|  | /* Target-dependent code for GNU/Linux i386. | 
|  |  | 
|  | Copyright (C) 2000-2023 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "defs.h" | 
|  | #include "gdbcore.h" | 
|  | #include "frame.h" | 
|  | #include "value.h" | 
|  | #include "regcache.h" | 
|  | #include "regset.h" | 
|  | #include "inferior.h" | 
|  | #include "osabi.h" | 
|  | #include "reggroups.h" | 
|  | #include "dwarf2/frame.h" | 
|  | #include "i386-tdep.h" | 
|  | #include "i386-linux-tdep.h" | 
|  | #include "linux-tdep.h" | 
|  | #include "utils.h" | 
|  | #include "glibc-tdep.h" | 
|  | #include "solib-svr4.h" | 
|  | #include "symtab.h" | 
|  | #include "arch-utils.h" | 
|  | #include "xml-syscall.h" | 
|  | #include "infrun.h" | 
|  |  | 
|  | #include "i387-tdep.h" | 
|  | #include "gdbsupport/x86-xstate.h" | 
|  |  | 
|  | /* The syscall's XML filename for i386.  */ | 
|  | #define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml" | 
|  |  | 
|  | #include "record-full.h" | 
|  | #include "linux-record.h" | 
|  |  | 
|  | #include "arch/i386.h" | 
|  | #include "target-descriptions.h" | 
|  |  | 
|  | /* Return non-zero, when the register is in the corresponding register | 
|  | group.  Put the LINUX_ORIG_EAX register in the system group.  */ | 
|  | static int | 
|  | i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | 
|  | const struct reggroup *group) | 
|  | { | 
|  | if (regnum == I386_LINUX_ORIG_EAX_REGNUM) | 
|  | return (group == system_reggroup | 
|  | || group == save_reggroup | 
|  | || group == restore_reggroup); | 
|  | return i386_register_reggroup_p (gdbarch, regnum, group); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Recognizing signal handler frames.  */ | 
|  |  | 
|  | /* GNU/Linux has two flavors of signals.  Normal signal handlers, and | 
|  | "realtime" (RT) signals.  The RT signals can provide additional | 
|  | information to the signal handler if the SA_SIGINFO flag is set | 
|  | when establishing a signal handler using `sigaction'.  It is not | 
|  | unlikely that future versions of GNU/Linux will support SA_SIGINFO | 
|  | for normal signals too.  */ | 
|  |  | 
|  | /* When the i386 Linux kernel calls a signal handler and the | 
|  | SA_RESTORER flag isn't set, the return address points to a bit of | 
|  | code on the stack.  This function returns whether the PC appears to | 
|  | be within this bit of code. | 
|  |  | 
|  | The instruction sequence for normal signals is | 
|  | pop    %eax | 
|  | mov    $0x77, %eax | 
|  | int    $0x80 | 
|  | or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80. | 
|  |  | 
|  | Checking for the code sequence should be somewhat reliable, because | 
|  | the effect is to call the system call sigreturn.  This is unlikely | 
|  | to occur anywhere other than in a signal trampoline. | 
|  |  | 
|  | It kind of sucks that we have to read memory from the process in | 
|  | order to identify a signal trampoline, but there doesn't seem to be | 
|  | any other way.  Therefore we only do the memory reads if no | 
|  | function name could be identified, which should be the case since | 
|  | the code is on the stack. | 
|  |  | 
|  | Detection of signal trampolines for handlers that set the | 
|  | SA_RESTORER flag is in general not possible.  Unfortunately this is | 
|  | what the GNU C Library has been doing for quite some time now. | 
|  | However, as of version 2.1.2, the GNU C Library uses signal | 
|  | trampolines (named __restore and __restore_rt) that are identical | 
|  | to the ones used by the kernel.  Therefore, these trampolines are | 
|  | supported too.  */ | 
|  |  | 
|  | #define LINUX_SIGTRAMP_INSN0	0x58	/* pop %eax */ | 
|  | #define LINUX_SIGTRAMP_OFFSET0	0 | 
|  | #define LINUX_SIGTRAMP_INSN1	0xb8	/* mov $NNNN, %eax */ | 
|  | #define LINUX_SIGTRAMP_OFFSET1	1 | 
|  | #define LINUX_SIGTRAMP_INSN2	0xcd	/* int */ | 
|  | #define LINUX_SIGTRAMP_OFFSET2	6 | 
|  |  | 
|  | static const gdb_byte linux_sigtramp_code[] = | 
|  | { | 
|  | LINUX_SIGTRAMP_INSN0,					/* pop %eax */ | 
|  | LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00,		/* mov $0x77, %eax */ | 
|  | LINUX_SIGTRAMP_INSN2, 0x80				/* int $0x80 */ | 
|  | }; | 
|  |  | 
|  | #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code) | 
|  |  | 
|  | /* If THIS_FRAME is a sigtramp routine, return the address of the | 
|  | start of the routine.  Otherwise, return 0.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | i386_linux_sigtramp_start (frame_info_ptr this_frame) | 
|  | { | 
|  | CORE_ADDR pc = get_frame_pc (this_frame); | 
|  | gdb_byte buf[LINUX_SIGTRAMP_LEN]; | 
|  |  | 
|  | /* We only recognize a signal trampoline if PC is at the start of | 
|  | one of the three instructions.  We optimize for finding the PC at | 
|  | the start, as will be the case when the trampoline is not the | 
|  | first frame on the stack.  We assume that in the case where the | 
|  | PC is not at the start of the instruction sequence, there will be | 
|  | a few trailing readable bytes on the stack.  */ | 
|  |  | 
|  | if (!safe_frame_unwind_memory (this_frame, pc, buf)) | 
|  | return 0; | 
|  |  | 
|  | if (buf[0] != LINUX_SIGTRAMP_INSN0) | 
|  | { | 
|  | int adjust; | 
|  |  | 
|  | switch (buf[0]) | 
|  | { | 
