| // output.cc -- manage the output file for gold |
| |
| // Copyright (C) 2006-2024 Free Software Foundation, Inc. |
| // Written by Ian Lance Taylor <iant@google.com>. |
| |
| // This file is part of gold. |
| |
| // This program is free software; you can redistribute it and/or modify |
| // it under the terms of the GNU General Public License as published by |
| // the Free Software Foundation; either version 3 of the License, or |
| // (at your option) any later version. |
| |
| // This program is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // You should have received a copy of the GNU General Public License |
| // along with this program; if not, write to the Free Software |
| // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| // MA 02110-1301, USA. |
| |
| #include "gold.h" |
| |
| #include <cstdlib> |
| #include <cstring> |
| #include <cerrno> |
| #include <fcntl.h> |
| #include <unistd.h> |
| #include <sys/stat.h> |
| #include <algorithm> |
| #include <uchar.h> |
| |
| #ifdef HAVE_SYS_MMAN_H |
| #include <sys/mman.h> |
| #endif |
| |
| #include "libiberty.h" |
| |
| #include "dwarf.h" |
| #include "parameters.h" |
| #include "object.h" |
| #include "symtab.h" |
| #include "reloc.h" |
| #include "merge.h" |
| #include "descriptors.h" |
| #include "layout.h" |
| #include "output.h" |
| |
| // For systems without mmap support. |
| #ifndef HAVE_MMAP |
| # define mmap gold_mmap |
| # define munmap gold_munmap |
| # define mremap gold_mremap |
| # ifndef MAP_FAILED |
| # define MAP_FAILED (reinterpret_cast<void*>(-1)) |
| # endif |
| # ifndef PROT_READ |
| # define PROT_READ 0 |
| # endif |
| # ifndef PROT_WRITE |
| # define PROT_WRITE 0 |
| # endif |
| # ifndef MAP_PRIVATE |
| # define MAP_PRIVATE 0 |
| # endif |
| # ifndef MAP_ANONYMOUS |
| # define MAP_ANONYMOUS 0 |
| # endif |
| # ifndef MAP_SHARED |
| # define MAP_SHARED 0 |
| # endif |
| |
| # ifndef ENOSYS |
| # define ENOSYS EINVAL |
| # endif |
| |
| static void * |
| gold_mmap(void *, size_t, int, int, int, off_t) |
| { |
| errno = ENOSYS; |
| return MAP_FAILED; |
| } |
| |
| static int |
| gold_munmap(void *, size_t) |
| { |
| errno = ENOSYS; |
| return -1; |
| } |
| |
| static void * |
| gold_mremap(void *, size_t, size_t, int) |
| { |
| errno = ENOSYS; |
| return MAP_FAILED; |
| } |
| |
| #endif |
| |
| #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP) |
| # define mremap gold_mremap |
| extern "C" void *gold_mremap(void *, size_t, size_t, int); |
| #endif |
| |
| // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS |
| #ifndef MAP_ANONYMOUS |
| # define MAP_ANONYMOUS MAP_ANON |
| #endif |
| |
| #ifndef MREMAP_MAYMOVE |
| # define MREMAP_MAYMOVE 1 |
| #endif |
| |
| // Mingw does not have S_ISLNK. |
| #ifndef S_ISLNK |
| # define S_ISLNK(mode) 0 |
| #endif |
| |
| namespace gold |
| { |
| |
| // A wrapper around posix_fallocate. If we don't have posix_fallocate, |
| // or the --no-posix-fallocate option is set, we try the fallocate |
| // system call directly. If that fails, we use ftruncate to set |
| // the file size and hope that there is enough disk space. |
| |
| static int |
| gold_fallocate(int o, off_t offset, off_t len) |
| { |
| if (len <= 0) |
| return 0; |
| |
| #ifdef HAVE_POSIX_FALLOCATE |
| if (parameters->options().posix_fallocate()) |
| { |
| int err = ::posix_fallocate(o, offset, len); |
| if (err != EINVAL && err != ENOSYS && err != EOPNOTSUPP) |
| return err; |
| } |
| #endif // defined(HAVE_POSIX_FALLOCATE) |
| |
| #ifdef HAVE_FALLOCATE |
| { |
| errno = 0; |
| int err = ::fallocate(o, 0, offset, len); |
| if (err < 0 && errno != EINVAL && errno != ENOSYS && errno != EOPNOTSUPP) |
| return errno; |
| } |
| #endif // defined(HAVE_FALLOCATE) |
| |
| errno = 0; |
| if (::ftruncate(o, offset + len) < 0) |
| return errno; |
| return 0; |
| } |
| |
| // Output_data variables. |
| |
| bool Output_data::allocated_sizes_are_fixed; |
| |
| // Output_data methods. |
| |
| Output_data::~Output_data() |
| { |
| } |
| |
| // Return the default alignment for the target size. |
| |
| uint64_t |
| Output_data::default_alignment() |
| { |
| return Output_data::default_alignment_for_size( |
| parameters->target().get_size()); |
| } |
| |
| // Return the default alignment for a size--32 or 64. |
| |
| uint64_t |
| Output_data::default_alignment_for_size(int size) |
| { |
| if (size == 32) |
| return 4; |
| else if (size == 64) |
| return 8; |
| else |
| gold_unreachable(); |
| } |
| |
| // Output_section_header methods. This currently assumes that the |
| // segment and section lists are complete at construction time. |
| |
| Output_section_headers::Output_section_headers( |
| const Layout* layout, |
| const Layout::Segment_list* segment_list, |
| const Layout::Section_list* section_list, |
| const Layout::Section_list* unattached_section_list, |
| const Stringpool* secnamepool, |
| const Output_section* shstrtab_section) |
| : layout_(layout), |
| segment_list_(segment_list), |
| section_list_(section_list), |
| unattached_section_list_(unattached_section_list), |
| secnamepool_(secnamepool), |
| shstrtab_section_(shstrtab_section) |
| { |
| } |
| |
| // Compute the current data size. |
| |
| off_t |
| Output_section_headers::do_size() const |
| { |
| // Count all the sections. Start with 1 for the null section. |
| off_t count = 1; |
| if (!parameters->options().relocatable()) |
| { |
| for (Layout::Segment_list::const_iterator p = |
| this->segment_list_->begin(); |
| p != this->segment_list_->end(); |
| ++p) |
| if ((*p)->type() == elfcpp::PT_LOAD) |
| count += (*p)->output_section_count(); |
| } |
| else |
| { |
| for (Layout::Section_list::const_iterator p = |
| this->section_list_->begin(); |
| p != this->section_list_->end(); |
| ++p) |
| if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0) |
| ++count; |
| } |
| count += this->unattached_section_list_->size(); |
| |
| const int size = parameters->target().get_size(); |
| int shdr_size; |
| if (size == 32) |
| shdr_size = elfcpp::Elf_sizes<32>::shdr_size; |
| else if (size == 64) |
| shdr_size = elfcpp::Elf_sizes<64>::shdr_size; |
| else |
| gold_unreachable(); |
| |
| return count * shdr_size; |
| } |
| |
| // Write out the section headers. |
| |
| void |
| Output_section_headers::do_write(Output_file* of) |
| { |
| switch (parameters->size_and_endianness()) |
| { |
| #ifdef HAVE_TARGET_32_LITTLE |
| case Parameters::TARGET_32_LITTLE: |
| this->do_sized_write<32, false>(of); |
| break; |
| #endif |
| #ifdef HAVE_TARGET_32_BIG |
| case Parameters::TARGET_32_BIG: |
| this->do_sized_write<32, true>(of); |
| break; |
| #endif |
| #ifdef HAVE_TARGET_64_LITTLE |
| case Parameters::TARGET_64_LITTLE: |
| this->do_sized_write<64, false>(of); |
| break; |
| #endif |
| #ifdef HAVE_TARGET_64_BIG |
| case Parameters::TARGET_64_BIG: |
| this->do_sized_write<64, true>(of); |
| break; |
| #endif |
| default: |
| gold_unreachable(); |
| } |
| } |
| |
| template<int size, bool big_endian> |
| void |
| Output_section_headers::do_sized_write(Output_file* of) |
| { |
| off_t all_shdrs_size = this->data_size(); |
| unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size); |
| |
| const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; |
| unsigned char* v = view; |
| |
| { |
| typename elfcpp::Shdr_write<size, big_endian> oshdr(v); |
| oshdr.put_sh_name(0); |
| oshdr.put_sh_type(elfcpp::SHT_NULL); |
| oshdr.put_sh_flags(0); |
| oshdr.put_sh_addr(0); |
| oshdr.put_sh_offset(0); |
| |
| size_t section_count = (this->data_size() |
| / elfcpp::Elf_sizes<size>::shdr_size); |
| if (section_count < elfcpp::SHN_LORESERVE) |
| oshdr.put_sh_size(0); |
| else |
| oshdr.put_sh_size(section_count); |
| |
| unsigned int shstrndx = this->shstrtab_section_->out_shndx(); |
| if (shstrndx < elfcpp::SHN_LORESERVE) |
| oshdr.put_sh_link(0); |
| else |
| oshdr.put_sh_link(shstrndx); |
| |
| size_t segment_count = this->segment_list_->size(); |
| oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0); |
| |
| oshdr.put_sh_addralign(0); |
| oshdr.put_sh_entsize(0); |
| } |
| |
| v += shdr_size; |
| |
| unsigned int shndx = 1; |
| if (!parameters->options().relocatable()) |
| { |
| for (Layout::Segment_list::const_iterator p = |
| this->segment_list_->begin(); |
| p != this->segment_list_->end(); |
| ++p) |
| v = (*p)->write_section_headers<size, big_endian>(this->layout_, |
| this->secnamepool_, |
| v, |
| &shndx); |
| } |
| else |
| { |
| for (Layout::Section_list::const_iterator p = |
| this->section_list_->begin(); |
| p != this->section_list_->end(); |
| ++p) |
| { |
| // We do unallocated sections below, except that group |
| // sections have to come first. |
| if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0 |
| && (*p)->type() != elfcpp::SHT_GROUP) |
| continue; |
| gold_assert(shndx == (*p)->out_shndx()); |
| elfcpp::Shdr_write<size, big_endian> oshdr(v); |
| (*p)->write_header(this->layout_, this->secnamepool_, &oshdr); |
| v += shdr_size; |
| ++shndx; |
| } |
| } |
| |
| for (Layout::Section_list::const_iterator p = |
| this->unattached_section_list_->begin(); |
| p != this->unattached_section_list_->end(); |
| ++p) |
| { |
| // For a relocatable link, we did unallocated group sections |
| // above, since they have to come first. |
| if ((*p)->type() == elfcpp::SHT_GROUP |
| && parameters->options().relocatable()) |
| continue; |
| gold_assert(shndx == (*p)->out_shndx()); |
| elfcpp::Shdr_write<size, big_endian> oshdr(v); |
| (*p)->write_header(this->layout_, this->secnamepool_, &oshdr); |
| v += shdr_size; |
| ++shndx; |
| } |
| |
| of->write_output_view(this->offset(), all_shdrs_size, view); |
| } |
| |
| // Output_segment_header methods. |
| |
| Output_segment_headers::Output_segment_headers( |
| const Layout::Segment_list& segment_list) |
| : segment_list_(segment_list) |
| { |
| this->set_current_data_size_for_child(this->do_size()); |
| } |
| |
| void |
| Output_segment_headers::do_write(Output_file* of) |
| { |
| switch (parameters->size_and_endianness()) |
| { |
| #ifdef HAVE_TARGET_32_LITTLE |
| case Parameters::TARGET_32_LITTLE: |
| this->do_sized_write<32, false>(of); |
| break; |
| #endif |
| #ifdef HAVE_TARGET_32_BIG |
| case Parameters::TARGET_32_BIG: |
| this->do_sized_write<32, true>(of); |
| break; |
| #endif |
| #ifdef HAVE_TARGET_64_LITTLE |
| case Parameters::TARGET_64_LITTLE: |
| this->do_sized_write<64, false>(of); |
| break; |
| #endif |
| #ifdef HAVE_TARGET_64_BIG |
| case Parameters::TARGET_64_BIG: |
| this->do_sized_write<64, true>(of); |
| break; |
| #endif |
| default: |
| gold_unreachable(); |
| } |
| } |
| |
| template<int size, bool big_endian> |
| void |
| Output_segment_headers::do_sized_write(Output_file* of) |
| { |
| const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size; |
| off_t all_phdrs_size = this->segment_list_.size() * phdr_size; |
| gold_assert(all_phdrs_size == this->data_size()); |
| unsigned char* view = of->get_output_view(this->offset(), |
| all_phdrs_size); |
| unsigned char* v = view; |
| for (Layout::Segment_list::const_iterator p = this->segment_list_.begin(); |
| p != this->segment_list_.end(); |
| ++p) |
| { |
| elfcpp::Phdr_write<size, big_endian> ophdr(v); |
| (*p)->write_header(&ophdr); |
| v += phdr_size; |
| } |
| |
| gold_assert(v - view == all_phdrs_size); |
| |
| of->write_output_view(this->offset(), all_phdrs_size, view); |
| } |
| |
| off_t |
| Output_segment_headers::do_size() const |
| { |
| const int size = parameters->target().get_size(); |
| int phdr_size; |
| if (size == 32) |
| phdr_size = elfcpp::Elf_sizes<32>::phdr_size; |
| else if (size == 64) |
| phdr_size = elfcpp::Elf_sizes<64>::phdr_size; |
| else |
| gold_unreachable(); |
| |
| return this->segment_list_.size() * phdr_size; |
| } |
| |
| // Output_file_header methods. |
| |
| Output_file_header::Output_file_header(Target* target, |
| const Symbol_table* symtab, |
| const Output_segment_headers* osh) |
| : target_(target), |
| symtab_(symtab), |
| segment_header_(osh), |
| section_header_(NULL), |
| shstrtab_(NULL) |
| { |
| this->set_data_size(this->do_size()); |
| } |
| |
| // Set the section table information for a file header. |
| |
| void |
| Output_file_header::set_section_info(const Output_section_headers* shdrs, |
| const Output_section* shstrtab) |
| { |
| this->section_header_ = shdrs; |
| this->shstrtab_ = shstrtab; |
| } |
| |
| // Write out the file header. |
| |
| void |
| Output_file_header::do_write(Output_file* of) |
| { |
| gold_assert(this->offset() == 0); |
| |
| switch (parameters->size_and_endianness()) |
| { |
| #ifdef HAVE_TARGET_32_LITTLE |
| case Parameters::TARGET_32_LITTLE: |
| this->do_sized_write<32, false>(of); |
| break; |
| #endif |
| #ifdef HAVE_TARGET_32_BIG |
| case Parameters::TARGET_32_BIG: |
| this->do_sized_write<32, true>(of); |
| break; |
| #endif |
| #ifdef HAVE_TARGET_64_LITTLE |
| case Parameters::TARGET_64_LITTLE: |
| this->do_sized_write<64, false>(of); |
| break; |
| #endif |
| #ifdef HAVE_TARGET_64_BIG |
| case Parameters::TARGET_64_BIG: |
| this->do_sized_write<64, true>(of); |
| break; |
| #endif |
| default: |
| gold_unreachable(); |
| } |
| } |
| |
| // Write out the file header with appropriate size and endianness. |
| |
| template<int size, bool big_endian> |
| void |
| Output_file_header::do_sized_write(Output_file* of) |
| { |
| gold_assert(this->offset() == 0); |
| |
| int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size; |
| unsigned char* view = of->get_output_view(0, ehdr_size); |
| elfcpp::Ehdr_write<size, big_endian> oehdr(view); |
| |
| unsigned char e_ident[elfcpp::EI_NIDENT]; |
| memset(e_ident, 0, elfcpp::EI_NIDENT); |
| e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0; |
| e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1; |
| e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2; |
| e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3; |
| if (size == 32) |
| e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32; |
| else if (size == 64) |
| e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64; |
| else |
| gold_unreachable(); |
| e_ident[elfcpp::EI_DATA] = (big_endian |
| ? elfcpp::ELFDATA2MSB |
| : elfcpp::ELFDATA2LSB); |
| e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT; |
| oehdr.put_e_ident(e_ident); |
| |
| elfcpp::ET e_type; |
| if (parameters->options().relocatable()) |
| e_type = elfcpp::ET_REL; |
| else if (parameters->options().output_is_position_independent()) |
| e_type = elfcpp::ET_DYN; |
| else |
| e_type = elfcpp::ET_EXEC; |
| oehdr.put_e_type(e_type); |
| |
| oehdr.put_e_machine(this->target_->machine_code()); |
| oehdr.put_e_version(elfcpp::EV_CURRENT); |
| |
| oehdr.put_e_entry(this->entry<size>()); |
| |
| if (this->segment_header_ == NULL) |
| oehdr.put_e_phoff(0); |
| else |
| oehdr.put_e_phoff(this->segment_header_->offset()); |
| |
| oehdr.put_e_shoff(this->section_header_->offset()); |
| oehdr.put_e_flags(this->target_->processor_specific_flags()); |
| oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size); |
| |
| if (this->segment_header_ == NULL) |
| { |
| oehdr.put_e_phentsize(0); |
| oehdr.put_e_phnum(0); |
| } |
| else |
| { |
| oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size); |
| size_t phnum = (this->segment_header_->data_size() |
| / elfcpp::Elf_sizes<size>::phdr_size); |
| if (phnum > elfcpp::PN_XNUM) |
| phnum = elfcpp::PN_XNUM; |
| oehdr.put_e_phnum(phnum); |
| } |
| |
| oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size); |
| size_t section_count = (this->section_header_->data_size() |
| / elfcpp::Elf_sizes<size>::shdr_size); |
| |
| if (section_count < elfcpp::SHN_LORESERVE) |
| oehdr.put_e_shnum(this->section_header_->data_size() |
| / elfcpp::Elf_sizes<size>::shdr_size); |
| else |
| oehdr.put_e_shnum(0); |
| |
| unsigned int shstrndx = this->shstrtab_->out_shndx(); |
| if (shstrndx < elfcpp::SHN_LORESERVE) |
| oehdr.put_e_shstrndx(this->shstrtab_->out_shndx()); |
| else |
| oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX); |
| |
| // Let the target adjust the ELF header, e.g., to set EI_OSABI in |
| // the e_ident field. |
| this->target_->adjust_elf_header(view, ehdr_size); |
| |
| of->write_output_view(0, ehdr_size, view); |
| } |
| |
| // Return the value to use for the entry address. |
| |
| template<int size> |
| typename elfcpp::Elf_types<size>::Elf_Addr |
| Output_file_header::entry() |
| { |
| const bool should_issue_warning = (parameters->options().entry() != NULL |
| && !parameters->options().relocatable() |
| && !parameters->options().shared()); |
| const char* entry = parameters->entry(); |
| Symbol* sym = this->symtab_->lookup(entry); |
| |
| typename Sized_symbol<size>::Value_type v; |
| if (sym != NULL) |
| { |
| Sized_symbol<size>* ssym; |
| ssym = this->symtab_->get_sized_symbol<size>(sym); |
| if (!ssym->is_defined() && should_issue_warning) |
| gold_warning("entry symbol '%s' exists but is not defined", entry); |
| v = ssym->value(); |
| } |
| else |
| { |
| // We couldn't find the entry symbol. See if we can parse it as |
| // a number. This supports, e.g., -e 0x1000. |
| char* endptr; |
| v = strtoull(entry, &endptr, 0); |
| if (*endptr != '\0') |
| { |
| if (should_issue_warning) |
| gold_warning("cannot find entry symbol '%s'", entry); |
| v = 0; |
| } |
| } |
| |
| return v; |
| } |
| |
| // Compute the current data size. |
| |
| off_t |
| Output_file_header::do_size() const |
| { |
| const int size = parameters->target().get_size(); |
| if (size == 32) |
| return elfcpp::Elf_sizes<32>::ehdr_size; |
| else if (size == 64) |
| return elfcpp::Elf_sizes<64>::ehdr_size; |
| else |
| gold_unreachable(); |
| } |
| |
| // Output_data_const methods. |
| |
| void |
| Output_data_const::do_write(Output_file* of) |
| { |
| of->write(this->offset(), this->data_.data(), this->data_.size()); |
| } |
| |
| // Output_data_const_buffer methods. |
| |
| void |
| Output_data_const_buffer::do_write(Output_file* of) |
| { |
| of->write(this->offset(), this->p_, this->data_size()); |
| } |
| |
| // Output_section_data methods. |
| |
| // Record the output section, and set the entry size and such. |
| |
| void |
| Output_section_data::set_output_section(Output_section* os) |
| { |
| gold_assert(this->output_section_ == NULL); |
| this->output_section_ = os; |
| this->do_adjust_output_section(os); |
| } |
| |
| // Return the section index of the output section. |
| |
| unsigned int |
| Output_section_data::do_out_shndx() const |
| { |
| gold_assert(this->output_section_ != NULL); |
| return this->output_section_->out_shndx(); |
| } |
| |
| // Set the alignment, which means we may need to update the alignment |
| // of the output section. |
| |
| void |
| Output_section_data::set_addralign(uint64_t addralign) |
| { |
| this->addralign_ = addralign; |
| if (this->output_section_ != NULL |
| && this->output_section_->addralign() < addralign) |
| this->output_section_->set_addralign(addralign); |
| } |
| |
| // Output_data_strtab methods. |
| |
| // Set the final data size. |
| |
| void |
| Output_data_strtab::set_final_data_size() |
| { |
| this->strtab_->set_string_offsets(); |
| this->set_data_size(this->strtab_->get_strtab_size()); |
| } |
| |
| // Write out a string table. |
| |
| void |
| Output_data_strtab::do_write(Output_file* of) |
| { |
| this->strtab_->write(of, this->offset()); |
| } |
| |
| // Output_reloc methods. |
| |
| // A reloc against a global symbol. |
| |
| template<bool dynamic, int size, bool big_endian> |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( |
| Symbol* gsym, |
| unsigned int type, |
| Output_data* od, |
| Address address, |
| bool is_relative, |
| bool is_symbolless, |
| bool use_plt_offset) |
| : address_(address), local_sym_index_(GSYM_CODE), type_(type), |
| is_relative_(is_relative), is_symbolless_(is_symbolless), |
| is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE) |
| { |
| // this->type_ is a bitfield; make sure TYPE fits. |
| gold_assert(this->type_ == type); |
| this->u1_.gsym = gsym; |
| this->u2_.od = od; |
| if (dynamic) |
| this->set_needs_dynsym_index(); |
| } |
| |
| template<bool dynamic, int size, bool big_endian> |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( |
| Symbol* gsym, |
| unsigned int type, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, |
| Address address, |
| bool is_relative, |
| bool is_symbolless, |
| bool use_plt_offset) |
| : address_(address), local_sym_index_(GSYM_CODE), type_(type), |
| is_relative_(is_relative), is_symbolless_(is_symbolless), |
