blob: 6b6bf617223bb0adaa5415fe1859a619e640a27c [file] [log] [blame]
/* Definitions for Fortran expressions
Copyright (C) 2020-2022 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef FORTRAN_EXP_H
#define FORTRAN_EXP_H
#include "expop.h"
extern struct value *eval_op_f_abs (struct type *expect_type,
struct expression *exp,
enum noside noside,
enum exp_opcode opcode,
struct value *arg1);
extern struct value *eval_op_f_mod (struct type *expect_type,
struct expression *exp,
enum noside noside,
enum exp_opcode opcode,
struct value *arg1, struct value *arg2);
/* Implement expression evaluation for Fortran's CEILING intrinsic function
called with one argument. For EXPECT_TYPE, EXP, and NOSIDE see
expression::evaluate (in expression.h). OPCODE will always be
FORTRAN_CEILING and ARG1 is the argument passed to CEILING. */
extern struct value *eval_op_f_ceil (struct type *expect_type,
struct expression *exp,
enum noside noside,
enum exp_opcode opcode,
struct value *arg1);
/* Implement expression evaluation for Fortran's CEILING intrinsic function
called with two arguments. For EXPECT_TYPE, EXP, and NOSIDE see
expression::evaluate (in expression.h). OPCODE will always be
FORTRAN_CEILING, ARG1 is the first argument passed to CEILING, and KIND_ARG
is the type corresponding to the KIND parameter passed to CEILING. */
extern value *eval_op_f_ceil (type *expect_type, expression *exp,
noside noside, exp_opcode opcode, value *arg1,
type *kind_arg);
/* Implement expression evaluation for Fortran's FLOOR intrinsic function
called with one argument. For EXPECT_TYPE, EXP, and NOSIDE see
expression::evaluate (in expression.h). OPCODE will always be FORTRAN_FLOOR
and ARG1 is the argument passed to FLOOR. */
extern struct value *eval_op_f_floor (struct type *expect_type,
struct expression *exp,
enum noside noside,
enum exp_opcode opcode,
struct value *arg1);
/* Implement expression evaluation for Fortran's FLOOR intrinsic function
called with two arguments. For EXPECT_TYPE, EXP, and NOSIDE see
expression::evaluate (in expression.h). OPCODE will always be
FORTRAN_FLOOR, ARG1 is the first argument passed to FLOOR, and KIND_ARG is
the type corresponding to the KIND parameter passed to FLOOR. */
extern value *eval_op_f_floor (type *expect_type, expression *exp,
noside noside, exp_opcode opcode, value *arg1,
type *kind_arg);
extern struct value *eval_op_f_modulo (struct type *expect_type,
struct expression *exp,
enum noside noside,
enum exp_opcode opcode,
struct value *arg1, struct value *arg2);
/* Implement expression evaluation for Fortran's CMPLX intrinsic function
called with one argument. For EXPECT_TYPE, EXP, and NOSIDE see
expression::evaluate (in expression.h). OPCODE will always be
FORTRAN_CMPLX and ARG1 is the argument passed to CMPLX if. */
extern value *eval_op_f_cmplx (type *expect_type, expression *exp,
noside noside, exp_opcode opcode, value *arg1);
/* Implement expression evaluation for Fortran's CMPLX intrinsic function
called with two arguments. For EXPECT_TYPE, EXP, and NOSIDE see
expression::evaluate (in expression.h). OPCODE will always be
FORTRAN_CMPLX, ARG1 and ARG2 are the arguments passed to CMPLX. */
extern struct value *eval_op_f_cmplx (struct type *expect_type,
struct expression *exp,
enum noside noside,
enum exp_opcode opcode,
struct value *arg1, struct value *arg2);
/* Implement expression evaluation for Fortran's CMPLX intrinsic function
called with three arguments. For EXPECT_TYPE, EXP, and NOSIDE see
expression::evaluate (in expression.h). OPCODE will always be
FORTRAN_CMPLX, ARG1 and ARG2 are real and imaginary part passed to CMPLX,
and KIND_ARG is the type corresponding to the KIND parameter passed to
CMPLX. */
extern value *eval_op_f_cmplx (type *expect_type, expression *exp,
noside noside, exp_opcode opcode, value *arg1,
value *arg2, type *kind_arg);
extern struct value *eval_op_f_kind (struct type *expect_type,
struct expression *exp,
enum noside noside,
enum exp_opcode opcode,
struct value *arg1);