|  | case LINUX_SIGTRAMP_INSN1: | 
|  | adjust = LINUX_SIGTRAMP_OFFSET1; | 
|  | break; | 
|  | case LINUX_SIGTRAMP_INSN2: | 
|  | adjust = LINUX_SIGTRAMP_OFFSET2; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pc -= adjust; | 
|  |  | 
|  | if (!safe_frame_unwind_memory (this_frame, pc, buf)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0) | 
|  | return 0; | 
|  |  | 
|  | return pc; | 
|  | } | 
|  |  | 
|  | /* This function does the same for RT signals.  Here the instruction | 
|  | sequence is | 
|  | mov    $0xad, %eax | 
|  | int    $0x80 | 
|  | or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80. | 
|  |  | 
|  | The effect is to call the system call rt_sigreturn.  */ | 
|  |  | 
|  | #define LINUX_RT_SIGTRAMP_INSN0		0xb8 /* mov $NNNN, %eax */ | 
|  | #define LINUX_RT_SIGTRAMP_OFFSET0	0 | 
|  | #define LINUX_RT_SIGTRAMP_INSN1		0xcd /* int */ | 
|  | #define LINUX_RT_SIGTRAMP_OFFSET1	5 | 
|  |  | 
|  | static const gdb_byte linux_rt_sigtramp_code[] = | 
|  | { | 
|  | LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00,	/* mov $0xad, %eax */ | 
|  | LINUX_RT_SIGTRAMP_INSN1, 0x80				/* int $0x80 */ | 
|  | }; | 
|  |  | 
|  | #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code) | 
|  |  | 
|  | /* If THIS_FRAME is an RT sigtramp routine, return the address of the | 
|  | start of the routine.  Otherwise, return 0.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | i386_linux_rt_sigtramp_start (frame_info_ptr this_frame) | 
|  | { | 
|  | CORE_ADDR pc = get_frame_pc (this_frame); | 
|  | gdb_byte buf[LINUX_RT_SIGTRAMP_LEN]; | 
|  |  | 
|  | /* We only recognize a signal trampoline if PC is at the start of | 
|  | one of the two instructions.  We optimize for finding the PC at | 
|  | the start, as will be the case when the trampoline is not the | 
|  | first frame on the stack.  We assume that in the case where the | 
|  | PC is not at the start of the instruction sequence, there will be | 
|  | a few trailing readable bytes on the stack.  */ | 
|  |  | 
|  | if (!safe_frame_unwind_memory (this_frame, pc, buf)) | 
|  | return 0; | 
|  |  | 
|  | if (buf[0] != LINUX_RT_SIGTRAMP_INSN0) | 
|  | { | 
|  | if (buf[0] != LINUX_RT_SIGTRAMP_INSN1) | 
|  | return 0; | 
|  |  | 
|  | pc -= LINUX_RT_SIGTRAMP_OFFSET1; | 
|  |  | 
|  | if (!safe_frame_unwind_memory (this_frame, pc, | 
|  | buf)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0) | 
|  | return 0; | 
|  |  | 
|  | return pc; | 
|  | } | 
|  |  | 
|  | /* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp | 
|  | routine.  */ | 
|  |  | 
|  | static int | 
|  | i386_linux_sigtramp_p (frame_info_ptr this_frame) | 
|  | { | 
|  | CORE_ADDR pc = get_frame_pc (this_frame); | 
|  | const char *name; | 
|  |  | 
|  | find_pc_partial_function (pc, &name, NULL, NULL); | 
|  |  | 
|  | /* If we have NAME, we can optimize the search.  The trampolines are | 
|  | named __restore and __restore_rt.  However, they aren't dynamically | 
|  | exported from the shared C library, so the trampoline may appear to | 
|  | be part of the preceding function.  This should always be sigaction, | 
|  | __sigaction, or __libc_sigaction (all aliases to the same function).  */ | 
|  | if (name == NULL || strstr (name, "sigaction") != NULL) | 
|  | return (i386_linux_sigtramp_start (this_frame) != 0 | 
|  | || i386_linux_rt_sigtramp_start (this_frame) != 0); | 
|  |  | 
|  | return (strcmp ("__restore", name) == 0 | 
|  | || strcmp ("__restore_rt", name) == 0); | 
|  | } | 
|  |  | 
|  | /* Return one if the PC of THIS_FRAME is in a signal trampoline which | 
|  | may have DWARF-2 CFI.  */ | 
|  |  | 
|  | static int | 
|  | i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch, | 
|  | frame_info_ptr this_frame) | 
|  | { | 
|  | CORE_ADDR pc = get_frame_pc (this_frame); | 
|  | const char *name; | 
|  |  | 
|  | find_pc_partial_function (pc, &name, NULL, NULL); | 
|  |  | 
|  | /* If a vsyscall DSO is in use, the signal trampolines may have these | 
|  | names.  */ | 
|  | if (name && (strcmp (name, "__kernel_sigreturn") == 0 | 
|  | || strcmp (name, "__kernel_rt_sigreturn") == 0)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>.  */ | 
|  | #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20 | 
|  |  | 
|  | /* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the | 
|  | address of the associated sigcontext structure.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | i386_linux_sigcontext_addr (frame_info_ptr this_frame) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR pc; | 
|  | CORE_ADDR sp; | 
|  | gdb_byte buf[4]; | 
|  |  | 
|  | get_frame_register (this_frame, I386_ESP_REGNUM, buf); | 
|  | sp = extract_unsigned_integer (buf, 4, byte_order); | 
|  |  | 
|  | pc = i386_linux_sigtramp_start (this_frame); | 
|  | if (pc) | 
|  | { | 
|  | /* The sigcontext structure lives on the stack, right after | 
|  | the signum argument.  We determine the address of the | 
|  | sigcontext structure by looking at the frame's stack | 
|  | pointer.  Keep in mind that the first instruction of the | 
|  | sigtramp code is "pop %eax".  If the PC is after this | 
|  | instruction, adjust the returned value accordingly.  */ | 
|  | if (pc == get_frame_pc (this_frame)) | 
