| /* Handle SVR4 shared libraries for GDB, the GNU Debugger. | 
 |  | 
 |    Copyright (C) 1990-2020 Free Software Foundation, Inc. | 
 |  | 
 |    This file is part of GDB. | 
 |  | 
 |    This program is free software; you can redistribute it and/or modify | 
 |    it under the terms of the GNU General Public License as published by | 
 |    the Free Software Foundation; either version 3 of the License, or | 
 |    (at your option) any later version. | 
 |  | 
 |    This program is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |    GNU General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU General Public License | 
 |    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "defs.h" | 
 |  | 
 | #include "elf/external.h" | 
 | #include "elf/common.h" | 
 | #include "elf/mips.h" | 
 |  | 
 | #include "symtab.h" | 
 | #include "bfd.h" | 
 | #include "symfile.h" | 
 | #include "objfiles.h" | 
 | #include "gdbcore.h" | 
 | #include "target.h" | 
 | #include "inferior.h" | 
 | #include "infrun.h" | 
 | #include "regcache.h" | 
 | #include "gdbthread.h" | 
 | #include "observable.h" | 
 |  | 
 | #include "solist.h" | 
 | #include "solib.h" | 
 | #include "solib-svr4.h" | 
 |  | 
 | #include "bfd-target.h" | 
 | #include "elf-bfd.h" | 
 | #include "exec.h" | 
 | #include "auxv.h" | 
 | #include "gdb_bfd.h" | 
 | #include "probe.h" | 
 |  | 
 | static struct link_map_offsets *svr4_fetch_link_map_offsets (void); | 
 | static int svr4_have_link_map_offsets (void); | 
 | static void svr4_relocate_main_executable (void); | 
 | static void svr4_free_library_list (void *p_list); | 
 | static void probes_table_remove_objfile_probes (struct objfile *objfile); | 
 | static void svr4_iterate_over_objfiles_in_search_order ( | 
 |   struct gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype *cb, | 
 |   void *cb_data, struct objfile *objfile); | 
 |  | 
 |  | 
 | /* On SVR4 systems, a list of symbols in the dynamic linker where | 
 |    GDB can try to place a breakpoint to monitor shared library | 
 |    events. | 
 |  | 
 |    If none of these symbols are found, or other errors occur, then | 
 |    SVR4 systems will fall back to using a symbol as the "startup | 
 |    mapping complete" breakpoint address.  */ | 
 |  | 
 | static const char * const solib_break_names[] = | 
 | { | 
 |   "r_debug_state", | 
 |   "_r_debug_state", | 
 |   "_dl_debug_state", | 
 |   "rtld_db_dlactivity", | 
 |   "__dl_rtld_db_dlactivity", | 
 |   "_rtld_debug_state", | 
 |  | 
 |   NULL | 
 | }; | 
 |  | 
 | static const char * const bkpt_names[] = | 
 | { | 
 |   "_start", | 
 |   "__start", | 
 |   "main", | 
 |   NULL | 
 | }; | 
 |  | 
 | static const  char * const main_name_list[] = | 
 | { | 
 |   "main_$main", | 
 |   NULL | 
 | }; | 
 |  | 
 | /* What to do when a probe stop occurs.  */ | 
 |  | 
 | enum probe_action | 
 | { | 
 |   /* Something went seriously wrong.  Stop using probes and | 
 |      revert to using the older interface.  */ | 
 |   PROBES_INTERFACE_FAILED, | 
 |  | 
 |   /* No action is required.  The shared object list is still | 
 |      valid.  */ | 
 |   DO_NOTHING, | 
 |  | 
 |   /* The shared object list should be reloaded entirely.  */ | 
 |   FULL_RELOAD, | 
 |  | 
 |   /* Attempt to incrementally update the shared object list. If | 
 |      the update fails or is not possible, fall back to reloading | 
 |      the list in full.  */ | 
 |   UPDATE_OR_RELOAD, | 
 | }; | 
 |  | 
 | /* A probe's name and its associated action.  */ | 
 |  | 
 | struct probe_info | 
 | { | 
 |   /* The name of the probe.  */ | 
 |   const char *name; | 
 |  | 
 |   /* What to do when a probe stop occurs.  */ | 
 |   enum probe_action action; | 
 | }; | 
 |  | 
 | /* A list of named probes and their associated actions.  If all | 
 |    probes are present in the dynamic linker then the probes-based | 
 |    interface will be used.  */ | 
 |  | 
 | static const struct probe_info probe_info[] = | 
 | { | 
 |   { "init_start", DO_NOTHING }, | 
 |   { "init_complete", FULL_RELOAD }, | 
 |   { "map_start", DO_NOTHING }, | 
 |   { "map_failed", DO_NOTHING }, | 
 |   { "reloc_complete", UPDATE_OR_RELOAD }, | 
 |   { "unmap_start", DO_NOTHING }, | 
 |   { "unmap_complete", FULL_RELOAD }, | 
 | }; | 
 |  | 
 | #define NUM_PROBES ARRAY_SIZE (probe_info) | 
 |  | 
 | /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent | 
 |    the same shared library.  */ | 
 |  | 
 | static int | 
 | svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name) | 
 | { | 
 |   if (strcmp (gdb_so_name, inferior_so_name) == 0) | 
 |     return 1; | 
 |  | 
 |   /* On Solaris, when starting inferior we think that dynamic linker is | 
 |      /usr/lib/ld.so.1, but later on, the table of loaded shared libraries | 
 |      contains /lib/ld.so.1.  Sometimes one file is a link to another, but | 
 |      sometimes they have identical content, but are not linked to each | 
 |      other.  We don't restrict this check for Solaris, but the chances | 
 |      of running into this situation elsewhere are very low.  */ | 
 |   if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0 | 
 |       && strcmp (inferior_so_name, "/lib/ld.so.1") == 0) | 
 |     return 1; | 
 |  | 
 |   /* Similarly, we observed the same issue with amd64 and sparcv9, but with | 
 |      different locations.  */ | 
 |   if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0 | 
 |       && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0) | 
 |     return 1; | 
 |  | 
 |   if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0 | 
 |       && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0) | 
 |     return 1; | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | static int | 
 | svr4_same (struct so_list *gdb, struct so_list *inferior) | 
 | { | 
 |   return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name)); | 
 | } | 
 |  | 
 | static std::unique_ptr<lm_info_svr4> | 
 | lm_info_read (CORE_ADDR lm_addr) | 
 | { | 
 |   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | 
 |   std::unique_ptr<lm_info_svr4> lm_info; | 
 |  | 
 |   gdb::byte_vector lm (lmo->link_map_size); | 
 |  | 
 |   if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0) | 
 |     warning (_("Error reading shared library list entry at %s"), | 
 | 	     paddress (target_gdbarch (), lm_addr)); | 
 |   else | 
 |     { | 
 |       struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | 
 |  | 
 |       lm_info.reset (new lm_info_svr4); | 
 |       lm_info->lm_addr = lm_addr; | 
 |  | 
 |       lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset], | 
 | 							ptr_type); | 
 |       lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type); | 
 |       lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset], | 
 | 					       ptr_type); | 
 |       lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset], | 
 | 					       ptr_type); | 
 |       lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset], | 
 | 					       ptr_type); | 
 |     } | 
 |  | 
 |   return lm_info; | 
 | } | 
 |  | 
 | static int | 
 | has_lm_dynamic_from_link_map (void) | 
 | { | 
 |   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | 
 |  | 
 |   return lmo->l_ld_offset >= 0; | 
 | } | 
 |  | 
 | static CORE_ADDR | 
 | lm_addr_check (const struct so_list *so, bfd *abfd) | 
 | { | 
 |   lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; | 
 |  | 
 |   if (!li->l_addr_p) | 
 |     { | 
 |       struct bfd_section *dyninfo_sect; | 
 |       CORE_ADDR l_addr, l_dynaddr, dynaddr; | 
 |  | 
 |       l_addr = li->l_addr_inferior; | 
 |  | 
 |       if (! abfd || ! has_lm_dynamic_from_link_map ()) | 
 | 	goto set_addr; | 
 |  | 
 |       l_dynaddr = li->l_ld; | 
 |  | 
 |       dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic"); | 
 |       if (dyninfo_sect == NULL) | 
 | 	goto set_addr; | 
 |  | 
 |       dynaddr = bfd_section_vma (dyninfo_sect); | 
 |  | 
 |       if (dynaddr + l_addr != l_dynaddr) | 
 | 	{ | 
 | 	  CORE_ADDR align = 0x1000; | 
 | 	  CORE_ADDR minpagesize = align; | 
 |  | 
 | 	  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour) | 
 | 	    { | 
 | 	      Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header; | 
 | 	      Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr; | 
 | 	      int i; | 
 |  | 
 | 	      align = 1; | 
 |  | 
 | 	      for (i = 0; i < ehdr->e_phnum; i++) | 
 | 		if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align) | 
 | 		  align = phdr[i].p_align; | 
 |  | 
 | 	      minpagesize = get_elf_backend_data (abfd)->minpagesize; | 
 | 	    } | 
 |  | 
 | 	  /* Turn it into a mask.  */ | 
 | 	  align--; | 
 |  | 
 | 	  /* If the changes match the alignment requirements, we | 
 | 	     assume we're using a core file that was generated by the | 
 | 	     same binary, just prelinked with a different base offset. | 
 | 	     If it doesn't match, we may have a different binary, the | 
 | 	     same binary with the dynamic table loaded at an unrelated | 
 | 	     location, or anything, really.  To avoid regressions, | 
 | 	     don't adjust the base offset in the latter case, although | 
 | 	     odds are that, if things really changed, debugging won't | 
 | 	     quite work. | 
 |  | 
 | 	     One could expect more the condition | 
 | 	       ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0) | 
 | 	     but the one below is relaxed for PPC.  The PPC kernel supports | 
 | 	     either 4k or 64k page sizes.  To be prepared for 64k pages, | 
 | 	     PPC ELF files are built using an alignment requirement of 64k. | 
 | 	     However, when running on a kernel supporting 4k pages, the memory | 
 | 	     mapping of the library may not actually happen on a 64k boundary! | 
 |  | 
 | 	     (In the usual case where (l_addr & align) == 0, this check is | 
 | 	     equivalent to the possibly expected check above.) | 
 |  | 
 | 	     Even on PPC it must be zero-aligned at least for MINPAGESIZE.  */ | 
 |  | 
 | 	  l_addr = l_dynaddr - dynaddr; | 
 |  | 
 | 	  if ((l_addr & (minpagesize - 1)) == 0 | 
 | 	      && (l_addr & align) == ((l_dynaddr - dynaddr) & align)) | 
 | 	    { | 
 | 	      if (info_verbose) | 
 | 		printf_unfiltered (_("Using PIC (Position Independent Code) " | 
 | 				     "prelink displacement %s for \"%s\".\n"), | 
 | 				   paddress (target_gdbarch (), l_addr), | 
 | 				   so->so_name); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      /* There is no way to verify the library file matches.  prelink | 
 | 		 can during prelinking of an unprelinked file (or unprelinking | 
 | 		 of a prelinked file) shift the DYNAMIC segment by arbitrary | 
 | 		 offset without any page size alignment.  There is no way to | 
 | 		 find out the ELF header and/or Program Headers for a limited | 
 | 		 verification if it they match.  One could do a verification | 
 | 		 of the DYNAMIC segment.  Still the found address is the best | 
 | 		 one GDB could find.  */ | 
 |  | 
 | 	      warning (_(".dynamic section for \"%s\" " | 
 | 			 "is not at the expected address " | 
 | 			 "(wrong library or version mismatch?)"), so->so_name); | 
 | 	    } | 
 | 	} | 
 |  | 
 |     set_addr: | 
 |       li->l_addr = l_addr; | 
 |       li->l_addr_p = 1; | 
 |     } | 
 |  | 
 |   return li->l_addr; | 
 | } | 
 |  | 
 | /* Per pspace SVR4 specific data.  */ | 
 |  | 
 | struct svr4_info | 
 | { | 
 |   svr4_info () = default; | 
 |   ~svr4_info (); | 
 |  | 
 |   /* Base of dynamic linker structures.  */ | 
 |   CORE_ADDR debug_base = 0; | 
 |  | 
 |   /* Validity flag for debug_loader_offset.  */ | 
 |   int debug_loader_offset_p = 0; | 
 |  | 
 |   /* Load address for the dynamic linker, inferred.  */ | 
 |   CORE_ADDR debug_loader_offset = 0; | 
 |  | 
 |   /* Name of the dynamic linker, valid if debug_loader_offset_p.  */ | 
 |   char *debug_loader_name = nullptr; | 
 |  | 
 |   /* Load map address for the main executable.  */ | 
 |   CORE_ADDR main_lm_addr = 0; | 
 |  | 
 |   CORE_ADDR interp_text_sect_low = 0; | 
 |   CORE_ADDR interp_text_sect_high = 0; | 
 |   CORE_ADDR interp_plt_sect_low = 0; | 
 |   CORE_ADDR interp_plt_sect_high = 0; | 
 |  | 
 |   /* Nonzero if the list of objects was last obtained from the target | 
 |      via qXfer:libraries-svr4:read.  */ | 
 |   int using_xfer = 0; | 
 |  | 
 |   /* Table of struct probe_and_action instances, used by the | 
 |      probes-based interface to map breakpoint addresses to probes | 
 |      and their associated actions.  Lookup is performed using | 
 |      probe_and_action->prob->address.  */ | 
 |   htab_up probes_table; | 
 |  | 
 |   /* List of objects loaded into the inferior, used by the probes- | 
 |      based interface.  */ | 
 |   struct so_list *solib_list = nullptr; | 
 | }; | 
 |  | 
 | /* Per-program-space data key.  */ | 
 | static const struct program_space_key<svr4_info> solib_svr4_pspace_data; | 
 |  | 
 | /* Free the probes table.  */ | 
 |  | 
 | static void | 
 | free_probes_table (struct svr4_info *info) | 
 | { | 
 |   info->probes_table.reset (nullptr); | 
 | } | 
 |  | 
 | /* Free the solib list.  */ | 
 |  | 
 | static void | 
 | free_solib_list (struct svr4_info *info) | 
 | { | 
 |   svr4_free_library_list (&info->solib_list); | 
 |   info->solib_list = NULL; | 
 | } | 
 |  | 
 | svr4_info::~svr4_info () | 
 | { | 
 |   free_solib_list (this); | 
 | } | 
 |  | 
 | /* Get the svr4 data for program space PSPACE.  If none is found yet, add it now. | 
 |    This function always returns a valid object.  */ | 
 |  | 
 | static struct svr4_info * | 
 | get_svr4_info (program_space *pspace) | 
 | { | 
 |   struct svr4_info *info = solib_svr4_pspace_data.get (pspace); | 
 |  | 
 |   if (info == NULL) | 
 |     info = solib_svr4_pspace_data.emplace (pspace); | 
 |  | 
 |   return info; | 
 | } | 
 |  | 
 | /* Local function prototypes */ | 
 |  | 
 | static int match_main (const char *); | 
 |  | 
 | /* Read program header TYPE from inferior memory.  The header is found | 
 |    by scanning the OS auxiliary vector. | 
 |  | 
 |    If TYPE == -1, return the program headers instead of the contents of | 
 |    one program header. | 
 |  | 
 |    Return vector of bytes holding the program header contents, or an empty | 
 |    optional on failure.  If successful and P_ARCH_SIZE is non-NULL, the target | 
 |    architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE.  Likewise, | 
 |    the base address of the section is returned in *BASE_ADDR.  */ | 
 |  | 
 | static gdb::optional<gdb::byte_vector> | 
 | read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr) | 
 | { | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); | 
 |   CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0; | 
 |   int arch_size, sect_size; | 
 |   CORE_ADDR sect_addr; | 
 |   int pt_phdr_p = 0; | 
 |  | 
 |   /* Get required auxv elements from target.  */ | 
 |   if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0) | 
 |     return {}; | 
 |   if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0) | 
 |     return {}; | 
 |   if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0) | 
