|  | /* nto-tdep.c - general QNX Neutrino target functionality. | 
|  |  | 
|  | Copyright (C) 2003-2021 Free Software Foundation, Inc. | 
|  |  | 
|  | Contributed by QNX Software Systems Ltd. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "defs.h" | 
|  | #include <sys/stat.h> | 
|  | #include "nto-tdep.h" | 
|  | #include "top.h" | 
|  | #include "inferior.h" | 
|  | #include "infrun.h" | 
|  | #include "gdbarch.h" | 
|  | #include "bfd.h" | 
|  | #include "elf-bfd.h" | 
|  | #include "solib-svr4.h" | 
|  | #include "gdbcore.h" | 
|  | #include "objfiles.h" | 
|  | #include "source.h" | 
|  | #include "gdbsupport/pathstuff.h" | 
|  |  | 
|  | #define QNX_NOTE_NAME	"QNX" | 
|  | #define QNX_INFO_SECT_NAME "QNX_info" | 
|  |  | 
|  | #ifdef __CYGWIN__ | 
|  | #include <sys/cygwin.h> | 
|  | #endif | 
|  |  | 
|  | #ifdef __CYGWIN__ | 
|  | static char default_nto_target[] = "C:\\QNXsdk\\target\\qnx6"; | 
|  | #elif defined(__sun__) || defined(linux) | 
|  | static char default_nto_target[] = "/opt/QNXsdk/target/qnx6"; | 
|  | #else | 
|  | static char default_nto_target[] = ""; | 
|  | #endif | 
|  |  | 
|  | struct nto_target_ops current_nto_target; | 
|  |  | 
|  | static const struct inferior_key<struct nto_inferior_data> | 
|  | nto_inferior_data_reg; | 
|  |  | 
|  | static char * | 
|  | nto_target (void) | 
|  | { | 
|  | char *p = getenv ("QNX_TARGET"); | 
|  |  | 
|  | #ifdef __CYGWIN__ | 
|  | static char buf[PATH_MAX]; | 
|  | if (p) | 
|  | cygwin_conv_path (CCP_WIN_A_TO_POSIX, p, buf, PATH_MAX); | 
|  | else | 
|  | cygwin_conv_path (CCP_WIN_A_TO_POSIX, default_nto_target, buf, PATH_MAX); | 
|  | return buf; | 
|  | #else | 
|  | return p ? p : default_nto_target; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Take a string such as i386, rs6000, etc. and map it onto CPUTYPE_X86, | 
|  | CPUTYPE_PPC, etc. as defined in nto-share/dsmsgs.h.  */ | 
|  | int | 
|  | nto_map_arch_to_cputype (const char *arch) | 
|  | { | 
|  | if (!strcmp (arch, "i386") || !strcmp (arch, "x86")) | 
|  | return CPUTYPE_X86; | 
|  | if (!strcmp (arch, "rs6000") || !strcmp (arch, "powerpc")) | 
|  | return CPUTYPE_PPC; | 
|  | if (!strcmp (arch, "mips")) | 
|  | return CPUTYPE_MIPS; | 
|  | if (!strcmp (arch, "arm")) | 
|  | return CPUTYPE_ARM; | 
|  | if (!strcmp (arch, "sh")) | 
|  | return CPUTYPE_SH; | 
|  | return CPUTYPE_UNKNOWN; | 
|  | } | 
|  |  | 
|  | int | 
|  | nto_find_and_open_solib (const char *solib, unsigned o_flags, | 
|  | gdb::unique_xmalloc_ptr<char> *temp_pathname) | 
|  | { | 
|  | char *buf, *arch_path, *nto_root; | 
|  | const char *endian; | 
|  | const char *base; | 
|  | const char *arch; | 
|  | int arch_len, len, ret; | 
|  | #define PATH_FMT \ | 
|  | "%s/lib:%s/usr/lib:%s/usr/photon/lib:%s/usr/photon/dll:%s/lib/dll" | 
|  |  | 
|  | nto_root = nto_target (); | 
|  | if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, "i386") == 0) | 
|  | { | 
|  | arch = "x86"; | 
|  | endian = ""; | 
|  | } | 
|  | else if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, | 
|  | "rs6000") == 0 | 
|  | || strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, | 