| is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx) |
| { |
| gold_assert(shndx != INVALID_CODE); |
| // this->type_ is a bitfield; make sure TYPE fits. |
| gold_assert(this->type_ == type); |
| this->u1_.gsym = gsym; |
| this->u2_.relobj = relobj; |
| if (dynamic) |
| this->set_needs_dynsym_index(); |
| } |
| |
| // A reloc against a local symbol. |
| |
| template<bool dynamic, int size, bool big_endian> |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, |
| unsigned int type, |
| Output_data* od, |
| Address address, |
| bool is_relative, |
| bool is_symbolless, |
| bool is_section_symbol, |
| bool use_plt_offset) |
| : address_(address), local_sym_index_(local_sym_index), type_(type), |
| is_relative_(is_relative), is_symbolless_(is_symbolless), |
| is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset), |
| shndx_(INVALID_CODE) |
| { |
| gold_assert(local_sym_index != GSYM_CODE |
| && local_sym_index != INVALID_CODE); |
| // this->type_ is a bitfield; make sure TYPE fits. |
| gold_assert(this->type_ == type); |
| this->u1_.relobj = relobj; |
| this->u2_.od = od; |
| if (dynamic) |
| this->set_needs_dynsym_index(); |
| } |
| |
| template<bool dynamic, int size, bool big_endian> |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int local_sym_index, |
| unsigned int type, |
| unsigned int shndx, |
| Address address, |
| bool is_relative, |
| bool is_symbolless, |
| bool is_section_symbol, |
| bool use_plt_offset) |
| : address_(address), local_sym_index_(local_sym_index), type_(type), |
| is_relative_(is_relative), is_symbolless_(is_symbolless), |
| is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset), |
| shndx_(shndx) |
| { |
| gold_assert(local_sym_index != GSYM_CODE |
| && local_sym_index != INVALID_CODE); |
| gold_assert(shndx != INVALID_CODE); |
| // this->type_ is a bitfield; make sure TYPE fits. |
| gold_assert(this->type_ == type); |
| this->u1_.relobj = relobj; |
| this->u2_.relobj = relobj; |
| if (dynamic) |
| this->set_needs_dynsym_index(); |
| } |
| |
| // A reloc against the STT_SECTION symbol of an output section. |
| |
| template<bool dynamic, int size, bool big_endian> |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( |
| Output_section* os, |
| unsigned int type, |
| Output_data* od, |
| Address address, |
| bool is_relative) |
| : address_(address), local_sym_index_(SECTION_CODE), type_(type), |
| is_relative_(is_relative), is_symbolless_(is_relative), |
| is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE) |
| { |
| // this->type_ is a bitfield; make sure TYPE fits. |
| gold_assert(this->type_ == type); |
| this->u1_.os = os; |
| this->u2_.od = od; |
| if (dynamic) |
| this->set_needs_dynsym_index(); |
| else |
| os->set_needs_symtab_index(); |
| } |
| |
| template<bool dynamic, int size, bool big_endian> |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( |
| Output_section* os, |
| unsigned int type, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, |
| Address address, |
| bool is_relative) |
| : address_(address), local_sym_index_(SECTION_CODE), type_(type), |
| is_relative_(is_relative), is_symbolless_(is_relative), |
| is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx) |
| { |
| gold_assert(shndx != INVALID_CODE); |
| // this->type_ is a bitfield; make sure TYPE fits. |
| gold_assert(this->type_ == type); |
| this->u1_.os = os; |
| this->u2_.relobj = relobj; |
| if (dynamic) |
| this->set_needs_dynsym_index(); |
| else |
| os->set_needs_symtab_index(); |
| } |
| |
| // An absolute or relative relocation. |
| |
| template<bool dynamic, int size, bool big_endian> |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( |
| unsigned int type, |
| Output_data* od, |
| Address address, |
| bool is_relative) |
| : address_(address), local_sym_index_(0), type_(type), |
| is_relative_(is_relative), is_symbolless_(false), |
| is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE) |
| { |
| // this->type_ is a bitfield; make sure TYPE fits. |
| gold_assert(this->type_ == type); |
| this->u1_.relobj = NULL; |
| this->u2_.od = od; |
| } |
| |
| template<bool dynamic, int size, bool big_endian> |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( |
| unsigned int type, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, |
| Address address, |
| bool is_relative) |
| : address_(address), local_sym_index_(0), type_(type), |
| is_relative_(is_relative), is_symbolless_(false), |
| is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx) |
| { |
| gold_assert(shndx != INVALID_CODE); |
| // this->type_ is a bitfield; make sure TYPE fits. |
| gold_assert(this->type_ == type); |
| this->u1_.relobj = NULL; |
| this->u2_.relobj = relobj; |
| } |
| |
| // A target specific relocation. |
| |
| template<bool dynamic, int size, bool big_endian> |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( |
| unsigned int type, |
| void* arg, |
| Output_data* od, |
| Address address) |
| : address_(address), local_sym_index_(TARGET_CODE), type_(type), |
| is_relative_(false), is_symbolless_(false), |
| is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE) |
| { |
| // this->type_ is a bitfield; make sure TYPE fits. |
| gold_assert(this->type_ == type); |
| this->u1_.arg = arg; |
| this->u2_.od = od; |
| } |
| |
| template<bool dynamic, int size, bool big_endian> |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( |
| unsigned int type, |
| void* arg, |
| Sized_relobj<size, big_endian>* relobj, |
| unsigned int shndx, |
| Address address) |
| : address_(address), local_sym_index_(TARGET_CODE), type_(type), |
| is_relative_(false), is_symbolless_(false), |
| is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx) |
| { |
| gold_assert(shndx != INVALID_CODE); |
| // this->type_ is a bitfield; make sure TYPE fits. |
| gold_assert(this->type_ == type); |
| this->u1_.arg = arg; |
| this->u2_.relobj = relobj; |
| } |
| |
| // Record that we need a dynamic symbol index for this relocation. |
| |
| template<bool dynamic, int size, bool big_endian> |
| void |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>:: |
| set_needs_dynsym_index() |
| { |
| if (this->is_symbolless_) |
| return; |
| switch (this->local_sym_index_) |
| { |
| case INVALID_CODE: |
| gold_unreachable(); |
| |
| case GSYM_CODE: |
| this->u1_.gsym->set_needs_dynsym_entry(); |
| break; |
| |
| case SECTION_CODE: |
| this->u1_.os->set_needs_dynsym_index(); |
| break; |
| |
| case TARGET_CODE: |
| // The target must take care of this if necessary. |
| break; |
| |
| case 0: |
| break; |
| |
| default: |
| { |
| const unsigned int lsi = this->local_sym_index_; |
| Sized_relobj_file<size, big_endian>* relobj = |
| this->u1_.relobj->sized_relobj(); |
| gold_assert(relobj != NULL); |
| if (!this->is_section_symbol_) |
| relobj->set_needs_output_dynsym_entry(lsi); |
| else |
| relobj->output_section(lsi)->set_needs_dynsym_index(); |
| } |
| break; |
| } |
| } |
| |
| // Get the symbol index of a relocation. |
| |
| template<bool dynamic, int size, bool big_endian> |
| unsigned int |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index() |
| const |
| { |
| unsigned int index; |
| if (this->is_symbolless_) |
| return 0; |
| switch (this->local_sym_index_) |
| { |
| case INVALID_CODE: |
| gold_unreachable(); |
| |
| case GSYM_CODE: |
| if (this->u1_.gsym == NULL) |
| index = 0; |
| else if (dynamic) |
| index = this->u1_.gsym->dynsym_index(); |
| else |
| index = this->u1_.gsym->symtab_index(); |
| break; |
| |
| case SECTION_CODE: |
| if (dynamic) |
| index = this->u1_.os->dynsym_index(); |
| else |
| index = this->u1_.os->symtab_index(); |
| break; |
| |
| case TARGET_CODE: |
| index = parameters->target().reloc_symbol_index(this->u1_.arg, |
| this->type_); |
| break; |
| |
| case 0: |
| // Relocations without symbols use a symbol index of 0. |
| index = 0; |
| break; |
| |
| default: |
| { |
| const unsigned int lsi = this->local_sym_index_; |
| Sized_relobj_file<size, big_endian>* relobj = |
| this->u1_.relobj->sized_relobj(); |
| gold_assert(relobj != NULL); |
| if (!this->is_section_symbol_) |
| { |
| if (dynamic) |
| index = relobj->dynsym_index(lsi); |
| else |
| index = relobj->symtab_index(lsi); |
| } |
| else |
| { |
| Output_section* os = relobj->output_section(lsi); |
| gold_assert(os != NULL); |
| if (dynamic) |
| index = os->dynsym_index(); |
| else |
| index = os->symtab_index(); |
| } |
| } |
| break; |
| } |
| gold_assert(index != -1U); |
| return index; |
| } |
| |
| // For a local section symbol, get the address of the offset ADDEND |
| // within the input section. |
| |
| template<bool dynamic, int size, bool big_endian> |
| typename elfcpp::Elf_types<size>::Elf_Addr |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>:: |
| local_section_offset(Addend addend) const |
| { |
| gold_assert(this->local_sym_index_ != GSYM_CODE |
| && this->local_sym_index_ != SECTION_CODE |
| && this->local_sym_index_ != TARGET_CODE |
| && this->local_sym_index_ != INVALID_CODE |
| && this->local_sym_index_ != 0 |
| && this->is_section_symbol_); |
| const unsigned int lsi = this->local_sym_index_; |
| Output_section* os = this->u1_.relobj->output_section(lsi); |
| gold_assert(os != NULL); |
| Address offset = this->u1_.relobj->get_output_section_offset(lsi); |
| if (offset != invalid_address) |
| return offset + addend; |
| // This is a merge section. |
| Sized_relobj_file<size, big_endian>* relobj = |
| this->u1_.relobj->sized_relobj(); |
| gold_assert(relobj != NULL); |
| offset = os->output_address(relobj, lsi, addend); |
| gold_assert(offset != invalid_address); |
| return offset; |
| } |
| |
| // Get the output address of a relocation. |
| |
| template<bool dynamic, int size, bool big_endian> |
| typename elfcpp::Elf_types<size>::Elf_Addr |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const |
| { |
| Address address = this->address_; |
| if (this->shndx_ != INVALID_CODE) |
| { |
| Output_section* os = this->u2_.relobj->output_section(this->shndx_); |
| gold_assert(os != NULL); |
| Address off = this->u2_.relobj->get_output_section_offset(this->shndx_); |
| if (off != invalid_address) |
| address += os->address() + off; |
| else |
| { |
| Sized_relobj_file<size, big_endian>* relobj = |
| this->u2_.relobj->sized_relobj(); |
| gold_assert(relobj != NULL); |
| address = os->output_address(relobj, this->shndx_, address); |
| gold_assert(address != invalid_address); |
| } |
| } |
| else if (this->u2_.od != NULL) |
| address += this->u2_.od->address(); |
| return address; |
| } |
| |
| // Write out the offset and info fields of a Rel or Rela relocation |
| // entry. |
| |
| template<bool dynamic, int size, bool big_endian> |
| template<typename Write_rel> |
| void |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel( |
| Write_rel* wr) const |
| { |
| wr->put_r_offset(this->get_address()); |
| unsigned int sym_index = this->get_symbol_index(); |
| wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_)); |
| } |
| |
| // Write out a Rel relocation. |
| |
| template<bool dynamic, int size, bool big_endian> |
| void |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write( |
| unsigned char* pov) const |
| { |
| elfcpp::Rel_write<size, big_endian> orel(pov); |
| this->write_rel(&orel); |
| } |
| |
| // Get the value of the symbol referred to by a Rel relocation. |
| |
| template<bool dynamic, int size, bool big_endian> |
| typename elfcpp::Elf_types<size>::Elf_Addr |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value( |
| Addend addend) const |
| { |
| if (this->local_sym_index_ == GSYM_CODE) |
| { |
| const Sized_symbol<size>* sym; |
| sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym); |
| if (this->use_plt_offset_ && sym->has_plt_offset()) |
| return parameters->target().plt_address_for_global(sym); |
| else |
| return sym->value() + addend; |
| } |
| if (this->local_sym_index_ == SECTION_CODE) |
| { |
| gold_assert(!this->use_plt_offset_); |
| return this->u1_.os->address() + addend; |
| } |
| gold_assert(this->local_sym_index_ != TARGET_CODE |
| && this->local_sym_index_ != INVALID_CODE |
| && this->local_sym_index_ != 0 |
| && !this->is_section_symbol_); |
| const unsigned int lsi = this->local_sym_index_; |
| Sized_relobj_file<size, big_endian>* relobj = |
| this->u1_.relobj->sized_relobj(); |
| gold_assert(relobj != NULL); |
| if (this->use_plt_offset_) |
| return parameters->target().plt_address_for_local(relobj, lsi); |
| const Symbol_value<size>* symval = relobj->local_symbol(lsi); |
| return symval->value(relobj, addend); |
| } |
| |
| // Reloc comparison. This function sorts the dynamic relocs for the |
| // benefit of the dynamic linker. First we sort all relative relocs |
| // to the front. Among relative relocs, we sort by output address. |
| // Among non-relative relocs, we sort by symbol index, then by output |
| // address. |
| |
| template<bool dynamic, int size, bool big_endian> |
| int |
| Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>:: |
| compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2) |
| const |
| { |
| if (this->is_relative_) |
| { |
| if (!r2.is_relative_) |
| return -1; |
| // Otherwise sort by reloc address below. |
| } |
| else if (r2.is_relative_) |
| return 1; |
| else |
| { |
| unsigned int sym1 = this->get_symbol_index(); |
| unsigned int sym2 = r2.get_symbol_index(); |
| if (sym1 < sym2) |
| return -1; |
| else if (sym1 > sym2) |
| return 1; |
| // Otherwise sort by reloc address. |
| } |
| |
| section_offset_type addr1 = this->get_address(); |
| section_offset_type addr2 = r2.get_address(); |
| if (addr1 < addr2) |
| return -1; |
| else if (addr1 > addr2) |
| return 1; |
| |
| // Final tie breaker, in order to generate the same output on any |
| // host: reloc type. |
| unsigned int type1 = this->type_; |
| unsigned int type2 = r2.type_; |
| if (type1 < type2) |
| return -1; |
| else if (type1 > type2) |
| return 1; |
| |
| // These relocs appear to be exactly the same. |
| return 0; |
| } |
| |
| // Write out a Rela relocation. |
| |
| template<bool dynamic, int size, bool big_endian> |
| void |
| Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write( |
| unsigned char* pov) const |
| { |
| elfcpp::Rela_write<size, big_endian> orel(pov); |
| this->rel_.write_rel(&orel); |
| Addend addend = this->addend_; |
| if (this->rel_.is_target_specific()) |
| addend = parameters->target().reloc_addend(this->rel_.target_arg(), |
| this->rel_.type(), addend); |
| else if (this->rel_.is_symbolless()) |
| addend = this->rel_.symbol_value(addend); |
| else if (this->rel_.is_local_section_symbol()) |
| addend = this->rel_.local_section_offset(addend); |
| orel.put_r_addend(addend); |
| } |
| |
| // Output_data_reloc_base methods. |
| |
| // Adjust the output section. |
| |
| template<int sh_type, bool dynamic, int size, bool big_endian> |
| void |
| Output_data_reloc_base<sh_type, dynamic, size, big_endian> |
| ::do_adjust_output_section(Output_section* os) |
| { |
| if (sh_type == elfcpp::SHT_REL) |
| os->set_entsize(elfcpp::Elf_sizes<size>::rel_size); |
| else if (sh_type == elfcpp::SHT_RELA) |
| os->set_entsize(elfcpp::Elf_sizes<size>::rela_size); |
| else |
| gold_unreachable(); |
| |
| // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a |
| // static link. The backends will generate a dynamic reloc section |
| // to hold this. In that case we don't want to link to the dynsym |
| // section, because there isn't one. |
| if (!dynamic) |
| os->set_should_link_to_symtab(); |
| else if (parameters->doing_static_link()) |
| ; |
| else |
| os->set_should_link_to_dynsym(); |
| } |
| |
| // Standard relocation writer, which just calls Output_reloc::write(). |
| |
| template<int sh_type, bool dynamic, int size, bool big_endian> |
| struct Output_reloc_writer |
| { |
| typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type; |
| typedef std::vector<Output_reloc_type> Relocs; |
| |
| static void |
| write(typename Relocs::const_iterator p, unsigned char* pov) |
| { p->write(pov); } |
| }; |
| |
| // Write out relocation data. |
| |
| template<int sh_type, bool dynamic, int size, bool big_endian> |
| void |
| Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write( |
| Output_file* of) |
| { |
| typedef Output_reloc_writer<sh_type, dynamic, size, big_endian> Writer; |
| this->do_write_generic<Writer>(of); |
| } |
| |
| // Class Output_relocatable_relocs. |
| |
| template<int sh_type, int size, bool big_endian> |
| void |
| Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size() |
| { |
| this->set_data_size(this->rr_->output_reloc_count() |
| * Reloc_types<sh_type, size, big_endian>::reloc_size); |
| } |
| |
| // class Output_data_group. |
| |
| template<int size, bool big_endian> |
| Output_data_group<size, big_endian>::Output_data_group( |
| Sized_relobj_file<size, big_endian>* relobj, |
| section_size_type entry_count, |
| elfcpp::Elf_Word flags, |
| std::vector<unsigned int>* input_shndxes) |
| : Output_section_data(entry_count * 4, 4, false), |
| relobj_(relobj), |
| flags_(flags) |
| { |
| this->input_shndxes_.swap(*input_shndxes); |
| } |
| |
| // Write out the section group, which means translating the section |
| // indexes to apply to the output file. |
| |
| template<int size, bool big_endian> |
| void |
| Output_data_group<size, big_endian>::do_write(Output_file* of) |
| { |
| const off_t off = this->offset(); |
| const section_size_type oview_size = |
| convert_to_section_size_type(this->data_size()); |
| unsigned char* const oview = of->get_output_view(off, oview_size); |
| |
| elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview); |
| elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_); |
| ++contents; |
| |
| for (std::vector<unsigned int>::const_iterator p = |
| this->input_shndxes_.begin(); |
| p != this->input_shndxes_.end(); |
| ++p, ++contents) |
| { |
| Output_section* os = this->relobj_->output_section(*p); |
| |
| unsigned int output_shndx; |
| if (os != NULL) |
| output_shndx = os->out_shndx(); |
| else |
| { |
| this->relobj_->error(_("section group retained but " |
| "group element discarded")); |
| output_shndx = 0; |
| } |
| |
| elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx); |
| } |
| |
| size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview; |
| gold_assert(wrote == oview_size); |
| |
| of->write_output_view(off, oview_size, oview); |
| |
| // We no longer need this information. |
| this->input_shndxes_.clear(); |
| } |
| |
| // Output_data_got::Got_entry methods. |
| |
| // Write out the entry. |
| |
| template<int got_size, bool big_endian> |
| void |
| Output_data_got<got_size, big_endian>::Got_entry::write( |
| Output_data_got_base* got, |
| unsigned int got_indx, |
| unsigned char* pov) const |
| { |
| Valtype val = 0; |
| |
| switch (this->local_sym_index_) |
| { |
| case GSYM_CODE: |
| { |
| // If the symbol is resolved locally, we need to write out the |
| // link-time value, which will be relocated dynamically by a |
| // RELATIVE relocation. |
| Symbol* gsym = this->u_.gsym; |
| if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset()) |
| val = parameters->target().plt_address_for_global(gsym); |
| else |
| { |
| switch (parameters->size_and_endianness()) |
| { |
| #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) |
| case Parameters::TARGET_32_LITTLE: |
| case Parameters::TARGET_32_BIG: |
| { |
| // This cast is ugly. We don't want to put a |
| // virtual method in Symbol, because we want Symbol |
| // to be as small as possible. |
| Sized_symbol<32>::Value_type v; |
| v = static_cast<Sized_symbol<32>*>(gsym)->value(); |
| val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v); |
| } |
| break; |
| #endif |
| #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) |
| case Parameters::TARGET_64_LITTLE: |
| case Parameters::TARGET_64_BIG: |
| { |
| Sized_symbol<64>::Value_type v; |
| v = static_cast<Sized_symbol<64>*>(gsym)->value(); |
| val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v); |
| } |
| break; |
| #endif |
| default: |
| gold_unreachable(); |
| } |
| // If this is a GOT entry for a known value global symbol, |
| // then the value should include the addend. If the value |
| // is not known leave the value as zero; The GOT entry |
| // will be set by a dynamic relocation. |
| if (this->addend_ && gsym->final_value_is_known()) |
| val += this->addend_; |
| if (this->use_plt_or_tls_offset_ |
| && gsym->type() == elfcpp::STT_TLS) |
| val += parameters->target().tls_offset_for_global(gsym, |
| got, got_indx, |
| this->addend_); |
| } |