|  | return sp + 4; | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | pc = i386_linux_rt_sigtramp_start (this_frame); | 
|  | if (pc) | 
|  | { | 
|  | CORE_ADDR ucontext_addr; | 
|  |  | 
|  | /* The sigcontext structure is part of the user context.  A | 
|  | pointer to the user context is passed as the third argument | 
|  | to the signal handler.  */ | 
|  | read_memory (sp + 8, buf, 4); | 
|  | ucontext_addr = extract_unsigned_integer (buf, 4, byte_order); | 
|  | return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET; | 
|  | } | 
|  |  | 
|  | error (_("Couldn't recognize signal trampoline.")); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Set the program counter for process PTID to PC.  */ | 
|  |  | 
|  | static void | 
|  | i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc) | 
|  | { | 
|  | regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc); | 
|  |  | 
|  | /* We must be careful with modifying the program counter.  If we | 
|  | just interrupted a system call, the kernel might try to restart | 
|  | it when we resume the inferior.  On restarting the system call, | 
|  | the kernel will try backing up the program counter even though it | 
|  | no longer points at the system call.  This typically results in a | 
|  | SIGSEGV or SIGILL.  We can prevent this by writing `-1' in the | 
|  | "orig_eax" pseudo-register. | 
|  |  | 
|  | Note that "orig_eax" is saved when setting up a dummy call frame. | 
|  | This means that it is properly restored when that frame is | 
|  | popped, and that the interrupted system call will be restarted | 
|  | when we resume the inferior on return from a function call from | 
|  | within GDB.  In all other cases the system call will not be | 
|  | restarted.  */ | 
|  | regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1); | 
|  | } | 
|  |  | 
|  | /* Record all registers but IP register for process-record.  */ | 
|  |  | 
|  | static int | 
|  | i386_all_but_ip_registers_record (struct regcache *regcache) | 
|  | { | 
|  | if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM)) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, I386_ECX_REGNUM)) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, I386_EDX_REGNUM)) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, I386_EBX_REGNUM)) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, I386_ESP_REGNUM)) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, I386_EBP_REGNUM)) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, I386_ESI_REGNUM)) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, I386_EDI_REGNUM)) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM)) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* i386_canonicalize_syscall maps from the native i386 Linux set | 
|  | of syscall ids into a canonical set of syscall ids used by | 
|  | process record (a mostly trivial mapping, since the canonical | 
|  | set was originally taken from the i386 set).  */ | 
|  |  | 
|  | static enum gdb_syscall | 
|  | i386_canonicalize_syscall (int syscall) | 
|  | { | 
|  | enum { i386_syscall_max = 499 }; | 
|  |  | 
|  | if (syscall <= i386_syscall_max) | 
|  | return (enum gdb_syscall) syscall; | 
|  | else | 
|  | return gdb_sys_no_syscall; | 
|  | } | 
|  |  | 
|  | /* Value of the sigcode in case of a boundary fault.  */ | 
|  |  | 
|  | #define SIG_CODE_BONDARY_FAULT 3 | 
|  |  | 
|  | /* i386 GNU/Linux implementation of the report_signal_info | 
|  | gdbarch hook.  Displays information related to MPX bound | 
|  | violations.  */ | 
|  | void | 
|  | i386_linux_report_signal_info (struct gdbarch *gdbarch, struct ui_out *uiout, | 
|  | enum gdb_signal siggnal) | 
|  | { | 
|  | /* -Wmaybe-uninitialized  */ | 
|  | CORE_ADDR lower_bound = 0, upper_bound = 0, access = 0; | 
|  | int is_upper; | 
|  | long sig_code = 0; | 
|  |  | 
|  | if (!i386_mpx_enabled () || siggnal != GDB_SIGNAL_SEGV) | 
|  | return; | 
|  |  | 
|  | try | 
|  | { | 
|  | /* Sigcode evaluates if the actual segfault is a boundary violation.  */ | 
|  | sig_code = parse_and_eval_long ("$_siginfo.si_code\n"); | 
|  |  | 
|  | lower_bound | 
|  | = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._lower"); | 
|  | upper_bound | 
|  | = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._upper"); | 
|  | access | 
|  | = parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr"); | 
|  | } | 
|  | catch (const gdb_exception_error &exception) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* If this is not a boundary violation just return.  */ | 
|  | if (sig_code != SIG_CODE_BONDARY_FAULT) | 
|  | return; | 
|  |  | 
|  | is_upper = (access > upper_bound ? 1 : 0); | 
|  |  | 
|  | uiout->text ("\n"); | 
|  | if (is_upper) | 
|  | uiout->field_string ("sigcode-meaning", _("Upper bound violation")); | 
|  | else | 
|  | uiout->field_string ("sigcode-meaning", _("Lower bound violation")); | 
|  |  | 
|  | uiout->text (_(" while accessing address ")); | 
|  | uiout->field_core_addr ("bound-access", gdbarch, access); | 
|  |  | 
|  | uiout->text (_("\nBounds: [lower = ")); | 
|  | uiout->field_core_addr ("lower-bound", gdbarch, lower_bound); | 
|  |  | 
|  | uiout->text (_(", upper = ")); | 
|  | uiout->field_core_addr ("upper-bound", gdbarch, upper_bound); | 
|  |  | 
