|  | /* This must come before any other includes.  */ | 
|  | #include "defs.h" | 
|  |  | 
|  | #include "sim-main.h" | 
|  | #include "sim-signal.h" | 
|  | #include "v850-sim.h" | 
|  | #include "simops.h" | 
|  |  | 
|  | #include <sys/types.h> | 
|  |  | 
|  | #ifdef HAVE_UTIME_H | 
|  | #include <utime.h> | 
|  | #endif | 
|  | #include <time.h> | 
|  | #include <unistd.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include "libiberty.h" | 
|  |  | 
|  | #include <errno.h> | 
|  | #if !defined(__GO32__) && !defined(_WIN32) | 
|  | #include <sys/stat.h> | 
|  | #include <sys/times.h> | 
|  | #include <sys/time.h> | 
|  | #endif | 
|  |  | 
|  | #include "target-newlib-syscall.h" | 
|  |  | 
|  | /* This is an array of the bit positions of registers r20 .. r31 in | 
|  | that order in a prepare/dispose instruction.  */ | 
|  | int type1_regs[12] = { 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 0, 21 }; | 
|  | /* This is an array of the bit positions of registers r16 .. r31 in | 
|  | that order in a push/pop instruction.  */ | 
|  | int type2_regs[16] = { 3, 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21}; | 
|  | /* This is an array of the bit positions of registers r1 .. r15 in | 
|  | that order in a push/pop instruction.  */ | 
|  | int type3_regs[15] = { 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21}; | 
|  |  | 
|  | #if WITH_TRACE_ANY_P | 
|  | #ifndef SIZE_INSTRUCTION | 
|  | #define SIZE_INSTRUCTION 18 | 
|  | #endif | 
|  |  | 
|  | #ifndef SIZE_VALUES | 
|  | #define SIZE_VALUES 11 | 
|  | #endif | 
|  |  | 
|  | /* TODO: This file largely assumes a single CPU.  */ | 
|  | #define CPU STATE_CPU (sd, 0) | 
|  |  | 
|  |  | 
|  | uint32_t   trace_values[3]; | 
|  | int          trace_num_values; | 
|  | uint32_t   trace_pc; | 
|  | const char * trace_name; | 
|  | int          trace_module; | 
|  |  | 
|  |  | 
|  | void | 
|  | trace_input (char *name, enum op_types type, int size) | 
|  | { | 
|  | if (!TRACE_ALU_P (STATE_CPU (simulator, 0))) | 
|  | return; | 
|  |  | 
|  | trace_pc = PC; | 
|  | trace_name = name; | 
|  | trace_module = TRACE_ALU_IDX; | 
|  |  | 
|  | switch (type) | 
|  | { | 
|  | default: | 
|  | case OP_UNKNOWN: | 
|  | case OP_NONE: | 
|  | case OP_TRAP: | 
|  | trace_num_values = 0; | 
|  | break; | 
|  |  | 
|  | case OP_REG: | 
|  | case OP_REG_REG_MOVE: | 
|  | trace_values[0] = State.regs[OP[0]]; | 
|  | trace_num_values = 1; | 
|  | break; | 
|  |  | 
|  | case OP_BIT_CHANGE: | 
|  | case OP_REG_REG: | 
|  | case OP_REG_REG_CMP: | 
|  | trace_values[0] = State.regs[OP[1]]; | 
|  | trace_values[1] = State.regs[OP[0]]; | 
|  | trace_num_values = 2; | 
|  | break; | 
|  |  | 
|  | case OP_IMM_REG: | 
|  | case OP_IMM_REG_CMP: | 
|  | trace_values[0] = SEXT5 (OP[0]); | 
|  | trace_values[1] = OP[1]; | 
|  | trace_num_values = 2; | 
|  | break; | 
|  |  | 
|  | case OP_IMM_REG_MOVE: | 
|  | trace_values[0] = SEXT5 (OP[0]); | 
|  | trace_num_values = 1; | 
|  | break; | 
|  |  | 
|  | case OP_COND_BR: | 
|  | trace_values[0] = State.pc; | 
|  | trace_values[1] = SEXT9 (OP[0]); | 
|  | trace_values[2] = PSW; | 
|  | trace_num_values = 3; | 
|  | break; | 
|  |  | 
|  | case OP_LOAD16: | 
|  | trace_values[0] = OP[1] * size; | 
|  | trace_values[1] = State.regs[30]; | 
|  | trace_num_values = 2; | 
|  | break; | 
|  |  | 
|  | case OP_STORE16: | 
|  | trace_values[0] = State.regs[OP[0]]; | 
|  | trace_values[1] = OP[1] * size; | 
|  | trace_values[2] = State.regs[30]; | 
|  | trace_num_values = 3; | 
|  | break; | 
|  |  | 
|  | case OP_LOAD32: | 
|  | trace_values[0] = EXTEND16 (OP[2]); | 
|  | trace_values[1] = State.regs[OP[0]]; | 
|  | trace_num_values = 2; | 
|  | break; | 
|  |  | 
|  | case OP_STORE32: | 
|  | trace_values[0] = State.regs[OP[1]]; | 
|  | trace_values[1] = EXTEND16 (OP[2]); | 
|  | trace_values[2] = State.regs[OP[0]]; | 
|  | trace_num_values = 3; | 
|  | break; | 
|  |  | 
|  | case OP_JUMP: | 
|  | trace_values[0] = SEXT22 (OP[0]); | 
|  | trace_values[1] = State.pc; | 
|  | trace_num_values = 2; | 
|  | break; | 
|  |  | 
|  | case OP_IMM_REG_REG: | 
|  | trace_values[0] = EXTEND16 (OP[0]) << size; | 
|  | trace_values[1] = State.regs[OP[1]]; | 
|  | trace_num_values = 2; | 
|  | break; | 
|  |  | 
|  | case OP_IMM16_REG_REG: | 
|  | trace_values[0] = EXTEND16 (OP[2]) << size; | 
|  | trace_values[1] = State.regs[OP[1]]; | 
|  | trace_num_values = 2; | 
|  | break; | 
|  |  | 
|  | case OP_UIMM_REG_REG: | 
|  | trace_values[0] = (OP[0] & 0xffff) << size; | 
|  | trace_values[1] = State.regs[OP[1]]; | 
|  | trace_num_values = 2; | 
|  | break; | 
|  |  | 
|  | case OP_UIMM16_REG_REG: | 
|  | trace_values[0] = (OP[2]) << size; | 
|  | trace_values[1] = State.regs[OP[1]]; | 
|  | trace_num_values = 2; | 
|  | break; | 
|  |  | 
|  | case OP_BIT: | 
|  | trace_num_values = 0; | 
|  | break; | 
|  |  | 
|  | case OP_EX1: | 
|  | trace_values[0] = PSW; | 
|  | trace_num_values = 1; | 
|  | break; | 
|  |  | 
|  | case OP_EX2: | 
|  | trace_num_values = 0; | 
|  | break; | 
|  |  | 
|  | case OP_LDSR: | 
|  | trace_values[0] = State.regs[OP[0]]; | 
|  | trace_num_values = 1; | 
|  | break; | 
|  |  | 
|  | case OP_STSR: | 
|  | trace_values[0] = State.sregs[OP[1]]; | 
|  | trace_num_values = 1; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | void | 
|  | trace_result (int has_result, uint32_t result) | 
|  | { | 
|  | char buf[1000]; | 
|  | char *chp; | 
|  |  | 
|  | buf[0] = '\0'; | 
|  | chp = buf; | 
|  |  | 
|  | /* write out the values saved during the trace_input call */ | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < trace_num_values; i++) | 
|  | { | 
|  | sprintf (chp, "%*s0x%.8lx", SIZE_VALUES - 10, "", | 
|  | (long) trace_values[i]); | 
|  | chp = strchr (chp, '\0'); | 
|  | } | 
|  | while (i++ < 3) | 
|  | { | 
|  | sprintf (chp, "%*s", SIZE_VALUES, ""); | 
|  | chp = strchr (chp, '\0'); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* append any result to the end of the buffer */ | 
|  | if (has_result) | 
|  | sprintf (chp, " :: 0x%.8lx", (unsigned long) result); | 
|  |  | 
|  | trace_generic (simulator, STATE_CPU (simulator, 0), trace_module, "%s", buf); | 
|  | } | 
|  |  | 
|  | void | 
|  | trace_output (enum op_types result) | 
|  | { | 
|  | if (!TRACE_ALU_P (STATE_CPU (simulator, 0))) | 
|  | return; | 
|  |  | 
|  | switch (result) | 
|  | { | 
|  | default: | 
|  | case OP_UNKNOWN: | 
|  | case OP_NONE: | 
|  | case OP_TRAP: | 
|  | case OP_REG: | 
|  | case OP_REG_REG_CMP: | 
|  | case OP_IMM_REG_CMP: | 
|  | case OP_COND_BR: | 
|  | case OP_STORE16: | 
|  | case OP_STORE32: | 
|  | case OP_BIT: | 
|  | case OP_EX2: | 
|  | trace_result (0, 0); | 
|  | break; | 
|  |  | 
|  | case OP_LOAD16: | 
|  | case OP_STSR: | 
|  | trace_result (1, State.regs[OP[0]]); | 
|  | break; | 
|  |  | 
|  | case OP_REG_REG: | 
|  | case OP_REG_REG_MOVE: | 
|  | case OP_IMM_REG: | 
|  | case OP_IMM_REG_MOVE: | 
|  | case OP_LOAD32: | 
|  | case OP_EX1: | 
|  | trace_result (1, State.regs[OP[1]]); | 
|  | break; | 
|  |  | 
|  | case OP_IMM_REG_REG: | 
|  | case OP_UIMM_REG_REG: | 
|  | case OP_IMM16_REG_REG: | 
|  | case OP_UIMM16_REG_REG: | 
|  | trace_result (1, State.regs[OP[1]]); | 
|  | break; | 
|  |  | 
|  | case OP_JUMP: | 
|  | if (OP[1] != 0) | 
|  | trace_result (1, State.regs[OP[1]]); | 
|  | else | 
|  | trace_result (0, 0); | 
|  | break; | 
|  |  | 
|  | case OP_LDSR: | 
|  | trace_result (1, State.sregs[OP[1]]); | 
|  | break; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* Returns 1 if the specific condition is met, returns 0 otherwise.  */ | 
|  | int | 
|  | condition_met (unsigned code) | 
|  | { | 
|  | unsigned int psw = PSW; | 
|  |  | 
|  | switch (code & 0xf) | 
|  | { | 
|  | case 0x0: return ((psw & PSW_OV) != 0); | 
|  | case 0x1:	return ((psw & PSW_CY) != 0); | 
|  | case 0x2:	return ((psw & PSW_Z) != 0); | 
|  | case 0x3:	return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) != 0); | 
|  | case 0x4:	return ((psw & PSW_S) != 0); | 
|  | /*case 0x5:	return 1;*/ | 
|  | case 0x6: return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) != 0); | 
|  | case 0x7:	return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) != 0); | 
|  | case 0x8:	return ((psw & PSW_OV) == 0); | 
|  | case 0x9:	return ((psw & PSW_CY) == 0); | 
|  | case 0xa:	return ((psw & PSW_Z) == 0); | 
|  | case 0xb:	return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) == 0); | 
|  | case 0xc:	return ((psw & PSW_S) == 0); | 
|  | case 0xd:	return ((psw & PSW_SAT) != 0); | 
|  | case 0xe:	return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) == 0); | 
|  | case 0xf:	return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) == 0); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | unsigned long | 
|  | Add32 (unsigned long a1, unsigned long a2, int * carry) | 
|  | { | 
|  | unsigned long result = (a1 + a2); | 
|  |  | 
|  | * carry = (result < a1); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void | 
|  | Multiply64 (int sign, unsigned long op0) | 
|  | { | 
|  | unsigned long op1; | 
|  | unsigned long lo; | 
|  | unsigned long mid1; | 
|  | unsigned long mid2; | 
|  | unsigned long hi; | 
|  | unsigned long RdLo; | 
|  | unsigned long RdHi; | 
|  | int           carry; | 
|  |  | 
|  | op1 = State.regs[ OP[1] ]; | 
|  |  | 
|  | if (sign) | 
|  | { | 
|  | /* Compute sign of result and adjust operands if necessary.  */ | 
|  |  | 
|  | sign = (op0 ^ op1) & 0x80000000; | 
|  |  | 
|  | if (op0 & 0x80000000) | 
|  | op0 = - op0; | 
|  |  | 
|  | if (op1 & 0x80000000) | 
|  | op1 = - op1; | 
|  | } | 
|  |  | 
|  | /* We can split the 32x32 into four 16x16 operations. This ensures | 
|  | that we do not lose precision on 32bit only hosts: */ | 
|  | lo   = ( (op0        & 0xFFFF) *  (op1        & 0xFFFF)); | 
|  | mid1 = ( (op0        & 0xFFFF) * ((op1 >> 16) & 0xFFFF)); | 
|  | mid2 = (((op0 >> 16) & 0xFFFF) *  (op1        & 0xFFFF)); | 
|  | hi   = (((op0 >> 16) & 0xFFFF) * ((op1 >> 16) & 0xFFFF)); | 
|  |  | 
|  | /* We now need to add all of these results together, taking care | 
|  | to propogate the carries from the additions: */ | 
|  | RdLo = Add32 (lo, (mid1 << 16), & carry); | 
|  | RdHi = carry; | 
|  | RdLo = Add32 (RdLo, (mid2 << 16), & carry); | 
|  | RdHi += (carry + ((mid1 >> 16) & 0xFFFF) + ((mid2 >> 16) & 0xFFFF) + hi); | 
|  |  | 
|  | if (sign) | 
|  | { | 
|  | /* Negate result if necessary.  */ | 
|  |  | 
|  | RdLo = ~ RdLo; | 
|  | RdHi = ~ RdHi; | 
|  | if (RdLo == 0xFFFFFFFF) | 
|  | { | 
|  | RdLo = 0; | 
|  | RdHi += 1; | 
|  | } | 
|  | else | 
|  | RdLo += 1; | 
|  | } | 
|  |  | 
|  | /* Don't store into register 0.  */ | 
|  | if (OP[1]) | 
|  | State.regs[ OP[1]       ] = RdLo; | 
|  | if (OP[2] >> 11) | 
|  | State.regs[ OP[2] >> 11 ] = RdHi; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Read a null terminated string from memory, return in a buffer.  */ | 
|  |  | 
|  | static char * | 
|  | fetch_str (SIM_DESC sd, address_word addr) | 
|  | { | 
