| /* This file is part of the program psim. |
| |
| Copyright 1994, 1997, 2003, 2004 Andrew Cagney |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, see <http://www.gnu.org/licenses/>. |
| |
| */ |
| |
| |
| #ifndef _HW_INIT_C_ |
| #define _HW_INIT_C_ |
| |
| #include "device_table.h" |
| #include "bfd.h" |
| #include "psim.h" |
| |
| |
| /* DMA a file into memory */ |
| static int |
| dma_file(device *me, |
| const char *file_name, |
| unsigned_word addr) |
| { |
| int count; |
| int inc; |
| FILE *image; |
| char buf[1024]; |
| |
| /* get it open */ |
| image = fopen(file_name, "r"); |
| if (image == NULL) |
| return -1; |
| |
| /* read it in slowly */ |
| count = 0; |
| while (1) { |
| inc = fread(buf, 1, sizeof(buf), image); |
| if (inc <= 0) |
| break; |
| if (device_dma_write_buffer(device_parent(me), |
| buf, |
| 0 /*address-space*/, |
| addr+count, |
| inc /*nr-bytes*/, |
| 1 /*violate ro*/) != inc) { |
| fclose(image); |
| return -1; |
| } |
| count += inc; |
| } |
| |
| /* close down again */ |
| fclose(image); |
| |
| return count; |
| } |
| |
| |
| /* DEVICE |
| |
| file - load a file into memory |
| |
| DESCRIPTION |
| |
| Loads the entire contents of <file-name> into memory at starting at |
| <<real-address>>. Assumes that memory exists for the load. |
| |
| PROPERTIES |
| |
| file-name = <string> |
| |
| Name of the file to be loaded into memory |
| |
| real-address = <integer> |
| |
| Real address at which the file is to be loaded */ |
| |
| static void |
| hw_file_init_data_callback(device *me) |
| { |
| int count; |
| const char *file_name = device_find_string_property(me, "file-name"); |
| unsigned_word addr = device_find_integer_property(me, "real-address"); |
| /* load the file */ |
| count = dma_file(me, file_name, addr); |
| if (count < 0) |
| device_error(me, "Problem loading file %s\n", file_name); |
| } |
| |
| |
| static device_callbacks const hw_file_callbacks = { |
| { NULL, hw_file_init_data_callback, }, |
| { NULL, }, /* address */ |
| { NULL, }, /* IO */ |
| { NULL, }, /* DMA */ |
| { NULL, }, /* interrupt */ |
| { NULL, }, /* unit */ |
| }; |
| |
| |
| /* DEVICE |
| |
| |
| data - initialize a memory location with specified data |
| |
| |
| DESCRIPTION |
| |
| |
| The pseudo device <<data>> provides a mechanism specifying the |
| initialization of a small section of memory. |
| |
| Normally, the data would be written using a dma operation. |
| However, for some addresses this will not result in the desired |
| result. For instance, to initialize an address in an eeprom, |
| instead of a simple dma of the data, a sequence of writes (and then |
| real delays) that program the eeprom would be required. |
| |
| For dma write initialization, the data device will write the |
| specified <<data>> to <<real-address>> using a normal dma. |
| |
| For instance write initialization, the specified <<instance>> is |
| opened. Then a seek to the <<real-address>> is performed followed |
| by a write of the data. |
| |
| |
| Integer properties are stored using the target's endian mode. |
| |
| |
| PROPERTIES |
| |
| |
| data = <any-valid-property> (required) |
| |
| Data to be loaded into memory. The property type determines how it |
| is loaded. |
| |
| |
| real-address = <integer> (required) |
| |
| Start address at which the data is to be stored. |
| |
| |
| instance = <string> (optional) |
| |
| Instance specification of the device that is to be opened so that |
