix_op (char **, struct cris_prefix *);
static int cris_get_expression (char **, expressionS *);
static int get_flags (char **, int *);
static void gen_bdap (int, expressionS *);
static int branch_disp (int);
static void gen_cond_branch_32 (char *, char *, fragS *, symbolS *, symbolS *,
long int);
static void cris_number_to_imm (char *, long, int, fixS *, segT);
static void s_syntax (int);
static void s_cris_file (int);
static void s_cris_loc (int);
static void s_cris_arch (int);
static void s_cris_dtpoff (int);
/* Get ":GOT", ":GOTOFF", ":PLT" etc. suffixes. */
static void cris_get_reloc_suffix (char **, bfd_reloc_code_real_type *,
expressionS *);
static unsigned int cris_get_specified_reloc_size (bfd_reloc_code_real_type);
/* All the .syntax functions. */
static void cris_force_reg_prefix (void);
static void cris_relax_reg_prefix (void);
static void cris_sym_leading_underscore (void);
static void cris_sym_no_leading_underscore (void);
static char *cris_insn_first_word_frag (void);
/* Handle to the opcode hash table. */
static htab_t op_hash = NULL;
/* If we target cris-axis-linux-gnu (as opposed to generic cris-axis-elf),
we default to no underscore and required register-prefixes. The
difference is in the default values. */
#ifdef TE_LINUX
#define DEFAULT_CRIS_AXIS_LINUX_GNU true
#else
#define DEFAULT_CRIS_AXIS_LINUX_GNU false
#endif
/* Whether we demand that registers have a `$' prefix. Default here. */
static bool demand_register_prefix = DEFAULT_CRIS_AXIS_LINUX_GNU;
/* Whether global user symbols have a leading underscore. Default here. */
static bool symbols_have_leading_underscore
= !DEFAULT_CRIS_AXIS_LINUX_GNU;
/* Whether or not we allow PIC, and expand to PIC-friendly constructs. */
static bool pic = false;
/* Whether or not we allow TLS suffixes. For the moment, we always do. */
static const bool tls = true;
/* If we're configured for "cris", default to allow all v0..v10
instructions and register names. */
#ifndef DEFAULT_CRIS_ARCH
#define DEFAULT_CRIS_ARCH cris_any_v0_v10
#endif
/* No whitespace in the CONCAT2 parameter list. */
static enum cris_archs cris_arch = XCONCAT2 (arch_,DEFAULT_CRIS_ARCH);
const pseudo_typeS md_pseudo_table[] =
{
{"dword", cons, 4},
{"dtpoffd", s_cris_dtpoff, 4},
{"syntax", s_syntax, 0},
{"file", s_cris_file, 0},
{"loc", s_cris_loc, 0},
{"arch", s_cris_arch, 0},
{NULL, 0, 0}
};
static int warn_for_branch_expansion = 0;
/* Whether to emit error when a MULS/MULU could be located last on a
cache-line. */
static int err_for_dangerous_mul_placement
= (XCONCAT2 (arch_,DEFAULT_CRIS_ARCH) != arch_crisv32);
const char cris_comment_chars[] = ";";
/* This array holds the chars that only start a comment at the beginning of
a line. If the line seems to have the form '# 123 filename'
.line and .file directives will appear in the pre-processed output. */
/* Note that input_file.c hand-checks for '#' at the beginning of the
first line of the input file. This is because the compiler outputs
#NO_APP at the beginning of its output. */
/* Also note that slash-star will always start a comment. */
const char line_comment_chars[] = "#";
const char line_separator_chars[] = "@";
/* Now all floating point support is shut off. See md_atof. */
const char EXP_CHARS[] = "";
const char FLT_CHARS[] = "";
/* For CRIS, we encode the relax_substateTs (in e.g. fr_substate) as:
2 1 0
---/ /--+-----------------+-----------------+-----------------+
| what state ? | how long ? |
---/ /--+-----------------+-----------------+-----------------+
The "how long" bits are 00 = byte, 01 = word, 10 = dword (long).
Not all lengths are legit for a given value of (what state).
Groups for CRIS address relaxing:
1. Bcc (pre-V32)
length: byte, word, 10-byte expansion
2. BDAP
length: byte, word, dword
3. MULS/MULU
Not really a relaxation (no infrastructure to get delay-slots
right), just an alignment and placement checker for the v10
multiply/cache-bug.
4. Bcc (V32 and later)
length: byte, word, 14-byte expansion
5. Bcc (V10+V32)
length: byte, word, error
6. BA (V32)
length: byte, word, dword
7. LAPC (V32)
length: byte, dword
*/
#define STATE_COND_BRANCH (1)
#define STATE_BASE_PLUS_DISP_PREFIX (2)
#define STATE_MUL (3)
#define STATE_COND_BRANCH_V32 (4)
#define STATE_COND_BRANCH_COMMON (5)
#define STATE_ABS_BRANCH_V32 (6)
#define STATE_LAPC (7)
#define STATE_COND_BRANCH_PIC (8)
#define STATE_LENGTH_MASK (3)
#define STATE_BYTE (0)
#define STATE_WORD (1)
#define STATE_DWORD (2)
/* Symbol undefined. */
#define STATE_UNDF (3)
#define STATE_MAX_LENGTH (3)
/* These displacements are relative to the address following the opcode
word of the instruction. The first letter is Byte, Word. The 2nd
letter is Forward, Backward. */
#define BRANCH_BF ( 254)
#define BRANCH_BB (-256)
#define BRANCH_BF_V32 ( 252)
#define BRANCH_BB_V32 (-258)
#define BRANCH_WF (2 + 32767)
#define BRANCH_WB (2 + -32768)
#define BRANCH_WF_V32 (-2 + 32767)
#define BRANCH_WB_V32 (-2 + -32768)
#define BDAP_BF ( 127)
#define BDAP_BB (-128)
#define BDAP_WF ( 32767)
#define BDAP_WB (-32768)
#define ENCODE_RELAX(what, length) (((what) << 2) + (length))
const relax_typeS md_cris_relax_table[] =
{
/* Error sentinel (0, 0). */
{1, 1, 0, 0},
/* Unused (0, 1). */
{1, 1, 0, 0},
/* Unused (0, 2). */
{1, 1, 0, 0},
/* Unused (0, 3). */
{1, 1, 0, 0},
/* Bcc o (1, 0). */
{BRANCH_BF, BRANCH_BB, 0, ENCODE_RELAX (1, 1)},
/* Bcc [PC+] (1, 1). */
{BRANCH_WF, BRANCH_WB, 2, ENCODE_RELAX (1, 2)},
/* BEXT/BWF, BA, JUMP (external), JUMP (always), Bnot_cc, JUMP (default)
(1, 2). */
{0, 0, 10, 0},
/* Unused (1, 3). */
{1, 1, 0, 0},
/* BDAP o (2, 0). */
{BDAP_BF, BDAP_BB, 0, ENCODE_RELAX (2, 1)},
/* BDAP.[bw] [PC+] (2, 1). */
{BDAP_WF, BDAP_WB, 2, ENCODE_RELAX (2, 2)},
/* BDAP.d [PC+] (2, 2). */
{0, 0, 4, 0},
/* Unused (2, 3). */
{1, 1, 0, 0},
/* MULS/MULU (3, 0). Positions (3, 1..3) are unused. */
{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
/* V32: Bcc o (4, 0). */
{BRANCH_BF_V32, BRANCH_BB_V32, 0, ENCODE_RELAX (4, 1)},
/* V32: Bcc [PC+] (4, 1). */
{BRANCH_WF_V32, BRANCH_WB_V32, 2, ENCODE_RELAX (4, 2)},
/* V32: BA .+12; NOP; BA32 target; NOP; Bcc .-6 (4, 2). */
{0, 0, 12, 0},
/* Unused (4, 3). */
{1, 1, 0, 0},
/* COMMON: Bcc o (5, 0). The offsets are calculated as for v32. Code
should contain two nop insns (or four if offset size is large or
unknown) after every label. */
{BRANCH_BF_V32, BRANCH_BB_V32, 0, ENCODE_RELAX (5, 1)},
/* COMMON: Bcc [PC+] (5, 1). */
{BRANCH_WF_V32, BRANCH_WB_V32, 2, ENCODE_RELAX (5, 2)},
/* COMMON: FIXME: ???. Treat as error currently. */
{0, 0, 12, 0},
/* Unused (5, 3). */
{1, 1, 0, 0},
/* V32: BA o (6, 0). */
{BRANCH_BF_V32, BRANCH_BB_V32, 0, ENCODE_RELAX (6, 1)},
/* V32: BA.W (6, 1). */
{BRANCH_WF_V32, BRANCH_WB_V32, 2, ENCODE_RELAX (6, 2)},
/* V32: BA.D (6, 2). */
{0, 0, 4, 0},
/* Unused (6, 3). */
{1, 1, 0, 0},
/* LAPC: LAPCQ .+0..15*2,Rn (7, 0). */
{14*2, -1*2, 0, ENCODE_RELAX (7, 2)},
/* Unused (7, 1).
While there's a shorter sequence, e.g. LAPCQ + an ADDQ or SUBQ,
that would affect flags, so we can't do that as it wouldn't be a
proper insn expansion of LAPCQ. This row is associated with a
2-byte expansion, so it's unused rather than the next. */
{1, 1, 0, 0},
/* LAPC: LAPC.D (7, 2). */
{0, 0, 4, 0},
/* Unused (7, 3). */
{1, 1, 0, 0},
/* PIC for pre-v32: Bcc o (8, 0). */
{BRANCH_BF, BRANCH_BB, 0, ENCODE_RELAX (STATE_COND_BRANCH_PIC, 1)},
/* Bcc [PC+] (8, 1). */
{BRANCH_WF, BRANCH_WB, 2, ENCODE_RELAX (STATE_COND_BRANCH_PIC, 2)},
/* 32-bit expansion, PIC (8, 2). */
{0, 0, 12, 0},
/* Unused (8, 3). */
{1, 1, 0, 0}
};
#undef BDAP_BF
#undef BDAP_BB
#undef BDAP_WF
#undef BDAP_WB
/* Target-specific multicharacter options, not const-declared. */
struct option md_longopts[] =
{
#define OPTION_NO_US (OPTION_MD_BASE + 0)
{"no-underscore", no_argument, NULL, OPTION_NO_US},
#define OPTION_US (OPTION_MD_BASE + 1)
{"underscore", no_argument, NULL, OPTION_US},
#define OPTION_PIC (OPTION_US + 1)
{"pic", no_argument, NULL, OPTION_PIC},
#define OPTION_MULBUG_ABORT_ON (OPTION_PIC + 1)
{"mul-bug-abort", no_argument, NULL, OPTION_MULBUG_ABORT_ON},
#define OPTION_MULBUG_ABORT_OFF (OPTION_MULBUG_ABORT_ON + 1)
{"no-mul-bug-abort", no_argument, NULL, OPTION_MULBUG_ABORT_OFF},
#define OPTION_ARCH (OPTION_MULBUG_ABORT_OFF + 1)
{"march", required_argument, NULL, OPTION_ARCH},
{NULL, no_argument, NULL, 0}
};
/* Not const-declared. */
size_t md_longopts_size = sizeof (md_longopts);
const char *md_shortopts = "hHN";
/* At first glance, this may seems wrong and should be 4 (ba + nop); but
since a short_jump must skip a *number* of long jumps, it must also be
a long jump. Here, we hope to make it a "ba [16bit_offs]" and a "nop"
for the delay slot and hope that the jump table at most needs
32767/4=8191 long-jumps. A branch is better than a jump, since it is
relative; we will not have a reloc to fix up somewhere.
Note that we can't add relocs, because relaxation uses these fixed
numbers, and md_create_short_jump is called after relaxation. */
int md_short_jump_size = 6;
/* The v32 version has a delay-slot, hence two bytes longer.