|  | char *buf; | 
|  | int nr = 0; | 
|  |  | 
|  | while (sim_core_read_1 (STATE_CPU (sd, 0), | 
|  | PC, read_map, addr + nr) != 0) | 
|  | nr++; | 
|  |  | 
|  | buf = NZALLOC (char, nr + 1); | 
|  | sim_read (simulator, addr, buf, nr); | 
|  |  | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | /* Read a null terminated argument vector from memory, return in a | 
|  | buffer.  */ | 
|  |  | 
|  | static char ** | 
|  | fetch_argv (SIM_DESC sd, address_word addr) | 
|  | { | 
|  | int max_nr = 64; | 
|  | int nr = 0; | 
|  | char **buf = xmalloc (max_nr * sizeof (char*)); | 
|  |  | 
|  | while (1) | 
|  | { | 
|  | uint32_t a = sim_core_read_4 (STATE_CPU (sd, 0), | 
|  | PC, read_map, addr + nr * 4); | 
|  | if (a == 0) break; | 
|  | buf[nr] = fetch_str (sd, a); | 
|  | nr ++; | 
|  | if (nr == max_nr - 1) | 
|  | { | 
|  | max_nr += 50; | 
|  | buf = xrealloc (buf, max_nr * sizeof (char*)); | 
|  | } | 
|  | } | 
|  | buf[nr] = 0; | 
|  | return buf; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* sst.b */ | 
|  | int | 
|  | OP_380 (void) | 
|  | { | 
|  | trace_input ("sst.b", OP_STORE16, 1); | 
|  |  | 
|  | store_mem (State.regs[30] + (OP[3] & 0x7f), 1, State.regs[ OP[1] ]); | 
|  |  | 
|  | trace_output (OP_STORE16); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* sst.h */ | 
|  | int | 
|  | OP_480 (void) | 
|  | { | 
|  | trace_input ("sst.h", OP_STORE16, 2); | 
|  |  | 
|  | store_mem (State.regs[30] + ((OP[3] & 0x7f) << 1), 2, State.regs[ OP[1] ]); | 
|  |  | 
|  | trace_output (OP_STORE16); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* sst.w */ | 
|  | int | 
|  | OP_501 (void) | 
|  | { | 
|  | trace_input ("sst.w", OP_STORE16, 4); | 
|  |  | 
|  | store_mem (State.regs[30] + ((OP[3] & 0x7e) << 1), 4, State.regs[ OP[1] ]); | 
|  |  | 
|  | trace_output (OP_STORE16); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* ld.b */ | 
|  | int | 
|  | OP_700 (void) | 
|  | { | 
|  | int adr; | 
|  |  | 
|  | trace_input ("ld.b", OP_LOAD32, 1); | 
|  |  | 
|  | adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]); | 
|  |  | 
|  | State.regs[ OP[1] ] = EXTEND8 (load_mem (adr, 1)); | 
|  |  | 
|  | trace_output (OP_LOAD32); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* ld.h */ | 
|  | int | 
|  | OP_720 (void) | 
|  | { | 
|  | int adr; | 
|  |  | 
|  | trace_input ("ld.h", OP_LOAD32, 2); | 
|  |  | 
|  | adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]); | 
|  | adr &= ~0x1; | 
|  |  | 
|  | State.regs[ OP[1] ] = EXTEND16 (load_mem (adr, 2)); | 
|  |  | 
|  | trace_output (OP_LOAD32); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* ld.w */ | 
|  | int | 
|  | OP_10720 (void) | 
|  | { | 
|  | int adr; | 
|  |  | 
|  | trace_input ("ld.w", OP_LOAD32, 4); | 
|  |  | 
|  | adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1); | 
|  | adr &= ~0x3; | 
|  |  | 
|  | State.regs[ OP[1] ] = load_mem (adr, 4); | 
|  |  | 
|  | trace_output (OP_LOAD32); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* st.b */ | 
|  | int | 
|  | OP_740 (void) | 
|  | { | 
|  | trace_input ("st.b", OP_STORE32, 1); | 
|  |  | 
|  | store_mem (State.regs[ OP[0] ] + EXTEND16 (OP[2]), 1, State.regs[ OP[1] ]); | 
|  |  | 
|  | trace_output (OP_STORE32); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* st.h */ | 
|  | int | 
|  | OP_760 (void) | 
|  | { | 
|  | int adr; | 
|  |  | 
|  | trace_input ("st.h", OP_STORE32, 2); | 
|  |  | 
|  | adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]); | 
|  | adr &= ~1; | 
|  |  | 
|  | store_mem (adr, 2, State.regs[ OP[1] ]); | 
|  |  | 
|  | trace_output (OP_STORE32); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* st.w */ | 
|  | int | 
|  | OP_10760 (void) | 
|  | { | 
|  | int adr; | 
|  |  | 
|  | trace_input ("st.w", OP_STORE32, 4); | 
|  |  | 
|  | adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1); | 
|  | adr &= ~3; | 
|  |  | 
|  | store_mem (adr, 4, State.regs[ OP[1] ]); | 
|  |  | 
|  | trace_output (OP_STORE32); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* add reg, reg */ | 
|  | int | 
|  | OP_1C0 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy, ov; | 
|  |  | 
|  | trace_input ("add", OP_REG_REG, 0); | 
|  |  | 
|  | /* Compute the result.  */ | 
|  |  | 
|  | op0 = State.regs[ OP[0] ]; | 
|  | op1 = State.regs[ OP[1] ]; | 
|  |  | 
|  | result = op0 + op1; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = (result < op0 || result < op1); | 
|  | ov = ((op0 & 0x80000000) == (op1 & 0x80000000) | 
|  | && (op0 & 0x80000000) != (result & 0x80000000)); | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); | 
|  | trace_output (OP_REG_REG); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* add sign_extend(imm5), reg */ | 
|  | int | 
|  | OP_240 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy, ov; | 
|  | int temp; | 
|  |  | 
|  | trace_input ("add", OP_IMM_REG, 0); | 
|  |  | 
|  | /* Compute the result.  */ | 
|  | temp = SEXT5 (OP[0]); | 
|  | op0 = temp; | 
|  | op1 = State.regs[OP[1]]; | 
|  | result = op0 + op1; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = (result < op0 || result < op1); | 
|  | ov = ((op0 & 0x80000000) == (op1 & 0x80000000) | 
|  | && (op0 & 0x80000000) != (result & 0x80000000)); | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); | 
|  | trace_output (OP_IMM_REG); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* addi sign_extend(imm16), reg, reg */ | 
|  | int | 
|  | OP_600 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy, ov; | 
|  |  | 
|  | trace_input ("addi", OP_IMM16_REG_REG, 0); | 
|  |  | 
|  | /* Compute the result.  */ | 
|  |  | 
|  | op0 = EXTEND16 (OP[2]); | 
|  | op1 = State.regs[ OP[0] ]; | 
|  | result = op0 + op1; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = (result < op0 || result < op1); | 
|  | ov = ((op0 & 0x80000000) == (op1 & 0x80000000) | 
|  | && (op0 & 0x80000000) != (result & 0x80000000)); | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); | 
|  | trace_output (OP_IMM16_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* sub reg1, reg2 */ | 
|  | int | 
|  | OP_1A0 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy, ov; | 
|  |  | 
|  | trace_input ("sub", OP_REG_REG, 0); | 
|  | /* Compute the result.  */ | 
|  | op0 = State.regs[ OP[0] ]; | 
|  | op1 = State.regs[ OP[1] ]; | 
|  | result = op1 - op0; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = (op1 < op0); | 
|  | ov = ((op1 & 0x80000000) != (op0 & 0x80000000) | 
|  | && (op1 & 0x80000000) != (result & 0x80000000)); | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); | 
|  | trace_output (OP_REG_REG); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* subr reg1, reg2 */ | 
|  | int | 
|  | OP_180 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy, ov; | 
|  |  | 
|  | trace_input ("subr", OP_REG_REG, 0); | 
|  | /* Compute the result.  */ | 
|  | op0 = State.regs[ OP[0] ]; | 
|  | op1 = State.regs[ OP[1] ]; | 
|  | result = op0 - op1; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = (op0 < op1); | 
|  | ov = ((op0 & 0x80000000) != (op1 & 0x80000000) | 
|  | && (op0 & 0x80000000) != (result & 0x80000000)); | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); | 
|  | trace_output (OP_REG_REG); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* sxh reg1 */ | 
|  | int | 
|  | OP_E0 (void) | 
|  | { | 
|  | trace_input ("mulh", OP_REG_REG, 0); | 
|  |  | 
|  | State.regs[ OP[1] ] = (EXTEND16 (State.regs[ OP[1] ]) * EXTEND16 (State.regs[ OP[0] ])); | 
|  |  | 
|  | trace_output (OP_REG_REG); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* mulh sign_extend(imm5), reg2 */ | 
|  | int | 
|  | OP_2E0 (void) | 
|  | { | 
|  | trace_input ("mulh", OP_IMM_REG, 0); | 
|  |  | 
|  | State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[1] ]) * SEXT5 (OP[0]); | 
|  |  | 
|  | trace_output (OP_IMM_REG); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* mulhi imm16, reg1, reg2 */ | 
|  | int | 
|  | OP_6E0 (void) | 
|  | { | 
|  | trace_input ("mulhi", OP_IMM16_REG_REG, 0); | 
|  |  | 
|  | State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[0] ]) * EXTEND16 (OP[2]); | 
|  |  | 
|  | trace_output (OP_IMM16_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* cmp reg, reg */ | 
|  | int | 
|  | OP_1E0 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy, ov; | 
|  |  | 
|  | trace_input ("cmp", OP_REG_REG_CMP, 0); | 
|  | /* Compute the result.  */ | 
|  | op0 = State.regs[ OP[0] ]; | 
|  | op1 = State.regs[ OP[1] ]; | 
|  | result = op1 - op0; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = (op1 < op0); | 
|  | ov = ((op1 & 0x80000000) != (op0 & 0x80000000) | 
|  | && (op1 & 0x80000000) != (result & 0x80000000)); | 
|  |  | 
|  | /* Set condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); | 
|  | trace_output (OP_REG_REG_CMP); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* cmp sign_extend(imm5), reg */ | 
|  | int | 
|  | OP_260 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy, ov; | 
|  | int temp; | 
|  |  | 
|  | /* Compute the result.  */ | 
|  | trace_input ("cmp", OP_IMM_REG_CMP, 0); | 
|  | temp = SEXT5 (OP[0]); | 
|  | op0 = temp; | 
|  | op1 = State.regs[OP[1]]; | 
|  | result = op1 - op0; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = (op1 < op0); | 
|  | ov = ((op1 & 0x80000000) != (op0 & 0x80000000) | 
|  | && (op1 & 0x80000000) != (result & 0x80000000)); | 
|  |  | 
|  | /* Set condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); | 
|  | trace_output (OP_IMM_REG_CMP); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* setf cccc,reg2 */ | 
|  | int | 
|  | OP_7E0 (void) | 
|  | { | 
|  | trace_input ("setf", OP_EX1, 0); | 
|  |  | 
|  | State.regs[ OP[1] ] = condition_met (OP[0]); | 
|  |  | 
|  | trace_output (OP_EX1); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* satadd reg,reg */ | 
|  | int | 
|  | OP_C0 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy, ov, sat; | 
|  |  | 
|  | trace_input ("satadd", OP_REG_REG, 0); | 
|  | /* Compute the result.  */ | 
|  | op0 = State.regs[ OP[0] ]; | 
|  | op1 = State.regs[ OP[1] ]; | 
|  | result = op0 + op1; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = (result < op0 || result < op1); | 
|  | ov = ((op0 & 0x80000000) == (op1 & 0x80000000) | 
|  | && (op0 & 0x80000000) != (result & 0x80000000)); | 
|  | sat = ov; | 
|  |  | 
|  | /* Handle saturated results.  */ | 
|  | if (sat && s) | 
|  | { | 
|  | /* An overflow that results in a negative result implies that we | 
|  | became too positive.  */ | 
|  | result = 0x7fffffff; | 
|  | s = 0; | 
|  | } | 
|  | else if (sat) | 
|  | { | 
|  | /* Any other overflow must have thus been too negative.  */ | 
|  | result = 0x80000000; | 
|  | s = 1; | 
|  | z = 0; | 
|  | } | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) | 
|  | | (sat ? PSW_SAT : 0)); | 
|  |  | 
|  | trace_output (OP_REG_REG); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* satadd sign_extend(imm5), reg */ | 
|  | int | 