|  | uiout->text (_("]")); | 
|  | } | 
|  |  | 
|  | /* Parse the arguments of current system call instruction and record | 
|  | the values of the registers and memory that will be changed into | 
|  | "record_arch_list".  This instruction is "int 0x80" (Linux | 
|  | Kernel2.4) or "sysenter" (Linux Kernel 2.6). | 
|  |  | 
|  | Return -1 if something wrong.  */ | 
|  |  | 
|  | static struct linux_record_tdep i386_linux_record_tdep; | 
|  |  | 
|  | static int | 
|  | i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache) | 
|  | { | 
|  | int ret; | 
|  | LONGEST syscall_native; | 
|  | enum gdb_syscall syscall_gdb; | 
|  |  | 
|  | regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native); | 
|  |  | 
|  | syscall_gdb = i386_canonicalize_syscall (syscall_native); | 
|  |  | 
|  | if (syscall_gdb < 0) | 
|  | { | 
|  | gdb_printf (gdb_stderr, | 
|  | _("Process record and replay target doesn't " | 
|  | "support syscall number %s\n"), | 
|  | plongest (syscall_native)); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (syscall_gdb == gdb_sys_sigreturn | 
|  | || syscall_gdb == gdb_sys_rt_sigreturn) | 
|  | { | 
|  | if (i386_all_but_ip_registers_record (regcache)) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = record_linux_system_call (syscall_gdb, regcache, | 
|  | &i386_linux_record_tdep); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Record the return value of the system call.  */ | 
|  | if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM)) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define I386_LINUX_xstate	270 | 
|  | #define I386_LINUX_frame_size	732 | 
|  |  | 
|  | static int | 
|  | i386_linux_record_signal (struct gdbarch *gdbarch, | 
|  | struct regcache *regcache, | 
|  | enum gdb_signal signal) | 
|  | { | 
|  | ULONGEST esp; | 
|  |  | 
|  | if (i386_all_but_ip_registers_record (regcache)) | 
|  | return -1; | 
|  |  | 
|  | if (record_full_arch_list_add_reg (regcache, I386_EIP_REGNUM)) | 
|  | return -1; | 
|  |  | 
|  | /* Record the change in the stack.  */ | 
|  | regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp); | 
|  | /* This is for xstate. | 
|  | sp -= sizeof (struct _fpstate);  */ | 
|  | esp -= I386_LINUX_xstate; | 
|  | /* This is for frame_size. | 
|  | sp -= sizeof (struct rt_sigframe);  */ | 
|  | esp -= I386_LINUX_frame_size; | 
|  | if (record_full_arch_list_add_mem (esp, | 
|  | I386_LINUX_xstate + I386_LINUX_frame_size)) | 
|  | return -1; | 
|  |  | 
|  | if (record_full_arch_list_add_end ()) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Core of the implementation for gdbarch get_syscall_number.  Get pending | 
|  | syscall number from REGCACHE.  If there is no pending syscall -1 will be | 
|  | returned.  Pending syscall means ptrace has stepped into the syscall but | 
|  | another ptrace call will step out.  PC is right after the int $0x80 | 
|  | / syscall / sysenter instruction in both cases, PC does not change during | 
|  | the second ptrace step.  */ | 
|  |  | 
|  | static LONGEST | 
|  | i386_linux_get_syscall_number_from_regcache (struct regcache *regcache) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | /* The content of a register.  */ | 
|  | gdb_byte buf[4]; | 
|  | /* The result.  */ | 
|  | LONGEST ret; | 
|  |  | 
|  | /* Getting the system call number from the register. | 
|  | When dealing with x86 architecture, this information | 
|  | is stored at %eax register.  */ | 
|  | regcache->cooked_read (I386_LINUX_ORIG_EAX_REGNUM, buf); | 
|  |  | 
|  | ret = extract_signed_integer (buf, byte_order); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Wrapper for i386_linux_get_syscall_number_from_regcache to make it | 
|  | compatible with gdbarch get_syscall_number method prototype.  */ | 
|  |  | 
|  | static LONGEST | 
|  | i386_linux_get_syscall_number (struct gdbarch *gdbarch, | 
|  | thread_info *thread) | 
|  | { | 
|  | struct regcache *regcache = get_thread_regcache (thread); | 
|  |  | 
|  | return i386_linux_get_syscall_number_from_regcache (regcache); | 
|  | } | 
|  |  | 
|  | /* The register sets used in GNU/Linux ELF core-dumps are identical to | 
|  | the register sets in `struct user' that are used for a.out | 
|  | core-dumps.  These are also used by ptrace(2).  The corresponding | 
|  | types are `elf_gregset_t' for the general-purpose registers (with | 
|  | `elf_greg_t' the type of a single GP register) and `elf_fpregset_t' | 
|  | for the floating-point registers. | 
|  |  | 
|  | Those types used to be available under the names `gregset_t' and | 
|  | `fpregset_t' too, and GDB used those names in the past.  But those | 
|  | names are now used for the register sets used in the `mcontext_t' | 
|  | type, which have a different size and layout.  */ | 
|  |  | 
|  | /* Mapping between the general-purpose registers in `struct user' | 
|  | format and GDB's register cache layout.  */ | 
|  |  | 
|  | /* From <sys/reg.h>.  */ | 
|  | int i386_linux_gregset_reg_offset[] = | 
|  | { | 
|  | 6 * 4,			/* %eax */ | 
|  | 1 * 4,			/* %ecx */ | 
|  | 2 * 4,			/* %edx */ | 
|  | 0 * 4,			/* %ebx */ | 
|  | 15 * 4,			/* %esp */ | 
|  | 5 * 4,			/* %ebp */ | 
|  | 3 * 4,			/* %esi */ | 
|  | 4 * 4,			/* %edi */ | 
|  | 12 * 4,			/* %eip */ | 