The pre-v32 PIC version uses a prefixed insn. */
#define cris_any_v0_v10_long_jump_size 6
#define cris_any_v0_v10_long_jump_size_pic 8
#define crisv32_long_jump_size 8
int md_long_jump_size = XCONCAT2 (DEFAULT_CRIS_ARCH,_long_jump_size);
/* Report output format. Small changes in output format (like elf
variants below) can happen until all options are parsed, but after
that, the output format must remain fixed. */
const char *
cris_target_format (void)
{
switch (OUTPUT_FLAVOR)
{
case bfd_target_aout_flavour:
return "a.out-cris";
case bfd_target_elf_flavour:
if (symbols_have_leading_underscore)
return "elf32-us-cris";
return "elf32-cris";
default:
abort ();
return NULL;
}
}
/* Return a bfd_mach_cris... value corresponding to the value of
cris_arch. */
unsigned int
cris_mach (void)
{
unsigned int retval = 0;
switch (cris_arch)
{
case arch_cris_common_v10_v32:
retval = bfd_mach_cris_v10_v32;
break;
case arch_crisv32:
retval = bfd_mach_cris_v32;
break;
case arch_crisv10:
case arch_cris_any_v0_v10:
retval = bfd_mach_cris_v0_v10;
break;
default:
BAD_CASE (cris_arch);
}
return retval;
}
/* We need a port-specific relaxation function to cope with sym2 - sym1
relative expressions with both symbols in the same segment (but not
necessarily in the same frag as this insn), for example:
move.d [pc+sym2-(sym1-2)],r10
sym1:
The offset can be 8, 16 or 32 bits long. */
long
cris_relax_frag (segT seg ATTRIBUTE_UNUSED, fragS *fragP,
long stretch ATTRIBUTE_UNUSED)
{
long growth;
offsetT aim = 0;
symbolS *symbolP;
const relax_typeS *this_type;
const relax_typeS *start_type;
relax_substateT next_state;
relax_substateT this_state;
const relax_typeS *table = TC_GENERIC_RELAX_TABLE;
/* We only have to cope with frags as prepared by
md_estimate_size_before_relax. The dword cases may get here
because of the different reasons that they aren't relaxable. */
switch (fragP->fr_subtype)
{
case ENCODE_RELAX (STATE_COND_BRANCH_PIC, STATE_DWORD):
case ENCODE_RELAX (STATE_COND_BRANCH, STATE_DWORD):
case ENCODE_RELAX (STATE_COND_BRANCH_V32, STATE_DWORD):
case ENCODE_RELAX (STATE_COND_BRANCH_COMMON, STATE_DWORD):
case ENCODE_RELAX (STATE_ABS_BRANCH_V32, STATE_DWORD):
case ENCODE_RELAX (STATE_LAPC, STATE_DWORD):
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD):
/* When we get to these states, the frag won't grow any more. */
return 0;
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_WORD):
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE):
if (fragP->fr_symbol == NULL
|| S_GET_SEGMENT (fragP->fr_symbol) != absolute_section)
as_fatal (_("internal inconsistency problem in %s: fr_symbol %lx"),
__FUNCTION__, (long) fragP->fr_symbol);
symbolP = fragP->fr_symbol;
if (symbol_resolved_p (symbolP))
as_fatal (_("internal inconsistency problem in %s: resolved symbol"),
__FUNCTION__);
aim = S_GET_VALUE (symbolP);
break;
case ENCODE_RELAX (STATE_MUL, STATE_BYTE):
/* Nothing to do here. */
return 0;
default:
as_fatal (_("internal inconsistency problem in %s: fr_subtype %d"),
__FUNCTION__, fragP->fr_subtype);
}
/* The rest is stolen from relax_frag. There's no obvious way to
share the code, but fortunately no requirement to keep in sync as
long as fragP->fr_symbol does not have its segment changed. */
this_state = fragP->fr_subtype;
start_type = this_type = table + this_state;
if (aim < 0)
{
/* Look backwards. */
for (next_state = this_type->rlx_more; next_state;)
if (aim >= this_type->rlx_backward)
next_state = 0;
else
{
/* Grow to next state. */
this_state = next_state;
this_type = table + this_state;
next_state = this_type->rlx_more;
}
}
else
{
/* Look forwards. */
for (next_state = this_type->rlx_more; next_state;)
if (aim <= this_type->rlx_forward)
next_state = 0;
else
{
/* Grow to next state. */
this_state = next_state;
this_type = table + this_state;
next_state = this_type->rlx_more;
}
}
growth = this_type->rlx_length - start_type->rlx_length;
if (growth != 0)
fragP->fr_subtype = this_state;
return growth;
}
/* Prepare machine-dependent frags for relaxation.
Called just before relaxation starts. Any symbol that is now undefined
will not become defined.
Return the correct fr_subtype in the frag.
Return the initial "guess for fr_var" to caller. The guess for fr_var
is *actually* the growth beyond fr_fix. Whatever we do to grow fr_fix
or fr_var contributes to our returned value.
Although it may not be explicit in the frag, pretend
fr_var starts with a value. */
int
md_estimate_size_before_relax (fragS *fragP, segT segment_type)
{
int old_fr_fix;
symbolS *symbolP = fragP->fr_symbol;
#define HANDLE_RELAXABLE(state) \
case ENCODE_RELAX (state, STATE_UNDF): \
if (symbolP != NULL \
&& S_GET_SEGMENT (symbolP) == segment_type \
&& !S_IS_WEAK (symbolP)) \
/* The symbol lies in the same segment - a relaxable \
case. */ \
fragP->fr_subtype \
= ENCODE_RELAX (state, STATE_BYTE); \
else \
/* Unknown or not the same segment, so not relaxable. */ \
fragP->fr_subtype \
= ENCODE_RELAX (state, STATE_DWORD); \
fragP->fr_var \
= md_cris_relax_table[fragP->fr_subtype].rlx_length; \
break
old_fr_fix = fragP->fr_fix;
switch (fragP->fr_subtype)
{
HANDLE_RELAXABLE (STATE_COND_BRANCH);
HANDLE_RELAXABLE (STATE_COND_BRANCH_V32);
HANDLE_RELAXABLE (STATE_COND_BRANCH_COMMON);
HANDLE_RELAXABLE (STATE_COND_BRANCH_PIC);
HANDLE_RELAXABLE (STATE_ABS_BRANCH_V32);
case ENCODE_RELAX (STATE_LAPC, STATE_UNDF):
if (symbolP != NULL
&& S_GET_SEGMENT (symbolP) == segment_type
&& !S_IS_WEAK (symbolP))
{
/* The symbol lies in the same segment - a relaxable case.
Check if we currently have an odd offset; we can't code
that into the instruction. Relaxing presumably only cause
multiple-of-two changes, so we should only need to adjust
for that here. */
bfd_vma target_address
= (symbolP
? S_GET_VALUE (symbolP)
: 0) + fragP->fr_offset;
bfd_vma var_part_offset = fragP->fr_fix;
bfd_vma address_of_var_part = fragP->fr_address + var_part_offset;
long offset = target_address - (address_of_var_part - 2);
fragP->fr_subtype
= (offset & 1)
? ENCODE_RELAX (STATE_LAPC, STATE_DWORD)
: ENCODE_RELAX (STATE_LAPC, STATE_BYTE);
}
else
/* Unknown or not the same segment, so not relaxable. */
fragP->fr_subtype
= ENCODE_RELAX (STATE_LAPC, STATE_DWORD);
fragP->fr_var
= md_cris_relax_table[fragP->fr_subtype].rlx_length;
break;
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_UNDF):
/* Note that we can not do anything sane with relaxing
[rX + a_known_symbol_in_text], it will have to be a 32-bit
value.
We could play tricks with managing a constant pool and make
a_known_symbol_in_text a "bdap [pc + offset]" pointing there
(like the GOT for ELF shared libraries), but that's no use, it
would in general be no shorter or faster code, only more
complicated. */
if (S_GET_SEGMENT (symbolP) != absolute_section)
{
/* Go for dword if not absolute or same segment. */
fragP->fr_subtype
= ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD);
fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length;
}
else if (!symbol_resolved_p (fragP->fr_symbol))
{
/* The symbol will eventually be completely resolved as an
absolute expression, but right now it depends on the result
of relaxation and we don't know anything else about the
value. We start relaxation with the assumption that it'll
fit in a byte. */
fragP->fr_subtype
= ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE);
fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length;
}
else
{
/* Absolute expression. */
long int value;
value = (symbolP != NULL
? S_GET_VALUE (symbolP) : 0) + fragP->fr_offset;
if (value >= -128 && value <= 127)
{
/* Byte displacement. */
(fragP->fr_opcode)[0] = value;
}
else
{
/* Word or dword displacement. */
int pow2_of_size = 1;
char *writep;
if (value < -32768 || value > 32767)
{
/* Outside word range, make it a dword. */
pow2_of_size = 2;
}
/* Modify the byte-offset BDAP into a word or dword offset
BDAP. Or really, a BDAP rX,8bit into a
BDAP.[wd] rX,[PC+] followed by a word or dword. */
(fragP->fr_opcode)[0] = BDAP_PC_LOW + pow2_of_size * 16;
/* Keep the register number in the highest four bits. */
(fragP->fr_opcode)[1] &= 0xF0;
(fragP->fr_opcode)[1] |= BDAP_INCR_HIGH;
/* It grew by two or four bytes. */
fragP->fr_fix += 1 << pow2_of_size;
writep = fragP->fr_literal + old_fr_fix;
md_number_to_chars (writep, value, 1 << pow2_of_size);
}
frag_wane (fragP);
}
break;
case ENCODE_RELAX (STATE_COND_BRANCH, STATE_BYTE):
case ENCODE_RELAX (STATE_COND_BRANCH, STATE_WORD):
case ENCODE_RELAX (STATE_COND_BRANCH, STATE_DWORD):
case ENCODE_RELAX (STATE_COND_BRANCH_PIC, STATE_BYTE):
case ENCODE_RELAX (STATE_COND_BRANCH_PIC, STATE_WORD):
case ENCODE_RELAX (STATE_COND_BRANCH_PIC, STATE_DWORD):
case ENCODE_RELAX (STATE_COND_BRANCH_V32, STATE_BYTE):
case ENCODE_RELAX (STATE_COND_BRANCH_V32, STATE_WORD):
case ENCODE_RELAX (STATE_COND_BRANCH_V32, STATE_DWORD):
case ENCODE_RELAX (STATE_COND_BRANCH_COMMON, STATE_BYTE):
case ENCODE_RELAX (STATE_COND_BRANCH_COMMON, STATE_WORD):
case ENCODE_RELAX (STATE_COND_BRANCH_COMMON, STATE_DWORD):
case ENCODE_RELAX (STATE_ABS_BRANCH_V32, STATE_BYTE):
case ENCODE_RELAX (STATE_ABS_BRANCH_V32, STATE_WORD):
case ENCODE_RELAX (STATE_ABS_BRANCH_V32, STATE_DWORD):
case ENCODE_RELAX (STATE_LAPC, STATE_BYTE):
case ENCODE_RELAX (STATE_LAPC, STATE_DWORD):
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE):
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_WORD):
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD):
/* When relaxing a section for the second time, we don't need to
do anything except making sure that fr_var is set right. */
fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length;
break;
case ENCODE_RELAX (STATE_MUL, STATE_BYTE):
/* Nothing to do here. */
break;
default:
BAD_CASE (fragP->fr_subtype);
}
return fragP->fr_var + (fragP->fr_fix - old_fr_fix);
}
/* Perform post-processing of machine-dependent frags after relaxation.
Called after relaxation is finished.
In: Address of frag.
fr_type == rs_machine_dependent.
fr_subtype is what the address relaxed to.
Out: Any fixS:s and constants are set up.