 |     return {}; | 
 |   if (!at_phdr || !at_phnum) | 
 |     return {}; | 
 |  | 
 |   /* Determine ELF architecture type.  */ | 
 |   if (at_phent == sizeof (Elf32_External_Phdr)) | 
 |     arch_size = 32; | 
 |   else if (at_phent == sizeof (Elf64_External_Phdr)) | 
 |     arch_size = 64; | 
 |   else | 
 |     return {}; | 
 |  | 
 |   /* Find the requested segment.  */ | 
 |   if (type == -1) | 
 |     { | 
 |       sect_addr = at_phdr; | 
 |       sect_size = at_phent * at_phnum; | 
 |     } | 
 |   else if (arch_size == 32) | 
 |     { | 
 |       Elf32_External_Phdr phdr; | 
 |       int i; | 
 |  | 
 |       /* Search for requested PHDR.  */ | 
 |       for (i = 0; i < at_phnum; i++) | 
 | 	{ | 
 | 	  int p_type; | 
 |  | 
 | 	  if (target_read_memory (at_phdr + i * sizeof (phdr), | 
 | 				  (gdb_byte *)&phdr, sizeof (phdr))) | 
 | 	    return {}; | 
 |  | 
 | 	  p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type, | 
 | 					     4, byte_order); | 
 |  | 
 | 	  if (p_type == PT_PHDR) | 
 | 	    { | 
 | 	      pt_phdr_p = 1; | 
 | 	      pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr, | 
 | 						  4, byte_order); | 
 | 	    } | 
 |  | 
 | 	  if (p_type == type) | 
 | 	    break; | 
 | 	} | 
 |  | 
 |       if (i == at_phnum) | 
 | 	return {}; | 
 |  | 
 |       /* Retrieve address and size.  */ | 
 |       sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, | 
 | 					    4, byte_order); | 
 |       sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, | 
 | 					    4, byte_order); | 
 |     } | 
 |   else | 
 |     { | 
 |       Elf64_External_Phdr phdr; | 
 |       int i; | 
 |  | 
 |       /* Search for requested PHDR.  */ | 
 |       for (i = 0; i < at_phnum; i++) | 
 | 	{ | 
 | 	  int p_type; | 
 |  | 
 | 	  if (target_read_memory (at_phdr + i * sizeof (phdr), | 
 | 				  (gdb_byte *)&phdr, sizeof (phdr))) | 
 | 	    return {}; | 
 |  | 
 | 	  p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type, | 
 | 					     4, byte_order); | 
 |  | 
 | 	  if (p_type == PT_PHDR) | 
 | 	    { | 
 | 	      pt_phdr_p = 1; | 
 | 	      pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr, | 
 | 						  8, byte_order); | 
 | 	    } | 
 |  | 
 | 	  if (p_type == type) | 
 | 	    break; | 
 | 	} | 
 |  | 
 |       if (i == at_phnum) | 
 | 	return {}; | 
 |  | 
 |       /* Retrieve address and size.  */ | 
 |       sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, | 
 | 					    8, byte_order); | 
 |       sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, | 
 | 					    8, byte_order); | 
 |     } | 
 |  | 
 |   /* PT_PHDR is optional, but we really need it | 
 |      for PIE to make this work in general.  */ | 
 |  | 
 |   if (pt_phdr_p) | 
 |     { | 
 |       /* at_phdr is real address in memory. pt_phdr is what pheader says it is. | 
 | 	 Relocation offset is the difference between the two. */ | 
 |       sect_addr = sect_addr + (at_phdr - pt_phdr); | 
 |     } | 
 |  | 
 |   /* Read in requested program header.  */ | 
 |   gdb::byte_vector buf (sect_size); | 
 |   if (target_read_memory (sect_addr, buf.data (), sect_size)) | 
 |     return {}; | 
 |  | 
 |   if (p_arch_size) | 
 |     *p_arch_size = arch_size; | 
 |   if (base_addr) | 
 |     *base_addr = sect_addr; | 
 |  | 
 |   return buf; | 
 | } | 
 |  | 
 |  | 
 | /* Return program interpreter string.  */ | 
 | static gdb::optional<gdb::byte_vector> | 
 | find_program_interpreter (void) | 
 | { | 
 |   /* If we have an exec_bfd, use its section table.  */ | 
 |   if (exec_bfd | 
 |       && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) | 
 |    { | 
 |      struct bfd_section *interp_sect; | 
 |  | 
 |      interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); | 
 |      if (interp_sect != NULL) | 
 |       { | 
 | 	int sect_size = bfd_section_size (interp_sect); | 
 |  | 
 | 	gdb::byte_vector buf (sect_size); | 
 | 	bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0, | 
 | 				  sect_size); | 
 | 	return buf; | 
 |       } | 
 |    } | 
 |  | 
 |   /* If we didn't find it, use the target auxiliary vector.  */ | 
 |   return read_program_header (PT_INTERP, NULL, NULL); | 
 | } | 
 |  | 
 |  | 
 | /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD.  If DESIRED_DYNTAG is | 
 |    found, 1 is returned and the corresponding PTR is set.  */ | 
 |  | 
 | static int | 
 | scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr, | 
 | 	     CORE_ADDR *ptr_addr) | 
 | { | 
 |   int arch_size, step, sect_size; | 
 |   long current_dyntag; | 
 |   CORE_ADDR dyn_ptr, dyn_addr; | 
 |   gdb_byte *bufend, *bufstart, *buf; | 
 |   Elf32_External_Dyn *x_dynp_32; | 
 |   Elf64_External_Dyn *x_dynp_64; | 
 |   struct bfd_section *sect; | 
 |   struct target_section *target_section; | 
 |  | 
 |   if (abfd == NULL) | 
 |     return 0; | 
 |  | 
 |   if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | 
 |     return 0; | 
 |  | 
 |   arch_size = bfd_get_arch_size (abfd); | 
 |   if (arch_size == -1) | 
 |     return 0; | 
 |  | 
 |   /* Find the start address of the .dynamic section.  */ | 
 |   sect = bfd_get_section_by_name (abfd, ".dynamic"); | 
 |   if (sect == NULL) | 
 |     return 0; | 
 |  | 
 |   for (target_section = current_target_sections->sections; | 
 |        target_section < current_target_sections->sections_end; | 
 |        target_section++) | 
 |     if (sect == target_section->the_bfd_section) | 
 |       break; | 
 |   if (target_section < current_target_sections->sections_end) | 
 |     dyn_addr = target_section->addr; | 
 |   else | 
 |     { | 
 |       /* ABFD may come from OBJFILE acting only as a symbol file without being | 
 | 	 loaded into the target (see add_symbol_file_command).  This case is | 
 | 	 such fallback to the file VMA address without the possibility of | 
 | 	 having the section relocated to its actual in-memory address.  */ | 
 |  | 
 |       dyn_addr = bfd_section_vma (sect); | 
 |     } | 
 |  | 
 |   /* Read in .dynamic from the BFD.  We will get the actual value | 
 |      from memory later.  */ | 
 |   sect_size = bfd_section_size (sect); | 
 |   buf = bufstart = (gdb_byte *) alloca (sect_size); | 
 |   if (!bfd_get_section_contents (abfd, sect, | 
 | 				 buf, 0, sect_size)) | 
 |     return 0; | 
 |  | 
 |   /* Iterate over BUF and scan for DYNTAG.  If found, set PTR and return.  */ | 
 |   step = (arch_size == 32) ? sizeof (Elf32_External_Dyn) | 
 | 			   : sizeof (Elf64_External_Dyn); | 
 |   for (bufend = buf + sect_size; | 
 |        buf < bufend; | 
 |        buf += step) | 
 |   { | 
 |     if (arch_size == 32) | 
 |       { | 
 | 	x_dynp_32 = (Elf32_External_Dyn *) buf; | 
 | 	current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag); | 
 | 	dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr); | 
 |       } | 
 |     else | 
 |       { | 
 | 	x_dynp_64 = (Elf64_External_Dyn *) buf; | 
 | 	current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag); | 
 | 	dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr); | 
 |       } | 
 |      if (current_dyntag == DT_NULL) | 
 |        return 0; | 
 |      if (current_dyntag == desired_dyntag) | 
 |        { | 
 | 	 /* If requested, try to read the runtime value of this .dynamic | 
 | 	    entry.  */ | 
 | 	 if (ptr) | 
 | 	   { | 
 | 	     struct type *ptr_type; | 
 | 	     gdb_byte ptr_buf[8]; | 
 | 	     CORE_ADDR ptr_addr_1; | 
 |  | 
 | 	     ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | 
 | 	     ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8; | 
 | 	     if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0) | 
 | 	       dyn_ptr = extract_typed_address (ptr_buf, ptr_type); | 
 | 	     *ptr = dyn_ptr; | 
 | 	     if (ptr_addr) | 
 | 	       *ptr_addr = dyn_addr + (buf - bufstart); | 
 | 	   } | 
 | 	 return 1; | 
 |        } | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable, | 
 |    found by consulting the OS auxillary vector.  If DESIRED_DYNTAG is found, 1 | 
 |    is returned and the corresponding PTR is set.  */ | 
 |  | 
 | static int | 
 | scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr, | 
 | 		  CORE_ADDR *ptr_addr) | 
 | { | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); | 
 |   int arch_size, step; | 
 |   long current_dyntag; | 
 |   CORE_ADDR dyn_ptr; | 
 |   CORE_ADDR base_addr; | 
 |  | 
 |   /* Read in .dynamic section.  */ | 
 |   gdb::optional<gdb::byte_vector> ph_data | 
 |     = read_program_header (PT_DYNAMIC, &arch_size, &base_addr); | 
 |   if (!ph_data) | 
 |     return 0; | 
 |  | 
 |   /* Iterate over BUF and scan for DYNTAG.  If found, set PTR and return.  */ | 
 |   step = (arch_size == 32) ? sizeof (Elf32_External_Dyn) | 
 | 			   : sizeof (Elf64_External_Dyn); | 
 |   for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size (); | 
 |        buf < bufend; buf += step) | 
 |   { | 
 |     if (arch_size == 32) | 
 |       { | 
 | 	Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf; | 
 |  | 
 | 	current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, | 
 | 					    4, byte_order); | 
 | 	dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, | 
 | 					    4, byte_order); | 
 |       } | 
 |     else | 
 |       { | 
 | 	Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf; | 
 |  | 
 | 	current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, | 
 | 					    8, byte_order); | 
 | 	dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, | 
 | 					    8, byte_order); | 
 |       } | 
 |     if (current_dyntag == DT_NULL) | 
 |       break; | 
 |  | 
 |     if (current_dyntag == desired_dyntag) | 
 |       { | 
 | 	if (ptr) | 
 | 	  *ptr = dyn_ptr; | 
 |  | 
 | 	if (ptr_addr) | 
 | 	  *ptr_addr = base_addr + buf - ph_data->data (); | 
 |  | 
 | 	return 1; | 
 |       } | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Locate the base address of dynamic linker structs for SVR4 elf | 
 |    targets. | 
 |  | 
 |    For SVR4 elf targets the address of the dynamic linker's runtime | 
 |    structure is contained within the dynamic info section in the | 
 |    executable file.  The dynamic section is also mapped into the | 
 |    inferior address space.  Because the runtime loader fills in the | 
 |    real address before starting the inferior, we have to read in the | 
 |    dynamic info section from the inferior address space. | 
 |    If there are any errors while trying to find the address, we | 
 |    silently return 0, otherwise the found address is returned.  */ | 
 |  | 
 | static CORE_ADDR | 
 | elf_locate_base (void) | 
 | { | 
 |   struct bound_minimal_symbol msymbol; | 
 |   CORE_ADDR dyn_ptr, dyn_ptr_addr; | 
 |  | 
 |   /* Look for DT_MIPS_RLD_MAP first.  MIPS executables use this | 
 |      instead of DT_DEBUG, although they sometimes contain an unused | 
 |      DT_DEBUG.  */ | 
 |   if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL) | 
 |       || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL)) | 
 |     { | 
 |       struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | 
 |       gdb_byte *pbuf; | 
 |       int pbuf_size = TYPE_LENGTH (ptr_type); | 
 |  | 
 |       pbuf = (gdb_byte *) alloca (pbuf_size); | 
 |       /* DT_MIPS_RLD_MAP contains a pointer to the address | 
 | 	 of the dynamic link structure.  */ | 
 |       if (target_read_memory (dyn_ptr, pbuf, pbuf_size)) | 
 | 	return 0; | 
 |       return extract_typed_address (pbuf, ptr_type); | 
 |     } | 
 |  | 
 |   /* Then check DT_MIPS_RLD_MAP_REL.  MIPS executables now use this form | 
 |      because of needing to support PIE.  DT_MIPS_RLD_MAP will also exist | 
 |      in non-PIE.  */ | 
 |   if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr) | 
 |       || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr)) | 
 |     { | 
 |       struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | 
 |       gdb_byte *pbuf; | 
 |       int pbuf_size = TYPE_LENGTH (ptr_type); | 
 |  | 
 |       pbuf = (gdb_byte *) alloca (pbuf_size); | 
 |       /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the | 
 | 	 DT slot to the address of the dynamic link structure.  */ | 
 |       if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size)) | 
 | 	return 0; | 
 |       return extract_typed_address (pbuf, ptr_type); | 
 |     } | 
 |  | 
 |   /* Find DT_DEBUG.  */ | 
 |   if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL) | 
 |       || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL)) | 
 |     return dyn_ptr; | 
 |  | 
 |   /* This may be a static executable.  Look for the symbol | 
 |      conventionally named _r_debug, as a last resort.  */ | 
 |   msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile); | 
 |   if (msymbol.minsym != NULL) | 
 |     return BMSYMBOL_VALUE_ADDRESS (msymbol); | 
 |  | 
 |   /* DT_DEBUG entry not found.  */ | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Locate the base address of dynamic linker structs. | 
 |  | 
 |    For both the SunOS and SVR4 shared library implementations, if the | 
 |    inferior executable has been linked dynamically, there is a single | 
 |    address somewhere in the inferior's data space which is the key to | 
 |    locating all of the dynamic linker's runtime structures.  This | 
 |    address is the value of the debug base symbol.  The job of this | 
 |    function is to find and return that address, or to return 0 if there | 
 |    is no such address (the executable is statically linked for example). | 
 |  | 
 |    For SunOS, the job is almost trivial, since the dynamic linker and | 
 |    all of it's structures are statically linked to the executable at | 
 |    link time.  Thus the symbol for the address we are looking for has | 
 |    already been added to the minimal symbol table for the executable's | 
 |    objfile at the time the symbol file's symbols were read, and all we | 
 |    have to do is look it up there.  Note that we explicitly do NOT want | 
 |    to find the copies in the shared library. | 
 |  | 
 |    The SVR4 version is a bit more complicated because the address | 
 |    is contained somewhere in the dynamic info section.  We have to go | 
 |    to a lot more work to discover the address of the debug base symbol. | 
 |    Because of this complexity, we cache the value we find and return that | 
 |    value on subsequent invocations.  Note there is no copy in the | 
 |    executable symbol tables.  */ | 
 |  | 
 | static CORE_ADDR | 
 | locate_base (struct svr4_info *info) | 
 | { | 
 |   /* Check to see if we have a currently valid address, and if so, avoid | 
 |      doing all this work again and just return the cached address.  If | 
 |      we have no cached address, try to locate it in the dynamic info | 
 |      section for ELF executables.  There's no point in doing any of this | 
 |      though if we don't have some link map offsets to work with.  */ | 
 |  | 
 |   if (info->debug_base == 0 && svr4_have_link_map_offsets ()) | 
 |     info->debug_base = elf_locate_base (); | 
 |   return info->debug_base; | 
 | } | 
 |  | 