| the specified data can be written to it. |
| |
| |
| EXAMPLES |
| |
| |
| The examples below illustrate the two alternative mechanisms that |
| can be used to store the value 0x12345678 at address 0xfff00c00, |
| which is normally part of the 512k system eeprom. |
| |
| |
| If the eeprom is being modeled by ram (<<memory>> device) then the |
| standard dma initialization can be used. By convention: the data |
| devices are uniquely identified by argumenting them with the |
| destinations real address; and all data devices are put under the |
| node <</openprom/init>>. |
| |
| | /openprom/memory@0xfff00000/reg 0xfff00000 0x80000 |
| | /openprom/init/data@0x1000/data 0x12345678 |
| | /openprom/init/data@0x1000/real-address 0x1000 |
| |
| |
| If instead a real eeprom was being used the instance write method |
| would instead need to be used (storing just a single byte in an |
| eeprom requires a complex sequence of accesses). The |
| <<real-address>> is specified as <<0x0c00>> which is the offset |
| into the eeprom. For brevity, most of the eeprom properties have |
| been omited. |
| |
| | /iobus/eeprom@0xfff00000/reg 0xfff00000 0x80000 |
| | /openprom/init/data@0xfff00c00/real-address 0x0c00 |
| | /openprom/init/data@0xfff00c00/data 0x12345667 |
| | /openprom/init/data@0xfff00c00/instance /iobus/eeprom@0xfff00000/reg |
| |
| |
| BUGS |
| |
| |
| At present, only <<integer>> properties can be specified for an |
| initial data value. |
| |
| */ |
| |
| |
| static void |
| hw_data_init_data_callback(device *me) |
| { |
| unsigned_word addr = device_find_integer_property(me, "real-address"); |
| const device_property *data = device_find_property(me, "data"); |
| const char *instance_spec = (device_find_property(me, "instance") != NULL |
| ? device_find_string_property(me, "instance") |
| : NULL); |
| device_instance *instance = NULL; |
| if (data == NULL) |
| device_error(me, "missing property <data>\n"); |
| if (instance_spec != NULL) |
| instance = tree_instance(me, instance_spec); |
| switch (data->type) { |
| case integer_property: |
| { |
| unsigned_cell buf = device_find_integer_property(me, "data"); |
| H2T(buf); |
| if (instance == NULL) { |
| if (device_dma_write_buffer(device_parent(me), |
| &buf, |
| 0 /*address-space*/, |
| addr, |
| sizeof(buf), /*nr-bytes*/ |
| 1 /*violate ro*/) != sizeof(buf)) |
| device_error(me, "Problem storing integer 0x%x at 0x%lx\n", |
| (unsigned)buf, (unsigned long)addr); |
| } |
| else { |
| if (device_instance_seek(instance, 0, addr) < 0 |
| || device_instance_write(instance, &buf, sizeof(buf)) != sizeof(buf)) |
| device_error(me, "Problem storing integer 0x%x at 0x%lx of instance %s\n", |
| (unsigned)buf, (unsigned long)addr, instance_spec); |
| } |
| } |
| break; |
| default: |
| device_error(me, "Write of this data is not yet implemented\n"); |
| break; |
| } |
| if (instance != NULL) |
| device_instance_delete(instance); |
| } |
| |
| |
| static device_callbacks const hw_data_callbacks = { |
| { NULL, hw_data_init_data_callback, }, |
| { NULL, }, /* address */ |
| { NULL, }, /* IO */ |
| { NULL, }, /* DMA */ |
| { NULL, }, /* interrupt */ |
| { NULL, }, /* unit */ |
| }; |
| |
| |
| /* DEVICE |
| |
| |
| load-binary - load binary segments into memory |
| |
| |
| DESCRIPTION |
| |
| Each loadable segment of the specified binary is loaded into memory |
| at its required address. It is assumed that the memory at those |
| addresses already exists. |