|  | OP_220 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy, ov, sat; | 
|  |  | 
|  | int temp; | 
|  |  | 
|  | trace_input ("satadd", OP_IMM_REG, 0); | 
|  |  | 
|  | /* Compute the result.  */ | 
|  | temp = SEXT5 (OP[0]); | 
|  | op0 = temp; | 
|  | op1 = State.regs[OP[1]]; | 
|  | result = op0 + op1; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = (result < op0 || result < op1); | 
|  | ov = ((op0 & 0x80000000) == (op1 & 0x80000000) | 
|  | && (op0 & 0x80000000) != (result & 0x80000000)); | 
|  | sat = ov; | 
|  |  | 
|  | /* Handle saturated results.  */ | 
|  | if (sat && s) | 
|  | { | 
|  | /* An overflow that results in a negative result implies that we | 
|  | became too positive.  */ | 
|  | result = 0x7fffffff; | 
|  | s = 0; | 
|  | } | 
|  | else if (sat) | 
|  | { | 
|  | /* Any other overflow must have thus been too negative.  */ | 
|  | result = 0x80000000; | 
|  | s = 1; | 
|  | z = 0; | 
|  | } | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) | 
|  | | (sat ? PSW_SAT : 0)); | 
|  | trace_output (OP_IMM_REG); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* satsub reg1, reg2 */ | 
|  | int | 
|  | OP_A0 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy, ov, sat; | 
|  |  | 
|  | trace_input ("satsub", OP_REG_REG, 0); | 
|  |  | 
|  | /* Compute the result.  */ | 
|  | op0 = State.regs[ OP[0] ]; | 
|  | op1 = State.regs[ OP[1] ]; | 
|  | result = op1 - op0; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = (op1 < op0); | 
|  | ov = ((op1 & 0x80000000) != (op0 & 0x80000000) | 
|  | && (op1 & 0x80000000) != (result & 0x80000000)); | 
|  | sat = ov; | 
|  |  | 
|  | /* Handle saturated results.  */ | 
|  | if (sat && s) | 
|  | { | 
|  | /* An overflow that results in a negative result implies that we | 
|  | became too positive.  */ | 
|  | result = 0x7fffffff; | 
|  | s = 0; | 
|  | } | 
|  | else if (sat) | 
|  | { | 
|  | /* Any other overflow must have thus been too negative.  */ | 
|  | result = 0x80000000; | 
|  | s = 1; | 
|  | z = 0; | 
|  | } | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) | 
|  | | (sat ? PSW_SAT : 0)); | 
|  |  | 
|  | trace_output (OP_REG_REG); | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* satsubi sign_extend(imm16), reg */ | 
|  | int | 
|  | OP_660 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy, ov, sat; | 
|  | int temp; | 
|  |  | 
|  | trace_input ("satsubi", OP_IMM_REG, 0); | 
|  |  | 
|  | /* Compute the result.  */ | 
|  | temp = EXTEND16 (OP[2]); | 
|  | op0 = temp; | 
|  | op1 = State.regs[ OP[0] ]; | 
|  | result = op1 - op0; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = (op1 < op0); | 
|  | ov = ((op1 & 0x80000000) != (op0 & 0x80000000) | 
|  | && (op1 & 0x80000000) != (result & 0x80000000)); | 
|  | sat = ov; | 
|  |  | 
|  | /* Handle saturated results.  */ | 
|  | if (sat && s) | 
|  | { | 
|  | /* An overflow that results in a negative result implies that we | 
|  | became too positive.  */ | 
|  | result = 0x7fffffff; | 
|  | s = 0; | 
|  | } | 
|  | else if (sat) | 
|  | { | 
|  | /* Any other overflow must have thus been too negative.  */ | 
|  | result = 0x80000000; | 
|  | s = 1; | 
|  | z = 0; | 
|  | } | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) | 
|  | | (sat ? PSW_SAT : 0)); | 
|  |  | 
|  | trace_output (OP_IMM_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* satsubr reg,reg */ | 
|  | int | 
|  | OP_80 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy, ov, sat; | 
|  |  | 
|  | trace_input ("satsubr", OP_REG_REG, 0); | 
|  |  | 
|  | /* Compute the result.  */ | 
|  | op0 = State.regs[ OP[0] ]; | 
|  | op1 = State.regs[ OP[1] ]; | 
|  | result = op0 - op1; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = (op0 < op1); | 
|  | ov = ((op0 & 0x80000000) != (op1 & 0x80000000) | 
|  | && (op0 & 0x80000000) != (result & 0x80000000)); | 
|  | sat = ov; | 
|  |  | 
|  | /* Handle saturated results.  */ | 
|  | if (sat && s) | 
|  | { | 
|  | /* An overflow that results in a negative result implies that we | 
|  | became too positive.  */ | 
|  | result = 0x7fffffff; | 
|  | s = 0; | 
|  | } | 
|  | else if (sat) | 
|  | { | 
|  | /* Any other overflow must have thus been too negative.  */ | 
|  | result = 0x80000000; | 
|  | s = 1; | 
|  | z = 0; | 
|  | } | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) | 
|  | | (sat ? PSW_SAT : 0)); | 
|  |  | 
|  | trace_output (OP_REG_REG); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* tst reg,reg */ | 
|  | int | 
|  | OP_160 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s; | 
|  |  | 
|  | trace_input ("tst", OP_REG_REG_CMP, 0); | 
|  |  | 
|  | /* Compute the result.  */ | 
|  | op0 = State.regs[ OP[0] ]; | 
|  | op1 = State.regs[ OP[1] ]; | 
|  | result = op0 & op1; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  |  | 
|  | /* Store the condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); | 
|  | trace_output (OP_REG_REG_CMP); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* mov sign_extend(imm5), reg */ | 
|  | int | 
|  | OP_200 (void) | 
|  | { | 
|  | int value = SEXT5 (OP[0]); | 
|  |  | 
|  | trace_input ("mov", OP_IMM_REG_MOVE, 0); | 
|  |  | 
|  | State.regs[ OP[1] ] = value; | 
|  |  | 
|  | trace_output (OP_IMM_REG_MOVE); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* movhi imm16, reg, reg */ | 
|  | int | 
|  | OP_640 (void) | 
|  | { | 
|  | trace_input ("movhi", OP_UIMM16_REG_REG, 16); | 
|  |  | 
|  | State.regs[ OP[1] ] = State.regs[ OP[0] ] + (OP[2] << 16); | 
|  |  | 
|  | trace_output (OP_UIMM16_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* sar zero_extend(imm5),reg1 */ | 
|  | int | 
|  | OP_2A0 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy; | 
|  |  | 
|  | trace_input ("sar", OP_IMM_REG, 0); | 
|  | op0 = OP[0]; | 
|  | op1 = State.regs[ OP[1] ]; | 
|  | result = (signed)op1 >> op0; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = op0 ? (op1 & (1 << (op0 - 1))) : 0; | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[ OP[1] ] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0)); | 
|  | trace_output (OP_IMM_REG); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* sar reg1, reg2 */ | 
|  | int | 
|  | OP_A007E0 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy; | 
|  |  | 
|  | trace_input ("sar", OP_REG_REG, 0); | 
|  |  | 
|  | op0 = State.regs[ OP[0] ] & 0x1f; | 
|  | op1 = State.regs[ OP[1] ]; | 
|  | result = (signed)op1 >> op0; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = op0 ? (op1 & (1 << (op0 - 1))) : 0; | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0)); | 
|  | trace_output (OP_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* shl zero_extend(imm5),reg1 */ | 
|  | int | 
|  | OP_2C0 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy; | 
|  |  | 
|  | trace_input ("shl", OP_IMM_REG, 0); | 
|  | op0 = OP[0]; | 
|  | op1 = State.regs[ OP[1] ]; | 
|  | result = op1 << op0; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = op0 ? (op1 & (1 << (32 - op0))) : 0; | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0)); | 
|  | trace_output (OP_IMM_REG); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* shl reg1, reg2 */ | 
|  | int | 
|  | OP_C007E0 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy; | 
|  |  | 
|  | trace_input ("shl", OP_REG_REG, 0); | 
|  | op0 = State.regs[ OP[0] ] & 0x1f; | 
|  | op1 = State.regs[ OP[1] ]; | 
|  | result = op1 << op0; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = op0 ? (op1 & (1 << (32 - op0))) : 0; | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0)); | 
|  | trace_output (OP_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* shr zero_extend(imm5),reg1 */ | 
|  | int | 
|  | OP_280 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy; | 
|  |  | 
|  | trace_input ("shr", OP_IMM_REG, 0); | 
|  | op0 = OP[0]; | 
|  | op1 = State.regs[ OP[1] ]; | 
|  | result = op1 >> op0; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = op0 ? (op1 & (1 << (op0 - 1))) : 0; | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0)); | 
|  | trace_output (OP_IMM_REG); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* shr reg1, reg2 */ | 
|  | int | 
|  | OP_8007E0 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s, cy; | 
|  |  | 
|  | trace_input ("shr", OP_REG_REG, 0); | 
|  | op0 = State.regs[ OP[0] ] & 0x1f; | 
|  | op1 = State.regs[ OP[1] ]; | 
|  | result = op1 >> op0; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = op0 ? (op1 & (1 << (op0 - 1))) : 0; | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0)); | 
|  | trace_output (OP_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* or reg, reg */ | 
|  | int | 
|  | OP_100 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s; | 
|  |  | 
|  | trace_input ("or", OP_REG_REG, 0); | 
|  |  | 
|  | /* Compute the result.  */ | 
|  | op0 = State.regs[ OP[0] ]; | 
|  | op1 = State.regs[ OP[1] ]; | 
|  | result = op0 | op1; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); | 
|  | trace_output (OP_REG_REG); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* ori zero_extend(imm16), reg, reg */ | 
|  | int | 
|  | OP_680 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s; | 
|  |  | 
|  | trace_input ("ori", OP_UIMM16_REG_REG, 0); | 
|  | op0 = OP[2]; | 
|  | op1 = State.regs[ OP[0] ]; | 
|  | result = op0 | op1; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); | 
|  | trace_output (OP_UIMM16_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* and reg, reg */ | 
|  | int | 
|  | OP_140 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s; | 
|  |  | 
|  | trace_input ("and", OP_REG_REG, 0); | 
|  |  | 
|  | /* Compute the result.  */ | 
|  | op0 = State.regs[ OP[0] ]; | 
|  | op1 = State.regs[ OP[1] ]; | 
|  | result = op0 & op1; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); | 
|  | trace_output (OP_REG_REG); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* andi zero_extend(imm16), reg, reg */ | 
|  | int | 
|  | OP_6C0 (void) | 
|  | { | 
|  | unsigned int result, z; | 
|  |  | 
|  | trace_input ("andi", OP_UIMM16_REG_REG, 0); | 
|  |  | 
|  | result = OP[2] & State.regs[ OP[0] ]; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[ OP[1] ] = result; | 
|  |  | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  | PSW |= (z ? PSW_Z : 0); | 
|  |  | 
|  | trace_output (OP_UIMM16_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* xor reg, reg */ | 
|  | int | 
|  | OP_120 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s; | 
|  |  | 
|  | trace_input ("xor", OP_REG_REG, 0); | 
|  |  | 
|  | /* Compute the result.  */ | 
|  | op0 = State.regs[ OP[0] ]; | 
|  | op1 = State.regs[ OP[1] ]; | 
|  | result = op0 ^ op1; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); | 
|  | trace_output (OP_REG_REG); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* xori zero_extend(imm16), reg, reg */ | 
|  | int | 
|  | OP_6A0 (void) | 
|  | { | 
|  | unsigned int op0, op1, result, z, s; | 
|  |  | 
|  | trace_input ("xori", OP_UIMM16_REG_REG, 0); | 
|  | op0 = OP[2]; | 