|  | "powerpc") == 0) | 
|  | { | 
|  | arch = "ppc"; | 
|  | endian = "be"; | 
|  | } | 
|  | else | 
|  | { | 
|  | arch = gdbarch_bfd_arch_info (target_gdbarch ())->arch_name; | 
|  | endian = gdbarch_byte_order (target_gdbarch ()) | 
|  | == BFD_ENDIAN_BIG ? "be" : "le"; | 
|  | } | 
|  |  | 
|  | /* In case nto_root is short, add strlen(solib) | 
|  | so we can reuse arch_path below.  */ | 
|  |  | 
|  | arch_len = (strlen (nto_root) + strlen (arch) + strlen (endian) + 2 | 
|  | + strlen (solib)); | 
|  | arch_path = (char *) alloca (arch_len); | 
|  | xsnprintf (arch_path, arch_len, "%s/%s%s", nto_root, arch, endian); | 
|  |  | 
|  | len = strlen (PATH_FMT) + strlen (arch_path) * 5 + 1; | 
|  | buf = (char *) alloca (len); | 
|  | xsnprintf (buf, len, PATH_FMT, arch_path, arch_path, arch_path, arch_path, | 
|  | arch_path); | 
|  |  | 
|  | base = lbasename (solib); | 
|  | ret = openp (buf, OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, base, o_flags, | 
|  | temp_pathname); | 
|  | if (ret < 0 && base != solib) | 
|  | { | 
|  | xsnprintf (arch_path, arch_len, "/%s", solib); | 
|  | ret = open (arch_path, o_flags, 0); | 
|  | if (temp_pathname) | 
|  | { | 
|  | if (ret >= 0) | 
|  | *temp_pathname = gdb_realpath (arch_path); | 
|  | else | 
|  | temp_pathname->reset (NULL); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void | 
|  | nto_init_solib_absolute_prefix (void) | 
|  | { | 
|  | char buf[PATH_MAX * 2], arch_path[PATH_MAX]; | 
|  | char *nto_root; | 
|  | const char *endian; | 
|  | const char *arch; | 
|  |  | 
|  | nto_root = nto_target (); | 
|  | if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, "i386") == 0) | 
|  | { | 
|  | arch = "x86"; | 
|  | endian = ""; | 
|  | } | 
|  | else if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, | 
|  | "rs6000") == 0 | 
|  | || strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, | 
|  | "powerpc") == 0) | 
|  | { | 
|  | arch = "ppc"; | 
|  | endian = "be"; | 
|  | } | 
|  | else | 
|  | { | 
|  | arch = gdbarch_bfd_arch_info (target_gdbarch ())->arch_name; | 
|  | endian = gdbarch_byte_order (target_gdbarch ()) | 
|  | == BFD_ENDIAN_BIG ? "be" : "le"; | 
|  | } | 
|  |  | 
|  | xsnprintf (arch_path, sizeof (arch_path), "%s/%s%s", nto_root, arch, endian); | 
|  |  | 
|  | xsnprintf (buf, sizeof (buf), "set solib-absolute-prefix %s", arch_path); | 
|  | execute_command (buf, 0); | 
|  | } | 
|  |  | 
|  | char ** | 
|  | nto_parse_redirection (char *pargv[], const char **pin, const char **pout, | 
|  | const char **perr) | 
|  | { | 
|  | char **argv; | 
|  | const char *in, *out, *err, *p; | 
|  | int argc, i, n; | 
|  |  | 
|  | for (n = 0; pargv[n]; n++); | 
|  | if (n == 0) | 
|  | return NULL; | 
|  | in = ""; | 
|  | out = ""; | 
|  | err = ""; | 
|  |  | 
|  | argv = XCNEWVEC (char *, n + 1); | 
|  | argc = n; | 
|  | for (i = 0, n = 0; n < argc; n++) | 
|  | { | 
|  | p = pargv[n]; | 
|  | if (*p == '>') | 
|  | { | 
|  | p++; | 
|  | if (*p) | 
|  | out = p; | 
|  | else | 
|  | out = pargv[++n]; | 
|  | } | 