| } |
| break; |
| |
| case CONSTANT_CODE: |
| val = this->u_.constant; |
| break; |
| |
| case RESERVED_CODE: |
| // If we're doing an incremental update, don't touch this GOT entry. |
| if (parameters->incremental_update()) |
| return; |
| val = this->u_.constant; |
| break; |
| |
| default: |
| { |
| const Relobj* object = this->u_.object; |
| const unsigned int lsi = this->local_sym_index_; |
| bool is_tls = object->local_is_tls(lsi); |
| if (this->use_plt_or_tls_offset_ && !is_tls) |
| val = parameters->target().plt_address_for_local(object, lsi); |
| else |
| { |
| uint64_t lval = object->local_symbol_value(lsi, this->addend_); |
| val = convert_types<Valtype, uint64_t>(lval); |
| if (this->use_plt_or_tls_offset_ && is_tls) |
| val += parameters->target().tls_offset_for_local(object, lsi, |
| got, got_indx, |
| this->addend_); |
| } |
| } |
| break; |
| } |
| |
| elfcpp::Swap<got_size, big_endian>::writeval(pov, val); |
| } |
| |
| // Output_data_got methods. |
| |
| // Add an entry for a global symbol to the GOT. This returns true if |
| // this is a new GOT entry, false if the symbol already had a GOT |
| // entry. |
| |
| template<int got_size, bool big_endian> |
| bool |
| Output_data_got<got_size, big_endian>::add_global(Symbol* gsym, |
| unsigned int got_type, |
| uint64_t addend) |
| { |
| if (gsym->has_got_offset(got_type, addend)) |
| return false; |
| |
| unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false, addend)); |
| gsym->set_got_offset(got_type, got_offset, addend); |
| return true; |
| } |
| |
| // Like add_global, but use the PLT offset. |
| |
| template<int got_size, bool big_endian> |
| bool |
| Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym, |
| unsigned int got_type, |
| uint64_t addend) |
| { |
| if (gsym->has_got_offset(got_type, addend)) |
| return false; |
| |
| unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true, addend)); |
| gsym->set_got_offset(got_type, got_offset, addend); |
| return true; |
| } |
| |
| // Add an entry for a global symbol to the GOT, and add a dynamic |
| // relocation of type R_TYPE for the GOT entry. |
| |
| template<int got_size, bool big_endian> |
| void |
| Output_data_got<got_size, big_endian>::add_global_with_rel( |
| Symbol* gsym, |
| unsigned int got_type, |
| Output_data_reloc_generic* rel_dyn, |
| unsigned int r_type, |
| uint64_t addend) |
| { |
| if (gsym->has_got_offset(got_type, addend)) |
| return; |
| |
| unsigned int got_offset = this->add_got_entry(Got_entry()); |
| gsym->set_got_offset(got_type, got_offset, addend); |
| rel_dyn->add_global_generic(gsym, r_type, this, got_offset, addend); |
| } |
| |
| // Add a pair of entries for a global symbol to the GOT, and add |
| // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively. |
| // If R_TYPE_2 == 0, add the second entry with no relocation. |
| template<int got_size, bool big_endian> |
| void |
| Output_data_got<got_size, big_endian>::add_global_pair_with_rel( |
| Symbol* gsym, |
| unsigned int got_type, |
| Output_data_reloc_generic* rel_dyn, |
| unsigned int r_type_1, |
| unsigned int r_type_2, |
| uint64_t addend) |
| { |
| if (gsym->has_got_offset(got_type, addend)) |
| return; |
| |
| unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry()); |
| gsym->set_got_offset(got_type, got_offset, addend); |
| rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, addend); |
| |
| if (r_type_2 != 0) |
| rel_dyn->add_global_generic(gsym, r_type_2, this, |
| got_offset + got_size / 8, addend); |
| } |
| |
| // Add an entry for a local symbol plus ADDEND to the GOT. This returns |
| // true if this is a new GOT entry, false if the symbol already has a GOT |
| // entry. |
| |
| template<int got_size, bool big_endian> |
| bool |
| Output_data_got<got_size, big_endian>::add_local( |
| Relobj* object, |
| unsigned int symndx, |
| unsigned int got_type, |
| uint64_t addend) |
| { |
| if (object->local_has_got_offset(symndx, got_type, addend)) |
| return false; |
| |
| unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx, |
| false, addend)); |
| object->set_local_got_offset(symndx, got_type, got_offset, addend); |
| return true; |
| } |
| |
| // Like add_local, but use the PLT offset. |
| |
| template<int got_size, bool big_endian> |
| bool |
| Output_data_got<got_size, big_endian>::add_local_plt( |
| Relobj* object, |
| unsigned int symndx, |
| unsigned int got_type, |
| uint64_t addend) |
| { |
| if (object->local_has_got_offset(symndx, got_type, addend)) |
| return false; |
| |
| unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx, |
| true, addend)); |
| object->set_local_got_offset(symndx, got_type, got_offset, addend); |
| return true; |
| } |
| |
| // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic |
| // relocation of type R_TYPE for the GOT entry. |
| |
| template<int got_size, bool big_endian> |
| void |
| Output_data_got<got_size, big_endian>::add_local_with_rel( |
| Relobj* object, |
| unsigned int symndx, |
| unsigned int got_type, |
| Output_data_reloc_generic* rel_dyn, |
| unsigned int r_type, |
| uint64_t addend) |
| { |
| if (object->local_has_got_offset(symndx, got_type, addend)) |
| return; |
| |
| unsigned int got_offset = this->add_got_entry(Got_entry()); |
| object->set_local_got_offset(symndx, got_type, got_offset, addend); |
| rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, |
| addend); |
| } |
| |
| // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add |
| // a dynamic relocation of type R_TYPE using the section symbol of |
| // the output section to which input section SHNDX maps, on the first. |
| // The first got entry will have a value of zero, the second the |
| // value of the local symbol. |
| template<int got_size, bool big_endian> |
| void |
| Output_data_got<got_size, big_endian>::add_local_pair_with_rel( |
| Relobj* object, |
| unsigned int symndx, |
| unsigned int shndx, |
| unsigned int got_type, |
| Output_data_reloc_generic* rel_dyn, |
| unsigned int r_type, |
| uint64_t addend) |
| { |
| if (object->local_has_got_offset(symndx, got_type, addend)) |
| return; |
| |
| unsigned int got_offset = |
| this->add_got_entry_pair(Got_entry(), |
| Got_entry(object, symndx, false, addend)); |
| object->set_local_got_offset(symndx, got_type, got_offset, addend); |
| Output_section* os = object->output_section(shndx); |
| rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend); |
| } |
| |
| // Add a pair of entries for a local symbol to the GOT, and add |
| // a dynamic relocation of type R_TYPE using STN_UNDEF on the first. |
| // The first got entry will have a value of zero, the second the |
| // value of the local symbol offset by Target::tls_offset_for_local. |
| template<int got_size, bool big_endian> |
| void |
| Output_data_got<got_size, big_endian>::add_local_tls_pair( |
| Relobj* object, |
| unsigned int symndx, |
| unsigned int got_type, |
| Output_data_reloc_generic* rel_dyn, |
| unsigned int r_type, |
| uint64_t addend) |
| { |
| if (object->local_has_got_offset(symndx, got_type, addend)) |
| return; |
| |
| unsigned int got_offset |
| = this->add_got_entry_pair(Got_entry(), |
| Got_entry(object, symndx, true, addend)); |
| object->set_local_got_offset(symndx, got_type, got_offset, addend); |
| rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, addend); |
| } |
| |
| // Reserve a slot in the GOT for a local symbol or the second slot of a pair. |
| |
| template<int got_size, bool big_endian> |
| void |
| Output_data_got<got_size, big_endian>::reserve_local( |
| unsigned int i, |
| Relobj* object, |
| unsigned int sym_index, |
| unsigned int got_type, |
| uint64_t addend) |
| { |
| this->do_reserve_slot(i); |
| object->set_local_got_offset(sym_index, got_type, this->got_offset(i), addend); |
| } |
| |
| // Reserve a slot in the GOT for a global symbol. |
| |
| template<int got_size, bool big_endian> |
| void |
| Output_data_got<got_size, big_endian>::reserve_global( |
| unsigned int i, |
| Symbol* gsym, |
| unsigned int got_type, |
| uint64_t addend) |
| { |
| this->do_reserve_slot(i); |
| gsym->set_got_offset(got_type, this->got_offset(i), addend); |
| } |
| |
| // Write out the GOT. |
| |
| template<int got_size, bool big_endian> |
| void |
| Output_data_got<got_size, big_endian>::do_write(Output_file* of) |
| { |
| const int add = got_size / 8; |
| |
| const off_t off = this->offset(); |
| const off_t oview_size = this->data_size(); |
| unsigned char* const oview = of->get_output_view(off, oview_size); |
| |
| unsigned char* pov = oview; |
| for (unsigned int i = 0; i < this->entries_.size(); ++i) |
| { |
| this->entries_[i].write(this, i, pov); |
| pov += add; |
| } |
| |
| gold_assert(pov - oview == oview_size); |
| |
| of->write_output_view(off, oview_size, oview); |
| |
| // We no longer need the GOT entries. |
| this->entries_.clear(); |
| } |
| |
| // Create a new GOT entry and return its offset. |
| |
| template<int got_size, bool big_endian> |
| unsigned int |
| Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry) |
| { |
| if (!this->is_data_size_valid()) |
| { |
| this->entries_.push_back(got_entry); |
| this->set_got_size(); |
| return this->last_got_offset(); |
| } |
| else |
| { |
| // For an incremental update, find an available slot. |
| off_t got_offset = this->free_list_.allocate(got_size / 8, |
| got_size / 8, 0); |
| if (got_offset == -1) |
| gold_fallback(_("out of patch space (GOT);" |
| " relink with --incremental-full")); |
| unsigned int got_index = got_offset / (got_size / 8); |
| gold_assert(got_index < this->entries_.size()); |
| this->entries_[got_index] = got_entry; |
| return static_cast<unsigned int>(got_offset); |
| } |
| } |
| |
| // Create a pair of new GOT entries and return the offset of the first. |
| |
| template<int got_size, bool big_endian> |
| unsigned int |
| Output_data_got<got_size, big_endian>::add_got_entry_pair( |
| Got_entry got_entry_1, |
| Got_entry got_entry_2) |
| { |
| if (!this->is_data_size_valid()) |
| { |
| unsigned int got_offset; |
| this->entries_.push_back(got_entry_1); |
| got_offset = this->last_got_offset(); |
| this->entries_.push_back(got_entry_2); |
| this->set_got_size(); |
| return got_offset; |
| } |
| else |
| { |
| // For an incremental update, find an available pair of slots. |
| off_t got_offset = this->free_list_.allocate(2 * got_size / 8, |
| got_size / 8, 0); |
| if (got_offset == -1) |
| gold_fallback(_("out of patch space (GOT);" |
| " relink with --incremental-full")); |
| unsigned int got_index = got_offset / (got_size / 8); |
| gold_assert(got_index < this->entries_.size()); |
| this->entries_[got_index] = got_entry_1; |
| this->entries_[got_index + 1] = got_entry_2; |
| return static_cast<unsigned int>(got_offset); |
| } |
| } |
| |
| // Replace GOT entry I with a new value. |
| |
| template<int got_size, bool big_endian> |
| void |
| Output_data_got<got_size, big_endian>::replace_got_entry( |
| unsigned int i, |
| Got_entry got_entry) |
| { |
| gold_assert(i < this->entries_.size()); |
| this->entries_[i] = got_entry; |
| } |
| |
| // Output_data_dynamic::Dynamic_entry methods. |
| |
| // Write out the entry. |
| |
| template<int size, bool big_endian> |
| void |
| Output_data_dynamic::Dynamic_entry::write( |
| unsigned char* pov, |
| const Stringpool* pool) const |
| { |
| typename elfcpp::Elf_types<size>::Elf_WXword val; |
| switch (this->offset_) |
| { |
| case DYNAMIC_NUMBER: |
| val = this->u_.val; |
| break; |
| |
| case DYNAMIC_SECTION_SIZE: |
| val = this->u_.od->data_size(); |
| if (this->od2 != NULL) |
| val += this->od2->data_size(); |
| break; |
| |
| case DYNAMIC_SYMBOL: |
| { |
| const Sized_symbol<size>* s = |
| static_cast<const Sized_symbol<size>*>(this->u_.sym); |
| val = s->value(); |
| } |
| break; |
| |
| case DYNAMIC_STRING: |
| val = pool->get_offset(this->u_.str); |
| break; |
| |
| case DYNAMIC_CUSTOM: |
| val = parameters->target().dynamic_tag_custom_value(this->tag_); |
| break; |
| |
| default: |
| val = this->u_.od->address() + this->offset_; |
| break; |
| } |
| |
| elfcpp::Dyn_write<size, big_endian> dw(pov); |
| dw.put_d_tag(this->tag_); |
| dw.put_d_val(val); |
| } |
| |
| // Output_data_dynamic methods. |
| |
| // Adjust the output section to set the entry size. |
| |
| void |
| Output_data_dynamic::do_adjust_output_section(Output_section* os) |
| { |
| if (parameters->target().get_size() == 32) |
| os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size); |
| else if (parameters->target().get_size() == 64) |
| os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size); |
| else |
| gold_unreachable(); |
| } |
| |
| // Get a dynamic entry offset. |
| |
| unsigned int |
| Output_data_dynamic::get_entry_offset(elfcpp::DT tag) const |
| { |
| int dyn_size; |
| |
| if (parameters->target().get_size() == 32) |
| dyn_size = elfcpp::Elf_sizes<32>::dyn_size; |
| else if (parameters->target().get_size() == 64) |
| dyn_size = elfcpp::Elf_sizes<64>::dyn_size; |
| else |
| gold_unreachable(); |
| |
| for (size_t i = 0; i < entries_.size(); ++i) |
| if (entries_[i].tag() == tag) |
| return i * dyn_size; |
| |
| return -1U; |
| } |
| |
| // Set the final data size. |
| |
| void |
| Output_data_dynamic::set_final_data_size() |
| { |
| // Add the terminating entry if it hasn't been added. |
| // Because of relaxation, we can run this multiple times. |
| if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL) |
| { |
| int extra = parameters->options().spare_dynamic_tags(); |
| for (int i = 0; i < extra; ++i) |
| this->add_constant(elfcpp::DT_NULL, 0); |
| this->add_constant(elfcpp::DT_NULL, 0); |
| } |
| |
| int dyn_size; |
| if (parameters->target().get_size() == 32) |
| dyn_size = elfcpp::Elf_sizes<32>::dyn_size; |
| else if (parameters->target().get_size() == 64) |
| dyn_size = elfcpp::Elf_sizes<64>::dyn_size; |
| else |
| gold_unreachable(); |
| this->set_data_size(this->entries_.size() * dyn_size); |
| } |
| |
| // Write out the dynamic entries. |
| |
| void |
| Output_data_dynamic::do_write(Output_file* of) |
| { |
| switch (parameters->size_and_endianness()) |
| { |
| #ifdef HAVE_TARGET_32_LITTLE |
| case Parameters::TARGET_32_LITTLE: |
| this->sized_write<32, false>(of); |
| break; |
| #endif |
| #ifdef HAVE_TARGET_32_BIG |
| case Parameters::TARGET_32_BIG: |
| this->sized_write<32, true>(of); |
| break; |
| #endif |
| #ifdef HAVE_TARGET_64_LITTLE |
| case Parameters::TARGET_64_LITTLE: |
| this->sized_write<64, false>(of); |
| break; |
| #endif |
| #ifdef HAVE_TARGET_64_BIG |
| case Parameters::TARGET_64_BIG: |
| this->sized_write<64, true>(of); |
| break; |
| #endif |
| default: |
| gold_unreachable(); |
| } |
| } |
| |
| template<int size, bool big_endian> |
| void |
| Output_data_dynamic::sized_write(Output_file* of) |
| { |
| const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size; |
| |
| const off_t offset = this->offset(); |
| const off_t oview_size = this->data_size(); |
| unsigned char* const oview = of->get_output_view(offset, oview_size); |
| |
| unsigned char* pov = oview; |
| for (typename Dynamic_entries::const_iterator p = this->entries_.begin(); |
| p != this->entries_.end(); |
| ++p) |
| { |
| p->write<size, big_endian>(pov, this->pool_); |
| pov += dyn_size; |
| } |
| |
| gold_assert(pov - oview == oview_size); |
| |
| of->write_output_view(offset, oview_size, oview); |
| |
| // We no longer need the dynamic entries. |
| this->entries_.clear(); |
| } |
| |
| // Class Output_symtab_xindex. |
| |
| void |
| Output_symtab_xindex::do_write(Output_file* of) |
| { |
| const off_t offset = this->offset(); |
| const off_t oview_size = this->data_size(); |
| unsigned char* const oview = of->get_output_view(offset, oview_size); |
| |
| memset(oview, 0, oview_size); |
| |
| if (parameters->target().is_big_endian()) |
| this->endian_do_write<true>(oview); |
| else |
| this->endian_do_write<false>(oview); |
| |
| of->write_output_view(offset, oview_size, oview); |
| |
| // We no longer need the data. |
| this->entries_.clear(); |
| } |
| |
| template<bool big_endian> |
| void |
| Output_symtab_xindex::endian_do_write(unsigned char* const oview) |
| { |
| for (Xindex_entries::const_iterator p = this->entries_.begin(); |
| p != this->entries_.end(); |
| ++p) |
| { |
| unsigned int symndx = p->first; |
| gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size()); |
| elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second); |
| } |
| } |
| |
| // Output_fill_debug_info methods. |
| |
| // Return the minimum size needed for a dummy compilation unit header. |
| |
| size_t |
| Output_fill_debug_info::do_minimum_hole_size() const |
| { |
| // Compile unit header fields: unit_length, version, debug_abbrev_offset, |
| // address_size. |
| const size_t len = 4 + 2 + 4 + 1; |
| // For type units, add type_signature, type_offset. |
| if (this->is_debug_types_) |
| return len + 8 + 4; |
| return len; |
| } |
| |
| // Write a dummy compilation unit header to fill a hole in the |
| // .debug_info or .debug_types section. |
| |
| void |
| Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const |
| { |
| gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)", |
| static_cast<long>(off), static_cast<long>(len)); |
| |
| gold_assert(len >= this->do_minimum_hole_size()); |
| |
| unsigned char* const oview = of->get_output_view(off, len); |
| unsigned char* pov = oview; |
| |
| // Write header fields: unit_length, version, debug_abbrev_offset, |
| // address_size. |
| if (this->is_big_endian()) |
| { |
| elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4); |
| elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version); |
| elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0); |
| } |
| else |
| { |
| elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4); |
| elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version); |
| elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0); |
| } |
| pov += 4 + 2 + 4; |
| *pov++ = 4; |
| |
| // For type units, the additional header fields -- type_signature, |
| // type_offset -- can be filled with zeroes. |
| |
| // Fill the remainder of the free space with zeroes. The first |
| // zero should tell the consumer there are no DIEs to read in this |
| // compilation unit. |
| if (pov < oview + len) |
| memset(pov, 0, oview + len - pov); |
| |
| of->write_output_view(off, len, oview); |
| } |
| |
| // Output_fill_debug_line methods. |
| |
| // Return the minimum size needed for a dummy line number program header. |
| |
| size_t |
| Output_fill_debug_line::do_minimum_hole_size() const |
| { |
| // Line number program header fields: unit_length, version, header_length, |
| // minimum_instruction_length, default_is_stmt, line_base, line_range, |
| // opcode_base, standard_opcode_lengths[], include_directories, filenames. |
| const size_t len = 4 + 2 + 4 + this->header_length; |
| return len; |
| } |
| |
| // Write a dummy line number program header to fill a hole in the |
| // .debug_line section. |
| |
| void |
| Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const |
| { |
| gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)", |
| static_cast<long>(off), static_cast<long>(len)); |
| |
| gold_assert(len >= this->do_minimum_hole_size()); |
| |
| unsigned char* const oview = of->get_output_view(off, len); |
| unsigned char* pov = oview; |
| |
| // Write header fields: unit_length, version, header_length, |
| // minimum_instruction_length, default_is_stmt, line_base, line_range, |
| // opcode_base, standard_opcode_lengths[], include_directories, filenames. |
| // We set the header_length field to cover the entire hole, so the |
| // line number program is empty. |
| if (this->is_big_endian()) |
| { |
| elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4); |
| elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version); |
| elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4)); |
| } |
| else |
| { |
| elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4); |
| elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version); |
| elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4)); |
| } |
| pov += 4 + 2 + 4; |
| *pov++ = 1; // minimum_instruction_length |
| *pov++ = 0; // default_is_stmt |
| *pov++ = 0; // line_base |
| *pov++ = 5; // line_range |
| *pov++ = 13; // opcode_base |
| *pov++ = 0; // standard_opcode_lengths[1] |
| *pov++ = 1; // standard_opcode_lengths[2] |
| *pov++ = 1; // standard_opcode_lengths[3] |
| *pov++ = 1; // standard_opcode_lengths[4] |
| *pov++ = 1; // standard_opcode_lengths[5] |