|  | 14 * 4,			/* %eflags */ | 
|  | 13 * 4,			/* %cs */ | 
|  | 16 * 4,			/* %ss */ | 
|  | 7 * 4,			/* %ds */ | 
|  | 8 * 4,			/* %es */ | 
|  | 9 * 4,			/* %fs */ | 
|  | 10 * 4,			/* %gs */ | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | -1, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | -1, -1, -1, -1,		  /* MPX registers BND0 ... BND3.  */ | 
|  | -1, -1,			  /* MPX registers BNDCFGU, BNDSTATUS.  */ | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512)  */ | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512)  */ | 
|  | -1,				  /* PKRU register  */ | 
|  | 11 * 4,			  /* "orig_eax"  */ | 
|  | }; | 
|  |  | 
|  | /* Mapping between the general-purpose registers in `struct | 
|  | sigcontext' format and GDB's register cache layout.  */ | 
|  |  | 
|  | /* From <asm/sigcontext.h>.  */ | 
|  | static int i386_linux_sc_reg_offset[] = | 
|  | { | 
|  | 11 * 4,			/* %eax */ | 
|  | 10 * 4,			/* %ecx */ | 
|  | 9 * 4,			/* %edx */ | 
|  | 8 * 4,			/* %ebx */ | 
|  | 7 * 4,			/* %esp */ | 
|  | 6 * 4,			/* %ebp */ | 
|  | 5 * 4,			/* %esi */ | 
|  | 4 * 4,			/* %edi */ | 
|  | 14 * 4,			/* %eip */ | 
|  | 16 * 4,			/* %eflags */ | 
|  | 15 * 4,			/* %cs */ | 
|  | 18 * 4,			/* %ss */ | 
|  | 3 * 4,			/* %ds */ | 
|  | 2 * 4,			/* %es */ | 
|  | 1 * 4,			/* %fs */ | 
|  | 0 * 4				/* %gs */ | 
|  | }; | 
|  |  | 
|  | /* Get XSAVE extended state xcr0 from core dump.  */ | 
|  |  | 
|  | uint64_t | 
|  | i386_linux_core_read_xcr0 (bfd *abfd) | 
|  | { | 
|  | asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate"); | 
|  | uint64_t xcr0; | 
|  |  | 
|  | if (xstate) | 
|  | { | 
|  | size_t size = bfd_section_size (xstate); | 
|  |  | 
|  | /* Check extended state size.  */ | 
|  | if (size < X86_XSTATE_AVX_SIZE) | 
|  | xcr0 = X86_XSTATE_SSE_MASK; | 
|  | else | 
|  | { | 
|  | char contents[8]; | 
|  |  | 
|  | if (! bfd_get_section_contents (abfd, xstate, contents, | 
|  | I386_LINUX_XSAVE_XCR0_OFFSET, | 
|  | 8)) | 
|  | { | 
|  | warning (_("Couldn't read `xcr0' bytes from " | 
|  | "`.reg-xstate' section in core file.")); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | xcr0 = bfd_get_64 (abfd, contents); | 
|  | } | 
|  | } | 
|  | else | 
|  | xcr0 = 0; | 
|  |  | 
|  | return xcr0; | 
|  | } | 
|  |  | 
|  | /* See i386-linux-tdep.h.  */ | 
|  |  | 
|  | const struct target_desc * | 
|  | i386_linux_read_description (uint64_t xcr0) | 
|  | { | 
|  | if (xcr0 == 0) | 
|  | return NULL; | 
|  |  | 
|  | static struct target_desc *i386_linux_tdescs \ | 
|  | [2/*X87*/][2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {}; | 
|  | struct target_desc **tdesc; | 
|  |  | 
|  | tdesc = &i386_linux_tdescs[(xcr0 & X86_XSTATE_X87) ? 1 : 0] | 
|  | [(xcr0 & X86_XSTATE_SSE) ? 1 : 0] | 
|  | [(xcr0 & X86_XSTATE_AVX) ? 1 : 0] | 
|  | [(xcr0 & X86_XSTATE_MPX) ? 1 : 0] | 
|  | [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0] | 
|  | [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]; | 
|  |  | 
|  | if (*tdesc == NULL) | 
|  | *tdesc = i386_create_target_description (xcr0, true, false); | 
|  |  | 
|  | return *tdesc; | 
|  | } | 
|  |  | 
|  | /* Get Linux/x86 target description from core dump.  */ | 
|  |  | 
|  | static const struct target_desc * | 
|  | i386_linux_core_read_description (struct gdbarch *gdbarch, | 
|  | struct target_ops *target, | 
|  | bfd *abfd) | 
|  | { | 
|  | /* Linux/i386.  */ | 
|  | uint64_t xcr0 = i386_linux_core_read_xcr0 (abfd); | 
|  | const struct target_desc *tdesc = i386_linux_read_description (xcr0); | 
|  |  | 
|  | if (tdesc != NULL) | 
|  | return tdesc; | 
|  |  | 
|  | if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL) | 
|  | return i386_linux_read_description (X86_XSTATE_SSE_MASK); | 
|  | else | 
|  | return i386_linux_read_description (X86_XSTATE_X87_MASK); | 
|  | } | 
|  |  | 
|  | /* Similar to i386_supply_fpregset, but use XSAVE extended state.  */ | 
|  |  | 
|  | static void | 
|  | i386_linux_supply_xstateregset (const struct regset *regset, | 
|  | struct regcache *regcache, int regnum, | 
|  | const void *xstateregs, size_t len) | 
|  | { | 
|  | i387_supply_xsave (regcache, regnum, xstateregs); | 
|  | } | 
|  |  | 
|  | struct type * | 
|  | x86_linux_get_siginfo_type (struct gdbarch *gdbarch) | 
|  | { | 
|  | return linux_get_siginfo_type_with_fields (gdbarch, LINUX_SIGINFO_FIELD_ADDR_BND); | 
|  | } | 
|  |  | 
|  | /* Similar to i386_collect_fpregset, but use XSAVE extended state.  */ | 
|  |  | 
|  | static void | 
|  | i386_linux_collect_xstateregset (const struct regset *regset, | 
|  | const struct regcache *regcache, | 
|  | int regnum, void *xstateregs, size_t len) | 
|  | { | 
|  | i387_collect_xsave (regcache, regnum, xstateregs, 1); | 
|  | } | 
|  |  | 
|  | /* Register set definitions.  */ | 
|  |  | 
|  | static const struct regset i386_linux_xstateregset = | 
|  | { | 
|  | NULL, | 
|  | i386_linux_supply_xstateregset, | 
|  | i386_linux_collect_xstateregset | 
|  | }; | 
|  |  | 
|  | /* Iterate over core file register note sections.  */ | 
|  |  | 
|  | static void | 
|  | i386_linux_iterate_over_regset_sections (struct gdbarch *gdbarch, | 
|  | iterate_over_regset_sections_cb *cb, | 
|  | void *cb_data, | 
|  | const struct regcache *regcache) | 