The caller will turn the frag into a ".space 0". */
void
md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
fragS *fragP)
{
/* Pointer to first byte in variable-sized part of the frag. */
char *var_partp;
/* Pointer to first opcode byte in frag. */
char *opcodep;
/* Used to check integrity of the relaxation.
One of 2 = long, 1 = word, or 0 = byte. */
int length_code ATTRIBUTE_UNUSED;
/* Size in bytes of variable-sized part of frag. */
int var_part_size = 0;
/* This is part of *fragP. It contains all information about addresses
and offsets to varying parts. */
symbolS *symbolP;
unsigned long var_part_offset;
/* Where, in file space, is _var of *fragP? */
unsigned long address_of_var_part = 0;
/* Where, in file space, does addr point? */
unsigned long target_address;
know (fragP->fr_type == rs_machine_dependent);
length_code = fragP->fr_subtype & STATE_LENGTH_MASK;
know (length_code >= 0 && length_code < STATE_MAX_LENGTH);
var_part_offset = fragP->fr_fix;
var_partp = fragP->fr_literal + var_part_offset;
opcodep = fragP->fr_opcode;
symbolP = fragP->fr_symbol;
target_address = (symbolP ? S_GET_VALUE (symbolP) : 0) + fragP->fr_offset;
address_of_var_part = fragP->fr_address + var_part_offset;
switch (fragP->fr_subtype)
{
case ENCODE_RELAX (STATE_COND_BRANCH, STATE_BYTE):
case ENCODE_RELAX (STATE_COND_BRANCH_PIC, STATE_BYTE):
case ENCODE_RELAX (STATE_COND_BRANCH_V32, STATE_BYTE):
case ENCODE_RELAX (STATE_COND_BRANCH_COMMON, STATE_BYTE):
case ENCODE_RELAX (STATE_ABS_BRANCH_V32, STATE_BYTE):
opcodep[0] = branch_disp ((target_address - address_of_var_part));
var_part_size = 0;
break;
case ENCODE_RELAX (STATE_COND_BRANCH, STATE_WORD):
case ENCODE_RELAX (STATE_COND_BRANCH_PIC, STATE_WORD):
case ENCODE_RELAX (STATE_COND_BRANCH_V32, STATE_WORD):
case ENCODE_RELAX (STATE_COND_BRANCH_COMMON, STATE_WORD):
case ENCODE_RELAX (STATE_ABS_BRANCH_V32, STATE_WORD):
/* We had a quick immediate branch, now turn it into a word one i.e. a
PC autoincrement. */
opcodep[0] = BRANCH_PC_LOW;
opcodep[1] &= 0xF0;
opcodep[1] |= BRANCH_INCR_HIGH;
md_number_to_chars (var_partp,
(long)
(target_address
- (address_of_var_part
+ (cris_arch == arch_crisv32
|| cris_arch == arch_cris_common_v10_v32
? -2 : 2))),
2);
var_part_size = 2;
break;
case ENCODE_RELAX (STATE_COND_BRANCH, STATE_DWORD):
gen_cond_branch_32 (fragP->fr_opcode, var_partp, fragP,
fragP->fr_symbol, (symbolS *) NULL,
fragP->fr_offset);
/* Ten bytes added: a branch, nop and a jump. */
var_part_size = 2 + 2 + 4 + 2;
break;
case ENCODE_RELAX (STATE_COND_BRANCH_PIC, STATE_DWORD):
gen_cond_branch_32 (fragP->fr_opcode, var_partp, fragP,
fragP->fr_symbol, (symbolS *) NULL,
fragP->fr_offset);
/* Twelve bytes added: a branch, nop and a pic-branch-32. */
var_part_size = 2 + 2 + 4 + 2 + 2;
break;
case ENCODE_RELAX (STATE_COND_BRANCH_V32, STATE_DWORD):
gen_cond_branch_32 (fragP->fr_opcode, var_partp, fragP,
fragP->fr_symbol, (symbolS *) NULL,
fragP->fr_offset);
/* Twelve bytes added: a branch, nop and another branch and nop. */
var_part_size = 2 + 2 + 2 + 4 + 2;
break;
case ENCODE_RELAX (STATE_COND_BRANCH_COMMON, STATE_DWORD):
as_bad_where (fragP->fr_file, fragP->fr_line,
_("Relaxation to long branches for .arch common_v10_v32\
not implemented"));
/* Pretend we have twelve bytes for sake of quelling further
errors. */
var_part_size = 2 + 2 + 2 + 4 + 2;
break;
case ENCODE_RELAX (STATE_ABS_BRANCH_V32, STATE_DWORD):
/* We had a quick immediate branch or a word immediate ba. Now
turn it into a dword one. */
opcodep[0] = BA_DWORD_OPCODE & 255;
opcodep[1] = (BA_DWORD_OPCODE >> 8) & 255;
fix_new (fragP, var_partp - fragP->fr_literal, 4, symbolP,
fragP->fr_offset + 6, 1, BFD_RELOC_32_PCREL);
var_part_size = 4;
break;
case ENCODE_RELAX (STATE_LAPC, STATE_BYTE):
{
long offset = target_address - (address_of_var_part - 2);
/* This is mostly a sanity check; useful occurrences (if there
really are any) should have been caught in
md_estimate_size_before_relax. We can (at least
theoretically) stumble over invalid code with odd sizes and
.p2aligns within the code, so emit an error if that happens.
(The generic relaxation machinery is not fit to check this.) */
if (offset & 1)
as_bad_where (fragP->fr_file, fragP->fr_line,
_("Complicated LAPC target operand is not\
a multiple of two. Use LAPC.D"));
/* FIXME: This *is* a sanity check. Remove when done with. */
if (offset > 15*2 || offset < 0)
as_fatal (_("Internal error found in md_convert_frag: offset %ld.\
Please report this."),
offset);
opcodep[0] |= (offset / 2) & 0xf;
var_part_size = 0;
}
break;
case ENCODE_RELAX (STATE_LAPC, STATE_DWORD):
{
md_number_to_chars (opcodep,
LAPC_DWORD_OPCODE + (opcodep[1] & 0xf0) * 256,
2);
/* Remember that the reloc is against the position *after* the
relocated contents, so we need to adjust to the start of
the insn. */
fix_new (fragP, var_partp - fragP->fr_literal, 4, fragP->fr_symbol,
fragP->fr_offset + 6, 1, BFD_RELOC_32_PCREL);
var_part_size = 4;
}
break;
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE):
if (symbolP == NULL)
as_fatal (_("internal inconsistency in %s: bdapq no symbol"),
__FUNCTION__);
opcodep[0] = S_GET_VALUE (symbolP);
var_part_size = 0;
break;
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_WORD):
/* We had a BDAP 8-bit "quick immediate", now turn it into a 16-bit
one that uses PC autoincrement. */
opcodep[0] = BDAP_PC_LOW + (1 << 4);
opcodep[1] &= 0xF0;
opcodep[1] |= BDAP_INCR_HIGH;
if (symbolP == NULL)
as_fatal (_("internal inconsistency in %s: bdap.w with no symbol"),
__FUNCTION__);
md_number_to_chars (var_partp, S_GET_VALUE (symbolP), 2);
var_part_size = 2;
break;
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD):
/* We had a BDAP 16-bit "word", change the offset to a dword. */
opcodep[0] = BDAP_PC_LOW + (2 << 4);
opcodep[1] &= 0xF0;
opcodep[1] |= BDAP_INCR_HIGH;
if (fragP->fr_symbol == NULL)
md_number_to_chars (var_partp, fragP->fr_offset, 4);
else
fix_new (fragP, var_partp - fragP->fr_literal, 4, fragP->fr_symbol,
fragP->fr_offset, 0, BFD_RELOC_32);
var_part_size = 4;
break;
case ENCODE_RELAX (STATE_MUL, STATE_BYTE):
/* This is the only time we check position and alignment of the
placement-tracking frag. */
if (sec->alignment_power < 2)
as_bad_where (fragP->fr_file, fragP->fr_line,
_("section alignment must be >= 4 bytes to check MULS/MULU safeness"));
else
{
/* If the address after the MULS/MULU has alignment which is
that of the section and may be that of a cache-size of the
buggy versions, then the MULS/MULU can be placed badly. */
if ((address_of_var_part
& ((1 << sec->alignment_power) - 1) & 31) == 0)
as_bad_where (fragP->fr_file, fragP->fr_line,
_("dangerous MULS/MULU location; give it higher alignment"));
}
break;
default:
BAD_CASE (fragP->fr_subtype);
break;
}
fragP->fr_fix += var_part_size;
}
/* Generate a short jump around a secondary jump table.
Also called from md_create_long_jump, when sufficient. */
void
md_create_short_jump (char *storep, addressT from_addr, addressT to_addr,
fragS *fragP ATTRIBUTE_UNUSED,
symbolS *to_symbol ATTRIBUTE_UNUSED)
{
long int distance;
/* See md_create_long_jump about the comment on the "+ 2". */
long int max_minimal_minus_distance;
long int max_minimal_plus_distance;
long int max_minus_distance;
long int max_plus_distance;
int nop_opcode;
if (cris_arch == arch_crisv32)
{
max_minimal_minus_distance = BRANCH_BB_V32 + 2;
max_minimal_plus_distance = BRANCH_BF_V32 + 2;
max_minus_distance = BRANCH_WB_V32 + 2;
max_plus_distance = BRANCH_WF_V32 + 2;
nop_opcode = NOP_OPCODE_V32;
}
else if (cris_arch == arch_cris_common_v10_v32)
/* Bail out for compatibility mode. (It seems it can be implemented,
perhaps with a 10-byte sequence: "move.d NNNN,$pc/$acr", "jump
$acr", "nop"; but doesn't seem worth it at the moment.) */
as_fatal (_("Out-of-range .word offset handling\
is not implemented for .arch common_v10_v32"));
else
{
max_minimal_minus_distance = BRANCH_BB + 2;
max_minimal_plus_distance = BRANCH_BF + 2;
max_minus_distance = BRANCH_WB + 2;
max_plus_distance = BRANCH_WF + 2;
nop_opcode = NOP_OPCODE;
}
distance = to_addr - from_addr;
if (max_minimal_minus_distance <= distance
&& distance <= max_minimal_plus_distance)
{
/* Create a "short" short jump: "BA distance - 2". */
storep[0] = branch_disp (distance - 2);
storep[1] = BA_QUICK_HIGH;
/* A nop for the delay slot. */
md_number_to_chars (storep + 2, nop_opcode, 2);
/* The extra word should be filled with something sane too. Make it
a nop to keep disassembly sane. */
md_number_to_chars (storep + 4, nop_opcode, 2);
}
else if (max_minus_distance <= distance
&& distance <= max_plus_distance)
{
/* Make it a "long" short jump: "BA (PC+)". */
md_number_to_chars (storep, BA_PC_INCR_OPCODE, 2);
/* ".WORD distance - 4". */
md_number_to_chars (storep + 2,
(long) (distance - 4
- (cris_arch == arch_crisv32
? -4 : 0)),
2);
/* A nop for the delay slot. */
md_number_to_chars (storep + 4, nop_opcode, 2);
}
else
as_bad_where (fragP->fr_file, fragP->fr_line,
_(".word case-table handling failed: table too large"));
}
/* Generate a long jump in a secondary jump table.
storep Where to store the jump instruction.
from_addr Address of the jump instruction.
to_addr Destination address of the jump.
fragP Which frag the destination address operand
lies in.