| *pov++ = 0; // standard_opcode_lengths[6] |
| *pov++ = 0; // standard_opcode_lengths[7] |
| *pov++ = 0; // standard_opcode_lengths[8] |
| *pov++ = 1; // standard_opcode_lengths[9] |
| *pov++ = 0; // standard_opcode_lengths[10] |
| *pov++ = 0; // standard_opcode_lengths[11] |
| *pov++ = 1; // standard_opcode_lengths[12] |
| *pov++ = 0; // include_directories (empty) |
| *pov++ = 0; // filenames (empty) |
| |
| // Some consumers don't check the header_length field, and simply |
| // start reading the line number program immediately following the |
| // header. For those consumers, we fill the remainder of the free |
| // space with DW_LNS_set_basic_block opcodes. These are effectively |
| // no-ops: the resulting line table program will not create any rows. |
| if (pov < oview + len) |
| memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov); |
| |
| of->write_output_view(off, len, oview); |
| } |
| |
| // Output_section::Input_section methods. |
| |
| // Return the current data size. For an input section we store the size here. |
| // For an Output_section_data, we have to ask it for the size. |
| |
| off_t |
| Output_section::Input_section::current_data_size() const |
| { |
| if (this->is_input_section()) |
| return this->u1_.data_size; |
| else |
| { |
| this->u2_.posd->pre_finalize_data_size(); |
| return this->u2_.posd->current_data_size(); |
| } |
| } |
| |
| // Return the data size. For an input section we store the size here. |
| // For an Output_section_data, we have to ask it for the size. |
| |
| off_t |
| Output_section::Input_section::data_size() const |
| { |
| if (this->is_input_section()) |
| return this->u1_.data_size; |
| else |
| return this->u2_.posd->data_size(); |
| } |
| |
| // Return the object for an input section. |
| |
| Relobj* |
| Output_section::Input_section::relobj() const |
| { |
| if (this->is_input_section()) |
| return this->u2_.object; |
| else if (this->is_merge_section()) |
| { |
| gold_assert(this->u2_.pomb->first_relobj() != NULL); |
| return this->u2_.pomb->first_relobj(); |
| } |
| else if (this->is_relaxed_input_section()) |
| return this->u2_.poris->relobj(); |
| else |
| gold_unreachable(); |
| } |
| |
| // Return the input section index for an input section. |
| |
| unsigned int |
| Output_section::Input_section::shndx() const |
| { |
| if (this->is_input_section()) |
| return this->shndx_; |
| else if (this->is_merge_section()) |
| { |
| gold_assert(this->u2_.pomb->first_relobj() != NULL); |
| return this->u2_.pomb->first_shndx(); |
| } |
| else if (this->is_relaxed_input_section()) |
| return this->u2_.poris->shndx(); |
| else |
| gold_unreachable(); |
| } |
| |
| // Set the address and file offset. |
| |
| void |
| Output_section::Input_section::set_address_and_file_offset( |
| uint64_t address, |
| off_t file_offset, |
| off_t section_file_offset) |
| { |
| if (this->is_input_section()) |
| this->u2_.object->set_section_offset(this->shndx_, |
| file_offset - section_file_offset); |
| else |
| this->u2_.posd->set_address_and_file_offset(address, file_offset); |
| } |
| |
| // Reset the address and file offset. |
| |
| void |
| Output_section::Input_section::reset_address_and_file_offset() |
| { |
| if (!this->is_input_section()) |
| this->u2_.posd->reset_address_and_file_offset(); |
| } |
| |
| // Finalize the data size. |
| |
| void |
| Output_section::Input_section::finalize_data_size() |
| { |
| if (!this->is_input_section()) |
| this->u2_.posd->finalize_data_size(); |
| } |
| |
| // Try to turn an input offset into an output offset. We want to |
| // return the output offset relative to the start of this |
| // Input_section in the output section. |
| |
| inline bool |
| Output_section::Input_section::output_offset( |
| const Relobj* object, |
| unsigned int shndx, |
| section_offset_type offset, |
| section_offset_type* poutput) const |
| { |
| if (!this->is_input_section()) |
| return this->u2_.posd->output_offset(object, shndx, offset, poutput); |
| else |
| { |
| if (this->shndx_ != shndx || this->u2_.object != object) |
| return false; |
| *poutput = offset; |
| return true; |
| } |
| } |
| |
| // Write out the data. We don't have to do anything for an input |
| // section--they are handled via Object::relocate--but this is where |
| // we write out the data for an Output_section_data. |
| |
| void |
| Output_section::Input_section::write(Output_file* of) |
| { |
| if (!this->is_input_section()) |
| this->u2_.posd->write(of); |
| } |
| |
| // Write the data to a buffer. As for write(), we don't have to do |
| // anything for an input section. |
| |
| void |
| Output_section::Input_section::write_to_buffer(unsigned char* buffer) |
| { |
| if (!this->is_input_section()) |
| this->u2_.posd->write_to_buffer(buffer); |
| } |
| |
| // Print to a map file. |
| |
| void |
| Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const |
| { |
| switch (this->shndx_) |
| { |
| case OUTPUT_SECTION_CODE: |
| case MERGE_DATA_SECTION_CODE: |
| case MERGE_STRING_SECTION_CODE: |
| this->u2_.posd->print_to_mapfile(mapfile); |
| break; |
| |
| case RELAXED_INPUT_SECTION_CODE: |
| { |
| Output_relaxed_input_section* relaxed_section = |
| this->relaxed_input_section(); |
| mapfile->print_input_section(relaxed_section->relobj(), |
| relaxed_section->shndx()); |
| } |
| break; |
| default: |
| mapfile->print_input_section(this->u2_.object, this->shndx_); |
| break; |
| } |
| } |
| |
| // Output_section methods. |
| |
| // Construct an Output_section. NAME will point into a Stringpool. |
| |
| Output_section::Output_section(const char* name, elfcpp::Elf_Word type, |
| elfcpp::Elf_Xword flags) |
| : name_(name), |
| addralign_(0), |
| entsize_(0), |
| load_address_(0), |
| link_section_(NULL), |
| link_(0), |
| info_section_(NULL), |
| info_symndx_(NULL), |
| info_(0), |
| type_(type), |
| flags_(flags), |
| order_(ORDER_INVALID), |
| out_shndx_(-1U), |
| symtab_index_(0), |
| dynsym_index_(0), |
| input_sections_(), |
| first_input_offset_(0), |
| fills_(), |
| postprocessing_buffer_(NULL), |
| needs_symtab_index_(false), |
| needs_dynsym_index_(false), |
| should_link_to_symtab_(false), |
| should_link_to_dynsym_(false), |
| after_input_sections_(false), |
| requires_postprocessing_(false), |
| found_in_sections_clause_(false), |
| has_load_address_(false), |
| info_uses_section_index_(false), |
| input_section_order_specified_(false), |
| may_sort_attached_input_sections_(false), |
| must_sort_attached_input_sections_(false), |
| attached_input_sections_are_sorted_(false), |
| is_relro_(false), |
| is_small_section_(false), |
| is_large_section_(false), |
| generate_code_fills_at_write_(false), |
| is_entsize_zero_(false), |
| section_offsets_need_adjustment_(false), |
| is_noload_(false), |
| always_keeps_input_sections_(false), |
| has_fixed_layout_(false), |
| is_patch_space_allowed_(false), |
| is_unique_segment_(false), |
| tls_offset_(0), |
| extra_segment_flags_(0), |
| segment_alignment_(0), |
| checkpoint_(NULL), |
| lookup_maps_(new Output_section_lookup_maps), |
| free_list_(), |
| free_space_fill_(NULL), |
| patch_space_(0), |
| reloc_section_(NULL) |
| { |
| // An unallocated section has no address. Forcing this means that |
| // we don't need special treatment for symbols defined in debug |
| // sections. |
| if ((flags & elfcpp::SHF_ALLOC) == 0) |
| this->set_address(0); |
| } |
| |
| Output_section::~Output_section() |
| { |
| delete this->checkpoint_; |
| } |
| |
| // Set the entry size. |
| |
| void |
| Output_section::set_entsize(uint64_t v) |
| { |
| if (this->is_entsize_zero_) |
| ; |
| else if (this->entsize_ == 0) |
| this->entsize_ = v; |
| else if (this->entsize_ != v) |
| { |
| this->entsize_ = 0; |
| this->is_entsize_zero_ = 1; |
| } |
| } |
| |
| // Add the input section SHNDX, with header SHDR, named SECNAME, in |
| // OBJECT, to the Output_section. RELOC_SHNDX is the index of a |
| // relocation section which applies to this section, or 0 if none, or |
| // -1U if more than one. Return the offset of the input section |
| // within the output section. Return -1 if the input section will |
| // receive special handling. In the normal case we don't always keep |
| // track of input sections for an Output_section. Instead, each |
| // Object keeps track of the Output_section for each of its input |
| // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep |
| // track of input sections here; this is used when SECTIONS appears in |
| // a linker script. |
| |
| template<int size, bool big_endian> |
| off_t |
| Output_section::add_input_section(Layout* layout, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int shndx, |
| const char* secname, |
| const elfcpp::Shdr<size, big_endian>& shdr, |
| unsigned int reloc_shndx, |
| bool have_sections_script) |
| { |
| section_size_type input_section_size = shdr.get_sh_size(); |
| section_size_type uncompressed_size; |
| elfcpp::Elf_Xword addralign = shdr.get_sh_addralign(); |
| if (object->section_is_compressed(shndx, &uncompressed_size, |
| &addralign)) |
| input_section_size = uncompressed_size; |
| |
| if ((addralign & (addralign - 1)) != 0) |
| { |
| object->error(_("invalid alignment %lu for section \"%s\""), |
| static_cast<unsigned long>(addralign), secname); |
| addralign = 1; |
| } |
| |
| if (addralign > this->addralign_) |
| this->addralign_ = addralign; |
| |
| typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags(); |
| uint64_t entsize = shdr.get_sh_entsize(); |
| |
| // .debug_str is a mergeable string section, but is not always so |
| // marked by compilers. Mark manually here so we can optimize. |
| if (strcmp(secname, ".debug_str") == 0) |
| { |
| sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS); |
| entsize = 1; |
| } |
| |
| this->update_flags_for_input_section(sh_flags); |
| this->set_entsize(entsize); |
| |
| // If this is a SHF_MERGE section, we pass all the input sections to |
| // a Output_data_merge. We don't try to handle relocations for such |
| // a section. We don't try to handle empty merge sections--they |
| // mess up the mappings, and are useless anyhow. |
| // FIXME: Need to handle merge sections during incremental update. |
| if ((sh_flags & elfcpp::SHF_MERGE) != 0 |
| && reloc_shndx == 0 |
| && shdr.get_sh_size() > 0 |
| && !parameters->incremental()) |
| { |
| // Keep information about merged input sections for rebuilding fast |
| // lookup maps if we have sections-script or we do relaxation. |
| bool keeps_input_sections = (this->always_keeps_input_sections_ |
| || have_sections_script |
| || parameters->target().may_relax()); |
| |
| if (this->add_merge_input_section(object, shndx, sh_flags, entsize, |
| addralign, keeps_input_sections)) |
| { |
| // Tell the relocation routines that they need to call the |
| // output_offset method to determine the final address. |
| return -1; |
| } |
| } |
| |
| off_t offset_in_section; |
| |
| if (this->has_fixed_layout()) |
| { |
| // For incremental updates, find a chunk of unused space in the section. |
| offset_in_section = this->free_list_.allocate(input_section_size, |
| addralign, 0); |
| if (offset_in_section == -1) |
| gold_fallback(_("out of patch space in section %s; " |
| "relink with --incremental-full"), |
| this->name()); |
| return offset_in_section; |
| } |
| |
| offset_in_section = this->current_data_size_for_child(); |
| off_t aligned_offset_in_section = align_address(offset_in_section, |
| addralign); |
| this->set_current_data_size_for_child(aligned_offset_in_section |
| + input_section_size); |
| |
| // Determine if we want to delay code-fill generation until the output |
| // section is written. When the target is relaxing, we want to delay fill |
| // generating to avoid adjusting them during relaxation. Also, if we are |
| // sorting input sections we must delay fill generation. |
| if (!this->generate_code_fills_at_write_ |
| && !have_sections_script |
| && (sh_flags & elfcpp::SHF_EXECINSTR) != 0 |
| && parameters->target().has_code_fill() |
| && (parameters->target().may_relax() |
| || layout->is_section_ordering_specified())) |
| { |
| gold_assert(this->fills_.empty()); |
| this->generate_code_fills_at_write_ = true; |
| } |
| |
| if (aligned_offset_in_section > offset_in_section |
| && !this->generate_code_fills_at_write_ |
| && !have_sections_script |
| && (sh_flags & elfcpp::SHF_EXECINSTR) != 0 |
| && parameters->target().has_code_fill()) |
| { |
| // We need to add some fill data. Using fill_list_ when |
| // possible is an optimization, since we will often have fill |
| // sections without input sections. |
| off_t fill_len = aligned_offset_in_section - offset_in_section; |
| if (this->input_sections_.empty()) |
| this->fills_.push_back(Fill(offset_in_section, fill_len)); |
| else |
| { |
| std::string fill_data(parameters->target().code_fill(fill_len)); |
| Output_data_const* odc = new Output_data_const(fill_data, 1); |
| this->input_sections_.push_back(Input_section(odc)); |
| } |
| } |
| |
| // We need to keep track of this section if we are already keeping |
| // track of sections, or if we are relaxing. Also, if this is a |
| // section which requires sorting, or which may require sorting in |
| // the future, we keep track of the sections. If the |
| // --section-ordering-file option is used to specify the order of |
| // sections, we need to keep track of sections. |
| if (this->always_keeps_input_sections_ |
| || have_sections_script |
| || !this->input_sections_.empty() |
| || this->may_sort_attached_input_sections() |
| || this->must_sort_attached_input_sections() |
| || parameters->options().user_set_Map() |
| || parameters->target().may_relax() |
| || layout->is_section_ordering_specified()) |
| { |
| Input_section isecn(object, shndx, input_section_size, addralign); |
| /* If section ordering is requested by specifying a ordering file, |
| using --section-ordering-file, match the section name with |
| a pattern. */ |
| if (parameters->options().section_ordering_file()) |
| { |
| unsigned int section_order_index = |
| layout->find_section_order_index(std::string(secname)); |
| if (section_order_index != 0) |
| { |
| isecn.set_section_order_index(section_order_index); |
| this->set_input_section_order_specified(); |
| } |
| } |
| this->input_sections_.push_back(isecn); |
| } |
| |
| return aligned_offset_in_section; |
| } |
| |
| // Add arbitrary data to an output section. |
| |
| void |
| Output_section::add_output_section_data(Output_section_data* posd) |
| { |
| Input_section inp(posd); |
| this->add_output_section_data(&inp); |
| |
| if (posd->is_data_size_valid()) |
| { |
| off_t offset_in_section; |
| if (this->has_fixed_layout()) |
| { |
| // For incremental updates, find a chunk of unused space. |
| offset_in_section = this->free_list_.allocate(posd->data_size(), |
| posd->addralign(), 0); |
| if (offset_in_section == -1) |
| gold_fallback(_("out of patch space in section %s; " |
| "relink with --incremental-full"), |
| this->name()); |
| // Finalize the address and offset now. |
| uint64_t addr = this->address(); |
| off_t offset = this->offset(); |
| posd->set_address_and_file_offset(addr + offset_in_section, |
| offset + offset_in_section); |
| } |
| else |
| { |
| offset_in_section = this->current_data_size_for_child(); |
| off_t aligned_offset_in_section = align_address(offset_in_section, |
| posd->addralign()); |
| this->set_current_data_size_for_child(aligned_offset_in_section |
| + posd->data_size()); |
| } |
| } |
| else if (this->has_fixed_layout()) |
| { |
| // For incremental updates, arrange for the data to have a fixed layout. |
| // This will mean that additions to the data must be allocated from |
| // free space within the containing output section. |
| uint64_t addr = this->address(); |
| posd->set_address(addr); |
| posd->set_file_offset(0); |
| // FIXME: This should eventually be unreachable. |
| // gold_unreachable(); |
| } |
| } |
| |
| // Add a relaxed input section. |
| |
| void |
| Output_section::add_relaxed_input_section(Layout* layout, |
| Output_relaxed_input_section* poris, |
| const std::string& name) |
| { |
| Input_section inp(poris); |
| |
| // If the --section-ordering-file option is used to specify the order of |
| // sections, we need to keep track of sections. |
| if (layout->is_section_ordering_specified()) |
| { |
| unsigned int section_order_index = |
| layout->find_section_order_index(name); |
| if (section_order_index != 0) |
| { |
| inp.set_section_order_index(section_order_index); |
| this->set_input_section_order_specified(); |
| } |
| } |
| |
| this->add_output_section_data(&inp); |
| if (this->lookup_maps_->is_valid()) |
| this->lookup_maps_->add_relaxed_input_section(poris->relobj(), |
| poris->shndx(), poris); |
| |
| // For a relaxed section, we use the current data size. Linker scripts |
| // get all the input sections, including relaxed one from an output |
| // section and add them back to the same output section to compute the |
| // output section size. If we do not account for sizes of relaxed input |
| // sections, an output section would be incorrectly sized. |
| off_t offset_in_section = this->current_data_size_for_child(); |
| off_t aligned_offset_in_section = align_address(offset_in_section, |
| poris->addralign()); |
| this->set_current_data_size_for_child(aligned_offset_in_section |
| + poris->current_data_size()); |
| } |
| |
| // Add arbitrary data to an output section by Input_section. |
| |
| void |
| Output_section::add_output_section_data(Input_section* inp) |
| { |
| if (this->input_sections_.empty()) |
| this->first_input_offset_ = this->current_data_size_for_child(); |
| |
| this->input_sections_.push_back(*inp); |
| |
| uint64_t addralign = inp->addralign(); |
| if (addralign > this->addralign_) |
| this->addralign_ = addralign; |
| |
| inp->set_output_section(this); |
| } |
| |
| // Add a merge section to an output section. |
| |
| void |
| Output_section::add_output_merge_section(Output_section_data* posd, |
| bool is_string, uint64_t entsize) |
| { |
| Input_section inp(posd, is_string, entsize); |
| this->add_output_section_data(&inp); |
| } |
| |
| // Add an input section to a SHF_MERGE section. |
| |
| bool |
| Output_section::add_merge_input_section(Relobj* object, unsigned int shndx, |
| uint64_t flags, uint64_t entsize, |
| uint64_t addralign, |
| bool keeps_input_sections) |
| { |
| // We cannot merge sections with entsize == 0. |
| if (entsize == 0) |
| return false; |
| |
| bool is_string = (flags & elfcpp::SHF_STRINGS) != 0; |
| |
| // We cannot restore merged input section states. |
| gold_assert(this->checkpoint_ == NULL); |
| |
| // Look up merge sections by required properties. |
| // Currently, we only invalidate the lookup maps in script processing |
| // and relaxation. We should not have done either when we reach here. |
| // So we assume that the lookup maps are valid to simply code. |
| gold_assert(this->lookup_maps_->is_valid()); |
| Merge_section_properties msp(is_string, entsize, addralign); |
| Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp); |
| bool is_new = false; |
| if (pomb != NULL) |
| { |
| gold_assert(pomb->is_string() == is_string |
| && pomb->entsize() == entsize |
| && pomb->addralign() == addralign); |
| } |
| else |
| { |
| // Create a new Output_merge_data or Output_merge_string_data. |
| if (!is_string) |
| pomb = new Output_merge_data(entsize, addralign); |
| else |
| { |
| switch (entsize) |
| { |
| case 1: |
| pomb = new Output_merge_string<char>(addralign); |
| break; |
| case 2: |
| pomb = new Output_merge_string<char16_t>(addralign); |
| break; |
| case 4: |
| pomb = new Output_merge_string<char32_t>(addralign); |
| break; |
| default: |
| return false; |
| } |
| } |
| // If we need to do script processing or relaxation, we need to keep |
| // the original input sections to rebuild the fast lookup maps. |
| if (keeps_input_sections) |
| pomb->set_keeps_input_sections(); |
| is_new = true; |
| } |
| |
| if (pomb->add_input_section(object, shndx)) |
| { |
| // Add new merge section to this output section and link merge |
| // section properties to new merge section in map. |
| if (is_new) |
| { |
| this->add_output_merge_section(pomb, is_string, entsize); |
| this->lookup_maps_->add_merge_section(msp, pomb); |
| } |
| |
| return true; |
| } |
| else |
| { |
| // If add_input_section failed, delete new merge section to avoid |
| // exporting empty merge sections in Output_section::get_input_section. |
| if (is_new) |
| delete pomb; |