 | /* Find the first element in the inferior's dynamic link map, and | 
 |    return its address in the inferior.  Return zero if the address | 
 |    could not be determined. | 
 |  | 
 |    FIXME: Perhaps we should validate the info somehow, perhaps by | 
 |    checking r_version for a known version number, or r_state for | 
 |    RT_CONSISTENT.  */ | 
 |  | 
 | static CORE_ADDR | 
 | solib_svr4_r_map (struct svr4_info *info) | 
 | { | 
 |   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | 
 |   struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | 
 |   CORE_ADDR addr = 0; | 
 |  | 
 |   try | 
 |     { | 
 |       addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset, | 
 |                                         ptr_type); | 
 |     } | 
 |   catch (const gdb_exception_error &ex) | 
 |     { | 
 |       exception_print (gdb_stderr, ex); | 
 |     } | 
 |  | 
 |   return addr; | 
 | } | 
 |  | 
 | /* Find r_brk from the inferior's debug base.  */ | 
 |  | 
 | static CORE_ADDR | 
 | solib_svr4_r_brk (struct svr4_info *info) | 
 | { | 
 |   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | 
 |   struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | 
 |  | 
 |   return read_memory_typed_address (info->debug_base + lmo->r_brk_offset, | 
 | 				    ptr_type); | 
 | } | 
 |  | 
 | /* Find the link map for the dynamic linker (if it is not in the | 
 |    normal list of loaded shared objects).  */ | 
 |  | 
 | static CORE_ADDR | 
 | solib_svr4_r_ldsomap (struct svr4_info *info) | 
 | { | 
 |   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | 
 |   struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | 
 |   enum bfd_endian byte_order = type_byte_order (ptr_type); | 
 |   ULONGEST version = 0; | 
 |  | 
 |   try | 
 |     { | 
 |       /* Check version, and return zero if `struct r_debug' doesn't have | 
 | 	 the r_ldsomap member.  */ | 
 |       version | 
 | 	= read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset, | 
 | 					lmo->r_version_size, byte_order); | 
 |     } | 
 |   catch (const gdb_exception_error &ex) | 
 |     { | 
 |       exception_print (gdb_stderr, ex); | 
 |     } | 
 |  | 
 |   if (version < 2 || lmo->r_ldsomap_offset == -1) | 
 |     return 0; | 
 |  | 
 |   return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset, | 
 | 				    ptr_type); | 
 | } | 
 |  | 
 | /* On Solaris systems with some versions of the dynamic linker, | 
 |    ld.so's l_name pointer points to the SONAME in the string table | 
 |    rather than into writable memory.  So that GDB can find shared | 
 |    libraries when loading a core file generated by gcore, ensure that | 
 |    memory areas containing the l_name string are saved in the core | 
 |    file.  */ | 
 |  | 
 | static int | 
 | svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size) | 
 | { | 
 |   struct svr4_info *info; | 
 |   CORE_ADDR ldsomap; | 
 |   CORE_ADDR name_lm; | 
 |  | 
 |   info = get_svr4_info (current_program_space); | 
 |  | 
 |   info->debug_base = 0; | 
 |   locate_base (info); | 
 |   if (!info->debug_base) | 
 |     return 0; | 
 |  | 
 |   ldsomap = solib_svr4_r_ldsomap (info); | 
 |   if (!ldsomap) | 
 |     return 0; | 
 |  | 
 |   std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap); | 
 |   name_lm = li != NULL ? li->l_name : 0; | 
 |  | 
 |   return (name_lm >= vaddr && name_lm < vaddr + size); | 
 | } | 
 |  | 
 | /* See solist.h.  */ | 
 |  | 
 | static int | 
 | open_symbol_file_object (int from_tty) | 
 | { | 
 |   CORE_ADDR lm, l_name; | 
 |   gdb::unique_xmalloc_ptr<char> filename; | 
 |   int errcode; | 
 |   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | 
 |   struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | 
 |   int l_name_size = TYPE_LENGTH (ptr_type); | 
 |   gdb::byte_vector l_name_buf (l_name_size); | 
 |   struct svr4_info *info = get_svr4_info (current_program_space); | 
 |   symfile_add_flags add_flags = 0; | 
 |  | 
 |   if (from_tty) | 
 |     add_flags |= SYMFILE_VERBOSE; | 
 |  | 
 |   if (symfile_objfile) | 
 |     if (!query (_("Attempt to reload symbols from process? "))) | 
 |       return 0; | 
 |  | 
 |   /* Always locate the debug struct, in case it has moved.  */ | 
 |   info->debug_base = 0; | 
 |   if (locate_base (info) == 0) | 
 |     return 0;	/* failed somehow...  */ | 
 |  | 
 |   /* First link map member should be the executable.  */ | 
 |   lm = solib_svr4_r_map (info); | 
 |   if (lm == 0) | 
 |     return 0;	/* failed somehow...  */ | 
 |  | 
 |   /* Read address of name from target memory to GDB.  */ | 
 |   read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size); | 
 |  | 
 |   /* Convert the address to host format.  */ | 
 |   l_name = extract_typed_address (l_name_buf.data (), ptr_type); | 
 |  | 
 |   if (l_name == 0) | 
 |     return 0;		/* No filename.  */ | 
 |  | 
 |   /* Now fetch the filename from target memory.  */ | 
 |   target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode); | 
 |  | 
 |   if (errcode) | 
 |     { | 
 |       warning (_("failed to read exec filename from attached file: %s"), | 
 | 	       safe_strerror (errcode)); | 
 |       return 0; | 
 |     } | 
 |  | 
 |   /* Have a pathname: read the symbol file.  */ | 
 |   symbol_file_add_main (filename.get (), add_flags); | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Data exchange structure for the XML parser as returned by | 
 |    svr4_current_sos_via_xfer_libraries.  */ | 
 |  | 
 | struct svr4_library_list | 
 | { | 
 |   struct so_list *head, **tailp; | 
 |  | 
 |   /* Inferior address of struct link_map used for the main executable.  It is | 
 |      NULL if not known.  */ | 
 |   CORE_ADDR main_lm; | 
 | }; | 
 |  | 
 | /* This module's 'free_objfile' observer.  */ | 
 |  | 
 | static void | 
 | svr4_free_objfile_observer (struct objfile *objfile) | 
 | { | 
 |   probes_table_remove_objfile_probes (objfile); | 
 | } | 
 |  | 
 | /* Implementation for target_so_ops.free_so.  */ | 
 |  | 
 | static void | 
 | svr4_free_so (struct so_list *so) | 
 | { | 
 |   lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; | 
 |  | 
 |   delete li; | 
 | } | 
 |  | 
 | /* Implement target_so_ops.clear_so.  */ | 
 |  | 
 | static void | 
 | svr4_clear_so (struct so_list *so) | 
 | { | 
 |   lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; | 
 |  | 
 |   if (li != NULL) | 
 |     li->l_addr_p = 0; | 
 | } | 
 |  | 
 | /* Free so_list built so far (called via cleanup).  */ | 
 |  | 
 | static void | 
 | svr4_free_library_list (void *p_list) | 
 | { | 
 |   struct so_list *list = *(struct so_list **) p_list; | 
 |  | 
 |   while (list != NULL) | 
 |     { | 
 |       struct so_list *next = list->next; | 
 |  | 
 |       free_so (list); | 
 |       list = next; | 
 |     } | 
 | } | 
 |  | 
 | /* Copy library list.  */ | 
 |  | 
 | static struct so_list * | 
 | svr4_copy_library_list (struct so_list *src) | 
 | { | 
 |   struct so_list *dst = NULL; | 
 |   struct so_list **link = &dst; | 
 |  | 
 |   while (src != NULL) | 
 |     { | 
 |       struct so_list *newobj; | 
 |  | 
 |       newobj = XNEW (struct so_list); | 
 |       memcpy (newobj, src, sizeof (struct so_list)); | 
 |  | 
 |       lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info; | 
 |       newobj->lm_info = new lm_info_svr4 (*src_li); | 
 |  | 
 |       newobj->next = NULL; | 
 |       *link = newobj; | 
 |       link = &newobj->next; | 
 |  | 
 |       src = src->next; | 
 |     } | 
 |  | 
 |   return dst; | 
 | } | 
 |  | 
 | #ifdef HAVE_LIBEXPAT | 
 |  | 
 | #include "xml-support.h" | 
 |  | 
 | /* Handle the start of a <library> element.  Note: new elements are added | 
 |    at the tail of the list, keeping the list in order.  */ | 
 |  | 
 | static void | 
 | library_list_start_library (struct gdb_xml_parser *parser, | 
 | 			    const struct gdb_xml_element *element, | 
 | 			    void *user_data, | 
 | 			    std::vector<gdb_xml_value> &attributes) | 
 | { | 
 |   struct svr4_library_list *list = (struct svr4_library_list *) user_data; | 
 |   const char *name | 
 |     = (const char *) xml_find_attribute (attributes, "name")->value.get (); | 
 |   ULONGEST *lmp | 
 |     = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get (); | 
 |   ULONGEST *l_addrp | 
 |     = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get (); | 
 |   ULONGEST *l_ldp | 
 |     = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get (); | 
 |   struct so_list *new_elem; | 
 |  | 
 |   new_elem = XCNEW (struct so_list); | 
 |   lm_info_svr4 *li = new lm_info_svr4; | 
 |   new_elem->lm_info = li; | 
 |   li->lm_addr = *lmp; | 
 |   li->l_addr_inferior = *l_addrp; | 
 |   li->l_ld = *l_ldp; | 
 |  | 
 |   strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1); | 
 |   new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0; | 
 |   strcpy (new_elem->so_original_name, new_elem->so_name); | 
 |  | 
 |   *list->tailp = new_elem; | 
 |   list->tailp = &new_elem->next; | 
 | } | 
 |  | 
 | /* Handle the start of a <library-list-svr4> element.  */ | 
 |  | 
 | static void | 
 | svr4_library_list_start_list (struct gdb_xml_parser *parser, | 
 | 			      const struct gdb_xml_element *element, | 
 | 			      void *user_data, | 
 | 			      std::vector<gdb_xml_value> &attributes) | 
 | { | 
 |   struct svr4_library_list *list = (struct svr4_library_list *) user_data; | 
 |   const char *version | 
 |     = (const char *) xml_find_attribute (attributes, "version")->value.get (); | 
 |   struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm"); | 
 |  | 
 |   if (strcmp (version, "1.0") != 0) | 
 |     gdb_xml_error (parser, | 
 | 		   _("SVR4 Library list has unsupported version \"%s\""), | 
 | 		   version); | 
 |  | 
 |   if (main_lm) | 
 |     list->main_lm = *(ULONGEST *) main_lm->value.get (); | 
 | } | 
 |  | 
 | /* The allowed elements and attributes for an XML library list. | 
 |    The root element is a <library-list>.  */ | 
 |  | 
 | static const struct gdb_xml_attribute svr4_library_attributes[] = | 
 | { | 
 |   { "name", GDB_XML_AF_NONE, NULL, NULL }, | 
 |   { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, | 
 |   { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, | 
 |   { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, | 
 |   { NULL, GDB_XML_AF_NONE, NULL, NULL } | 
 | }; | 
 |  | 
 | static const struct gdb_xml_element svr4_library_list_children[] = | 
 | { | 
 |   { | 
 |     "library", svr4_library_attributes, NULL, | 
 |     GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL, | 
 |     library_list_start_library, NULL | 
 |   }, | 
 |   { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL } | 
 | }; | 
 |  | 
 | static const struct gdb_xml_attribute svr4_library_list_attributes[] = | 
 | { | 
 |   { "version", GDB_XML_AF_NONE, NULL, NULL }, | 
 |   { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL }, | 
 |   { NULL, GDB_XML_AF_NONE, NULL, NULL } | 
 | }; | 
 |  | 
 | static const struct gdb_xml_element svr4_library_list_elements[] = | 
 | { | 
 |   { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children, | 
 |     GDB_XML_EF_NONE, svr4_library_list_start_list, NULL }, | 
 |   { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL } | 
 | }; | 
 |  | 
 | /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN.  Return 1 if | 
 |  | 
 |    Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such | 
 |    case.  Return 1 if *SO_LIST_RETURN contains the library list, it may be | 
 |    empty, caller is responsible for freeing all its entries.  */ | 
 |  | 
 | static int | 
 | svr4_parse_libraries (const char *document, struct svr4_library_list *list) | 
 | { | 
 |   auto cleanup = make_scope_exit ([&] () | 
 |     { | 
 |       svr4_free_library_list (&list->head); | 
 |     }); | 
 |  | 
 |   memset (list, 0, sizeof (*list)); | 
 |   list->tailp = &list->head; | 
 |   if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd", | 
 | 			   svr4_library_list_elements, document, list) == 0) | 
 |     { | 
 |       /* Parsed successfully, keep the result.  */ | 
 |       cleanup.release (); | 
 |       return 1; | 
 |     } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet. | 
 |  | 
 |    Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such | 
 |    case.  Return 1 if *SO_LIST_RETURN contains the library list, it may be | 
 |    empty, caller is responsible for freeing all its entries. | 
 |  | 
 |    Note that ANNEX must be NULL if the remote does not explicitly allow | 
 |    qXfer:libraries-svr4:read packets with non-empty annexes.  Support for | 
 |    this can be checked using target_augmented_libraries_svr4_read ().  */ | 
 |  | 
 | static int | 
 | svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list, | 
 | 				     const char *annex) | 
 | { | 
 |   gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ()); | 
 |  | 
 |   /* Fetch the list of shared libraries.  */ | 
 |   gdb::optional<gdb::char_vector> svr4_library_document | 
 |     = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4, | 
 | 			    annex); | 
 |   if (!svr4_library_document) | 
 |     return 0; | 
 |  | 
 |   return svr4_parse_libraries (svr4_library_document->data (), list); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static int | 
 | svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list, | 
 | 				     const char *annex) | 
 | { | 
 |   return 0; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* If no shared library information is available from the dynamic | 
 |    linker, build a fallback list from other sources.  */ | 
 |  | 
 | static struct so_list * | 
 | svr4_default_sos (svr4_info *info) | 
 | { | 
 |   struct so_list *newobj; | 
 |  | 
 |   if (!info->debug_loader_offset_p) | 
 |     return NULL; | 
 |  | 
 |   newobj = XCNEW (struct so_list); | 
 |   lm_info_svr4 *li = new lm_info_svr4; | 
 |   newobj->lm_info = li; | 
 |  | 
 |   /* Nothing will ever check the other fields if we set l_addr_p.  */ | 
 |   li->l_addr = info->debug_loader_offset; | 
 |   li->l_addr_p = 1; | 
 |  | 
 |   strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1); | 
 |   newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; | 
 |   strcpy (newobj->so_original_name, newobj->so_name); | 
 |  | 
 |   return newobj; | 
 | } | 
 |  | 
 | /* Read the whole inferior libraries chain starting at address LM. | 
 |    Expect the first entry in the chain's previous entry to be PREV_LM. | 
 |    Add the entries to the tail referenced by LINK_PTR_PTR.  Ignore the | 
 |    first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according | 
 |    to it.  Returns nonzero upon success.  If zero is returned the | 
 |    entries stored to LINK_PTR_PTR are still valid although they may | 
 |    represent only part of the inferior library list.  */ | 
 |  | 
 | static int | 
 | svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm, | 
 | 		   struct so_list ***link_ptr_ptr, int ignore_first) | 
 | { | 
 |   CORE_ADDR first_l_name = 0; | 
 |   CORE_ADDR next_lm; | 
 |  | 
 |   for (; lm != 0; prev_lm = lm, lm = next_lm) | 
