| /* tc-vax.c - vax-specific - |
| Copyright (C) 1987-2021 Free Software Foundation, Inc. |
| |
| This file is part of GAS, the GNU Assembler. |
| |
| GAS is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GAS is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GAS; see the file COPYING. If not, write to the Free |
| Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA |
| 02110-1301, USA. */ |
| |
| #include "as.h" |
| |
| #include "vax-inst.h" |
| #include "obstack.h" /* For FRAG_APPEND_1_CHAR macro in "frags.h" */ |
| #include "subsegs.h" |
| #include "safe-ctype.h" |
| |
| #ifdef OBJ_ELF |
| #include "elf/vax.h" |
| #endif |
| |
| /* These chars start a comment anywhere in a source file (except inside |
| another comment */ |
| const char comment_chars[] = "#"; |
| |
| /* These chars only start a comment at the beginning of a line. */ |
| /* Note that for the VAX the are the same as comment_chars above. */ |
| const char line_comment_chars[] = "#"; |
| |
| const char line_separator_chars[] = ";"; |
| |
| /* Chars that can be used to separate mant from exp in floating point nums. */ |
| const char EXP_CHARS[] = "eE"; |
| |
| /* Chars that mean this number is a floating point constant |
| as in 0f123.456 |
| or 0H1.234E-12 (see exp chars above). */ |
| const char FLT_CHARS[] = "dDfFgGhH"; |
| |
| /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be |
| changed in read.c . Ideally it shouldn't have to know about it at all, |
| but nothing is ideal around here. */ |
| |
| /* Hold details of an operand expression. */ |
| static expressionS exp_of_operand[VIT_MAX_OPERANDS]; |
| static segT seg_of_operand[VIT_MAX_OPERANDS]; |
| |
| /* A vax instruction after decoding. */ |
| static struct vit v; |
| |
| /* Hold details of big operands. */ |
| LITTLENUM_TYPE big_operand_bits[VIT_MAX_OPERANDS][SIZE_OF_LARGE_NUMBER]; |
| FLONUM_TYPE float_operand[VIT_MAX_OPERANDS]; |
| /* Above is made to point into big_operand_bits by md_begin(). */ |
| |
| #ifdef OBJ_ELF |
| #define GLOBAL_OFFSET_TABLE_NAME "_GLOBAL_OFFSET_TABLE_" |
| #define PROCEDURE_LINKAGE_TABLE_NAME "_PROCEDURE_LINKAGE_TABLE_" |
| symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */ |
| symbolS *PLT_symbol; /* Pre-defined "_PROCEDURE_LINKAGE_TABLE_". */ |
| #endif |
| |
| int flag_hash_long_names; /* -+ */ |
| int flag_one; /* -1 */ |
| int flag_show_after_trunc; /* -H */ |
| int flag_no_hash_mixed_case; /* -h NUM */ |
| #ifdef OBJ_ELF |
| int flag_want_pic; /* -k */ |
| #endif |
| |
| /* For VAX, relative addresses of "just the right length" are easy. |
| The branch displacement is always the last operand, even in |
| synthetic instructions. |
| For VAX, we encode the relax_substateTs (in e.g. fr_substate) as: |
| |
| 4 3 2 1 0 bit number |
| ---/ /--+-------+-------+-------+-------+-------+ |
| | what state ? | how long ? | |
| ---/ /--+-------+-------+-------+-------+-------+ |
| |
| The "how long" bits are 00=byte, 01=word, 10=long. |
| This is a Un*x convention. |
| Not all lengths are legit for a given value of (what state). |
| The "how long" refers merely to the displacement length. |
| The address usually has some constant bytes in it as well. |
| |
| groups for VAX address relaxing. |
| |
| 1. "foo" pc-relative. |
| length of byte, word, long |
| |
| 2a. J<cond> where <cond> is a simple flag test. |
| length of byte, word, long. |
| VAX opcodes are: (Hex) |
| bneq/bnequ 12 |
| beql/beqlu 13 |
| bgtr 14 |
| bleq 15 |
| bgeq 18 |
| blss 19 |
| bgtru 1a |
| blequ 1b |
| bvc 1c |
| bvs 1d |
| bgequ/bcc 1e |
| blssu/bcs 1f |
| Always, you complement 0th bit to reverse condition. |
| Always, 1-byte opcode, then 1-byte displacement. |
| |
| 2b. J<cond> where cond tests a memory bit. |
| length of byte, word, long. |
| Vax opcodes are: (Hex) |
| bbs e0 |
| bbc e1 |
| bbss e2 |
| bbcs e3 |
| bbsc e4 |
| bbcc e5 |
| Always, you complement 0th bit to reverse condition. |
| Always, 1-byte opcode, longword-address, byte-address, 1-byte-displacement |
| |
| 2c. J<cond> where cond tests low-order memory bit |
| length of byte,word,long. |
| Vax opcodes are: (Hex) |
| blbs e8 |
| blbc e9 |
| Always, you complement 0th bit to reverse condition. |
| Always, 1-byte opcode, longword-address, 1-byte displacement. |
| |
| 3. Jbs/Jbr. |
| length of byte,word,long. |
| Vax opcodes are: (Hex) |
| bsbb 10 |
| brb 11 |
| These are like (2) but there is no condition to reverse. |
| Always, 1 byte opcode, then displacement/absolute. |
| |
| 4a. JacbX |
| length of word, long. |
| Vax opcodes are: (Hex) |
| acbw 3d |
| acbf 4f |
| acbd 6f |
| abcb 9d |
| acbl f1 |
| acbg 4ffd |
| acbh 6ffd |
| Always, we cannot reverse the sense of the branch; we have a word |
| displacement. |
| The double-byte op-codes don't hurt: we never want to modify the |
| opcode, so we don't care how many bytes are between the opcode and |
| the operand. |
| |
| 4b. JXobXXX |
| length of long, long, byte. |
| Vax opcodes are: (Hex) |
| aoblss f2 |
| aobleq f3 |
| sobgeq f4 |
| sobgtr f5 |
| Always, we cannot reverse the sense of the branch; we have a byte |
| displacement. |
| |
| The only time we need to modify the opcode is for class 2 instructions. |
| After relax() we may complement the lowest order bit of such instruction |
| to reverse sense of branch. |
| |
| For class 2 instructions, we store context of "where is the opcode literal". |
| We can change an opcode's lowest order bit without breaking anything else. |
| |
| We sometimes store context in the operand literal. This way we can figure out |
| after relax() what the original addressing mode was. */ |
| |
| /* These displacements are relative to the start address of the |
| displacement. The first letter is Byte, Word. 2nd letter is |
| Forward, Backward. */ |
| #define BF (1+ 127) |
| #define BB (1+-128) |
| #define WF (2+ 32767) |
| #define WB (2+-32768) |
| /* Don't need LF, LB because they always reach. [They are coded as 0.] */ |
| |
| #define C(a,b) ENCODE_RELAX(a,b) |
| /* This macro has no side-effects. */ |
| #define ENCODE_RELAX(what,length) (((what) << 2) + (length)) |
| #define RELAX_STATE(s) ((s) >> 2) |
| #define RELAX_LENGTH(s) ((s) & 3) |
| |
| const relax_typeS md_relax_table[] = |
| { |
| {1, 1, 0, 0}, /* error sentinel 0,0 */ |
| {1, 1, 0, 0}, /* unused 0,1 */ |
| {1, 1, 0, 0}, /* unused 0,2 */ |
| {1, 1, 0, 0}, /* unused 0,3 */ |
| |
| {BF + 1, BB + 1, 2, C (1, 1)},/* B^"foo" 1,0 */ |
| {WF + 1, WB + 1, 3, C (1, 2)},/* W^"foo" 1,1 */ |
| {0, 0, 5, 0}, /* L^"foo" 1,2 */ |
| {1, 1, 0, 0}, /* unused 1,3 */ |
| |
| {BF, BB, 1, C (2, 1)}, /* b<cond> B^"foo" 2,0 */ |
| {WF + 2, WB + 2, 4, C (2, 2)},/* br.+? brw X 2,1 */ |
| {0, 0, 7, 0}, /* br.+? jmp X 2,2 */ |
| {1, 1, 0, 0}, /* unused 2,3 */ |
| |
| {BF, BB, 1, C (3, 1)}, /* brb B^foo 3,0 */ |
| {WF, WB, 2, C (3, 2)}, /* brw W^foo 3,1 */ |
| {0, 0, 5, 0}, /* Jmp L^foo 3,2 */ |
| {1, 1, 0, 0}, /* unused 3,3 */ |
| |
| {1, 1, 0, 0}, /* unused 4,0 */ |
| {WF, WB, 2, C (4, 2)}, /* acb_ ^Wfoo 4,1 */ |
| {0, 0, 10, 0}, /* acb_,br,jmp L^foo4,2 */ |
| {1, 1, 0, 0}, /* unused 4,3 */ |
| |
| {BF, BB, 1, C (5, 1)}, /* Xob___,,foo 5,0 */ |
| {WF + 4, WB + 4, 6, C (5, 2)},/* Xob.+2,brb.+3,brw5,1 */ |
| {0, 0, 9, 0}, /* Xob.+2,brb.+6,jmp5,2 */ |
| {1, 1, 0, 0}, /* unused 5,3 */ |
| }; |
| |
| #undef C |
| #undef BF |
| #undef BB |
| #undef WF |
| #undef WB |
| |
| void float_cons (int); |
| int flonum_gen2vax (int, FLONUM_TYPE *, LITTLENUM_TYPE *); |
| |
| const pseudo_typeS md_pseudo_table[] = |
| { |
| {"dfloat", float_cons, 'd'}, |
| {"ffloat", float_cons, 'f'}, |
| {"gfloat", float_cons, 'g'}, |
| {"hfloat", float_cons, 'h'}, |
| {"d_floating", float_cons, 'd'}, |
| {"f_floating", float_cons, 'f'}, |
| {"g_floating", float_cons, 'g'}, |
| {"h_floating", float_cons, 'h'}, |
| {NULL, NULL, 0}, |
| }; |
| |
| #define STATE_PC_RELATIVE (1) |
| #define STATE_CONDITIONAL_BRANCH (2) |
| #define STATE_ALWAYS_BRANCH (3) /* includes BSB... */ |
| #define STATE_COMPLEX_BRANCH (4) |
| #define STATE_COMPLEX_HOP (5) |
| |
| #define STATE_BYTE (0) |
| #define STATE_WORD (1) |
| #define STATE_LONG (2) |
| #define STATE_UNDF (3) /* Symbol undefined in pass1. */ |
| |
| #define min(a, b) ((a) < (b) ? (a) : (b)) |
| |
| void |
| md_number_to_chars (char con[], valueT value, int nbytes) |
| { |
| number_to_chars_littleendian (con, value, nbytes); |
| } |
| |
| /* Fix up some data or instructions after we find out the value of a symbol |
| that they reference. */ |
| |
| void /* Knows about order of bytes in address. */ |
| md_apply_fix (fixS *fixP, valueT *valueP, segT seg ATTRIBUTE_UNUSED) |
| { |
| valueT value = * valueP; |
| |
| if (fixP->fx_subsy != (symbolS *) NULL) |
| as_bad_subtract (fixP); |
| |
| if (fixP->fx_addsy == NULL) |
| fixP->fx_done = 1; |
| |
| if (fixP->fx_done) |
| number_to_chars_littleendian (fixP->fx_where + fixP->fx_frag->fr_literal, |
| value, fixP->fx_size); |
| else |
| /* Initialise the part of an instruction frag covered by the |
| relocation. (Many occurrences of frag_more followed by fix_new |
| lack any init of the frag.) Since VAX uses RELA relocs the |
| value we write into this field doesn't really matter. */ |
| memset (fixP->fx_where + fixP->fx_frag->fr_literal, 0, fixP->fx_size); |
| } |
| |
| /* Convert a number from VAX byte order (little endian) |
| into host byte order. |
| con is the buffer to convert, |
| nbytes is the length of the given buffer. */ |
| static long |
| md_chars_to_number (unsigned char con[], int nbytes) |
| { |
| long retval; |
| |
| for (retval = 0, con += nbytes - 1; nbytes--; con--) |
| { |
| retval <<= BITS_PER_CHAR; |
| retval |= *con; |
| } |
| return retval; |
| } |
| |
| /* Copy a bignum from in to out. |
| If the output is shorter than the input, copy lower-order |
| littlenums. Return 0 or the number of significant littlenums |
| dropped. Assumes littlenum arrays are densely packed: no unused |
| chars between the littlenums. Uses memcpy() to move littlenums, and |
| wants to know length (in chars) of the input bignum. */ |
| |
| static int |
| bignum_copy (LITTLENUM_TYPE *in, |
| int in_length, /* in sizeof(littlenum)s */ |
| LITTLENUM_TYPE *out, |
| int out_length /* in sizeof(littlenum)s */) |
| { |
| int significant_littlenums_dropped; |
| |
| if (out_length < in_length) |
| { |
| LITTLENUM_TYPE *p; /* -> most significant (non-zero) input |
| littlenum. */ |
| |
| memcpy ((void *) out, (void *) in, |
| (unsigned int) out_length << LITTLENUM_SHIFT); |
| for (p = in + in_length - 1; p >= in; --p) |
| { |
| if (*p) |
| break; |
| } |
| significant_littlenums_dropped = p - in - in_length + 1; |
| |
| if (significant_littlenums_dropped < 0) |
| significant_littlenums_dropped = 0; |
| } |
| else |
| { |
| memcpy ((char *) out, (char *) in, |
| (unsigned int) in_length << LITTLENUM_SHIFT); |
| |
| if (out_length > in_length) |
| memset ((char *) (out + in_length), '\0', |
| (unsigned int) (out_length - in_length) << LITTLENUM_SHIFT); |
| |
| significant_littlenums_dropped = 0; |
| } |
| |
| return significant_littlenums_dropped; |
| } |
| |
| /* md_estimate_size_before_relax(), called just before relax(). |
| Any symbol that is now undefined will not become defined. |
| Return the correct fr_subtype in the frag and the growth beyond |
| fr_fix. */ |
| int |
| md_estimate_size_before_relax (fragS *fragP, segT segment) |
| { |
| if (RELAX_LENGTH (fragP->fr_subtype) == STATE_UNDF) |
| { |
| if (S_GET_SEGMENT (fragP->fr_symbol) != segment |
| #ifdef OBJ_ELF |
| || S_IS_WEAK (fragP->fr_symbol) |
| || S_IS_EXTERNAL (fragP->fr_symbol) |
| #endif |
| ) |
| { |
| /* Non-relaxable cases. */ |
| int reloc_type = NO_RELOC; |