| return false; |
| } |
| } |
| |
| // Build a relaxation map to speed up relaxation of existing input sections. |
| // Look up to the first LIMIT elements in INPUT_SECTIONS. |
| |
| void |
| Output_section::build_relaxation_map( |
| const Input_section_list& input_sections, |
| size_t limit, |
| Relaxation_map* relaxation_map) const |
| { |
| for (size_t i = 0; i < limit; ++i) |
| { |
| const Input_section& is(input_sections[i]); |
| if (is.is_input_section() || is.is_relaxed_input_section()) |
| { |
| Section_id sid(is.relobj(), is.shndx()); |
| (*relaxation_map)[sid] = i; |
| } |
| } |
| } |
| |
| // Convert regular input sections in INPUT_SECTIONS into relaxed input |
| // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id |
| // indices of INPUT_SECTIONS. |
| |
| void |
| Output_section::convert_input_sections_in_list_to_relaxed_sections( |
| const std::vector<Output_relaxed_input_section*>& relaxed_sections, |
| const Relaxation_map& map, |
| Input_section_list* input_sections) |
| { |
| for (size_t i = 0; i < relaxed_sections.size(); ++i) |
| { |
| Output_relaxed_input_section* poris = relaxed_sections[i]; |
| Section_id sid(poris->relobj(), poris->shndx()); |
| Relaxation_map::const_iterator p = map.find(sid); |
| gold_assert(p != map.end()); |
| gold_assert((*input_sections)[p->second].is_input_section()); |
| |
| // Remember section order index of original input section |
| // if it is set. Copy it to the relaxed input section. |
| unsigned int soi = |
| (*input_sections)[p->second].section_order_index(); |
| (*input_sections)[p->second] = Input_section(poris); |
| (*input_sections)[p->second].set_section_order_index(soi); |
| } |
| } |
| |
| // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS |
| // is a vector of pointers to Output_relaxed_input_section or its derived |
| // classes. The relaxed sections must correspond to existing input sections. |
| |
| void |
| Output_section::convert_input_sections_to_relaxed_sections( |
| const std::vector<Output_relaxed_input_section*>& relaxed_sections) |
| { |
| gold_assert(parameters->target().may_relax()); |
| |
| // We want to make sure that restore_states does not undo the effect of |
| // this. If there is no checkpoint active, just search the current |
| // input section list and replace the sections there. If there is |
| // a checkpoint, also replace the sections there. |
| |
| // By default, we look at the whole list. |
| size_t limit = this->input_sections_.size(); |
| |
| if (this->checkpoint_ != NULL) |
| { |
| // Replace input sections with relaxed input section in the saved |
| // copy of the input section list. |
| if (this->checkpoint_->input_sections_saved()) |
| { |
| Relaxation_map map; |
| this->build_relaxation_map( |
| *(this->checkpoint_->input_sections()), |
| this->checkpoint_->input_sections()->size(), |
| &map); |
| this->convert_input_sections_in_list_to_relaxed_sections( |
| relaxed_sections, |
| map, |
| this->checkpoint_->input_sections()); |
| } |
| else |
| { |
| // We have not copied the input section list yet. Instead, just |
| // look at the portion that would be saved. |
| limit = this->checkpoint_->input_sections_size(); |
| } |
| } |
| |
| // Convert input sections in input_section_list. |
| Relaxation_map map; |
| this->build_relaxation_map(this->input_sections_, limit, &map); |
| this->convert_input_sections_in_list_to_relaxed_sections( |
| relaxed_sections, |
| map, |
| &this->input_sections_); |
| |
| // Update fast look-up map. |
| if (this->lookup_maps_->is_valid()) |
| for (size_t i = 0; i < relaxed_sections.size(); ++i) |
| { |
| Output_relaxed_input_section* poris = relaxed_sections[i]; |
| this->lookup_maps_->add_relaxed_input_section(poris->relobj(), |
| poris->shndx(), poris); |
| } |
| } |
| |
| // Update the output section flags based on input section flags. |
| |
| void |
| Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags) |
| { |
| // If we created the section with SHF_ALLOC clear, we set the |
| // address. If we are now setting the SHF_ALLOC flag, we need to |
| // undo that. |
| if ((this->flags_ & elfcpp::SHF_ALLOC) == 0 |
| && (flags & elfcpp::SHF_ALLOC) != 0) |
| this->mark_address_invalid(); |
| |
| this->flags_ |= (flags |
| & (elfcpp::SHF_WRITE |
| | elfcpp::SHF_ALLOC |
| | elfcpp::SHF_EXECINSTR)); |
| |
| if ((flags & elfcpp::SHF_MERGE) == 0) |
| this->flags_ &=~ elfcpp::SHF_MERGE; |
| else |
| { |
| if (this->current_data_size_for_child() == 0) |
| this->flags_ |= elfcpp::SHF_MERGE; |
| } |
| |
| if ((flags & elfcpp::SHF_STRINGS) == 0) |
| this->flags_ &=~ elfcpp::SHF_STRINGS; |
| else |
| { |
| if (this->current_data_size_for_child() == 0) |
| this->flags_ |= elfcpp::SHF_STRINGS; |
| } |
| } |
| |
| // Find the merge section into which an input section with index SHNDX in |
| // OBJECT has been added. Return NULL if none found. |
| |
| const Output_section_data* |
| Output_section::find_merge_section(const Relobj* object, |
| unsigned int shndx) const |
| { |
| return object->find_merge_section(shndx); |
| } |
| |
| // Build the lookup maps for relaxed sections. This needs |
| // to be declared as a const method so that it is callable with a const |
| // Output_section pointer. The method only updates states of the maps. |
| |
| void |
| Output_section::build_lookup_maps() const |
| { |
| this->lookup_maps_->clear(); |
| for (Input_section_list::const_iterator p = this->input_sections_.begin(); |
| p != this->input_sections_.end(); |
| ++p) |
| { |
| if (p->is_relaxed_input_section()) |
| { |
| Output_relaxed_input_section* poris = p->relaxed_input_section(); |
| this->lookup_maps_->add_relaxed_input_section(poris->relobj(), |
| poris->shndx(), poris); |
| } |
| } |
| } |
| |
| // Find an relaxed input section corresponding to an input section |
| // in OBJECT with index SHNDX. |
| |
| const Output_relaxed_input_section* |
| Output_section::find_relaxed_input_section(const Relobj* object, |
| unsigned int shndx) const |
| { |
| if (!this->lookup_maps_->is_valid()) |
| this->build_lookup_maps(); |
| return this->lookup_maps_->find_relaxed_input_section(object, shndx); |
| } |
| |
| // Given an address OFFSET relative to the start of input section |
| // SHNDX in OBJECT, return whether this address is being included in |
| // the final link. This should only be called if SHNDX in OBJECT has |
| // a special mapping. |
| |
| bool |
| Output_section::is_input_address_mapped(const Relobj* object, |
| unsigned int shndx, |
| off_t offset) const |
| { |
| // Look at the Output_section_data_maps first. |
| const Output_section_data* posd = this->find_merge_section(object, shndx); |
| if (posd == NULL) |
| posd = this->find_relaxed_input_section(object, shndx); |
| |
| if (posd != NULL) |
| { |
| section_offset_type output_offset; |
| bool found = posd->output_offset(object, shndx, offset, &output_offset); |
| // By default we assume that the address is mapped. See comment at the |
| // end. |
| if (!found) |
| return true; |
| return output_offset != -1; |
| } |
| |
| // Fall back to the slow look-up. |
| for (Input_section_list::const_iterator p = this->input_sections_.begin(); |
| p != this->input_sections_.end(); |
| ++p) |
| { |
| section_offset_type output_offset; |
| if (p->output_offset(object, shndx, offset, &output_offset)) |
| return output_offset != -1; |
| } |
| |
| // By default we assume that the address is mapped. This should |
| // only be called after we have passed all sections to Layout. At |
| // that point we should know what we are discarding. |
| return true; |
| } |
| |
| // Given an address OFFSET relative to the start of input section |
| // SHNDX in object OBJECT, return the output offset relative to the |
| // start of the input section in the output section. This should only |
| // be called if SHNDX in OBJECT has a special mapping. |
| |
| section_offset_type |
| Output_section::output_offset(const Relobj* object, unsigned int shndx, |
| section_offset_type offset) const |
| { |
| // This can only be called meaningfully when we know the data size |
| // of this. |
| gold_assert(this->is_data_size_valid()); |
| |
| // Look at the Output_section_data_maps first. |
| const Output_section_data* posd = this->find_merge_section(object, shndx); |
| if (posd == NULL) |
| posd = this->find_relaxed_input_section(object, shndx); |
| if (posd != NULL) |
| { |
| section_offset_type output_offset; |
| bool found = posd->output_offset(object, shndx, offset, &output_offset); |
| gold_assert(found); |
| return output_offset; |
| } |
| |
| // Fall back to the slow look-up. |
| for (Input_section_list::const_iterator p = this->input_sections_.begin(); |
| p != this->input_sections_.end(); |
| ++p) |
| { |
| section_offset_type output_offset; |
| if (p->output_offset(object, shndx, offset, &output_offset)) |
| return output_offset; |
| } |
| gold_unreachable(); |
| } |
| |
| // Return the output virtual address of OFFSET relative to the start |
| // of input section SHNDX in object OBJECT. |
| |
| uint64_t |
| Output_section::output_address(const Relobj* object, unsigned int shndx, |
| off_t offset) const |
| { |
| uint64_t addr = this->address() + this->first_input_offset_; |
| |
| // Look at the Output_section_data_maps first. |
| const Output_section_data* posd = this->find_merge_section(object, shndx); |
| if (posd == NULL) |
| posd = this->find_relaxed_input_section(object, shndx); |
| if (posd != NULL && posd->is_address_valid()) |
| { |
| section_offset_type output_offset; |
| bool found = posd->output_offset(object, shndx, offset, &output_offset); |
| gold_assert(found); |
| return posd->address() + output_offset; |
| } |
| |
| // Fall back to the slow look-up. |
| for (Input_section_list::const_iterator p = this->input_sections_.begin(); |
| p != this->input_sections_.end(); |
| ++p) |
| { |
| addr = align_address(addr, p->addralign()); |
| section_offset_type output_offset; |
| if (p->output_offset(object, shndx, offset, &output_offset)) |
| { |
| if (output_offset == -1) |
| return -1ULL; |
| return addr + output_offset; |
| } |
| addr += p->data_size(); |
| } |
| |
| // If we get here, it means that we don't know the mapping for this |
| // input section. This might happen in principle if |
| // add_input_section were called before add_output_section_data. |
| // But it should never actually happen. |
| |
| gold_unreachable(); |
| } |
| |
| // Find the output address of the start of the merged section for |
| // input section SHNDX in object OBJECT. |
| |
| bool |
| Output_section::find_starting_output_address(const Relobj* object, |
| unsigned int shndx, |
| uint64_t* paddr) const |
| { |
| const Output_section_data* data = this->find_merge_section(object, shndx); |
| if (data == NULL) |
| return false; |
| |
| // FIXME: This becomes a bottle-neck if we have many relaxed sections. |
| // Looking up the merge section map does not always work as we sometimes |
| // find a merge section without its address set. |
| uint64_t addr = this->address() + this->first_input_offset_; |
| for (Input_section_list::const_iterator p = this->input_sections_.begin(); |
| p != this->input_sections_.end(); |
| ++p) |
| { |
| addr = align_address(addr, p->addralign()); |
| |
| // It would be nice if we could use the existing output_offset |
| // method to get the output offset of input offset 0. |
| // Unfortunately we don't know for sure that input offset 0 is |
| // mapped at all. |
| if (!p->is_input_section() && p->output_section_data() == data) |
| { |
| *paddr = addr; |
| return true; |
| } |
| |
| addr += p->data_size(); |
| } |
| |
| // We couldn't find a merge output section for this input section. |
| return false; |
| } |
| |
| // Update the data size of an Output_section. |
| |
| void |
| Output_section::update_data_size() |
| { |
| if (this->input_sections_.empty()) |
| return; |
| |
| if (this->must_sort_attached_input_sections() |
| || this->input_section_order_specified()) |
| this->sort_attached_input_sections(); |
| |
| off_t off = this->first_input_offset_; |
| for (Input_section_list::iterator p = this->input_sections_.begin(); |
| p != this->input_sections_.end(); |
| ++p) |
| { |
| off = align_address(off, p->addralign()); |
| off += p->current_data_size(); |
| } |
| |
| this->set_current_data_size_for_child(off); |
| } |
| |
| // Set the data size of an Output_section. This is where we handle |
| // setting the addresses of any Output_section_data objects. |
| |
| void |
| Output_section::set_final_data_size() |
| { |
| off_t data_size; |
| |
| if (this->input_sections_.empty()) |
| data_size = this->current_data_size_for_child(); |
| else |
| { |
| if (this->must_sort_attached_input_sections() |
| || this->input_section_order_specified()) |
| this->sort_attached_input_sections(); |
| |
| uint64_t address = this->address(); |
| off_t startoff = this->offset(); |
| off_t off = this->first_input_offset_; |
| for (Input_section_list::iterator p = this->input_sections_.begin(); |
| p != this->input_sections_.end(); |
| ++p) |
| { |
| off = align_address(off, p->addralign()); |
| p->set_address_and_file_offset(address + off, startoff + off, |
| startoff); |
| off += p->data_size(); |
| } |
| data_size = off; |
| } |
| |
| // For full incremental links, we want to allocate some patch space |
| // in most sections for subsequent incremental updates. |
| if (this->is_patch_space_allowed_ && parameters->incremental_full()) |
| { |
| double pct = parameters->options().incremental_patch(); |
| size_t extra = static_cast<size_t>(data_size * pct); |
| if (this->free_space_fill_ != NULL |
| && this->free_space_fill_->minimum_hole_size() > extra) |
| extra = this->free_space_fill_->minimum_hole_size(); |
| off_t new_size = align_address(data_size + extra, this->addralign()); |
| this->patch_space_ = new_size - data_size; |
| gold_debug(DEBUG_INCREMENTAL, |
| "set_final_data_size: %08lx + %08lx: section %s", |
| static_cast<long>(data_size), |
| static_cast<long>(this->patch_space_), |
| this->name()); |
| data_size = new_size; |
| } |
| |
| this->set_data_size(data_size); |
| } |
| |
| // Reset the address and file offset. |
| |
| void |
| Output_section::do_reset_address_and_file_offset() |
| { |
| // An unallocated section has no address. Forcing this means that |
| // we don't need special treatment for symbols defined in debug |
| // sections. We do the same in the constructor. This does not |
| // apply to NOLOAD sections though. |
| if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_) |
| this->set_address(0); |
| |
| for (Input_section_list::iterator p = this->input_sections_.begin(); |
| p != this->input_sections_.end(); |
| ++p) |
| p->reset_address_and_file_offset(); |
| |
| // Remove any patch space that was added in set_final_data_size. |
| if (this->patch_space_ > 0) |
| { |
| this->set_current_data_size_for_child(this->current_data_size_for_child() |
| - this->patch_space_); |
| this->patch_space_ = 0; |
| } |
| } |
| |
| // Return true if address and file offset have the values after reset. |
| |
| bool |
| Output_section::do_address_and_file_offset_have_reset_values() const |
| { |
| if (this->is_offset_valid()) |
| return false; |
| |
| // An unallocated section has address 0 after its construction or a reset. |
| if ((this->flags_ & elfcpp::SHF_ALLOC) == 0) |
| return this->is_address_valid() && this->address() == 0; |
| else |
| return !this->is_address_valid(); |
| } |
| |
| // Set the TLS offset. Called only for SHT_TLS sections. |
| |
| void |
| Output_section::do_set_tls_offset(uint64_t tls_base) |
| { |
| this->tls_offset_ = this->address() - tls_base; |
| } |
| |
| // In a few cases we need to sort the input sections attached to an |
| // output section. This is used to implement the type of constructor |
| // priority ordering implemented by the GNU linker, in which the |
| // priority becomes part of the section name and the sections are |
| // sorted by name. We only do this for an output section if we see an |
| // attached input section matching ".ctors.*", ".dtors.*", |
| // ".init_array.*" or ".fini_array.*". |
| |
| class Output_section::Input_section_sort_entry |
| { |
| public: |
| Input_section_sort_entry() |
| : input_section_(), index_(-1U), section_name_() |
| { } |
| |
| Input_section_sort_entry(const Input_section& input_section, |
| unsigned int index, |
| bool must_sort_attached_input_sections, |
| const char* output_section_name) |
| : input_section_(input_section), index_(index), section_name_() |
| { |
| if ((input_section.is_input_section() |
| || input_section.is_relaxed_input_section()) |
| && must_sort_attached_input_sections) |
| { |
| // This is only called single-threaded from Layout::finalize, |
| // so it is OK to lock. Unfortunately we have no way to pass |
| // in a Task token. |
| const Task* dummy_task = reinterpret_cast<const Task*>(-1); |
| Object* obj = (input_section.is_input_section() |
| ? input_section.relobj() |
| : input_section.relaxed_input_section()->relobj()); |
| Task_lock_obj<Object> tl(dummy_task, obj); |
| |
| // This is a slow operation, which should be cached in |
| // Layout::layout if this becomes a speed problem. |
| this->section_name_ = obj->section_name(input_section.shndx()); |
| } |
| else if (input_section.is_output_section_data() |
| && must_sort_attached_input_sections) |
| { |
| // For linker-generated sections, use the output section name. |
| this->section_name_.assign(output_section_name); |
| } |
| } |
| |
| // Return the Input_section. |
| const Input_section& |
| input_section() const |
| { |
| gold_assert(this->index_ != -1U); |
| return this->input_section_; |
| } |
| |
| // The index of this entry in the original list. This is used to |
| // make the sort stable. |
| unsigned int |
| index() const |
| { |
| gold_assert(this->index_ != -1U); |
| return this->index_; |
| } |
| |
| // The section name. |
| const std::string& |
| section_name() const |
| { |
| return this->section_name_; |
| } |
| |
| // Return true if the section name has a priority. This is assumed |
| // to be true if it has a dot after the initial dot. |
| bool |
| has_priority() const |
| { |
| return this->section_name_.find('.', 1) != std::string::npos; |
| } |
| |
| // Return the priority. Believe it or not, gcc encodes the priority |
| // differently for .ctors/.dtors and .init_array/.fini_array |
| // sections. |
| unsigned int |
| get_priority() const |
| { |
| bool is_ctors; |
| if (is_prefix_of(".ctors.", this->section_name_.c_str()) |
| || is_prefix_of(".dtors.", this->section_name_.c_str())) |
| is_ctors = true; |
| else if (is_prefix_of(".init_array.", this->section_name_.c_str()) |
| || is_prefix_of(".fini_array.", this->section_name_.c_str())) |
| is_ctors = false; |
| else |
| return 0; |
| char* end; |
| unsigned long prio = strtoul((this->section_name_.c_str() |
| + (is_ctors ? 7 : 12)), |
| &end, 10); |
| if (*end != '\0') |
| return 0; |
| else if (is_ctors) |
| return 65535 - prio; |
| else |
| return prio; |
| } |
| |
| // Return true if this an input file whose base name matches |
| // FILE_NAME. The base name must have an extension of ".o", and |
| // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o". |
| // This is to match crtbegin.o as well as crtbeginS.o without |
| // getting confused by other possibilities. Overall matching the |
| // file name this way is a dreadful hack, but the GNU linker does it |
| // in order to better support gcc, and we need to be compatible. |
| bool |
| match_file_name(const char* file_name) const |
| { |
| if (this->input_section_.is_output_section_data()) |
| return false; |
| return Layout::match_file_name(this->input_section_.relobj(), file_name); |
| } |
| |
| // Returns 1 if THIS should appear before S in section order, -1 if S |
| // appears before THIS and 0 if they are not comparable. |
| int |
| compare_section_ordering(const Input_section_sort_entry& s) const |
| { |
| unsigned int this_secn_index = this->input_section_.section_order_index(); |
| unsigned int s_secn_index = s.input_section().section_order_index(); |
| if (this_secn_index > 0 && s_secn_index > 0) |
| { |
| if (this_secn_index < s_secn_index) |
| return 1; |
| else if (this_secn_index > s_secn_index) |
| return -1; |
| } |
| return 0; |
| } |
| |
| private: |
| // The Input_section we are sorting. |
| Input_section input_section_; |
| // The index of this Input_section in the original list. |
| unsigned int index_; |
| // The section name if there is one. |
| std::string section_name_; |
