| // ehframe.cc -- handle exception frame sections for gold | 
 |  | 
 | // Copyright (C) 2006-2024 Free Software Foundation, Inc. | 
 | // Written by Ian Lance Taylor <iant@google.com>. | 
 |  | 
 | // This file is part of gold. | 
 |  | 
 | // This program is free software; you can redistribute it and/or modify | 
 | // it under the terms of the GNU General Public License as published by | 
 | // the Free Software Foundation; either version 3 of the License, or | 
 | // (at your option) any later version. | 
 |  | 
 | // This program is distributed in the hope that it will be useful, | 
 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | // GNU General Public License for more details. | 
 |  | 
 | // You should have received a copy of the GNU General Public License | 
 | // along with this program; if not, write to the Free Software | 
 | // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | 
 | // MA 02110-1301, USA. | 
 |  | 
 | #include "gold.h" | 
 |  | 
 | #include <cstring> | 
 | #include <algorithm> | 
 |  | 
 | #include "elfcpp.h" | 
 | #include "dwarf.h" | 
 | #include "symtab.h" | 
 | #include "reloc.h" | 
 | #include "ehframe.h" | 
 |  | 
 | namespace gold | 
 | { | 
 |  | 
 | // This file handles generation of the exception frame header that | 
 | // gcc's runtime support libraries use to find unwind information at | 
 | // runtime.  This file also handles discarding duplicate exception | 
 | // frame information. | 
 |  | 
 | // The exception frame header starts with four bytes: | 
 |  | 
 | // 0: The version number, currently 1. | 
 |  | 
 | // 1: The encoding of the pointer to the exception frames.  This can | 
 | //    be any DWARF unwind encoding (DW_EH_PE_*).  It is normally a 4 | 
 | //    byte PC relative offset (DW_EH_PE_pcrel | DW_EH_PE_sdata4). | 
 |  | 
 | // 2: The encoding of the count of the number of FDE pointers in the | 
 | //    lookup table.  This can be any DWARF unwind encoding, and in | 
 | //    particular can be DW_EH_PE_omit if the count is omitted.  It is | 
 | //    normally a 4 byte unsigned count (DW_EH_PE_udata4). | 
 |  | 
 | // 3: The encoding of the lookup table entries.  Currently gcc's | 
 | //    libraries will only support DW_EH_PE_datarel | DW_EH_PE_sdata4, | 
 | //    which means that the values are 4 byte offsets from the start of | 
 | //    the table. | 
 |  | 
 | // The exception frame header is followed by a pointer to the contents | 
 | // of the exception frame section (.eh_frame).  This pointer is | 
 | // encoded as specified in the byte at offset 1 of the header (i.e., | 
 | // it is normally a 4 byte PC relative offset). | 
 |  | 
 | // If there is a lookup table, this is followed by the count of the | 
 | // number of FDE pointers, encoded as specified in the byte at offset | 
 | // 2 of the header (i.e., normally a 4 byte unsigned integer). | 
 |  | 
 | // This is followed by the table, which should start at an 4-byte | 
 | // aligned address in memory.  Each entry in the table is 8 bytes. | 
 | // Each entry represents an FDE.  The first four bytes of each entry | 
 | // are an offset to the starting PC for the FDE.  The last four bytes | 
 | // of each entry are an offset to the FDE data.  The offsets are from | 
 | // the start of the exception frame header information.  The entries | 
 | // are in sorted order by starting PC. | 
 |  | 
 | const int eh_frame_hdr_size = 4; | 
 |  | 
 | // Construct the exception frame header. | 
 |  | 
 | Eh_frame_hdr::Eh_frame_hdr(Output_section* eh_frame_section, | 
 | 			   const Eh_frame* eh_frame_data) | 
 |   : Output_section_data(4), | 
 |     eh_frame_section_(eh_frame_section), | 
 |     eh_frame_data_(eh_frame_data), | 
 |     fde_offsets_(), | 
 |     any_unrecognized_eh_frame_sections_(false) | 
 | { | 
 | } | 
 |  | 
 | // Set the size of the exception frame header. | 
 |  | 
 | void | 
 | Eh_frame_hdr::set_final_data_size() | 
 | { | 
 |   unsigned int data_size = eh_frame_hdr_size + 4; | 
 |   if (!this->any_unrecognized_eh_frame_sections_) | 
 |     { | 
 |       unsigned int fde_count = this->eh_frame_data_->fde_count(); | 
 |       if (fde_count != 0) | 
 | 	data_size += 4 + 8 * fde_count; | 
 |       this->fde_offsets_.reserve(fde_count); | 
 |     } | 
 |   this->set_data_size(data_size); | 
 | } | 
 |  | 
 | // Write the data to the file. | 
 |  | 
 | void | 
 | Eh_frame_hdr::do_write(Output_file* of) | 
 | { | 
 |   switch (parameters->size_and_endianness()) | 
 |     { | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 |     case Parameters::TARGET_32_LITTLE: | 
 |       this->do_sized_write<32, false>(of); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_32_BIG | 
 |     case Parameters::TARGET_32_BIG: | 
 |       this->do_sized_write<32, true>(of); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 |     case Parameters::TARGET_64_LITTLE: | 
 |       this->do_sized_write<64, false>(of); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_64_BIG | 
 |     case Parameters::TARGET_64_BIG: | 
 |       this->do_sized_write<64, true>(of); | 
 |       break; | 
 | #endif | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 | } | 
 |  | 
 | // Write the data to the file with the right endianness. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Eh_frame_hdr::do_sized_write(Output_file* of) | 
 | { | 
 |   const off_t off = this->offset(); | 
 |   const off_t oview_size = this->data_size(); | 
 |   unsigned char* const oview = of->get_output_view(off, oview_size); | 
 |  | 
 |   // Version number. | 
 |   oview[0] = 1; | 
 |  | 
 |   // Write out a 4 byte PC relative offset to the address of the | 
 |   // .eh_frame section. | 
 |   oview[1] = elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4; | 
 |   uint64_t eh_frame_address = this->eh_frame_section_->address(); | 
 |   uint64_t eh_frame_hdr_address = this->address(); | 
 |   uint64_t eh_frame_offset = (eh_frame_address - | 
 | 			      (eh_frame_hdr_address + 4)); | 
 |   elfcpp::Swap<32, big_endian>::writeval(oview + 4, eh_frame_offset); | 
 |  | 