 |     { | 
 |       int errcode; | 
 |       gdb::unique_xmalloc_ptr<char> buffer; | 
 |  | 
 |       so_list_up newobj (XCNEW (struct so_list)); | 
 |  | 
 |       lm_info_svr4 *li = lm_info_read (lm).release (); | 
 |       newobj->lm_info = li; | 
 |       if (li == NULL) | 
 | 	return 0; | 
 |  | 
 |       next_lm = li->l_next; | 
 |  | 
 |       if (li->l_prev != prev_lm) | 
 | 	{ | 
 | 	  warning (_("Corrupted shared library list: %s != %s"), | 
 | 		   paddress (target_gdbarch (), prev_lm), | 
 | 		   paddress (target_gdbarch (), li->l_prev)); | 
 | 	  return 0; | 
 | 	} | 
 |  | 
 |       /* For SVR4 versions, the first entry in the link map is for the | 
 |          inferior executable, so we must ignore it.  For some versions of | 
 |          SVR4, it has no name.  For others (Solaris 2.3 for example), it | 
 |          does have a name, so we can no longer use a missing name to | 
 |          decide when to ignore it.  */ | 
 |       if (ignore_first && li->l_prev == 0) | 
 | 	{ | 
 | 	  first_l_name = li->l_name; | 
 | 	  info->main_lm_addr = li->lm_addr; | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       /* Extract this shared object's name.  */ | 
 |       target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1, | 
 | 			  &errcode); | 
 |       if (errcode != 0) | 
 | 	{ | 
 | 	  /* If this entry's l_name address matches that of the | 
 | 	     inferior executable, then this is not a normal shared | 
 | 	     object, but (most likely) a vDSO.  In this case, silently | 
 | 	     skip it; otherwise emit a warning. */ | 
 | 	  if (first_l_name == 0 || li->l_name != first_l_name) | 
 | 	    warning (_("Can't read pathname for load map: %s."), | 
 | 		     safe_strerror (errcode)); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1); | 
 |       newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; | 
 |       strcpy (newobj->so_original_name, newobj->so_name); | 
 |  | 
 |       /* If this entry has no name, or its name matches the name | 
 | 	 for the main executable, don't include it in the list.  */ | 
 |       if (! newobj->so_name[0] || match_main (newobj->so_name)) | 
 | 	continue; | 
 |  | 
 |       newobj->next = 0; | 
 |       /* Don't free it now.  */ | 
 |       **link_ptr_ptr = newobj.release (); | 
 |       *link_ptr_ptr = &(**link_ptr_ptr)->next; | 
 |     } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Read the full list of currently loaded shared objects directly | 
 |    from the inferior, without referring to any libraries read and | 
 |    stored by the probes interface.  Handle special cases relating | 
 |    to the first elements of the list.  */ | 
 |  | 
 | static struct so_list * | 
 | svr4_current_sos_direct (struct svr4_info *info) | 
 | { | 
 |   CORE_ADDR lm; | 
 |   struct so_list *head = NULL; | 
 |   struct so_list **link_ptr = &head; | 
 |   int ignore_first; | 
 |   struct svr4_library_list library_list; | 
 |  | 
 |   /* Fall back to manual examination of the target if the packet is not | 
 |      supported or gdbserver failed to find DT_DEBUG.  gdb.server/solib-list.exp | 
 |      tests a case where gdbserver cannot find the shared libraries list while | 
 |      GDB itself is able to find it via SYMFILE_OBJFILE. | 
 |  | 
 |      Unfortunately statically linked inferiors will also fall back through this | 
 |      suboptimal code path.  */ | 
 |  | 
 |   info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list, | 
 | 							  NULL); | 
 |   if (info->using_xfer) | 
 |     { | 
 |       if (library_list.main_lm) | 
 | 	info->main_lm_addr = library_list.main_lm; | 
 |  | 
 |       return library_list.head ? library_list.head : svr4_default_sos (info); | 
 |     } | 
 |  | 
 |   /* Always locate the debug struct, in case it has moved.  */ | 
 |   info->debug_base = 0; | 
 |   locate_base (info); | 
 |  | 
 |   /* If we can't find the dynamic linker's base structure, this | 
 |      must not be a dynamically linked executable.  Hmm.  */ | 
 |   if (! info->debug_base) | 
 |     return svr4_default_sos (info); | 
 |  | 
 |   /* Assume that everything is a library if the dynamic loader was loaded | 
 |      late by a static executable.  */ | 
 |   if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL) | 
 |     ignore_first = 0; | 
 |   else | 
 |     ignore_first = 1; | 
 |  | 
 |   auto cleanup = make_scope_exit ([&] () | 
 |     { | 
 |       svr4_free_library_list (&head); | 
 |     }); | 
 |  | 
 |   /* Walk the inferior's link map list, and build our list of | 
 |      `struct so_list' nodes.  */ | 
 |   lm = solib_svr4_r_map (info); | 
 |   if (lm) | 
 |     svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first); | 
 |  | 
 |   /* On Solaris, the dynamic linker is not in the normal list of | 
 |      shared objects, so make sure we pick it up too.  Having | 
 |      symbol information for the dynamic linker is quite crucial | 
 |      for skipping dynamic linker resolver code.  */ | 
 |   lm = solib_svr4_r_ldsomap (info); | 
 |   if (lm) | 
 |     svr4_read_so_list (info, lm, 0, &link_ptr, 0); | 
 |  | 
 |   cleanup.release (); | 
 |  | 
 |   if (head == NULL) | 
 |     return svr4_default_sos (info); | 
 |  | 
 |   return head; | 
 | } | 
 |  | 
 | /* Implement the main part of the "current_sos" target_so_ops | 
 |    method.  */ | 
 |  | 
 | static struct so_list * | 
 | svr4_current_sos_1 (svr4_info *info) | 
 | { | 
 |   /* If the solib list has been read and stored by the probes | 
 |      interface then we return a copy of the stored list.  */ | 
 |   if (info->solib_list != NULL) | 
 |     return svr4_copy_library_list (info->solib_list); | 
 |  | 
 |   /* Otherwise obtain the solib list directly from the inferior.  */ | 
 |   return svr4_current_sos_direct (info); | 
 | } | 
 |  | 
 | /* Implement the "current_sos" target_so_ops method.  */ | 
 |  | 
 | static struct so_list * | 
 | svr4_current_sos (void) | 
 | { | 
 |   svr4_info *info = get_svr4_info (current_program_space); | 
 |   struct so_list *so_head = svr4_current_sos_1 (info); | 
 |   struct mem_range vsyscall_range; | 
 |  | 
 |   /* Filter out the vDSO module, if present.  Its symbol file would | 
 |      not be found on disk.  The vDSO/vsyscall's OBJFILE is instead | 
 |      managed by symfile-mem.c:add_vsyscall_page.  */ | 
 |   if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range) | 
 |       && vsyscall_range.length != 0) | 
 |     { | 
 |       struct so_list **sop; | 
 |  | 
 |       sop = &so_head; | 
 |       while (*sop != NULL) | 
 | 	{ | 
 | 	  struct so_list *so = *sop; | 
 |  | 
 | 	  /* We can't simply match the vDSO by starting address alone, | 
 | 	     because lm_info->l_addr_inferior (and also l_addr) do not | 
 | 	     necessarily represent the real starting address of the | 
 | 	     ELF if the vDSO's ELF itself is "prelinked".  The l_ld | 
 | 	     field (the ".dynamic" section of the shared object) | 
 | 	     always points at the absolute/resolved address though. | 
 | 	     So check whether that address is inside the vDSO's | 
 | 	     mapping instead. | 
 |  | 
 | 	     E.g., on Linux 3.16 (x86_64) the vDSO is a regular | 
 | 	     0-based ELF, and we see: | 
 |  | 
 | 	      (gdb) info auxv | 
 | 	      33  AT_SYSINFO_EHDR  System-supplied DSO's ELF header 0x7ffff7ffb000 | 
 | 	      (gdb)  p/x *_r_debug.r_map.l_next | 
 | 	      $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...} | 
 |  | 
 | 	     And on Linux 2.6.32 (x86_64) we see: | 
 |  | 
 | 	      (gdb) info auxv | 
 | 	      33  AT_SYSINFO_EHDR  System-supplied DSO's ELF header 0x7ffff7ffe000 | 
 | 	      (gdb) p/x *_r_debug.r_map.l_next | 
 | 	      $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... } | 
 |  | 
 | 	     Dumping that vDSO shows: | 
 |  | 
 | 	      (gdb) info proc mappings | 
 | 	      0x7ffff7ffe000  0x7ffff7fff000  0x1000  0  [vdso] | 
 | 	      (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000 | 
 | 	      # readelf -Wa vdso.bin | 
 | 	      [...] | 
 | 		Entry point address: 0xffffffffff700700 | 
 | 	      [...] | 
 | 	      Section Headers: | 
 | 		[Nr] Name     Type    Address	       Off    Size | 
 | 		[ 0]	      NULL    0000000000000000 000000 000000 | 
 | 		[ 1] .hash    HASH    ffffffffff700120 000120 000038 | 
 | 		[ 2] .dynsym  DYNSYM  ffffffffff700158 000158 0000d8 | 
 | 	      [...] | 
 | 		[ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0 | 
 | 	  */ | 
 |  | 
 | 	  lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; | 
 |  | 
 | 	  if (address_in_mem_range (li->l_ld, &vsyscall_range)) | 
 | 	    { | 
 | 	      *sop = so->next; | 
 | 	      free_so (so); | 
 | 	      break; | 
 | 	    } | 
 |  | 
 | 	  sop = &so->next; | 
 | 	} | 
 |     } | 
 |  | 
 |   return so_head; | 
 | } | 
 |  | 
 | /* Get the address of the link_map for a given OBJFILE.  */ | 
 |  | 
 | CORE_ADDR | 
 | svr4_fetch_objfile_link_map (struct objfile *objfile) | 
 | { | 
 |   struct so_list *so; | 
 |   struct svr4_info *info = get_svr4_info (objfile->pspace); | 
 |  | 
 |   /* Cause svr4_current_sos() to be run if it hasn't been already.  */ | 
 |   if (info->main_lm_addr == 0) | 
 |     solib_add (NULL, 0, auto_solib_add); | 
 |  | 
 |   /* svr4_current_sos() will set main_lm_addr for the main executable.  */ | 
 |   if (objfile == symfile_objfile) | 
 |     return info->main_lm_addr; | 
 |  | 
 |   /* If OBJFILE is a separate debug object file, look for the | 
 |      original object file.  */ | 
 |   if (objfile->separate_debug_objfile_backlink != NULL) | 
 |     objfile = objfile->separate_debug_objfile_backlink; | 
 |  | 
 |   /* The other link map addresses may be found by examining the list | 
 |      of shared libraries.  */ | 
 |   for (so = master_so_list (); so; so = so->next) | 
 |     if (so->objfile == objfile) | 
 |       { | 
 | 	lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; | 
 |  | 
 | 	return li->lm_addr; | 
 |       } | 
 |  | 
 |   /* Not found!  */ | 
 |   return 0; | 
 | } | 
 |  | 
 | /* On some systems, the only way to recognize the link map entry for | 
 |    the main executable file is by looking at its name.  Return | 
 |    non-zero iff SONAME matches one of the known main executable names.  */ | 
 |  | 
 | static int | 
 | match_main (const char *soname) | 
 | { | 
 |   const char * const *mainp; | 
 |  | 
 |   for (mainp = main_name_list; *mainp != NULL; mainp++) | 
 |     { | 
 |       if (strcmp (soname, *mainp) == 0) | 
 | 	return (1); | 
 |     } | 
 |  | 
 |   return (0); | 
 | } | 
 |  | 
 | /* Return 1 if PC lies in the dynamic symbol resolution code of the | 
 |    SVR4 run time loader.  */ | 
 |  | 
 | int | 
 | svr4_in_dynsym_resolve_code (CORE_ADDR pc) | 
 | { | 
 |   struct svr4_info *info = get_svr4_info (current_program_space); | 
 |  | 
 |   return ((pc >= info->interp_text_sect_low | 
 | 	   && pc < info->interp_text_sect_high) | 
 | 	  || (pc >= info->interp_plt_sect_low | 
 | 	      && pc < info->interp_plt_sect_high) | 
 | 	  || in_plt_section (pc) | 
 | 	  || in_gnu_ifunc_stub (pc)); | 
 | } | 
 |  | 
 | /* Given an executable's ABFD and target, compute the entry-point | 
 |    address.  */ | 
 |  | 
 | static CORE_ADDR | 
 | exec_entry_point (struct bfd *abfd, struct target_ops *targ) | 
 | { | 
 |   CORE_ADDR addr; | 
 |  | 
 |   /* KevinB wrote ... for most targets, the address returned by | 
 |      bfd_get_start_address() is the entry point for the start | 
 |      function.  But, for some targets, bfd_get_start_address() returns | 
 |      the address of a function descriptor from which the entry point | 
 |      address may be extracted.  This address is extracted by | 
 |      gdbarch_convert_from_func_ptr_addr().  The method | 
 |      gdbarch_convert_from_func_ptr_addr() is the merely the identify | 
 |      function for targets which don't use function descriptors.  */ | 
 |   addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), | 
 | 					     bfd_get_start_address (abfd), | 
 | 					     targ); | 
 |   return gdbarch_addr_bits_remove (target_gdbarch (), addr); | 
 | } | 
 |  | 
 | /* A probe and its associated action.  */ | 
 |  | 
 | struct probe_and_action | 
 | { | 
 |   /* The probe.  */ | 
 |   probe *prob; | 
 |  | 
 |   /* The relocated address of the probe.  */ | 
 |   CORE_ADDR address; | 
 |  | 
 |   /* The action.  */ | 
 |   enum probe_action action; | 
 |  | 
 |   /* The objfile where this probe was found.  */ | 
 |   struct objfile *objfile; | 
 | }; | 
 |  | 
 | /* Returns a hash code for the probe_and_action referenced by p.  */ | 
 |  | 
 | static hashval_t | 
 | hash_probe_and_action (const void *p) | 
 | { | 
 |   const struct probe_and_action *pa = (const struct probe_and_action *) p; | 
 |  | 
 |   return (hashval_t) pa->address; | 
 | } | 
 |  | 
 | /* Returns non-zero if the probe_and_actions referenced by p1 and p2 | 
 |    are equal.  */ | 
 |  | 
 | static int | 
 | equal_probe_and_action (const void *p1, const void *p2) | 
 | { | 
 |   const struct probe_and_action *pa1 = (const struct probe_and_action *) p1; | 
 |   const struct probe_and_action *pa2 = (const struct probe_and_action *) p2; | 
 |  | 
 |   return pa1->address == pa2->address; | 
 | } | 
 |  | 
 | /* Traversal function for probes_table_remove_objfile_probes.  */ | 
 |  | 
 | static int | 
 | probes_table_htab_remove_objfile_probes (void **slot, void *info) | 
 | { | 
 |   probe_and_action *pa = (probe_and_action *) *slot; | 
 |   struct objfile *objfile = (struct objfile *) info; | 
 |  | 
 |   if (pa->objfile == objfile) | 
 |     htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (), | 
 | 		     slot); | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Remove all probes that belong to OBJFILE from the probes table.  */ | 
 |  | 
 | static void | 
 | probes_table_remove_objfile_probes (struct objfile *objfile) | 
 | { | 
 |   svr4_info *info = get_svr4_info (objfile->pspace); | 
 |   if (info->probes_table != nullptr) | 
 |     htab_traverse_noresize (info->probes_table.get (), | 
 | 			    probes_table_htab_remove_objfile_probes, objfile); | 
 | } | 
 |  | 
 | /* Register a solib event probe and its associated action in the | 
 |    probes table.  */ | 
 |  | 
 | static void | 
 | register_solib_event_probe (svr4_info *info, struct objfile *objfile, | 
 | 			    probe *prob, CORE_ADDR address, | 
 | 			    enum probe_action action) | 
 | { | 
 |   struct probe_and_action lookup, *pa; | 
 |   void **slot; | 
 |  | 
 |   /* Create the probes table, if necessary.  */ | 
 |   if (info->probes_table == NULL) | 
 |     info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action, | 
 | 						 equal_probe_and_action, | 
 | 						 xfree, xcalloc, xfree)); | 
 |  | 
 |   lookup.address = address; | 
 |   slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT); | 
 |   gdb_assert (*slot == HTAB_EMPTY_ENTRY); | 
 |  | 
 |   pa = XCNEW (struct probe_and_action); | 
 |   pa->prob = prob; | 
 |   pa->address = address; | 
 |   pa->action = action; | 
 |   pa->objfile = objfile; | 
 |  | 
 |   *slot = pa; | 
 | } | 
 |  | 