| }; |
| |
| // Return true if S1 should come before S2 in the output section. |
| |
| bool |
| Output_section::Input_section_sort_compare::operator()( |
| const Output_section::Input_section_sort_entry& s1, |
| const Output_section::Input_section_sort_entry& s2) const |
| { |
| // crtbegin.o must come first. |
| bool s1_begin = s1.match_file_name("crtbegin"); |
| bool s2_begin = s2.match_file_name("crtbegin"); |
| if (s1_begin || s2_begin) |
| { |
| if (!s1_begin) |
| return false; |
| if (!s2_begin) |
| return true; |
| return s1.index() < s2.index(); |
| } |
| |
| // crtend.o must come last. |
| bool s1_end = s1.match_file_name("crtend"); |
| bool s2_end = s2.match_file_name("crtend"); |
| if (s1_end || s2_end) |
| { |
| if (!s1_end) |
| return true; |
| if (!s2_end) |
| return false; |
| return s1.index() < s2.index(); |
| } |
| |
| // A section with a priority follows a section without a priority. |
| bool s1_has_priority = s1.has_priority(); |
| bool s2_has_priority = s2.has_priority(); |
| if (s1_has_priority && !s2_has_priority) |
| return false; |
| if (!s1_has_priority && s2_has_priority) |
| return true; |
| |
| // Check if a section order exists for these sections through a section |
| // ordering file. If sequence_num is 0, an order does not exist. |
| int sequence_num = s1.compare_section_ordering(s2); |
| if (sequence_num != 0) |
| return sequence_num == 1; |
| |
| // Otherwise we sort by name. |
| int compare = s1.section_name().compare(s2.section_name()); |
| if (compare != 0) |
| return compare < 0; |
| |
| // Otherwise we keep the input order. |
| return s1.index() < s2.index(); |
| } |
| |
| // Return true if S1 should come before S2 in an .init_array or .fini_array |
| // output section. |
| |
| bool |
| Output_section::Input_section_sort_init_fini_compare::operator()( |
| const Output_section::Input_section_sort_entry& s1, |
| const Output_section::Input_section_sort_entry& s2) const |
| { |
| // A section without a priority follows a section with a priority. |
| // This is the reverse of .ctors and .dtors sections. |
| bool s1_has_priority = s1.has_priority(); |
| bool s2_has_priority = s2.has_priority(); |
| if (s1_has_priority && !s2_has_priority) |
| return true; |
| if (!s1_has_priority && s2_has_priority) |
| return false; |
| |
| // .ctors and .dtors sections without priority come after |
| // .init_array and .fini_array sections without priority. |
| if (!s1_has_priority |
| && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors") |
| && s1.section_name() != s2.section_name()) |
| return false; |
| if (!s2_has_priority |
| && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors") |
| && s2.section_name() != s1.section_name()) |
| return true; |
| |
| // Sort by priority if we can. |
| if (s1_has_priority) |
| { |
| unsigned int s1_prio = s1.get_priority(); |
| unsigned int s2_prio = s2.get_priority(); |
| if (s1_prio < s2_prio) |
| return true; |
| else if (s1_prio > s2_prio) |
| return false; |
| } |
| |
| // Check if a section order exists for these sections through a section |
| // ordering file. If sequence_num is 0, an order does not exist. |
| int sequence_num = s1.compare_section_ordering(s2); |
| if (sequence_num != 0) |
| return sequence_num == 1; |
| |
| // Otherwise we sort by name. |
| int compare = s1.section_name().compare(s2.section_name()); |
| if (compare != 0) |
| return compare < 0; |
| |
| // Otherwise we keep the input order. |
| return s1.index() < s2.index(); |
| } |
| |
| // Return true if S1 should come before S2. Sections that do not match |
| // any pattern in the section ordering file are placed ahead of the sections |
| // that match some pattern. |
| |
| bool |
| Output_section::Input_section_sort_section_order_index_compare::operator()( |
| const Output_section::Input_section_sort_entry& s1, |
| const Output_section::Input_section_sort_entry& s2) const |
| { |
| unsigned int s1_secn_index = s1.input_section().section_order_index(); |
| unsigned int s2_secn_index = s2.input_section().section_order_index(); |
| |
| // Keep input order if section ordering cannot determine order. |
| if (s1_secn_index == s2_secn_index) |
| return s1.index() < s2.index(); |
| |
| return s1_secn_index < s2_secn_index; |
| } |
| |
| // Return true if S1 should come before S2. This is the sort comparison |
| // function for .text to sort sections with prefixes |
| // .text.{unlikely,exit,startup,hot} before other sections. |
| |
| bool |
| Output_section::Input_section_sort_section_prefix_special_ordering_compare |
| ::operator()( |
| const Output_section::Input_section_sort_entry& s1, |
| const Output_section::Input_section_sort_entry& s2) const |
| { |
| // Some input section names have special ordering requirements. |
| const char *s1_section_name = s1.section_name().c_str(); |
| const char *s2_section_name = s2.section_name().c_str(); |
| int o1 = Layout::special_ordering_of_input_section(s1_section_name); |
| int o2 = Layout::special_ordering_of_input_section(s2_section_name); |
| if (o1 != o2) |
| { |
| if (o1 < 0) |
| return false; |
| else if (o2 < 0) |
| return true; |
| else |
| return o1 < o2; |
| } |
| else if (is_prefix_of(".text.sorted", s1_section_name)) |
| return strcmp(s1_section_name, s2_section_name) <= 0; |
| |
| // Keep input order otherwise. |
| return s1.index() < s2.index(); |
| } |
| |
| // Return true if S1 should come before S2. This is the sort comparison |
| // function for sections to sort them by name. |
| |
| bool |
| Output_section::Input_section_sort_section_name_compare |
| ::operator()( |
| const Output_section::Input_section_sort_entry& s1, |
| const Output_section::Input_section_sort_entry& s2) const |
| { |
| // We sort by name. |
| int compare = s1.section_name().compare(s2.section_name()); |
| if (compare != 0) |
| return compare < 0; |
| |
| // Keep input order otherwise. |
| return s1.index() < s2.index(); |
| } |
| |
| // This updates the section order index of input sections according to the |
| // the order specified in the mapping from Section id to order index. |
| |
| void |
| Output_section::update_section_layout( |
| const Section_layout_order* order_map) |
| { |
| for (Input_section_list::iterator p = this->input_sections_.begin(); |
| p != this->input_sections_.end(); |
| ++p) |
| { |
| if (p->is_input_section() |
| || p->is_relaxed_input_section()) |
| { |
| Relobj* obj = (p->is_input_section() |
| ? p->relobj() |
| : p->relaxed_input_section()->relobj()); |
| unsigned int shndx = p->shndx(); |
| Section_layout_order::const_iterator it |
| = order_map->find(Section_id(obj, shndx)); |
| if (it == order_map->end()) |
| continue; |
| unsigned int section_order_index = it->second; |
| if (section_order_index != 0) |
| { |
| p->set_section_order_index(section_order_index); |
| this->set_input_section_order_specified(); |
| } |
| } |
| } |
| } |
| |
| // Sort the input sections attached to an output section. |
| |
| void |
| Output_section::sort_attached_input_sections() |
| { |
| if (this->attached_input_sections_are_sorted_) |
| return; |
| |
| if (this->checkpoint_ != NULL |
| && !this->checkpoint_->input_sections_saved()) |
| this->checkpoint_->save_input_sections(); |
| |
| // The only thing we know about an input section is the object and |
| // the section index. We need the section name. Recomputing this |
| // is slow but this is an unusual case. If this becomes a speed |
| // problem we can cache the names as required in Layout::layout. |
| |
| // We start by building a larger vector holding a copy of each |
| // Input_section, plus its current index in the list and its name. |
| std::vector<Input_section_sort_entry> sort_list; |
| |
| unsigned int i = 0; |
| for (Input_section_list::iterator p = this->input_sections_.begin(); |
| p != this->input_sections_.end(); |
| ++p, ++i) |
| sort_list.push_back(Input_section_sort_entry(*p, i, |
| this->must_sort_attached_input_sections(), |
| this->name())); |
| |
| // Sort the input sections. |
| if (this->must_sort_attached_input_sections()) |
| { |
| if (this->type() == elfcpp::SHT_PREINIT_ARRAY |
| || this->type() == elfcpp::SHT_INIT_ARRAY |
| || this->type() == elfcpp::SHT_FINI_ARRAY) |
| std::sort(sort_list.begin(), sort_list.end(), |
| Input_section_sort_init_fini_compare()); |
| else if (strcmp(parameters->options().sort_section(), "name") == 0) |
| std::sort(sort_list.begin(), sort_list.end(), |
| Input_section_sort_section_name_compare()); |
| else if (strcmp(this->name(), ".text") == 0) |
| std::sort(sort_list.begin(), sort_list.end(), |
| Input_section_sort_section_prefix_special_ordering_compare()); |
| else |
| std::sort(sort_list.begin(), sort_list.end(), |
| Input_section_sort_compare()); |
| } |
| else |
| { |
| gold_assert(this->input_section_order_specified()); |
| std::sort(sort_list.begin(), sort_list.end(), |
| Input_section_sort_section_order_index_compare()); |
| } |
| |
| // Copy the sorted input sections back to our list. |
| this->input_sections_.clear(); |
| for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin(); |
| p != sort_list.end(); |
| ++p) |
| this->input_sections_.push_back(p->input_section()); |
| sort_list.clear(); |
| |
| // Remember that we sorted the input sections, since we might get |
| // called again. |
| this->attached_input_sections_are_sorted_ = true; |
| } |
| |
| // Write the section header to *OSHDR. |
| |
| template<int size, bool big_endian> |
| void |
| Output_section::write_header(const Layout* layout, |
| const Stringpool* secnamepool, |
| elfcpp::Shdr_write<size, big_endian>* oshdr) const |
| { |
| oshdr->put_sh_name(secnamepool->get_offset(this->name_)); |
| oshdr->put_sh_type(this->type_); |
| |
| elfcpp::Elf_Xword flags = this->flags_; |
| if (this->info_section_ != NULL && this->info_uses_section_index_) |
| flags |= elfcpp::SHF_INFO_LINK; |
| oshdr->put_sh_flags(flags); |
| |
| oshdr->put_sh_addr(this->address()); |
| oshdr->put_sh_offset(this->offset()); |
| oshdr->put_sh_size(this->data_size()); |
| if (this->link_section_ != NULL) |
| oshdr->put_sh_link(this->link_section_->out_shndx()); |
| else if (this->should_link_to_symtab_) |
| oshdr->put_sh_link(layout->symtab_section_shndx()); |
| else if (this->should_link_to_dynsym_) |
| oshdr->put_sh_link(layout->dynsym_section()->out_shndx()); |
| else |
| oshdr->put_sh_link(this->link_); |
| |
| elfcpp::Elf_Word info; |
| if (this->info_section_ != NULL) |
| { |
| if (this->info_uses_section_index_) |
| info = this->info_section_->out_shndx(); |
| else |
| info = this->info_section_->symtab_index(); |
| } |
| else if (this->info_symndx_ != NULL) |
| info = this->info_symndx_->symtab_index(); |
| else |
| info = this->info_; |
| oshdr->put_sh_info(info); |
| |
| oshdr->put_sh_addralign(this->addralign_); |
| oshdr->put_sh_entsize(this->entsize_); |
| } |
| |
| // Write out the data. For input sections the data is written out by |
| // Object::relocate, but we have to handle Output_section_data objects |
| // here. |
| |
| void |
| Output_section::do_write(Output_file* of) |
| { |
| gold_assert(!this->requires_postprocessing()); |
| |
| // If the target performs relaxation, we delay filler generation until now. |
| gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty()); |
| |
| off_t output_section_file_offset = this->offset(); |
| for (Fill_list::iterator p = this->fills_.begin(); |
| p != this->fills_.end(); |
| ++p) |
| { |
| std::string fill_data(parameters->target().code_fill(p->length())); |
| of->write(output_section_file_offset + p->section_offset(), |
| fill_data.data(), fill_data.size()); |
| } |
| |
| off_t off = this->offset() + this->first_input_offset_; |
| for (Input_section_list::iterator p = this->input_sections_.begin(); |
| p != this->input_sections_.end(); |
| ++p) |
| { |
| off_t aligned_off = align_address(off, p->addralign()); |
| if (this->generate_code_fills_at_write_ && (off != aligned_off)) |
| { |
| size_t fill_len = aligned_off - off; |
| std::string fill_data(parameters->target().code_fill(fill_len)); |
| of->write(off, fill_data.data(), fill_data.size()); |
| } |
| |
| p->write(of); |
| off = aligned_off + p->data_size(); |
| } |
| |
| // For incremental links, fill in unused chunks in debug sections |
| // with dummy compilation unit headers. |
| if (this->free_space_fill_ != NULL) |
| { |
| for (Free_list::Const_iterator p = this->free_list_.begin(); |
| p != this->free_list_.end(); |
| ++p) |
| { |
| off_t off = p->start_; |
| size_t len = p->end_ - off; |
| this->free_space_fill_->write(of, this->offset() + off, len); |
| } |
| if (this->patch_space_ > 0) |
| { |
| off_t off = this->current_data_size_for_child() - this->patch_space_; |
| this->free_space_fill_->write(of, this->offset() + off, |
| this->patch_space_); |
| } |
| } |
| } |
| |
| // If a section requires postprocessing, create the buffer to use. |
| |
| void |
| Output_section::create_postprocessing_buffer() |
| { |
| gold_assert(this->requires_postprocessing()); |
| |
| if (this->postprocessing_buffer_ != NULL) |
| return; |
| |
| if (!this->input_sections_.empty()) |
| { |
| off_t off = this->first_input_offset_; |
| for (Input_section_list::iterator p = this->input_sections_.begin(); |
| p != this->input_sections_.end(); |
| ++p) |
| { |
| off = align_address(off, p->addralign()); |
| p->finalize_data_size(); |
| off += p->data_size(); |
| } |
| this->set_current_data_size_for_child(off); |
| } |
| |
| off_t buffer_size = this->current_data_size_for_child(); |
| this->postprocessing_buffer_ = new unsigned char[buffer_size]; |
| } |
| |
| // Write all the data of an Output_section into the postprocessing |
| // buffer. This is used for sections which require postprocessing, |
| // such as compression. Input sections are handled by |
| // Object::Relocate. |
| |
| void |
| Output_section::write_to_postprocessing_buffer() |
| { |
| gold_assert(this->requires_postprocessing()); |
| |
| // If the target performs relaxation, we delay filler generation until now. |
| gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty()); |
| |
| unsigned char* buffer = this->postprocessing_buffer(); |
| for (Fill_list::iterator p = this->fills_.begin(); |
| p != this->fills_.end(); |
| ++p) |
| { |
| std::string fill_data(parameters->target().code_fill(p->length())); |
| memcpy(buffer + p->section_offset(), fill_data.data(), |
| fill_data.size()); |
| } |
| |
| off_t off = this->first_input_offset_; |
| for (Input_section_list::iterator p = this->input_sections_.begin(); |
| p != this->input_sections_.end(); |
| ++p) |
| { |
| off_t aligned_off = align_address(off, p->addralign()); |
| if (this->generate_code_fills_at_write_ && (off != aligned_off)) |
| { |
| size_t fill_len = aligned_off - off; |
| std::string fill_data(parameters->target().code_fill(fill_len)); |
| memcpy(buffer + off, fill_data.data(), fill_data.size()); |
| } |
| |
| p->write_to_buffer(buffer + aligned_off); |
| off = aligned_off + p->data_size(); |
| } |
| } |
| |
| // Get the input sections for linker script processing. We leave |
| // behind the Output_section_data entries. Note that this may be |
| // slightly incorrect for merge sections. We will leave them behind, |
| // but it is possible that the script says that they should follow |
| // some other input sections, as in: |
| // .rodata { *(.rodata) *(.rodata.cst*) } |
| // For that matter, we don't handle this correctly: |
| // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) } |
| // With luck this will never matter. |
| |
| uint64_t |
| Output_section::get_input_sections( |
| uint64_t address, |
| const std::string& fill, |
| std::list<Input_section>* input_sections) |
| { |
| if (this->checkpoint_ != NULL |
| && !this->checkpoint_->input_sections_saved()) |
| this->checkpoint_->save_input_sections(); |
| |
| // Invalidate fast look-up maps. |
| this->lookup_maps_->invalidate(); |
| |
| uint64_t orig_address = address; |
| |
| address = align_address(address, this->addralign()); |
| |
| Input_section_list remaining; |
| for (Input_section_list::iterator p = this->input_sections_.begin(); |
| p != this->input_sections_.end(); |
| ++p) |
| { |
| if (p->is_input_section() |
| || p->is_relaxed_input_section() |
| || p->is_merge_section()) |
| input_sections->push_back(*p); |
| else |
| { |
| uint64_t aligned_address = align_address(address, p->addralign()); |
| if (aligned_address != address && !fill.empty()) |
| { |
| section_size_type length = |
| convert_to_section_size_type(aligned_address - address); |
| std::string this_fill; |
| this_fill.reserve(length); |
| while (this_fill.length() + fill.length() <= length) |
| this_fill += fill; |
| if (this_fill.length() < length) |
| this_fill.append(fill, 0, length - this_fill.length()); |
| |
| Output_section_data* posd = new Output_data_const(this_fill, 0); |
| remaining.push_back(Input_section(posd)); |
| } |
| address = aligned_address; |
| |
| remaining.push_back(*p); |
| |
| p->finalize_data_size(); |
| address += p->data_size(); |
| } |
| } |
| |
| this->input_sections_.swap(remaining); |
| this->first_input_offset_ = 0; |
| |
| uint64_t data_size = address - orig_address; |
| this->set_current_data_size_for_child(data_size); |
| return data_size; |
| } |
| |
| // Add a script input section. SIS is an Output_section::Input_section, |
| // which can be either a plain input section or a special input section like |
| // a relaxed input section. For a special input section, its size must be |
| // finalized. |
| |
| void |
| Output_section::add_script_input_section(const Input_section& sis) |
| { |
| uint64_t data_size = sis.data_size(); |
| uint64_t addralign = sis.addralign(); |
| if (addralign > this->addralign_) |
| this->addralign_ = addralign; |
| |
| off_t offset_in_section = this->current_data_size_for_child(); |
| off_t aligned_offset_in_section = align_address(offset_in_section, |
| addralign); |
| |
| this->set_current_data_size_for_child(aligned_offset_in_section |
| + data_size); |
| |
| this->input_sections_.push_back(sis); |
| |
| // Update fast lookup maps if necessary. |
| if (this->lookup_maps_->is_valid()) |
| { |
| if (sis.is_relaxed_input_section()) |
| { |
| Output_relaxed_input_section* poris = sis.relaxed_input_section(); |
| this->lookup_maps_->add_relaxed_input_section(poris->relobj(), |
| poris->shndx(), poris); |
| } |
| } |
| } |
| |
| // Save states for relaxation. |
| |
| void |
| Output_section::save_states() |
| { |
| gold_assert(this->checkpoint_ == NULL); |
| Checkpoint_output_section* checkpoint = |
| new Checkpoint_output_section(this->addralign_, this->flags_, |
| this->input_sections_, |
| this->first_input_offset_, |
| this->attached_input_sections_are_sorted_); |
| this->checkpoint_ = checkpoint; |
| gold_assert(this->fills_.empty()); |
| } |
| |
| void |
| Output_section::discard_states() |
| { |
| gold_assert(this->checkpoint_ != NULL); |
| delete this->checkpoint_; |
| this->checkpoint_ = NULL; |
| gold_assert(this->fills_.empty()); |
| |
| // Simply invalidate the fast lookup maps since we do not keep |
| // track of them. |
| this->lookup_maps_->invalidate(); |
| } |
| |
| void |
| Output_section::restore_states() |
| { |
| gold_assert(this->checkpoint_ != NULL); |
| Checkpoint_output_section* checkpoint = this->checkpoint_; |
| |
| this->addralign_ = checkpoint->addralign(); |
| this->flags_ = checkpoint->flags(); |
| this->first_input_offset_ = checkpoint->first_input_offset(); |
| |
| if (!checkpoint->input_sections_saved()) |
| { |
| // If we have not copied the input sections, just resize it. |
| size_t old_size = checkpoint->input_sections_size(); |
| gold_assert(this->input_sections_.size() >= old_size); |
| this->input_sections_.resize(old_size); |
| } |
| else |
| { |
| // We need to copy the whole list. This is not efficient for |
| // extremely large output with hundreads of thousands of input |
| // objects. We may need to re-think how we should pass sections |
| // to scripts. |
| this->input_sections_ = *checkpoint->input_sections(); |
| } |
| |
| this->attached_input_sections_are_sorted_ = |
| checkpoint->attached_input_sections_are_sorted(); |
| |
| // Simply invalidate the fast lookup maps since we do not keep |
| // track of them. |
| this->lookup_maps_->invalidate(); |
| } |
| |
| // Update the section offsets of input sections in this. This is required if |
| // relaxation causes some input sections to change sizes. |
| |
| void |
| Output_section::adjust_section_offsets() |
| { |
| if (!this->section_offsets_need_adjustment_) |