|  | op1 = State.regs[ OP[0] ]; | 
|  | result = op0 ^ op1; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); | 
|  | trace_output (OP_UIMM16_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* not reg1, reg2 */ | 
|  | int | 
|  | OP_20 (void) | 
|  | { | 
|  | unsigned int op0, result, z, s; | 
|  |  | 
|  | trace_input ("not", OP_REG_REG_MOVE, 0); | 
|  | /* Compute the result.  */ | 
|  | op0 = State.regs[ OP[0] ]; | 
|  | result = ~op0; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | State.regs[OP[1]] = result; | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); | 
|  | trace_output (OP_REG_REG_MOVE); | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* set1 */ | 
|  | int | 
|  | OP_7C0 (void) | 
|  | { | 
|  | unsigned int op0, op1, op2; | 
|  | int temp; | 
|  |  | 
|  | trace_input ("set1", OP_BIT, 0); | 
|  | op0 = State.regs[ OP[0] ]; | 
|  | op1 = OP[1] & 0x7; | 
|  | temp = EXTEND16 (OP[2]); | 
|  | op2 = temp; | 
|  | temp = load_mem (op0 + op2, 1); | 
|  | PSW &= ~PSW_Z; | 
|  | if ((temp & (1 << op1)) == 0) | 
|  | PSW |= PSW_Z; | 
|  | temp |= (1 << op1); | 
|  | store_mem (op0 + op2, 1, temp); | 
|  | trace_output (OP_BIT); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* not1 */ | 
|  | int | 
|  | OP_47C0 (void) | 
|  | { | 
|  | unsigned int op0, op1, op2; | 
|  | int temp; | 
|  |  | 
|  | trace_input ("not1", OP_BIT, 0); | 
|  | op0 = State.regs[ OP[0] ]; | 
|  | op1 = OP[1] & 0x7; | 
|  | temp = EXTEND16 (OP[2]); | 
|  | op2 = temp; | 
|  | temp = load_mem (op0 + op2, 1); | 
|  | PSW &= ~PSW_Z; | 
|  | if ((temp & (1 << op1)) == 0) | 
|  | PSW |= PSW_Z; | 
|  | temp ^= (1 << op1); | 
|  | store_mem (op0 + op2, 1, temp); | 
|  | trace_output (OP_BIT); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* clr1 */ | 
|  | int | 
|  | OP_87C0 (void) | 
|  | { | 
|  | unsigned int op0, op1, op2; | 
|  | int temp; | 
|  |  | 
|  | trace_input ("clr1", OP_BIT, 0); | 
|  | op0 = State.regs[ OP[0] ]; | 
|  | op1 = OP[1] & 0x7; | 
|  | temp = EXTEND16 (OP[2]); | 
|  | op2 = temp; | 
|  | temp = load_mem (op0 + op2, 1); | 
|  | PSW &= ~PSW_Z; | 
|  | if ((temp & (1 << op1)) == 0) | 
|  | PSW |= PSW_Z; | 
|  | temp &= ~(1 << op1); | 
|  | store_mem (op0 + op2, 1, temp); | 
|  | trace_output (OP_BIT); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* tst1 */ | 
|  | int | 
|  | OP_C7C0 (void) | 
|  | { | 
|  | unsigned int op0, op1, op2; | 
|  | int temp; | 
|  |  | 
|  | trace_input ("tst1", OP_BIT, 0); | 
|  | op0 = State.regs[ OP[0] ]; | 
|  | op1 = OP[1] & 0x7; | 
|  | temp = EXTEND16 (OP[2]); | 
|  | op2 = temp; | 
|  | temp = load_mem (op0 + op2, 1); | 
|  | PSW &= ~PSW_Z; | 
|  | if ((temp & (1 << op1)) == 0) | 
|  | PSW |= PSW_Z; | 
|  | trace_output (OP_BIT); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* di */ | 
|  | int | 
|  | OP_16007E0 (void) | 
|  | { | 
|  | trace_input ("di", OP_NONE, 0); | 
|  | PSW |= PSW_ID; | 
|  | trace_output (OP_NONE); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* ei */ | 
|  | int | 
|  | OP_16087E0 (void) | 
|  | { | 
|  | trace_input ("ei", OP_NONE, 0); | 
|  | PSW &= ~PSW_ID; | 
|  | trace_output (OP_NONE); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* halt */ | 
|  | int | 
|  | OP_12007E0 (void) | 
|  | { | 
|  | trace_input ("halt", OP_NONE, 0); | 
|  | /* FIXME this should put processor into a mode where NMI still handled */ | 
|  | trace_output (OP_NONE); | 
|  | sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC, | 
|  | sim_stopped, SIM_SIGTRAP); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* trap */ | 
|  | int | 
|  | OP_10007E0 (void) | 
|  | { | 
|  | trace_input ("trap", OP_TRAP, 0); | 
|  | trace_output (OP_TRAP); | 
|  |  | 
|  | /* Trap 31 is used for simulating OS I/O functions */ | 
|  |  | 
|  | if (OP[0] == 31) | 
|  | { | 
|  | int save_errno = errno; | 
|  | errno = 0; | 
|  |  | 
|  | /* Registers passed to trap 0 */ | 
|  |  | 
|  | #define FUNC   State.regs[6]	/* function number, return value */ | 
|  | #define PARM1  State.regs[7]	/* optional parm 1 */ | 
|  | #define PARM2  State.regs[8]	/* optional parm 2 */ | 
|  | #define PARM3  State.regs[9]	/* optional parm 3 */ | 
|  |  | 
|  | /* Registers set by trap 0 */ | 
|  |  | 
|  | #define RETVAL State.regs[10]	/* return value */ | 
|  | #define RETERR State.regs[11]	/* return error code */ | 
|  |  | 
|  | /* Turn a pointer in a register into a pointer into real memory. */ | 
|  |  | 
|  | #define MEMPTR(x) (map (x)) | 
|  |  | 
|  | RETERR = 0; | 
|  |  | 
|  | switch (FUNC) | 
|  | { | 
|  |  | 
|  | #ifdef HAVE_FORK | 
|  | case TARGET_NEWLIB_V850_SYS_fork: | 
|  | RETVAL = fork (); | 
|  | RETERR = errno; | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | #ifdef HAVE_EXECVE | 
|  | case TARGET_NEWLIB_V850_SYS_execve: | 
|  | { | 
|  | char *path = fetch_str (simulator, PARM1); | 
|  | char **argv = fetch_argv (simulator, PARM2); | 
|  | char **envp = fetch_argv (simulator, PARM3); | 
|  | RETVAL = execve (path, (void *)argv, (void *)envp); | 
|  | free (path); | 
|  | freeargv (argv); | 
|  | freeargv (envp); | 
|  | RETERR = errno; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if HAVE_EXECV | 
|  | case TARGET_NEWLIB_V850_SYS_execv: | 
|  | { | 
|  | char *path = fetch_str (simulator, PARM1); | 
|  | char **argv = fetch_argv (simulator, PARM2); | 
|  | RETVAL = execv (path, (void *)argv); | 
|  | free (path); | 
|  | freeargv (argv); | 
|  | RETERR = errno; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if 0 | 
|  | case TARGET_NEWLIB_V850_SYS_pipe: | 
|  | { | 
|  | reg_t buf; | 
|  | int host_fd[2]; | 
|  |  | 
|  | buf = PARM1; | 
|  | RETVAL = pipe (host_fd); | 
|  | SW (buf, host_fd[0]); | 
|  | buf += sizeof (uint16_t); | 
|  | SW (buf, host_fd[1]); | 
|  | RETERR = errno; | 
|  | } | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | #if 0 | 
|  | case TARGET_NEWLIB_V850_SYS_wait: | 
|  | { | 
|  | int status; | 
|  |  | 
|  | RETVAL = wait (&status); | 
|  | SW (PARM1, status); | 
|  | RETERR = errno; | 
|  | } | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | case TARGET_NEWLIB_V850_SYS_read: | 
|  | { | 
|  | char *buf = zalloc (PARM3); | 
|  | RETVAL = sim_io_read (simulator, PARM1, buf, PARM3); | 
|  | sim_write (simulator, PARM2, buf, PARM3); | 
|  | free (buf); | 
|  | if ((int) RETVAL < 0) | 
|  | RETERR = sim_io_get_errno (simulator); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TARGET_NEWLIB_V850_SYS_write: | 
|  | { | 
|  | char *buf = zalloc (PARM3); | 
|  | sim_read (simulator, PARM2, buf, PARM3); | 
|  | if (PARM1 == 1) | 
|  | RETVAL = sim_io_write_stdout (simulator, buf, PARM3); | 
|  | else | 
|  | RETVAL = sim_io_write (simulator, PARM1, buf, PARM3); | 
|  | free (buf); | 
|  | if ((int) RETVAL < 0) | 
|  | RETERR = sim_io_get_errno (simulator); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TARGET_NEWLIB_V850_SYS_lseek: | 
|  | RETVAL = sim_io_lseek (simulator, PARM1, PARM2, PARM3); | 
|  | if ((int) RETVAL < 0) | 
|  | RETERR = sim_io_get_errno (simulator); | 
|  | break; | 
|  |  | 
|  | case TARGET_NEWLIB_V850_SYS_close: | 
|  | RETVAL = sim_io_close (simulator, PARM1); | 
|  | if ((int) RETVAL < 0) | 
|  | RETERR = sim_io_get_errno (simulator); | 
|  | break; | 
|  |  | 
|  | case TARGET_NEWLIB_V850_SYS_open: | 
|  | { | 
|  | char *buf = fetch_str (simulator, PARM1); | 
|  | RETVAL = sim_io_open (simulator, buf, PARM2); | 
|  | free (buf); | 
|  | if ((int) RETVAL < 0) | 
|  | RETERR = sim_io_get_errno (simulator); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case TARGET_NEWLIB_V850_SYS_exit: | 
|  | if ((PARM1 & 0xffff0000) == 0xdead0000 && (PARM1 & 0xffff) != 0) | 
|  | /* get signal encoded by kill */ | 
|  | sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC, | 
|  | sim_signalled, PARM1 & 0xffff); | 
|  | else if (PARM1 == 0xdead) | 
|  | /* old libraries */ | 
|  | sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC, | 
|  | sim_stopped, SIM_SIGABRT); | 
|  | else | 
|  | /* PARM1 has exit status */ | 
|  | sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC, | 
|  | sim_exited, PARM1); | 
|  | break; | 
|  |  | 
|  | case TARGET_NEWLIB_V850_SYS_stat:	/* added at hmsi */ | 
|  | /* stat system call */ | 
|  | { | 
|  | struct stat host_stat; | 
|  | reg_t buf; | 
|  | char *path = fetch_str (simulator, PARM1); | 
|  |  | 
|  | RETVAL = sim_io_stat (simulator, path, &host_stat); | 
|  |  | 
|  | free (path); | 
|  | buf = PARM2; | 
|  |  | 
|  | /* Just wild-assed guesses.  */ | 
|  | store_mem (buf, 2, host_stat.st_dev); | 
|  | store_mem (buf + 2, 2, host_stat.st_ino); | 
|  | store_mem (buf + 4, 4, host_stat.st_mode); | 
|  | store_mem (buf + 8, 2, host_stat.st_nlink); | 
|  | store_mem (buf + 10, 2, host_stat.st_uid); | 
|  | store_mem (buf + 12, 2, host_stat.st_gid); | 
|  | store_mem (buf + 14, 2, host_stat.st_rdev); | 
|  | store_mem (buf + 16, 4, host_stat.st_size); | 
|  | store_mem (buf + 20, 4, host_stat.st_atime); | 
|  | store_mem (buf + 28, 4, host_stat.st_mtime); | 
|  | store_mem (buf + 36, 4, host_stat.st_ctime); | 
|  |  | 
|  | if ((int) RETVAL < 0) | 
|  | RETERR = sim_io_get_errno (simulator); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case TARGET_NEWLIB_V850_SYS_fstat: | 
|  | /* fstat system call */ | 
|  | { | 
|  | struct stat host_stat; | 
|  | reg_t buf; | 
|  |  | 
|  | RETVAL = sim_io_fstat (simulator, PARM1, &host_stat); | 
|  |  | 
|  | buf = PARM2; | 
|  |  | 
|  | /* Just wild-assed guesses.  */ | 
|  | store_mem (buf, 2, host_stat.st_dev); | 
|  | store_mem (buf + 2, 2, host_stat.st_ino); | 
|  | store_mem (buf + 4, 4, host_stat.st_mode); | 
|  | store_mem (buf + 8, 2, host_stat.st_nlink); | 
|  | store_mem (buf + 10, 2, host_stat.st_uid); | 
|  | store_mem (buf + 12, 2, host_stat.st_gid); | 
|  | store_mem (buf + 14, 2, host_stat.st_rdev); | 
|  | store_mem (buf + 16, 4, host_stat.st_size); | 
|  | store_mem (buf + 20, 4, host_stat.st_atime); | 
|  | store_mem (buf + 28, 4, host_stat.st_mtime); | 
|  | store_mem (buf + 36, 4, host_stat.st_ctime); | 
|  |  | 
|  | if ((int) RETVAL < 0) | 
|  | RETERR = sim_io_get_errno (simulator); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case TARGET_NEWLIB_V850_SYS_rename: | 
|  | { | 
|  | char *oldpath = fetch_str (simulator, PARM1); | 
|  | char *newpath = fetch_str (simulator, PARM2); | 
|  | RETVAL = sim_io_rename (simulator, oldpath, newpath); | 
|  | free (oldpath); | 
|  | free (newpath); | 
|  | if ((int) RETVAL < 0) | 
|  | RETERR = sim_io_get_errno (simulator); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case TARGET_NEWLIB_V850_SYS_unlink: | 
|  | { | 
|  | char *path = fetch_str (simulator, PARM1); | 
|  | RETVAL = sim_io_unlink (simulator, path); | 
|  | free (path); | 
|  | if ((int) RETVAL < 0) | 
|  | RETERR = sim_io_get_errno (simulator); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case TARGET_NEWLIB_V850_SYS_chown: | 
|  | { | 
|  | char *path = fetch_str (simulator, PARM1); | 
|  | RETVAL = chown (path, PARM2, PARM3); | 
|  | free (path); | 