 | /* Get the solib event probe at the specified location, and the | 
 |    action associated with it.  Returns NULL if no solib event probe | 
 |    was found.  */ | 
 |  | 
 | static struct probe_and_action * | 
 | solib_event_probe_at (struct svr4_info *info, CORE_ADDR address) | 
 | { | 
 |   struct probe_and_action lookup; | 
 |   void **slot; | 
 |  | 
 |   lookup.address = address; | 
 |   slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT); | 
 |  | 
 |   if (slot == NULL) | 
 |     return NULL; | 
 |  | 
 |   return (struct probe_and_action *) *slot; | 
 | } | 
 |  | 
 | /* Decide what action to take when the specified solib event probe is | 
 |    hit.  */ | 
 |  | 
 | static enum probe_action | 
 | solib_event_probe_action (struct probe_and_action *pa) | 
 | { | 
 |   enum probe_action action; | 
 |   unsigned probe_argc = 0; | 
 |   struct frame_info *frame = get_current_frame (); | 
 |  | 
 |   action = pa->action; | 
 |   if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED) | 
 |     return action; | 
 |  | 
 |   gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD); | 
 |  | 
 |   /* Check that an appropriate number of arguments has been supplied. | 
 |      We expect: | 
 |        arg0: Lmid_t lmid (mandatory) | 
 |        arg1: struct r_debug *debug_base (mandatory) | 
 |        arg2: struct link_map *new (optional, for incremental updates)  */ | 
 |   try | 
 |     { | 
 |       probe_argc = pa->prob->get_argument_count (get_frame_arch (frame)); | 
 |     } | 
 |   catch (const gdb_exception_error &ex) | 
 |     { | 
 |       exception_print (gdb_stderr, ex); | 
 |       probe_argc = 0; | 
 |     } | 
 |  | 
 |   /* If get_argument_count throws an exception, probe_argc will be set | 
 |      to zero.  However, if pa->prob does not have arguments, then | 
 |      get_argument_count will succeed but probe_argc will also be zero. | 
 |      Both cases happen because of different things, but they are | 
 |      treated equally here: action will be set to | 
 |      PROBES_INTERFACE_FAILED.  */ | 
 |   if (probe_argc == 2) | 
 |     action = FULL_RELOAD; | 
 |   else if (probe_argc < 2) | 
 |     action = PROBES_INTERFACE_FAILED; | 
 |  | 
 |   return action; | 
 | } | 
 |  | 
 | /* Populate the shared object list by reading the entire list of | 
 |    shared objects from the inferior.  Handle special cases relating | 
 |    to the first elements of the list.  Returns nonzero on success.  */ | 
 |  | 
 | static int | 
 | solist_update_full (struct svr4_info *info) | 
 | { | 
 |   free_solib_list (info); | 
 |   info->solib_list = svr4_current_sos_direct (info); | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Update the shared object list starting from the link-map entry | 
 |    passed by the linker in the probe's third argument.  Returns | 
 |    nonzero if the list was successfully updated, or zero to indicate | 
 |    failure.  */ | 
 |  | 
 | static int | 
 | solist_update_incremental (struct svr4_info *info, CORE_ADDR lm) | 
 | { | 
 |   struct so_list *tail; | 
 |   CORE_ADDR prev_lm; | 
 |  | 
 |   /* svr4_current_sos_direct contains logic to handle a number of | 
 |      special cases relating to the first elements of the list.  To | 
 |      avoid duplicating this logic we defer to solist_update_full | 
 |      if the list is empty.  */ | 
 |   if (info->solib_list == NULL) | 
 |     return 0; | 
 |  | 
 |   /* Fall back to a full update if we are using a remote target | 
 |      that does not support incremental transfers.  */ | 
 |   if (info->using_xfer && !target_augmented_libraries_svr4_read ()) | 
 |     return 0; | 
 |  | 
 |   /* Walk to the end of the list.  */ | 
 |   for (tail = info->solib_list; tail->next != NULL; tail = tail->next) | 
 |     /* Nothing.  */; | 
 |  | 
 |   lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info; | 
 |   prev_lm = li->lm_addr; | 
 |  | 
 |   /* Read the new objects.  */ | 
 |   if (info->using_xfer) | 
 |     { | 
 |       struct svr4_library_list library_list; | 
 |       char annex[64]; | 
 |  | 
 |       xsnprintf (annex, sizeof (annex), "start=%s;prev=%s", | 
 | 		 phex_nz (lm, sizeof (lm)), | 
 | 		 phex_nz (prev_lm, sizeof (prev_lm))); | 
 |       if (!svr4_current_sos_via_xfer_libraries (&library_list, annex)) | 
 | 	return 0; | 
 |  | 
 |       tail->next = library_list.head; | 
 |     } | 
 |   else | 
 |     { | 
 |       struct so_list **link = &tail->next; | 
 |  | 
 |       /* IGNORE_FIRST may safely be set to zero here because the | 
 | 	 above check and deferral to solist_update_full ensures | 
 | 	 that this call to svr4_read_so_list will never see the | 
 | 	 first element.  */ | 
 |       if (!svr4_read_so_list (info, lm, prev_lm, &link, 0)) | 
 | 	return 0; | 
 |     } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Disable the probes-based linker interface and revert to the | 
 |    original interface.  We don't reset the breakpoints as the | 
 |    ones set up for the probes-based interface are adequate.  */ | 
 |  | 
 | static void | 
 | disable_probes_interface (svr4_info *info) | 
 | { | 
 |   warning (_("Probes-based dynamic linker interface failed.\n" | 
 | 	     "Reverting to original interface.")); | 
 |  | 
 |   free_probes_table (info); | 
 |   free_solib_list (info); | 
 | } | 
 |  | 
 | /* Update the solib list as appropriate when using the | 
 |    probes-based linker interface.  Do nothing if using the | 
 |    standard interface.  */ | 
 |  | 
 | static void | 
 | svr4_handle_solib_event (void) | 
 | { | 
 |   struct svr4_info *info = get_svr4_info (current_program_space); | 
 |   struct probe_and_action *pa; | 
 |   enum probe_action action; | 
 |   struct value *val = NULL; | 
 |   CORE_ADDR pc, debug_base, lm = 0; | 
 |   struct frame_info *frame = get_current_frame (); | 
 |  | 
 |   /* Do nothing if not using the probes interface.  */ | 
 |   if (info->probes_table == NULL) | 
 |     return; | 
 |  | 
 |   /* If anything goes wrong we revert to the original linker | 
 |      interface.  */ | 
 |   auto cleanup = make_scope_exit ([info] () | 
 |     { | 
 |       disable_probes_interface (info); | 
 |     }); | 
 |  | 
 |   pc = regcache_read_pc (get_current_regcache ()); | 
 |   pa = solib_event_probe_at (info, pc); | 
 |   if (pa == NULL) | 
 |     return; | 
 |  | 
 |   action = solib_event_probe_action (pa); | 
 |   if (action == PROBES_INTERFACE_FAILED) | 
 |     return; | 
 |  | 
 |   if (action == DO_NOTHING) | 
 |     { | 
 |       cleanup.release (); | 
 |       return; | 
 |     } | 
 |  | 
 |   /* evaluate_argument looks up symbols in the dynamic linker | 
 |      using find_pc_section.  find_pc_section is accelerated by a cache | 
 |      called the section map.  The section map is invalidated every | 
 |      time a shared library is loaded or unloaded, and if the inferior | 
 |      is generating a lot of shared library events then the section map | 
 |      will be updated every time svr4_handle_solib_event is called. | 
 |      We called find_pc_section in svr4_create_solib_event_breakpoints, | 
 |      so we can guarantee that the dynamic linker's sections are in the | 
 |      section map.  We can therefore inhibit section map updates across | 
 |      these calls to evaluate_argument and save a lot of time.  */ | 
 |   { | 
 |     scoped_restore inhibit_updates | 
 |       = inhibit_section_map_updates (current_program_space); | 
 |  | 
 |     try | 
 |       { | 
 | 	val = pa->prob->evaluate_argument (1, frame); | 
 |       } | 
 |     catch (const gdb_exception_error &ex) | 
 |       { | 
 | 	exception_print (gdb_stderr, ex); | 
 | 	val = NULL; | 
 |       } | 
 |  | 
 |     if (val == NULL) | 
 |       return; | 
 |  | 
 |     debug_base = value_as_address (val); | 
 |     if (debug_base == 0) | 
 |       return; | 
 |  | 
 |     /* Always locate the debug struct, in case it moved.  */ | 
 |     info->debug_base = 0; | 
 |     if (locate_base (info) == 0) | 
 |       { | 
 | 	/* It's possible for the reloc_complete probe to be triggered before | 
 | 	   the linker has set the DT_DEBUG pointer (for example, when the | 
 | 	   linker has finished relocating an LD_AUDIT library or its | 
 | 	   dependencies).  Since we can't yet handle libraries from other link | 
 | 	   namespaces, we don't lose anything by ignoring them here.  */ | 
 | 	struct value *link_map_id_val; | 
 | 	try | 
 | 	  { | 
 | 	    link_map_id_val = pa->prob->evaluate_argument (0, frame); | 
 | 	  } | 
 | 	catch (const gdb_exception_error) | 
 | 	  { | 
 | 	    link_map_id_val = NULL; | 
 | 	  } | 
 | 	/* glibc and illumos' libc both define LM_ID_BASE as zero.  */ | 
 | 	if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0) | 
 | 	  action = DO_NOTHING; | 
 | 	else | 
 | 	  return; | 
 |       } | 
 |  | 
 |     /* GDB does not currently support libraries loaded via dlmopen | 
 |        into namespaces other than the initial one.  We must ignore | 
 |        any namespace other than the initial namespace here until | 
 |        support for this is added to GDB.  */ | 
 |     if (debug_base != info->debug_base) | 
 |       action = DO_NOTHING; | 
 |  | 
 |     if (action == UPDATE_OR_RELOAD) | 
 |       { | 
 | 	try | 
 | 	  { | 
 | 	    val = pa->prob->evaluate_argument (2, frame); | 
 | 	  } | 
 | 	catch (const gdb_exception_error &ex) | 
 | 	  { | 
 | 	    exception_print (gdb_stderr, ex); | 
 | 	    return; | 
 | 	  } | 
 |  | 
 | 	if (val != NULL) | 
 | 	  lm = value_as_address (val); | 
 |  | 
 | 	if (lm == 0) | 
 | 	  action = FULL_RELOAD; | 
 |       } | 
 |  | 
 |     /* Resume section map updates.  Closing the scope is | 
 |        sufficient.  */ | 
 |   } | 
 |  | 
 |   if (action == UPDATE_OR_RELOAD) | 
 |     { | 
 |       if (!solist_update_incremental (info, lm)) | 
 | 	action = FULL_RELOAD; | 
 |     } | 
 |  | 
 |   if (action == FULL_RELOAD) | 
 |     { | 
 |       if (!solist_update_full (info)) | 
 | 	return; | 
 |     } | 
 |  | 
 |   cleanup.release (); | 
 | } | 
 |  | 
 | /* Helper function for svr4_update_solib_event_breakpoints.  */ | 
 |  | 
 | static bool | 
 | svr4_update_solib_event_breakpoint (struct breakpoint *b) | 
 | { | 
 |   struct bp_location *loc; | 
 |  | 
 |   if (b->type != bp_shlib_event) | 
 |     { | 
 |       /* Continue iterating.  */ | 
 |       return false; | 
 |     } | 
 |  | 
 |   for (loc = b->loc; loc != NULL; loc = loc->next) | 
 |     { | 
 |       struct svr4_info *info; | 
 |       struct probe_and_action *pa; | 
 |  | 
 |       info = solib_svr4_pspace_data.get (loc->pspace); | 
 |       if (info == NULL || info->probes_table == NULL) | 
 | 	continue; | 
 |  | 
 |       pa = solib_event_probe_at (info, loc->address); | 
 |       if (pa == NULL) | 
 | 	continue; | 
 |  | 
 |       if (pa->action == DO_NOTHING) | 
 | 	{ | 
 | 	  if (b->enable_state == bp_disabled && stop_on_solib_events) | 
 | 	    enable_breakpoint (b); | 
 | 	  else if (b->enable_state == bp_enabled && !stop_on_solib_events) | 
 | 	    disable_breakpoint (b); | 
 | 	} | 
 |  | 
 |       break; | 
 |     } | 
 |  | 
 |   /* Continue iterating.  */ | 
 |   return false; | 
 | } | 
 |  | 
 | /* Enable or disable optional solib event breakpoints as appropriate. | 
 |    Called whenever stop_on_solib_events is changed.  */ | 
 |  | 
 | static void | 
 | svr4_update_solib_event_breakpoints (void) | 
 | { | 
 |   iterate_over_breakpoints (svr4_update_solib_event_breakpoint); | 
 | } | 
 |  | 
 | /* Create and register solib event breakpoints.  PROBES is an array | 
 |    of NUM_PROBES elements, each of which is vector of probes.  A | 
 |    solib event breakpoint will be created and registered for each | 
 |    probe.  */ | 
 |  | 
 | static void | 
 | svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch, | 
 | 			       const std::vector<probe *> *probes, | 
 | 			       struct objfile *objfile) | 
 | { | 
 |   for (int i = 0; i < NUM_PROBES; i++) | 
 |     { | 
 |       enum probe_action action = probe_info[i].action; | 
 |  | 
 |       for (probe *p : probes[i]) | 
 | 	{ | 
 | 	  CORE_ADDR address = p->get_relocated_address (objfile); | 
 |  | 
 | 	  create_solib_event_breakpoint (gdbarch, address); | 
 | 	  register_solib_event_probe (info, objfile, p, address, action); | 
 | 	} | 
 |     } | 
 |  | 
 |   svr4_update_solib_event_breakpoints (); | 
 | } | 
 |  | 
 | /* Find all the glibc named probes.  Only if all of the probes are found, then | 
 |    create them and return true.  Otherwise return false.  If WITH_PREFIX is set | 
 |    then add "rtld" to the front of the probe names.  */ | 
 | static bool | 
 | svr4_find_and_create_probe_breakpoints (svr4_info *info, | 
 | 					struct gdbarch *gdbarch, | 
 | 					struct obj_section *os, | 
 | 					bool with_prefix) | 
 | { | 
 |   std::vector<probe *> probes[NUM_PROBES]; | 
 |  | 
 |   for (int i = 0; i < NUM_PROBES; i++) | 
 |     { | 
 |       const char *name = probe_info[i].name; | 
 |       char buf[32]; | 
 |  | 
 |       /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early | 
 | 	 version of the probes code in which the probes' names were prefixed | 
 | 	 with "rtld_" and the "map_failed" probe did not exist.  The locations | 
 | 	 of the probes are otherwise the same, so we check for probes with | 
 | 	 prefixed names if probes with unprefixed names are not present.  */ | 
 |       if (with_prefix) | 
 | 	{ | 
 | 	  xsnprintf (buf, sizeof (buf), "rtld_%s", name); | 
 | 	  name = buf; | 
 | 	} | 
 |  | 
 |       probes[i] = find_probes_in_objfile (os->objfile, "rtld", name); | 
 |  | 
 |       /* The "map_failed" probe did not exist in early | 
 | 	 versions of the probes code in which the probes' | 
 | 	 names were prefixed with "rtld_".  */ | 
 |       if (with_prefix && streq (name, "rtld_map_failed")) | 
 | 	continue; | 
 |  | 
 |       /* Ensure at least one probe for the current name was found.  */ | 
 |       if (probes[i].empty ()) | 
 | 	return false; | 
 |  | 
 |       /* Ensure probe arguments can be evaluated.  */ | 
 |       for (probe *p : probes[i]) | 
 | 	{ | 
 | 	  if (!p->can_evaluate_arguments ()) | 
 | 	    return false; | 
 | 	  /* This will fail if the probe is invalid.  This has been seen on Arm | 
 | 	     due to references to symbols that have been resolved away.  */ | 
 | 	  try | 
 | 	    { | 
 | 	      p->get_argument_count (gdbarch); | 
 | 	    } | 
 | 	  catch (const gdb_exception_error &ex) | 
 | 	    { | 
 | 	      exception_print (gdb_stderr, ex); | 
 | 	      warning (_("Initializing probes-based dynamic linker interface " | 
 | 			 "failed.\nReverting to original interface.")); | 
 | 	      return false; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   /* All probes found.  Now create them.  */ | 
 |   svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile); | 
 |   return true; | 
 | } | 
 |  | 
 | /* Both the SunOS and the SVR4 dynamic linkers call a marker function | 
 |    before and after mapping and unmapping shared libraries.  The sole | 
 |    purpose of this method is to allow debuggers to set a breakpoint so | 
 |    they can track these changes. | 
 |  | 