to_symbol Destination symbol. */
void
md_create_long_jump (char *storep, addressT from_addr, addressT to_addr,
fragS *fragP, symbolS *to_symbol)
{
long int distance;
/* FIXME: What's that "+ 3"? It comes from the magic numbers that
used to be here, it's just translated to the limit macros used in
the relax table. But why + 3? */
long int max_short_minus_distance
= cris_arch != arch_crisv32 ? BRANCH_WB + 3 : BRANCH_WB_V32 + 3;
long int max_short_plus_distance
= cris_arch != arch_crisv32 ? BRANCH_WF + 3 : BRANCH_WF_V32 + 3;
distance = to_addr - from_addr;
if (max_short_minus_distance <= distance
&& distance <= max_short_plus_distance)
{
/* Then make it a "short" long jump. */
md_create_short_jump (storep, from_addr, to_addr, fragP,
to_symbol);
if (cris_arch == arch_crisv32)
md_number_to_chars (storep + 6, NOP_OPCODE_V32, 2);
else
md_number_to_chars (storep + 6, NOP_OPCODE, 2);
}
else
{
/* We have a "long" long jump: "JUMP [PC+]". If CRISv32, always
make it a BA. Else make it an "MOVE [PC=PC+N],P0" if we're supposed
to emit PIC code. */
md_number_to_chars (storep,
cris_arch == arch_crisv32
? BA_DWORD_OPCODE
: (pic ? MOVE_PC_INCR_OPCODE_PREFIX
: JUMP_PC_INCR_OPCODE),
2);
/* Follow with a ".DWORD to_addr", PC-relative for PIC. */
fix_new (fragP, storep + 2 - fragP->fr_literal, 4, to_symbol,
cris_arch == arch_crisv32 ? 6 : 0,
cris_arch == arch_crisv32 || pic ? 1 : 0,
cris_arch == arch_crisv32 || pic
? BFD_RELOC_32_PCREL : BFD_RELOC_32);
/* Follow it with a "NOP" for CRISv32. */
if (cris_arch == arch_crisv32)
md_number_to_chars (storep + 6, NOP_OPCODE_V32, 2);
else if (pic)
/* ...and the rest of the move-opcode for pre-v32 PIC. */
md_number_to_chars (storep + 6, MOVE_PC_INCR_OPCODE_SUFFIX, 2);
}
}
/* Allocate space for the first piece of an insn, and mark it as the
start of the insn for debug-format use. */
static char *
cris_insn_first_word_frag (void)
{
char *insnp = frag_more (2);
/* We need to mark the start of the insn by passing dwarf2_emit_insn
the offset from the current fragment position. This must be done
after the first fragment is created but before any other fragments
(fixed or varying) are created. Note that the offset only
corresponds to the "size" of the insn for a fixed-size,
non-expanded insn. */
if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
dwarf2_emit_insn (2);
return insnp;
}
/* Port-specific assembler initialization. */
void
md_begin (void)
{
int i = 0;
/* Set up a hash table for the instructions. */
op_hash = str_htab_create ();
/* Enable use of ".if ..asm.arch.cris.v32"
and ".if ..asm.arch.cris.common_v10_v32" and a few others. */
symbol_table_insert (symbol_new ("..asm.arch.cris.v32", absolute_section,
&zero_address_frag,
cris_arch == arch_crisv32));
symbol_table_insert (symbol_new ("..asm.arch.cris.v10", absolute_section,
&zero_address_frag,
cris_arch == arch_crisv10));
symbol_table_insert (symbol_new ("..asm.arch.cris.common_v10_v32",
absolute_section,
&zero_address_frag,
cris_arch == arch_cris_common_v10_v32));
symbol_table_insert (symbol_new ("..asm.arch.cris.any_v0_v10",
absolute_section,
&zero_address_frag,
cris_arch == arch_cris_any_v0_v10));
while (cris_opcodes[i].name != NULL)
{
const char *name = cris_opcodes[i].name;
if (! cris_insn_ver_valid_for_arch (cris_opcodes[i].applicable_version,
cris_arch))
{
i++;
continue;
}
if (str_hash_insert (op_hash, name, &cris_opcodes[i], 0) != NULL)
as_fatal (_("duplicate %s"), name);
do
{
if (cris_opcodes[i].match & cris_opcodes[i].lose)
as_fatal (_("Buggy opcode: `%s' \"%s\"\n"), cris_opcodes[i].name,
cris_opcodes[i].args);
++i;
}
while (cris_opcodes[i].name != NULL
&& strcmp (cris_opcodes[i].name, name) == 0);
}
}
/* Assemble a source line. */
void
md_assemble (char *str)
{
struct cris_instruction output_instruction;
struct cris_prefix prefix;
char *opcodep;
char *p;
know (str);
/* Do the low-level grunt - assemble to bits and split up into a prefix
and ordinary insn. */
cris_process_instruction (str, &output_instruction, &prefix);
/* Handle any prefixes to the instruction. */
switch (prefix.kind)
{
case PREFIX_NONE:
break;
/* When the expression is unknown for a BDAP, it can need 0, 2 or 4
extra bytes, so we handle it separately. */
case PREFIX_BDAP_IMM:
/* We only do it if the relocation is unspecified, i.e. not a PIC or TLS
relocation. */
if (prefix.reloc == BFD_RELOC_NONE)
{
gen_bdap (prefix.base_reg_number, &prefix.expr);
break;
}
/* Fall through. */
case PREFIX_BDAP:
case PREFIX_BIAP:
case PREFIX_DIP:
opcodep = cris_insn_first_word_frag ();
/* Output the prefix opcode. */
md_number_to_chars (opcodep, (long) prefix.opcode, 2);
/* Having a specified reloc only happens for DIP and for BDAP with
PIC or TLS operands, but it is ok to drop through here for the other
prefixes as they can have no relocs specified. */
if (prefix.reloc != BFD_RELOC_NONE)
{
unsigned int relocsize
= (prefix.kind == PREFIX_DIP
? 4 : cris_get_specified_reloc_size (prefix.reloc));
p = frag_more (relocsize);
fix_new_exp (frag_now, (p - frag_now->fr_literal), relocsize,
&prefix.expr, 0, prefix.reloc);
}
break;
case PREFIX_PUSH:
opcodep = cris_insn_first_word_frag ();
/* Output the prefix opcode. Being a "push", we add the negative
size of the register to "sp". */
if (output_instruction.spec_reg != NULL)
{
/* Special register. */
opcodep[0] = -output_instruction.spec_reg->reg_size;
}
else
{
/* General register. */
opcodep[0] = -4;
}
opcodep[1] = (REG_SP << 4) + (BDAP_QUICK_OPCODE >> 8);
break;
default:
BAD_CASE (prefix.kind);
}
/* If we only had a prefix insn, we're done. */
if (output_instruction.insn_type == CRIS_INSN_NONE)
return;
/* Done with the prefix. Continue with the main instruction. */
if (prefix.kind == PREFIX_NONE)
opcodep = cris_insn_first_word_frag ();
else
opcodep = frag_more (2);
/* Output the instruction opcode. */
md_number_to_chars (opcodep, (long) (output_instruction.opcode), 2);
/* Output the symbol-dependent instruction stuff. */
if (output_instruction.insn_type == CRIS_INSN_BRANCH)
{
segT to_seg = absolute_section;
int is_undefined = 0;
int length_code;
if (output_instruction.expr.X_op != O_constant)
{
to_seg = S_GET_SEGMENT (output_instruction.expr.X_add_symbol);
if (to_seg == undefined_section)
is_undefined = 1;
}
if (to_seg == now_seg || is_undefined
/* In CRISv32, there *is* a 32-bit absolute branch, so don't
emit the 12-byte sequence for known symbols in other
segments. */
|| (cris_arch == arch_crisv32
&& output_instruction.opcode == BA_QUICK_OPCODE))
{
/* Handle complex expressions. */
valueT addvalue
= (SIMPLE_EXPR (&output_instruction.expr)
? output_instruction.expr.X_add_number
: 0);
symbolS *sym
= (SIMPLE_EXPR (&output_instruction.expr)
? output_instruction.expr.X_add_symbol
: make_expr_symbol (&output_instruction.expr));
/* If is_undefined, the expression may still become now_seg.
That case is handled by md_estimate_size_before_relax. */
length_code = to_seg == now_seg ? STATE_BYTE : STATE_UNDF;
/* Make room for max twelve bytes of variable length for v32 mode
or PIC, ten for v10 and older. */
frag_var (rs_machine_dependent,
(cris_arch == arch_crisv32
|| cris_arch == arch_cris_common_v10_v32
|| pic) ? 12 : 10, 0,
ENCODE_RELAX (cris_arch == arch_crisv32
? (output_instruction.opcode
== BA_QUICK_OPCODE
? STATE_ABS_BRANCH_V32
: STATE_COND_BRANCH_V32)
: (cris_arch == arch_cris_common_v10_v32
? STATE_COND_BRANCH_COMMON
: (pic ? STATE_COND_BRANCH_PIC
: STATE_COND_BRANCH)),
length_code),
sym, addvalue, opcodep);
}
else
{
/* We have: to_seg != now_seg && to_seg != undefined_section.