 |   if (this->any_unrecognized_eh_frame_sections_ | 
 |       || this->fde_offsets_.empty()) | 
 |     { | 
 |       // There are no FDEs, or we didn't recognize the format of the | 
 |       // some of the .eh_frame sections, so we can't write out the | 
 |       // sorted table. | 
 |       oview[2] = elfcpp::DW_EH_PE_omit; | 
 |       oview[3] = elfcpp::DW_EH_PE_omit; | 
 |  | 
 |       gold_assert(oview_size == 8); | 
 |     } | 
 |   else | 
 |     { | 
 |       oview[2] = elfcpp::DW_EH_PE_udata4; | 
 |       oview[3] = elfcpp::DW_EH_PE_datarel | elfcpp::DW_EH_PE_sdata4; | 
 |  | 
 |       elfcpp::Swap<32, big_endian>::writeval(oview + 8, | 
 | 					     this->fde_offsets_.size()); | 
 |  | 
 |       // We have the offsets of the FDEs in the .eh_frame section.  We | 
 |       // couldn't easily get the PC values before, as they depend on | 
 |       // relocations which are, of course, target specific.  This code | 
 |       // is run after all those relocations have been applied to the | 
 |       // output file.  Here we read the output file again to find the | 
 |       // PC values.  Then we sort the list and write it out. | 
 |  | 
 |       Fde_addresses<size> fde_addresses(this->fde_offsets_.size()); | 
 |       this->get_fde_addresses<size, big_endian>(of, &this->fde_offsets_, | 
 | 						&fde_addresses); | 
 |  | 
 |       std::sort(fde_addresses.begin(), fde_addresses.end(), | 
 | 		Fde_address_compare<size>()); | 
 |  | 
 |       typename elfcpp::Elf_types<size>::Elf_Addr output_address; | 
 |       output_address = this->address(); | 
 |  | 
 |       unsigned char* pfde = oview + 12; | 
 |       for (typename Fde_addresses<size>::iterator p = fde_addresses.begin(); | 
 | 	   p != fde_addresses.end(); | 
 | 	   ++p) | 
 | 	{ | 
 | 	  elfcpp::Swap<32, big_endian>::writeval(pfde, | 
 | 						 p->first - output_address); | 
 | 	  elfcpp::Swap<32, big_endian>::writeval(pfde + 4, | 
 | 						 p->second - output_address); | 
 | 	  pfde += 8; | 
 | 	} | 
 |  | 
 |       gold_assert(pfde - oview == oview_size); | 
 |     } | 
 |  | 
 |   of->write_output_view(off, oview_size, oview); | 
 | } | 
 |  | 
 | // Given the offset FDE_OFFSET of an FDE in the .eh_frame section, and | 
 | // the contents of the .eh_frame section EH_FRAME_CONTENTS, where the | 
 | // FDE's encoding is FDE_ENCODING, return the output address of the | 
 | // FDE's PC. | 
 |  | 
 | template<int size, bool big_endian> | 
 | typename elfcpp::Elf_types<size>::Elf_Addr | 
 | Eh_frame_hdr::get_fde_pc( | 
 |     typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address, | 
 |     const unsigned char* eh_frame_contents, | 
 |     section_offset_type fde_offset, | 
 |     unsigned char fde_encoding) | 
 | { | 
 |   // The FDE starts with a 4 byte length and a 4 byte offset to the | 
 |   // CIE.  The PC follows. | 
 |   const unsigned char* p = eh_frame_contents + fde_offset + 8; | 
 |  | 
 |   typename elfcpp::Elf_types<size>::Elf_Addr pc; | 
 |   bool is_signed = (fde_encoding & elfcpp::DW_EH_PE_signed) != 0; | 
 |   int pc_size = fde_encoding & 7; | 
 |   if (pc_size == elfcpp::DW_EH_PE_absptr) | 
 |     { | 
 |       if (size == 32) | 
 | 	pc_size = elfcpp::DW_EH_PE_udata4; | 
 |       else if (size == 64) | 
 | 	pc_size = elfcpp::DW_EH_PE_udata8; | 
 |       else | 
 | 	gold_unreachable(); | 
 |     } | 
 |  | 
 |   switch (pc_size) | 
 |     { | 
 |     case elfcpp::DW_EH_PE_udata2: | 
 |       pc = elfcpp::Swap<16, big_endian>::readval(p); | 
 |       if (is_signed) | 
 | 	pc = (pc ^ 0x8000) - 0x8000; | 
 |       break; | 
 |  | 
 |     case elfcpp::DW_EH_PE_udata4: | 
 |       pc = elfcpp::Swap<32, big_endian>::readval(p); | 
 |       if (size > 32 && is_signed) | 
 | 	pc = (pc ^ 0x80000000) - 0x80000000; | 
 |       break; | 
 |  | 
 |     case elfcpp::DW_EH_PE_udata8: | 
 |       gold_assert(size == 64); | 
 |       pc = elfcpp::Swap_unaligned<64, big_endian>::readval(p); | 
 |       break; | 
 |  | 
 |     default: | 
 |       // All other cases were rejected in Eh_frame::read_cie. | 
 |       gold_unreachable(); | 
 |     } | 
 |  | 
 |   switch (fde_encoding & 0x70) | 
 |     { | 
 |     case 0: | 
 |       break; | 
 |  | 
 |     case elfcpp::DW_EH_PE_pcrel: | 
 |       pc += eh_frame_address + fde_offset + 8; | 
 |       break; | 
 |  | 
 |     case elfcpp::DW_EH_PE_datarel: | 
 |       pc += parameters->target().ehframe_datarel_base(); | 
 |       break; | 
 |  | 
 |     default: | 
 |       // If other cases arise, then we have to handle them, or we have | 
 |       // to reject them by returning false in Eh_frame::read_cie. | 
 |       gold_unreachable(); | 
 |     } | 
 |  | 
 |   gold_assert((fde_encoding & elfcpp::DW_EH_PE_indirect) == 0); | 
 |  | 
 |   return pc; | 
 | } | 
 |  | 
 | // Given an array of FDE offsets in the .eh_frame section, return an | 
 | // array of offsets from the exception frame header to the FDE's | 
 | // output PC and to the output address of the FDE itself.  We get the | 
 | // FDE's PC by actually looking in the .eh_frame section we just wrote | 
 | // to the output file. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Eh_frame_hdr::get_fde_addresses(Output_file* of, | 
 | 				const Fde_offsets* fde_offsets, | 
 | 				Fde_addresses<size>* fde_addresses) | 
 | { | 
 |   typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address; | 
 |   eh_frame_address = this->eh_frame_section_->address(); | 
 |   off_t eh_frame_offset = this->eh_frame_section_->offset(); | 
 |   off_t eh_frame_size = this->eh_frame_section_->data_size(); | 
 |   const unsigned char* eh_frame_contents = of->get_input_view(eh_frame_offset, | 
 | 							      eh_frame_size); | 
 |  | 
 |   for (Fde_offsets::const_iterator p = fde_offsets->begin(); | 
 |        p != fde_offsets->end(); | 
 |        ++p) | 
 |     { | 
 |       typename elfcpp::Elf_types<size>::Elf_Addr fde_pc; | 
 |       fde_pc = this->get_fde_pc<size, big_endian>(eh_frame_address, | 
 | 						  eh_frame_contents, | 
 | 						  p->first, p->second); | 
 |       fde_addresses->push_back(fde_pc, eh_frame_address + p->first); | 