| char *p; |
| int old_fr_fix; |
| |
| old_fr_fix = fragP->fr_fix; |
| p = &fragP->fr_literal[0] + old_fr_fix; |
| #ifdef OBJ_ELF |
| /* If this is to an undefined symbol, then if it's an indirect |
| reference indicate that is can mutated into a GLOB_DAT or |
| JUMP_SLOT by the loader. We restrict ourselves to no offset |
| due to a limitation in the NetBSD linker. */ |
| |
| if (GOT_symbol == NULL) |
| GOT_symbol = symbol_find (GLOBAL_OFFSET_TABLE_NAME); |
| if (PLT_symbol == NULL) |
| PLT_symbol = symbol_find (PROCEDURE_LINKAGE_TABLE_NAME); |
| if ((GOT_symbol == NULL || fragP->fr_symbol != GOT_symbol) |
| && (PLT_symbol == NULL || fragP->fr_symbol != PLT_symbol) |
| && fragP->fr_symbol != NULL |
| && flag_want_pic |
| && (!S_IS_DEFINED (fragP->fr_symbol) |
| || S_IS_WEAK (fragP->fr_symbol) |
| || S_IS_EXTERNAL (fragP->fr_symbol))) |
| { |
| /* Indirect references cannot go through the GOT or PLT, |
| let's hope they'll become local in the final link. */ |
| if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragP->fr_symbol)) |
| != STV_DEFAULT) |
| || (p[0] & 0x10)) |
| reloc_type = BFD_RELOC_32_PCREL; |
| else if (((unsigned char *) fragP->fr_opcode)[0] == VAX_CALLS |
| || ((unsigned char *) fragP->fr_opcode)[0] == VAX_CALLG |
| || ((unsigned char *) fragP->fr_opcode)[0] == VAX_JSB |
| || ((unsigned char *) fragP->fr_opcode)[0] == VAX_JMP |
| || S_IS_FUNCTION (fragP->fr_symbol)) |
| reloc_type = BFD_RELOC_32_PLT_PCREL; |
| else |
| reloc_type = BFD_RELOC_32_GOT_PCREL; |
| } |
| #endif |
| switch (RELAX_STATE (fragP->fr_subtype)) |
| { |
| case STATE_PC_RELATIVE: |
| p[0] |= VAX_PC_RELATIVE_MODE; /* Preserve @ bit. */ |
| fragP->fr_fix += 1 + 4; |
| fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol, |
| fragP->fr_offset, 1, reloc_type); |
| break; |
| |
| case STATE_CONDITIONAL_BRANCH: |
| *fragP->fr_opcode ^= 1; /* Reverse sense of branch. */ |
| p[0] = 6; |
| p[1] = VAX_JMP; |
| p[2] = VAX_PC_RELATIVE_MODE; /* ...(PC) */ |
| fragP->fr_fix += 1 + 1 + 1 + 4; |
| fix_new (fragP, old_fr_fix + 3, 4, fragP->fr_symbol, |
| fragP->fr_offset, 1, NO_RELOC); |
| break; |
| |
| case STATE_COMPLEX_BRANCH: |
| p[0] = 2; |
| p[1] = 0; |
| p[2] = VAX_BRB; |
| p[3] = 6; |
| p[4] = VAX_JMP; |
| p[5] = VAX_PC_RELATIVE_MODE; /* ...(pc) */ |
| fragP->fr_fix += 2 + 2 + 1 + 1 + 4; |
| fix_new (fragP, old_fr_fix + 6, 4, fragP->fr_symbol, |
| fragP->fr_offset, 1, NO_RELOC); |
| break; |
| |
| case STATE_COMPLEX_HOP: |
| p[0] = 2; |
| p[1] = VAX_BRB; |
| p[2] = 6; |
| p[3] = VAX_JMP; |
| p[4] = VAX_PC_RELATIVE_MODE; /* ...(pc) */ |
| fragP->fr_fix += 1 + 2 + 1 + 1 + 4; |
| fix_new (fragP, old_fr_fix + 5, 4, fragP->fr_symbol, |
| fragP->fr_offset, 1, NO_RELOC); |
| break; |
| |
| case STATE_ALWAYS_BRANCH: |
| *fragP->fr_opcode += VAX_WIDEN_LONG; |
| p[0] = VAX_PC_RELATIVE_MODE; /* ...(PC) */ |
| fragP->fr_fix += 1 + 4; |
| fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol, |
| fragP->fr_offset, 1, NO_RELOC); |
| break; |
| |
| default: |
| abort (); |
| } |
| frag_wane (fragP); |
| |
| /* Return the growth in the fixed part of the frag. */ |
| return fragP->fr_fix - old_fr_fix; |
| } |
| |
| /* Relaxable cases. Set up the initial guess for the variable |
| part of the frag. */ |
| switch (RELAX_STATE (fragP->fr_subtype)) |
| { |
| case STATE_PC_RELATIVE: |
| fragP->fr_subtype = ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE); |
| break; |
| case STATE_CONDITIONAL_BRANCH: |
| fragP->fr_subtype = ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE); |
| break; |
| case STATE_COMPLEX_BRANCH: |
| fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD); |
| break; |
| case STATE_COMPLEX_HOP: |
| fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE); |
| break; |
| case STATE_ALWAYS_BRANCH: |
| fragP->fr_subtype = ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE); |
| break; |
| } |
| } |
| |
| if (fragP->fr_subtype >= sizeof (md_relax_table) / sizeof (md_relax_table[0])) |
| abort (); |
| |
| /* Return the size of the variable part of the frag. */ |
| return md_relax_table[fragP->fr_subtype].rlx_length; |
| } |
| |
| /* Called after relax() is finished. |
| In: Address of frag. |
| fr_type == rs_machine_dependent. |
| fr_subtype is what the address relaxed to. |
| |
| Out: Any fixSs and constants are set up. |
| Caller will turn frag into a ".space 0". */ |
| void |
| md_convert_frag (bfd *headers ATTRIBUTE_UNUSED, |
| segT seg ATTRIBUTE_UNUSED, |
| fragS *fragP) |
| { |
| char *addressP; /* -> _var to change. */ |
| char *opcodeP; /* -> opcode char(s) to change. */ |
| short int extension = 0; /* Size of relaxed address. */ |
| /* Added to fr_fix: incl. ALL var chars. */ |
| symbolS *symbolP; |
| long where; |
| |
| know (fragP->fr_type == rs_machine_dependent); |
| where = fragP->fr_fix; |
| addressP = &fragP->fr_literal[0] + where; |
| opcodeP = fragP->fr_opcode; |
| symbolP = fragP->fr_symbol; |
| know (symbolP); |
| |
| switch (fragP->fr_subtype) |
| { |
| case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE): |
| know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */ |
| addressP[0] |= 0xAF; /* Byte displacement. */ |
| fix_new (fragP, fragP->fr_fix + 1, 1, fragP->fr_symbol, |
| fragP->fr_offset, 1, NO_RELOC); |
| extension = 2; |
| break; |
| |
| case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_WORD): |
| know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */ |
| addressP[0] |= 0xCF; /* Word displacement. */ |
| fix_new (fragP, fragP->fr_fix + 1, 2, fragP->fr_symbol, |
| fragP->fr_offset, 1, NO_RELOC); |
| extension = 3; |
| break; |
| |
| case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_LONG): |
| know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */ |
| addressP[0] |= 0xEF; /* Long word displacement. */ |
| fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol, |
| fragP->fr_offset, 1, NO_RELOC); |
| extension = 5; |
| break; |
| |
| case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE): |
| fix_new (fragP, fragP->fr_fix, 1, fragP->fr_symbol, |
| fragP->fr_offset, 1, NO_RELOC); |
| extension = 1; |
| break; |
| |
| case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD): |
| opcodeP[0] ^= 1; /* Reverse sense of test. */ |
| addressP[0] = 3; |
| addressP[1] = VAX_BRW; |
| fix_new (fragP, fragP->fr_fix + 2, 2, fragP->fr_symbol, |
| fragP->fr_offset, 1, NO_RELOC); |
| extension = 4; |
| break; |
| |
| case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_LONG): |
| opcodeP[0] ^= 1; /* Reverse sense of test. */ |
| addressP[0] = 6; |
| addressP[1] = VAX_JMP; |
| addressP[2] = VAX_PC_RELATIVE_MODE; |
| fix_new (fragP, fragP->fr_fix + 3, 4, fragP->fr_symbol, |
| fragP->fr_offset, 1, NO_RELOC); |
| extension = 7; |
| break; |
| |
| case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE): |
| fix_new (fragP, fragP->fr_fix, 1, fragP->fr_symbol, |
| fragP->fr_offset, 1, NO_RELOC); |
| extension = 1; |
| break; |
| |
| case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_WORD): |
| opcodeP[0] += VAX_WIDEN_WORD; /* brb -> brw, bsbb -> bsbw */ |
| fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol, fragP->fr_offset, |
| 1, NO_RELOC); |
| extension = 2; |
| break; |
| |
| case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_LONG): |
| opcodeP[0] += VAX_WIDEN_LONG; /* brb -> jmp, bsbb -> jsb */ |
| addressP[0] = VAX_PC_RELATIVE_MODE; |
| fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol, |
| fragP->fr_offset, 1, NO_RELOC); |
| extension = 5; |
| break; |
| |
| case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD): |
| fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol, |
| fragP->fr_offset, 1, NO_RELOC); |
| extension = 2; |
| break; |
| |
| case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_LONG): |
| addressP[0] = 2; |
| addressP[1] = 0; |
| addressP[2] = VAX_BRB; |
| addressP[3] = 6; |
| addressP[4] = VAX_JMP; |
| addressP[5] = VAX_PC_RELATIVE_MODE; |
| fix_new (fragP, fragP->fr_fix + 6, 4, fragP->fr_symbol, |
| fragP->fr_offset, 1, NO_RELOC); |
| extension = 10; |
| break; |
| |
| case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE): |
| fix_new (fragP, fragP->fr_fix, 1, fragP->fr_symbol, |
| fragP->fr_offset, 1, NO_RELOC); |
| extension = 1; |
| break; |
| |
| case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_WORD): |
| addressP[0] = 2; |
| addressP[1] = VAX_BRB; |
| addressP[2] = 3; |
| addressP[3] = VAX_BRW; |
| fix_new (fragP, fragP->fr_fix + 4, 2, fragP->fr_symbol, |
| fragP->fr_offset, 1, NO_RELOC); |
| extension = 6; |
| break; |
| |
| case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_LONG): |
| addressP[0] = 2; |
| addressP[1] = VAX_BRB; |
| addressP[2] = 6; |
| addressP[3] = VAX_JMP; |
| addressP[4] = VAX_PC_RELATIVE_MODE; |
| fix_new (fragP, fragP->fr_fix + 5, 4, fragP->fr_symbol, |
| fragP->fr_offset, 1, NO_RELOC); |
| extension = 9; |
| break; |
| |
| default: |
| BAD_CASE (fragP->fr_subtype); |
| break; |
| } |
| fragP->fr_fix += extension; |
| } |
| |
| /* Translate internal format of relocation info into target format. |
| |
| On vax: first 4 bytes are normal unsigned long, next three bytes |
| are symbolnum, least sig. byte first. Last byte is broken up with |
| the upper nibble as nuthin, bit 3 as extern, bits 2 & 1 as length, and |
| bit 0 as pcrel. */ |
| #ifdef comment |
| void |
| md_ri_to_chars (char *the_bytes, struct reloc_info_generic ri) |
| { |
| /* This is easy. */ |
| md_number_to_chars (the_bytes, ri.r_address, sizeof (ri.r_address)); |
| /* Now the fun stuff. */ |
| the_bytes[6] = (ri.r_symbolnum >> 16) & 0x0ff; |
| the_bytes[5] = (ri.r_symbolnum >> 8) & 0x0ff; |
| the_bytes[4] = ri.r_symbolnum & 0x0ff; |
| the_bytes[7] = (((ri.r_extern << 3) & 0x08) | ((ri.r_length << 1) & 0x06) |
| | ((ri.r_pcrel << 0) & 0x01)) & 0x0F; |
| } |
| |
| #endif /* comment */ |
| |
| /* BUGS, GRIPES, APOLOGIA, etc. |
| |
| The opcode table 'votstrs' needs to be sorted on opcode frequency. |
| That is, AFTER we hash it with hash_...(), we want most-used opcodes |
| to come out of the hash table faster. |
| |
| I am sorry to inflict yet another VAX assembler on the world, but |
| RMS says we must do everything from scratch, to prevent pin-heads |
| restricting this software. |
| |
| This is a vaguely modular set of routines in C to parse VAX |
| assembly code using DEC mnemonics. It is NOT un*x specific. |
| |
| The idea here is that the assembler has taken care of all: |
| labels |
| macros |
| listing |
| pseudo-ops |
| line continuation |
| comments |
| condensing any whitespace down to exactly one space |
| and all we have to do is parse 1 line into a vax instruction |
| partially formed. We will accept a line, and deliver: |
| an error message (hopefully empty) |
| a skeleton VAX instruction (tree structure) |
| textual pointers to all the operand expressions |
| a warning message that notes a silly operand (hopefully empty) |
| |
| E D I T H I S T O R Y |
| |
| 17may86 Dean Elsner. Bug if line ends immediately after opcode. |
| 30apr86 Dean Elsner. New vip_op() uses arg block so change call. |
| 6jan86 Dean Elsner. Crock vip_begin() to call vip_op_defaults(). |
| 2jan86 Dean Elsner. Invent synthetic opcodes. |
| Widen vax_opcodeT to 32 bits. Use a bit for VIT_OPCODE_SYNTHETIC, |
| which means this is not a real opcode, it is like a macro; it will |
| be relax()ed into 1 or more instructions. |
| Use another bit for VIT_OPCODE_SPECIAL if the op-code is not optimised |
| like a regular branch instruction. Option added to vip_begin(): |
| exclude synthetic opcodes. Invent synthetic_votstrs[]. |
| 31dec85 Dean Elsner. Invent vit_opcode_nbytes. |