This means it is a branch to a known symbol in another
section, perhaps an absolute address. Emit a 32-bit branch. */
char *cond_jump
= frag_more ((cris_arch == arch_crisv32
|| cris_arch == arch_cris_common_v10_v32
|| pic)
? 12 : 10);
gen_cond_branch_32 (opcodep, cond_jump, frag_now,
output_instruction.expr.X_add_symbol,
(symbolS *) NULL,
output_instruction.expr.X_add_number);
}
}
else if (output_instruction.insn_type == CRIS_INSN_MUL
&& err_for_dangerous_mul_placement)
/* Create a frag which which we track the location of the mul insn
(in the last two bytes before the mul-frag). */
frag_variant (rs_machine_dependent, 0, 0,
ENCODE_RELAX (STATE_MUL, STATE_BYTE),
NULL, 0, opcodep);
else
{
if (output_instruction.imm_oprnd_size > 0)
{
/* The instruction has an immediate operand. */
enum bfd_reloc_code_real reloc = BFD_RELOC_NONE;
switch (output_instruction.imm_oprnd_size)
{
/* Any byte-size immediate constants are treated as
word-size. FIXME: Thus overflow check does not work
correctly. */
case 2:
/* Note that size-check for the explicit reloc has already
been done when we get here. */
if (output_instruction.reloc != BFD_RELOC_NONE)
reloc = output_instruction.reloc;
else
reloc = BFD_RELOC_16;
break;
case 4:
/* Allow a relocation specified in the operand. */
if (output_instruction.reloc != BFD_RELOC_NONE)
reloc = output_instruction.reloc;
else
reloc = BFD_RELOC_32;
break;
default:
BAD_CASE (output_instruction.imm_oprnd_size);
}
p = frag_more (output_instruction.imm_oprnd_size);
fix_new_exp (frag_now, (p - frag_now->fr_literal),
output_instruction.imm_oprnd_size,
&output_instruction.expr,
reloc == BFD_RELOC_32_PCREL
|| reloc == BFD_RELOC_16_PCREL
|| reloc == BFD_RELOC_8_PCREL, reloc);
}
else if (output_instruction.reloc == BFD_RELOC_CRIS_LAPCQ_OFFSET
&& output_instruction.expr.X_md != 0)
{
/* Handle complex expressions. */
valueT addvalue
= (output_instruction.expr.X_op_symbol != NULL
? 0 : output_instruction.expr.X_add_number);
symbolS *sym
= (output_instruction.expr.X_op_symbol != NULL
? make_expr_symbol (&output_instruction.expr)
: output_instruction.expr.X_add_symbol);
/* This is a relaxing construct, so we need a frag_var rather
than the fix_new_exp call below. */
frag_var (rs_machine_dependent,
4, 0,
ENCODE_RELAX (STATE_LAPC, STATE_UNDF),
sym, addvalue, opcodep);
}
else if (output_instruction.reloc != BFD_RELOC_NONE)
{
/* An immediate operand that has a relocation and needs to be
processed further. */
/* It is important to use fix_new_exp here and everywhere else
(and not fix_new), as fix_new_exp can handle "difference
expressions" - where the expression contains a difference of
two symbols in the same segment. */
fix_new_exp (frag_now, (opcodep - frag_now->fr_literal), 2,
&output_instruction.expr,
output_instruction.reloc == BFD_RELOC_32_PCREL
|| output_instruction.reloc == BFD_RELOC_16_PCREL
|| output_instruction.reloc == BFD_RELOC_8_PCREL
|| (output_instruction.reloc
== BFD_RELOC_CRIS_LAPCQ_OFFSET),
output_instruction.reloc);
}
}
}
/* Helper error-reporting function: calls as_bad for a format string
for a single value and zeroes the offending value (zero assumed
being a valid value) to avoid repeated error reports in later value
checking. */
static void
cris_bad (const char *format, offsetT *valp)
{
/* We cast to long so the format string can assume that format. */
as_bad (format, (long) *valp);
*valp = 0;
}
/* Low level text-to-bits assembly. */
static void
cris_process_instruction (char *insn_text, struct cris_instruction *out_insnp,
struct cris_prefix *prefixp)
{
char *s;
char modified_char = 0;
const char *args;
struct cris_opcode *instruction;
char *operands;
int match = 0;
int mode;
int regno;
int size_bits;
/* Reset these fields to a harmless state in case we need to return in
error. */
prefixp->kind = PREFIX_NONE;
prefixp->reloc = BFD_RELOC_NONE;
out_insnp->insn_type = CRIS_INSN_NONE;
out_insnp->imm_oprnd_size = 0;
/* Find the end of the opcode mnemonic. We assume (true in 2.9.1)
that the caller has translated the opcode to lower-case, up to the
first non-letter. */
for (operands = insn_text; ISLOWER (*operands); ++operands)
;
/* Terminate the opcode after letters, but save the character there if
it was of significance. */
switch (*operands)
{
case '\0':
break;
case '.':
/* Put back the modified character later. */
modified_char = *operands;
/* Fall through. */
case ' ':
/* Consume the character after the mnemonic
and replace it with '\0'. */
*operands++ = '\0';
break;
default:
as_bad (_("Unknown opcode: `%s'"), insn_text);
return;
}
/* Find the instruction. */
instruction = (struct cris_opcode *) str_hash_find (op_hash, insn_text);
if (instruction == NULL)
{
as_bad (_("Unknown opcode: `%s'"), insn_text);
return;
}
/* Put back the modified character. */
switch (modified_char)
{
case 0:
break;
default:
*--operands = modified_char;
}
/* Try to match an opcode table slot. */
for (s = operands;;)
{
int imm_expr_found;
/* Initialize *prefixp, perhaps after being modified for a
"near match". */
prefixp->kind = PREFIX_NONE;
prefixp->reloc = BFD_RELOC_NONE;
/* Initialize *out_insnp. */
memset (out_insnp, 0, sizeof (*out_insnp));
out_insnp->opcode = instruction->match;
out_insnp->reloc = BFD_RELOC_NONE;
out_insnp->insn_type = CRIS_INSN_NORMAL;
out_insnp->imm_oprnd_size = 0;
imm_expr_found = 0;
/* Build the opcode, checking as we go to make sure that the
operands match. */
for (args = instruction->args;; ++args)
{
switch (*args)
{
case '\0':
/* If we've come to the end of arguments, we're done. */
if (*s == '\0')
match = 1;
break;
case '!':
/* Non-matcher character for disassembly.
Ignore it here. */
continue;
case '[':
case ']':
case ',':
case ' ':
/* These must match exactly. */
if (*s++ == *args)
continue;
break;
case 'A':
/* "ACR", case-insensitive.
Handle a sometimes-mandatory dollar sign as register
prefix. */
if (*s == REGISTER_PREFIX_CHAR)
s++;
else if (demand_register_prefix)
break;
if ((*s++ != 'a' && s[-1] != 'A')
|| (*s++ != 'c' && s[-1] != 'C')
|| (*s++ != 'r' && s[-1] != 'R'))
break;
continue;
case 'B':
/* This is not really an operand, but causes a "BDAP
-size,SP" prefix to be output, for PUSH instructions. */
prefixp->kind = PREFIX_PUSH;
continue;
case 'b':
/* This letter marks an operand that should not be matched
in the assembler. It is a branch with 16-bit
displacement. The assembler will create them from the
8-bit flavor when necessary. The assembler does not
support the [rN+] operand, as the [r15+] that is
generated for 16-bit displacements. */
break;
case 'c':
/* A 5-bit unsigned immediate in bits <4:0>. */
if (! cris_get_expression (&s, &out_insnp->expr))
break;
else
{
if (out_insnp->expr.X_op == O_constant
&& (out_insnp->expr.X_add_number < 0
|| out_insnp->expr.X_add_number > 31))
cris_bad (_("Immediate value not in 5 bit unsigned range: %ld"),
&out_insnp->expr.X_add_number);
out_insnp->reloc = BFD_RELOC_CRIS_UNSIGNED_5;
continue;
}
case 'C':
/* A 4-bit unsigned immediate in bits <3:0>. */
if (! cris_get_expression (&s, &out_insnp->expr))
break;
else
{
if (out_insnp->expr.X_op == O_constant
&& (out_insnp->expr.X_add_number < 0
|| out_insnp->expr.X_add_number > 15))
cris_bad (_("Immediate value not in 4 bit unsigned range: %ld"),
&out_insnp->expr.X_add_number);
out_insnp->reloc = BFD_RELOC_CRIS_UNSIGNED_4;
continue;
}
/* For 'd', check for an optional ".d" or ".D" at the
start of the operands, followed by a space character. */
case 'd':
if (modified_char == '.' && *s == '.')
{
if ((s[1] != 'd' && s[1] == 'D')
|| ! ISSPACE (s[2]))
break;
s += 2;
continue;
}
continue;
case 'D':
/* General register in bits <15:12> and <3:0>. */
if (! get_gen_reg (&s, &regno))
break;
else
{
out_insnp->opcode |= regno /* << 0 */;
out_insnp->opcode |= regno << 12;
continue;
}
case 'f':
/* Flags from the condition code register. */
{
int flags = 0;
if (! get_flags (&s, &flags))
break;
out_insnp->opcode |= ((flags & 0xf0) << 8) | (flags & 0xf);
continue;
}
case 'i':
/* A 6-bit signed immediate in bits <5:0>. */
if (! cris_get_expression (&s, &out_insnp->expr))
break;
else
{
if (out_insnp->expr.X_op == O_constant
&& (out_insnp->expr.X_add_number < -32
|| out_insnp->expr.X_add_number > 31))
cris_bad (_("Immediate value not in 6 bit range: %ld"),
&out_insnp->expr.X_add_number);
out_insnp->reloc = BFD_RELOC_CRIS_SIGNED_6;
continue;
}
case 'I':
/* A 6-bit unsigned immediate in bits <5:0>. */
if (! cris_get_expression (&s, &out_insnp->expr))
break;
else
{
if (out_insnp->expr.X_op == O_constant
&& (out_insnp->expr.X_add_number < 0
|| out_insnp->expr.X_add_number > 63))
cris_bad (_("Immediate value not in 6 bit unsigned range: %ld"),
&out_insnp->expr.X_add_number);
out_insnp->reloc = BFD_RELOC_CRIS_UNSIGNED_6;
continue;
}
case 'M':
/* A size modifier, B, W or D, to be put in a bit position
suitable for CLEAR instructions (i.e. reflecting a zero
register). */
if (! get_bwd_size_modifier (&s, &size_bits))
break;
else
{
switch (size_bits)
{
case 0:
out_insnp->opcode |= 0 << 12;
break;
case 1:
out_insnp->opcode |= 4 << 12;
break;
case 2:
out_insnp->opcode |= 8 << 12;
break;
}
continue;
}
case 'm':
/* A size modifier, B, W or D, to be put in bits <5:4>. */
if (modified_char != '.'
|| ! get_bwd_size_modifier (&s, &size_bits))
break;
else
{
out_insnp->opcode |= size_bits << 4;
continue;
}
case 'o':
/* A branch expression. */
if (! cris_get_expression (&s, &out_insnp->expr))
break;
else
{
out_insnp->insn_type = CRIS_INSN_BRANCH;
continue;
}
case 'Q':
/* A 8-bit quick BDAP expression, "expr,R". */
if (! cris_get_expression (&s, &out_insnp->expr))
break;
if (*s != ',')
break;
s++;
if (!get_gen_reg (&s, &regno))
break;
out_insnp->opcode |= regno << 12;
out_insnp->reloc = BFD_RELOC_CRIS_SIGNED_8;
continue;
case 'O':
/* A BDAP expression for any size, "expr,R". */
if (! cris_get_expression (&s, &prefixp->expr))
break;
else
{
if (*s != ',')
break;
s++;
if (!get_gen_reg (&s, &prefixp->base_reg_number))
break;
/* Since 'O' is used with an explicit bdap, we have no
"real" instruction. */
prefixp->kind = PREFIX_BDAP_IMM;
prefixp->opcode
= BDAP_QUICK_OPCODE | (prefixp->base_reg_number << 12);
out_insnp->insn_type = CRIS_INSN_NONE;
continue;
}
case 'P':
/* Special register in bits <15:12>. */
if (! get_spec_reg (&s, &out_insnp->spec_reg))
break;
else
{
/* Use of some special register names come with a
specific warning. Note that we have no ".cpu type"
pseudo yet, so some of this is just unused
framework. */
if (out_insnp->spec_reg->warning)
as_warn ("%s", out_insnp->spec_reg->warning);
else if (out_insnp->spec_reg->applicable_version
== cris_ver_warning)
/* Others have a generic warning. */
as_warn (_("Unimplemented register `%s' specified"),
out_insnp->spec_reg->name);
out_insnp->opcode
|= out_insnp->spec_reg->number << 12;
continue;
}
case 'p':
/* This character is used in the disassembler to
recognize a prefix instruction to fold into the
addressing mode for the next instruction. It is
ignored here. */
continue;
case 'R':
/* General register in bits <15:12>. */
if (! get_gen_reg (&s, &regno))
break;
else
{
out_insnp->opcode |= regno << 12;
continue;
}
case 'r':
/* General register in bits <3:0>. */
if (! get_gen_reg (&s, &regno))
break;
else
{
out_insnp->opcode |= regno /* << 0 */;
continue;
}
case 'S':
/* Source operand in bit <10> and a prefix; a 3-operand
prefix. */
if (! get_3op_or_dip_prefix_op (&s, prefixp))
break;
else
continue;
case 's':
/* Source operand in bits <10>, <3:0> and optionally a
prefix; i.e. an indirect operand or an side-effect
prefix (where valid). */
if (! get_autoinc_prefix_or_indir_op (&s, prefixp, &mode,
&regno,
&imm_expr_found,
&out_insnp->expr))
break;
else
{
if (prefixp->kind != PREFIX_NONE)
{
/* A prefix, so it has the autoincrement bit
set. */
out_insnp->opcode |= (AUTOINCR_BIT << 8);
}
else
{
/* No prefix. The "mode" variable contains bits like
whether or not this is autoincrement mode. */
out_insnp->opcode |= (mode << 10);
/* If there was a reloc specifier, then it was
attached to the prefix. Note that we can't check
that the reloc size matches, since we don't have
all the operands yet in all cases. */
if (prefixp->reloc != BFD_RELOC_NONE)
out_insnp->reloc = prefixp->reloc;
}
out_insnp->opcode |= regno /* << 0 */ ;
continue;
}
case 'N':
case 'Y':
/* Like 's', but immediate operand only. Also do not
modify insn. There are no insns where an explicit reloc
specifier makes sense. */
if (cris_get_expression (&s, &out_insnp->expr))
{
imm_expr_found = 1;
continue;
}
break;
case 'n':
/* Like 'N', but PC-relative to the start of the insn.