|  | { | 
|  | i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | cb (".reg", 68, 68, &i386_gregset, NULL, cb_data); | 
|  |  | 
|  | if (tdep->xcr0 & X86_XSTATE_AVX) | 
|  | cb (".reg-xstate", X86_XSTATE_SIZE (tdep->xcr0), | 
|  | X86_XSTATE_SIZE (tdep->xcr0), &i386_linux_xstateregset, | 
|  | "XSAVE extended state", cb_data); | 
|  | else if (tdep->xcr0 & X86_XSTATE_SSE) | 
|  | cb (".reg-xfp", 512, 512, &i386_fpregset, "extended floating-point", | 
|  | cb_data); | 
|  | else | 
|  | cb (".reg2", 108, 108, &i386_fpregset, NULL, cb_data); | 
|  | } | 
|  |  | 
|  | /* Linux kernel shows PC value after the 'int $0x80' instruction even if | 
|  | inferior is still inside the syscall.  On next PTRACE_SINGLESTEP it will | 
|  | finish the syscall but PC will not change. | 
|  |  | 
|  | Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall | 
|  | i386_displaced_step_fixup would keep PC at the displaced pad location. | 
|  | As PC is pointing to the 'ret' instruction before the step | 
|  | i386_displaced_step_fixup would expect inferior has just executed that 'ret' | 
|  | and PC should not be adjusted.  In reality it finished syscall instead and | 
|  | PC should get relocated back to its vDSO address.  Hide the 'ret' | 
|  | instruction by 'nop' so that i386_displaced_step_fixup is not confused. | 
|  |  | 
|  | It is not fully correct as the bytes in struct | 
|  | displaced_step_copy_insn_closure will not match the inferior code.  But we | 
|  | would need some new flag in displaced_step_copy_insn_closure otherwise to | 
|  | keep the state that syscall is finishing for the later | 
|  | i386_displaced_step_fixup execution as the syscall execution is already no | 
|  | longer detectable there.  The new flag field would mean i386-linux-tdep.c | 
|  | needs to wrap all the displacement methods of i386-tdep.c which does not seem | 
|  | worth it.  The same effect is achieved by patching that 'nop' instruction | 
|  | there instead.  */ | 
|  |  | 
|  | static displaced_step_copy_insn_closure_up | 
|  | i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch, | 
|  | CORE_ADDR from, CORE_ADDR to, | 
|  | struct regcache *regs) | 
|  | { | 
|  | displaced_step_copy_insn_closure_up closure_ | 
|  | =  i386_displaced_step_copy_insn (gdbarch, from, to, regs); | 
|  |  | 
|  | if (i386_linux_get_syscall_number_from_regcache (regs) != -1) | 
|  | { | 
|  | /* The closure returned by i386_displaced_step_copy_insn is simply a | 
|  | buffer with a copy of the instruction. */ | 
|  | i386_displaced_step_copy_insn_closure *closure | 
|  | = (i386_displaced_step_copy_insn_closure *) closure_.get (); | 
|  |  | 
|  | /* Fake nop.  */ | 
|  | closure->buf[0] = 0x90; | 
|  | } | 
|  |  | 
|  | return closure_; | 
|  | } | 
|  |  | 
|  | static void | 
|  | i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) | 
|  | { | 
|  | i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  | const struct target_desc *tdesc = info.target_desc; | 
|  | struct tdesc_arch_data *tdesc_data = info.tdesc_data; | 
|  | const struct tdesc_feature *feature; | 
|  | int valid_p; | 
|  |  | 
|  | gdb_assert (tdesc_data); | 
|  |  | 
|  | linux_init_abi (info, gdbarch, 1); | 
|  |  | 
|  | /* GNU/Linux uses ELF.  */ | 
|  | i386_elf_init_abi (info, gdbarch); | 
|  |  | 
|  | /* Reserve a number for orig_eax.  */ | 
|  | set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS); | 
|  |  | 
|  | if (! tdesc_has_registers (tdesc)) | 
|  | tdesc = i386_linux_read_description (X86_XSTATE_SSE_MASK); | 
|  | tdep->tdesc = tdesc; | 
|  |  | 
|  | feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux"); | 
|  | if (feature == NULL) | 
|  | return; | 
|  |  | 
|  | valid_p = tdesc_numbered_register (feature, tdesc_data, | 
|  | I386_LINUX_ORIG_EAX_REGNUM, | 
|  | "orig_eax"); | 
|  | if (!valid_p) | 
|  | return; | 
|  |  | 
|  | /* Add the %orig_eax register used for syscall restarting.  */ | 
|  | set_gdbarch_write_pc (gdbarch, i386_linux_write_pc); | 
|  |  | 
|  | tdep->register_reggroup_p = i386_linux_register_reggroup_p; | 
|  |  | 
|  | tdep->gregset_reg_offset = i386_linux_gregset_reg_offset; | 
|  | tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset); | 
|  | tdep->sizeof_gregset = 17 * 4; | 
|  |  | 
|  | tdep->jb_pc_offset = 20;	/* From <bits/setjmp.h>.  */ | 
|  |  | 
|  | tdep->sigtramp_p = i386_linux_sigtramp_p; | 
|  | tdep->sigcontext_addr = i386_linux_sigcontext_addr; | 
|  | tdep->sc_reg_offset = i386_linux_sc_reg_offset; | 
|  | tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset); | 
|  |  | 
|  | tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET; | 
|  |  | 
|  | set_gdbarch_process_record (gdbarch, i386_process_record); | 
|  | set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal); | 
|  |  | 
|  | /* Initialize the i386_linux_record_tdep.  */ | 
|  | /* These values are the size of the type that will be used in a system | 
|  | call.  They are obtained from Linux Kernel source.  */ | 
|  | i386_linux_record_tdep.size_pointer | 
|  | = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; | 
|  | i386_linux_record_tdep.size__old_kernel_stat = 32; | 
|  | i386_linux_record_tdep.size_tms = 16; | 
|  | i386_linux_record_tdep.size_loff_t = 8; | 