|  | else if (*p == '<') | 
|  | { | 
|  | p++; | 
|  | if (*p) | 
|  | in = p; | 
|  | else | 
|  | in = pargv[++n]; | 
|  | } | 
|  | else if (*p++ == '2' && *p++ == '>') | 
|  | { | 
|  | if (*p == '&' && *(p + 1) == '1') | 
|  | err = out; | 
|  | else if (*p) | 
|  | err = p; | 
|  | else | 
|  | err = pargv[++n]; | 
|  | } | 
|  | else | 
|  | argv[i++] = pargv[n]; | 
|  | } | 
|  | *pin = in; | 
|  | *pout = out; | 
|  | *perr = err; | 
|  | return argv; | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | lm_addr (struct so_list *so) | 
|  | { | 
|  | lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; | 
|  |  | 
|  | return li->l_addr; | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | nto_truncate_ptr (CORE_ADDR addr) | 
|  | { | 
|  | if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8) | 
|  | /* We don't need to truncate anything, and the bit twiddling below | 
|  | will fail due to overflow problems.  */ | 
|  | return addr; | 
|  | else | 
|  | return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1); | 
|  | } | 
|  |  | 
|  | static Elf_Internal_Phdr * | 
|  | find_load_phdr (bfd *abfd) | 
|  | { | 
|  | Elf_Internal_Phdr *phdr; | 
|  | unsigned int i; | 
|  |  | 
|  | if (!elf_tdata (abfd)) | 
|  | return NULL; | 
|  |  | 
|  | phdr = elf_tdata (abfd)->phdr; | 
|  | for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) | 
|  | { | 
|  | if (phdr->p_type == PT_LOAD && (phdr->p_flags & PF_X)) | 
|  | return phdr; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void | 
|  | nto_relocate_section_addresses (struct so_list *so, struct target_section *sec) | 
|  | { | 
|  | /* Neutrino treats the l_addr base address field in link.h as different than | 
|  | the base address in the System V ABI and so the offset needs to be | 
|  | calculated and applied to relocations.  */ | 
|  | Elf_Internal_Phdr *phdr = find_load_phdr (sec->the_bfd_section->owner); | 
|  | unsigned vaddr = phdr ? phdr->p_vaddr : 0; | 
|  |  | 
|  | sec->addr = nto_truncate_ptr (sec->addr + lm_addr (so) - vaddr); | 
|  | sec->endaddr = nto_truncate_ptr (sec->endaddr + lm_addr (so) - vaddr); | 
|  | } | 
|  |  | 
|  | /* This is cheating a bit because our linker code is in libc.so.  If we | 
|  | ever implement lazy linking, this may need to be re-examined.  */ | 
|  | int | 
|  | nto_in_dynsym_resolve_code (CORE_ADDR pc) | 
|  | { | 
|  | if (in_plt_section (pc)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | nto_dummy_supply_regset (struct regcache *regcache, char *regs) | 
|  | { | 
|  | /* Do nothing.  */ | 
|  | } | 
|  |  | 
|  | static void | 
|  | nto_sniff_abi_note_section (bfd *abfd, asection *sect, void *obj) | 
|  | { | 
|  | const char *sectname; | 
|  | unsigned int sectsize; | 
|  | /* Buffer holding the section contents.  */ | 
|  | char *note; | 
|  | unsigned int namelen; | 
|  | const char *name; | 
|  | const unsigned sizeof_Elf_Nhdr = 12; | 
|  |  | 
|  | sectname = bfd_section_name (sect); | 
|  | sectsize = bfd_section_size (sect); | 
|  |  | 
|  | if (sectsize > 128) | 
|  | sectsize = 128; | 
|  |  | 