| Also make vit_opcode into a char[]. We now have n-byte vax opcodes, |
| so caller's don't have to know the difference between a 1-byte & a |
| 2-byte op-code. Still need vax_opcodeT concept, so we know how |
| big an object must be to hold an op.code. |
| 30dec85 Dean Elsner. Widen typedef vax_opcodeT in "vax-inst.h" |
| because vax opcodes may be 16 bits. Our crufty C compiler was |
| happily initialising 8-bit vot_codes with 16-bit numbers! |
| (Wouldn't the 'phone company like to compress data so easily!) |
| 29dec85 Dean Elsner. New static table vax_operand_width_size[]. |
| Invented so we know hw many bytes a "I^#42" needs in its immediate |
| operand. Revised struct vop in "vax-inst.h": explicitly include |
| byte length of each operand, and it's letter-code datum type. |
| 17nov85 Dean Elsner. Name Change. |
| Due to ar(1) truncating names, we learned the hard way that |
| "vax-inst-parse.c" -> "vax-inst-parse." dropping the "o" off |
| the archived object name. SO... we shortened the name of this |
| source file, and changed the makefile. */ |
| |
| /* Handle of the OPCODE hash table. */ |
| static htab_t op_hash; |
| |
| /* In: 1 character, from "bdfghloqpw" being the data-type of an operand |
| of a vax instruction. |
| |
| Out: the length of an operand of that type, in bytes. |
| Special branch operands types "-?!" have length 0. */ |
| |
| static const short int vax_operand_width_size[256] = |
| { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 1, 0, 8, 0, 4, 8, 16, 0, 0, 0, 4, 0, 0,16, /* ..b.d.fgh...l..o */ |
| 0, 8, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* .q.....w........ */ |
| 0, 0, 1, 0, 8, 0, 4, 8, 16, 0, 0, 0, 4, 0, 0,16, /* ..b.d.fgh...l..o */ |
| 0, 8, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* .q.....w........ */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| }; |
| |
| /* This perversion encodes all the vax opcodes as a bunch of strings. |
| RMS says we should build our hash-table at run-time. Hmm. |
| Please would someone arrange these in decreasing frequency of opcode? |
| Because of the way hash_...() works, the most frequently used opcode |
| should be textually first and so on. |
| |
| Input for this table was 'vax.opcodes', awk(1)ed by 'vax.opcodes.c.awk' . |
| So change 'vax.opcodes', then re-generate this table. */ |
| |
| #include "opcode/vax.h" |
| |
| /* This is a table of optional op-codes. All of them represent |
| 'synthetic' instructions that seem popular. |
| |
| Here we make some pseudo op-codes. Every code has a bit set to say |
| it is synthetic. This lets you catch them if you want to |
| ban these opcodes. They are mnemonics for "elastic" instructions |
| that are supposed to assemble into the fewest bytes needed to do a |
| branch, or to do a conditional branch, or whatever. |
| |
| The opcode is in the usual place [low-order n*8 bits]. This means |
| that if you mask off the bucky bits, the usual rules apply about |
| how long the opcode is. |
| |
| All VAX branch displacements come at the end of the instruction. |
| For simple branches (1-byte opcode + 1-byte displacement) the last |
| operand is coded 'b?' where the "data type" '?' is a clue that we |
| may reverse the sense of the branch (complement lowest order bit) |
| and branch around a jump. This is by far the most common case. |
| That is why the VIT_OPCODE_SYNTHETIC bit is set: it says this is |
| a 0-byte op-code followed by 2 or more bytes of operand address. |
| |
| If the op-code has VIT_OPCODE_SPECIAL set, then we have a more unusual |
| case. |
| |
| For JBSB & JBR the treatment is the similar, except (1) we have a 'bw' |
| option before (2) we can directly JSB/JMP because there is no condition. |
| These operands have 'b-' as their access/data type. |
| |
| That leaves a bunch of random opcodes: JACBx, JxOBxxx. In these |
| cases, we do the same idea. JACBxxx are all marked with a 'b!' |
| JAOBxxx & JSOBxxx are marked with a 'b:'. */ |
| #if (VIT_OPCODE_SYNTHETIC != 0x80000000) |
| #error "You have just broken the encoding below, which assumes the sign bit means 'I am an imaginary instruction'." |
| #endif |
| |
| #if (VIT_OPCODE_SPECIAL != 0x40000000) |
| #error "You have just broken the encoding below, which assumes the 0x40 M bit means 'I am not to be "optimised" the way normal branches are'." |
| #endif |
| |
| static const struct vot |
| synthetic_votstrs[] = |
| { |
| {"jbsb", {"b-", 0xC0000010}}, /* BSD 4.2 */ |
| /* jsb used already */ |
| {"jbr", {"b-", 0xC0000011}}, /* BSD 4.2 */ |
| {"jr", {"b-", 0xC0000011}}, /* consistent */ |
| {"jneq", {"b?", 0x80000012}}, |
| {"jnequ", {"b?", 0x80000012}}, |
| {"jeql", {"b?", 0x80000013}}, |
| {"jeqlu", {"b?", 0x80000013}}, |
| {"jgtr", {"b?", 0x80000014}}, |
| {"jleq", {"b?", 0x80000015}}, |
| /* un-used opcodes here */ |
| {"jgeq", {"b?", 0x80000018}}, |
| {"jlss", {"b?", 0x80000019}}, |
| {"jgtru", {"b?", 0x8000001a}}, |
| {"jlequ", {"b?", 0x8000001b}}, |
| {"jvc", {"b?", 0x8000001c}}, |
| {"jvs", {"b?", 0x8000001d}}, |
| {"jgequ", {"b?", 0x8000001e}}, |
| {"jcc", {"b?", 0x8000001e}}, |
| {"jlssu", {"b?", 0x8000001f}}, |
| {"jcs", {"b?", 0x8000001f}}, |
| |
| {"jacbw", {"rwrwmwb!", 0xC000003d}}, |
| {"jacbf", {"rfrfmfb!", 0xC000004f}}, |
| {"jacbd", {"rdrdmdb!", 0xC000006f}}, |
| {"jacbb", {"rbrbmbb!", 0xC000009d}}, |
| {"jacbl", {"rlrlmlb!", 0xC00000f1}}, |
| {"jacbg", {"rgrgmgb!", 0xC0004ffd}}, |
| {"jacbh", {"rhrhmhb!", 0xC0006ffd}}, |
| |
| {"jbs", {"rlvbb?", 0x800000e0}}, |
| {"jbc", {"rlvbb?", 0x800000e1}}, |
| {"jbss", {"rlvbb?", 0x800000e2}}, |
| {"jbcs", {"rlvbb?", 0x800000e3}}, |
| {"jbsc", {"rlvbb?", 0x800000e4}}, |
| {"jbcc", {"rlvbb?", 0x800000e5}}, |
| {"jbssi", {"rlvbb?", 0x800000e6}}, |
| {"jbcci", {"rlvbb?", 0x800000e7}}, |
| {"jlbs", {"rlb?", 0x800000e8}}, |
| {"jlbc", {"rlb?", 0x800000e9}}, |
| |
| {"jaoblss", {"rlmlb:", 0xC00000f2}}, |
| {"jaobleq", {"rlmlb:", 0xC00000f3}}, |
| {"jsobgeq", {"mlb:", 0xC00000f4}}, |
| {"jsobgtr", {"mlb:", 0xC00000f5}}, |
| |
| /* CASEx has no branch addresses in our conception of it. */ |
| /* You should use ".word ..." statements after the "case ...". */ |
| |
| {"", {"", 0}} /* Empty is end sentinel. */ |
| }; |
| |
| /* Because this module is useful for both VMS and UN*X style assemblers |
| and because of the variety of UN*X assemblers we must recognise |
| the different conventions for assembler operand notation. For example |
| VMS says "#42" for immediate mode, while most UN*X say "$42". |
| We permit arbitrary sets of (single) characters to represent the |
| 3 concepts that DEC writes '#', '@', '^'. */ |
| |
| /* Character tests. */ |
| #define VIP_IMMEDIATE 01 /* Character is like DEC # */ |
| #define VIP_INDIRECT 02 /* Char is like DEC @ */ |
| #define VIP_DISPLEN 04 /* Char is like DEC ^ */ |
| |
| #define IMMEDIATEP(c) (vip_metacharacters [(c) & 0xff] & VIP_IMMEDIATE) |
| #define INDIRECTP(c) (vip_metacharacters [(c) & 0xff] & VIP_INDIRECT) |
| #define DISPLENP(c) (vip_metacharacters [(c) & 0xff] & VIP_DISPLEN) |
| |
| /* We assume 8 bits per byte. Use vip_op_defaults() to set these up BEFORE we |
| are ever called. */ |
| |
| #if defined(CONST_TABLE) |
| #define _ 0, |
| #define I VIP_IMMEDIATE, |
| #define S VIP_INDIRECT, |
| #define D VIP_DISPLEN, |
| static const char |
| vip_metacharacters[256] = |
| { |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /* ^@ ^A ^B ^C ^D ^E ^F ^G ^H ^I ^J ^K ^L ^M ^N ^O*/ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /* ^P ^Q ^R ^S ^T ^U ^V ^W ^X ^Y ^Z ^[ ^\ ^] ^^ ^_ */ |
| _ _ _ _ I _ _ _ _ _ S _ _ _ _ _ /* sp ! " # $ % & ' ( ) * + , - . / */ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*0 1 2 3 4 5 6 7 8 9 : ; < = > ?*/ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*@ A B C D E F G H I J K L M N O*/ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*P Q R S T U V W X Y Z [ \ ] ^ _*/ |
| D _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*` a b c d e f g h i j k l m n o*/ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*p q r s t u v w x y z { | } ~ ^?*/ |
| |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
| }; |
| #undef _ |
| #undef I |
| #undef S |
| #undef D |
| |
| #else |
| |
| static char vip_metacharacters[256]; |
| |
| static void |
| vip_op_1 (int bit, const char *syms) |
| { |
| unsigned char t; |
| |
| while ((t = *syms++) != 0) |
| vip_metacharacters[t] |= bit; |
| } |
| |
| /* Can be called any time. More arguments may appear in future. */ |
| static void |
| vip_op_defaults (const char *immediate, const char *indirect, const char *displen) |
| { |
| vip_op_1 (VIP_IMMEDIATE, immediate); |
| vip_op_1 (VIP_INDIRECT, indirect); |
| vip_op_1 (VIP_DISPLEN, displen); |
| } |
| |
| #endif |
| |
| /* Call me once before you decode any lines. |
| I decode votstrs into a hash table at op_hash (which I create). |
| I return an error text or null. |
| If you want, I will include the 'synthetic' jXXX instructions in the |
| instruction table. |
| You must nominate metacharacters for eg DEC's "#", "@", "^". */ |
| |
| static void |
| vip_begin (int synthetic_too, /* 1 means include jXXX op-codes. */ |
| const char *immediate, |
| const char *indirect, |
| const char *displen) |
| { |
| const struct vot *vP; /* scan votstrs */ |
| |
| op_hash = str_htab_create (); |
| |
| for (vP = votstrs; *vP->vot_name; vP++) |
| if (str_hash_insert (op_hash, vP->vot_name, &vP->vot_detail, 0) != NULL) |
| as_fatal (_("duplicate %s"), vP->vot_name); |
| |
| if (synthetic_too) |
| for (vP = synthetic_votstrs; *vP->vot_name; vP++) |
| if (str_hash_insert (op_hash, vP->vot_name, &vP->vot_detail, 0) != NULL) |
| as_fatal (_("duplicate %s"), vP->vot_name); |
| |
| #ifndef CONST_TABLE |
| vip_op_defaults (immediate, indirect, displen); |
| #endif |
| } |
| |
| /* Take 3 char.s, the last of which may be `\0` (non-existent) |
| and return the VAX register number that they represent. |
| |
| Return -1 if they don't form a register name. Good names return |
| a number from 0:15 inclusive. |
| |
| Case is not important in a name. |
| |
| Register names understood are: |
| |
| R0 |
| R1 |
| R2 |
| R3 |
| R4 |
| R5 |
| R6 |
| R7 |
| R8 |
| R9 |
| R10 |
| R11 |
| R12 AP |
| R13 FP |
| R14 SP |
| R15 PC */ |
| |
| #define AP 12 |
| #define FP 13 |
| #define SP 14 |
| #define PC 15 |
| |
| /* Returns the register number of something like '%r15' or 'ap', supplied |
| in four single chars. Returns -1 if the register isn't recognized, |
| 0..15 otherwise. */ |
| static int |
| vax_reg_parse (char c1, char c2, char c3, char c4) |
| { |
| int retval = -1; |
| |
| #ifdef OBJ_ELF |
| if (c1 != '%') /* Register prefixes are mandatory for ELF. */ |
| return retval; |
| c1 = c2; |
| c2 = c3; |
| c3 = c4; |
| #endif |
| #ifdef OBJ_VMS |
| if (c4 != 0) /* Register prefixes are not allowed under VMS. */ |
| return retval; |
| #endif |
| #ifdef OBJ_AOUT |
| if (c1 == '%') /* Register prefixes are optional under a.out. */ |
| { |
| c1 = c2; |
| c2 = c3; |
| c3 = c4; |
| } |
| else if (c3 && c4) /* Can't be 4 characters long. */ |
| return retval; |
| #endif |
| |
| c1 = TOLOWER (c1); |
| c2 = TOLOWER (c2); |
| if (ISDIGIT (c2) && c1 == 'r') |
| { |
| retval = c2 - '0'; |
| if (ISDIGIT (c3)) |
| { |
| retval = retval * 10 + c3 - '0'; |
| retval = (retval > 15) ? -1 : retval; |
| /* clamp the register value to 1 hex digit */ |
| } |
| else if (c3) |
| retval = -1; /* c3 must be '\0' or a digit. */ |
| } |
| else if (c3) /* There are no three letter regs. */ |
| retval = -1; |
| else if (c2 == 'p') |
| { |
| switch (c1) |
| { |
| case 's': |
| retval = SP; |
| break; |
| case 'f': |