 |     } | 
 |  | 
 |   of->free_input_view(eh_frame_offset, eh_frame_size, eh_frame_contents); | 
 | } | 
 |  | 
 | // Class Fde. | 
 |  | 
 | // Write the FDE to OVIEW starting at OFFSET.  CIE_OFFSET is the | 
 | // offset of the CIE in OVIEW.  OUTPUT_OFFSET is the offset of the | 
 | // Eh_frame section within the output section.  FDE_ENCODING is the | 
 | // encoding, from the CIE.  ADDRALIGN is the required alignment. | 
 | // ADDRESS is the virtual address of OVIEW.  Record the FDE pc for | 
 | // EH_FRAME_HDR.  Return the new offset. | 
 |  | 
 | template<int size, bool big_endian> | 
 | section_offset_type | 
 | Fde::write(unsigned char* oview, section_offset_type output_offset, | 
 | 	   section_offset_type offset, uint64_t address, unsigned int addralign, | 
 | 	   section_offset_type cie_offset, unsigned char fde_encoding, | 
 | 	   Eh_frame_hdr* eh_frame_hdr) | 
 | { | 
 |   gold_assert((offset & (addralign - 1)) == 0); | 
 |  | 
 |   size_t length = this->contents_.length(); | 
 |  | 
 |   // We add 8 when getting the aligned length to account for the | 
 |   // length word and the CIE offset. | 
 |   size_t aligned_full_length = align_address(length + 8, addralign); | 
 |  | 
 |   // Write the length of the FDE as a 32-bit word.  The length word | 
 |   // does not include the four bytes of the length word itself, but it | 
 |   // does include the offset to the CIE. | 
 |   elfcpp::Swap<32, big_endian>::writeval(oview + offset, | 
 |                                          aligned_full_length - 4); | 
 |  | 
 |   // Write the offset to the CIE as a 32-bit word.  This is the | 
 |   // difference between the address of the offset word itself and the | 
 |   // CIE address. | 
 |   elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4, | 
 | 					 offset + 4 - cie_offset); | 
 |  | 
 |   // Copy the rest of the FDE.  Note that this is run before | 
 |   // relocation processing is done on this section, so the relocations | 
 |   // will later be applied to the FDE data. | 
 |   memcpy(oview + offset + 8, this->contents_.data(), length); | 
 |  | 
 |   // If this FDE is associated with a PLT, fill in the PLT's address | 
 |   // and size. | 
 |   if (this->object_ == NULL) | 
 |     { | 
 |       gold_assert(memcmp(oview + offset + 8, "\0\0\0\0\0\0\0\0", 8) == 0); | 
 |       uint64_t paddress; | 
 |       off_t psize; | 
 |       parameters->target().plt_fde_location(this->u_.from_linker.plt, | 
 | 					    oview + offset + 8, | 
 | 					    &paddress, &psize); | 
 |       uint64_t poffset = paddress - (address + offset + 8); | 
 |       int32_t spoffset = static_cast<int32_t>(poffset); | 
 |       uint32_t upsize = static_cast<uint32_t>(psize); | 
 |       if (static_cast<uint64_t>(static_cast<int64_t>(spoffset)) != poffset | 
 | 	  || static_cast<off_t>(upsize) != psize) | 
 | 	gold_warning(_("overflow in PLT unwind data; " | 
 | 		       "unwinding through PLT may fail")); | 
 |       elfcpp::Swap<32, big_endian>::writeval(oview + offset + 8, spoffset); | 
 |       elfcpp::Swap<32, big_endian>::writeval(oview + offset + 12, upsize); | 
 |     } | 
 |  | 
 |   if (aligned_full_length > length + 8) | 
 |     memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8)); | 
 |  | 
 |   // Tell the exception frame header about this FDE. | 
 |   if (eh_frame_hdr != NULL) | 
 |     eh_frame_hdr->record_fde(output_offset + offset, fde_encoding); | 
 |  | 
 |   return offset + aligned_full_length; | 
 | } | 
 |  | 
 | // Class Cie. | 
 |  | 
 | // Destructor. | 
 |  | 
 | Cie::~Cie() | 
 | { | 
 |   for (std::vector<Fde*>::iterator p = this->fdes_.begin(); | 
 |        p != this->fdes_.end(); | 
 |        ++p) | 
 |     delete *p; | 
 | } | 
 |  | 
 | // Set the output offset of a CIE.  Return the new output offset. | 
 |  | 
 | section_offset_type | 
 | Cie::set_output_offset(section_offset_type output_offset, | 
 | 		       unsigned int addralign, | 
 | 		       Output_section_data *output_data) | 
 | { | 
 |   size_t length = this->contents_.length(); | 
 |  | 
 |   // Add 4 for length and 4 for zero CIE identifier tag. | 
 |   length += 8; | 
 |  | 
 |   if (this->object_ != NULL) | 
 |     { | 
 |       // Add a mapping so that relocations are applied correctly. | 
 |       this->object_->add_merge_mapping(output_data, this->shndx_, | 
 |                                        this->input_offset_, length, | 
 |                                        output_offset); | 
 |     } | 
 |  | 
 |   length = align_address(length, addralign); | 
 |  | 
 |   for (std::vector<Fde*>::const_iterator p = this->fdes_.begin(); | 
 |        p != this->fdes_.end(); | 
 |        ++p) | 
 |     { | 
 |       (*p)->add_mapping(output_offset + length, output_data); | 
 |  | 
 |       size_t fde_length = (*p)->length(); | 
 |       fde_length = align_address(fde_length, addralign); | 
 |       length += fde_length; | 
 |     } | 
 |  | 
 |   return output_offset + length; | 
 | } | 
 |  | 
 | // Write the CIE to OVIEW starting at OFFSET.  OUTPUT_OFFSET is the | 
 | // offset of the Eh_frame section within the output section.  Round up | 
 | // the bytes to ADDRALIGN.  ADDRESS is the virtual address of OVIEW. | 
 | // EH_FRAME_HDR is the exception frame header for FDE recording. | 
 | // POST_FDES stashes FDEs created after mappings were done, for later | 
 | // writing.  Return the new offset. | 
 |  | 
 | template<int size, bool big_endian> | 
 | section_offset_type | 
 | Cie::write(unsigned char* oview, section_offset_type output_offset, | 
 | 	   section_offset_type offset, uint64_t address, | 
 | 	   unsigned int addralign, Eh_frame_hdr* eh_frame_hdr, | 
 | 	   Post_fdes* post_fdes) | 
 | { | 
 |   gold_assert((offset & (addralign - 1)) == 0); | 
 |  | 
 |   section_offset_type cie_offset = offset; | 
 |  | 
 |   size_t length = this->contents_.length(); | 
 |  | 
 |   // We add 8 when getting the aligned length to account for the | 
 |   // length word and the CIE tag. | 
 |   size_t aligned_full_length = align_address(length + 8, addralign); | 
 |  | 