|  | RETERR = errno; | 
|  | } | 
|  | break; | 
|  |  | 
|  | #if HAVE_CHMOD | 
|  | case TARGET_NEWLIB_V850_SYS_chmod: | 
|  | { | 
|  | char *path = fetch_str (simulator, PARM1); | 
|  | RETVAL = chmod (path, PARM2); | 
|  | free (path); | 
|  | RETERR = errno; | 
|  | } | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | #if HAVE_TIME | 
|  | case TARGET_NEWLIB_V850_SYS_time: | 
|  | { | 
|  | time_t now; | 
|  | RETVAL = time (&now); | 
|  | store_mem (PARM1, 4, now); | 
|  | RETERR = errno; | 
|  | } | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | #if !defined(__GO32__) && !defined(_WIN32) | 
|  | case TARGET_NEWLIB_V850_SYS_times: | 
|  | { | 
|  | struct tms tms; | 
|  | RETVAL = times (&tms); | 
|  | store_mem (PARM1, 4, tms.tms_utime); | 
|  | store_mem (PARM1 + 4, 4, tms.tms_stime); | 
|  | store_mem (PARM1 + 8, 4, tms.tms_cutime); | 
|  | store_mem (PARM1 + 12, 4, tms.tms_cstime); | 
|  | RETERR = errno; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if !defined(__GO32__) && !defined(_WIN32) | 
|  | case TARGET_NEWLIB_V850_SYS_gettimeofday: | 
|  | { | 
|  | struct timeval t; | 
|  | struct timezone tz; | 
|  | RETVAL = gettimeofday (&t, &tz); | 
|  | store_mem (PARM1, 4, t.tv_sec); | 
|  | store_mem (PARM1 + 4, 4, t.tv_usec); | 
|  | store_mem (PARM2, 4, tz.tz_minuteswest); | 
|  | store_mem (PARM2 + 4, 4, tz.tz_dsttime); | 
|  | RETERR = errno; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if HAVE_UTIME | 
|  | case TARGET_NEWLIB_V850_SYS_utime: | 
|  | { | 
|  | /* Cast the second argument to void *, to avoid type mismatch | 
|  | if a prototype is present.  */ | 
|  | sim_io_error (simulator, "Utime not supported"); | 
|  | /* RETVAL = utime (path, (void *) MEMPTR (PARM2)); */ | 
|  | } | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | default: | 
|  | abort (); | 
|  | } | 
|  | errno = save_errno; | 
|  |  | 
|  | return 4; | 
|  | } | 
|  | else | 
|  | {				/* Trap 0 -> 30 */ | 
|  | EIPC = PC + 4; | 
|  | EIPSW = PSW; | 
|  | /* Mask out EICC */ | 
|  | ECR &= 0xffff0000; | 
|  | ECR |= 0x40 + OP[0]; | 
|  | /* Flag that we are now doing exception processing.  */ | 
|  | PSW |= PSW_EP | PSW_ID; | 
|  | PC = (OP[0] < 0x10) ? 0x40 : 0x50; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* tst1 reg2, [reg1] */ | 
|  | int | 
|  | OP_E607E0 (void) | 
|  | { | 
|  | int temp; | 
|  |  | 
|  | trace_input ("tst1", OP_BIT, 1); | 
|  |  | 
|  | temp = load_mem (State.regs[ OP[0] ], 1); | 
|  |  | 
|  | PSW &= ~PSW_Z; | 
|  | if ((temp & (1 << (State.regs[ OP[1] ] & 0x7))) == 0) | 
|  | PSW |= PSW_Z; | 
|  |  | 
|  | trace_output (OP_BIT); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* mulu reg1, reg2, reg3 */ | 
|  | int | 
|  | OP_22207E0 (void) | 
|  | { | 
|  | trace_input ("mulu", OP_REG_REG_REG, 0); | 
|  |  | 
|  | Multiply64 (0, State.regs[ OP[0] ]); | 
|  |  | 
|  | trace_output (OP_REG_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | #define BIT_CHANGE_OP( name, binop )		\ | 
|  | unsigned int bit;				\ | 
|  | unsigned int temp;				\ | 
|  | \ | 
|  | trace_input (name, OP_BIT_CHANGE, 0);		\ | 
|  | \ | 
|  | bit  = 1 << (State.regs[ OP[1] ] & 0x7);	\ | 
|  | temp = load_mem (State.regs[ OP[0] ], 1);	\ | 
|  | \ | 
|  | PSW &= ~PSW_Z;				\ | 
|  | if ((temp & bit) == 0)			\ | 
|  | PSW |= PSW_Z;				\ | 
|  | temp binop bit;				\ | 
|  | \ | 
|  | store_mem (State.regs[ OP[0] ], 1, temp);	\ | 
|  | \ | 
|  | trace_output (OP_BIT_CHANGE);			\ | 
|  | \ | 
|  | return 4; | 
|  |  | 
|  | /* clr1 reg2, [reg1] */ | 
|  | int | 
|  | OP_E407E0 (void) | 
|  | { | 
|  | BIT_CHANGE_OP ("clr1", &= ~ ); | 
|  | } | 
|  |  | 
|  | /* not1 reg2, [reg1] */ | 
|  | int | 
|  | OP_E207E0 (void) | 
|  | { | 
|  | BIT_CHANGE_OP ("not1", ^= ); | 
|  | } | 
|  |  | 
|  | /* set1 */ | 
|  | int | 
|  | OP_E007E0 (void) | 
|  | { | 
|  | BIT_CHANGE_OP ("set1", |= ); | 
|  | } | 
|  |  | 
|  | /* sasf */ | 
|  | int | 
|  | OP_20007E0 (void) | 
|  | { | 
|  | trace_input ("sasf", OP_EX1, 0); | 
|  |  | 
|  | State.regs[ OP[1] ] = (State.regs[ OP[1] ] << 1) | condition_met (OP[0]); | 
|  |  | 
|  | trace_output (OP_EX1); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* This function is courtesy of Sugimoto at NEC, via Seow Tan | 
|  | (Soew_Tan@el.nec.com) */ | 
|  | void | 
|  | divun | 
|  | ( | 
|  | unsigned int       N, | 
|  | unsigned long int  als, | 
|  | unsigned long int  sfi, | 
|  | uint32_t /*unsigned long int*/ *  quotient_ptr, | 
|  | uint32_t /*unsigned long int*/ *  remainder_ptr, | 
|  | int *          overflow_ptr | 
|  | ) | 
|  | { | 
|  | unsigned long   ald = sfi >> (N - 1); | 
|  | unsigned long   alo = als; | 
|  | unsigned int    Q   = 1; | 
|  | unsigned int    C; | 
|  | unsigned int    S   = 0; | 
|  | unsigned int    i; | 
|  | unsigned int    R1  = 1; | 
|  | unsigned int    DBZ = (als == 0) ? 1 : 0; | 
|  | unsigned long   alt = Q ? ~als : als; | 
|  |  | 
|  | /* 1st Loop */ | 
|  | alo = ald + alt + Q; | 
|  | C   = (((alt >> 31) & (ald >> 31)) | 
|  | | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); | 
|  | C   = C ^ Q; | 
|  | Q   = ~(C ^ S) & 1; | 
|  | R1  = (alo == 0) ? 0 : (R1 & Q); | 
|  | if ((S ^ (alo>>31)) && !C) | 
|  | { | 
|  | DBZ = 1; | 
|  | } | 
|  | S   = alo >> 31; | 
|  | sfi = (sfi << (32-N+1)) | Q; | 
|  | ald = (alo << 1) | (sfi >> 31); | 
|  |  | 
|  | /* 2nd - N-1th Loop */ | 
|  | for (i = 2; i < N; i++) | 
|  | { | 
|  | alt = Q ? ~als : als; | 
|  | alo = ald + alt + Q; | 
|  | C   = (((alt >> 31) & (ald >> 31)) | 
|  | | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); | 
|  | C   = C ^ Q; | 
|  | Q   = ~(C ^ S) & 1; | 
|  | R1  = (alo == 0) ? 0 : (R1 & Q); | 
|  | if ((S ^ (alo>>31)) && !C && !DBZ) | 
|  | { | 
|  | DBZ = 1; | 
|  | } | 
|  | S   = alo >> 31; | 
|  | sfi = (sfi << 1) | Q; | 
|  | ald = (alo << 1) | (sfi >> 31); | 
|  | } | 
|  |  | 
|  | /* Nth Loop */ | 
|  | alt = Q ? ~als : als; | 
|  | alo = ald + alt + Q; | 
|  | C   = (((alt >> 31) & (ald >> 31)) | 
|  | | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); | 
|  | C   = C ^ Q; | 
|  | Q   = ~(C ^ S) & 1; | 
|  | R1  = (alo == 0) ? 0 : (R1 & Q); | 
|  | if ((S ^ (alo>>31)) && !C) | 
|  | { | 
|  | DBZ = 1; | 
|  | } | 
|  |  | 
|  | * quotient_ptr  = (sfi << 1) | Q; | 
|  | * remainder_ptr = Q ? alo : (alo + als); | 
|  | * overflow_ptr  = DBZ | R1; | 
|  | } | 
|  |  | 
|  | /* This function is courtesy of Sugimoto at NEC, via Seow Tan (Soew_Tan@el.nec.com) */ | 
|  | void | 
|  | divn | 
|  | ( | 
|  | unsigned int       N, | 
|  | unsigned long int  als, | 
|  | unsigned long int  sfi, | 
|  | int32_t /*signed long int*/ *  quotient_ptr, | 
|  | int32_t /*signed long int*/ *  remainder_ptr, | 
|  | int *          overflow_ptr | 
|  | ) | 
|  | { | 
|  | unsigned long	  ald = (signed long) sfi >> (N - 1); | 
|  | unsigned long   alo = als; | 
|  | unsigned int    SS  = als >> 31; | 
|  | unsigned int	  SD  = sfi >> 31; | 
|  | unsigned int    R1  = 1; | 
|  | unsigned int    OV; | 
|  | unsigned int    DBZ = als == 0 ? 1 : 0; | 
|  | unsigned int    Q   = ~(SS ^ SD) & 1; | 
|  | unsigned int    C; | 
|  | unsigned int    S; | 
|  | unsigned int    i; | 
|  | unsigned long   alt = Q ? ~als : als; | 
|  |  | 
|  |  | 
|  | /* 1st Loop */ | 
|  |  | 
|  | alo = ald + alt + Q; | 
|  | C   = (((alt >> 31) & (ald >> 31)) | 
|  | | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); | 
|  | Q   = C ^ SS; | 
|  | R1  = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD))); | 
|  | S   = alo >> 31; | 
|  | sfi = (sfi << (32-N+1)) | Q; | 
|  | ald = (alo << 1) | (sfi >> 31); | 
|  | if ((alo >> 31) ^ (ald >> 31)) | 
|  | { | 
|  | DBZ = 1; | 
|  | } | 
|  |  | 
|  | /* 2nd - N-1th Loop */ | 
|  |  | 
|  | for (i = 2; i < N; i++) | 
|  | { | 
|  | alt = Q ? ~als : als; | 
|  | alo = ald + alt + Q; | 
|  | C   = (((alt >> 31) & (ald >> 31)) | 
|  | | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); | 
|  | Q   = C ^ SS; | 
|  | R1  = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD))); | 
|  | S   = alo >> 31; | 
|  | sfi = (sfi << 1) | Q; | 
|  | ald = (alo << 1) | (sfi >> 31); | 
|  | if ((alo >> 31) ^ (ald >> 31)) | 
|  | { | 
|  | DBZ = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Nth Loop */ | 
|  | alt = Q ? ~als : als; | 
|  | alo = ald + alt + Q; | 
|  | C   = (((alt >> 31) & (ald >> 31)) | 
|  | | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); | 
|  | Q   = C ^ SS; | 
|  | R1  = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD))); | 
|  | sfi = (sfi << (32-N+1)); | 
|  | ald = alo; | 
|  |  | 
|  | /* End */ | 
|  | if (alo != 0) | 
|  | { | 
|  | alt = Q ? ~als : als; | 
|  | alo = ald + alt + Q; | 
|  | } | 
|  | R1  = R1 & ((~alo >> 31) ^ SD); | 
|  | if ((alo != 0) && ((Q ^ (SS ^ SD)) ^ R1)) alo = ald; | 
|  | if (N != 32) | 
|  | ald = sfi = (long) ((sfi >> 1) | (SS ^ SD) << 31) >> (32-N-1) | Q; | 
|  | else | 
|  | ald = sfi = sfi | Q; | 
|  |  | 
|  | OV = DBZ | ((alo == 0) ? 0 : R1); | 
|  |  | 
|  | * remainder_ptr = alo; | 
|  |  | 
|  | /* Adj */ | 
|  | if (((alo != 0) && ((SS ^ SD) ^ R1)) | 
|  | || ((alo == 0) && (SS ^ R1))) | 
|  | alo = ald + 1; | 
|  | else | 
|  | alo = ald; | 
|  |  | 
|  | OV  = (DBZ | R1) ? OV : ((alo >> 31) & (~ald >> 31)); | 
|  |  | 
|  | * quotient_ptr  = alo; | 
|  | * overflow_ptr  = OV; | 
|  | } | 
|  |  | 
|  | /* sdivun imm5, reg1, reg2, reg3 */ | 
|  | int | 
|  | OP_1C207E0 (void) | 
|  | { | 
|  | uint32_t /*unsigned long int*/  quotient; | 
|  | uint32_t /*unsigned long int*/  remainder; | 
|  | unsigned long int  divide_by; | 
|  | unsigned long int  divide_this; | 
|  | int            overflow = 0; | 
|  | unsigned int       imm5; | 
|  |  | 
|  | trace_input ("sdivun", OP_IMM_REG_REG_REG, 0); | 
|  |  | 
|  | imm5 = 32 - ((OP[3] & 0x3c0000) >> 17); | 
|  |  | 
|  | divide_by   = State.regs[ OP[0] ]; | 
|  | divide_this = State.regs[ OP[1] ] << imm5; | 
|  |  | 
|  | divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow); | 
|  |  | 
|  | State.regs[ OP[1]       ] = quotient; | 
|  | State.regs[ OP[2] >> 11 ] = remainder; | 
|  |  | 
|  | /* Set condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  |  | 
|  | if (overflow)      PSW |= PSW_OV; | 
|  | if (quotient == 0) PSW |= PSW_Z; | 
|  | if (quotient & 0x80000000) PSW |= PSW_S; | 
|  |  | 
|  | trace_output (OP_IMM_REG_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* sdivn imm5, reg1, reg2, reg3 */ | 
|  | int | 
|  | OP_1C007E0 (void) | 
|  | { | 
|  | int32_t /*signed long int*/  quotient; | 
|  | int32_t /*signed long int*/  remainder; | 
|  | signed long int  divide_by; | 
|  | signed long int  divide_this; | 
|  | int          overflow = 0; | 
|  | unsigned int     imm5; | 
|  |  | 
|  | trace_input ("sdivn", OP_IMM_REG_REG_REG, 0); | 
|  |  | 
|  | imm5 = 32 - ((OP[3] & 0x3c0000) >> 17); | 
|  |  | 
|  | divide_by   = (int32_t) State.regs[ OP[0] ]; | 
|  | divide_this = (int32_t) (State.regs[ OP[1] ] << imm5); | 
|  |  | 
|  | divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow); | 