| |
| This device is normally used to load an executable into memory as |
| part of real mode simulation. |
| |
| |
| PROPERTIES |
| |
| |
| file-name = <string> |
| |
| Name of the binary to be loaded. |
| |
| |
| claim = <anything> (optional) |
| |
| If this property is present, the real memory that is to be used by |
| the image being loaded will be claimed from the memory node |
| (specified by the ihandle <</chosen/memory>>). |
| |
| |
| BUGS |
| |
| |
| When loading the binary the bfd virtual-address is used. It should |
| be using the bfd load-address. |
| |
| */ |
| |
| /* DEVICE |
| |
| map-binary - map the binary into the users address space |
| |
| DESCRIPTION |
| |
| Similar to load-binary except that memory for each segment is |
| created before the corresponding data for the segment is loaded. |
| |
| This device is normally used to load an executable into a user mode |
| simulation. |
| |
| PROPERTIES |
| |
| file-name = <string> |
| |
| Name of the binary to be loaded. |
| |
| */ |
| |
| static void |
| update_for_binary_section(bfd *abfd, |
| asection *the_section, |
| PTR obj) |
| { |
| unsigned_word section_vma; |
| unsigned_word section_size; |
| access_type access; |
| device *me = (device*)obj; |
| |
| /* skip the section if no memory to allocate */ |
| if (! (bfd_section_flags (the_section) & SEC_ALLOC)) |
| return; |
| |
| /* check/ignore any sections of size zero */ |
| section_size = bfd_section_size (the_section); |
| if (section_size == 0) |
| return; |
| |
| /* find where it is to go */ |
| section_vma = bfd_section_vma (the_section); |
| |
| DTRACE(binary, |
| ("name=%-7s, vma=0x%.8lx, size=%6ld, flags=%3lx(%s%s%s%s%s )\n", |
| bfd_section_name (the_section), |
| (long)section_vma, |
| (long)section_size, |
| (long)bfd_section_flags (the_section), |
| bfd_section_flags (the_section) & SEC_LOAD ? " LOAD" : "", |
| bfd_section_flags (the_section) & SEC_CODE ? " CODE" : "", |
| bfd_section_flags (the_section) & SEC_DATA ? " DATA" : "", |
| bfd_section_flags (the_section) & SEC_ALLOC ? " ALLOC" : "", |
| bfd_section_flags (the_section) & SEC_READONLY ? " READONLY" : "" |
| )); |
| |
| /* If there is an .interp section, it means it needs a shared library interpreter. */ |
| if (strcmp(".interp", bfd_section_name (the_section)) == 0) |
| error("Shared libraries are not yet supported.\n"); |
| |
| /* determine the devices access */ |
| access = access_read; |
| if (bfd_section_flags (the_section) & SEC_CODE) |
| access |= access_exec; |
| if (!(bfd_section_flags (the_section) & SEC_READONLY)) |
| access |= access_write; |
| |
| /* if claim specified, allocate region from the memory device */ |
| if (device_find_property(me, "claim") != NULL) { |
| device_instance *memory = tree_find_ihandle_property(me, "/chosen/memory"); |
| unsigned_cell mem_in[3]; |
| unsigned_cell mem_out[1]; |
| mem_in[0] = 0; /*alignment - top-of-stack*/ |
| mem_in[1] = section_size; |
| mem_in[2] = section_vma; |
| if (device_instance_call_method(memory, "claim", 3, mem_in, 1, mem_out) < 0) |
| device_error(me, "failed to claim memory for section at 0x%lx (0x%lx", |
| (unsigned long)section_vma, |
| (unsigned long)section_size); |
| if (mem_out[0] != section_vma) |
| device_error(me, "section address not as requested"); |
| } |
| |
| /* if a map, pass up a request to create the memory in core */ |
| if (strncmp(device_name(me), "map-binary", strlen("map-binary")) == 0) |