| retval = FP; |
| break; |
| case 'a': |
| retval = AP; |
| break; |
| default: |
| retval = -1; |
| } |
| } |
| else if (c1 == 'p' && c2 == 'c') |
| retval = PC; |
| else |
| retval = -1; |
| return retval; |
| } |
| |
| /* Parse a vax operand in DEC assembler notation. |
| For speed, expect a string of whitespace to be reduced to a single ' '. |
| This is the case for GNU AS, and is easy for other DEC-compatible |
| assemblers. |
| |
| Knowledge about DEC VAX assembler operand notation lives here. |
| This doesn't even know what a register name is, except it believes |
| all register names are 2 or 3 characters, and lets vax_reg_parse() say |
| what number each name represents. |
| It does, however, know that PC, SP etc are special registers so it can |
| detect addressing modes that are silly for those registers. |
| |
| Where possible, it delivers 1 fatal or 1 warning message if the operand |
| is suspect. Exactly what we test for is still evolving. |
| |
| --- |
| Arg block. |
| |
| There were a number of 'mismatched argument type' bugs to vip_op. |
| The most general solution is to typedef each (of many) arguments. |
| We used instead a typedef'd argument block. This is less modular |
| than using separate return pointers for each result, but runs faster |
| on most engines, and seems to keep programmers happy. It will have |
| to be done properly if we ever want to use vip_op as a general-purpose |
| module (it was designed to be). |
| |
| G^ |
| |
| Doesn't support DEC "G^" format operands. These always take 5 bytes |
| to express, and code as modes 8F or 9F. Reason: "G^" deprives you of |
| optimising to (say) a "B^" if you are lucky in the way you link. |
| When someone builds a linker smart enough to convert "G^" to "B^", "W^" |
| whenever possible, then we should implement it. |
| If there is some other use for "G^", feel free to code it in! |
| |
| speed |
| |
| If I nested if()s more, I could avoid testing (*err) which would save |
| time, space and page faults. I didn't nest all those if()s for clarity |
| and because I think the mode testing can be re-arranged 1st to test the |
| commoner constructs 1st. Does anybody have statistics on this? |
| |
| error messages |
| |
| In future, we should be able to 'compose' error messages in a scratch area |
| and give the user MUCH more informative error messages. Although this takes |
| a little more code at run-time, it will make this module much more self- |
| documenting. As an example of what sucks now: most error messages have |
| hardwired into them the DEC VAX metacharacters "#^@" which are nothing like |
| the Un*x characters "$`*", that most users will expect from this AS. |
| |
| ---- |
| |
| The input is a string, ending with '\0'. |
| |
| We also require a 'hint' of what kind of operand is expected: so |
| we can remind caller not to write into literals for instance. |
| |
| The output is a skeletal instruction. |
| |
| The algorithm has two parts. |
| 1. extract the syntactic features (parse off all the @^#-()+[] mode crud); |
| 2. express the @^#-()+[] as some parameters suited to further analysis. |
| |
| 2nd step is where we detect the googles of possible invalid combinations |
| a human (or compiler) might write. Note that if we do a half-way |
| decent assembler, we don't know how long to make (eg) displacement |
| fields when we first meet them (because they may not have defined values). |
| So we must wait until we know how many bits are needed for each address, |
| then we can know both length and opcodes of instructions. |
| For reason(s) above, we will pass to our caller a 'broken' instruction |
| of these major components, from which our caller can generate instructions: |
| - displacement length I^ S^ L^ B^ W^ unspecified |
| - mode (many) |
| - register R0-R15 or absent |
| - index register R0-R15 or absent |
| - expression text what we don't parse |
| - error text(s) why we couldn't understand the operand |
| |
| ---- |
| |
| To decode output of this, test errtxt. If errtxt[0] == '\0', then |
| we had no errors that prevented parsing. Also, if we ever report |
| an internal bug, errtxt[0] is set non-zero. So one test tells you |
| if the other outputs are to be taken seriously. |
| |
| ---- |
| |
| Dec defines the semantics of address modes (and values) |
| by a two-letter code, explained here. |
| |
| letter 1: access type |
| |
| a address calculation - no data access, registers forbidden |
| b branch displacement |
| m read - let go of bus - write back "modify" |
| r read |
| v bit field address: like 'a' but registers are OK |
| w write |
| space no operator (eg ".long foo") [our convention] |
| |
| letter 2: data type (i.e. width, alignment) |
| |
| b byte |
| d double precision floating point (D format) |
| f single precision floating point (F format) |
| g G format floating |
| h H format floating |
| l longword |
| o octaword |
| q quadword |
| w word |
| ? simple synthetic branch operand |
| - unconditional synthetic JSB/JSR operand |
| ! complex synthetic branch operand |
| |
| The '-?!' letter 2's are not for external consumption. They are used |
| for various assemblers. Generally, all unknown widths are assumed 0. |
| We don't limit your choice of width character. |
| |
| DEC operands are hard work to parse. For example, '@' as the first |
| character means indirect (deferred) mode but elsewhere it is a shift |
| operator. |
| The long-winded explanation of how this is supposed to work is |
| cancelled. Read a DEC vax manual. |
| We try hard not to parse anything that MIGHT be part of the expression |
| buried in that syntax. For example if we see @...(Rn) we don't check |
| for '-' before the '(' because mode @-(Rn) does not exist. |
| |
| After parsing we have: |
| |
| at 1 if leading '@' (or Un*x '*') |
| len takes one value from " bilsw". eg B^ -> 'b'. |
| hash 1 if leading '#' (or Un*x '$') |
| expr_begin, expr_end the expression we did not parse |
| even though we don't interpret it, we make use |
| of its presence or absence. |
| sign -1: -(Rn) 0: absent +1: (Rn)+ |
| paren 1 if () are around register |
| reg major register number 0:15 -1 means absent |
| ndx index register number 0:15 -1 means absent |
| |
| Again, I dare not explain it: just trace ALL the code! |
| |
| Summary of vip_op outputs. |
| |
| mode reg len ndx |
| (Rn) => @Rn |
| {@}Rn 5+@ n ' ' optional |
| branch operand 0 -1 ' ' -1 |
| S^#foo 0 -1 's' -1 |
| -(Rn) 7 n ' ' optional |
| {@}(Rn)+ 8+@ n ' ' optional |
| {@}#foo, no S^ 8+@ PC " i" optional |
| {@}{q^}{(Rn)} 10+@+q option " bwl" optional */ |
| |
| /* Dissect user-input 'optext' (which is something like "@B^foo@bar(AP)[FP]:") |
| using the vop in vopP. vopP's vop_access and vop_width. We fill _ndx, _reg, |
| _mode, _short, _warn, _error, _expr_begin, _expr_end and _nbytes. */ |
| |
| static void |
| vip_op (char *optext, struct vop *vopP) |
| { |
| /* Track operand text forward. */ |
| char *p; |
| /* Track operand text backward. */ |
| char *q; |
| /* 1 if leading '@' ('*') seen. */ |
| int at; |
| /* one of " bilsw" */ |
| char len; |
| /* 1 if leading '#' ('$') seen. */ |
| int hash; |
| /* -1, 0 or +1. */ |
| int sign = 0; |
| /* 1 if () surround register. */ |
| int paren = 0; |
| /* Register number, -1:absent. */ |
| int reg = 0; |
| /* Index register number -1:absent. */ |
| int ndx = 0; |
| /* Report illegal operand, ""==OK. */ |
| /* " " is a FAKE error: means we won. */ |
| /* ANY err that begins with ' ' is a fake. */ |
| /* " " is converted to "" before return. */ |
| const char *err; |
| /* Warn about weird modes pf address. */ |
| const char *wrn; |
| /* Preserve q in case we backup. */ |
| char *oldq = NULL; |
| /* Build up 4-bit operand mode here. */ |
| /* Note: index mode is in ndx, this is. */ |
| /* The major mode of operand address. */ |
| int mode = 0; |
| /* Notice how we move wrong-arg-type bugs INSIDE this module: if we |
| get the types wrong below, we lose at compile time rather than at |
| lint or run time. */ |
| char access_mode; /* vop_access. */ |
| |
| access_mode = vopP->vop_access; |
| /* None of our code bugs (yet), no user text errors, no warnings |
| even. */ |
| err = wrn = 0; |
| |
| p = optext; |
| |
| if (*p == ' ') /* Expect all whitespace reduced to ' '. */ |
| p++; /* skip over whitespace */ |
| |
| if ((at = INDIRECTP (*p)) != 0) |
| { /* 1 if *p=='@'(or '*' for Un*x) */ |
| p++; /* at is determined */ |
| if (*p == ' ') /* Expect all whitespace reduced to ' '. */ |
| p++; /* skip over whitespace */ |
| } |
| |
| /* This code is subtle. It tries to detect all legal (letter)'^' |
| but it doesn't waste time explicitly testing for premature '\0' because |
| this case is rejected as a mismatch against either (letter) or '^'. */ |
| { |
| char c; |
| |
| c = *p; |
| c = TOLOWER (c); |
| if (DISPLENP (p[1]) && strchr ("bilws", len = c)) |
| p += 2; /* Skip (letter) '^'. */ |
| else /* No (letter) '^' seen. */ |
| len = ' '; /* Len is determined. */ |
| } |
| |
| if (*p == ' ') /* Expect all whitespace reduced to ' '. */ |
| p++; |
| |
| if ((hash = IMMEDIATEP (*p)) != 0) /* 1 if *p=='#' ('$' for Un*x) */ |
| p++; /* Hash is determined. */ |
| |
| /* p points to what may be the beginning of an expression. |
| We have peeled off the front all that is peelable. |
| We know at, len, hash. |
| |
| Lets point q at the end of the text and parse that (backwards). */ |
| |
| for (q = p; *q; q++) |
| ; |
| q--; /* Now q points at last char of text. */ |
| |
| if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */ |
| q--; |
| |
| /* Reverse over whitespace, but don't. */ |
| /* Run back over *p. */ |
| |
| /* As a matter of policy here, we look for [Rn], although both Rn and S^# |
| forbid [Rn]. This is because it is easy, and because only a sick |
| cyborg would have [...] trailing an expression in a VAX-like assembler. |
| A meticulous parser would first check for Rn followed by '(' or '[' |
| and not parse a trailing ']' if it found another. We just ban expressions |
| ending in ']'. */ |
| if (*q == ']') |
| { |
| while (q >= p && *q != '[') |
| q--; |
| /* Either q<p or we got matching '['. */ |
| if (q < p) |
| err = _("no '[' to match ']'"); |
| else |
| { |
| /* Confusers like "[]" will eventually lose with a bad register |
| * name error. So again we don't need to check for early '\0'. */ |
| if (q[3] == ']') |
| ndx = vax_reg_parse (q[1], q[2], 0, 0); |
| else if (q[4] == ']') |
| ndx = vax_reg_parse (q[1], q[2], q[3], 0); |
| else if (q[5] == ']') |
| ndx = vax_reg_parse (q[1], q[2], q[3], q[4]); |
| else |
| ndx = -1; |
| /* Since we saw a ']' we will demand a register name in the []. |
| * If luser hasn't given us one: be rude. */ |
| if (ndx < 0) |
| err = _("bad register in []"); |
| else if (ndx == PC) |
| err = _("[PC] index banned"); |
| else |
| /* Point q just before "[...]". */ |
| q--; |
| } |
| } |
| else |
| /* No ']', so no iNDeX register. */ |
| ndx = -1; |
| |
| /* If err = "..." then we lost: run away. |
| Otherwise ndx == -1 if there was no "[...]". |
| Otherwise, ndx is index register number, and q points before "[...]". */ |
| |
| if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */ |
| q--; |
| /* Reverse over whitespace, but don't. */ |
| /* Run back over *p. */ |
| if (!err || !*err) |
| { |
| /* no ()+ or -() seen yet */ |
| sign = 0; |
| |
| if (q > p + 3 && *q == '+' && q[-1] == ')') |
| { |
| sign = 1; /* we saw a ")+" */ |
| q--; /* q points to ')' */ |
| } |
| |
| if (*q == ')' && q > p + 2) |
| { |
| paren = 1; /* assume we have "(...)" */ |
| while (q >= p && *q != '(') |
| q--; |