 |    Some versions of the glibc dynamic linker contain named probes | 
 |    to allow more fine grained stopping.  Given the address of the | 
 |    original marker function, this function attempts to find these | 
 |    probes, and if found, sets breakpoints on those instead.  If the | 
 |    probes aren't found, a single breakpoint is set on the original | 
 |    marker function.  */ | 
 |  | 
 | static void | 
 | svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch, | 
 | 				     CORE_ADDR address) | 
 | { | 
 |   struct obj_section *os = find_pc_section (address); | 
 |  | 
 |   if (os == nullptr | 
 |       || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false) | 
 | 	  && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true))) | 
 |     create_solib_event_breakpoint (gdbarch, address); | 
 | } | 
 |  | 
 | /* Helper function for gdb_bfd_lookup_symbol.  */ | 
 |  | 
 | static int | 
 | cmp_name_and_sec_flags (const asymbol *sym, const void *data) | 
 | { | 
 |   return (strcmp (sym->name, (const char *) data) == 0 | 
 | 	  && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0); | 
 | } | 
 | /* Arrange for dynamic linker to hit breakpoint. | 
 |  | 
 |    Both the SunOS and the SVR4 dynamic linkers have, as part of their | 
 |    debugger interface, support for arranging for the inferior to hit | 
 |    a breakpoint after mapping in the shared libraries.  This function | 
 |    enables that breakpoint. | 
 |  | 
 |    For SunOS, there is a special flag location (in_debugger) which we | 
 |    set to 1.  When the dynamic linker sees this flag set, it will set | 
 |    a breakpoint at a location known only to itself, after saving the | 
 |    original contents of that place and the breakpoint address itself, | 
 |    in it's own internal structures.  When we resume the inferior, it | 
 |    will eventually take a SIGTRAP when it runs into the breakpoint. | 
 |    We handle this (in a different place) by restoring the contents of | 
 |    the breakpointed location (which is only known after it stops), | 
 |    chasing around to locate the shared libraries that have been | 
 |    loaded, then resuming. | 
 |  | 
 |    For SVR4, the debugger interface structure contains a member (r_brk) | 
 |    which is statically initialized at the time the shared library is | 
 |    built, to the offset of a function (_r_debug_state) which is guaran- | 
 |    teed to be called once before mapping in a library, and again when | 
 |    the mapping is complete.  At the time we are examining this member, | 
 |    it contains only the unrelocated offset of the function, so we have | 
 |    to do our own relocation.  Later, when the dynamic linker actually | 
 |    runs, it relocates r_brk to be the actual address of _r_debug_state(). | 
 |  | 
 |    The debugger interface structure also contains an enumeration which | 
 |    is set to either RT_ADD or RT_DELETE prior to changing the mapping, | 
 |    depending upon whether or not the library is being mapped or unmapped, | 
 |    and then set to RT_CONSISTENT after the library is mapped/unmapped.  */ | 
 |  | 
 | static int | 
 | enable_break (struct svr4_info *info, int from_tty) | 
 | { | 
 |   struct bound_minimal_symbol msymbol; | 
 |   const char * const *bkpt_namep; | 
 |   asection *interp_sect; | 
 |   CORE_ADDR sym_addr; | 
 |  | 
 |   info->interp_text_sect_low = info->interp_text_sect_high = 0; | 
 |   info->interp_plt_sect_low = info->interp_plt_sect_high = 0; | 
 |  | 
 |   /* If we already have a shared library list in the target, and | 
 |      r_debug contains r_brk, set the breakpoint there - this should | 
 |      mean r_brk has already been relocated.  Assume the dynamic linker | 
 |      is the object containing r_brk.  */ | 
 |  | 
 |   solib_add (NULL, from_tty, auto_solib_add); | 
 |   sym_addr = 0; | 
 |   if (info->debug_base && solib_svr4_r_map (info) != 0) | 
 |     sym_addr = solib_svr4_r_brk (info); | 
 |  | 
 |   if (sym_addr != 0) | 
 |     { | 
 |       struct obj_section *os; | 
 |  | 
 |       sym_addr = gdbarch_addr_bits_remove | 
 | 	(target_gdbarch (), | 
 | 	 gdbarch_convert_from_func_ptr_addr (target_gdbarch (), | 
 | 					     sym_addr, | 
 | 					     current_top_target ())); | 
 |  | 
 |       /* On at least some versions of Solaris there's a dynamic relocation | 
 | 	 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if | 
 | 	 we get control before the dynamic linker has self-relocated. | 
 | 	 Check if SYM_ADDR is in a known section, if it is assume we can | 
 | 	 trust its value.  This is just a heuristic though, it could go away | 
 | 	 or be replaced if it's getting in the way. | 
 |  | 
 | 	 On ARM we need to know whether the ISA of rtld_db_dlactivity (or | 
 | 	 however it's spelled in your particular system) is ARM or Thumb. | 
 | 	 That knowledge is encoded in the address, if it's Thumb the low bit | 
 | 	 is 1.  However, we've stripped that info above and it's not clear | 
 | 	 what all the consequences are of passing a non-addr_bits_remove'd | 
 | 	 address to svr4_create_solib_event_breakpoints.  The call to | 
 | 	 find_pc_section verifies we know about the address and have some | 
 | 	 hope of computing the right kind of breakpoint to use (via | 
 | 	 symbol info).  It does mean that GDB needs to be pointed at a | 
 | 	 non-stripped version of the dynamic linker in order to obtain | 
 | 	 information it already knows about.  Sigh.  */ | 
 |  | 
 |       os = find_pc_section (sym_addr); | 
 |       if (os != NULL) | 
 | 	{ | 
 | 	  /* Record the relocated start and end address of the dynamic linker | 
 | 	     text and plt section for svr4_in_dynsym_resolve_code.  */ | 
 | 	  bfd *tmp_bfd; | 
 | 	  CORE_ADDR load_addr; | 
 |  | 
 | 	  tmp_bfd = os->objfile->obfd; | 
 | 	  load_addr = os->objfile->text_section_offset (); | 
 |  | 
 | 	  interp_sect = bfd_get_section_by_name (tmp_bfd, ".text"); | 
 | 	  if (interp_sect) | 
 | 	    { | 
 | 	      info->interp_text_sect_low | 
 | 		= bfd_section_vma (interp_sect) + load_addr; | 
 | 	      info->interp_text_sect_high | 
 | 		= info->interp_text_sect_low + bfd_section_size (interp_sect); | 
 | 	    } | 
 | 	  interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt"); | 
 | 	  if (interp_sect) | 
 | 	    { | 
 | 	      info->interp_plt_sect_low | 
 | 		= bfd_section_vma (interp_sect) + load_addr; | 
 | 	      info->interp_plt_sect_high | 
 | 		= info->interp_plt_sect_low + bfd_section_size (interp_sect); | 
 | 	    } | 
 |  | 
 | 	  svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr); | 
 | 	  return 1; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Find the program interpreter; if not found, warn the user and drop | 
 |      into the old breakpoint at symbol code.  */ | 
 |   gdb::optional<gdb::byte_vector> interp_name_holder | 
 |     = find_program_interpreter (); | 
 |   if (interp_name_holder) | 
 |     { | 
 |       const char *interp_name = (const char *) interp_name_holder->data (); | 
 |       CORE_ADDR load_addr = 0; | 
 |       int load_addr_found = 0; | 
 |       int loader_found_in_list = 0; | 
 |       struct so_list *so; | 
 |       struct target_ops *tmp_bfd_target; | 
 |  | 
 |       sym_addr = 0; | 
 |  | 
 |       /* Now we need to figure out where the dynamic linker was | 
 |          loaded so that we can load its symbols and place a breakpoint | 
 |          in the dynamic linker itself. | 
 |  | 
 |          This address is stored on the stack.  However, I've been unable | 
 |          to find any magic formula to find it for Solaris (appears to | 
 |          be trivial on GNU/Linux).  Therefore, we have to try an alternate | 
 |          mechanism to find the dynamic linker's base address.  */ | 
 |  | 
 |       gdb_bfd_ref_ptr tmp_bfd; | 
 |       try | 
 |         { | 
 | 	  tmp_bfd = solib_bfd_open (interp_name); | 
 | 	} | 
 |       catch (const gdb_exception &ex) | 
 | 	{ | 
 | 	} | 
 |  | 
 |       if (tmp_bfd == NULL) | 
 | 	goto bkpt_at_symbol; | 
 |  | 
 |       /* Now convert the TMP_BFD into a target.  That way target, as | 
 |          well as BFD operations can be used.  target_bfd_reopen | 
 |          acquires its own reference.  */ | 
 |       tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ()); | 
 |  | 
 |       /* On a running target, we can get the dynamic linker's base | 
 |          address from the shared library table.  */ | 
 |       so = master_so_list (); | 
 |       while (so) | 
 | 	{ | 
 | 	  if (svr4_same_1 (interp_name, so->so_original_name)) | 
 | 	    { | 
 | 	      load_addr_found = 1; | 
 | 	      loader_found_in_list = 1; | 
 | 	      load_addr = lm_addr_check (so, tmp_bfd.get ()); | 
 | 	      break; | 
 | 	    } | 
 | 	  so = so->next; | 
 | 	} | 
 |  | 
 |       /* If we were not able to find the base address of the loader | 
 |          from our so_list, then try using the AT_BASE auxilliary entry.  */ | 
 |       if (!load_addr_found) | 
 | 	if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0) | 
 | 	  { | 
 | 	    int addr_bit = gdbarch_addr_bit (target_gdbarch ()); | 
 |  | 
 | 	    /* Ensure LOAD_ADDR has proper sign in its possible upper bits so | 
 | 	       that `+ load_addr' will overflow CORE_ADDR width not creating | 
 | 	       invalid addresses like 0x101234567 for 32bit inferiors on 64bit | 
 | 	       GDB.  */ | 
 |  | 
 | 	    if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT)) | 
 | 	      { | 
 | 		CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit; | 
 | 		CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (), | 
 | 							      tmp_bfd_target); | 
 |  | 
 | 		gdb_assert (load_addr < space_size); | 
 |  | 
 | 		/* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked | 
 | 		   64bit ld.so with 32bit executable, it should not happen.  */ | 
 |  | 
 | 		if (tmp_entry_point < space_size | 
 | 		    && tmp_entry_point + load_addr >= space_size) | 
 | 		  load_addr -= space_size; | 
 | 	      } | 
 |  | 
 | 	    load_addr_found = 1; | 
 | 	  } | 
 |  | 
 |       /* Otherwise we find the dynamic linker's base address by examining | 
 | 	 the current pc (which should point at the entry point for the | 
 | 	 dynamic linker) and subtracting the offset of the entry point. | 
 |  | 
 |          This is more fragile than the previous approaches, but is a good | 
 |          fallback method because it has actually been working well in | 
 |          most cases.  */ | 
 |       if (!load_addr_found) | 
 | 	{ | 
 | 	  struct regcache *regcache | 
 | 	    = get_thread_arch_regcache (current_inferior ()->process_target (), | 
 | 					inferior_ptid, target_gdbarch ()); | 
 |  | 
 | 	  load_addr = (regcache_read_pc (regcache) | 
 | 		       - exec_entry_point (tmp_bfd.get (), tmp_bfd_target)); | 
 | 	} | 
 |  | 
 |       if (!loader_found_in_list) | 
 | 	{ | 
 | 	  info->debug_loader_name = xstrdup (interp_name); | 
 | 	  info->debug_loader_offset_p = 1; | 
 | 	  info->debug_loader_offset = load_addr; | 
 | 	  solib_add (NULL, from_tty, auto_solib_add); | 
 | 	} | 
 |  | 
 |       /* Record the relocated start and end address of the dynamic linker | 
 |          text and plt section for svr4_in_dynsym_resolve_code.  */ | 
 |       interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text"); | 
 |       if (interp_sect) | 
 | 	{ | 
 | 	  info->interp_text_sect_low | 
 | 	    = bfd_section_vma (interp_sect) + load_addr; | 
 | 	  info->interp_text_sect_high | 
 | 	    = info->interp_text_sect_low + bfd_section_size (interp_sect); | 
 | 	} | 
 |       interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt"); | 
 |       if (interp_sect) | 
 | 	{ | 
 | 	  info->interp_plt_sect_low | 
 | 	    = bfd_section_vma (interp_sect) + load_addr; | 
 | 	  info->interp_plt_sect_high | 
 | 	    = info->interp_plt_sect_low + bfd_section_size (interp_sect); | 
 | 	} | 
 |  | 
 |       /* Now try to set a breakpoint in the dynamic linker.  */ | 
 |       for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) | 
 | 	{ | 
 | 	  sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), | 
 | 					    cmp_name_and_sec_flags, | 
 | 					    *bkpt_namep); | 
 | 	  if (sym_addr != 0) | 
 | 	    break; | 
 | 	} | 
 |  | 
 |       if (sym_addr != 0) | 
 | 	/* Convert 'sym_addr' from a function pointer to an address. | 
 | 	   Because we pass tmp_bfd_target instead of the current | 
 | 	   target, this will always produce an unrelocated value.  */ | 
 | 	sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), | 
 | 						       sym_addr, | 
 | 						       tmp_bfd_target); | 
 |  | 
 |       /* We're done with both the temporary bfd and target.  Closing | 
 |          the target closes the underlying bfd, because it holds the | 
 |          only remaining reference.  */ | 
 |       target_close (tmp_bfd_target); | 
 |  | 
 |       if (sym_addr != 0) | 
 | 	{ | 
 | 	  svr4_create_solib_event_breakpoints (info, target_gdbarch (), | 
 | 					       load_addr + sym_addr); | 
 | 	  return 1; | 
 | 	} | 
 |  | 
 |       /* For whatever reason we couldn't set a breakpoint in the dynamic | 
 |          linker.  Warn and drop into the old code.  */ | 
 |     bkpt_at_symbol: | 
 |       warning (_("Unable to find dynamic linker breakpoint function.\n" | 
 |                "GDB will be unable to debug shared library initializers\n" | 
 |                "and track explicitly loaded dynamic code.")); | 
 |     } | 
 |  | 
 |   /* Scan through the lists of symbols, trying to look up the symbol and | 
 |      set a breakpoint there.  Terminate loop when we/if we succeed.  */ | 
 |  | 
 |   for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) | 
 |     { | 
 |       msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); | 
 |       if ((msymbol.minsym != NULL) | 
 | 	  && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0)) | 
 | 	{ | 
 | 	  sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol); | 
 | 	  sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), | 
 | 							 sym_addr, | 
 | 							 current_top_target ()); | 
 | 	  svr4_create_solib_event_breakpoints (info, target_gdbarch (), | 
 | 					       sym_addr); | 
 | 	  return 1; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (interp_name_holder && !current_inferior ()->attach_flag) | 
 |     { | 
 |       for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++) | 
 | 	{ | 
 | 	  msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); | 
 | 	  if ((msymbol.minsym != NULL) | 
 | 	      && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0)) | 
 | 	    { | 
 | 	      sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol); | 
 | 	      sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), | 
 | 							     sym_addr, | 
 | 							     current_top_target ()); | 
 | 	      svr4_create_solib_event_breakpoints (info, target_gdbarch (), | 
 | 						   sym_addr); | 
 | 	      return 1; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Read the ELF program headers from ABFD.  */ | 
 |  | 
 | static gdb::optional<gdb::byte_vector> | 
 | read_program_headers_from_bfd (bfd *abfd) | 
 | { | 