There might be a :PLT to request a PLT entry. */
if (cris_get_expression (&s, &out_insnp->expr))
{
imm_expr_found = 1;
out_insnp->reloc = BFD_RELOC_32_PCREL;
/* We have to adjust the expression, because that
relocation is to the location *after* the
relocation. So add 2 for the insn and 4 for the
relocation. */
out_insnp->expr.X_add_number += 6;
/* TLS specifiers do not make sense here. */
if (pic && *s == RELOC_SUFFIX_CHAR)
cris_get_reloc_suffix (&s, &out_insnp->reloc,
&out_insnp->expr);
continue;
}
break;
case 'U':
/* Maybe 'u', maybe 'n'. Only for LAPC/LAPCQ. */
if (cris_get_expression (&s, &out_insnp->expr))
{
out_insnp->reloc = BFD_RELOC_CRIS_LAPCQ_OFFSET;
/* Define 1 as relaxing. */
out_insnp->expr.X_md = 1;
continue;
}
break;
case 'u':
/* Four PC-relative bits in <3:0> representing <4:1>:0 of
an offset relative to the beginning of the current
insn. */
if (cris_get_expression (&s, &out_insnp->expr))
{
out_insnp->reloc = BFD_RELOC_CRIS_LAPCQ_OFFSET;
/* Define 0 as non-relaxing. */
out_insnp->expr.X_md = 0;
/* We have to adjust the expression, because that
relocation is to the location *after* the
insn. So add 2 for the insn. */
out_insnp->expr.X_add_number += 2;
continue;
}
break;
case 'x':
/* Rs.m in bits <15:12> and <5:4>. */
if (! get_gen_reg (&s, &regno)
|| ! get_bwd_size_modifier (&s, &size_bits))
break;
else
{
out_insnp->opcode |= (regno << 12) | (size_bits << 4);
continue;
}
case 'y':
/* Source operand in bits <10>, <3:0> and optionally a
prefix; i.e. an indirect operand or an side-effect
prefix.
The difference to 's' is that this does not allow an
"immediate" expression. */
if (! get_autoinc_prefix_or_indir_op (&s, prefixp,
&mode, &regno,
&imm_expr_found,
&out_insnp->expr)
|| imm_expr_found)
break;
else
{
if (prefixp->kind != PREFIX_NONE)
{
/* A prefix, and those matched here always have
side-effects (see 's' case). */
out_insnp->opcode |= (AUTOINCR_BIT << 8);
}
else
{
/* No prefix. The "mode" variable contains bits
like whether or not this is autoincrement
mode. */
out_insnp->opcode |= (mode << 10);
}
out_insnp->opcode |= regno /* << 0 */;
continue;
}
case 'z':
/* Size modifier (B or W) in bit <4>. */
if (! get_bw_size_modifier (&s, &size_bits))
break;
else
{
out_insnp->opcode |= size_bits << 4;
continue;
}
case 'T':
if (cris_arch == arch_crisv32
&& get_sup_reg (&s, &regno))
{
out_insnp->opcode |= regno << 12;
continue;
}
break;
default:
BAD_CASE (*args);
}
/* We get here when we fail a match above or we found a
complete match. Break out of this loop. */
break;
}
/* Was it a match or a miss? */
if (match == 0)
{
/* If it's just that the args don't match, maybe the next
item in the table is the same opcode but with
matching operands. First skip any invalid ones. */
while (instruction[1].name != NULL
&& strcmp (instruction->name, instruction[1].name) == 0
&& ! cris_insn_ver_valid_for_arch (instruction[1]
.applicable_version,
cris_arch))
++instruction;
if (instruction[1].name != NULL
&& strcmp (instruction->name, instruction[1].name) == 0
&& cris_insn_ver_valid_for_arch (instruction[1]
.applicable_version,
cris_arch))
{
/* Yep. Restart and try that one instead. */
++instruction;
s = operands;
continue;
}
else
{
/* We've come to the end of instructions with this
opcode, so it must be an error. */
as_bad (_("Illegal operands"));
/* As discard_rest_of_line, but without continuing to the
next line. */
while (!is_end_of_line[(unsigned char) *input_line_pointer])
input_line_pointer++;
return;
}
}
else
{
/* We have a match. Check if there's anything more to do. */
if (imm_expr_found)
{
/* There was an immediate mode operand, so we must check
that it has an appropriate size. */
switch (instruction->imm_oprnd_size)
{
default:
case SIZE_NONE:
/* Shouldn't happen; this one does not have immediate
operands with different sizes. */
BAD_CASE (instruction->imm_oprnd_size);
break;
case SIZE_FIX_32:
out_insnp->imm_oprnd_size = 4;
break;
case SIZE_SPEC_REG:
if (cris_arch == arch_crisv32)
/* All immediate loads of special registers are
32-bit on CRISv32. */
out_insnp->imm_oprnd_size = 4;
else
switch (out_insnp->spec_reg->reg_size)
{
case 1:
if (out_insnp->expr.X_op == O_constant
&& (out_insnp->expr.X_add_number < -128
|| out_insnp->expr.X_add_number > 255))
cris_bad (_("Immediate value not in 8 bit range: %ld"),
&out_insnp->expr.X_add_number);
/* Fall through. */
case 2:
/* FIXME: We need an indicator in the instruction
table to pass on, to indicate if we need to check
overflow for a signed or unsigned number. */
if (out_insnp->expr.X_op == O_constant
&& (out_insnp->expr.X_add_number < -32768
|| out_insnp->expr.X_add_number > 65535))
cris_bad (_("Immediate value not in 16 bit range: %ld"),
&out_insnp->expr.X_add_number);
out_insnp->imm_oprnd_size = 2;
break;
case 4:
out_insnp->imm_oprnd_size = 4;
break;
default:
BAD_CASE (out_insnp->spec_reg->reg_size);
}
break;
case SIZE_FIELD:
case SIZE_FIELD_SIGNED:
case SIZE_FIELD_UNSIGNED:
switch (size_bits)
{
/* FIXME: Find way to pass un/signedness to
caller, and set reloc type instead, postponing
this check until cris_number_to_imm. That
necessarily corrects the reloc type for the
byte case, maybe requiring further changes. */
case 0:
if (out_insnp->expr.X_op == O_constant)
{
if (instruction->imm_oprnd_size == SIZE_FIELD
&& (out_insnp->expr.X_add_number < -128
|| out_insnp->expr.X_add_number > 255))
cris_bad (_("Immediate value not in 8 bit range: %ld"),
&out_insnp->expr.X_add_number);
else if (instruction->imm_oprnd_size == SIZE_FIELD_SIGNED
&& (out_insnp->expr.X_add_number < -128
|| out_insnp->expr.X_add_number > 127))
cris_bad (_("Immediate value not in 8 bit signed range: %ld"),
&out_insnp->expr.X_add_number);
else if (instruction->imm_oprnd_size == SIZE_FIELD_UNSIGNED
&& (out_insnp->expr.X_add_number < 0
|| out_insnp->expr.X_add_number > 255))
cris_bad (_("Immediate value not in 8 bit unsigned range: %ld"),
&out_insnp->expr.X_add_number);
}
/* Fall through. */
case 1:
if (out_insnp->expr.X_op == O_constant)
{
if (instruction->imm_oprnd_size == SIZE_FIELD
&& (out_insnp->expr.X_add_number < -32768
|| out_insnp->expr.X_add_number > 65535))
cris_bad (_("Immediate value not in 16 bit range: %ld"),
&out_insnp->expr.X_add_number);
else if (instruction->imm_oprnd_size == SIZE_FIELD_SIGNED
&& (out_insnp->expr.X_add_number < -32768
|| out_insnp->expr.X_add_number > 32767))
cris_bad (_("Immediate value not in 16 bit signed range: %ld"),
&out_insnp->expr.X_add_number);
else if (instruction->imm_oprnd_size == SIZE_FIELD_UNSIGNED
&& (out_insnp->expr.X_add_number < 0
|| out_insnp->expr.X_add_number > 65535))
cris_bad (_("Immediate value not in 16 bit unsigned range: %ld"),
&out_insnp->expr.X_add_number);
}
out_insnp->imm_oprnd_size = 2;
break;
case 2:
out_insnp->imm_oprnd_size = 4;
break;
default:
BAD_CASE (out_insnp->spec_reg->reg_size);
}
}
/* If there was a relocation specified for the immediate
expression (i.e. it had a PIC or TLS modifier) check that the
size of the relocation matches the size specified by
the opcode. */
if (out_insnp->reloc != BFD_RELOC_NONE
&& (cris_get_specified_reloc_size (out_insnp->reloc)
!= (unsigned int) out_insnp->imm_oprnd_size))
as_bad (out_insnp->reloc == BFD_RELOC_CRIS_32_GD
|| out_insnp->reloc == BFD_RELOC_CRIS_32_TPREL
|| out_insnp->reloc == BFD_RELOC_CRIS_16_TPREL
|| out_insnp->reloc == BFD_RELOC_CRIS_32_IE
? _("TLS relocation size does not match operand size")
: _("PIC relocation size does not match operand size"));
}
else if (instruction->op == cris_muls_op
|| instruction->op == cris_mulu_op)
out_insnp->insn_type = CRIS_INSN_MUL;
}
break;
}
}
/* Get a B, W, or D size modifier from the string pointed out by *cPP,
which must point to a '.' in front of the modifier. On successful
return, *cPP is advanced to the character following the size
modifier, and is undefined otherwise.
cPP Pointer to pointer to string starting
with the size modifier.
size_bitsp Pointer to variable to contain the size bits on
successful return.
Return 1 iff a correct size modifier is found, else 0. */
static int
get_bwd_size_modifier (char **cPP, int *size_bitsp)
{
if (**cPP != '.')
return 0;
else
{
/* Consume the '.'. */
(*cPP)++;
switch (**cPP)
{
case 'B':
case 'b':
*size_bitsp = 0;
break;
case 'W':
case 'w':
*size_bitsp = 1;
break;
case 'D':
case 'd':
*size_bitsp = 2;
break;
default:
return 0;
}
/* Consume the size letter. */
(*cPP)++;
return 1;
}
}
/* Get a B or W size modifier from the string pointed out by *cPP,
which must point to a '.' in front of the modifier. On successful
return, *cPP is advanced to the character following the size
modifier, and is undefined otherwise.
cPP Pointer to pointer to string starting
with the size modifier.
size_bitsp Pointer to variable to contain the size bits on
successful return.
Return 1 iff a correct size modifier is found, else 0. */
static int
get_bw_size_modifier (char **cPP, int *size_bitsp)
{
if (**cPP != '.')
return 0;
else
{
/* Consume the '.'. */
(*cPP)++;
switch (**cPP)
{
case 'B':
case 'b':
*size_bitsp = 0;
break;
case 'W':
case 'w':
*size_bitsp = 1;
break;
default:
return 0;
}
/* Consume the size letter. */
(*cPP)++;
return 1;
}
}
/* Get a general register from the string pointed out by *cPP. The
variable *cPP is advanced to the character following the general
register name on a successful return, and has its initial position
otherwise.
cPP Pointer to pointer to string, beginning with a general
register name.
regnop Pointer to int containing the register number.