| /* either q<p or we got matching '(' */ |
| if (q < p) |
| err = _("no '(' to match ')'"); |
| else |
| { |
| /* Confusers like "()" will eventually lose with a bad register |
| name error. So again we don't need to check for early '\0'. */ |
| if (q[3] == ')') |
| reg = vax_reg_parse (q[1], q[2], 0, 0); |
| else if (q[4] == ')') |
| reg = vax_reg_parse (q[1], q[2], q[3], 0); |
| else if (q[5] == ')') |
| reg = vax_reg_parse (q[1], q[2], q[3], q[4]); |
| else |
| reg = -1; |
| /* Since we saw a ')' we will demand a register name in the ')'. |
| This is nasty: why can't our hypothetical assembler permit |
| parenthesised expressions? BECAUSE I AM LAZY! That is why. |
| Abuse luser if we didn't spy a register name. */ |
| if (reg < 0) |
| { |
| /* JF allow parenthesized expressions. I hope this works. */ |
| paren = 0; |
| while (*q != ')') |
| q++; |
| /* err = "unknown register in ()"; */ |
| } |
| else |
| q--; /* point just before '(' of "(...)" */ |
| /* If err == "..." then we lost. Run away. |
| Otherwise if reg >= 0 then we saw (Rn). */ |
| } |
| /* If err == "..." then we lost. |
| Otherwise paren==1 and reg = register in "()". */ |
| } |
| else |
| paren = 0; |
| /* If err == "..." then we lost. |
| Otherwise, q points just before "(Rn)", if any. |
| If there was a "(...)" then paren==1, and reg is the register. */ |
| |
| /* We should only seek '-' of "-(...)" if: |
| we saw "(...)" paren == 1 |
| we have no errors so far ! *err |
| we did not see '+' of "(...)+" sign < 1 |
| We don't check len. We want a specific error message later if |
| user tries "x^...-(Rn)". This is a feature not a bug. */ |
| if (!err || !*err) |
| { |
| if (paren && sign < 1)/* !sign is adequate test */ |
| { |
| if (*q == '-') |
| { |
| sign = -1; |
| q--; |
| } |
| } |
| /* We have back-tracked over most |
| of the crud at the end of an operand. |
| Unless err, we know: sign, paren. If paren, we know reg. |
| The last case is of an expression "Rn". |
| This is worth hunting for if !err, !paren. |
| We wouldn't be here if err. |
| We remember to save q, in case we didn't want "Rn" anyway. */ |
| if (!paren) |
| { |
| if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */ |
| q--; |
| /* Reverse over whitespace, but don't. */ |
| /* Run back over *p. */ |
| /* Room for Rn or Rnn (include prefix) exactly? */ |
| if (q > p && q < p + 4) |
| reg = vax_reg_parse (p[0], p[1], |
| q < p + 2 ? 0 : p[2], |
| q < p + 3 ? 0 : p[3]); |
| else |
| reg = -1; /* Always comes here if no register at all. */ |
| /* Here with a definitive reg value. */ |
| if (reg >= 0) |
| { |
| oldq = q; |
| q = p - 1; |
| } |
| } |
| } |
| } |
| /* have reg. -1:absent; else 0:15. */ |
| |
| /* We have: err, at, len, hash, ndx, sign, paren, reg. |
| Also, any remaining expression is from *p through *q inclusive. |
| Should there be no expression, q==p-1. So expression length = q-p+1. |
| This completes the first part: parsing the operand text. */ |
| |
| /* We now want to boil the data down, checking consistency on the way. |
| We want: len, mode, reg, ndx, err, p, q, wrn, bug. |
| We will deliver a 4-bit reg, and a 4-bit mode. */ |
| |
| /* Case of branch operand. Different. No L^B^W^I^S^ allowed for instance. |
| |
| in: at ? |
| len ? |
| hash ? |
| p:q ? |
| sign ? |
| paren ? |
| reg ? |
| ndx ? |
| |
| out: mode 0 |
| reg -1 |
| len ' ' |
| p:q whatever was input |
| ndx -1 |
| err " " or error message, and other outputs trashed. */ |
| /* Branch operands have restricted forms. */ |
| if ((!err || !*err) && access_mode == 'b') |
| { |
| if (at || hash || sign || paren || ndx >= 0 || reg >= 0 || len != ' ') |
| err = _("invalid branch operand"); |
| else |
| err = " "; |
| } |
| |
| /* Since nobody seems to use it: comment this 'feature'(?) out for now. */ |
| #ifdef NEVER |
| /* Case of stand-alone operand. e.g. ".long foo" |
| |
| in: at ? |
| len ? |
| hash ? |
| p:q ? |
| sign ? |
| paren ? |
| reg ? |
| ndx ? |
| |
| out: mode 0 |
| reg -1 |
| len ' ' |
| p:q whatever was input |
| ndx -1 |
| err " " or error message, and other outputs trashed. */ |
| if ((!err || !*err) && access_mode == ' ') |
| { |
| if (at) |
| err = _("address prohibits @"); |
| else if (hash) |
| err = _("address prohibits #"); |
| else if (sign) |
| { |
| if (sign < 0) |
| err = _("address prohibits -()"); |
| else |
| err = _("address prohibits ()+"); |
| } |
| else if (paren) |
| err = _("address prohibits ()"); |
| else if (ndx >= 0) |
| err = _("address prohibits []"); |
| else if (reg >= 0) |
| err = _("address prohibits register"); |
| else if (len != ' ') |
| err = _("address prohibits displacement length specifier"); |
| else |
| { |
| err = " "; /* succeed */ |
| mode = 0; |
| } |
| } |
| #endif |
| |
| /* Case of S^#. |
| |
| in: at 0 |
| len 's' definition |
| hash 1 demand |
| p:q demand not empty |
| sign 0 by paren==0 |
| paren 0 by "()" scan logic because "S^" seen |
| reg -1 or nn by mistake |
| ndx -1 |
| |
| out: mode 0 |
| reg -1 |
| len 's' |
| exp |
| ndx -1 */ |
| if ((!err || !*err) && len == 's') |
| { |
| if (!hash || paren || at || ndx >= 0) |
| err = _("invalid operand of S^#"); |
| else |
| { |
| if (reg >= 0) |
| { |
| /* Darn! we saw S^#Rnn ! put the Rnn back in |
| expression. KLUDGE! Use oldq so we don't |
| need to know exact length of reg name. */ |
| q = oldq; |
| reg = 0; |
| } |
| /* We have all the expression we will ever get. */ |
| if (p > q) |
| err = _("S^# needs expression"); |
| else if (access_mode == 'r') |
| { |
| err = " "; /* WIN! */ |
| mode = 0; |
| } |
| else |
| err = _("S^# may only read-access"); |
| } |
| } |
| |
| /* Case of -(Rn), which is weird case. |
| |
| in: at 0 |
| len ' |
| hash 0 |
| p:q q<p |
| sign -1 by definition |
| paren 1 by definition |
| reg present by definition |
| ndx optional |
| |
| out: mode 7 |
| reg present |
| len ' ' |
| exp "" enforce empty expression |
| ndx optional warn if same as reg. */ |
| if ((!err || !*err) && sign < 0) |
| { |
| if (len != ' ' || hash || at || p <= q) |
| err = _("invalid operand of -()"); |
| else |
| { |
| err = " "; /* win */ |
| mode = 7; |
| if (reg == PC) |
| wrn = _("-(PC) unpredictable"); |
| else if (reg == ndx) |
| wrn = _("[]index same as -()register: unpredictable"); |
| } |
| } |
| |
| /* We convert "(Rn)" to "@Rn" for our convenience. |
| (I hope this is convenient: has someone got a better way to parse this?) |
| A side-effect of this is that "@Rn" is a valid operand. */ |
| if (paren && !sign && !hash && !at && len == ' ' && p > q) |
| { |
| at = 1; |
| paren = 0; |
| } |
| |
| /* Case of (Rn)+, which is slightly different. |
| |
| in: at |
| len ' ' |
| hash 0 |
| p:q q<p |
| sign +1 by definition |
| paren 1 by definition |
| reg present by definition |
| ndx optional |
| |
| out: mode 8+@ |
| reg present |
| len ' ' |
| exp "" enforce empty expression |
| ndx optional warn if same as reg. */ |
| if ((!err || !*err) && sign > 0) |
| { |
| if (len != ' ' || hash || p <= q) |
| err = _("invalid operand of ()+"); |
| else |
| { |
| err = " "; /* win */ |
| mode = 8 + (at ? 1 : 0); |
| if (reg == PC) |
| wrn = _("(PC)+ unpredictable"); |
| else if (reg == ndx) |
| wrn = _("[]index same as ()+register: unpredictable"); |
| } |
| } |
| |
| /* Case of #, without S^. |
| |
| in: at |
| len ' ' or 'i' |
| hash 1 by definition |
| p:q |
| sign 0 |
| paren 0 |
| reg absent |
| ndx optional |
| |
| out: mode 8+@ |
| reg PC |
| len ' ' or 'i' |
| exp |
| ndx optional. */ |
| if ((!err || !*err) && hash) |
| { |
| if (len != 'i' && len != ' ') |
| err = _("# conflicts length"); |
| else if (paren) |
| err = _("# bars register"); |
| else |
| { |
| if (reg >= 0) |
| { |
| /* Darn! we saw #Rnn! Put the Rnn back into the expression. |
| By using oldq, we don't need to know how long Rnn was. |
| KLUDGE! */ |
| q = oldq; |
| reg = -1; /* No register any more. */ |
| } |
| err = " "; /* Win. */ |
| |
| /* JF a bugfix, I think! */ |
| if (at && access_mode == 'a') |
| vopP->vop_nbytes = 4; |
| |
| mode = (at ? 9 : 8); |
| reg = PC; |
| if ((access_mode == 'm' || access_mode == 'w') && !at) |
| wrn = _("writing or modifying # is unpredictable"); |
| } |
| } |
| /* If !*err, then sign == 0 |
| hash == 0 */ |
| |
| /* Case of Rn. We separate this one because it has a few special |
| errors the remaining modes lack. |
| |
| in: at optional |
| len ' ' |
| hash 0 by program logic |
| p:q empty |
| sign 0 by program logic |
| paren 0 by definition |
| reg present by definition |
| ndx optional |
| |
| out: mode 5+@ |
| reg present |
| len ' ' enforce no length |
| exp "" enforce empty expression |
| ndx optional warn if same as reg. */ |
| if ((!err || !*err) && !paren && reg >= 0) |
| { |
| if (len != ' ') |
| err = _("length not needed"); |
| else if (at) |
| { |
| err = " "; /* win */ |
| mode = 6; /* @Rn */ |
| } |
| else if (ndx >= 0) |
| err = _("can't []index a register, because it has no address"); |
| else if (access_mode == 'a') |
| err = _("a register has no address"); |
| else |
| { |
| /* Idea here is to detect from length of datum |
| and from register number if we will touch PC. |
| Warn if we do. |
| vop_nbytes is number of bytes in operand. |
| Compute highest byte affected, compare to PC0. */ |
| if ((vopP->vop_nbytes + reg * 4) > 60) |
| wrn = _("PC part of operand unpredictable"); |
| err = " "; /* win */ |
| mode = 5; /* Rn */ |
| } |
| } |
| /* If !*err, sign == 0 |
| hash == 0 |
| paren == 1 OR reg==-1 */ |
| |
| /* Rest of cases fit into one bunch. |
| |
| in: at optional |
| len ' ' or 'b' or 'w' or 'l' |
| hash 0 by program logic |
| p:q expected (empty is not an error) |
| sign 0 by program logic |
| paren optional |
| reg optional |
| ndx optional |
| |
| out: mode 10 + @ + len |
| reg optional |
| len ' ' or 'b' or 'w' or 'l' |
| exp maybe empty |
| ndx optional warn if same as reg. */ |
| if (!err || !*err) |
| { |
| err = " "; /* win (always) */ |
| mode = 10 + (at ? 1 : 0); |
| switch (len) |
| { |
| case 'l': |
| mode += 2; |
| /* Fall through. */ |
| case 'w': |
| mode += 2; |
| /* Fall through. */ |
| case ' ': /* Assumed B^ until our caller changes it. */ |
| case 'b': |
| break; |
| } |
| } |
| |
| /* here with completely specified mode |
| len |
| reg |
| expression p,q |
| ndx. */ |
| |
| if (*err == ' ') |
| err = 0; /* " " is no longer an error. */ |
| |
| vopP->vop_mode = mode; |
| vopP->vop_reg = reg; |
| vopP->vop_short = len; |
| vopP->vop_expr_begin = p; |
| vopP->vop_expr_end = q; |
| vopP->vop_ndx = ndx; |
| vopP->vop_error = err; |
| vopP->vop_warn = wrn; |
| } |
| |
| /* This converts a string into a vax instruction. |
| The string must be a bare single instruction in dec-vax (with BSD4 frobs) |
| format. |
| It provides some error messages: at most one fatal error message (which |
| stops the scan) and at most one warning message for each operand. |
| The vax instruction is returned in exploded form, since we have no |
| knowledge of how you parse (or evaluate) your expressions. |
| We do however strip off and decode addressing modes and operation |
| mnemonic. |
| |
| The exploded instruction is returned to a struct vit of your choice. |
| #include "vax-inst.h" to know what a struct vit is. |
| |
| This function's value is a string. If it is not "" then an internal |
| logic error was found: read this code to assign meaning to the string. |
| No argument string should generate such an error string: |
| it means a bug in our code, not in the user's text. |
| |
| You MUST have called vip_begin() once before using this function. */ |
| |
| static void |
| vip (struct vit *vitP, /* We build an exploded instruction here. */ |