|  | if (sectname != NULL && strstr (sectname, QNX_INFO_SECT_NAME) != NULL) | 
|  | *(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO; | 
|  | else if (sectname != NULL && strstr (sectname, "note") != NULL | 
|  | && sectsize > sizeof_Elf_Nhdr) | 
|  | { | 
|  | note = XNEWVEC (char, sectsize); | 
|  | bfd_get_section_contents (abfd, sect, note, 0, sectsize); | 
|  | namelen = (unsigned int) bfd_h_get_32 (abfd, note); | 
|  | name = note + sizeof_Elf_Nhdr; | 
|  | if (sectsize >= namelen + sizeof_Elf_Nhdr | 
|  | && namelen == sizeof (QNX_NOTE_NAME) | 
|  | && 0 == strcmp (name, QNX_NOTE_NAME)) | 
|  | *(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO; | 
|  |  | 
|  | XDELETEVEC (note); | 
|  | } | 
|  | } | 
|  |  | 
|  | enum gdb_osabi | 
|  | nto_elf_osabi_sniffer (bfd *abfd) | 
|  | { | 
|  | enum gdb_osabi osabi = GDB_OSABI_UNKNOWN; | 
|  |  | 
|  | bfd_map_over_sections (abfd, | 
|  | nto_sniff_abi_note_section, | 
|  | &osabi); | 
|  |  | 
|  | return osabi; | 
|  | } | 
|  |  | 
|  | static const char * const nto_thread_state_str[] = | 
|  | { | 
|  | "DEAD",		/* 0  0x00 */ | 
|  | "RUNNING",	/* 1  0x01 */ | 
|  | "READY",	/* 2  0x02 */ | 
|  | "STOPPED",	/* 3  0x03 */ | 
|  | "SEND",		/* 4  0x04 */ | 
|  | "RECEIVE",	/* 5  0x05 */ | 
|  | "REPLY",	/* 6  0x06 */ | 
|  | "STACK",	/* 7  0x07 */ | 
|  | "WAITTHREAD",	/* 8  0x08 */ | 
|  | "WAITPAGE",	/* 9  0x09 */ | 
|  | "SIGSUSPEND",	/* 10 0x0a */ | 
|  | "SIGWAITINFO",	/* 11 0x0b */ | 
|  | "NANOSLEEP",	/* 12 0x0c */ | 
|  | "MUTEX",	/* 13 0x0d */ | 
|  | "CONDVAR",	/* 14 0x0e */ | 
|  | "JOIN",		/* 15 0x0f */ | 
|  | "INTR",		/* 16 0x10 */ | 
|  | "SEM",		/* 17 0x11 */ | 
|  | "WAITCTX",	/* 18 0x12 */ | 
|  | "NET_SEND",	/* 19 0x13 */ | 
|  | "NET_REPLY"	/* 20 0x14 */ | 
|  | }; | 
|  |  | 
|  | const char * | 
|  | nto_extra_thread_info (struct target_ops *self, struct thread_info *ti) | 
|  | { | 
|  | if (ti != NULL && ti->priv != NULL) | 
|  | { | 
|  | nto_thread_info *priv = get_nto_thread_info (ti); | 
|  |  | 
|  | if (priv->state < ARRAY_SIZE (nto_thread_state_str)) | 
|  | return nto_thread_state_str [priv->state]; | 
|  | } | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | void | 
|  | nto_initialize_signals (void) | 
|  | { | 
|  | /* We use SIG45 for pulses, or something, so nostop, noprint | 
|  | and pass them.  */ | 
|  | signal_stop_update (gdb_signal_from_name ("SIG45"), 0); | 
|  | signal_print_update (gdb_signal_from_name ("SIG45"), 0); | 
|  | signal_pass_update (gdb_signal_from_name ("SIG45"), 1); | 
|  |  | 
|  | /* By default we don't want to stop on these two, but we do want to pass.  */ | 
|  | #if defined(SIGSELECT) | 
|  | signal_stop_update (SIGSELECT, 0); | 
|  | signal_print_update (SIGSELECT, 0); | 
|  | signal_pass_update (SIGSELECT, 1); | 
|  | #endif | 
|  |  | 
|  | #if defined(SIGPHOTON) | 
|  | signal_stop_update (SIGPHOTON, 0); | 
|  | signal_print_update (SIGPHOTON, 0); | 
|  | signal_pass_update (SIGPHOTON, 1); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Read AUXV from initial_stack.  */ | 
|  | LONGEST | 
|  | nto_read_auxv_from_initial_stack (CORE_ADDR initial_stack, gdb_byte *readbuf, | 