| device_attach_address(device_parent(me), |
| attach_raw_memory, |
| 0 /*address space*/, |
| section_vma, |
| section_size, |
| access, |
| me); |
| |
| /* if a load dma in the required data */ |
| if (bfd_section_flags (the_section) & SEC_LOAD) { |
| void *section_init = zalloc(section_size); |
| if (!bfd_get_section_contents(abfd, |
| the_section, |
| section_init, 0, |
| section_size)) { |
| bfd_perror("binary"); |
| device_error(me, "load of data failed"); |
| return; |
| } |
| if (device_dma_write_buffer(device_parent(me), |
| section_init, |
| 0 /*space*/, |
| section_vma, |
| section_size, |
| 1 /*violate_read_only*/) |
| != section_size) |
| device_error(me, "broken transfer\n"); |
| free(section_init); /* only free if load */ |
| } |
| } |
| |
| static void |
| hw_binary_init_data_callback(device *me) |
| { |
| /* get the file name */ |
| const char *file_name = device_find_string_property(me, "file-name"); |
| bfd *image; |
| |
| /* open the file */ |
| image = bfd_openr(file_name, NULL); |
| if (image == NULL) { |
| bfd_perror("binary"); |
| device_error(me, "Failed to open file %s\n", file_name); |
| } |
| |
| /* check it is valid */ |
| if (!bfd_check_format(image, bfd_object)) { |
| bfd_close(image); |
| device_error(me, "The file %s has an invalid binary format\n", file_name); |
| } |
| |
| /* and the data sections */ |
| bfd_map_over_sections(image, |
| update_for_binary_section, |
| (PTR)me); |
| |
| bfd_close(image); |
| } |
| |
| |
| static device_callbacks const hw_binary_callbacks = { |
| { NULL, hw_binary_init_data_callback, }, |
| { NULL, }, /* address */ |
| { NULL, }, /* IO */ |
| { NULL, }, /* DMA */ |
| { NULL, }, /* interrupt */ |
| { NULL, }, /* unit */ |
| }; |
| |
| |
| /* DEVICE |
| |
| stack - create an initial stack frame in memory |
| |
| DESCRIPTION |
| |
| Creates a stack frame of the specified type in memory. |
| |
| Due to the startup sequence gdb uses when commencing a simulation, |
| it is not possible for the data to be placed on the stack to be |
| specified as part of the device tree. Instead the arguments to be |
| pushed onto the stack are specified using an IOCTL call. |
| |
| The IOCTL takes the additional arguments: |
| |
| | unsigned_word stack_end -- where the stack should come down from |
| | char **argv -- ... |
| | char **envp -- ... |
| |
| PROPERTIES |
| |
| stack-type = <string> |
| |
| The form of the stack frame that is to be created. |
| |
| */ |
| |
| static int |
| sizeof_argument_strings(char **arg) |
| { |
| int sizeof_strings = 0; |
| |
| /* robust */ |
| if (arg == NULL) |
| return 0; |
| |
| /* add up all the string sizes (padding as we go) */ |
| for (; *arg != NULL; arg++) { |
| int len = strlen(*arg) + 1; |
| sizeof_strings += ALIGN_8(len); |
| } |
| |
| return sizeof_strings; |
| } |
| |
| static int |
| number_of_arguments(char **arg) |
| { |
| int nr; |
| if (arg == NULL) |
| return 0; |
| for (nr = 0; *arg != NULL; arg++, nr++); |
| return nr; |
| } |
| |
| static int |
| sizeof_arguments(char **arg) |
| { |
| return ALIGN_8((number_of_arguments(arg) + 1) * sizeof(unsigned_word)); |
| } |
| |
| static void |
| write_stack_arguments(device *me, |
| char **arg, |
| unsigned_word start_block, |
| unsigned_word end_block, |
| unsigned_word start_arg, |
| unsigned_word end_arg) |
| { |
| DTRACE(stack, |
| ("write_stack_arguments(device=%s, arg=0x%lx, start_block=0x%lx, end_block=0x%lx, start_arg=0x%lx, end_arg=0x%lx)\n", |