|  |  | 
|  | State.regs[ OP[1]       ] = quotient; | 
|  | State.regs[ OP[2] >> 11 ] = remainder; | 
|  |  | 
|  | /* Set condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  |  | 
|  | if (overflow)      PSW |= PSW_OV; | 
|  | if (quotient == 0) PSW |= PSW_Z; | 
|  | if (quotient <  0) PSW |= PSW_S; | 
|  |  | 
|  | trace_output (OP_IMM_REG_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* sdivhun imm5, reg1, reg2, reg3 */ | 
|  | int | 
|  | OP_18207E0 (void) | 
|  | { | 
|  | uint32_t /*unsigned long int*/  quotient; | 
|  | uint32_t /*unsigned long int*/  remainder; | 
|  | unsigned long int  divide_by; | 
|  | unsigned long int  divide_this; | 
|  | int            overflow = 0; | 
|  | unsigned int       imm5; | 
|  |  | 
|  | trace_input ("sdivhun", OP_IMM_REG_REG_REG, 0); | 
|  |  | 
|  | imm5 = 32 - ((OP[3] & 0x3c0000) >> 17); | 
|  |  | 
|  | divide_by   = State.regs[ OP[0] ] & 0xffff; | 
|  | divide_this = State.regs[ OP[1] ] << imm5; | 
|  |  | 
|  | divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow); | 
|  |  | 
|  | State.regs[ OP[1]       ] = quotient; | 
|  | State.regs[ OP[2] >> 11 ] = remainder; | 
|  |  | 
|  | /* Set condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  |  | 
|  | if (overflow)      PSW |= PSW_OV; | 
|  | if (quotient == 0) PSW |= PSW_Z; | 
|  | if (quotient & 0x80000000) PSW |= PSW_S; | 
|  |  | 
|  | trace_output (OP_IMM_REG_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* sdivhn imm5, reg1, reg2, reg3 */ | 
|  | int | 
|  | OP_18007E0 (void) | 
|  | { | 
|  | int32_t /*signed long int*/  quotient; | 
|  | int32_t /*signed long int*/  remainder; | 
|  | signed long int  divide_by; | 
|  | signed long int  divide_this; | 
|  | int          overflow = 0; | 
|  | unsigned int     imm5; | 
|  |  | 
|  | trace_input ("sdivhn", OP_IMM_REG_REG_REG, 0); | 
|  |  | 
|  | imm5 = 32 - ((OP[3] & 0x3c0000) >> 17); | 
|  |  | 
|  | divide_by   = EXTEND16 (State.regs[ OP[0] ]); | 
|  | divide_this = (int32_t) (State.regs[ OP[1] ] << imm5); | 
|  |  | 
|  | divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow); | 
|  |  | 
|  | State.regs[ OP[1]       ] = quotient; | 
|  | State.regs[ OP[2] >> 11 ] = remainder; | 
|  |  | 
|  | /* Set condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  |  | 
|  | if (overflow)      PSW |= PSW_OV; | 
|  | if (quotient == 0) PSW |= PSW_Z; | 
|  | if (quotient <  0) PSW |= PSW_S; | 
|  |  | 
|  | trace_output (OP_IMM_REG_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* divu  reg1, reg2, reg3 */ | 
|  | int | 
|  | OP_2C207E0 (void) | 
|  | { | 
|  | unsigned long int quotient; | 
|  | unsigned long int remainder; | 
|  | unsigned long int divide_by; | 
|  | unsigned long int divide_this; | 
|  | int           overflow = 0; | 
|  |  | 
|  | trace_input ("divu", OP_REG_REG_REG, 0); | 
|  |  | 
|  | /* Compute the result.  */ | 
|  |  | 
|  | divide_by   = State.regs[ OP[0] ]; | 
|  | divide_this = State.regs[ OP[1] ]; | 
|  |  | 
|  | if (divide_by == 0) | 
|  | { | 
|  | PSW |= PSW_OV; | 
|  | } | 
|  | else | 
|  | { | 
|  | State.regs[ OP[1]       ] = quotient  = divide_this / divide_by; | 
|  | State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by; | 
|  |  | 
|  | /* Set condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  |  | 
|  | if (overflow)      PSW |= PSW_OV; | 
|  | if (quotient == 0) PSW |= PSW_Z; | 
|  | if (quotient & 0x80000000) PSW |= PSW_S; | 
|  | } | 
|  |  | 
|  | trace_output (OP_REG_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* div  reg1, reg2, reg3 */ | 
|  | int | 
|  | OP_2C007E0 (void) | 
|  | { | 
|  | signed long int quotient; | 
|  | signed long int remainder; | 
|  | signed long int divide_by; | 
|  | signed long int divide_this; | 
|  |  | 
|  | trace_input ("div", OP_REG_REG_REG, 0); | 
|  |  | 
|  | /* Compute the result.  */ | 
|  |  | 
|  | divide_by   = (int32_t) State.regs[ OP[0] ]; | 
|  | divide_this = State.regs[ OP[1] ]; | 
|  |  | 
|  | if (divide_by == 0) | 
|  | { | 
|  | PSW |= PSW_OV; | 
|  | } | 
|  | else if (divide_by == -1 && divide_this == (1L << 31)) | 
|  | { | 
|  | PSW &= ~PSW_Z; | 
|  | PSW |= PSW_OV | PSW_S; | 
|  | State.regs[ OP[1] ] = (1 << 31); | 
|  | State.regs[ OP[2] >> 11 ] = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | divide_this = (int32_t) divide_this; | 
|  | State.regs[ OP[1]       ] = quotient  = divide_this / divide_by; | 
|  | State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by; | 
|  |  | 
|  | /* Set condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  |  | 
|  | if (quotient == 0) PSW |= PSW_Z; | 
|  | if (quotient <  0) PSW |= PSW_S; | 
|  | } | 
|  |  | 
|  | trace_output (OP_REG_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* divhu  reg1, reg2, reg3 */ | 
|  | int | 
|  | OP_28207E0 (void) | 
|  | { | 
|  | unsigned long int quotient; | 
|  | unsigned long int remainder; | 
|  | unsigned long int divide_by; | 
|  | unsigned long int divide_this; | 
|  | int           overflow = 0; | 
|  |  | 
|  | trace_input ("divhu", OP_REG_REG_REG, 0); | 
|  |  | 
|  | /* Compute the result.  */ | 
|  |  | 
|  | divide_by   = State.regs[ OP[0] ] & 0xffff; | 
|  | divide_this = State.regs[ OP[1] ]; | 
|  |  | 
|  | if (divide_by == 0) | 
|  | { | 
|  | PSW |= PSW_OV; | 
|  | } | 
|  | else | 
|  | { | 
|  | State.regs[ OP[1]       ] = quotient  = divide_this / divide_by; | 
|  | State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by; | 
|  |  | 
|  | /* Set condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  |  | 
|  | if (overflow)      PSW |= PSW_OV; | 
|  | if (quotient == 0) PSW |= PSW_Z; | 
|  | if (quotient & 0x80000000) PSW |= PSW_S; | 
|  | } | 
|  |  | 
|  | trace_output (OP_REG_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* divh  reg1, reg2, reg3 */ | 
|  | int | 
|  | OP_28007E0 (void) | 
|  | { | 
|  | signed long int quotient; | 
|  | signed long int remainder; | 
|  | signed long int divide_by; | 
|  | signed long int divide_this; | 
|  | int         overflow = 0; | 
|  |  | 
|  | trace_input ("divh", OP_REG_REG_REG, 0); | 
|  |  | 
|  | /* Compute the result.  */ | 
|  |  | 
|  | divide_by  = EXTEND16 (State.regs[ OP[0] ]); | 
|  | divide_this = State.regs[ OP[1] ]; | 
|  |  | 
|  | if (divide_by == 0) | 
|  | { | 
|  | PSW |= PSW_OV; | 
|  | } | 
|  | else if (divide_by == -1 && divide_this == (1L << 31)) | 
|  | { | 
|  | PSW &= ~PSW_Z; | 
|  | PSW |= PSW_OV | PSW_S; | 
|  | State.regs[ OP[1] ] = (1 << 31); | 
|  | State.regs[ OP[2] >> 11 ] = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | divide_this = (int32_t) divide_this; | 
|  | State.regs[ OP[1]       ] = quotient  = divide_this / divide_by; | 
|  | State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by; | 
|  |  | 
|  | /* Set condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  |  | 
|  | if (quotient == 0) PSW |= PSW_Z; | 
|  | if (quotient <  0) PSW |= PSW_S; | 
|  | } | 
|  |  | 
|  | trace_output (OP_REG_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* mulu imm9, reg2, reg3 */ | 
|  | int | 
|  | OP_24207E0 (void) | 
|  | { | 
|  | trace_input ("mulu", OP_IMM_REG_REG, 0); | 
|  |  | 
|  | Multiply64 (0, (OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0)); | 
|  |  | 
|  | trace_output (OP_IMM_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* mul imm9, reg2, reg3 */ | 
|  | int | 
|  | OP_24007E0 (void) | 
|  | { | 
|  | trace_input ("mul", OP_IMM_REG_REG, 0); | 
|  |  | 
|  | Multiply64 (1, SEXT9 ((OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0))); | 
|  |  | 
|  | trace_output (OP_IMM_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* ld.hu */ | 
|  | int | 
|  | OP_107E0 (void) | 
|  | { | 
|  | int adr; | 
|  |  | 
|  | trace_input ("ld.hu", OP_LOAD32, 2); | 
|  |  | 
|  | adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1); | 
|  | adr &= ~0x1; | 
|  |  | 
|  | State.regs[ OP[1] ] = load_mem (adr, 2); | 
|  |  | 
|  | trace_output (OP_LOAD32); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* ld.bu */ | 
|  | int | 
|  | OP_10780 (void) | 
|  | { | 
|  | int adr; | 
|  |  | 
|  | trace_input ("ld.bu", OP_LOAD32, 1); | 
|  |  | 
|  | adr = (State.regs[ OP[0] ] | 
|  | + (EXTEND16 (OP[2] & ~1) | ((OP[3] >> 5) & 1))); | 
|  |  | 
|  | State.regs[ OP[1] ] = load_mem (adr, 1); | 
|  |  | 
|  | trace_output (OP_LOAD32); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* prepare list12, imm5, imm32 */ | 
|  | int | 
|  | OP_1B0780 (void) | 
|  | { | 
|  | int  i; | 
|  |  | 
|  | trace_input ("prepare", OP_PUSHPOP1, 0); | 
|  |  | 
|  | /* Store the registers with lower number registers being placed at higher addresses.  */ | 
|  | for (i = 0; i < 12; i++) | 
|  | if ((OP[3] & (1 << type1_regs[ i ]))) | 
|  | { | 
|  | SP -= 4; | 
|  | store_mem (SP, 4, State.regs[ 20 + i ]); | 
|  | } | 
|  |  | 
|  | SP -= (OP[3] & 0x3e) << 1; | 
|  |  | 
|  | EP = load_mem (PC + 4, 4); | 
|  |  | 
|  | trace_output (OP_PUSHPOP1); | 
|  |  | 
|  | return 8; | 
|  | } | 
|  |  | 
|  | /* prepare list12, imm5, imm16-32 */ | 
|  | int | 
|  | OP_130780 (void) | 
|  | { | 
|  | int  i; | 
|  |  | 
|  | trace_input ("prepare", OP_PUSHPOP1, 0); | 
|  |  | 
|  | /* Store the registers with lower number registers being placed at higher addresses.  */ | 
|  | for (i = 0; i < 12; i++) | 
|  | if ((OP[3] & (1 << type1_regs[ i ]))) | 
|  | { | 
|  | SP -= 4; | 
|  | store_mem (SP, 4, State.regs[ 20 + i ]); | 
|  | } | 
|  |  | 
|  | SP -= (OP[3] & 0x3e) << 1; | 
|  |  | 
|  | EP = load_mem (PC + 4, 2) << 16; | 
|  |  | 
|  | trace_output (OP_PUSHPOP1); | 
|  |  | 
|  | return 6; | 
|  | } | 
|  |  | 
|  | /* prepare list12, imm5, imm16 */ | 
|  | int | 
|  | OP_B0780 (void) | 
|  | { | 
|  | int  i; | 
|  |  | 
|  | trace_input ("prepare", OP_PUSHPOP1, 0); | 
|  |  | 
|  | /* Store the registers with lower number registers being placed at higher addresses.  */ | 
|  | for (i = 0; i < 12; i++) | 
|  | if ((OP[3] & (1 << type1_regs[ i ]))) | 
|  | { | 
|  | SP -= 4; | 
|  | store_mem (SP, 4, State.regs[ 20 + i ]); | 
|  | } | 
|  |  | 
|  | SP -= (OP[3] & 0x3e) << 1; | 
|  |  | 
|  | EP = EXTEND16 (load_mem (PC + 4, 2)); | 
|  |  | 
|  | trace_output (OP_PUSHPOP1); | 
|  |  | 
|  | return 6; | 
|  | } | 
|  |  | 
|  | /* prepare list12, imm5, sp */ | 
|  | int | 
|  | OP_30780 (void) | 
|  | { | 
|  | int  i; | 
|  |  | 
|  | trace_input ("prepare", OP_PUSHPOP1, 0); | 
|  |  | 
|  | /* Store the registers with lower number registers being placed at higher addresses.  */ | 
|  | for (i = 0; i < 12; i++) | 
|  | if ((OP[3] & (1 << type1_regs[ i ]))) | 
|  | { | 
|  | SP -= 4; | 
|  | store_mem (SP, 4, State.regs[ 20 + i ]); | 
|  | } | 
|  |  | 
|  | SP -= (OP[3] & 0x3e) << 1; | 
|  |  | 
|  | EP = SP; | 
|  |  | 
|  | trace_output (OP_PUSHPOP1); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* mul reg1, reg2, reg3 */ | 
|  | int | 
|  | OP_22007E0 (void) | 
|  | { | 
|  | trace_input ("mul", OP_REG_REG_REG, 0); | 
|  |  | 
|  | Multiply64 (1, State.regs[ OP[0] ]); | 