 |   Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd); | 
 |   int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize; | 
 |   if (phdrs_size == 0) | 
 |     return {}; | 
 |  | 
 |   gdb::byte_vector buf (phdrs_size); | 
 |   if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0 | 
 |       || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size) | 
 |     return {}; | 
 |  | 
 |   return buf; | 
 | } | 
 |  | 
 | /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior | 
 |    exec_bfd.  Otherwise return 0. | 
 |  | 
 |    We relocate all of the sections by the same amount.  This | 
 |    behavior is mandated by recent editions of the System V ABI. | 
 |    According to the System V Application Binary Interface, | 
 |    Edition 4.1, page 5-5: | 
 |  | 
 |      ...  Though the system chooses virtual addresses for | 
 |      individual processes, it maintains the segments' relative | 
 |      positions.  Because position-independent code uses relative | 
 |      addressing between segments, the difference between | 
 |      virtual addresses in memory must match the difference | 
 |      between virtual addresses in the file.  The difference | 
 |      between the virtual address of any segment in memory and | 
 |      the corresponding virtual address in the file is thus a | 
 |      single constant value for any one executable or shared | 
 |      object in a given process.  This difference is the base | 
 |      address.  One use of the base address is to relocate the | 
 |      memory image of the program during dynamic linking. | 
 |  | 
 |    The same language also appears in Edition 4.0 of the System V | 
 |    ABI and is left unspecified in some of the earlier editions. | 
 |  | 
 |    Decide if the objfile needs to be relocated.  As indicated above, we will | 
 |    only be here when execution is stopped.  But during attachment PC can be at | 
 |    arbitrary address therefore regcache_read_pc can be misleading (contrary to | 
 |    the auxv AT_ENTRY value).  Moreover for executable with interpreter section | 
 |    regcache_read_pc would point to the interpreter and not the main executable. | 
 |  | 
 |    So, to summarize, relocations are necessary when the start address obtained | 
 |    from the executable is different from the address in auxv AT_ENTRY entry. | 
 |  | 
 |    [ The astute reader will note that we also test to make sure that | 
 |      the executable in question has the DYNAMIC flag set.  It is my | 
 |      opinion that this test is unnecessary (undesirable even).  It | 
 |      was added to avoid inadvertent relocation of an executable | 
 |      whose e_type member in the ELF header is not ET_DYN.  There may | 
 |      be a time in the future when it is desirable to do relocations | 
 |      on other types of files as well in which case this condition | 
 |      should either be removed or modified to accomodate the new file | 
 |      type.  - Kevin, Nov 2000. ]  */ | 
 |  | 
 | static int | 
 | svr4_exec_displacement (CORE_ADDR *displacementp) | 
 | { | 
 |   /* ENTRY_POINT is a possible function descriptor - before | 
 |      a call to gdbarch_convert_from_func_ptr_addr.  */ | 
 |   CORE_ADDR entry_point, exec_displacement; | 
 |  | 
 |   if (exec_bfd == NULL) | 
 |     return 0; | 
 |  | 
 |   /* Therefore for ELF it is ET_EXEC and not ET_DYN.  Both shared libraries | 
 |      being executed themselves and PIE (Position Independent Executable) | 
 |      executables are ET_DYN.  */ | 
 |  | 
 |   if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0) | 
 |     return 0; | 
 |  | 
 |   if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0) | 
 |     return 0; | 
 |  | 
 |   exec_displacement = entry_point - bfd_get_start_address (exec_bfd); | 
 |  | 
 |   /* Verify the EXEC_DISPLACEMENT candidate complies with the required page | 
 |      alignment.  It is cheaper than the program headers comparison below.  */ | 
 |  | 
 |   if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) | 
 |     { | 
 |       const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd); | 
 |  | 
 |       /* p_align of PT_LOAD segments does not specify any alignment but | 
 | 	 only congruency of addresses: | 
 | 	   p_offset % p_align == p_vaddr % p_align | 
 | 	 Kernel is free to load the executable with lower alignment.  */ | 
 |  | 
 |       if ((exec_displacement & (elf->minpagesize - 1)) != 0) | 
 | 	return 0; | 
 |     } | 
 |  | 
 |   /* Verify that the auxilliary vector describes the same file as exec_bfd, by | 
 |      comparing their program headers.  If the program headers in the auxilliary | 
 |      vector do not match the program headers in the executable, then we are | 
 |      looking at a different file than the one used by the kernel - for | 
 |      instance, "gdb program" connected to "gdbserver :PORT ld.so program".  */ | 
 |  | 
 |   if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) | 
 |     { | 
 |       /* Be optimistic and return 0 only if GDB was able to verify the headers | 
 | 	 really do not match.  */ | 
 |       int arch_size; | 
 |  | 
 |       gdb::optional<gdb::byte_vector> phdrs_target | 
 | 	= read_program_header (-1, &arch_size, NULL); | 
 |       gdb::optional<gdb::byte_vector> phdrs_binary | 
 | 	= read_program_headers_from_bfd (exec_bfd); | 
 |       if (phdrs_target && phdrs_binary) | 
 | 	{ | 
 | 	  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); | 
 |  | 
 | 	  /* We are dealing with three different addresses.  EXEC_BFD | 
 | 	     represents current address in on-disk file.  target memory content | 
 | 	     may be different from EXEC_BFD as the file may have been prelinked | 
 | 	     to a different address after the executable has been loaded. | 
 | 	     Moreover the address of placement in target memory can be | 
 | 	     different from what the program headers in target memory say - | 
 | 	     this is the goal of PIE. | 
 |  | 
 | 	     Detected DISPLACEMENT covers both the offsets of PIE placement and | 
 | 	     possible new prelink performed after start of the program.  Here | 
 | 	     relocate BUF and BUF2 just by the EXEC_BFD vs. target memory | 
 | 	     content offset for the verification purpose.  */ | 
 |  | 
 | 	  if (phdrs_target->size () != phdrs_binary->size () | 
 | 	      || bfd_get_arch_size (exec_bfd) != arch_size) | 
 | 	    return 0; | 
 | 	  else if (arch_size == 32 | 
 | 		   && phdrs_target->size () >= sizeof (Elf32_External_Phdr) | 
 | 	           && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0) | 
 | 	    { | 
 | 	      Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header; | 
 | 	      Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr; | 
 | 	      CORE_ADDR displacement = 0; | 
 | 	      int i; | 
 |  | 
 | 	      /* DISPLACEMENT could be found more easily by the difference of | 
 | 		 ehdr2->e_entry.  But we haven't read the ehdr yet, and we | 
 | 		 already have enough information to compute that displacement | 
 | 		 with what we've read.  */ | 
 |  | 
 | 	      for (i = 0; i < ehdr2->e_phnum; i++) | 
 | 		if (phdr2[i].p_type == PT_LOAD) | 
 | 		  { | 
 | 		    Elf32_External_Phdr *phdrp; | 
 | 		    gdb_byte *buf_vaddr_p, *buf_paddr_p; | 
 | 		    CORE_ADDR vaddr, paddr; | 
 | 		    CORE_ADDR displacement_vaddr = 0; | 
 | 		    CORE_ADDR displacement_paddr = 0; | 
 |  | 
 | 		    phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i]; | 
 | 		    buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; | 
 | 		    buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | 
 |  | 
 | 		    vaddr = extract_unsigned_integer (buf_vaddr_p, 4, | 
 | 						      byte_order); | 
 | 		    displacement_vaddr = vaddr - phdr2[i].p_vaddr; | 
 |  | 
 | 		    paddr = extract_unsigned_integer (buf_paddr_p, 4, | 
 | 						      byte_order); | 
 | 		    displacement_paddr = paddr - phdr2[i].p_paddr; | 
 |  | 
 | 		    if (displacement_vaddr == displacement_paddr) | 
 | 		      displacement = displacement_vaddr; | 
 |  | 
 | 		    break; | 
 | 		  } | 
 |  | 
 | 	      /* Now compare program headers from the target and the binary | 
 | 	         with optional DISPLACEMENT.  */ | 
 |  | 
 | 	      for (i = 0; | 
 | 		   i < phdrs_target->size () / sizeof (Elf32_External_Phdr); | 
 | 		   i++) | 
 | 		{ | 
 | 		  Elf32_External_Phdr *phdrp; | 
 | 		  Elf32_External_Phdr *phdr2p; | 
 | 		  gdb_byte *buf_vaddr_p, *buf_paddr_p; | 
 | 		  CORE_ADDR vaddr, paddr; | 
 | 		  asection *plt2_asect; | 
 |  | 
 | 		  phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i]; | 
 | 		  buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; | 
 | 		  buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | 
 | 		  phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i]; | 
 |  | 
 | 		  /* PT_GNU_STACK is an exception by being never relocated by | 
 | 		     prelink as its addresses are always zero.  */ | 
 |  | 
 | 		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | 
 | 		    continue; | 
 |  | 
 | 		  /* Check also other adjustment combinations - PR 11786.  */ | 
 |  | 
 | 		  vaddr = extract_unsigned_integer (buf_vaddr_p, 4, | 
 | 						    byte_order); | 
 | 		  vaddr -= displacement; | 
 | 		  store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr); | 
 |  | 
 | 		  paddr = extract_unsigned_integer (buf_paddr_p, 4, | 
 | 						    byte_order); | 
 | 		  paddr -= displacement; | 
 | 		  store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr); | 
 |  | 
 | 		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | 
 | 		    continue; | 
 |  | 
 | 		  /* Strip modifies the flags and alignment of PT_GNU_RELRO. | 
 | 		     CentOS-5 has problems with filesz, memsz as well. | 
 | 		     Strip also modifies memsz of PT_TLS. | 
 | 		     See PR 11786.  */ | 
 | 		  if (phdr2[i].p_type == PT_GNU_RELRO | 
 | 		      || phdr2[i].p_type == PT_TLS) | 
 | 		    { | 
 | 		      Elf32_External_Phdr tmp_phdr = *phdrp; | 
 | 		      Elf32_External_Phdr tmp_phdr2 = *phdr2p; | 
 |  | 
 | 		      memset (tmp_phdr.p_filesz, 0, 4); | 
 | 		      memset (tmp_phdr.p_memsz, 0, 4); | 
 | 		      memset (tmp_phdr.p_flags, 0, 4); | 
 | 		      memset (tmp_phdr.p_align, 0, 4); | 
 | 		      memset (tmp_phdr2.p_filesz, 0, 4); | 
 | 		      memset (tmp_phdr2.p_memsz, 0, 4); | 
 | 		      memset (tmp_phdr2.p_flags, 0, 4); | 
 | 		      memset (tmp_phdr2.p_align, 0, 4); | 
 |  | 
 | 		      if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr)) | 
 | 			  == 0) | 
 | 			continue; | 
 | 		    } | 
 |  | 
 | 		  /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS.  */ | 
 | 		  plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt"); | 
 | 		  if (plt2_asect) | 
 | 		    { | 
 | 		      int content2; | 
 | 		      gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz; | 
 | 		      CORE_ADDR filesz; | 
 |  | 
 | 		      content2 = (bfd_section_flags (plt2_asect) | 
 | 				  & SEC_HAS_CONTENTS) != 0; | 
 |  | 
 | 		      filesz = extract_unsigned_integer (buf_filesz_p, 4, | 
 | 							 byte_order); | 
 |  | 
 | 		      /* PLT2_ASECT is from on-disk file (exec_bfd) while | 
 | 			 FILESZ is from the in-memory image.  */ | 
 | 		      if (content2) | 
 | 			filesz += bfd_section_size (plt2_asect); | 
 | 		      else | 
 | 			filesz -= bfd_section_size (plt2_asect); | 
 |  | 
 | 		      store_unsigned_integer (buf_filesz_p, 4, byte_order, | 
 | 					      filesz); | 
 |  | 
 | 		      if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | 
 | 			continue; | 
 | 		    } | 
 |  | 
 | 		  return 0; | 
 | 		} | 
 | 	    } | 
 | 	  else if (arch_size == 64 | 
 | 		   && phdrs_target->size () >= sizeof (Elf64_External_Phdr) | 
 | 	           && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0) | 
 | 	    { | 
 | 	      Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header; | 
 | 	      Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr; | 
 | 	      CORE_ADDR displacement = 0; | 
 | 	      int i; | 
 |  | 
 | 	      /* DISPLACEMENT could be found more easily by the difference of | 
 | 		 ehdr2->e_entry.  But we haven't read the ehdr yet, and we | 
 | 		 already have enough information to compute that displacement | 
 | 		 with what we've read.  */ | 
 |  | 
 | 	      for (i = 0; i < ehdr2->e_phnum; i++) | 
 | 		if (phdr2[i].p_type == PT_LOAD) | 
 | 		  { | 
 | 		    Elf64_External_Phdr *phdrp; | 
 | 		    gdb_byte *buf_vaddr_p, *buf_paddr_p; | 
 | 		    CORE_ADDR vaddr, paddr; | 
 | 		    CORE_ADDR displacement_vaddr = 0; | 
 | 		    CORE_ADDR displacement_paddr = 0; | 
 |  | 
 | 		    phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i]; | 
 | 		    buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; | 
 | 		    buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | 
 |  | 
 | 		    vaddr = extract_unsigned_integer (buf_vaddr_p, 8, | 
 | 						      byte_order); | 
 | 		    displacement_vaddr = vaddr - phdr2[i].p_vaddr; | 
 |  | 
 | 		    paddr = extract_unsigned_integer (buf_paddr_p, 8, | 
 | 						      byte_order); | 
 | 		    displacement_paddr = paddr - phdr2[i].p_paddr; | 
 |  | 
 | 		    if (displacement_vaddr == displacement_paddr) | 
 | 		      displacement = displacement_vaddr; | 
 |  | 
 | 		    break; | 
 | 		  } | 
 |  | 
 | 	      /* Now compare BUF and BUF2 with optional DISPLACEMENT.  */ | 
 |  | 
 | 	      for (i = 0; | 
 | 		   i < phdrs_target->size () / sizeof (Elf64_External_Phdr); | 
 | 		   i++) | 
 | 		{ | 
 | 		  Elf64_External_Phdr *phdrp; | 
 | 		  Elf64_External_Phdr *phdr2p; | 
 | 		  gdb_byte *buf_vaddr_p, *buf_paddr_p; | 
 | 		  CORE_ADDR vaddr, paddr; | 
 | 		  asection *plt2_asect; | 
 |  | 
 | 		  phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i]; | 
 | 		  buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; | 
 | 		  buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | 
 | 		  phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i]; | 
 |  | 
 | 		  /* PT_GNU_STACK is an exception by being never relocated by | 
 | 		     prelink as its addresses are always zero.  */ | 
 |  | 
 | 		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | 
 | 		    continue; | 
 |  | 
 | 		  /* Check also other adjustment combinations - PR 11786.  */ | 
 |  | 
 | 		  vaddr = extract_unsigned_integer (buf_vaddr_p, 8, | 
 | 						    byte_order); | 
 | 		  vaddr -= displacement; | 
 | 		  store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr); | 
 |  | 
 | 		  paddr = extract_unsigned_integer (buf_paddr_p, 8, | 
 | 						    byte_order); | 
 | 		  paddr -= displacement; | 
 | 		  store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr); | 
 |  | 
 | 		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | 
 | 		    continue; | 
 |  | 
 | 		  /* Strip modifies the flags and alignment of PT_GNU_RELRO. | 
 | 		     CentOS-5 has problems with filesz, memsz as well. | 
 | 		     Strip also modifies memsz of PT_TLS. | 
 | 		     See PR 11786.  */ | 
 | 		  if (phdr2[i].p_type == PT_GNU_RELRO | 
 | 		      || phdr2[i].p_type == PT_TLS) | 
 | 		    { | 
 | 		      Elf64_External_Phdr tmp_phdr = *phdrp; | 
 | 		      Elf64_External_Phdr tmp_phdr2 = *phdr2p; | 