| return; |
| |
| off_t off = 0; |
| for (Input_section_list::iterator p = this->input_sections_.begin(); |
| p != this->input_sections_.end(); |
| ++p) |
| { |
| off = align_address(off, p->addralign()); |
| if (p->is_input_section()) |
| p->relobj()->set_section_offset(p->shndx(), off); |
| off += p->data_size(); |
| } |
| |
| this->section_offsets_need_adjustment_ = false; |
| } |
| |
| // Print to the map file. |
| |
| void |
| Output_section::do_print_to_mapfile(Mapfile* mapfile) const |
| { |
| mapfile->print_output_section(this); |
| |
| for (Input_section_list::const_iterator p = this->input_sections_.begin(); |
| p != this->input_sections_.end(); |
| ++p) |
| p->print_to_mapfile(mapfile); |
| } |
| |
| // Print stats for merge sections to stderr. |
| |
| void |
| Output_section::print_merge_stats() |
| { |
| Input_section_list::iterator p; |
| for (p = this->input_sections_.begin(); |
| p != this->input_sections_.end(); |
| ++p) |
| p->print_merge_stats(this->name_); |
| } |
| |
| // Set a fixed layout for the section. Used for incremental update links. |
| |
| void |
| Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset, |
| off_t sh_size, uint64_t sh_addralign) |
| { |
| this->addralign_ = sh_addralign; |
| this->set_current_data_size(sh_size); |
| if ((this->flags_ & elfcpp::SHF_ALLOC) != 0) |
| this->set_address(sh_addr); |
| this->set_file_offset(sh_offset); |
| this->finalize_data_size(); |
| this->free_list_.init(sh_size, false); |
| this->has_fixed_layout_ = true; |
| } |
| |
| // Reserve space within the fixed layout for the section. Used for |
| // incremental update links. |
| |
| void |
| Output_section::reserve(uint64_t sh_offset, uint64_t sh_size) |
| { |
| this->free_list_.remove(sh_offset, sh_offset + sh_size); |
| } |
| |
| // Allocate space from the free list for the section. Used for |
| // incremental update links. |
| |
| off_t |
| Output_section::allocate(off_t len, uint64_t addralign) |
| { |
| return this->free_list_.allocate(len, addralign, 0); |
| } |
| |
| // Output segment methods. |
| |
| Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags) |
| : vaddr_(0), |
| paddr_(0), |
| memsz_(0), |
| align_(0), |
| max_align_(0), |
| min_p_align_(0), |
| offset_(0), |
| filesz_(0), |
| type_(type), |
| flags_(flags), |
| is_max_align_known_(false), |
| are_addresses_set_(false), |
| is_large_data_segment_(false), |
| is_unique_segment_(false) |
| { |
| // The ELF ABI specifies that a PT_TLS segment always has PF_R as |
| // the flags. |
| if (type == elfcpp::PT_TLS) |
| this->flags_ = elfcpp::PF_R; |
| } |
| |
| // Add an Output_section to a PT_LOAD Output_segment. |
| |
| void |
| Output_segment::add_output_section_to_load(Layout* layout, |
| Output_section* os, |
| elfcpp::Elf_Word seg_flags) |
| { |
| gold_assert(this->type() == elfcpp::PT_LOAD); |
| gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0); |
| gold_assert(!this->is_max_align_known_); |
| gold_assert(os->is_large_data_section() == this->is_large_data_segment()); |
| |
| this->update_flags_for_output_section(seg_flags); |
| |
| // We don't want to change the ordering if we have a linker script |
| // with a SECTIONS clause. |
| Output_section_order order = os->order(); |
| if (layout->script_options()->saw_sections_clause()) |
| order = static_cast<Output_section_order>(0); |
| else |
| gold_assert(order != ORDER_INVALID); |
| |
| this->output_lists_[order].push_back(os); |
| } |
| |
| // Add an Output_section to a non-PT_LOAD Output_segment. |
| |
| void |
| Output_segment::add_output_section_to_nonload(Output_section* os, |
| elfcpp::Elf_Word seg_flags) |
| { |
| gold_assert(this->type() != elfcpp::PT_LOAD); |
| gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0); |
| gold_assert(!this->is_max_align_known_); |
| |
| this->update_flags_for_output_section(seg_flags); |
| |
| this->output_lists_[0].push_back(os); |
| } |
| |
| // Remove an Output_section from this segment. It is an error if it |
| // is not present. |
| |
| void |
| Output_segment::remove_output_section(Output_section* os) |
| { |
| for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) |
| { |
| Output_data_list* pdl = &this->output_lists_[i]; |
| for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p) |
| { |
| if (*p == os) |
| { |
| pdl->erase(p); |
| return; |
| } |
| } |
| } |
| gold_unreachable(); |
| } |
| |
| // Add an Output_data (which need not be an Output_section) to the |
| // start of a segment. |
| |
| void |
| Output_segment::add_initial_output_data(Output_data* od) |
| { |
| gold_assert(!this->is_max_align_known_); |
| Output_data_list::iterator p = this->output_lists_[0].begin(); |
| this->output_lists_[0].insert(p, od); |
| } |
| |
| // Return true if this segment has any sections which hold actual |
| // data, rather than being a BSS section. |
| |
| bool |
| Output_segment::has_any_data_sections() const |
| { |
| for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) |
| { |
| const Output_data_list* pdl = &this->output_lists_[i]; |
| for (Output_data_list::const_iterator p = pdl->begin(); |
| p != pdl->end(); |
| ++p) |
| { |
| if (!(*p)->is_section()) |
| return true; |
| if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Return whether the first data section (not counting TLS sections) |
| // is a relro section. |
| |
| bool |
| Output_segment::is_first_section_relro() const |
| { |
| for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) |
| { |
| if (i == static_cast<int>(ORDER_TLS_BSS)) |
| continue; |
| const Output_data_list* pdl = &this->output_lists_[i]; |
| if (!pdl->empty()) |
| { |
| Output_data* p = pdl->front(); |
| return p->is_section() && p->output_section()->is_relro(); |
| } |
| } |
| return false; |
| } |
| |
| // Return the maximum alignment of the Output_data in Output_segment. |
| |
| uint64_t |
| Output_segment::maximum_alignment() |
| { |
| if (!this->is_max_align_known_) |
| { |
| for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) |
| { |
| const Output_data_list* pdl = &this->output_lists_[i]; |
| uint64_t addralign = Output_segment::maximum_alignment_list(pdl); |
| if (addralign > this->max_align_) |
| this->max_align_ = addralign; |
| } |
| this->is_max_align_known_ = true; |
| } |
| |
| return this->max_align_; |
| } |
| |
| // Return the maximum alignment of a list of Output_data. |
| |
| uint64_t |
| Output_segment::maximum_alignment_list(const Output_data_list* pdl) |
| { |
| uint64_t ret = 0; |
| for (Output_data_list::const_iterator p = pdl->begin(); |
| p != pdl->end(); |
| ++p) |
| { |
| uint64_t addralign = (*p)->addralign(); |
| if (addralign > ret) |
| ret = addralign; |
| } |
| return ret; |
| } |
| |
| // Return whether this segment has any dynamic relocs. |
| |
| bool |
| Output_segment::has_dynamic_reloc() const |
| { |
| for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) |
| if (this->has_dynamic_reloc_list(&this->output_lists_[i])) |
| return true; |
| return false; |
| } |
| |
| // Return whether this Output_data_list has any dynamic relocs. |
| |
| bool |
| Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const |
| { |
| for (Output_data_list::const_iterator p = pdl->begin(); |
| p != pdl->end(); |
| ++p) |
| if ((*p)->has_dynamic_reloc()) |
| return true; |
| return false; |
| } |
| |
| // Set the section addresses for an Output_segment. If RESET is true, |
| // reset the addresses first. ADDR is the address and *POFF is the |
| // file offset. Set the section indexes starting with *PSHNDX. |
| // INCREASE_RELRO is the size of the portion of the first non-relro |
| // section that should be included in the PT_GNU_RELRO segment. |
| // If this segment has relro sections, and has been aligned for |
| // that purpose, set *HAS_RELRO to TRUE. Return the address of |
| // the immediately following segment. Update *HAS_RELRO, *POFF, |
| // and *PSHNDX. |
| |
| uint64_t |
| Output_segment::set_section_addresses(const Target* target, |
| Layout* layout, bool reset, |
| uint64_t addr, |
| unsigned int* increase_relro, |
| bool* has_relro, |
| off_t* poff, |
| unsigned int* pshndx) |
| { |
| gold_assert(this->type_ == elfcpp::PT_LOAD); |
| |
| uint64_t last_relro_pad = 0; |
| off_t orig_off = *poff; |
| |
| bool in_tls = false; |
| |
| // If we have relro sections, we need to pad forward now so that the |
| // relro sections plus INCREASE_RELRO end on an abi page boundary. |
| if (parameters->options().relro() |
| && this->is_first_section_relro() |
| && (!this->are_addresses_set_ || reset)) |
| { |
| uint64_t relro_size = 0; |
| off_t off = *poff; |
| uint64_t max_align = 0; |
| for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i) |
| { |
| Output_data_list* pdl = &this->output_lists_[i]; |
| Output_data_list::iterator p; |
| for (p = pdl->begin(); p != pdl->end(); ++p) |
| { |
| if (!(*p)->is_section()) |
| break; |
| uint64_t align = (*p)->addralign(); |
| if (align > max_align) |
| max_align = align; |
| if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)) |
| in_tls = true; |
| else if (in_tls) |
| { |
| // Align the first non-TLS section to the alignment |
| // of the TLS segment. |
| align = max_align; |
| in_tls = false; |
| } |
| // Ignore the size of the .tbss section. |
| if ((*p)->is_section_flag_set(elfcpp::SHF_TLS) |
| && (*p)->is_section_type(elfcpp::SHT_NOBITS)) |
| continue; |
| relro_size = align_address(relro_size, align); |
| if ((*p)->is_address_valid()) |
| relro_size += (*p)->data_size(); |
| else |
| { |
| // FIXME: This could be faster. |
| (*p)->set_address_and_file_offset(relro_size, |
| relro_size); |
| relro_size += (*p)->data_size(); |
| (*p)->reset_address_and_file_offset(); |
| } |
| } |
| if (p != pdl->end()) |
| break; |
| } |
| relro_size += *increase_relro; |
| // Pad the total relro size to a multiple of the maximum |
| // section alignment seen. |
| uint64_t aligned_size = align_address(relro_size, max_align); |
| // Note the amount of padding added after the last relro section. |
| last_relro_pad = aligned_size - relro_size; |
| *has_relro = true; |
| |
| uint64_t page_align = parameters->target().abi_pagesize(); |
| |
| // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0. |
| uint64_t desired_align = page_align - (aligned_size % page_align); |
| if (desired_align < off % page_align) |
| off += page_align; |
| off += desired_align - off % page_align; |
| addr += off - orig_off; |
| orig_off = off; |
| *poff = off; |
| } |
| |
| if (!reset && this->are_addresses_set_) |
| { |
| gold_assert(this->paddr_ == addr); |
| addr = this->vaddr_; |
| } |
| else |
| { |
| this->vaddr_ = addr; |
| this->paddr_ = addr; |
| this->are_addresses_set_ = true; |
| } |
| |
| in_tls = false; |
| |
| this->offset_ = orig_off; |
| |
| off_t off = 0; |
| off_t foff = *poff; |
| uint64_t ret = 0; |
| for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) |
| { |
| if (i == static_cast<int>(ORDER_RELRO_LAST)) |
| { |
| *poff += last_relro_pad; |
| foff += last_relro_pad; |
| addr += last_relro_pad; |
| if (this->output_lists_[i].empty()) |
| { |
| // If there is nothing in the ORDER_RELRO_LAST list, |
| // the padding will occur at the end of the relro |
| // segment, and we need to add it to *INCREASE_RELRO. |
| *increase_relro += last_relro_pad; |
| } |
| } |
| addr = this->set_section_list_addresses(layout, reset, |
| &this->output_lists_[i], |
| addr, poff, &foff, pshndx, |
| &in_tls); |
| |
| // FOFF tracks the last offset used for the file image, |
| // and *POFF tracks the last offset used for the memory image. |
| // When not using a linker script, bss sections should all |
| // be processed in the ORDER_SMALL_BSS and later buckets. |
| gold_assert(*poff == foff |
| || i == static_cast<int>(ORDER_TLS_BSS) |
| || i >= static_cast<int>(ORDER_SMALL_BSS) |
| || layout->script_options()->saw_sections_clause()); |
| |
| this->filesz_ = foff - orig_off; |
| off = foff; |
| |
| ret = addr; |
| } |
| |
| // If the last section was a TLS section, align upward to the |
| // alignment of the TLS segment, so that the overall size of the TLS |
| // segment is aligned. |
| if (in_tls) |
| { |
| uint64_t segment_align = layout->tls_segment()->maximum_alignment(); |
| *poff = align_address(*poff, segment_align); |
| } |
| |
| this->memsz_ = *poff - orig_off; |
| |
| // Ignore the file offset adjustments made by the BSS Output_data |
| // objects. |
| *poff = off; |
| |
| // If code segments must contain only code, and this code segment is |
| // page-aligned in the file, then fill it out to a whole page with |
| // code fill (the tail of the segment will not be within any section). |
| // Thus the entire code segment can be mapped from the file as whole |
| // pages and that mapping will contain only valid instructions. |
| if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0) |
| { |
| uint64_t abi_pagesize = target->abi_pagesize(); |
| if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0) |
| { |
| size_t fill_size = abi_pagesize - (off % abi_pagesize); |
| |
| std::string fill_data; |
| if (target->has_code_fill()) |
| fill_data = target->code_fill(fill_size); |
| else |
| fill_data.resize(fill_size); // Zero fill. |
| |
| Output_data_const* fill = new Output_data_const(fill_data, 0); |
| fill->set_address(this->vaddr_ + this->memsz_); |
| fill->set_file_offset(off); |
| layout->add_relax_output(fill); |
| |
| off += fill_size; |
| gold_assert(off % abi_pagesize == 0); |
| ret += fill_size; |
| gold_assert(ret % abi_pagesize == 0); |
| |
| gold_assert((uint64_t) this->filesz_ == this->memsz_); |
| this->memsz_ = this->filesz_ += fill_size; |
| |
| *poff = off; |
| } |
| } |
| |
| return ret; |
| } |
| |
| // Set the addresses and file offsets in a list of Output_data |
| // structures. |
| |
| uint64_t |
| Output_segment::set_section_list_addresses(Layout* layout, bool reset, |
| Output_data_list* pdl, |
| uint64_t addr, off_t* poff, |
| off_t* pfoff, |
| unsigned int* pshndx, |
| bool* in_tls) |
| { |
| off_t startoff = *poff; |
| // For incremental updates, we may allocate non-fixed sections from |
| // free space in the file. This keeps track of the high-water mark. |
| off_t maxoff = startoff; |
| |
| off_t off = startoff; |
| off_t foff = *pfoff; |
| for (Output_data_list::iterator p = pdl->begin(); |
| p != pdl->end(); |
| ++p) |
| { |
| bool is_bss = (*p)->is_section_type(elfcpp::SHT_NOBITS); |
| bool is_tls = (*p)->is_section_flag_set(elfcpp::SHF_TLS); |
| |
| if (reset) |
| (*p)->reset_address_and_file_offset(); |
| |
| // When doing an incremental update or when using a linker script, |
| // the section will most likely already have an address. |
| if (!(*p)->is_address_valid()) |
| { |
| uint64_t align = (*p)->addralign(); |
| |
| if (is_tls) |
| { |
| // Give the first TLS section the alignment of the |
| // entire TLS segment. Otherwise the TLS segment as a |
| // whole may be misaligned. |
| if (!*in_tls) |
| { |
| Output_segment* tls_segment = layout->tls_segment(); |
| gold_assert(tls_segment != NULL); |
| uint64_t segment_align = tls_segment->maximum_alignment(); |
| gold_assert(segment_align >= align); |
| align = segment_align; |
| |
| *in_tls = true; |
| } |
| } |
| else |
| { |
| // If this is the first section after the TLS segment, |
| // align it to at least the alignment of the TLS |
| // segment, so that the size of the overall TLS segment |
| // is aligned. |
| if (*in_tls) |
| { |
| uint64_t segment_align = |
| layout->tls_segment()->maximum_alignment(); |
| if (segment_align > align) |
| align = segment_align; |
| |
| *in_tls = false; |
| } |
| } |
| |
| if (!parameters->incremental_update()) |
| { |
| gold_assert(off == foff || is_bss); |
| off = align_address(off, align); |
| if (is_tls || !is_bss) |
| foff = off; |
| (*p)->set_address_and_file_offset(addr + (off - startoff), foff); |
| } |
| else |
| { |
| // Incremental update: allocate file space from free list. |
| (*p)->pre_finalize_data_size(); |
| off_t current_size = (*p)->current_data_size(); |
| off = layout->allocate(current_size, align, startoff); |
| foff = off; |
| if (off == -1) |
| { |
| gold_assert((*p)->output_section() != NULL); |
| gold_fallback(_("out of patch space for section %s; " |
| "relink with --incremental-full"), |
| (*p)->output_section()->name()); |
| } |
| (*p)->set_address_and_file_offset(addr + (off - startoff), foff); |
| if ((*p)->data_size() > current_size) |
| { |
| gold_assert((*p)->output_section() != NULL); |
| gold_fallback(_("%s: section changed size; " |
| "relink with --incremental-full"), |
| (*p)->output_section()->name()); |
| } |
| } |
| } |
| else if (parameters->incremental_update()) |
| { |
| // For incremental updates, use the fixed offset for the |
| // high-water mark computation. |
| off = (*p)->offset(); |
| foff = off; |
| } |
| else |
| { |
| // The script may have inserted a skip forward, but it |
| // better not have moved backward. |
| if ((*p)->address() >= addr + (off - startoff)) |
| { |
| if (!is_bss && off > foff) |
| gold_warning(_("script places BSS section in the middle " |
| "of a LOAD segment; space will be allocated " |
| "in the file")); |
| off += (*p)->address() - (addr + (off - startoff)); |
| if (is_tls || !is_bss) |
| foff = off; |
| } |
| else |
| { |
| if (!layout->script_options()->saw_sections_clause()) |
| gold_unreachable(); |
| else |
| { |
| Output_section* os = (*p)->output_section(); |
| |
| // Cast to unsigned long long to avoid format warnings. |
| unsigned long long previous_dot = |
| static_cast<unsigned long long>(addr + (off - startoff)); |
| unsigned long long dot = |
| static_cast<unsigned long long>((*p)->address()); |
| |
| if (os == NULL) |
| gold_error(_("dot moves backward in linker script " |
| "from 0x%llx to 0x%llx"), previous_dot, dot); |
| else |
| gold_error(_("address of section '%s' moves backward " |
| "from 0x%llx to 0x%llx"), |
| os->name(), previous_dot, dot); |
| } |
| } |
| (*p)->set_file_offset(foff); |
| (*p)->finalize_data_size(); |
| } |
| |
| if (parameters->incremental_update()) |
| gold_debug(DEBUG_INCREMENTAL, |
| "set_section_list_addresses: %08lx %08lx %s", |
| static_cast<long>(off), |
| static_cast<long>((*p)->data_size()), |
| ((*p)->output_section() != NULL |
| ? (*p)->output_section()->name() : "(special)")); |
| |
| // We want to ignore the size of a SHF_TLS SHT_NOBITS |
| // section. Such a section does not affect the size of a |
| // PT_LOAD segment. |
| if (!is_tls || !is_bss) |
| off += (*p)->data_size(); |
| |
| // We don't allocate space in the file for SHT_NOBITS sections, |
| // unless a script has force-placed one in the middle of a segment. |
| if (!is_bss) |
| foff = off; |
| |
| if (off > maxoff) |
| maxoff = off; |
| |
| if ((*p)->is_section()) |
| { |
| (*p)->set_out_shndx(*pshndx); |
| ++*pshndx; |
| } |
| } |
| |
| *poff = maxoff; |
| *pfoff = foff; |
| return addr + (maxoff - startoff); |
| } |
| |
| // For a non-PT_LOAD segment, set the offset from the sections, if |
| // any. Add INCREASE to the file size and the memory size. |
| |
| void |
| Output_segment::set_offset(unsigned int increase) |
| { |
| gold_assert(this->type_ != elfcpp::PT_LOAD); |
| |
| gold_assert(!this->are_addresses_set_); |
| |
| // A non-load section only uses output_lists_[0]. |
| |
| Output_data_list* pdl = &this->output_lists_[0]; |
| |
| if (pdl->empty()) |
| { |
| gold_assert(increase == 0); |
| this->vaddr_ = 0; |
| this->paddr_ = 0; |
| this->are_addresses_set_ = true; |
| this->memsz_ = 0; |
| this->min_p_align_ = 0; |
| this->offset_ = 0; |
| this->filesz_ = 0; |
| return; |
| } |
| |
| // Find the first and last section by address. |
| const Output_data* first = NULL; |
| const Output_data* last_data = NULL; |
| const Output_data* last_bss = NULL; |
| for (Output_data_list::const_iterator p = pdl->begin(); |
| p != pdl->end(); |
| ++p) |
| { |
| if (first == NULL |
| || (*p)->address() < first->address() |
| || ((*p)->address() == first->address() |
| && (*p)->data_size() < first->data_size())) |
| first = *p; |
| const Output_data** plast; |
| if ((*p)->is_section() |
| && (*p)->output_section()->type() == elfcpp::SHT_NOBITS) |
| plast = &last_bss; |
| else |
| plast = &last_data; |
| if (*plast == NULL |
| || (*p)->address() > (*plast)->address() |
| || ((*p)->address() == (*plast)->address() |
| && (*p)->data_size() > (*plast)->data_size())) |
| *plast = *p; |
| } |
| |
| this->vaddr_ = first->address(); |
| this->paddr_ = (first->has_load_address() |
| ? first->load_address() |
| : this->vaddr_); |