 |   // Write the length of the CIE as a 32-bit word.  The length word | 
 |   // does not include the four bytes of the length word itself. | 
 |   elfcpp::Swap<32, big_endian>::writeval(oview + offset, | 
 |                                          aligned_full_length - 4); | 
 |  | 
 |   // Write the tag which marks this as a CIE: a 32-bit zero. | 
 |   elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4, 0); | 
 |  | 
 |   // Write out the CIE data. | 
 |   memcpy(oview + offset + 8, this->contents_.data(), length); | 
 |  | 
 |   if (aligned_full_length > length + 8) | 
 |     memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8)); | 
 |  | 
 |   offset += aligned_full_length; | 
 |  | 
 |   // Write out the associated FDEs. | 
 |   unsigned char fde_encoding = this->fde_encoding_; | 
 |   for (std::vector<Fde*>::const_iterator p = this->fdes_.begin(); | 
 |        p != this->fdes_.end(); | 
 |        ++p) | 
 |     { | 
 |       if ((*p)->post_map()) | 
 | 	post_fdes->push_back(Post_fde(*p, cie_offset, fde_encoding)); | 
 |       else | 
 | 	offset = (*p)->write<size, big_endian>(oview, output_offset, offset, | 
 | 					       address, addralign, cie_offset, | 
 | 					       fde_encoding, eh_frame_hdr); | 
 |     } | 
 |  | 
 |   return offset; | 
 | } | 
 |  | 
 | // We track all the CIEs we see, and merge them when possible.  This | 
 | // works because each FDE holds an offset to the relevant CIE: we | 
 | // rewrite the FDEs to point to the merged CIE.  This is worthwhile | 
 | // because in a typical C++ program many FDEs in many different object | 
 | // files will use the same CIE. | 
 |  | 
 | // An equality operator for Cie. | 
 |  | 
 | bool | 
 | operator==(const Cie& cie1, const Cie& cie2) | 
 | { | 
 |   return (cie1.personality_name_ == cie2.personality_name_ | 
 | 	  && cie1.contents_ == cie2.contents_); | 
 | } | 
 |  | 
 | // A less-than operator for Cie. | 
 |  | 
 | bool | 
 | operator<(const Cie& cie1, const Cie& cie2) | 
 | { | 
 |   if (cie1.personality_name_ != cie2.personality_name_) | 
 |     return cie1.personality_name_ < cie2.personality_name_; | 
 |   return cie1.contents_ < cie2.contents_; | 
 | } | 
 |  | 
 | // Class Eh_frame. | 
 |  | 
 | Eh_frame::Eh_frame() | 
 |   : Output_section_data(Output_data::default_alignment()), | 
 |     eh_frame_hdr_(NULL), | 
 |     cie_offsets_(), | 
 |     unmergeable_cie_offsets_(), | 
 |     mappings_are_done_(false), | 
 |     final_data_size_(0) | 
 | { | 
 | } | 
 |  | 
 | // Skip an LEB128, updating *PP to point to the next character. | 
 | // Return false if we ran off the end of the string. | 
 |  | 
 | bool | 
 | Eh_frame::skip_leb128(const unsigned char** pp, const unsigned char* pend) | 
 | { | 
 |   const unsigned char* p; | 
 |   for (p = *pp; p < pend; ++p) | 
 |     { | 
 |       if ((*p & 0x80) == 0) | 
 | 	{ | 
 | 	  *pp = p + 1; | 
 | 	  return true; | 
 | 	} | 
 |     } | 
 |   return false; | 
 | } | 
 |  | 
 | // Add input section SHNDX in OBJECT to an exception frame section. | 
 | // SYMBOLS is the contents of the symbol table section (size | 
 | // SYMBOLS_SIZE), SYMBOL_NAMES is the symbol names section (size | 
 | // SYMBOL_NAMES_SIZE).  RELOC_SHNDX is the index of a relocation | 
 | // section applying to SHNDX, or 0 if none, or -1U if more than one. | 
 | // RELOC_TYPE is the type of the reloc section if there is one, either | 
 | // SHT_REL or SHT_RELA.  We try to parse the input exception frame | 
 | // data into our data structures.  If we can't do it, we return false | 
 | // to mean that the section should be handled as a normal input | 
 | // section. | 
 |  | 
 | template<int size, bool big_endian> | 
 | Eh_frame::Eh_frame_section_disposition | 
 | Eh_frame::add_ehframe_input_section( | 
 |     Sized_relobj_file<size, big_endian>* object, | 
 |     const unsigned char* symbols, | 
 |     section_size_type symbols_size, | 
 |     const unsigned char* symbol_names, | 
 |     section_size_type symbol_names_size, | 
 |     unsigned int shndx, | 
 |     unsigned int reloc_shndx, | 
 |     unsigned int reloc_type) | 
 | { | 
 |   // Get the section contents. | 
 |   section_size_type contents_len; | 
 |   const unsigned char* pcontents = object->section_contents(shndx, | 
 | 							    &contents_len, | 
 | 							    false); | 
 |   if (contents_len == 0) | 
 |     return EH_EMPTY_SECTION; | 
 |  | 
 |   // If this is the marker section for the end of the data, then | 
 |   // return false to force it to be handled as an ordinary input | 
 |   // section.  If we don't do this, we won't correctly handle the case | 
 |   // of unrecognized .eh_frame sections. | 
 |   if (contents_len == 4 | 
 |       && elfcpp::Swap<32, big_endian>::readval(pcontents) == 0) | 
 |     return EH_END_MARKER_SECTION; | 
 |  | 
 |   New_cies new_cies; | 
 |   if (!this->do_add_ehframe_input_section(object, symbols, symbols_size, | 
 | 					  symbol_names, symbol_names_size, | 
 | 					  shndx, reloc_shndx, | 
 | 					  reloc_type, pcontents, | 
 | 					  contents_len, &new_cies)) | 
 |     { | 
 |       if (this->eh_frame_hdr_ != NULL) | 
 | 	this->eh_frame_hdr_->found_unrecognized_eh_frame_section(); | 
 |  | 
 |       for (New_cies::iterator p = new_cies.begin(); | 
 | 	   p != new_cies.end(); | 
 | 	   ++p) | 
 | 	delete p->first; | 
 |  | 
 |       return EH_UNRECOGNIZED_SECTION; | 
 |     } | 
 |  | 
 |   // Now that we know we are using this section, record any new CIEs | 
 |   // that we found. | 
 |   for (New_cies::const_iterator p = new_cies.begin(); | 
 |        p != new_cies.end(); | 
 |        ++p) | 
 |     { | 
 |       if (p->second) | 
 | 	this->cie_offsets_.insert(p->first); | 
 |       else | 
 | 	this->unmergeable_cie_offsets_.push_back(p->first); | 
 |     } | 
 |  | 
 |   return EH_OPTIMIZABLE_SECTION; | 
 | } | 
 |  | 
 | // The bulk of the implementation of add_ehframe_input_section. | 
 |  | 
 | template<int size, bool big_endian> | 
 | bool | 
 | Eh_frame::do_add_ehframe_input_section( | 
 |     Sized_relobj_file<size, big_endian>* object, | 