| char *instring) /* Text of a vax instruction: we modify. */ |
| { |
| /* How to bit-encode this opcode. */ |
| struct vot_wot *vwP; |
| /* 1/skip whitespace.2/scan vot_how */ |
| char *p; |
| char *q; |
| /* counts number of operands seen */ |
| unsigned char count; |
| /* scan operands in struct vit */ |
| struct vop *operandp; |
| /* error over all operands */ |
| const char *alloperr; |
| /* Remember char, (we clobber it with '\0' temporarily). */ |
| char c; |
| /* Op-code of this instruction. */ |
| vax_opcodeT oc; |
| |
| if (*instring == ' ') |
| ++instring; |
| |
| /* MUST end in end-of-string or exactly 1 space. */ |
| for (p = instring; *p && *p != ' '; p++) |
| ; |
| |
| /* Scanned up to end of operation-code. */ |
| /* Operation-code is ended with whitespace. */ |
| if (p - instring == 0) |
| { |
| vitP->vit_error = _("No operator"); |
| count = 0; |
| memset (vitP->vit_opcode, '\0', sizeof (vitP->vit_opcode)); |
| } |
| else |
| { |
| c = *p; |
| *p = '\0'; |
| /* Here with instring pointing to what better be an op-name, and p |
| pointing to character just past that. |
| We trust instring points to an op-name, with no whitespace. */ |
| vwP = (struct vot_wot *) str_hash_find (op_hash, instring); |
| /* Restore char after op-code. */ |
| *p = c; |
| if (vwP == 0) |
| { |
| vitP->vit_error = _("Unknown operator"); |
| count = 0; |
| memset (vitP->vit_opcode, '\0', sizeof (vitP->vit_opcode)); |
| } |
| else |
| { |
| /* We found a match! So let's pick up as many operands as the |
| instruction wants, and even gripe if there are too many. |
| We expect comma to separate each operand. |
| We let instring track the text, while p tracks a part of the |
| struct vot. */ |
| const char *howp; |
| /* The lines below know about 2-byte opcodes starting FD,FE or FF. |
| They also understand synthetic opcodes. Note: |
| we return 32 bits of opcode, including bucky bits, BUT |
| an opcode length is either 8 or 16 bits for vit_opcode_nbytes. */ |
| oc = vwP->vot_code; /* The op-code. */ |
| vitP->vit_opcode_nbytes = (oc & 0xFF) >= 0xFD ? 2 : 1; |
| md_number_to_chars (vitP->vit_opcode, oc, 4); |
| count = 0; /* No operands seen yet. */ |
| instring = p; /* Point just past operation code. */ |
| alloperr = ""; |
| for (howp = vwP->vot_how, operandp = vitP->vit_operand; |
| !(alloperr && *alloperr) && *howp; |
| operandp++, howp += 2) |
| { |
| /* Here to parse one operand. Leave instring pointing just |
| past any one ',' that marks the end of this operand. */ |
| if (!howp[1]) |
| as_fatal (_("odd number of bytes in operand description")); |
| else if (*instring) |
| { |
| for (q = instring; (c = *q) && c != ','; q++) |
| ; |
| /* Q points to ',' or '\0' that ends argument. C is that |
| character. */ |
| *q = 0; |
| operandp->vop_width = howp[1]; |
| operandp->vop_nbytes = vax_operand_width_size[(unsigned) howp[1]]; |
| operandp->vop_access = howp[0]; |
| vip_op (instring, operandp); |
| *q = c; /* Restore input text. */ |
| if (operandp->vop_error) |
| alloperr = _("Bad operand"); |
| instring = q + (c ? 1 : 0); /* Next operand (if any). */ |
| count++; /* Won another argument, may have an operr. */ |
| } |
| else |
| alloperr = _("Not enough operands"); |
| } |
| if (!*alloperr) |
| { |
| if (*instring == ' ') |
| instring++; |
| if (*instring) |
| alloperr = _("Too many operands"); |
| } |
| vitP->vit_error = alloperr; |
| } |
| } |
| vitP->vit_operands = count; |
| } |
| |
| #ifdef test |
| |
| /* Test program for above. */ |
| |
| struct vit myvit; /* Build an exploded vax instruction here. */ |
| char answer[100]; /* Human types a line of vax assembler here. */ |
| char *mybug; /* "" or an internal logic diagnostic. */ |
| int mycount; /* Number of operands. */ |
| struct vop *myvop; /* Scan operands from myvit. */ |
| int mysynth; /* 1 means want synthetic opcodes. */ |
| char my_immediate[200]; |
| char my_indirect[200]; |
| char my_displen[200]; |
| |
| int |
| main (void) |
| { |
| char *p; |
| |
| printf ("0 means no synthetic instructions. "); |
| printf ("Value for vip_begin? "); |
| gets (answer); |
| sscanf (answer, "%d", &mysynth); |
| printf ("Synthetic opcodes %s be included.\n", mysynth ? "will" : "will not"); |
| printf ("enter immediate symbols eg enter # "); |
| gets (my_immediate); |
| printf ("enter indirect symbols eg enter @ "); |
| gets (my_indirect); |
| printf ("enter displen symbols eg enter ^ "); |
| gets (my_displen); |
| |
| vip_begin (mysynth, my_immediate, my_indirect, my_displen) |
| |
| printf ("An empty input line will quit you from the vax instruction parser\n"); |
| for (;;) |
| { |
| printf ("vax instruction: "); |
| fflush (stdout); |
| gets (answer); |
| if (!*answer) |
| break; /* Out of for each input text loop. */ |
| |
| vip (& myvit, answer); |
| if (*myvit.vit_error) |
| printf ("ERR:\"%s\"\n", myvit.vit_error); |
| |
| printf ("opcode="); |
| for (mycount = myvit.vit_opcode_nbytes, p = myvit.vit_opcode; |
| mycount; |
| mycount--, p++) |
| printf ("%02x ", *p & 0xFF); |
| |
| printf (" operand count=%d.\n", mycount = myvit.vit_operands); |
| for (myvop = myvit.vit_operand; mycount; mycount--, myvop++) |
| { |
| printf ("mode=%xx reg=%xx ndx=%xx len='%c'=%c%c%d. expr=\"", |
| myvop->vop_mode, myvop->vop_reg, myvop->vop_ndx, |
| myvop->vop_short, myvop->vop_access, myvop->vop_width, |
| myvop->vop_nbytes); |
| for (p = myvop->vop_expr_begin; p <= myvop->vop_expr_end; p++) |
| putchar (*p); |
| |
| printf ("\"\n"); |
| if (myvop->vop_error) |
| printf (" err:\"%s\"\n", myvop->vop_error); |
| |
| if (myvop->vop_warn) |
| printf (" wrn:\"%s\"\n", myvop->vop_warn); |
| } |
| } |
| vip_end (); |
| exit (EXIT_SUCCESS); |
| } |
| |
| #endif |
| |
| #ifdef TEST /* #Define to use this testbed. */ |
| |
| /* Follows a test program for this function. |
| We declare arrays non-local in case some of our tiny-minded machines |
| default to small stacks. Also, helps with some debuggers. */ |
| |
| char answer[100]; /* Human types into here. */ |
| char *p; /* */ |
| char *myerr; |
| char *mywrn; |
| char *mybug; |
| char myaccess; |
| char mywidth; |
| char mymode; |
| char myreg; |
| char mylen; |
| char *myleft; |
| char *myright; |
| char myndx; |
| int my_operand_length; |
| char my_immediate[200]; |
| char my_indirect[200]; |
| char my_displen[200]; |
| |
| int |
| main (void) |
| { |
| printf ("enter immediate symbols eg enter # "); |
| gets (my_immediate); |
| printf ("enter indirect symbols eg enter @ "); |
| gets (my_indirect); |
| printf ("enter displen symbols eg enter ^ "); |
| gets (my_displen); |
| vip_op_defaults (my_immediate, my_indirect, my_displen); |
| |
| for (;;) |
| { |
| printf ("access,width (eg 'ab' or 'wh') [empty line to quit] : "); |
| fflush (stdout); |
| gets (answer); |
| if (!answer[0]) |
| exit (EXIT_SUCCESS); |
| myaccess = answer[0]; |
| mywidth = answer[1]; |
| switch (mywidth) |
| { |
| case 'b': |
| my_operand_length = 1; |
| break; |
| case 'd': |
| my_operand_length = 8; |
| break; |
| case 'f': |
| my_operand_length = 4; |
| break; |
| case 'g': |
| my_operand_length = 16; |
| break; |
| case 'h': |
| my_operand_length = 32; |
| break; |
| case 'l': |
| my_operand_length = 4; |
| break; |
| case 'o': |
| my_operand_length = 16; |
| break; |
| case 'q': |
| my_operand_length = 8; |
| break; |
| case 'w': |
| my_operand_length = 2; |
| break; |
| case '!': |
| case '?': |
| case '-': |
| my_operand_length = 0; |
| break; |
| |
| default: |
| my_operand_length = 2; |
| printf ("I don't understand access width %c\n", mywidth); |
| break; |
| } |
| printf ("VAX assembler instruction operand: "); |
| fflush (stdout); |
| gets (answer); |
| mybug = vip_op (answer, myaccess, mywidth, my_operand_length, |
| &mymode, &myreg, &mylen, &myleft, &myright, &myndx, |
| &myerr, &mywrn); |
| if (*myerr) |
| { |
| printf ("error: \"%s\"\n", myerr); |
| if (*mybug) |
| printf (" bug: \"%s\"\n", mybug); |
| } |
| else |
| { |
| if (*mywrn) |
| printf ("warning: \"%s\"\n", mywrn); |
| mumble ("mode", mymode); |
| mumble ("register", myreg); |
| mumble ("index", myndx); |
| printf ("width:'%c' ", mylen); |
| printf ("expression: \""); |
| while (myleft <= myright) |
| putchar (*myleft++); |
| printf ("\"\n"); |
| } |
| } |
| } |
| |
| void |
| mumble (char *text, int value) |
| { |
| printf ("%s:", text); |
| if (value >= 0) |
| printf ("%xx", value); |
| else |
| printf ("ABSENT"); |
| printf (" "); |
| } |
| |
| #endif |
| |
| int md_short_jump_size = 3; |
| int md_long_jump_size = 6; |
| |
| void |
| md_create_short_jump (char *ptr, |
| addressT from_addr, |
| addressT to_addr ATTRIBUTE_UNUSED, |
| fragS *frag ATTRIBUTE_UNUSED, |
| symbolS *to_symbol ATTRIBUTE_UNUSED) |
| { |
| valueT offset; |
| |
| /* This former calculation was off by two: |
| offset = to_addr - (from_addr + 1); |
| We need to account for the one byte instruction and also its |
| two byte operand. */ |
| offset = to_addr - (from_addr + 1 + 2); |
| *ptr++ = VAX_BRW; /* Branch with word (16 bit) offset. */ |
| md_number_to_chars (ptr, offset, 2); |
| } |
| |
| void |
| md_create_long_jump (char *ptr, |
| addressT from_addr ATTRIBUTE_UNUSED, |
| addressT to_addr, |
| fragS *frag, |
| symbolS *to_symbol) |
| { |
| valueT offset; |
| |
| offset = to_addr - S_GET_VALUE (to_symbol); |
| *ptr++ = VAX_JMP; /* Arbitrary jump. */ |
| *ptr++ = VAX_ABSOLUTE_MODE; |
| md_number_to_chars (ptr, offset, 4); |
| fix_new (frag, ptr - frag->fr_literal, 4, to_symbol, (long) 0, 0, NO_RELOC); |
| } |
| |
| #ifdef OBJ_VMS |
| const char *md_shortopts = "d:STt:V+1h:Hv::"; |
| #elif defined(OBJ_ELF) |
| const char *md_shortopts = "d:STt:VkKQ:"; |
| #else |
| const char *md_shortopts = "d:STt:V"; |
| #endif |
| struct option md_longopts[] = |
| { |
| #ifdef OBJ_ELF |
| #define OPTION_PIC (OPTION_MD_BASE) |
| { "pic", no_argument, NULL, OPTION_PIC }, |
| #endif |
| { NULL, no_argument, NULL, 0 } |
| }; |
| size_t md_longopts_size = sizeof (md_longopts); |
| |
| int |
| md_parse_option (int c, const char *arg) |
| { |
| switch (c) |
| { |
| case 'S': |
| as_warn (_("SYMBOL TABLE not implemented")); |
| break; |
| |
| case 'T': |
| as_warn (_("TOKEN TRACE not implemented")); |
| break; |
| |
| case 'd': |
| as_warn (_("Displacement length %s ignored!"), arg); |
| break; |
| |
| case 't': |
| as_warn (_("I don't need or use temp. file \"%s\"."), arg); |
| break; |
| |
| case 'V': |
| as_warn (_("I don't use an interpass file! -V ignored")); |
| break; |
| |
| #ifdef OBJ_VMS |
| case '+': /* For g++. Hash any name > 31 chars long. */ |
| flag_hash_long_names = 1; |
| break; |
| |
| case '1': /* For backward compatibility. */ |
| flag_one = 1; |
| break; |
| |
| case 'H': /* Show new symbol after hash truncation. */ |
| flag_show_after_trunc = 1; |
| break; |
| |
| case 'h': /* No hashing of mixed-case names. */ |
| { |
| extern char vms_name_mapping; |
| vms_name_mapping = atoi (arg); |
| flag_no_hash_mixed_case = 1; |
| } |
| break; |
| |
| case 'v': |
| { |
| extern char *compiler_version_string; |
| |
| if (!arg || !*arg || access (arg, 0) == 0) |
| return 0; /* Have caller show the assembler version. */ |
| compiler_version_string = arg; |
| } |
| break; |
| #endif |
| |
| #ifdef OBJ_ELF |
| case OPTION_PIC: |
| case 'k': |
| flag_want_pic = 1; |
| break; /* -pic, Position Independent Code. */ |
| |
| /* -Qy, -Qn: SVR4 arguments controlling whether a .comment |
| section should be emitted or not. FIXME: Not implemented. */ |
| case 'Q': |
| break; |
| #endif |
| |
| default: |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| void |
| md_show_usage (FILE *stream) |
| { |