Return 1 iff a correct general register designator is found,
else 0. */
static int
get_gen_reg (char **cPP, int *regnop)
{
char *oldp;
oldp = *cPP;
/* Handle a sometimes-mandatory dollar sign as register prefix. */
if (**cPP == REGISTER_PREFIX_CHAR)
(*cPP)++;
else if (demand_register_prefix)
return 0;
switch (**cPP)
{
case 'P':
case 'p':
/* "P" as in "PC"? Consume the "P". */
(*cPP)++;
if ((**cPP == 'C' || **cPP == 'c')
&& ! ISALNUM ((*cPP)[1])
/* Here's a little twist: For v32 and the compatibility mode,
we only recognize PC as a register number if there's '+]'
after. We don't consume that, but the presence can only be
valid after a register in a post-increment context, which
is also the only valid context for PC as a register for
v32. Not that it's used very often, but saying "MOVE.D
[PC+],R5" should remain valid. It's not supported for
jump-type insns or other insns with no [Rn+] mode, though. */
&& ((cris_arch != arch_crisv32
&& cris_arch != arch_cris_common_v10_v32)
|| ((*cPP)[1] == '+' && (*cPP)[2] == ']')))
{
/* It's "PC": consume the "c" and we're done. */
(*cPP)++;
*regnop = REG_PC;
return 1;
}
break;
/* Like with PC, we recognize ACR, but only if it's *not* followed
by '+', and only for v32. */
case 'A':
case 'a':
if (cris_arch != arch_crisv32
|| ((*cPP)[1] != 'c' && (*cPP)[1] != 'C')
|| ((*cPP)[2] != 'r' && (*cPP)[2] != 'R')
|| ISALNUM ((*cPP)[3])
|| (*cPP)[3] == '+')
break;
(*cPP) += 3;
*regnop = 15;
return 1;
case 'R':
case 'r':
/* Hopefully r[0-9] or r1[0-5]. Consume 'R' or 'r'. */
(*cPP)++;
if (ISDIGIT (**cPP))
{
/* It's r[0-9]. Consume and check the next digit. */
*regnop = **cPP - '0';
(*cPP)++;
if (! ISALNUM (**cPP))
{
/* No more digits, we're done. */
return 1;
}
else
{
/* One more digit. Consume and add. */
*regnop = *regnop * 10 + (**cPP - '0');
/* We need to check for a valid register number; Rn,
0 <= n <= MAX_REG. */
if (*regnop <= MAX_REG)
{
/* Consume second digit. */
(*cPP)++;
return 1;
}
}
}
break;
case 'S':
case 's':
/* "S" as in "SP"? Consume the "S". */
(*cPP)++;
if (**cPP == 'P' || **cPP == 'p')
{
/* It's "SP": consume the "p" and we're done. */
(*cPP)++;
*regnop = REG_SP;
return 1;
}
break;
default:
/* Just here to silence compilation warnings. */
;
}
/* We get here if we fail. Restore the pointer. */
*cPP = oldp;
return 0;
}
/* Get a special register from the string pointed out by *cPP. The
variable *cPP is advanced to the character following the special
register name if one is found, and retains its original position
otherwise.
cPP Pointer to pointer to string starting with a special register
name.
sregpp Pointer to Pointer to struct spec_reg, where a pointer to the
register description will be stored.
Return 1 iff a correct special register name is found. */
static int
get_spec_reg (char **cPP, const struct cris_spec_reg **sregpp)
{
char *s1;
const char *s2;
char *name_begin = *cPP;
const struct cris_spec_reg *sregp;
/* Handle a sometimes-mandatory dollar sign as register prefix. */
if (*name_begin == REGISTER_PREFIX_CHAR)
name_begin++;
else if (demand_register_prefix)
return 0;
/* Loop over all special registers. */
for (sregp = cris_spec_regs; sregp->name != NULL; sregp++)
{
/* Start over from beginning of the supposed name. */
s1 = name_begin;
s2 = sregp->name;
while (*s2 != '\0' && TOLOWER (*s1) == *s2)
{
s1++;
s2++;
}
/* For a match, we must have consumed the name in the table, and we
must be outside what could be part of a name. Assume here that a
test for alphanumerics is sufficient for a name test. */
if (*s2 == 0 && ! ISALNUM (*s1)
&& cris_insn_ver_valid_for_arch (sregp->applicable_version,
cris_arch))
{
/* We have a match. Update the pointer and be done. */
*cPP = s1;
*sregpp = sregp;
return 1;
}
}
/* If we got here, we did not find any name. */
return 0;
}
/* Get a support register from the string pointed out by *cPP. The
variable *cPP is advanced to the character following the support-
register name if one is found, and retains its original position
otherwise.
cPP Pointer to pointer to string starting with a support-register
name.
sregpp Pointer to int containing the register number.
Return 1 iff a correct support-register name is found. */
static int
get_sup_reg (char **cPP, int *regnop)
{
char *s1;
const char *s2;
char *name_begin = *cPP;
const struct cris_support_reg *sregp;
/* Handle a sometimes-mandatory dollar sign as register prefix. */
if (*name_begin == REGISTER_PREFIX_CHAR)
name_begin++;
else if (demand_register_prefix)
return 0;
/* Loop over all support-registers. */
for (sregp = cris_support_regs; sregp->name != NULL; sregp++)
{
/* Start over from beginning of the supposed name. */
s1 = name_begin;
s2 = sregp->name;
while (*s2 != '\0' && TOLOWER (*s1) == *s2)
{
s1++;
s2++;
}
/* For a match, we must have consumed the name in the table, and we
must be outside what could be part of a name. Assume here that a
test for alphanumerics is sufficient for a name test. */
if (*s2 == 0 && ! ISALNUM (*s1))
{
/* We have a match. Update the pointer and be done. */
*cPP = s1;
*regnop = sregp->number;
return 1;
}
}
/* If we got here, we did not find any name. */
return 0;
}
/* Get an unprefixed or side-effect-prefix operand from the string pointed
out by *cPP. The pointer *cPP is advanced to the character following
the indirect operand if we have success, else it contains an undefined
value.
cPP Pointer to pointer to string beginning with the first
character of the supposed operand.
prefixp Pointer to structure containing an optional instruction
prefix.
is_autoincp Pointer to int indicating the indirect or autoincrement
bits.
src_regnop Pointer to int containing the source register number in
the instruction.
imm_foundp Pointer to an int indicating if an immediate expression
is found.
imm_exprP Pointer to a structure containing an immediate
expression, if success and if *imm_foundp is nonzero.
Return 1 iff a correct indirect operand is found. */
static int
get_autoinc_prefix_or_indir_op (char **cPP, struct cris_prefix *prefixp,
int *is_autoincp, int *src_regnop,
int *imm_foundp, expressionS *imm_exprP)
{
/* Assume there was no immediate mode expression. */
*imm_foundp = 0;
if (**cPP == '[')
{
/* So this operand is one of:
Indirect: [rN]
Autoincrement: [rN+]
Indexed with assign: [rN=rM+rO.S]
Offset with assign: [rN=rM+I], [rN=rM+[rO].s], [rN=rM+[rO+].s]
Either way, consume the '['. */
(*cPP)++;
/* Get the rN register. */
if (! get_gen_reg (cPP, src_regnop))
/* If there was no register, then this cannot match. */
return 0;
else
{
/* We got the register, now check the next character. */
switch (**cPP)
{
case ']':
/* Indirect mode. We're done here. */
prefixp->kind = PREFIX_NONE;
*is_autoincp = 0;
break;
case '+':
/* This must be an auto-increment mode, if there's a
match. */
prefixp->kind = PREFIX_NONE;
*is_autoincp = 1;
/* We consume this character and break out to check the
closing ']'. */
(*cPP)++;
break;
case '=':
/* This must be indexed with assign, or offset with assign
to match. Not supported for crisv32 or in
compatibility mode. */
if (cris_arch == arch_crisv32
|| cris_arch == arch_cris_common_v10_v32)
return 0;
(*cPP)++;
/* Either way, the next thing must be a register. */
if (! get_gen_reg (cPP, &prefixp->base_reg_number))
/* No register, no match. */
return 0;
else
{
/* We've consumed "[rN=rM", so we must be looking at
"+rO.s]" or "+I]", or "-I]", or "+[rO].s]" or
"+[rO+].s]". */
if (**cPP == '+')
{
int index_reg_number;
(*cPP)++;
if (**cPP == '[')
{
int size_bits;
/* This must be [rx=ry+[rz].s] or
[rx=ry+[rz+].s] or no match. We must be
looking at rz after consuming the '['. */
(*cPP)++;
if (!get_gen_reg (cPP, &index_reg_number))
return 0;
prefixp->kind = PREFIX_BDAP;
prefixp->opcode
= (BDAP_INDIR_OPCODE
+ (prefixp->base_reg_number << 12)
+ index_reg_number);
if (**cPP == '+')
{
/* We've seen "[rx=ry+[rz+" here, so now we
know that there must be "].s]" left to
check. */
(*cPP)++;
prefixp->opcode |= AUTOINCR_BIT << 8;
}
/* If it wasn't autoincrement, we don't need to
add anything. */
/* Check the next-to-last ']'. */
if (**cPP != ']')
return 0;
(*cPP)++;
/* Check the ".s" modifier. */
if (! get_bwd_size_modifier (cPP, &size_bits))
return 0;
prefixp->opcode |= size_bits << 4;
/* Now we got [rx=ry+[rz+].s or [rx=ry+[rz].s.
We break out to check the final ']'. */
break;
}
/* It wasn't an indirection. Check if it's a
register. */
else if (get_gen_reg (cPP, &index_reg_number))
{
int size_bits;
/* Indexed with assign mode: "[rN+rM.S]". */
prefixp->kind = PREFIX_BIAP;
prefixp->opcode
= (BIAP_OPCODE + (index_reg_number << 12)
+ prefixp->base_reg_number /* << 0 */);
if (! get_bwd_size_modifier (cPP, &size_bits))
/* Size missing, this isn't a match. */
return 0;
else
{
/* Size found, break out to check the
final ']'. */
prefixp->opcode |= size_bits << 4;
break;
}
}
/* Not a register. Then this must be "[rN+I]". */
else if (cris_get_expression (cPP, &prefixp->expr))
{
/* We've got offset with assign mode. Fill
in the blanks and break out to match the
final ']'. */
prefixp->kind = PREFIX_BDAP_IMM;
/* We tentatively put an opcode corresponding to
a 32-bit operand here, although it may be
relaxed when there's no relocation
specifier for the operand. */
prefixp->opcode
= (BDAP_INDIR_OPCODE
| (prefixp->base_reg_number << 12)
| (AUTOINCR_BIT << 8)
| (2 << 4)
| REG_PC /* << 0 */);
/* This can have a PIC suffix, specifying reloc
type to use. */
if ((pic || tls) && **cPP == RELOC_SUFFIX_CHAR)
{
unsigned int relocsize;
cris_get_reloc_suffix (cPP, &prefixp->reloc,
&prefixp->expr);
/* Tweak the size of the immediate operand
in the prefix opcode if it isn't what we
set. */
relocsize
= cris_get_specified_reloc_size (prefixp->reloc);
if (relocsize != 4)
prefixp->opcode
= ((prefixp->opcode & ~(3 << 4))
| ((relocsize >> 1) << 4));
}
break;
}
else
/* Neither register nor expression found, so
this can't be a match. */
return 0;
}
/* Not "[rN+" but perhaps "[rN-"? */
else if (**cPP == '-')
{
/* We must have an offset with assign mode. */
if (! cris_get_expression (cPP, &prefixp->expr))
/* No expression, no match. */
return 0;
else
{
/* We've got offset with assign mode. Fill
in the blanks and break out to match the
final ']'.
Note that we don't allow a relocation
suffix for an operand with a minus
sign. */
prefixp->kind = PREFIX_BDAP_IMM;
break;
}
}
else
/* Neither '+' nor '-' after "[rN=rM". Lose. */
return 0;
}
default:
/* Neither ']' nor '+' nor '=' after "[rN". Lose. */
return 0;
}
}
/* When we get here, we have a match and will just check the closing
']'. We can still fail though. */
if (**cPP != ']')
return 0;
else
{
/* Don't forget to consume the final ']'.