|  | i386_linux_record_tdep.size_flock = 16; | 
|  | i386_linux_record_tdep.size_oldold_utsname = 45; | 
|  | i386_linux_record_tdep.size_ustat = 20; | 
|  | i386_linux_record_tdep.size_old_sigaction = 16; | 
|  | i386_linux_record_tdep.size_old_sigset_t = 4; | 
|  | i386_linux_record_tdep.size_rlimit = 8; | 
|  | i386_linux_record_tdep.size_rusage = 72; | 
|  | i386_linux_record_tdep.size_timeval = 8; | 
|  | i386_linux_record_tdep.size_timezone = 8; | 
|  | i386_linux_record_tdep.size_old_gid_t = 2; | 
|  | i386_linux_record_tdep.size_old_uid_t = 2; | 
|  | i386_linux_record_tdep.size_fd_set = 128; | 
|  | i386_linux_record_tdep.size_old_dirent = 268; | 
|  | i386_linux_record_tdep.size_statfs = 64; | 
|  | i386_linux_record_tdep.size_statfs64 = 84; | 
|  | i386_linux_record_tdep.size_sockaddr = 16; | 
|  | i386_linux_record_tdep.size_int | 
|  | = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT; | 
|  | i386_linux_record_tdep.size_long | 
|  | = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT; | 
|  | i386_linux_record_tdep.size_ulong | 
|  | = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT; | 
|  | i386_linux_record_tdep.size_msghdr = 28; | 
|  | i386_linux_record_tdep.size_itimerval = 16; | 
|  | i386_linux_record_tdep.size_stat = 88; | 
|  | i386_linux_record_tdep.size_old_utsname = 325; | 
|  | i386_linux_record_tdep.size_sysinfo = 64; | 
|  | i386_linux_record_tdep.size_msqid_ds = 88; | 
|  | i386_linux_record_tdep.size_shmid_ds = 84; | 
|  | i386_linux_record_tdep.size_new_utsname = 390; | 
|  | i386_linux_record_tdep.size_timex = 128; | 
|  | i386_linux_record_tdep.size_mem_dqinfo = 24; | 
|  | i386_linux_record_tdep.size_if_dqblk = 68; | 
|  | i386_linux_record_tdep.size_fs_quota_stat = 68; | 
|  | i386_linux_record_tdep.size_timespec = 8; | 
|  | i386_linux_record_tdep.size_pollfd = 8; | 
|  | i386_linux_record_tdep.size_NFS_FHSIZE = 32; | 
|  | i386_linux_record_tdep.size_knfsd_fh = 132; | 
|  | i386_linux_record_tdep.size_TASK_COMM_LEN = 16; | 
|  | i386_linux_record_tdep.size_sigaction = 20; | 
|  | i386_linux_record_tdep.size_sigset_t = 8; | 
|  | i386_linux_record_tdep.size_siginfo_t = 128; | 
|  | i386_linux_record_tdep.size_cap_user_data_t = 12; | 
|  | i386_linux_record_tdep.size_stack_t = 12; | 
|  | i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long; | 
|  | i386_linux_record_tdep.size_stat64 = 96; | 
|  | i386_linux_record_tdep.size_gid_t = 4; | 
|  | i386_linux_record_tdep.size_uid_t = 4; | 
|  | i386_linux_record_tdep.size_PAGE_SIZE = 4096; | 
|  | i386_linux_record_tdep.size_flock64 = 24; | 
|  | i386_linux_record_tdep.size_user_desc = 16; | 
|  | i386_linux_record_tdep.size_io_event = 32; | 
|  | i386_linux_record_tdep.size_iocb = 64; | 
|  | i386_linux_record_tdep.size_epoll_event = 12; | 
|  | i386_linux_record_tdep.size_itimerspec | 
|  | = i386_linux_record_tdep.size_timespec * 2; | 
|  | i386_linux_record_tdep.size_mq_attr = 32; | 
|  | i386_linux_record_tdep.size_termios = 36; | 
|  | i386_linux_record_tdep.size_termios2 = 44; | 
|  | i386_linux_record_tdep.size_pid_t = 4; | 
|  | i386_linux_record_tdep.size_winsize = 8; | 
|  | i386_linux_record_tdep.size_serial_struct = 60; | 
|  | i386_linux_record_tdep.size_serial_icounter_struct = 80; | 
|  | i386_linux_record_tdep.size_hayes_esp_config = 12; | 
|  | i386_linux_record_tdep.size_size_t = 4; | 
|  | i386_linux_record_tdep.size_iovec = 8; | 
|  | i386_linux_record_tdep.size_time_t = 4; | 
|  |  | 
|  | /* These values are the second argument of system call "sys_ioctl". | 
|  | They are obtained from Linux Kernel source.  */ | 
|  | i386_linux_record_tdep.ioctl_TCGETS = 0x5401; | 
|  | i386_linux_record_tdep.ioctl_TCSETS = 0x5402; | 
|  | i386_linux_record_tdep.ioctl_TCSETSW = 0x5403; | 
|  | i386_linux_record_tdep.ioctl_TCSETSF = 0x5404; | 
|  | i386_linux_record_tdep.ioctl_TCGETA = 0x5405; | 
|  | i386_linux_record_tdep.ioctl_TCSETA = 0x5406; | 
|  | i386_linux_record_tdep.ioctl_TCSETAW = 0x5407; | 
|  | i386_linux_record_tdep.ioctl_TCSETAF = 0x5408; | 
|  | i386_linux_record_tdep.ioctl_TCSBRK = 0x5409; | 
|  | i386_linux_record_tdep.ioctl_TCXONC = 0x540A; | 
|  | i386_linux_record_tdep.ioctl_TCFLSH = 0x540B; | 
|  | i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C; | 
|  | i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D; | 
|  | i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E; | 
|  | i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F; | 
|  | i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410; | 
|  | i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411; | 
|  | i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412; | 
|  | i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413; | 
|  | i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414; | 
|  | i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415; | 
|  | i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416; | 
|  | i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417; | 
|  | i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418; | 
|  | i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419; | 
|  | i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A; | 
|  | i386_linux_record_tdep.ioctl_FIONREAD = 0x541B; | 