 |     const unsigned char* symbols, | 
 |     section_size_type symbols_size, | 
 |     const unsigned char* symbol_names, | 
 |     section_size_type symbol_names_size, | 
 |     unsigned int shndx, | 
 |     unsigned int reloc_shndx, | 
 |     unsigned int reloc_type, | 
 |     const unsigned char* pcontents, | 
 |     section_size_type contents_len, | 
 |     New_cies* new_cies) | 
 | { | 
 |   Track_relocs<size, big_endian> relocs; | 
 |  | 
 |   const unsigned char* p = pcontents; | 
 |   const unsigned char* pend = p + contents_len; | 
 |  | 
 |   // Get the contents of the reloc section if any. | 
 |   if (!relocs.initialize(object, reloc_shndx, reloc_type)) | 
 |     return false; | 
 |  | 
 |   // Keep track of which CIEs are at which offsets. | 
 |   Offsets_to_cie cies; | 
 |  | 
 |   while (p < pend) | 
 |     { | 
 |       if (pend - p < 4) | 
 | 	return false; | 
 |  | 
 |       // There shouldn't be any relocations here. | 
 |       if (relocs.advance(p + 4 - pcontents) > 0) | 
 | 	return false; | 
 |  | 
 |       unsigned int len = elfcpp::Swap<32, big_endian>::readval(p); | 
 |       p += 4; | 
 |       if (len == 0) | 
 | 	{ | 
 | 	  // We should only find a zero-length entry at the end of the | 
 | 	  // section. | 
 | 	  if (p < pend) | 
 | 	    return false; | 
 | 	  break; | 
 | 	} | 
 |       // We don't support a 64-bit .eh_frame. | 
 |       if (len == 0xffffffff) | 
 | 	return false; | 
 |       if (static_cast<unsigned int>(pend - p) < len) | 
 | 	return false; | 
 |  | 
 |       const unsigned char* const pentend = p + len; | 
 |  | 
 |       if (pend - p < 4) | 
 | 	return false; | 
 |       if (relocs.advance(p + 4 - pcontents) > 0) | 
 | 	return false; | 
 |  | 
 |       unsigned int id = elfcpp::Swap<32, big_endian>::readval(p); | 
 |       p += 4; | 
 |  | 
 |       if (id == 0) | 
 | 	{ | 
 | 	  // CIE. | 
 | 	  if (!this->read_cie(object, shndx, symbols, symbols_size, | 
 | 			      symbol_names, symbol_names_size, | 
 | 			      pcontents, p, pentend, &relocs, &cies, | 
 | 			      new_cies)) | 
 | 	    return false; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  // FDE. | 
 | 	  if (!this->read_fde(object, shndx, symbols, symbols_size, | 
 | 			      pcontents, id, p, pentend, &relocs, &cies)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       p = pentend; | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Read a CIE.  Return false if we can't parse the information. | 
 |  | 
 | template<int size, bool big_endian> | 
 | bool | 
 | Eh_frame::read_cie(Sized_relobj_file<size, big_endian>* object, | 
 | 		   unsigned int shndx, | 
 | 		   const unsigned char* symbols, | 
 | 		   section_size_type symbols_size, | 
 | 		   const unsigned char* symbol_names, | 
 | 		   section_size_type symbol_names_size, | 
 | 		   const unsigned char* pcontents, | 
 | 		   const unsigned char* pcie, | 
 | 		   const unsigned char* pcieend, | 
 | 		   Track_relocs<size, big_endian>* relocs, | 
 | 		   Offsets_to_cie* cies, | 
 | 		   New_cies* new_cies) | 
 | { | 
 |   bool mergeable = true; | 
 |  | 
 |   // We need to find the personality routine if there is one, since we | 
 |   // can only merge CIEs which use the same routine.  We also need to | 
 |   // find the FDE encoding if there is one, so that we can read the PC | 
 |   // from the FDE. | 
 |  | 
 |   const unsigned char* p = pcie; | 
 |  | 
 |   if (pcieend - p < 1) | 
 |     return false; | 
 |   unsigned char version = *p++; | 
 |   if (version != 1 && version != 3) | 
 |     return false; | 
 |  | 
 |   const unsigned char* paug = p; | 
 |   const void* paugendv = memchr(p, '\0', pcieend - p); | 
 |   const unsigned char* paugend = static_cast<const unsigned char*>(paugendv); | 
 |   if (paugend == NULL) | 
 |     return false; | 
 |   p = paugend + 1; | 
 |  | 
 |   if (paug[0] == 'e' && paug[1] == 'h') | 
 |     { | 
 |       // This is a CIE from gcc before version 3.0.  We can't merge | 
 |       // these.  We can still read the FDEs. | 
 |       mergeable = false; | 
 |       paug += 2; | 
 |       if (*paug != '\0') | 
 | 	return false; | 
 |       if (pcieend - p < size / 8) | 
 | 	return false; | 
 |       p += size / 8; | 
 |     } | 
 |  | 
 |   // Skip the code alignment. | 
 |   if (!skip_leb128(&p, pcieend)) | 
 |     return false; | 
 |  | 
 |   // Skip the data alignment. | 
 |   if (!skip_leb128(&p, pcieend)) | 
 |     return false; | 
 |  | 
 |   // Skip the return column. | 
 |   if (version == 1) | 
 |     { | 
 |       if (pcieend - p < 1) | 
 | 	return false; | 
 |       ++p; | 
 |     } | 
 |   else | 
 |     { | 
 |       if (!skip_leb128(&p, pcieend)) | 
 | 	return false; | 
 |     } | 
 |  | 
 |   if (*paug == 'z') | 
 |     { | 
 |       ++paug; | 
 |       // Skip the augmentation size. | 
 |       if (!skip_leb128(&p, pcieend)) | 
 | 	return false; | 
 |     } | 
 |  | 
 |   unsigned char fde_encoding = elfcpp::DW_EH_PE_absptr; | 
 |   int per_offset = -1; | 
 |   while (*paug != '\0') | 
 |     { | 
 |       switch (*paug) | 
 | 	{ | 
 | 	case 'L': // LSDA encoding. | 
 | 	  if (pcieend - p < 1) | 
 | 	    return false; | 
 | 	  ++p; | 
 | 	  break; | 
 |  | 
 | 	case 'R': // FDE encoding. | 
 | 	  if (pcieend - p < 1) | 
 | 	    return false; | 
 | 	  fde_encoding = *p; | 
 | 	  switch (fde_encoding & 7) | 
 | 	    { | 
 | 	    case elfcpp::DW_EH_PE_absptr: | 
 | 	    case elfcpp::DW_EH_PE_udata2: | 
 | 	    case elfcpp::DW_EH_PE_udata4: | 
 | 	    case elfcpp::DW_EH_PE_udata8: | 
 | 	      break; | 
 | 	    default: | 
 | 	      // We don't expect to see any other cases here, and | 
 | 	      // we're not prepared to handle them. | 
 | 	      return false; | 
 | 	    } | 
 | 	  ++p; | 
 | 	  break; | 
 |  | 
 | 	case 'S': | 
 | 	  break; | 
 |  | 
 | 	case 'P': | 
 | 	  // Personality encoding. | 
 | 	  { | 
 | 	    if (pcieend - p < 1) | 
 | 	      return false; | 
 | 	    unsigned char per_encoding = *p; | 
 | 	    ++p; | 
 |  | 
 | 	    if ((per_encoding & 0x60) == 0x60) | 
 | 	      return false; | 
 | 	    unsigned int per_width; | 