|  |  | 
|  | trace_output (OP_REG_REG_REG); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* popmh list18 */ | 
|  | int | 
|  | OP_307F0 (void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | trace_input ("popmh", OP_PUSHPOP2, 0); | 
|  |  | 
|  | if (OP[3] & (1 << 19)) | 
|  | { | 
|  | if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0)) | 
|  | { | 
|  | FEPSW = load_mem ( SP      & ~ 3, 4); | 
|  | FEPC  = load_mem ((SP + 4) & ~ 3, 4); | 
|  | } | 
|  | else | 
|  | { | 
|  | EIPSW = load_mem ( SP      & ~ 3, 4); | 
|  | EIPC  = load_mem ((SP + 4) & ~ 3, 4); | 
|  | } | 
|  |  | 
|  | SP += 8; | 
|  | } | 
|  |  | 
|  | /* Load the registers with lower number registers being retrieved from higher addresses.  */ | 
|  | for (i = 16; i--;) | 
|  | if ((OP[3] & (1 << type2_regs[ i ]))) | 
|  | { | 
|  | State.regs[ i + 16 ] = load_mem (SP & ~ 3, 4); | 
|  | SP += 4; | 
|  | } | 
|  |  | 
|  | trace_output (OP_PUSHPOP2); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* popml lsit18 */ | 
|  | int | 
|  | OP_107F0 (void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | trace_input ("popml", OP_PUSHPOP3, 0); | 
|  |  | 
|  | if (OP[3] & (1 << 19)) | 
|  | { | 
|  | if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0)) | 
|  | { | 
|  | FEPSW = load_mem ( SP      & ~ 3, 4); | 
|  | FEPC =  load_mem ((SP + 4) & ~ 3, 4); | 
|  | } | 
|  | else | 
|  | { | 
|  | EIPSW = load_mem ( SP      & ~ 3, 4); | 
|  | EIPC  = load_mem ((SP + 4) & ~ 3, 4); | 
|  | } | 
|  |  | 
|  | SP += 8; | 
|  | } | 
|  |  | 
|  | if (OP[3] & (1 << 3)) | 
|  | { | 
|  | PSW = load_mem (SP & ~ 3, 4); | 
|  | SP += 4; | 
|  | } | 
|  |  | 
|  | /* Load the registers with lower number registers being retrieved from higher addresses.  */ | 
|  | for (i = 15; i--;) | 
|  | if ((OP[3] & (1 << type3_regs[ i ]))) | 
|  | { | 
|  | State.regs[ i + 1 ] = load_mem (SP & ~ 3, 4); | 
|  | SP += 4; | 
|  | } | 
|  |  | 
|  | trace_output (OP_PUSHPOP2); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* pushmh list18 */ | 
|  | int | 
|  | OP_307E0 (void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | trace_input ("pushmh", OP_PUSHPOP2, 0); | 
|  |  | 
|  | /* Store the registers with lower number registers being placed at higher addresses.  */ | 
|  | for (i = 0; i < 16; i++) | 
|  | if ((OP[3] & (1 << type2_regs[ i ]))) | 
|  | { | 
|  | SP -= 4; | 
|  | store_mem (SP & ~ 3, 4, State.regs[ i + 16 ]); | 
|  | } | 
|  |  | 
|  | if (OP[3] & (1 << 19)) | 
|  | { | 
|  | SP -= 8; | 
|  |  | 
|  | if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0)) | 
|  | { | 
|  | store_mem ((SP + 4) & ~ 3, 4, FEPC); | 
|  | store_mem ( SP      & ~ 3, 4, FEPSW); | 
|  | } | 
|  | else | 
|  | { | 
|  | store_mem ((SP + 4) & ~ 3, 4, EIPC); | 
|  | store_mem ( SP      & ~ 3, 4, EIPSW); | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_output (OP_PUSHPOP2); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | /* V850E2R FPU functions */ | 
|  | /* | 
|  | sim_fpu_status_invalid_snan = 1,				-V--- (sim spec.) | 
|  | sim_fpu_status_invalid_qnan = 2,				----- (sim spec.) | 
|  | sim_fpu_status_invalid_isi = 4, (inf - inf)			-V--- | 
|  | sim_fpu_status_invalid_idi = 8, (inf / inf)			-V--- | 
|  | sim_fpu_status_invalid_zdz = 16, (0 / 0)			-V--- | 
|  | sim_fpu_status_invalid_imz = 32, (inf * 0)			-V--- | 
|  | sim_fpu_status_invalid_cvi = 64, convert to integer		-V--- | 
|  | sim_fpu_status_invalid_div0 = 128, (X / 0)			--Z-- | 
|  | sim_fpu_status_invalid_cmp = 256, compare			----- (sim spec.) | 
|  | sim_fpu_status_invalid_sqrt = 512,				-V--- | 
|  | sim_fpu_status_rounded = 1024,				I---- | 
|  | sim_fpu_status_inexact = 2048,				I---- (sim spec.) | 
|  | sim_fpu_status_overflow = 4096,				I--O- | 
|  | sim_fpu_status_underflow = 8192,				I---U | 
|  | sim_fpu_status_denorm = 16384,				----U (sim spec.) | 
|  | */ | 
|  |  | 
|  | void | 
|  | update_fpsr (SIM_DESC sd, sim_fpu_status status, unsigned int mask, unsigned int double_op_p) | 
|  | { | 
|  | unsigned int fpsr = FPSR & mask; | 
|  |  | 
|  | unsigned int flags = 0; | 
|  |  | 
|  | if (fpsr & FPSR_XEI | 
|  | && ((status & (sim_fpu_status_rounded | 
|  | | sim_fpu_status_overflow | 
|  | | sim_fpu_status_inexact)) | 
|  | || (status & sim_fpu_status_underflow | 
|  | && (fpsr & (FPSR_XEU | FPSR_XEI)) == 0 | 
|  | && fpsr & FPSR_FS))) | 
|  | { | 
|  | flags |= FPSR_XCI | FPSR_XPI; | 
|  | } | 
|  |  | 
|  | if (fpsr & FPSR_XEV | 
|  | && (status & (sim_fpu_status_invalid_isi | 
|  | | sim_fpu_status_invalid_imz | 
|  | | sim_fpu_status_invalid_zdz | 
|  | | sim_fpu_status_invalid_idi | 
|  | | sim_fpu_status_invalid_cvi | 
|  | | sim_fpu_status_invalid_sqrt | 
|  | | sim_fpu_status_invalid_snan))) | 
|  | { | 
|  | flags |= FPSR_XCV | FPSR_XPV; | 
|  | } | 
|  |  | 
|  | if (fpsr & FPSR_XEZ | 
|  | && (status & sim_fpu_status_invalid_div0)) | 
|  | { | 
|  | flags |= FPSR_XCV | FPSR_XPV; | 
|  | } | 
|  |  | 
|  | if (fpsr & FPSR_XEO | 
|  | && (status & sim_fpu_status_overflow)) | 
|  | { | 
|  | flags |= FPSR_XCO | FPSR_XPO; | 
|  | } | 
|  |  | 
|  | if (((fpsr & FPSR_XEU) || (fpsr & FPSR_FS) == 0) | 
|  | && (status & (sim_fpu_status_underflow | 
|  | | sim_fpu_status_denorm))) | 
|  | { | 
|  | flags |= FPSR_XCU | FPSR_XPU; | 
|  | } | 
|  |  | 
|  | if (flags) | 
|  | { | 
|  | FPSR &= ~FPSR_XC; | 
|  | FPSR |= flags; | 
|  |  | 
|  | SignalExceptionFPE (sd, double_op_p); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Exception.  */ | 
|  |  | 
|  | void | 
|  | SignalException (SIM_DESC sd) | 
|  | { | 
|  | if (MPM & MPM_AUE) | 
|  | { | 
|  | PSW = PSW & ~(PSW_NPV | PSW_DMP | PSW_IMP); | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | SignalExceptionFPE (SIM_DESC sd, unsigned int double_op_p) | 
|  | { | 
|  | if (((PSW & (PSW_NP|PSW_ID)) == 0) | 
|  | || !(FPSR & (double_op_p ? FPSR_DEM : FPSR_SEM))) | 
|  | { | 
|  | EIPC = PC; | 
|  | EIPSW = PSW; | 
|  | EIIC = (FPSR & (double_op_p ? FPSR_DEM : FPSR_SEM)) | 
|  | ? 0x71 : 0x72; | 
|  | PSW |= (PSW_EP | PSW_ID); | 
|  | PC = 0x70; | 
|  |  | 
|  | SignalException (sd); | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | check_invalid_snan (SIM_DESC sd, sim_fpu_status status, unsigned int double_op_p) | 
|  | { | 
|  | if ((FPSR & FPSR_XEI) | 
|  | && (status & sim_fpu_status_invalid_snan)) | 
|  | { | 
|  | FPSR &= ~FPSR_XC; | 
|  | FPSR |= FPSR_XCV; | 
|  | FPSR |= FPSR_XPV; | 
|  | SignalExceptionFPE (sd, double_op_p); | 
|  | } | 
|  | } | 
|  |  | 
|  | int | 
|  | v850_float_compare (SIM_DESC sd, int cmp, sim_fpu wop1, sim_fpu wop2, int double_op_p) | 
|  | { | 
|  | int result = -1; | 
|  |  | 
|  | if (sim_fpu_is_nan (&wop1) || sim_fpu_is_nan (&wop2)) | 
|  | { | 
|  | if (cmp & 0x8) | 
|  | { | 
|  | if (FPSR & FPSR_XEV) | 
|  | { | 
|  | FPSR |= FPSR_XCV | FPSR_XPV; | 
|  | SignalExceptionFPE (sd, double_op_p); | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (cmp) | 
|  | { | 
|  | case FPU_CMP_F: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_UN: | 
|  | result = 1; | 
|  | break; | 
|  | case FPU_CMP_EQ: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_UEQ: | 
|  | result = 1; | 
|  | break; | 
|  | case FPU_CMP_OLT: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_ULT: | 
|  | result = 1; | 
|  | break; | 
|  | case FPU_CMP_OLE: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_ULE: | 
|  | result = 1; | 
|  | break; | 
|  | case FPU_CMP_SF: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_NGLE: | 
|  | result = 1; | 
|  | break; | 
|  | case FPU_CMP_SEQ: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_NGL: | 
|  | result = 1; | 
|  | break; | 
|  | case FPU_CMP_LT: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_NGE: | 
|  | result = 1; | 
|  | break; | 
|  | case FPU_CMP_LE: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_NGT: | 
|  | result = 1; | 
|  | break; | 
|  | default: | 
|  | abort (); | 
|  | } | 
|  | } | 
|  | else if (sim_fpu_is_infinity (&wop1) && sim_fpu_is_infinity (&wop2) | 
|  | && sim_fpu_sign (&wop1) == sim_fpu_sign (&wop2)) | 
|  | { | 
|  | switch (cmp) | 
|  | { | 
|  | case FPU_CMP_F: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_UN: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_EQ: | 
|  | result = 1; | 
|  | break; | 
|  | case FPU_CMP_UEQ: | 
|  | result = 1; | 
|  | break; | 
|  | case FPU_CMP_OLT: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_ULT: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_OLE: | 
|  | result = 1; | 
|  | break; | 
|  | case FPU_CMP_ULE: | 
|  | result = 1; | 
|  | break; | 
|  | case FPU_CMP_SF: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_NGLE: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_SEQ: | 
|  | result = 1; | 
|  | break; | 
|  | case FPU_CMP_NGL: | 
|  | result = 1; | 
|  | break; | 
|  | case FPU_CMP_LT: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_NGE: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_LE: | 
|  | result = 1; | 
|  | break; | 
|  | case FPU_CMP_NGT: | 
|  | result = 1; | 
|  | break; | 
|  | default: | 
|  | abort (); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | int gt = 0,lt = 0,eq = 0, status; | 
|  |  | 
|  | status = sim_fpu_cmp (&wop1, &wop2); | 
|  |  | 
|  | switch (status) | 
|  | { | 
|  | case SIM_FPU_IS_SNAN: | 
|  | case SIM_FPU_IS_QNAN: | 
|  | abort (); | 
|  | break; | 
|  |  | 
|  | case SIM_FPU_IS_NINF: | 
|  | lt = 1; | 
|  | break; | 
|  | case SIM_FPU_IS_PINF: | 
|  | gt = 1; | 
|  | break; | 
|  | case SIM_FPU_IS_NNUMBER: | 
|  | lt = 1; | 
|  | break; | 
|  | case SIM_FPU_IS_PNUMBER: | 
|  | gt = 1; | 
|  | break; | 
|  | case SIM_FPU_IS_NDENORM: | 
|  | lt = 1; | 
|  | break; | 
|  | case SIM_FPU_IS_PDENORM: | 
|  | gt = 1; | 
|  | break; | 
|  | case SIM_FPU_IS_NZERO: | 
|  | case SIM_FPU_IS_PZERO: | 
|  | eq = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (cmp) | 
|  | { | 
|  | case FPU_CMP_F: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_UN: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_EQ: | 
|  | result = eq; | 
|  | break; | 
|  | case FPU_CMP_UEQ: | 
|  | result = eq; | 
|  | break; | 
|  | case FPU_CMP_OLT: | 
|  | result = lt; | 
|  | break; | 
|  | case FPU_CMP_ULT: | 
|  | result = lt; | 
|  | break; | 
|  | case FPU_CMP_OLE: | 
|  | result = lt || eq; | 
|  | break; | 
|  | case FPU_CMP_ULE: | 
|  | result = lt || eq; | 
|  | break; | 
|  | case FPU_CMP_SF: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_NGLE: | 
|  | result = 0; | 
|  | break; | 
|  | case FPU_CMP_SEQ: | 
|  | result = eq; | 
|  | break; | 
|  | case FPU_CMP_NGL: | 
|  | result = eq; | 
|  | break; | 
|  | case FPU_CMP_LT: | 
|  | result = lt; | 
|  | break; | 
|  | case FPU_CMP_NGE: | 
|  | result = lt; | 
|  | break; | 
|  | case FPU_CMP_LE: | 
|  | result = lt || eq; | 
|  | break; | 
|  | case FPU_CMP_NGT: | 
|  | result = lt || eq; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ASSERT (result != -1); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void | 