|  | i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD; | 
|  | i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C; | 
|  | i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D; | 
|  | i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E; | 
|  | i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F; | 
|  | i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420; | 
|  | i386_linux_record_tdep.ioctl_FIONBIO = 0x5421; | 
|  | i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422; | 
|  | i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423; | 
|  | i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424; | 
|  | i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425; | 
|  | i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426; | 
|  | i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427; | 
|  | i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428; | 
|  | i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429; | 
|  | i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a; | 
|  | i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b; | 
|  | i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c; | 
|  | i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d; | 
|  | i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430; | 
|  | i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431; | 
|  | i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450; | 
|  | i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451; | 
|  | i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452; | 
|  | i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453; | 
|  | i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454; | 
|  | i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455; | 
|  | i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456; | 
|  | i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457; | 
|  | i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458; | 
|  | i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459; | 
|  | i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A; | 
|  | i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B; | 
|  | i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C; | 
|  | i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D; | 
|  | i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E; | 
|  | i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F; | 
|  | i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460; | 
|  |  | 
|  | /* These values are the second argument of system call "sys_fcntl" | 
|  | and "sys_fcntl64".  They are obtained from Linux Kernel source.  */ | 
|  | i386_linux_record_tdep.fcntl_F_GETLK = 5; | 
|  | i386_linux_record_tdep.fcntl_F_GETLK64 = 12; | 
|  | i386_linux_record_tdep.fcntl_F_SETLK64 = 13; | 
|  | i386_linux_record_tdep.fcntl_F_SETLKW64 = 14; | 
|  |  | 
|  | i386_linux_record_tdep.arg1 = I386_EBX_REGNUM; | 
|  | i386_linux_record_tdep.arg2 = I386_ECX_REGNUM; | 
|  | i386_linux_record_tdep.arg3 = I386_EDX_REGNUM; | 
|  | i386_linux_record_tdep.arg4 = I386_ESI_REGNUM; | 
|  | i386_linux_record_tdep.arg5 = I386_EDI_REGNUM; | 
|  | i386_linux_record_tdep.arg6 = I386_EBP_REGNUM; | 
|  |  | 
|  | tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record; | 
|  | tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record; | 
|  | tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record; | 
|  |  | 
|  | /* N_FUN symbols in shared libraries have 0 for their values and need | 
|  | to be relocated.  */ | 
|  | set_gdbarch_sofun_address_maybe_missing (gdbarch, 1); | 
|  |  | 
|  | /* GNU/Linux uses SVR4-style shared libraries.  */ | 
|  | set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); | 
|  | set_solib_svr4_fetch_link_map_offsets | 
|  | (gdbarch, linux_ilp32_fetch_link_map_offsets); | 
|  |  | 
|  | /* GNU/Linux uses the dynamic linker included in the GNU C Library.  */ | 
|  | set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver); | 
|  |  | 
|  | dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p); | 
|  |  | 
|  | /* Enable TLS support.  */ | 
|  | set_gdbarch_fetch_tls_load_module_address (gdbarch, | 
|  | svr4_fetch_objfile_link_map); | 
|  |  | 
|  | /* Core file support.  */ | 
|  | set_gdbarch_iterate_over_regset_sections | 
|  | (gdbarch, i386_linux_iterate_over_regset_sections); | 
|  | set_gdbarch_core_read_description (gdbarch, | 
|  | i386_linux_core_read_description); | 
|  |  | 
|  | /* Displaced stepping.  */ | 
|  | set_gdbarch_displaced_step_copy_insn (gdbarch, | 
|  | i386_linux_displaced_step_copy_insn); | 
|  | set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup); | 
|  |  | 
|  | /* Functions for 'catch syscall'.  */ | 
|  | set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_I386); | 
|  | set_gdbarch_get_syscall_number (gdbarch, | 
|  | i386_linux_get_syscall_number); | 
|  |  | 
|  | set_gdbarch_get_siginfo_type (gdbarch, x86_linux_get_siginfo_type); | 
|  | set_gdbarch_report_signal_info (gdbarch, i386_linux_report_signal_info); | 
|  | } | 
|  |  | 
|  | void _initialize_i386_linux_tdep (); | 
|  | void | 
|  | _initialize_i386_linux_tdep () | 
|  | { | 
|  | gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX, | 
|  | i386_linux_init_abi); | 
|  | } |