| device_name(me), (long)arg, (long)start_block, (long)end_block, (long)start_arg, (long)end_arg)); |
| if (arg == NULL) |
| device_error(me, "Attempt to write a null array onto the stack\n"); |
| /* only copy in arguments, memory is already zero */ |
| for (; *arg != NULL; arg++) { |
| int len = strlen(*arg)+1; |
| unsigned_word target_start_block; |
| DTRACE(stack, |
| ("write_stack_arguments() write %s=%s at %s=0x%lx %s=0x%lx %s=0x%lx\n", |
| "**arg", *arg, "start_block", (long)start_block, |
| "len", (long)len, "start_arg", (long)start_arg)); |
| if (psim_write_memory(device_system(me), 0, *arg, |
| start_block, len, |
| 0/*violate_readonly*/) != len) |
| device_error(me, "Write of **arg (%s) at 0x%lx of stack failed\n", |
| *arg, (unsigned long)start_block); |
| target_start_block = H2T_word(start_block); |
| if (psim_write_memory(device_system(me), 0, &target_start_block, |
| start_arg, sizeof(target_start_block), |
| 0) != sizeof(target_start_block)) |
| device_error(me, "Write of *arg onto stack failed\n"); |
| start_block += ALIGN_8(len); |
| start_arg += sizeof(start_block); |
| } |
| start_arg += sizeof(start_block); /*the null at the end*/ |
| if (start_block != end_block |
| || ALIGN_8(start_arg) != end_arg) |
| device_error(me, "Probable corrpution of stack arguments\n"); |
| DTRACE(stack, ("write_stack_arguments() = void\n")); |
| } |
| |
| static void |
| create_ppc_elf_stack_frame(device *me, |
| unsigned_word bottom_of_stack, |
| char **argv, |
| char **envp) |
| { |
| /* fixme - this is over aligned */ |
| |
| /* information block */ |
| const unsigned sizeof_envp_block = sizeof_argument_strings(envp); |
| const unsigned_word start_envp_block = bottom_of_stack - sizeof_envp_block; |
| const unsigned sizeof_argv_block = sizeof_argument_strings(argv); |
| const unsigned_word start_argv_block = start_envp_block - sizeof_argv_block; |
| |
| /* auxiliary vector - contains only one entry */ |
| const unsigned sizeof_aux_entry = 2*sizeof(unsigned_word); /* magic */ |
| const unsigned_word start_aux = start_argv_block - ALIGN_8(sizeof_aux_entry); |
| |
| /* environment points (including null sentinal) */ |
| const unsigned sizeof_envp = sizeof_arguments(envp); |
| const unsigned_word start_envp = start_aux - sizeof_envp; |
| |
| /* argument pointers (including null sentinal) */ |
| const int argc = number_of_arguments(argv); |
| const unsigned sizeof_argv = sizeof_arguments(argv); |
| const unsigned_word start_argv = start_envp - sizeof_argv; |
| |
| /* link register save address - alligned to a 16byte boundary */ |
| const unsigned_word top_of_stack = ((start_argv |
| - 2 * sizeof(unsigned_word)) |
| & ~0xf); |
| |
| /* install arguments on stack */ |
| write_stack_arguments(me, envp, |
| start_envp_block, bottom_of_stack, |
| start_envp, start_aux); |
| write_stack_arguments(me, argv, |
| start_argv_block, start_envp_block, |
| start_argv, start_envp); |
| |
| /* set up the registers */ |
| ASSERT (psim_write_register(device_system(me), -1, |
| &top_of_stack, "sp", cooked_transfer) > 0); |
| ASSERT (psim_write_register(device_system(me), -1, |
| &argc, "r3", cooked_transfer) > 0); |
| ASSERT (psim_write_register(device_system(me), -1, |
| &start_argv, "r4", cooked_transfer) > 0); |
| ASSERT (psim_write_register(device_system(me), -1, |
| &start_envp, "r5", cooked_transfer) > 0); |
| ASSERT (psim_write_register(device_system(me), -1, |
| &start_aux, "r6", cooked_transfer) > 0); |
| } |