Then return in glory. */
(*cPP)++;
return 1;
}
}
/* No indirection. Perhaps a constant? */
else if (cris_get_expression (cPP, imm_exprP))
{
/* Expression found, this is immediate mode. */
prefixp->kind = PREFIX_NONE;
*is_autoincp = 1;
*src_regnop = REG_PC;
*imm_foundp = 1;
/* This can have a PIC suffix, specifying reloc type to use. The
caller must check that the reloc size matches the operand size. */
if ((pic || tls) && **cPP == RELOC_SUFFIX_CHAR)
cris_get_reloc_suffix (cPP, &prefixp->reloc, imm_exprP);
return 1;
}
/* No luck today. */
return 0;
}
/* This function gets an indirect operand in a three-address operand
combination from the string pointed out by *cPP. The pointer *cPP is
advanced to the character following the indirect operand on success, or
has an unspecified value on failure.
cPP Pointer to pointer to string beginning
with the operand
prefixp Pointer to structure containing an
instruction prefix
Returns 1 iff a correct indirect operand is found. */
static int
get_3op_or_dip_prefix_op (char **cPP, struct cris_prefix *prefixp)
{
int reg_number;
if (**cPP != '[')
/* We must have a '[' or it's a clean failure. */
return 0;
/* Eat the first '['. */
(*cPP)++;
if (**cPP == '[')
{
/* A second '[', so this must be double-indirect mode. */
(*cPP)++;
prefixp->kind = PREFIX_DIP;
prefixp->opcode = DIP_OPCODE;
/* Get the register or fail entirely. */
if (! get_gen_reg (cPP, &reg_number))
return 0;
else
{
prefixp->opcode |= reg_number /* << 0 */ ;
if (**cPP == '+')
{
/* Since we found a '+', this must be double-indirect
autoincrement mode. */
(*cPP)++;
prefixp->opcode |= AUTOINCR_BIT << 8;
}
/* There's nothing particular to do, if this was a
double-indirect *without* autoincrement. */
}
/* Check the first ']'. The second one is checked at the end. */
if (**cPP != ']')
return 0;
/* Eat the first ']', so we'll be looking at a second ']'. */
(*cPP)++;
}
/* No second '['. Then we should have a register here, making
it "[rN". */
else if (get_gen_reg (cPP, &prefixp->base_reg_number))
{
/* This must be indexed or offset mode: "[rN+I]" or
"[rN+rM.S]" or "[rN+[rM].S]" or "[rN+[rM+].S]". */
if (**cPP == '+')
{
int index_reg_number;
(*cPP)++;
if (**cPP == '[')
{
/* This is "[rx+["... Expect a register next. */
int size_bits;
(*cPP)++;
if (!get_gen_reg (cPP, &index_reg_number))
return 0;
prefixp->kind = PREFIX_BDAP;
prefixp->opcode
= (BDAP_INDIR_OPCODE
+ (prefixp->base_reg_number << 12)
+ index_reg_number);
/* We've seen "[rx+[ry", so check if this is
autoincrement. */
if (**cPP == '+')
{
/* Yep, now at "[rx+[ry+". */
(*cPP)++;
prefixp->opcode |= AUTOINCR_BIT << 8;
}
/* If it wasn't autoincrement, we don't need to
add anything. */
/* Check a first closing ']': "[rx+[ry]" or
"[rx+[ry+]". */
if (**cPP != ']')
return 0;
(*cPP)++;
/* Now expect a size modifier ".S". */
if (! get_bwd_size_modifier (cPP, &size_bits))
return 0;
prefixp->opcode |= size_bits << 4;
/* Ok, all interesting stuff has been seen:
"[rx+[ry+].S" or "[rx+[ry].S". We only need to
expect a final ']', which we'll do in a common
closing session. */
}
/* Seen "[rN+", but not a '[', so check if we have a
register. */
else if (get_gen_reg (cPP, &index_reg_number))
{
/* This is indexed mode: "[rN+rM.S]" or
"[rN+rM.S+]". */
int size_bits;
prefixp->kind = PREFIX_BIAP;
prefixp->opcode
= (BIAP_OPCODE
| prefixp->base_reg_number /* << 0 */
| (index_reg_number << 12));
/* Consume the ".S". */
if (! get_bwd_size_modifier (cPP, &size_bits))
/* Missing size, so fail. */
return 0;
else
/* Size found. Add that piece and drop down to
the common checking of the closing ']'. */
prefixp->opcode |= size_bits << 4;
}
/* Seen "[rN+", but not a '[' or a register, so then
it must be a constant "I".
As a quality of implementation improvement, we check for a
closing ']', like in an erroneous "[rN+]". If we don't,
the expression parser will emit a confusing "bad
expression" when it sees the ']', probably because it
doesn't like seeing no expression. */
else if (**cPP != ']' && cris_get_expression (cPP, &prefixp->expr))
{
/* Expression found, so fill in the bits of offset
mode and drop down to check the closing ']'. */
prefixp->kind = PREFIX_BDAP_IMM;
/* We tentatively put an opcode corresponding to a 32-bit
operand here, although it may be relaxed when there's no
PIC specifier for the operand. */
prefixp->opcode
= (BDAP_INDIR_OPCODE
| (prefixp->base_reg_number << 12)
| (AUTOINCR_BIT << 8)
| (2 << 4)
| REG_PC /* << 0 */);
/* This can have a PIC suffix, specifying reloc type to use. */
if ((pic || tls) && **cPP == RELOC_SUFFIX_CHAR)
{
unsigned int relocsize;
cris_get_reloc_suffix (cPP, &prefixp->reloc, &prefixp->expr);
/* Tweak the size of the immediate operand in the prefix
opcode if it isn't what we set. */
relocsize = cris_get_specified_reloc_size (prefixp->reloc);
if (relocsize != 4)
prefixp->opcode
= ((prefixp->opcode & ~(3 << 4))
| ((relocsize >> 1) << 4));
}
}
else
/* Nothing valid here: lose. */
return 0;
}
/* Seen "[rN" but no '+', so check if it's a '-'. */
else if (**cPP == '-')
{
/* Yep, we must have offset mode. */
if (! cris_get_expression (cPP, &prefixp->expr))
/* No expression, so we lose. */
return 0;
else
{
/* Expression found to make this offset mode, so
fill those bits and drop down to check the
closing ']'.
Note that we don't allow a PIC suffix for
an operand with a minus sign like this. */
prefixp->kind = PREFIX_BDAP_IMM;
}
}
else
{
/* We've seen "[rN", but not '+' or '-'; rather a ']'.
Hmm. Normally this is a simple indirect mode that we
shouldn't match, but if we expect ']', then we have a
zero offset, so it can be a three-address-operand,
like "[rN],rO,rP", thus offset mode.
Don't eat the ']', that will be done in the closing
ceremony. */
prefixp->expr.X_op = O_constant;
prefixp->expr.X_add_number = 0;
prefixp->expr.X_add_symbol = NULL;
prefixp->expr.X_op_symbol = NULL;
prefixp->kind = PREFIX_BDAP_IMM;
}
}
/* A '[', but no second '[', and no register. Check if we
have an expression, making this "[I]" for a double-indirect
prefix. */
else if (cris_get_expression (cPP, &prefixp->expr))
{
/* Expression found, the so called absolute mode for a
double-indirect prefix on PC. */
prefixp->kind = PREFIX_DIP;
prefixp->opcode = DIP_OPCODE | (AUTOINCR_BIT << 8) | REG_PC;
prefixp->reloc = BFD_RELOC_32;
/* For :GD and :IE, it makes sense to have TLS specifiers here. */
if ((pic || tls) && **cPP == RELOC_SUFFIX_CHAR)
cris_get_reloc_suffix (cPP, &prefixp->reloc, &prefixp->expr);
}
else
/* Neither '[' nor register nor expression. We lose. */
return 0;
/* We get here as a closing ceremony to a successful match. We just
need to check the closing ']'. */
if (**cPP != ']')
/* Oops. Close but no air-polluter. */
return 0;
/* Don't forget to consume that ']', before returning in glory. */
(*cPP)++;
return 1;
}
/* Get an expression from the string pointed out by *cPP.
The pointer *cPP is advanced to the character following the expression
on a success, or retains its original value otherwise.
cPP Pointer to pointer to string beginning with the expression.
exprP Pointer to structure containing the expression.
Return 1 iff a correct expression is found. */
static int
cris_get_expression (char **cPP, expressionS *exprP)
{
char *saved_input_line_pointer;
/* The "expression" function expects to find an expression at the
global variable input_line_pointer, so we have to save it to give
the impression that we don't fiddle with global variables. */
saved_input_line_pointer = input_line_pointer;
input_line_pointer = *cPP;
/* Avoid a common error, confusing addressing modes. Beware that the
call to expression below does not signal that error; it treats []
as parentheses, unless #define NEED_INDEX_OPERATOR in which case it
gives them other confusing semantics rather than plain outlawing
them, which is what we want. */
if (*input_line_pointer == '[')
{
input_line_pointer = saved_input_line_pointer;
return 0;
}
expression (exprP);
if (exprP->X_op == O_illegal || exprP->X_op == O_absent)
{
input_line_pointer = saved_input_line_pointer;
return 0;
}
/* Everything seems to be fine, just restore the global
input_line_pointer and say we're successful. */
*cPP = input_line_pointer;
input_line_pointer = saved_input_line_pointer;
return 1;
}
/* Get a sequence of flag characters from *spp. The pointer *cPP is
advanced to the character following the expression. The flag
characters are consecutive, no commas or spaces.
cPP Pointer to pointer to string beginning with the expression.
flagp Pointer to int to return the flags expression.
Return 1 iff a correct flags expression is found. */
static int
get_flags (char **cPP, int *flagsp)
{
for (;;)
{
switch (**cPP)
{
case 'd':
case 'D':
if (! cris_insn_ver_valid_for_arch (cris_ver_v0_3,
cris_arch))
return 0;
*flagsp |= 0x80;
break;
case 'm':
case 'M':
if (! cris_insn_ver_valid_for_arch (cris_ver_v8_10,
cris_arch))
return 0;
*flagsp |= 0x80;
break;
case 'e':
case 'E':
if (! cris_insn_ver_valid_for_arch (cris_ver_v0_3,
cris_arch))
return 0;
*flagsp |= 0x40;
break;
case 'b':
case 'B':
if (! cris_insn_ver_valid_for_arch (cris_ver_v8_10,
cris_arch))
return 0;
*flagsp |= 0x40;
break;
case 'p':
case 'P':
if (! cris_insn_ver_valid_for_arch (cris_ver_v32p,
cris_arch))
return 0;
*flagsp |= 0x80;
break;
case 'u':
case 'U':
if (! cris_insn_ver_valid_for_arch (cris_ver_v32p,
cris_arch))
return 0;
*flagsp |= 0x40;
break;
case 'i':
case 'I':
*flagsp |= 0x20;
break;
case 'x':
case 'X':
*flagsp |= 0x10;
break;
case 'n':
case 'N':
*flagsp |= 0x8;
break;
case 'z':
case 'Z':
*flagsp |= 0x4;
break;
case 'v':
case 'V':
*flagsp |= 0x2;
break;
case 'c':
case 'C':
*flagsp |= 1;
break;
default:
/* We consider this successful if we stop at a comma or
whitespace. Anything else, and we consider it a failure. */
if (**cPP != ','
&& **cPP != 0
&& ! ISSPACE (**cPP))
return 0;
else
return 1;
}
/* Don't forget to consume each flag character. */
(*cPP)++;
}
}
/* Generate code and fixes for a BDAP prefix.
For v32, this handles ADDOQ because thankfully the opcodes are the
same.
base_regno Int containing the base register number.
exprP Pointer to structure containing the offset expression. */
static void
gen_bdap (int base_regno, expressionS *exprP)
{
unsigned int opcode;
char *opcodep;
/* Put out the prefix opcode; assume quick immediate mode at first. */
opcode = BDAP_QUICK_OPCODE | (base_regno << 12);
opcodep = cris_insn_first_word_frag ();
md_number_to_chars (opcodep, opcode, 2);
if (exprP->X_op == O_constant)
{
/* We have an absolute expression that we know the size of right
now. */
long int value;
int size;
value = exprP->X_add_number;