 | 	    switch (per_encoding & 7) | 
 | 	      { | 
 | 	      case elfcpp::DW_EH_PE_udata2: | 
 | 		per_width = 2; | 
 | 		break; | 
 | 	      case elfcpp::DW_EH_PE_udata4: | 
 | 		per_width = 4; | 
 | 		break; | 
 | 	      case elfcpp::DW_EH_PE_udata8: | 
 | 		per_width = 8; | 
 | 		break; | 
 | 	      case elfcpp::DW_EH_PE_absptr: | 
 | 		per_width = size / 8; | 
 | 		break; | 
 | 	      default: | 
 | 		return false; | 
 | 	      } | 
 |  | 
 | 	    if ((per_encoding & 0xf0) == elfcpp::DW_EH_PE_aligned) | 
 | 	      { | 
 | 		unsigned int len = p - pcie; | 
 | 		len += per_width - 1; | 
 | 		len &= ~ (per_width - 1); | 
 | 		if (static_cast<unsigned int>(pcieend - p) < len) | 
 | 		  return false; | 
 | 		p += len; | 
 | 	      } | 
 |  | 
 | 	    per_offset = p - pcontents; | 
 |  | 
 | 	    if (static_cast<unsigned int>(pcieend - p) < per_width) | 
 | 	      return false; | 
 | 	    p += per_width; | 
 | 	  } | 
 | 	  break; | 
 |  | 
 | 	default: | 
 | 	  return false; | 
 | 	} | 
 |  | 
 |       ++paug; | 
 |     } | 
 |  | 
 |   const char* personality_name = ""; | 
 |   if (per_offset != -1) | 
 |     { | 
 |       if (relocs->advance(per_offset) > 0) | 
 | 	return false; | 
 |       if (relocs->next_offset() != per_offset) | 
 | 	return false; | 
 |  | 
 |       unsigned int personality_symndx = relocs->next_symndx(); | 
 |       if (personality_symndx == -1U) | 
 | 	return false; | 
 |  | 
 |       if (personality_symndx < object->local_symbol_count()) | 
 | 	{ | 
 | 	  // We can only merge this CIE if the personality routine is | 
 | 	  // a global symbol.  We can still read the FDEs. | 
 | 	  mergeable = false; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  const int sym_size = elfcpp::Elf_sizes<size>::sym_size; | 
 | 	  if (personality_symndx >= symbols_size / sym_size) | 
 | 	    return false; | 
 | 	  elfcpp::Sym<size, big_endian> sym(symbols | 
 | 					    + (personality_symndx * sym_size)); | 
 | 	  unsigned int name_offset = sym.get_st_name(); | 
 | 	  if (name_offset >= symbol_names_size) | 
 | 	    return false; | 
 | 	  personality_name = (reinterpret_cast<const char*>(symbol_names) | 
 | 			      + name_offset); | 
 | 	} | 
 |  | 
 |       int r = relocs->advance(per_offset + 1); | 
 |       gold_assert(r == 1); | 
 |     } | 
 |  | 
 |   if (relocs->advance(pcieend - pcontents) > 0) | 
 |     return false; | 
 |  | 
 |   Cie cie(object, shndx, (pcie - 8) - pcontents, fde_encoding,  | 
 | 	  personality_name, pcie, pcieend - pcie); | 
 |   Cie* cie_pointer = NULL; | 
 |   if (mergeable) | 
 |     { | 
 |       Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie); | 
 |       if (find_cie != this->cie_offsets_.end()) | 
 | 	cie_pointer = *find_cie; | 
 |       else | 
 | 	{ | 
 | 	  // See if we already saw this CIE in this object file. | 
 | 	  for (New_cies::const_iterator pc = new_cies->begin(); | 
 | 	       pc != new_cies->end(); | 
 | 	       ++pc) | 
 | 	    { | 
 | 	      if (*(pc->first) == cie) | 
 | 		{ | 
 | 		  cie_pointer = pc->first; | 
 | 		  break; | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   if (cie_pointer == NULL) | 
 |     { | 
 |       cie_pointer = new Cie(cie); | 
 |       new_cies->push_back(std::make_pair(cie_pointer, mergeable)); | 
 |     } | 
 |   else | 
 |     { | 
 |       // We are deleting this CIE.  Record that in our mapping from | 
 |       // input sections to the output section.  At this point we don't | 
 |       // know for sure that we are doing a special mapping for this | 
 |       // input section, but that's OK--if we don't do a special | 
 |       // mapping, nobody will ever ask for the mapping we add here. | 
 |       object->add_merge_mapping(this, shndx, (pcie - 8) - pcontents, | 
 |                                 pcieend - (pcie - 8), -1); | 
 |     } | 
 |  | 
 |   // Record this CIE plus the offset in the input section. | 
 |   cies->insert(std::make_pair(pcie - pcontents, cie_pointer)); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Read an FDE.  Return false if we can't parse the information. | 
 |  | 
 | template<int size, bool big_endian> | 
 | bool | 
 | Eh_frame::read_fde(Sized_relobj_file<size, big_endian>* object, | 
 | 		   unsigned int shndx, | 
 | 		   const unsigned char* symbols, | 
 | 		   section_size_type symbols_size, | 
 | 		   const unsigned char* pcontents, | 
 | 		   unsigned int offset, | 
 | 		   const unsigned char* pfde, | 
 | 		   const unsigned char* pfdeend, | 
 | 		   Track_relocs<size, big_endian>* relocs, | 
 | 		   Offsets_to_cie* cies) | 
 | { | 
 |   // OFFSET is the distance between the 4 bytes before PFDE to the | 
 |   // start of the CIE.  The offset we recorded for the CIE is 8 bytes | 
 |   // after the start of the CIE--after the length and the zero tag. | 
 |   unsigned int cie_offset = (pfde - 4 - pcontents) - offset + 8; | 
 |   Offsets_to_cie::const_iterator pcie = cies->find(cie_offset); | 
 |   if (pcie == cies->end()) | 
 |     return false; | 
 |   Cie* cie = pcie->second; | 
 |  | 
 |   int pc_size = 0; | 
 |   switch (cie->fde_encoding() & 7) | 
 |     { | 
 |     case elfcpp::DW_EH_PE_udata2: | 
 |       pc_size = 2; | 
 |       break; | 
 |     case elfcpp::DW_EH_PE_udata4: | 
 |       pc_size = 4; | 
 |       break; | 
 |     case elfcpp::DW_EH_PE_udata8: | 
 |       gold_assert(size == 64); | 
 |       pc_size = 8; | 
 |       break; | 
 |     case elfcpp::DW_EH_PE_absptr: | 
 |       pc_size = size == 32 ? 4 : 8; | 
 |       break; | 
 |     default: | 
 |       // All other cases were rejected in Eh_frame::read_cie. | 
 |       gold_unreachable(); | 
 |     } | 
 |  | 
 |   // The FDE should start with a reloc to the start of the code which | 
 |   // it describes. | 
 |   if (relocs->advance(pfde - pcontents) > 0) | 
 |     return false; | 
 |   if (relocs->next_offset() != pfde - pcontents) | 
 |     { | 
 |       // In an object produced by a relocatable link, gold may have | 
 |       // discarded a COMDAT group in the previous link, but not the | 
 |       // corresponding FDEs. In that case, gold will have discarded | 