| fprintf (stream, _("\ |
| VAX options:\n\ |
| -d LENGTH ignored\n\ |
| -J ignored\n\ |
| -S ignored\n\ |
| -t FILE ignored\n\ |
| -T ignored\n\ |
| -V ignored\n")); |
| #ifdef OBJ_VMS |
| fprintf (stream, _("\ |
| VMS options:\n\ |
| -+ hash encode names longer than 31 characters\n\ |
| -1 `const' handling compatible with gcc 1.x\n\ |
| -H show new symbol after hash truncation\n\ |
| -h NUM don't hash mixed-case names, and adjust case:\n\ |
| 0 = upper, 2 = lower, 3 = preserve case\n\ |
| -v\"VERSION\" code being assembled was produced by compiler \"VERSION\"\n")); |
| #endif |
| } |
| |
| /* We have no need to default values of symbols. */ |
| |
| symbolS * |
| md_undefined_symbol (char *name ATTRIBUTE_UNUSED) |
| { |
| return NULL; |
| } |
| |
| /* Round up a section size to the appropriate boundary. */ |
| valueT |
| md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size) |
| { |
| /* Byte alignment is fine */ |
| return size; |
| } |
| |
| /* Exactly what point is a PC-relative offset relative TO? |
| On the vax, they're relative to the address of the offset, plus |
| its size. */ |
| long |
| md_pcrel_from (fixS *fixP) |
| { |
| return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address; |
| } |
| |
| arelent * |
| tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp) |
| { |
| arelent *reloc; |
| bfd_reloc_code_real_type code; |
| |
| if (fixp->fx_tcbit) |
| abort (); |
| |
| if (fixp->fx_r_type != NO_RELOC) |
| { |
| code = fixp->fx_r_type; |
| |
| if (fixp->fx_pcrel) |
| { |
| switch (code) |
| { |
| case BFD_RELOC_8_PCREL: |
| case BFD_RELOC_16_PCREL: |
| case BFD_RELOC_32_PCREL: |
| #ifdef OBJ_ELF |
| case BFD_RELOC_8_GOT_PCREL: |
| case BFD_RELOC_16_GOT_PCREL: |
| case BFD_RELOC_32_GOT_PCREL: |
| case BFD_RELOC_8_PLT_PCREL: |
| case BFD_RELOC_16_PLT_PCREL: |
| case BFD_RELOC_32_PLT_PCREL: |
| #endif |
| break; |
| default: |
| as_bad_where (fixp->fx_file, fixp->fx_line, |
| _("Cannot make %s relocation PC relative"), |
| bfd_get_reloc_code_name (code)); |
| } |
| } |
| } |
| else |
| { |
| #define F(SZ,PCREL) (((SZ) << 1) + (PCREL)) |
| switch (F (fixp->fx_size, fixp->fx_pcrel)) |
| { |
| #define MAP(SZ,PCREL,TYPE) case F(SZ,PCREL): code = (TYPE); break |
| MAP (1, 0, BFD_RELOC_8); |
| MAP (2, 0, BFD_RELOC_16); |
| MAP (4, 0, BFD_RELOC_32); |
| MAP (1, 1, BFD_RELOC_8_PCREL); |
| MAP (2, 1, BFD_RELOC_16_PCREL); |
| MAP (4, 1, BFD_RELOC_32_PCREL); |
| default: |
| abort (); |
| } |
| } |
| #undef F |
| #undef MAP |
| |
| reloc = XNEW (arelent); |
| reloc->sym_ptr_ptr = XNEW (asymbol *); |
| *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); |
| reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; |
| #ifndef OBJ_ELF |
| if (fixp->fx_pcrel) |
| reloc->addend = fixp->fx_addnumber; |
| else |
| reloc->addend = 0; |
| #else |
| reloc->addend = fixp->fx_offset; |
| #endif |
| |
| reloc->howto = bfd_reloc_type_lookup (stdoutput, code); |
| gas_assert (reloc->howto != 0); |
| |
| return reloc; |
| } |
| |
| /* vax:md_assemble() emit frags for 1 instruction given in textual form. */ |
| void |
| md_assemble (char *instruction_string) |
| { |
| /* Non-zero if operand expression's segment is not known yet. */ |
| int is_undefined; |
| /* Non-zero if operand expression's segment is absolute. */ |
| int is_absolute; |
| int length_code; |
| char *p; |
| /* An operand. Scans all operands. */ |
| struct vop *operandP; |
| char *save_input_line_pointer; |
| /* What used to live after an expression. */ |
| char c_save; |
| /* 1: instruction_string bad for all passes. */ |
| int goofed; |
| /* Points to slot just after last operand. */ |
| struct vop *end_operandP; |
| /* Points to expression values for this operand. */ |
| expressionS *expP; |
| segT *segP; |
| |
| /* These refer to an instruction operand expression. */ |
| /* Target segment of the address. */ |
| segT to_seg; |
| valueT this_add_number; |
| /* Positive (minuend) symbol. */ |
| symbolS *this_add_symbol; |
| /* As a number. */ |
| long opcode_as_number; |
| /* Least significant byte 1st. */ |
| char *opcode_as_chars; |
| /* As an array of characters. */ |
| /* Least significant byte 1st */ |
| char *opcode_low_byteP; |
| /* length (bytes) meant by vop_short. */ |
| int length; |
| /* 0, or 1 if '@' is in addressing mode. */ |
| int at; |
| /* From vop_nbytes: vax_operand_width (in bytes) */ |
| int nbytes; |
| FLONUM_TYPE *floatP; |
| LITTLENUM_TYPE literal_float[8]; |
| /* Big enough for any floating point literal. */ |
| |
| vip (&v, instruction_string); |
| |
| /* Now we try to find as many as_warn()s as we can. If we do any as_warn()s |
| then goofed=1. Notice that we don't make any frags yet. |
| Should goofed be 1, then this instruction will wedge in any pass, |
| and we can safely flush it, without causing interpass symbol phase |
| errors. That is, without changing label values in different passes. */ |
| if ((goofed = (*v.vit_error)) != 0) |
| { |
| as_fatal (_("Ignoring statement due to \"%s\""), v.vit_error); |
| } |
| /* We need to use expression() and friends, which require us to diddle |
| input_line_pointer. So we save it and restore it later. */ |
| save_input_line_pointer = input_line_pointer; |
| for (operandP = v.vit_operand, |
| expP = exp_of_operand, |
| segP = seg_of_operand, |
| floatP = float_operand, |
| end_operandP = v.vit_operand + v.vit_operands; |
| |
| operandP < end_operandP; |
| |
| operandP++, expP++, segP++, floatP++) |
| { |
| if (operandP->vop_error) |
| { |
| as_fatal (_("Aborting because statement has \"%s\""), operandP->vop_error); |
| goofed = 1; |
| } |
| else |
| { |
| /* Statement has no syntax goofs: let's sniff the expression. */ |
| int can_be_short = 0; /* 1 if a bignum can be reduced to a short literal. */ |
| |
| input_line_pointer = operandP->vop_expr_begin; |
| c_save = operandP->vop_expr_end[1]; |
| operandP->vop_expr_end[1] = '\0'; |
| /* If to_seg == SEG_PASS1, expression() will have set need_pass_2 = 1. */ |
| *segP = expression (expP); |
| switch (expP->X_op) |
| { |
| case O_absent: |
| /* for BSD4.2 compatibility, missing expression is absolute 0 */ |
| expP->X_op = O_constant; |
| expP->X_add_number = 0; |
| /* For SEG_ABSOLUTE, we shouldn't need to set X_op_symbol, |
| X_add_symbol to any particular value. But, we will program |
| defensively. Since this situation occurs rarely so it costs |
| us little to do, and stops Dean worrying about the origin of |
| random bits in expressionS's. */ |
| expP->X_add_symbol = NULL; |
| expP->X_op_symbol = NULL; |
| break; |
| |
| case O_symbol: |
| case O_constant: |
| break; |
| |
| default: |
| /* Major bug. We can't handle the case of a |
| SEG_OP expression in a VIT_OPCODE_SYNTHETIC |
| variable-length instruction. |
| We don't have a frag type that is smart enough to |
| relax a SEG_OP, and so we just force all |
| SEG_OPs to behave like SEG_PASS1s. |
| Clearly, if there is a demand we can invent a new or |
| modified frag type and then coding up a frag for this |
| case will be easy. SEG_OP was invented for the |
| .words after a CASE opcode, and was never intended for |
| instruction operands. */ |
| need_pass_2 = 1; |
| as_fatal (_("Can't relocate expression")); |
| break; |
| |
| case O_big: |
| /* Preserve the bits. */ |
| if (expP->X_add_number > 0) |
| { |
| bignum_copy (generic_bignum, expP->X_add_number, |
| floatP->low, SIZE_OF_LARGE_NUMBER); |
| } |
| else |
| { |
| know (expP->X_add_number < 0); |
| flonum_copy (&generic_floating_point_number, |
| floatP); |
| if (strchr ("s i", operandP->vop_short)) |
| { |
| /* Could possibly become S^# */ |
| flonum_gen2vax (-expP->X_add_number, floatP, literal_float); |
| switch (-expP->X_add_number) |
| { |
| case 'f': |
| can_be_short = |
| (literal_float[0] & 0xFC0F) == 0x4000 |
| && literal_float[1] == 0; |
| break; |
| |
| case 'd': |
| can_be_short = |
| (literal_float[0] & 0xFC0F) == 0x4000 |
| && literal_float[1] == 0 |
| && literal_float[2] == 0 |
| && literal_float[3] == 0; |
| break; |
| |
| case 'g': |
| can_be_short = |
| (literal_float[0] & 0xFF81) == 0x4000 |
| && literal_float[1] == 0 |
| && literal_float[2] == 0 |
| && literal_float[3] == 0; |
| break; |
| |
| case 'h': |
| can_be_short = ((literal_float[0] & 0xFFF8) == 0x4000 |
| && (literal_float[1] & 0xE000) == 0 |
| && literal_float[2] == 0 |
| && literal_float[3] == 0 |
| && literal_float[4] == 0 |
| && literal_float[5] == 0 |
| && literal_float[6] == 0 |
| && literal_float[7] == 0); |
| break; |
| |
| default: |
| BAD_CASE (-expP->X_add_number); |
| break; |
| } |
| } |
| } |
| |
| if (operandP->vop_short == 's' |
| || operandP->vop_short == 'i' |
| || (operandP->vop_short == ' ' |
| && operandP->vop_reg == 0xF |
| && (operandP->vop_mode & 0xE) == 0x8)) |
| { |
| /* Saw a '#'. */ |
| if (operandP->vop_short == ' ') |
| { |
| /* We must chose S^ or I^. */ |
| if (expP->X_add_number > 0) |
| { |
| /* Bignum: Short literal impossible. */ |
| operandP->vop_short = 'i'; |
| operandP->vop_mode = 8; |
| operandP->vop_reg = 0xF; /* VAX PC. */ |
| } |
| else |
| { |
| /* Flonum: Try to do it. */ |
| if (can_be_short) |
| { |
| operandP->vop_short = 's'; |
| operandP->vop_mode = 0; |
| operandP->vop_ndx = -1; |
| operandP->vop_reg = -1; |
| expP->X_op = O_constant; |
| } |
| else |
| { |
| operandP->vop_short = 'i'; |
| operandP->vop_mode = 8; |
| operandP->vop_reg = 0xF; /* VAX PC */ |
| } |
| } /* bignum or flonum ? */ |
| } /* if #, but no S^ or I^ seen. */ |
| /* No more ' ' case: either 's' or 'i'. */ |
| if (operandP->vop_short == 's') |
| { |
| /* Wants to be a short literal. */ |
| if (expP->X_add_number > 0) |
| { |
| as_warn (_("Bignum not permitted in short literal. Immediate mode assumed.")); |
| operandP->vop_short = 'i'; |
| operandP->vop_mode = 8; |
| operandP->vop_reg = 0xF; /* VAX PC. */ |
| } |
| else |
| { |
| if (!can_be_short) |
| { |
| as_warn (_("Can't do flonum short literal: immediate mode used.")); |
| operandP->vop_short = 'i'; |
| operandP->vop_mode = 8; |
| operandP->vop_reg = 0xF; /* VAX PC. */ |
| } |
| else |
| { |
| /* Encode short literal now. */ |
| int temp = 0; |
| |
| switch (-expP->X_add_number) |
| { |
| case 'f': |
| case 'd': |
| temp = literal_float[0] >> 4; |
| break; |
| |
| case 'g': |
| temp = literal_float[0] >> 1; |
| break; |
| |
| case 'h': |
| temp = ((literal_float[0] << 3) & 070) |
| | ((literal_float[1] >> 13) & 07); |
| break; |
| |
| default: |
| BAD_CASE (-expP->X_add_number); |
| break; |
| } |
| |
| floatP->low[0] = temp & 077; |
| floatP->low[1] = 0; |
| } |
| } |
| } |
| else |
| { |
| /* I^# seen: set it up if float. */ |
| if (expP->X_add_number < 0) |
| { |
| memcpy (floatP->low, literal_float, sizeof (literal_float)); |
| } |
| } /* if S^# seen. */ |
| } |
| else |
| { |
| as_warn (_("A bignum/flonum may not be a displacement: 0x%lx used"), |
| (expP->X_add_number = 0x80000000L)); |
| /* Chosen so luser gets the most offset bits to patch later. */ |
| } |
| expP->X_add_number = floatP->low[0] |
| | ((LITTLENUM_MASK & (floatP->low[1])) << LITTLENUM_NUMBER_OF_BITS); |
| |
| /* For the O_big case we have: |
| If vop_short == 's' then a short floating literal is in the |
| lowest 6 bits of floatP -> low [0], which is |
| big_operand_bits [---] [0]. |
| If vop_short == 'i' then the appropriate number of elements |
| of big_operand_bits [---] [...] are set up with the correct |
| bits. |
| Also, just in case width is byte word or long, we copy the lowest |
| 32 bits of the number to X_add_number. */ |
| break; |
| } |
| if (input_line_pointer != operandP->vop_expr_end + 1) |
| { |
| as_fatal ("Junk at end of expression \"%s\"", input_line_pointer); |