| this->are_addresses_set_ = true; |
| this->offset_ = first->offset(); |
| |
| if (last_data == NULL) |
| this->filesz_ = 0; |
| else |
| this->filesz_ = (last_data->address() |
| + last_data->data_size() |
| - this->vaddr_); |
| |
| const Output_data* last = last_bss != NULL ? last_bss : last_data; |
| this->memsz_ = (last->address() |
| + last->data_size() |
| - this->vaddr_); |
| |
| this->filesz_ += increase; |
| this->memsz_ += increase; |
| |
| // If this is a RELRO segment, verify that the segment ends at a |
| // page boundary. |
| if (this->type_ == elfcpp::PT_GNU_RELRO) |
| { |
| uint64_t page_align = parameters->target().abi_pagesize(); |
| uint64_t segment_end = this->vaddr_ + this->memsz_; |
| if (parameters->incremental_update()) |
| { |
| // The INCREASE_RELRO calculation is bypassed for an incremental |
| // update, so we need to adjust the segment size manually here. |
| segment_end = align_address(segment_end, page_align); |
| this->memsz_ = segment_end - this->vaddr_; |
| } |
| else |
| gold_assert(segment_end == align_address(segment_end, page_align)); |
| } |
| |
| // If this is a TLS segment, align the memory size. The code in |
| // set_section_list ensures that the section after the TLS segment |
| // is aligned to give us room. |
| if (this->type_ == elfcpp::PT_TLS) |
| { |
| uint64_t segment_align = this->maximum_alignment(); |
| gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align)); |
| this->memsz_ = align_address(this->memsz_, segment_align); |
| } |
| } |
| |
| // Set the TLS offsets of the sections in the PT_TLS segment. |
| |
| void |
| Output_segment::set_tls_offsets() |
| { |
| gold_assert(this->type_ == elfcpp::PT_TLS); |
| |
| for (Output_data_list::iterator p = this->output_lists_[0].begin(); |
| p != this->output_lists_[0].end(); |
| ++p) |
| (*p)->set_tls_offset(this->vaddr_); |
| } |
| |
| // Return the first section. |
| |
| Output_section* |
| Output_segment::first_section() const |
| { |
| for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) |
| { |
| const Output_data_list* pdl = &this->output_lists_[i]; |
| for (Output_data_list::const_iterator p = pdl->begin(); |
| p != pdl->end(); |
| ++p) |
| { |
| if ((*p)->is_section()) |
| return (*p)->output_section(); |
| } |
| } |
| return NULL; |
| } |
| |
| // Return the number of Output_sections in an Output_segment. |
| |
| unsigned int |
| Output_segment::output_section_count() const |
| { |
| unsigned int ret = 0; |
| for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) |
| ret += this->output_section_count_list(&this->output_lists_[i]); |
| return ret; |
| } |
| |
| // Return the number of Output_sections in an Output_data_list. |
| |
| unsigned int |
| Output_segment::output_section_count_list(const Output_data_list* pdl) const |
| { |
| unsigned int count = 0; |
| for (Output_data_list::const_iterator p = pdl->begin(); |
| p != pdl->end(); |
| ++p) |
| { |
| if ((*p)->is_section()) |
| ++count; |
| } |
| return count; |
| } |
| |
| // Return the section attached to the list segment with the lowest |
| // load address. This is used when handling a PHDRS clause in a |
| // linker script. |
| |
| Output_section* |
| Output_segment::section_with_lowest_load_address() const |
| { |
| Output_section* found = NULL; |
| uint64_t found_lma = 0; |
| for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) |
| this->lowest_load_address_in_list(&this->output_lists_[i], &found, |
| &found_lma); |
| return found; |
| } |
| |
| // Look through a list for a section with a lower load address. |
| |
| void |
| Output_segment::lowest_load_address_in_list(const Output_data_list* pdl, |
| Output_section** found, |
| uint64_t* found_lma) const |
| { |
| for (Output_data_list::const_iterator p = pdl->begin(); |
| p != pdl->end(); |
| ++p) |
| { |
| if (!(*p)->is_section()) |
| continue; |
| Output_section* os = static_cast<Output_section*>(*p); |
| uint64_t lma = (os->has_load_address() |
| ? os->load_address() |
| : os->address()); |
| if (*found == NULL || lma < *found_lma) |
| { |
| *found = os; |
| *found_lma = lma; |
| } |
| } |
| } |
| |
| // Write the segment data into *OPHDR. |
| |
| template<int size, bool big_endian> |
| void |
| Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr) |
| { |
| ophdr->put_p_type(this->type_); |
| ophdr->put_p_offset(this->offset_); |
| ophdr->put_p_vaddr(this->vaddr_); |
| ophdr->put_p_paddr(this->paddr_); |
| ophdr->put_p_filesz(this->filesz_); |
| ophdr->put_p_memsz(this->memsz_); |
| ophdr->put_p_flags(this->flags_); |
| ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment())); |
| } |
| |
| // Write the section headers into V. |
| |
| template<int size, bool big_endian> |
| unsigned char* |
| Output_segment::write_section_headers(const Layout* layout, |
| const Stringpool* secnamepool, |
| unsigned char* v, |
| unsigned int* pshndx) const |
| { |
| // Every section that is attached to a segment must be attached to a |
| // PT_LOAD segment, so we only write out section headers for PT_LOAD |
| // segments. |
| if (this->type_ != elfcpp::PT_LOAD) |
| return v; |
| |
| for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) |
| { |
| const Output_data_list* pdl = &this->output_lists_[i]; |
| v = this->write_section_headers_list<size, big_endian>(layout, |
| secnamepool, |
| pdl, |
| v, pshndx); |
| } |
| |
| return v; |
| } |
| |
| template<int size, bool big_endian> |
| unsigned char* |
| Output_segment::write_section_headers_list(const Layout* layout, |
| const Stringpool* secnamepool, |
| const Output_data_list* pdl, |
| unsigned char* v, |
| unsigned int* pshndx) const |
| { |
| const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; |
| for (Output_data_list::const_iterator p = pdl->begin(); |
| p != pdl->end(); |
| ++p) |
| { |
| if ((*p)->is_section()) |
| { |
| const Output_section* ps = static_cast<const Output_section*>(*p); |
| gold_assert(*pshndx == ps->out_shndx()); |
| elfcpp::Shdr_write<size, big_endian> oshdr(v); |
| ps->write_header(layout, secnamepool, &oshdr); |
| v += shdr_size; |
| ++*pshndx; |
| } |
| } |
| return v; |
| } |
| |
| // Print the output sections to the map file. |
| |
| void |
| Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const |
| { |
| if (this->type() != elfcpp::PT_LOAD) |
| return; |
| for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) |
| this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]); |
| } |
| |
| // Print an output section list to the map file. |
| |
| void |
| Output_segment::print_section_list_to_mapfile(Mapfile* mapfile, |
| const Output_data_list* pdl) const |
| { |
| for (Output_data_list::const_iterator p = pdl->begin(); |
| p != pdl->end(); |
| ++p) |
| (*p)->print_to_mapfile(mapfile); |
| } |
| |
| // Output_file methods. |
| |
| Output_file::Output_file(const char* name) |
| : name_(name), |
| o_(-1), |
| file_size_(0), |
| base_(NULL), |
| map_is_anonymous_(false), |
| map_is_allocated_(false), |
| is_temporary_(false) |
| { |
| } |
| |
| // Try to open an existing file. Returns false if the file doesn't |
| // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not |
| // NULL, open that file as the base for incremental linking, and |
| // copy its contents to the new output file. This routine can |
| // be called for incremental updates, in which case WRITABLE should |
| // be true, or by the incremental-dump utility, in which case |
| // WRITABLE should be false. |
| |
| bool |
| Output_file::open_base_file(const char* base_name, bool writable) |
| { |
| // The name "-" means "stdout". |
| if (strcmp(this->name_, "-") == 0) |
| return false; |
| |
| bool use_base_file = base_name != NULL; |
| if (!use_base_file) |
| base_name = this->name_; |
| else if (strcmp(base_name, this->name_) == 0) |
| gold_fatal(_("%s: incremental base and output file name are the same"), |
| base_name); |
| |
| // Don't bother opening files with a size of zero. |
| struct stat s; |
| if (::stat(base_name, &s) != 0) |
| { |
| gold_info(_("%s: stat: %s"), base_name, strerror(errno)); |
| return false; |
| } |
| if (s.st_size == 0) |
| { |
| gold_info(_("%s: incremental base file is empty"), base_name); |
| return false; |
| } |
| |
| // If we're using a base file, we want to open it read-only. |
| if (use_base_file) |
| writable = false; |
| |
| int oflags = writable ? O_RDWR : O_RDONLY; |
| int o = open_descriptor(-1, base_name, oflags, 0); |
| if (o < 0) |
| { |
| gold_info(_("%s: open: %s"), base_name, strerror(errno)); |
| return false; |
| } |
| |
| // If the base file and the output file are different, open a |
| // new output file and read the contents from the base file into |
| // the newly-mapped region. |
| if (use_base_file) |
| { |
| this->open(s.st_size); |
| ssize_t bytes_to_read = s.st_size; |
| unsigned char* p = this->base_; |
| while (bytes_to_read > 0) |
| { |
| ssize_t len = ::read(o, p, bytes_to_read); |
| if (len < 0) |
| { |
| gold_info(_("%s: read failed: %s"), base_name, strerror(errno)); |
| return false; |
| } |
| if (len == 0) |
| { |
| gold_info(_("%s: file too short: read only %lld of %lld bytes"), |
| base_name, |
| static_cast<long long>(s.st_size - bytes_to_read), |
| static_cast<long long>(s.st_size)); |
| return false; |
| } |
| p += len; |
| bytes_to_read -= len; |
| } |
| ::close(o); |
| return true; |
| } |
| |
| this->o_ = o; |
| this->file_size_ = s.st_size; |
| |
| if (!this->map_no_anonymous(writable)) |
| { |
| release_descriptor(o, true); |
| this->o_ = -1; |
| this->file_size_ = 0; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Open the output file. |
| |
| void |
| Output_file::open(off_t file_size) |
| { |
| this->file_size_ = file_size; |
| |
| // Unlink the file first; otherwise the open() may fail if the file |
| // is busy (e.g. it's an executable that's currently being executed). |
| // |
| // However, the linker may be part of a system where a zero-length |
| // file is created for it to write to, with tight permissions (gcc |
| // 2.95 did something like this). Unlinking the file would work |
| // around those permission controls, so we only unlink if the file |
| // has a non-zero size. We also unlink only regular files to avoid |
| // trouble with directories/etc. |
| // |
| // If we fail, continue; this command is merely a best-effort attempt |
| // to improve the odds for open(). |
| |
| // We let the name "-" mean "stdout" |
| if (!this->is_temporary_) |
| { |
| if (strcmp(this->name_, "-") == 0) |
| this->o_ = STDOUT_FILENO; |
| else |
| { |
| struct stat s; |
| if (::stat(this->name_, &s) == 0 |
| && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode))) |
| { |
| if (s.st_size != 0) |
| ::unlink(this->name_); |
| else if (!parameters->options().relocatable()) |
| { |
| // If we don't unlink the existing file, add execute |
| // permission where read permissions already exist |
| // and where the umask permits. |
| int mask = ::umask(0); |
| ::umask(mask); |
| s.st_mode |= (s.st_mode & 0444) >> 2; |
| ::chmod(this->name_, s.st_mode & ~mask); |
| } |
| } |
| |
| int mode = parameters->options().relocatable() ? 0666 : 0777; |
| int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC, |
| mode); |
| if (o < 0) |
| gold_fatal(_("%s: open: %s"), this->name_, strerror(errno)); |
| this->o_ = o; |
| } |
| } |
| |
| this->map(); |
| } |
| |
| // Resize the output file. |
| |
| void |
| Output_file::resize(off_t file_size) |
| { |
| // If the mmap is mapping an anonymous memory buffer, this is easy: |
| // just mremap to the new size. If it's mapping to a file, we want |
| // to unmap to flush to the file, then remap after growing the file. |
| if (this->map_is_anonymous_) |
| { |
| void* base; |
| if (!this->map_is_allocated_) |
| { |
| base = ::mremap(this->base_, this->file_size_, file_size, |
| MREMAP_MAYMOVE); |
| if (base == MAP_FAILED) |
| gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno)); |
| } |
| else |
| { |
| base = realloc(this->base_, file_size); |
| if (base == NULL) |
| gold_nomem(); |
| if (file_size > this->file_size_) |
| memset(static_cast<char*>(base) + this->file_size_, 0, |
| file_size - this->file_size_); |
| } |
| this->base_ = static_cast<unsigned char*>(base); |
| this->file_size_ = file_size; |
| } |
| else |
| { |
| this->unmap(); |
| this->file_size_ = file_size; |
| if (!this->map_no_anonymous(true)) |
| gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno)); |
| } |
| } |
| |
| // Map an anonymous block of memory which will later be written to the |
| // file. Return whether the map succeeded. |
| |
| bool |
| Output_file::map_anonymous() |
| { |
| void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| if (base == MAP_FAILED) |
| { |
| base = malloc(this->file_size_); |
| if (base == NULL) |
| return false; |
| memset(base, 0, this->file_size_); |
| this->map_is_allocated_ = true; |
| } |
| this->base_ = static_cast<unsigned char*>(base); |
| this->map_is_anonymous_ = true; |
| return true; |
| } |
| |
| // Map the file into memory. Return whether the mapping succeeded. |
| // If WRITABLE is true, map with write access. |
| |
| bool |
| Output_file::map_no_anonymous(bool writable) |
| { |
| const int o = this->o_; |
| |
| // If the output file is not a regular file, don't try to mmap it; |
| // instead, we'll mmap a block of memory (an anonymous buffer), and |
| // then later write the buffer to the file. |
| void* base; |
| struct stat statbuf; |
| if (o == STDOUT_FILENO || o == STDERR_FILENO |
| || ::fstat(o, &statbuf) != 0 |
| || !S_ISREG(statbuf.st_mode) |
| || this->is_temporary_) |
| return false; |
| |
| // Ensure that we have disk space available for the file. If we |
| // don't do this, it is possible that we will call munmap, close, |
| // and exit with dirty buffers still in the cache with no assigned |
| // disk blocks. If the disk is out of space at that point, the |
| // output file will wind up incomplete, but we will have already |
| // exited. The alternative to fallocate would be to use fdatasync, |
| // but that would be a more significant performance hit. |
| if (writable) |
| { |
| int err = gold_fallocate(o, 0, this->file_size_); |
| if (err != 0) |
| gold_fatal(_("%s: %s"), this->name_, strerror(err)); |
| } |
| |
| // Map the file into memory. |
| int prot = PROT_READ; |
| if (writable) |
| prot |= PROT_WRITE; |
| base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0); |
| |
| // The mmap call might fail because of file system issues: the file |
| // system might not support mmap at all, or it might not support |
| // mmap with PROT_WRITE. |
| if (base == MAP_FAILED) |
| return false; |
| |
| this->map_is_anonymous_ = false; |
| this->base_ = static_cast<unsigned char*>(base); |
| return true; |
| } |
| |
| // Map the file into memory. |
| |
| void |
| Output_file::map() |
| { |
| if (parameters->options().mmap_output_file() |
| && this->map_no_anonymous(true)) |
| return; |
| |
| // The mmap call might fail because of file system issues: the file |
| // system might not support mmap at all, or it might not support |
| // mmap with PROT_WRITE. I'm not sure which errno values we will |
| // see in all cases, so if the mmap fails for any reason and we |
| // don't care about file contents, try for an anonymous map. |
| if (this->map_anonymous()) |
| return; |
| |
| gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"), |
| this->name_, static_cast<unsigned long>(this->file_size_), |
| strerror(errno)); |
| } |
| |
| // Unmap the file from memory. |
| |
| void |
| Output_file::unmap() |
| { |
| if (this->map_is_anonymous_) |
| { |
| // We've already written out the data, so there is no reason to |
| // waste time unmapping or freeing the memory. |
| } |
| else |
| { |
| if (::munmap(this->base_, this->file_size_) < 0) |
| gold_error(_("%s: munmap: %s"), this->name_, strerror(errno)); |
| } |
| this->base_ = NULL; |
| } |
| |
| // Close the output file. |
| |
| void |
| Output_file::close() |
| { |
| // If the map isn't file-backed, we need to write it now. |
| if (this->map_is_anonymous_ && !this->is_temporary_) |
| { |
| size_t bytes_to_write = this->file_size_; |
| size_t offset = 0; |
| while (bytes_to_write > 0) |
| { |
| ssize_t bytes_written = ::write(this->o_, this->base_ + offset, |
| bytes_to_write); |
| if (bytes_written == 0) |
| gold_error(_("%s: write: unexpected 0 return-value"), this->name_); |
| else if (bytes_written < 0) |
| gold_error(_("%s: write: %s"), this->name_, strerror(errno)); |
| else |
| { |
| bytes_to_write -= bytes_written; |
| offset += bytes_written; |
| } |
| } |
| } |
| this->unmap(); |
| |
| // We don't close stdout or stderr |
| if (this->o_ != STDOUT_FILENO |
| && this->o_ != STDERR_FILENO |
| && !this->is_temporary_) |
| if (::close(this->o_) < 0) |
| gold_error(_("%s: close: %s"), this->name_, strerror(errno)); |
| this->o_ = -1; |
| } |
| |
| // Instantiate the templates we need. We could use the configure |
| // script to restrict this to only the ones for implemented targets. |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| off_t |
| Output_section::add_input_section<32, false>( |
| Layout* layout, |
| Sized_relobj_file<32, false>* object, |
| unsigned int shndx, |
| const char* secname, |
| const elfcpp::Shdr<32, false>& shdr, |
| unsigned int reloc_shndx, |
| bool have_sections_script); |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| off_t |
| Output_section::add_input_section<32, true>( |
| Layout* layout, |
| Sized_relobj_file<32, true>* object, |
| unsigned int shndx, |
| const char* secname, |
| const elfcpp::Shdr<32, true>& shdr, |
| unsigned int reloc_shndx, |
| bool have_sections_script); |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| off_t |
| Output_section::add_input_section<64, false>( |
| Layout* layout, |
| Sized_relobj_file<64, false>* object, |
| unsigned int shndx, |
| const char* secname, |
| const elfcpp::Shdr<64, false>& shdr, |
| unsigned int reloc_shndx, |
| bool have_sections_script); |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| off_t |
| Output_section::add_input_section<64, true>( |
| Layout* layout, |
| Sized_relobj_file<64, true>* object, |
| unsigned int shndx, |
| const char* secname, |
| const elfcpp::Shdr<64, true>& shdr, |
| unsigned int reloc_shndx, |
| bool have_sections_script); |
| #endif |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| class Output_reloc<elfcpp::SHT_REL, false, 32, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| class Output_reloc<elfcpp::SHT_REL, false, 32, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| class Output_reloc<elfcpp::SHT_REL, false, 64, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| class Output_reloc<elfcpp::SHT_REL, false, 64, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| class Output_reloc<elfcpp::SHT_REL, true, 32, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| class Output_reloc<elfcpp::SHT_REL, true, 32, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| class Output_reloc<elfcpp::SHT_REL, true, 64, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| class Output_reloc<elfcpp::SHT_REL, true, 64, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| class Output_reloc<elfcpp::SHT_RELA, false, 32, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| class Output_reloc<elfcpp::SHT_RELA, false, 32, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| class Output_reloc<elfcpp::SHT_RELA, false, 64, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| class Output_reloc<elfcpp::SHT_RELA, false, 64, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| class Output_reloc<elfcpp::SHT_RELA, true, 32, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| class Output_reloc<elfcpp::SHT_RELA, true, 32, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| class Output_reloc<elfcpp::SHT_RELA, true, 64, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| class Output_reloc<elfcpp::SHT_RELA, true, 64, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| class Output_data_group<32, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| class Output_data_group<32, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| class Output_data_group<64, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| class Output_data_group<64, true>; |
| #endif |
| |
| template |
| class Output_data_got<32, false>; |
| |
| template |
| class Output_data_got<32, true>; |
| |
| template |
| class Output_data_got<64, false>; |
| |
| template |
| class Output_data_got<64, true>; |
| |
| } // End namespace gold. |