 |       // the relocations, so the FDE will have a non-relocatable zero | 
 |       // (regardless of whether the PC encoding is absolute, pc-relative, | 
 |       // or data-relative) instead of a pointer to the start of the code. | 
 |  | 
 |       uint64_t pc_value = 0; | 
 |       switch (pc_size) | 
 | 	{ | 
 | 	case 2: | 
 | 	  pc_value = elfcpp::Swap<16, big_endian>::readval(pfde); | 
 | 	  break; | 
 | 	case 4: | 
 | 	  pc_value = elfcpp::Swap<32, big_endian>::readval(pfde); | 
 | 	  break; | 
 | 	case 8: | 
 | 	  pc_value = elfcpp::Swap_unaligned<64, big_endian>::readval(pfde); | 
 | 	  break; | 
 | 	default: | 
 | 	  gold_unreachable(); | 
 | 	} | 
 |  | 
 |       if (pc_value == 0) | 
 | 	{ | 
 | 	  // This FDE applies to a discarded function.  We | 
 | 	  // can discard this FDE. | 
 | 	  object->add_merge_mapping(this, shndx, (pfde - 8) - pcontents, | 
 | 				    pfdeend - (pfde - 8), -1); | 
 | 	  return true; | 
 | 	} | 
 |  | 
 |       // Otherwise, reject the FDE. | 
 |       return false; | 
 |     } | 
 |  | 
 |   unsigned int symndx = relocs->next_symndx(); | 
 |   if (symndx == -1U) | 
 |     return false; | 
 |  | 
 |   // There can be another reloc in the FDE, if the CIE specifies an | 
 |   // LSDA (language specific data area).  We currently don't care.  We | 
 |   // will care later if we want to optimize the LSDA from an absolute | 
 |   // pointer to a PC relative offset when generating a shared library. | 
 |   relocs->advance(pfdeend - pcontents); | 
 |  | 
 |   // Find the section index for code that this FDE describes. | 
 |   // If we have discarded the section, we can also discard the FDE. | 
 |   unsigned int fde_shndx; | 
 |   const int sym_size = elfcpp::Elf_sizes<size>::sym_size; | 
 |   if (symndx >= symbols_size / sym_size) | 
 |     return false; | 
 |   elfcpp::Sym<size, big_endian> sym(symbols + symndx * sym_size); | 
 |   bool is_ordinary; | 
 |   fde_shndx = object->adjust_sym_shndx(symndx, sym.get_st_shndx(), | 
 | 				       &is_ordinary); | 
 |   bool is_discarded = (is_ordinary | 
 | 		       && fde_shndx != elfcpp::SHN_UNDEF | 
 | 		       && fde_shndx < object->shnum() | 
 | 		       && !object->is_section_included(fde_shndx)); | 
 |  | 
 |   // Fetch the address range field from the FDE. The offset and size | 
 |   // of the field depends on the PC encoding given in the CIE, but | 
 |   // it is always an absolute value. If the address range is 0, this | 
 |   // FDE corresponds to a function that was discarded during optimization | 
 |   // (too late to discard the corresponding FDE). | 
 |   uint64_t address_range = 0; | 
 |   switch (pc_size) | 
 |     { | 
 |     case 2: | 
 |       address_range = elfcpp::Swap<16, big_endian>::readval(pfde + 2); | 
 |       break; | 
 |     case 4: | 
 |       address_range = elfcpp::Swap<32, big_endian>::readval(pfde + 4); | 
 |       break; | 
 |     case 8: | 
 |       address_range = elfcpp::Swap_unaligned<64, big_endian>::readval(pfde + 8); | 
 |       break; | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 |  | 
 |   if (is_discarded || address_range == 0) | 
 |     { | 
 |       // This FDE applies to a discarded function.  We | 
 |       // can discard this FDE. | 
 |       object->add_merge_mapping(this, shndx, (pfde - 8) - pcontents, | 
 |                                 pfdeend - (pfde - 8), -1); | 
 |       return true; | 
 |     } | 
 |  | 
 |   cie->add_fde(new Fde(object, shndx, (pfde - 8) - pcontents, | 
 | 		       pfde, pfdeend - pfde)); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Add unwind information for a PLT. | 
 |  | 
 | void | 
 | Eh_frame::add_ehframe_for_plt(Output_data* plt, const unsigned char* cie_data, | 
 | 			      size_t cie_length, const unsigned char* fde_data, | 
 | 			      size_t fde_length) | 
 | { | 
 |   Cie cie(NULL, 0, 0, elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4, "", | 
 | 	  cie_data, cie_length); | 
 |   Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie); | 
 |   Cie* pcie; | 
 |   if (find_cie != this->cie_offsets_.end()) | 
 |     pcie = *find_cie; | 
 |   else | 
 |     { | 
 |       gold_assert(!this->mappings_are_done_); | 
 |       pcie = new Cie(cie); | 
 |       this->cie_offsets_.insert(pcie); | 
 |     } | 
 |  | 
 |   Fde* fde = new Fde(plt, fde_data, fde_length, this->mappings_are_done_); | 
 |   pcie->add_fde(fde); | 
 |  | 
 |   if (this->mappings_are_done_) | 
 |     this->final_data_size_ += align_address(fde_length + 8, this->addralign()); | 
 | } | 
 |  | 
 | // Remove all post-map unwind information for a PLT. | 
 |  | 
 | void | 
 | Eh_frame::remove_ehframe_for_plt(Output_data* plt, | 
 | 				 const unsigned char* cie_data, | 
 | 				 size_t cie_length) | 
 | { | 
 |   if (!this->mappings_are_done_) | 
 |     return; | 
 |  | 
 |   Cie cie(NULL, 0, 0, elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4, "", | 
 | 	  cie_data, cie_length); | 
 |   Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie); | 
 |   gold_assert (find_cie != this->cie_offsets_.end()); | 
 |   Cie* pcie = *find_cie; | 
 |  | 
 |   while (pcie->fde_count() != 0) | 
 |     { | 
 |       const Fde* fde = pcie->last_fde(); | 
 |       if (!fde->post_map(plt)) | 
 | 	break; | 
 |       size_t length = fde->length(); | 
 |       this->final_data_size_ -= align_address(length + 8, this->addralign()); | 
 |       pcie->remove_fde(); | 
 |     } | 
 | } | 
 |  | 
 | // Return the number of FDEs. | 
 |  | 
 | unsigned int | 
 | Eh_frame::fde_count() const | 
 | { | 
 |   unsigned int ret = 0; | 
 |   for (Unmergeable_cie_offsets::const_iterator p = | 
 | 	 this->unmergeable_cie_offsets_.begin(); | 
 |        p != this->unmergeable_cie_offsets_.end(); | 
 |        ++p) | 
 |     ret += (*p)->fde_count(); | 
 |   for (Cie_offsets::const_iterator p = this->cie_offsets_.begin(); | 
 |        p != this->cie_offsets_.end(); | 
 |        ++p) | 
 |     ret += (*p)->fde_count(); | 
 |   return ret; | 
 | } | 
 |  | 
 | // Set the final data size. | 
 |  | 
 | void | 
 | Eh_frame::set_final_data_size() | 