 |  | 
 | 		      memset (tmp_phdr.p_filesz, 0, 8); | 
 | 		      memset (tmp_phdr.p_memsz, 0, 8); | 
 | 		      memset (tmp_phdr.p_flags, 0, 4); | 
 | 		      memset (tmp_phdr.p_align, 0, 8); | 
 | 		      memset (tmp_phdr2.p_filesz, 0, 8); | 
 | 		      memset (tmp_phdr2.p_memsz, 0, 8); | 
 | 		      memset (tmp_phdr2.p_flags, 0, 4); | 
 | 		      memset (tmp_phdr2.p_align, 0, 8); | 
 |  | 
 | 		      if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr)) | 
 | 			  == 0) | 
 | 			continue; | 
 | 		    } | 
 |  | 
 | 		  /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS.  */ | 
 | 		  plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt"); | 
 | 		  if (plt2_asect) | 
 | 		    { | 
 | 		      int content2; | 
 | 		      gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz; | 
 | 		      CORE_ADDR filesz; | 
 |  | 
 | 		      content2 = (bfd_section_flags (plt2_asect) | 
 | 				  & SEC_HAS_CONTENTS) != 0; | 
 |  | 
 | 		      filesz = extract_unsigned_integer (buf_filesz_p, 8, | 
 | 							 byte_order); | 
 |  | 
 | 		      /* PLT2_ASECT is from on-disk file (exec_bfd) while | 
 | 			 FILESZ is from the in-memory image.  */ | 
 | 		      if (content2) | 
 | 			filesz += bfd_section_size (plt2_asect); | 
 | 		      else | 
 | 			filesz -= bfd_section_size (plt2_asect); | 
 |  | 
 | 		      store_unsigned_integer (buf_filesz_p, 8, byte_order, | 
 | 					      filesz); | 
 |  | 
 | 		      if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | 
 | 			continue; | 
 | 		    } | 
 |  | 
 | 		  return 0; | 
 | 		} | 
 | 	    } | 
 | 	  else | 
 | 	    return 0; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (info_verbose) | 
 |     { | 
 |       /* It can be printed repeatedly as there is no easy way to check | 
 | 	 the executable symbols/file has been already relocated to | 
 | 	 displacement.  */ | 
 |  | 
 |       printf_unfiltered (_("Using PIE (Position Independent Executable) " | 
 | 			   "displacement %s for \"%s\".\n"), | 
 | 			 paddress (target_gdbarch (), exec_displacement), | 
 | 			 bfd_get_filename (exec_bfd)); | 
 |     } | 
 |  | 
 |   *displacementp = exec_displacement; | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Relocate the main executable.  This function should be called upon | 
 |    stopping the inferior process at the entry point to the program. | 
 |    The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are | 
 |    different, the main executable is relocated by the proper amount.  */ | 
 |  | 
 | static void | 
 | svr4_relocate_main_executable (void) | 
 | { | 
 |   CORE_ADDR displacement; | 
 |  | 
 |   /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS | 
 |      probably contains the offsets computed using the PIE displacement | 
 |      from the previous run, which of course are irrelevant for this run. | 
 |      So we need to determine the new PIE displacement and recompute the | 
 |      section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS | 
 |      already contains pre-computed offsets. | 
 |  | 
 |      If we cannot compute the PIE displacement, either: | 
 |  | 
 |        - The executable is not PIE. | 
 |  | 
 |        - SYMFILE_OBJFILE does not match the executable started in the target. | 
 | 	 This can happen for main executable symbols loaded at the host while | 
 | 	 `ld.so --ld-args main-executable' is loaded in the target. | 
 |  | 
 |      Then we leave the section offsets untouched and use them as is for | 
 |      this run.  Either: | 
 |  | 
 |        - These section offsets were properly reset earlier, and thus | 
 | 	 already contain the correct values.  This can happen for instance | 
 | 	 when reconnecting via the remote protocol to a target that supports | 
 | 	 the `qOffsets' packet. | 
 |  | 
 |        - The section offsets were not reset earlier, and the best we can | 
 | 	 hope is that the old offsets are still applicable to the new run.  */ | 
 |  | 
 |   if (! svr4_exec_displacement (&displacement)) | 
 |     return; | 
 |  | 
 |   /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file | 
 |      addresses.  */ | 
 |  | 
 |   if (symfile_objfile) | 
 |     { | 
 |       section_offsets new_offsets (symfile_objfile->section_offsets.size (), | 
 | 				   displacement); | 
 |       objfile_relocate (symfile_objfile, new_offsets); | 
 |     } | 
 |   else if (exec_bfd) | 
 |     { | 
 |       asection *asect; | 
 |  | 
 |       for (asect = exec_bfd->sections; asect != NULL; asect = asect->next) | 
 | 	exec_set_section_address (bfd_get_filename (exec_bfd), asect->index, | 
 | 				  bfd_section_vma (asect) + displacement); | 
 |     } | 
 | } | 
 |  | 
 | /* Implement the "create_inferior_hook" target_solib_ops method. | 
 |  | 
 |    For SVR4 executables, this first instruction is either the first | 
 |    instruction in the dynamic linker (for dynamically linked | 
 |    executables) or the instruction at "start" for statically linked | 
 |    executables.  For dynamically linked executables, the system | 
 |    first exec's /lib/libc.so.N, which contains the dynamic linker, | 
 |    and starts it running.  The dynamic linker maps in any needed | 
 |    shared libraries, maps in the actual user executable, and then | 
 |    jumps to "start" in the user executable. | 
 |  | 
 |    We can arrange to cooperate with the dynamic linker to discover the | 
 |    names of shared libraries that are dynamically linked, and the base | 
 |    addresses to which they are linked. | 
 |  | 
 |    This function is responsible for discovering those names and | 
 |    addresses, and saving sufficient information about them to allow | 
 |    their symbols to be read at a later time.  */ | 
 |  | 
 | static void | 
 | svr4_solib_create_inferior_hook (int from_tty) | 
 | { | 
 |   struct svr4_info *info; | 
 |  | 
 |   info = get_svr4_info (current_program_space); | 
 |  | 
 |   /* Clear the probes-based interface's state.  */ | 
 |   free_probes_table (info); | 
 |   free_solib_list (info); | 
 |  | 
 |   /* Relocate the main executable if necessary.  */ | 
 |   svr4_relocate_main_executable (); | 
 |  | 
 |   /* No point setting a breakpoint in the dynamic linker if we can't | 
 |      hit it (e.g., a core file, or a trace file).  */ | 
 |   if (!target_has_execution) | 
 |     return; | 
 |  | 
 |   if (!svr4_have_link_map_offsets ()) | 
 |     return; | 
 |  | 
 |   if (!enable_break (info, from_tty)) | 
 |     return; | 
 | } | 
 |  | 
 | static void | 
 | svr4_clear_solib (void) | 
 | { | 
 |   struct svr4_info *info; | 
 |  | 
 |   info = get_svr4_info (current_program_space); | 
 |   info->debug_base = 0; | 
 |   info->debug_loader_offset_p = 0; | 
 |   info->debug_loader_offset = 0; | 
 |   xfree (info->debug_loader_name); | 
 |   info->debug_loader_name = NULL; | 
 | } | 
 |  | 
 | /* Clear any bits of ADDR that wouldn't fit in a target-format | 
 |    data pointer.  "Data pointer" here refers to whatever sort of | 
 |    address the dynamic linker uses to manage its sections.  At the | 
 |    moment, we don't support shared libraries on any processors where | 
 |    code and data pointers are different sizes. | 
 |  | 
 |    This isn't really the right solution.  What we really need here is | 
 |    a way to do arithmetic on CORE_ADDR values that respects the | 
 |    natural pointer/address correspondence.  (For example, on the MIPS, | 
 |    converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to | 
 |    sign-extend the value.  There, simply truncating the bits above | 
 |    gdbarch_ptr_bit, as we do below, is no good.)  This should probably | 
 |    be a new gdbarch method or something.  */ | 
 | static CORE_ADDR | 
 | svr4_truncate_ptr (CORE_ADDR addr) | 
 | { | 
 |   if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8) | 
 |     /* We don't need to truncate anything, and the bit twiddling below | 
 |        will fail due to overflow problems.  */ | 
 |     return addr; | 
 |   else | 
 |     return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1); | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | svr4_relocate_section_addresses (struct so_list *so, | 
 |                                  struct target_section *sec) | 
 | { | 
 |   bfd *abfd = sec->the_bfd_section->owner; | 
 |  | 
 |   sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd)); | 
 |   sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd)); | 
 | } | 
 |  | 
 |  | 
 | /* Architecture-specific operations.  */ | 
 |  | 
 | /* Per-architecture data key.  */ | 
 | static struct gdbarch_data *solib_svr4_data; | 
 |  | 
 | struct solib_svr4_ops | 
 | { | 
 |   /* Return a description of the layout of `struct link_map'.  */ | 
 |   struct link_map_offsets *(*fetch_link_map_offsets)(void); | 
 | }; | 
 |  | 
 | /* Return a default for the architecture-specific operations.  */ | 
 |  | 
 | static void * | 
 | solib_svr4_init (struct obstack *obstack) | 
 | { | 
 |   struct solib_svr4_ops *ops; | 
 |  | 
 |   ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops); | 
 |   ops->fetch_link_map_offsets = NULL; | 
 |   return ops; | 
 | } | 
 |  | 
 | /* Set the architecture-specific `struct link_map_offsets' fetcher for | 
 |    GDBARCH to FLMO.  Also, install SVR4 solib_ops into GDBARCH.  */ | 
 |  | 
 | void | 
 | set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch, | 
 |                                        struct link_map_offsets *(*flmo) (void)) | 
 | { | 
 |   struct solib_svr4_ops *ops | 
 |     = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data); | 
 |  | 
 |   ops->fetch_link_map_offsets = flmo; | 
 |  | 
 |   set_solib_ops (gdbarch, &svr4_so_ops); | 
 |   set_gdbarch_iterate_over_objfiles_in_search_order | 
 |     (gdbarch, svr4_iterate_over_objfiles_in_search_order); | 
 | } | 
 |  | 
 | /* Fetch a link_map_offsets structure using the architecture-specific | 
 |    `struct link_map_offsets' fetcher.  */ | 
 |  | 
 | static struct link_map_offsets * | 
 | svr4_fetch_link_map_offsets (void) | 
 | { | 
 |   struct solib_svr4_ops *ops | 
 |     = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (), | 
 | 					      solib_svr4_data); | 
 |  | 
 |   gdb_assert (ops->fetch_link_map_offsets); | 
 |   return ops->fetch_link_map_offsets (); | 
 | } | 
 |  | 
 | /* Return 1 if a link map offset fetcher has been defined, 0 otherwise.  */ | 
 |  | 
 | static int | 
 | svr4_have_link_map_offsets (void) | 
 | { | 
 |   struct solib_svr4_ops *ops | 
 |     = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (), | 
 | 					      solib_svr4_data); | 
 |  | 
 |   return (ops->fetch_link_map_offsets != NULL); | 
 | } | 
 |  | 
 |  | 
 | /* Most OS'es that have SVR4-style ELF dynamic libraries define a | 
 |    `struct r_debug' and a `struct link_map' that are binary compatible | 
 |    with the original SVR4 implementation.  */ | 
 |  | 
 | /* Fetch (and possibly build) an appropriate `struct link_map_offsets' | 
 |    for an ILP32 SVR4 system.  */ | 
 |  | 
 | struct link_map_offsets * | 
 | svr4_ilp32_fetch_link_map_offsets (void) | 
 | { | 
 |   static struct link_map_offsets lmo; | 
 |   static struct link_map_offsets *lmp = NULL; | 
 |  | 
 |   if (lmp == NULL) | 
 |     { | 
 |       lmp = &lmo; | 
 |  | 
 |       lmo.r_version_offset = 0; | 
 |       lmo.r_version_size = 4; | 
 |       lmo.r_map_offset = 4; | 
 |       lmo.r_brk_offset = 8; | 
 |       lmo.r_ldsomap_offset = 20; | 
 |  | 
 |       /* Everything we need is in the first 20 bytes.  */ | 
 |       lmo.link_map_size = 20; | 
 |       lmo.l_addr_offset = 0; | 
 |       lmo.l_name_offset = 4; | 
 |       lmo.l_ld_offset = 8; | 
 |       lmo.l_next_offset = 12; | 
 |       lmo.l_prev_offset = 16; | 
 |     } | 
 |  | 
 |   return lmp; | 
 | } | 
 |  | 
 | /* Fetch (and possibly build) an appropriate `struct link_map_offsets' | 
 |    for an LP64 SVR4 system.  */ | 
 |  | 
 | struct link_map_offsets * | 
 | svr4_lp64_fetch_link_map_offsets (void) | 
 | { | 
 |   static struct link_map_offsets lmo; | 
 |   static struct link_map_offsets *lmp = NULL; | 
 |  | 
 |   if (lmp == NULL) | 
 |     { | 
 |       lmp = &lmo; | 
 |  | 
 |       lmo.r_version_offset = 0; | 
 |       lmo.r_version_size = 4; | 
 |       lmo.r_map_offset = 8; | 
 |       lmo.r_brk_offset = 16; | 
 |       lmo.r_ldsomap_offset = 40; | 
 |  | 
 |       /* Everything we need is in the first 40 bytes.  */ | 
 |       lmo.link_map_size = 40; | 
 |       lmo.l_addr_offset = 0; | 
 |       lmo.l_name_offset = 8; | 
 |       lmo.l_ld_offset = 16; | 
 |       lmo.l_next_offset = 24; | 
 |       lmo.l_prev_offset = 32; | 
 |     } | 
 |  | 
 |   return lmp; | 
 | } | 
 |  | 
 |  | 
 | struct target_so_ops svr4_so_ops; | 
 |  | 
 | /* Search order for ELF DSOs linked with -Bsymbolic.  Those DSOs have a | 
 |    different rule for symbol lookup.  The lookup begins here in the DSO, not in | 
 |    the main executable.  */ | 
 |  | 
 | static void | 
 | svr4_iterate_over_objfiles_in_search_order | 
 |   (struct gdbarch *gdbarch, | 
 |    iterate_over_objfiles_in_search_order_cb_ftype *cb, | 
 |    void *cb_data, struct objfile *current_objfile) | 
 | { | 
 |   bool checked_current_objfile = false; | 
 |   if (current_objfile != nullptr) | 
 |     { | 
 |       bfd *abfd; | 
 |  | 
 |       if (current_objfile->separate_debug_objfile_backlink != nullptr) | 
 |         current_objfile = current_objfile->separate_debug_objfile_backlink; | 
 |  | 
 |       if (current_objfile == symfile_objfile) | 
 | 	abfd = exec_bfd; | 
 |       else | 
 | 	abfd = current_objfile->obfd; | 
 |  | 
 |       if (abfd != nullptr | 
 | 	  && scan_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1) | 
 | 	{ | 
 | 	  checked_current_objfile = true; | 
 | 	  if (cb (current_objfile, cb_data) != 0) | 
 | 	    return; | 
 | 	} | 
 |     } | 
 |  | 
 |   for (objfile *objfile : current_program_space->objfiles ()) | 
 |     { | 
 |       if (checked_current_objfile && objfile == current_objfile) | 
 | 	continue; | 
 |       if (cb (objfile, cb_data) != 0) | 
 | 	return; | 
 |     } | 
 | } | 
 |  | 
 | void _initialize_svr4_solib (); | 
 | void | 
 | _initialize_svr4_solib () | 
 | { | 
 |   solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init); | 
 |  | 
 |   svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses; | 
 |   svr4_so_ops.free_so = svr4_free_so; | 
 |   svr4_so_ops.clear_so = svr4_clear_so; | 
 |   svr4_so_ops.clear_solib = svr4_clear_solib; | 
 |   svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook; | 
 |   svr4_so_ops.current_sos = svr4_current_sos; | 
 |   svr4_so_ops.open_symbol_file_object = open_symbol_file_object; | 
 |   svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code; | 
 |   svr4_so_ops.bfd_open = solib_bfd_open; | 
 |   svr4_so_ops.same = svr4_same; | 
 |   svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core; | 
 |   svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints; | 
 |   svr4_so_ops.handle_event = svr4_handle_solib_event; | 
 |  | 
 |   gdb::observers::free_objfile.attach (svr4_free_objfile_observer); | 
 | } |