|  | v850_div (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p, unsigned int *op3p) | 
|  | { | 
|  | signed long int quotient; | 
|  | signed long int remainder; | 
|  | signed long int divide_by; | 
|  | signed long int divide_this; | 
|  | bfd_boolean     overflow = FALSE; | 
|  |  | 
|  | /* Compute the result.  */ | 
|  | divide_by   = (int32_t)op0; | 
|  | divide_this = (int32_t)op1; | 
|  |  | 
|  | if (divide_by == 0 || (divide_by == -1 && divide_this == (1 << 31))) | 
|  | { | 
|  | overflow  = TRUE; | 
|  | divide_by = 1; | 
|  | } | 
|  |  | 
|  | quotient  = divide_this / divide_by; | 
|  | remainder = divide_this % divide_by; | 
|  |  | 
|  | /* Set condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  |  | 
|  | if (overflow)      PSW |= PSW_OV; | 
|  | if (quotient == 0) PSW |= PSW_Z; | 
|  | if (quotient <  0) PSW |= PSW_S; | 
|  |  | 
|  | *op2p = quotient; | 
|  | *op3p = remainder; | 
|  | } | 
|  |  | 
|  | void | 
|  | v850_divu (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p, unsigned int *op3p) | 
|  | { | 
|  | unsigned long int quotient; | 
|  | unsigned long int remainder; | 
|  | unsigned long int divide_by; | 
|  | unsigned long int divide_this; | 
|  | bfd_boolean       overflow = FALSE; | 
|  |  | 
|  | /* Compute the result.  */ | 
|  |  | 
|  | divide_by   = op0; | 
|  | divide_this = op1; | 
|  |  | 
|  | if (divide_by == 0) | 
|  | { | 
|  | overflow = TRUE; | 
|  | divide_by  = 1; | 
|  | } | 
|  |  | 
|  | quotient  = divide_this / divide_by; | 
|  | remainder = divide_this % divide_by; | 
|  |  | 
|  | /* Set condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV); | 
|  |  | 
|  | if (overflow)      PSW |= PSW_OV; | 
|  | if (quotient == 0) PSW |= PSW_Z; | 
|  | if (quotient & 0x80000000) PSW |= PSW_S; | 
|  |  | 
|  | *op2p = quotient; | 
|  | *op3p = remainder; | 
|  | } | 
|  |  | 
|  | void | 
|  | v850_sar (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p) | 
|  | { | 
|  | unsigned int result, z, s, cy; | 
|  |  | 
|  | op0 &= 0x1f; | 
|  | result = (signed)op1 >> op0; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = (op1 & (1 << (op0 - 1))); | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0)); | 
|  |  | 
|  | *op2p = result; | 
|  | } | 
|  |  | 
|  | void | 
|  | v850_shl (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p) | 
|  | { | 
|  | unsigned int result, z, s, cy; | 
|  |  | 
|  | op0 &= 0x1f; | 
|  | result = op1 << op0; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = (op1 & (1 << (32 - op0))); | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0)); | 
|  |  | 
|  | *op2p = result; | 
|  | } | 
|  |  | 
|  | void | 
|  | v850_rotl (SIM_DESC sd, unsigned int amount, unsigned int src, unsigned int * dest) | 
|  | { | 
|  | unsigned int result, z, s, cy; | 
|  |  | 
|  | amount &= 0x1f; | 
|  | result = src << amount; | 
|  | result |= src >> (32 - amount); | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = ! (result & 1); | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0)); | 
|  |  | 
|  | * dest = result; | 
|  | } | 
|  |  | 
|  | void | 
|  | v850_bins (SIM_DESC sd, unsigned int source, unsigned int lsb, unsigned int msb, | 
|  | unsigned int * dest) | 
|  | { | 
|  | unsigned int mask; | 
|  | unsigned int result, pos, width; | 
|  | unsigned int z, s; | 
|  |  | 
|  | pos = lsb; | 
|  | width = (msb - lsb) + 1; | 
|  |  | 
|  | /* A width of 32 exhibits undefined behavior on the shift.  The easiest | 
|  | way to make this code safe is to just avoid that case and set the mask | 
|  | to the right value.  */ | 
|  | if (width >= 32) | 
|  | mask = 0xffffffff; | 
|  | else | 
|  | mask = ~ (-(1 << width)); | 
|  |  | 
|  | source &= mask; | 
|  | mask <<= pos; | 
|  | result = (* dest) & ~ mask; | 
|  | result |= source << pos; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = result & 0x80000000; | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV ); | 
|  | PSW |= (z ? PSW_Z : 0) | (s ? PSW_S : 0); | 
|  |  | 
|  | * dest = result; | 
|  | } | 
|  |  | 
|  | void | 
|  | v850_shr (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p) | 
|  | { | 
|  | unsigned int result, z, s, cy; | 
|  |  | 
|  | op0 &=  0x1f; | 
|  | result = op1 >> op0; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = (op1 & (1 << (op0 - 1))); | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0)); | 
|  |  | 
|  | *op2p = result; | 
|  | } | 
|  |  | 
|  | void | 
|  | v850_satadd (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p) | 
|  | { | 
|  | unsigned int result, z, s, cy, ov, sat; | 
|  |  | 
|  | result = op0 + op1; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = (result < op0 || result < op1); | 
|  | ov = ((op0 & 0x80000000) == (op1 & 0x80000000) | 
|  | && (op0 & 0x80000000) != (result & 0x80000000)); | 
|  | sat = ov; | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) | 
|  | | (sat ? PSW_SAT : 0)); | 
|  |  | 
|  | /* Handle saturated results.  */ | 
|  | if (sat && s) | 
|  | { | 
|  | result = 0x7fffffff; | 
|  | PSW &= ~PSW_S; | 
|  | } | 
|  | else if (sat) | 
|  | { | 
|  | result = 0x80000000; | 
|  | PSW |= PSW_S; | 
|  | } | 
|  |  | 
|  | *op2p = result; | 
|  | } | 
|  |  | 
|  | void | 
|  | v850_satsub (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p) | 
|  | { | 
|  | unsigned int result, z, s, cy, ov, sat; | 
|  |  | 
|  | /* Compute the result.  */ | 
|  | result = op1 - op0; | 
|  |  | 
|  | /* Compute the condition codes.  */ | 
|  | z = (result == 0); | 
|  | s = (result & 0x80000000); | 
|  | cy = (op1 < op0); | 
|  | ov = ((op1 & 0x80000000) != (op0 & 0x80000000) | 
|  | && (op1 & 0x80000000) != (result & 0x80000000)); | 
|  | sat = ov; | 
|  |  | 
|  | /* Store the result and condition codes.  */ | 
|  | PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); | 
|  | PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | 
|  | | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) | 
|  | | (sat ? PSW_SAT : 0)); | 
|  |  | 
|  | /* Handle saturated results.  */ | 
|  | if (sat && s) | 
|  | { | 
|  | result = 0x7fffffff; | 
|  | PSW &= ~PSW_S; | 
|  | } | 
|  | else if (sat) | 
|  | { | 
|  | result = 0x80000000; | 
|  | PSW |= PSW_S; | 
|  | } | 
|  |  | 
|  | *op2p = result; | 
|  | } | 
|  |  | 
|  | uint32_t | 
|  | load_data_mem (SIM_DESC  sd, | 
|  | address_word  addr, | 
|  | int       len) | 
|  | { | 
|  | uint32_t data; | 
|  |  | 
|  | switch (len) | 
|  | { | 
|  | case 1: | 
|  | data = sim_core_read_unaligned_1 (STATE_CPU (sd, 0), | 
|  | PC, read_map, addr); | 
|  | break; | 
|  | case 2: | 
|  | data = sim_core_read_unaligned_2 (STATE_CPU (sd, 0), | 
|  | PC, read_map, addr); | 
|  | break; | 
|  | case 4: | 
|  | data = sim_core_read_unaligned_4 (STATE_CPU (sd, 0), | 
|  | PC, read_map, addr); | 
|  | break; | 
|  | default: | 
|  | abort (); | 
|  | } | 
|  | return data; | 
|  | } | 
|  |  | 
|  | void | 
|  | store_data_mem (SIM_DESC    sd, | 
|  | address_word    addr, | 
|  | int         len, | 
|  | uint32_t  data) | 
|  | { | 
|  | switch (len) | 
|  | { | 
|  | case 1: | 
|  | store_mem (addr, 1, data); | 
|  | break; | 
|  | case 2: | 
|  | store_mem (addr, 2, data); | 
|  | break; | 
|  | case 4: | 
|  | store_mem (addr, 4, data); | 
|  | break; | 
|  | default: | 
|  | abort (); | 
|  | } | 
|  | } | 
|  |  | 
|  | int | 
|  | mpu_load_mem_test (SIM_DESC sd, unsigned int addr, int size, int base_reg) | 
|  | { | 
|  | int result = 1; | 
|  |  | 
|  | if (PSW & PSW_DMP) | 
|  | { | 
|  | if (IPE0 && addr >= IPA2ADDR (IPA0L) && addr <= IPA2ADDR (IPA0L) && IPR0) | 
|  | { | 
|  | /* text area */ | 
|  | } | 
|  | else if (IPE1 && addr >= IPA2ADDR (IPA1L) && addr <= IPA2ADDR (IPA1L) && IPR1) | 
|  | { | 
|  | /* text area */ | 
|  | } | 
|  | else if (IPE2 && addr >= IPA2ADDR (IPA2L) && addr <= IPA2ADDR (IPA2L) && IPR2) | 
|  | { | 
|  | /* text area */ | 
|  | } | 
|  | else if (IPE3 && addr >= IPA2ADDR (IPA3L) && addr <= IPA2ADDR (IPA3L) && IPR3) | 
|  | { | 
|  | /* text area */ | 
|  | } | 
|  | else if (addr >= PPA2ADDR (PPA & ~PPM) && addr <= DPA2ADDR (PPA | PPM)) | 
|  | { | 
|  | /* preifarallel area */ | 
|  | } | 
|  | else if (addr >= PPA2ADDR (SPAL) && addr <= DPA2ADDR (SPAU)) | 
|  | { | 
|  | /* stack area */ | 
|  | } | 
|  | else if (DPE0 && addr >= DPA2ADDR (DPA0L) && addr <= DPA2ADDR (DPA0L) && DPR0 | 
|  | && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) | 
|  | { | 
|  | /* data area */ | 
|  | } | 
|  | else if (DPE1 && addr >= DPA2ADDR (DPA1L) && addr <= DPA2ADDR (DPA1L) && DPR1 | 
|  | && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) | 
|  | { | 
|  | /* data area */ | 
|  | } | 
|  | else if (DPE2 && addr >= DPA2ADDR (DPA2L) && addr <= DPA2ADDR (DPA2L) && DPR2 | 
|  | && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) | 
|  | { | 
|  | /* data area */ | 
|  | } | 
|  | else if (DPE3 && addr >= DPA2ADDR (DPA3L) && addr <= DPA2ADDR (DPA3L) && DPR3 | 
|  | && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) | 
|  | { | 
|  | /* data area */ | 
|  | } | 
|  | else | 
|  | { | 
|  | VMECR &= ~(VMECR_VMW | VMECR_VMX); | 
|  | VMECR |= VMECR_VMR; | 
|  | VMADR = addr; | 
|  | VMTID = TID; | 
|  | FEIC = 0x431; | 
|  |  | 
|  | PC = 0x30; | 
|  |  | 
|  | SignalException (sd); | 
|  | result = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | int | 
|  | mpu_store_mem_test (SIM_DESC sd, unsigned int addr, int size, int base_reg) | 
|  | { | 
|  | int result = 1; | 
|  |  | 
|  | if (PSW & PSW_DMP) | 
|  | { | 
|  | if (addr >= PPA2ADDR (PPA & ~PPM) && addr <= DPA2ADDR (PPA | PPM)) | 
|  | { | 
|  | /* preifarallel area */ | 
|  | } | 
|  | else if (addr >= PPA2ADDR (SPAL) && addr <= DPA2ADDR (SPAU)) | 
|  | { | 
|  | /* stack area */ | 
|  | } | 
|  | else if (DPE0 && addr >= DPA2ADDR (DPA0L) && addr <= DPA2ADDR (DPA0L) && DPW0 | 
|  | && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) | 
|  | { | 
|  | /* data area */ | 
|  | } | 
|  | else if (DPE1 && addr >= DPA2ADDR (DPA1L) && addr <= DPA2ADDR (DPA1L) && DPW1 | 
|  | && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) | 
|  | { | 
|  | /* data area */ | 
|  | } | 
|  | else if (DPE2 && addr >= DPA2ADDR (DPA2L) && addr <= DPA2ADDR (DPA2L) && DPW2 | 
|  | && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) | 
|  | { | 
|  | /* data area */ | 
|  | } | 
|  | else if (DPE3 && addr >= DPA2ADDR (DPA3L) && addr <= DPA2ADDR (DPA3L) && DPW3 | 
|  | && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) | 
|  | { | 
|  | /* data area */ | 
|  | } | 
|  | else | 
|  | { | 
|  | if (addr >= PPA2ADDR (PPA & ~PPM) && addr <= DPA2ADDR (PPA | PPM)) | 
|  | { | 
|  | FEIC = 0x432; | 
|  | VPTID = TID; | 
|  | VPADR = PC; | 
|  | #ifdef NOT_YET | 
|  | VIP_PP; | 
|  | VPECR; | 
|  | #endif | 
|  | } | 
|  | else | 
|  | { | 
|  | FEIC = 0x431; | 
|  | VMTID = TID; | 
|  | VMADR = VMECR; | 
|  | VMECR &= ~(VMECR_VMW | VMECR_VMX); | 
|  | VMECR |= VMECR_VMR; | 
|  | PC = 0x30; | 
|  | } | 
|  | result = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  |