 | { | 
 |   // We can be called more than once if Layout::set_segment_offsets | 
 |   // finds a better mapping.  We don't want to add all the mappings | 
 |   // again. | 
 |   if (this->mappings_are_done_) | 
 |     { | 
 |       this->set_data_size(this->final_data_size_); | 
 |       return; | 
 |     } | 
 |  | 
 |   section_offset_type output_start = 0; | 
 |   if (this->is_offset_valid()) | 
 |     output_start = this->offset() - this->output_section()->offset(); | 
 |   section_offset_type output_offset = output_start; | 
 |  | 
 |   for (Unmergeable_cie_offsets::iterator p = | 
 | 	 this->unmergeable_cie_offsets_.begin(); | 
 |        p != this->unmergeable_cie_offsets_.end(); | 
 |        ++p) | 
 |     output_offset = (*p)->set_output_offset(output_offset, | 
 | 					    this->addralign(), | 
 | 					    this); | 
 |  | 
 |   for (Cie_offsets::iterator p = this->cie_offsets_.begin(); | 
 |        p != this->cie_offsets_.end(); | 
 |        ++p) | 
 |     output_offset = (*p)->set_output_offset(output_offset, | 
 | 					    this->addralign(), | 
 | 					    this); | 
 |  | 
 |   this->mappings_are_done_ = true; | 
 |   this->final_data_size_ = output_offset - output_start; | 
 |  | 
 |   gold_assert((output_offset & (this->addralign() - 1)) == 0); | 
 |   this->set_data_size(this->final_data_size_); | 
 | } | 
 |  | 
 | // Return an output offset for an input offset. | 
 |  | 
 | bool | 
 | Eh_frame::do_output_offset(const Relobj* object, unsigned int shndx, | 
 | 			   section_offset_type offset, | 
 | 			   section_offset_type* poutput) const | 
 | { | 
 |   return object->merge_output_offset(shndx, offset, poutput); | 
 | } | 
 |  | 
 | // Write the data to the output file. | 
 |  | 
 | void | 
 | Eh_frame::do_write(Output_file* of) | 
 | { | 
 |   const off_t offset = this->offset(); | 
 |   const off_t oview_size = this->data_size(); | 
 |   unsigned char* const oview = of->get_output_view(offset, oview_size); | 
 |  | 
 |   switch (parameters->size_and_endianness()) | 
 |     { | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 |     case Parameters::TARGET_32_LITTLE: | 
 |       this->do_sized_write<32, false>(oview); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_32_BIG | 
 |     case Parameters::TARGET_32_BIG: | 
 |       this->do_sized_write<32, true>(oview); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 |     case Parameters::TARGET_64_LITTLE: | 
 |       this->do_sized_write<64, false>(oview); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_64_BIG | 
 |     case Parameters::TARGET_64_BIG: | 
 |       this->do_sized_write<64, true>(oview); | 
 |       break; | 
 | #endif | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 |  | 
 |   of->write_output_view(offset, oview_size, oview); | 
 | } | 
 |  | 
 | // Write the data to the output file--template version. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Eh_frame::do_sized_write(unsigned char* oview) | 
 | { | 
 |   uint64_t address = this->address(); | 
 |   unsigned int addralign = this->addralign(); | 
 |   section_offset_type o = 0; | 
 |   const off_t output_offset = this->offset() - this->output_section()->offset(); | 
 |   Post_fdes post_fdes; | 
 |   for (Unmergeable_cie_offsets::iterator p = | 
 | 	 this->unmergeable_cie_offsets_.begin(); | 
 |        p != this->unmergeable_cie_offsets_.end(); | 
 |        ++p) | 
 |     o = (*p)->write<size, big_endian>(oview, output_offset, o, address, | 
 | 				      addralign, this->eh_frame_hdr_, | 
 | 				      &post_fdes); | 
 |   for (Cie_offsets::iterator p = this->cie_offsets_.begin(); | 
 |        p != this->cie_offsets_.end(); | 
 |        ++p) | 
 |     o = (*p)->write<size, big_endian>(oview, output_offset, o, address, | 
 | 				      addralign, this->eh_frame_hdr_, | 
 | 				      &post_fdes); | 
 |   for (Post_fdes::iterator p = post_fdes.begin(); | 
 |        p != post_fdes.end(); | 
 |        ++p) | 
 |     o = (*p).fde->write<size, big_endian>(oview, output_offset, o, address, | 
 | 					  addralign, (*p).cie_offset, | 
 | 					  (*p).fde_encoding, | 
 | 					  this->eh_frame_hdr_); | 
 | } | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | Eh_frame::Eh_frame_section_disposition | 
 | Eh_frame::add_ehframe_input_section<32, false>( | 
 |     Sized_relobj_file<32, false>* object, | 
 |     const unsigned char* symbols, | 
 |     section_size_type symbols_size, | 
 |     const unsigned char* symbol_names, | 
 |     section_size_type symbol_names_size, | 
 |     unsigned int shndx, | 
 |     unsigned int reloc_shndx, | 
 |     unsigned int reloc_type); | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | Eh_frame::Eh_frame_section_disposition | 
 | Eh_frame::add_ehframe_input_section<32, true>( | 
 |     Sized_relobj_file<32, true>* object, | 
 |     const unsigned char* symbols, | 
 |     section_size_type symbols_size, | 
 |     const unsigned char* symbol_names, | 
 |     section_size_type symbol_names_size, | 
 |     unsigned int shndx, | 
 |     unsigned int reloc_shndx, | 
 |     unsigned int reloc_type); | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | Eh_frame::Eh_frame_section_disposition | 
 | Eh_frame::add_ehframe_input_section<64, false>( | 
 |     Sized_relobj_file<64, false>* object, | 
 |     const unsigned char* symbols, | 
 |     section_size_type symbols_size, | 
 |     const unsigned char* symbol_names, | 
 |     section_size_type symbol_names_size, | 
 |     unsigned int shndx, | 
 |     unsigned int reloc_shndx, | 
 |     unsigned int reloc_type); | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | Eh_frame::Eh_frame_section_disposition | 
 | Eh_frame::add_ehframe_input_section<64, true>( | 
 |     Sized_relobj_file<64, true>* object, | 
 |     const unsigned char* symbols, | 
 |     section_size_type symbols_size, | 
 |     const unsigned char* symbol_names, | 
 |     section_size_type symbol_names_size, | 
 |     unsigned int shndx, | 
 |     unsigned int reloc_shndx, | 
 |     unsigned int reloc_type); | 
 | #endif | 
 |  | 
 | } // End namespace gold. |