| goofed = 1; |
| } |
| operandP->vop_expr_end[1] = c_save; |
| } |
| } |
| |
| input_line_pointer = save_input_line_pointer; |
| |
| if (need_pass_2 || goofed) |
| return; |
| |
| dwarf2_emit_insn (0); |
| /* Emit op-code. */ |
| /* Remember where it is, in case we want to modify the op-code later. */ |
| opcode_low_byteP = frag_more (v.vit_opcode_nbytes); |
| memcpy (opcode_low_byteP, v.vit_opcode, v.vit_opcode_nbytes); |
| opcode_as_chars = v.vit_opcode; |
| opcode_as_number = md_chars_to_number ((unsigned char *) opcode_as_chars, 4); |
| for (operandP = v.vit_operand, |
| expP = exp_of_operand, |
| segP = seg_of_operand, |
| floatP = float_operand, |
| end_operandP = v.vit_operand + v.vit_operands; |
| |
| operandP < end_operandP; |
| |
| operandP++, |
| floatP++, |
| segP++, |
| expP++) |
| { |
| if (operandP->vop_ndx >= 0) |
| { |
| /* Indexed addressing byte. */ |
| /* Legality of indexed mode already checked: it is OK. */ |
| FRAG_APPEND_1_CHAR (0x40 + operandP->vop_ndx); |
| } /* if(vop_ndx>=0) */ |
| |
| /* Here to make main operand frag(s). */ |
| this_add_number = expP->X_add_number; |
| this_add_symbol = expP->X_add_symbol; |
| to_seg = *segP; |
| is_undefined = (to_seg == undefined_section); |
| is_absolute = (to_seg == absolute_section); |
| at = operandP->vop_mode & 1; |
| length = (operandP->vop_short == 'b' |
| ? 1 : (operandP->vop_short == 'w' |
| ? 2 : (operandP->vop_short == 'l' |
| ? 4 : 0))); |
| nbytes = operandP->vop_nbytes; |
| if (operandP->vop_access == 'b') |
| { |
| if (to_seg == now_seg || is_undefined) |
| { |
| /* If is_undefined, then it might BECOME now_seg. */ |
| if (nbytes) |
| { |
| p = frag_more (nbytes); |
| fix_new (frag_now, p - frag_now->fr_literal, nbytes, |
| this_add_symbol, this_add_number, 1, NO_RELOC); |
| } |
| else |
| { |
| /* to_seg==now_seg || to_seg == SEG_UNKNOWN */ |
| /* nbytes==0 */ |
| length_code = is_undefined ? STATE_UNDF : STATE_BYTE; |
| if (opcode_as_number & VIT_OPCODE_SPECIAL) |
| { |
| if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP) |
| { |
| /* br or jsb */ |
| frag_var (rs_machine_dependent, 5, 1, |
| ENCODE_RELAX (STATE_ALWAYS_BRANCH, length_code), |
| this_add_symbol, this_add_number, |
| opcode_low_byteP); |
| } |
| else |
| { |
| if (operandP->vop_width == VAX_WIDTH_WORD_JUMP) |
| { |
| length_code = STATE_WORD; |
| /* JF: There is no state_byte for this one! */ |
| frag_var (rs_machine_dependent, 10, 2, |
| ENCODE_RELAX (STATE_COMPLEX_BRANCH, length_code), |
| this_add_symbol, this_add_number, |
| opcode_low_byteP); |
| } |
| else |
| { |
| know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP); |
| frag_var (rs_machine_dependent, 9, 1, |
| ENCODE_RELAX (STATE_COMPLEX_HOP, length_code), |
| this_add_symbol, this_add_number, |
| opcode_low_byteP); |
| } |
| } |
| } |
| else |
| { |
| know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP); |
| frag_var (rs_machine_dependent, 7, 1, |
| ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, length_code), |
| this_add_symbol, this_add_number, |
| opcode_low_byteP); |
| } |
| } |
| } |
| else |
| { |
| /* to_seg != now_seg && to_seg != SEG_UNKNOWN */ |
| /* --- SEG FLOAT MAY APPEAR HERE --- */ |
| if (is_absolute) |
| { |
| if (nbytes) |
| { |
| know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC)); |
| p = frag_more (nbytes); |
| /* Conventional relocation. */ |
| fix_new (frag_now, p - frag_now->fr_literal, nbytes, |
| section_symbol (absolute_section), |
| this_add_number, 1, NO_RELOC); |
| } |
| else |
| { |
| know (opcode_as_number & VIT_OPCODE_SYNTHETIC); |
| if (opcode_as_number & VIT_OPCODE_SPECIAL) |
| { |
| if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP) |
| { |
| /* br or jsb */ |
| *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG; |
| know (opcode_as_chars[1] == 0); |
| p = frag_more (5); |
| p[0] = VAX_ABSOLUTE_MODE; /* @#... */ |
| md_number_to_chars (p + 1, this_add_number, 4); |
| /* Now (eg) JMP @#foo or JSB @#foo. */ |
| } |
| else |
| { |
| if (operandP->vop_width == VAX_WIDTH_WORD_JUMP) |
| { |
| p = frag_more (10); |
| p[0] = 2; |
| p[1] = 0; |
| p[2] = VAX_BRB; |
| p[3] = 6; |
| p[4] = VAX_JMP; |
| p[5] = VAX_ABSOLUTE_MODE; /* @#... */ |
| md_number_to_chars (p + 6, this_add_number, 4); |
| /* Now (eg) ACBx 1f |
| BRB 2f |
| 1: JMP @#foo |
| 2: */ |
| } |
| else |
| { |
| know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP); |
| p = frag_more (9); |
| p[0] = 2; |
| p[1] = VAX_BRB; |
| p[2] = 6; |
| p[3] = VAX_JMP; |
| p[4] = VAX_ABSOLUTE_MODE; /* @#... */ |
| md_number_to_chars (p + 5, this_add_number, 4); |
| /* Now (eg) xOBxxx 1f |
| BRB 2f |
| 1: JMP @#foo |
| 2: */ |
| } |
| } |
| } |
| else |
| { |
| /* b<cond> */ |
| *opcode_low_byteP ^= 1; |
| /* To reverse the condition in a VAX branch, |
| complement the lowest order bit. */ |
| p = frag_more (7); |
| p[0] = 6; |
| p[1] = VAX_JMP; |
| p[2] = VAX_ABSOLUTE_MODE; /* @#... */ |
| md_number_to_chars (p + 3, this_add_number, 4); |
| /* Now (eg) BLEQ 1f |
| JMP @#foo |
| 1: */ |
| } |
| } |
| } |
| else |
| { |
| /* to_seg != now_seg && !is_undefinfed && !is_absolute */ |
| if (nbytes > 0) |
| { |
| /* Pc-relative. Conventional relocation. */ |
| know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC)); |
| p = frag_more (nbytes); |
| fix_new (frag_now, p - frag_now->fr_literal, nbytes, |
| section_symbol (absolute_section), |
| this_add_number, 1, NO_RELOC); |
| } |
| else |
| { |
| know (opcode_as_number & VIT_OPCODE_SYNTHETIC); |
| if (opcode_as_number & VIT_OPCODE_SPECIAL) |
| { |
| if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP) |
| { |
| /* br or jsb */ |
| know (opcode_as_chars[1] == 0); |
| *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG; |
| p = frag_more (5); |
| p[0] = VAX_PC_RELATIVE_MODE; |
| fix_new (frag_now, |
| p + 1 - frag_now->fr_literal, 4, |
| this_add_symbol, |
| this_add_number, 1, NO_RELOC); |
| /* Now eg JMP foo or JSB foo. */ |
| } |
| else |
| { |
| if (operandP->vop_width == VAX_WIDTH_WORD_JUMP) |
| { |
| p = frag_more (10); |
| p[0] = 0; |
| p[1] = 2; |
| p[2] = VAX_BRB; |
| p[3] = 6; |
| p[4] = VAX_JMP; |
| p[5] = VAX_PC_RELATIVE_MODE; |
| fix_new (frag_now, |
| p + 6 - frag_now->fr_literal, 4, |
| this_add_symbol, |
| this_add_number, 1, NO_RELOC); |
| /* Now (eg) ACBx 1f |
| BRB 2f |
| 1: JMP foo |
| 2: */ |
| } |
| else |
| { |
| know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP); |
| p = frag_more (10); |
| p[0] = 2; |
| p[1] = VAX_BRB; |
| p[2] = 6; |
| p[3] = VAX_JMP; |
| p[4] = VAX_PC_RELATIVE_MODE; |
| fix_new (frag_now, |
| p + 5 - frag_now->fr_literal, |
| 4, this_add_symbol, |
| this_add_number, 1, NO_RELOC); |
| /* Now (eg) xOBxxx 1f |
| BRB 2f |
| 1: JMP foo |
| 2: */ |
| } |
| } |
| } |
| else |
| { |
| know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP); |
| *opcode_low_byteP ^= 1; /* Reverse branch condition. */ |
| p = frag_more (7); |
| p[0] = 6; |
| p[1] = VAX_JMP; |
| p[2] = VAX_PC_RELATIVE_MODE; |
| fix_new (frag_now, p + 3 - frag_now->fr_literal, |
| 4, this_add_symbol, |
| this_add_number, 1, NO_RELOC); |
| } |
| } |
| } |
| } |
| } |
| else |
| { |
| /* So it is ordinary operand. */ |
| know (operandP->vop_access != 'b'); |
| /* ' ' target-independent: elsewhere. */ |
| know (operandP->vop_access != ' '); |
| know (operandP->vop_access == 'a' |
| || operandP->vop_access == 'm' |
| || operandP->vop_access == 'r' |
| || operandP->vop_access == 'v' |
| || operandP->vop_access == 'w'); |
| if (operandP->vop_short == 's') |
| { |
| if (is_absolute) |
| { |
| if (this_add_number >= 64) |
| { |
| as_warn (_("Short literal overflow(%ld.), immediate mode assumed."), |
| (long) this_add_number); |
| operandP->vop_short = 'i'; |
| operandP->vop_mode = 8; |
| operandP->vop_reg = 0xF; |
| } |
| } |
| else |
| { |
| as_warn (_("Forced short literal to immediate mode. now_seg=%s to_seg=%s"), |
| segment_name (now_seg), segment_name (to_seg)); |
| operandP->vop_short = 'i'; |
| operandP->vop_mode = 8; |
| operandP->vop_reg = 0xF; |
| } |
| } |
| if (operandP->vop_reg >= 0 && (operandP->vop_mode < 8 |
| || (operandP->vop_reg != 0xF && operandP->vop_mode < 10))) |
| { |
| /* One byte operand. */ |
| know (operandP->vop_mode > 3); |
| FRAG_APPEND_1_CHAR (operandP->vop_mode << 4 | operandP->vop_reg); |
| /* All 1-bytes except S^# happen here. */ |
| } |
| else |
| { |
| /* {@}{q^}foo{(Rn)} or S^#foo */ |
| if (operandP->vop_reg == -1 && operandP->vop_short != 's') |
| { |
| /* "{@}{q^}foo" */ |
| if (to_seg == now_seg) |
| { |
| if (length == 0) |
| { |
| know (operandP->vop_short == ' '); |
| length_code = STATE_BYTE; |
| #ifdef OBJ_ELF |
| if (S_IS_EXTERNAL (this_add_symbol) |
| || S_IS_WEAK (this_add_symbol)) |
| length_code = STATE_UNDF; |
| #endif |
| p = frag_var (rs_machine_dependent, 10, 2, |
| ENCODE_RELAX (STATE_PC_RELATIVE, length_code), |
| this_add_symbol, this_add_number, |
| opcode_low_byteP); |
| know (operandP->vop_mode == 10 + at); |
| *p = at << 4; |
| /* At is the only context we need to carry |
| to other side of relax() process. Must |
| be in the correct bit position of VAX |
| operand spec. byte. */ |
| } |
| else |
| { |
| know (length); |
| know (operandP->vop_short != ' '); |
| p = frag_more (length + 1); |
| p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4); |
| fix_new (frag_now, p + 1 - frag_now->fr_literal, |
| length, this_add_symbol, |
| this_add_number, 1, NO_RELOC); |
| } |
| } |
| else |
| { |
| /* to_seg != now_seg */ |
| if (this_add_symbol == NULL) |
| { |
| know (is_absolute); |
| /* Do @#foo: simpler relocation than foo-.(pc) anyway. */ |
| p = frag_more (5); |
| p[0] = VAX_ABSOLUTE_MODE; /* @#... */ |
| md_number_to_chars (p + 1, this_add_number, 4); |
| if (length && length != 4) |
| as_warn (_("Length specification ignored. Address mode 9F used")); |
| } |
| else |
| { |
| /* {@}{q^}other_seg */ |
| know ((length == 0 && operandP->vop_short == ' ') |
| || (length > 0 && operandP->vop_short != ' ')); |
| if (is_undefined |
| #ifdef OBJ_ELF |
| || S_IS_WEAK(this_add_symbol) |
| || S_IS_EXTERNAL(this_add_symbol) |
| #endif |
| ) |
| { |
| switch (length) |
| { |
| default: length_code = STATE_UNDF; break; |
| case 1: length_code = STATE_BYTE; break; |
| case 2: length_code = STATE_WORD; break; |
| case 4: length_code = STATE_LONG; break; |
| } |
| /* We have a SEG_UNKNOWN symbol. It might |
| turn out to be in the same segment as |
| the instruction, permitting relaxation. */ |
| p = frag_var (rs_machine_dependent, 5, 2, |
| ENCODE_RELAX (STATE_PC_RELATIVE, length_code), |
| this_add_symbol, this_add_number, |
| opcode_low_byteP); |
| p[0] = at << 4; |
| } |
| else |
| { |
| if (length == 0) |
| { |
| know (operandP->vop_short == ' '); |
| length = 4; /* Longest possible. */ |
| } |
| p = frag_more (length + 1); |
| p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4); |
| md_number_to_chars (p + 1, this_add_number, length); |
| fix_new (frag_now, |
| p + 1 - frag_now->fr_literal, |
| length, this_add_symbol, |
| this_add_number, 1, NO_RELOC); |
| } |
| } |
| } |
| } |
| else |
| { |
| /* {@}{q^}foo(Rn) or S^# or I^# or # */ |
| if (operandP->vop_mode < 0xA) |
| { |
| /* # or S^# or I^# */ |
| if (operandP->vop_access == 'v' |
| || operandP->vop_access == 'a') |
| { |
| if (operandP->vop_access == 'v') |
| as_warn (_("Invalid operand: immediate value used as base address.")); |
| else |
| as_warn (_("Invalid operand: immediate value used as address.")); |
| /* gcc 2.6.3 is known to generate these in at least |
| one case. */ |
| } |
| if (length == 0 |
| && is_absolute && (expP->X_op != O_big) |
| && operandP->vop_mode == |