| |
| static void |
| create_ppc_aix_stack_frame(device *me, |
| unsigned_word bottom_of_stack, |
| char **argv, |
| char **envp) |
| { |
| unsigned_word core_envp; |
| unsigned_word core_argv; |
| unsigned_word core_argc; |
| unsigned_word core_aux; |
| unsigned_word top_of_stack; |
| |
| /* cheat - create an elf stack frame */ |
| create_ppc_elf_stack_frame(me, bottom_of_stack, argv, envp); |
| |
| /* extract argument addresses from registers */ |
| ASSERT (psim_read_register(device_system(me), 0, |
| &top_of_stack, "r1", cooked_transfer) > 0); |
| ASSERT (psim_read_register(device_system(me), 0, |
| &core_argc, "r3", cooked_transfer) > 0); |
| ASSERT (psim_read_register(device_system(me), 0, |
| &core_argv, "r4", cooked_transfer) > 0); |
| ASSERT (psim_read_register(device_system(me), 0, |
| &core_envp, "r5", cooked_transfer) > 0); |
| ASSERT (psim_read_register(device_system(me), 0, |
| &core_aux, "r6", cooked_transfer) > 0); |
| |
| /* extract arguments from registers */ |
| device_error(me, "Unfinished procedure create_ppc_aix_stack_frame\n"); |
| } |
| |
| |
| static void |
| create_ppc_chirp_bootargs(device *me, |
| char **argv) |
| { |
| /* concat the arguments */ |
| char args[1024]; |
| char **chp = argv + 1; |
| args[0] = '\0'; |
| while (*chp != NULL) { |
| if (strlen(args) > 0) |
| strcat(args, " "); |
| if (strlen(args) + strlen(*chp) >= sizeof(args)) |
| device_error(me, "buffer overflow"); |
| strcat(args, *chp); |
| chp++; |
| } |
| |
| /* set the arguments property */ |
| tree_parse(me, "/chosen/bootargs \"%s", args); |
| } |
| |
| |
| static int |
| hw_stack_ioctl(device *me, |
| cpu *processor, |
| unsigned_word cia, |
| device_ioctl_request request, |
| va_list ap) |
| { |
| switch (request) { |
| case device_ioctl_create_stack: |
| { |
| unsigned_word stack_pointer = va_arg(ap, unsigned_word); |
| char **argv = va_arg(ap, char **); |
| char **envp = va_arg(ap, char **); |
| const char *stack_type; |
| DTRACE(stack, |
| ("stack_ioctl_callback(me=0x%lx:%s processor=0x%lx cia=0x%lx argv=0x%lx envp=0x%lx)\n", |
| (long)me, device_name(me), |
| (long)processor, |
| (long)cia, |
| (long)argv, |
| (long)envp)); |
| stack_type = device_find_string_property(me, "stack-type"); |
| if (strcmp(stack_type, "ppc-elf") == 0) |
| create_ppc_elf_stack_frame(me, stack_pointer, argv, envp); |
| else if (strcmp(stack_type, "ppc-xcoff") == 0) |
| create_ppc_aix_stack_frame(me, stack_pointer, argv, envp); |
| else if (strcmp(stack_type, "chirp") == 0) |
| create_ppc_chirp_bootargs(me, argv); |
| else if (strcmp(stack_type, "none") != 0) |
| device_error(me, "Unknown initial stack frame type %s", stack_type); |
| DTRACE(stack, |
| ("stack_ioctl_callback() = void\n")); |
| break; |
| } |
| default: |
| device_error(me, "Unsupported ioctl requested"); |
| break; |
| } |
| return 0; |
| } |
| |
| static device_callbacks const hw_stack_callbacks = { |
| { NULL, }, |
| { NULL, }, /* address */ |
| { NULL, }, /* IO */ |
| { NULL, }, /* DMA */ |
| { NULL, }, /* interrupt */ |
| { NULL, }, /* unit */ |
| NULL, /* instance */ |
| hw_stack_ioctl, |
| }; |
| |
| const device_descriptor hw_init_device_descriptor[] = { |
| { "file", NULL, &hw_file_callbacks }, |
| { "data", NULL, &hw_data_callbacks }, |
| { "load-binary", NULL, &hw_binary_callbacks }, |
| { "map-binary", NULL, &hw_binary_callbacks }, |
| { "stack", NULL, &hw_stack_callbacks }, |
| { NULL }, |
| }; |
| |
| #endif /* _HW_INIT_C_ */ |