|  | LONGEST len, size_t sizeof_auxv_t) | 
|  | { | 
|  | gdb_byte targ32[4]; /* For 32 bit target values.  */ | 
|  | gdb_byte targ64[8]; /* For 64 bit target values.  */ | 
|  | CORE_ADDR data_ofs = 0; | 
|  | ULONGEST anint; | 
|  | LONGEST len_read = 0; | 
|  | gdb_byte *buff; | 
|  | enum bfd_endian byte_order; | 
|  | int ptr_size; | 
|  |  | 
|  | if (sizeof_auxv_t == 16) | 
|  | ptr_size = 8; | 
|  | else | 
|  | ptr_size = 4; | 
|  |  | 
|  | /* Skip over argc, argv and envp... Comment from ldd.c: | 
|  |  | 
|  | The startup frame is set-up so that we have: | 
|  | auxv | 
|  | NULL | 
|  | ... | 
|  | envp2 | 
|  | envp1 <----- void *frame + (argc + 2) * sizeof(char *) | 
|  | NULL | 
|  | ... | 
|  | argv2 | 
|  | argv1 | 
|  | argc  <------ void * frame | 
|  |  | 
|  | On entry to ldd, frame gives the address of argc on the stack.  */ | 
|  | /* Read argc. 4 bytes on both 64 and 32 bit arches and luckily little | 
|  | * endian. So we just read first 4 bytes.  */ | 
|  | if (target_read_memory (initial_stack + data_ofs, targ32, 4) != 0) | 
|  | return 0; | 
|  |  | 
|  | byte_order = gdbarch_byte_order (target_gdbarch ()); | 
|  |  | 
|  | anint = extract_unsigned_integer (targ32, sizeof (targ32), byte_order); | 
|  |  | 
|  | /* Size of pointer is assumed to be 4 bytes (32 bit arch.) */ | 
|  | data_ofs += (anint + 2) * ptr_size; /* + 2 comes from argc itself and | 
|  | NULL terminating pointer in | 
|  | argv.  */ | 
|  |  | 
|  | /* Now loop over env table:  */ | 
|  | anint = 0; | 
|  | while (target_read_memory (initial_stack + data_ofs, targ64, ptr_size) | 
|  | == 0) | 
|  | { | 
|  | if (extract_unsigned_integer (targ64, ptr_size, byte_order) == 0) | 
|  | anint = 1; /* Keep looping until non-null entry is found.  */ | 
|  | else if (anint) | 
|  | break; | 
|  | data_ofs += ptr_size; | 
|  | } | 
|  | initial_stack += data_ofs; | 
|  |  | 
|  | memset (readbuf, 0, len); | 
|  | buff = readbuf; | 
|  | while (len_read <= len-sizeof_auxv_t) | 
|  | { | 
|  | if (target_read_memory (initial_stack + len_read, buff, sizeof_auxv_t) | 
|  | == 0) | 
|  | { | 
|  | /* Both 32 and 64 bit structures have int as the first field.  */ | 
|  | const ULONGEST a_type | 
|  | = extract_unsigned_integer (buff, sizeof (targ32), byte_order); | 
|  |  | 
|  | if (a_type == AT_NULL) | 
|  | break; | 
|  | buff += sizeof_auxv_t; | 
|  | len_read += sizeof_auxv_t; | 
|  | } | 
|  | else | 
|  | break; | 
|  | } | 
|  | return len_read; | 
|  | } | 
|  |  | 
|  | /* Return nto_inferior_data for the given INFERIOR.  If not yet created, | 
|  | construct it.  */ | 
|  |  | 
|  | struct nto_inferior_data * | 
|  | nto_inferior_data (struct inferior *const inferior) | 
|  | { | 
|  | struct inferior *const inf = inferior ? inferior : current_inferior (); | 
|  | struct nto_inferior_data *inf_data; | 
|  |  | 
|  | gdb_assert (inf != NULL); | 
|  |  | 
|  | inf_data = nto_inferior_data_reg.get (inf); | 
|  | if (inf_data == NULL) | 
|  | inf_data = nto_inferior_data_reg.emplace (inf); | 
|  |  | 
|  | return inf_data; | 
|  | } |