extern struct value *eval_op_f_associated (struct type *expect_type,
struct expression *exp,
enum noside noside,
enum exp_opcode opcode,
struct value *arg1);
extern struct value *eval_op_f_associated (struct type *expect_type,
struct expression *exp,
enum noside noside,
enum exp_opcode opcode,
struct value *arg1,
struct value *arg2);
extern struct value * eval_op_f_allocated (struct type *expect_type,
struct expression *exp,
enum noside noside,
enum exp_opcode op,
struct value *arg1);
extern struct value * eval_op_f_loc (struct type *expect_type,
struct expression *exp,
enum noside noside,
enum exp_opcode op,
struct value *arg1);
/* Implement the evaluation of UNOP_FORTRAN_RANK. EXPECTED_TYPE, EXP, and
NOSIDE are as for expression::evaluate (see expression.h). OP will
always be UNOP_FORTRAN_RANK, and ARG1 is the argument being passed to
the expression. */
extern struct value *eval_op_f_rank (struct type *expect_type,
struct expression *exp,
enum noside noside,
enum exp_opcode op,
struct value *arg1);
/* Implement expression evaluation for Fortran's SIZE keyword. For
EXPECT_TYPE, EXP, and NOSIDE see expression::evaluate (in
expression.h). OPCODE will always for FORTRAN_ARRAY_SIZE. ARG1 is the
value passed to SIZE if it is only passed a single argument. For the
two argument form see the overload of this function below. */
extern struct value *eval_op_f_array_size (struct type *expect_type,
struct expression *exp,
enum noside noside,
enum exp_opcode opcode,
struct value *arg1);
/* An overload of EVAL_OP_F_ARRAY_SIZE above, this version takes two
arguments, representing the two values passed to Fortran's SIZE
keyword. */
extern struct value *eval_op_f_array_size (struct type *expect_type,
struct expression *exp,
enum noside noside,
enum exp_opcode opcode,
struct value *arg1,
struct value *arg2);
/* Implement expression evaluation for Fortran's SIZE intrinsic function called
with three arguments. For EXPECT_TYPE, EXP, and NOSIDE see
expression::evaluate (in expression.h). OPCODE will always be
FORTRAN_ARRAY_SIZE, ARG1 and ARG2 the first two values passed to SIZE, and
KIND_ARG is the type corresponding to the KIND parameter passed to SIZE. */
extern value *eval_op_f_array_size (type *expect_type, expression *exp,
noside noside, exp_opcode opcode,
value *arg1, value *arg2, type *kind_arg);
/* Implement the evaluation of Fortran's SHAPE keyword. EXPECTED_TYPE,
EXP, and NOSIDE are as for expression::evaluate (see expression.h). OP
will always be UNOP_FORTRAN_SHAPE, and ARG1 is the argument being passed
to the expression. */
extern struct value *eval_op_f_array_shape (struct type *expect_type,
struct expression *exp,
enum noside noside,
enum exp_opcode op,
struct value *arg1);
namespace expr
{
/* Function prototype for Fortran intrinsic functions taking one argument and
one kind argument. */
typedef value *binary_kind_ftype (type *expect_type, expression *exp,
noside noside, exp_opcode op, value *arg1,
type *kind_arg);
/* Two-argument operation with the second argument being a kind argument. */
template<exp_opcode OP, binary_kind_ftype FUNC>
class fortran_kind_2arg
: public tuple_holding_operation<operation_up, type*>
{
public:
using tuple_holding_operation::tuple_holding_operation;
value *evaluate (type *expect_type, expression *exp, noside noside) override
{
value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
type *kind_arg = std::get<1> (m_storage);
return FUNC (expect_type, exp, noside, OP, arg1, kind_arg);
}
exp_opcode opcode () const override
{ return OP; }
};
/* Function prototype for Fortran intrinsic functions taking two arguments and
one kind argument. */
typedef value *ternary_kind_ftype (type *expect_type, expression *exp,
noside noside, exp_opcode op, value *arg1,
value *arg2, type *kind_arg);
/* Three-argument operation with the third argument being a kind argument. */
template<exp_opcode OP, ternary_kind_ftype FUNC>
class fortran_kind_3arg
: public tuple_holding_operation<operation_up, operation_up, type *>
{
public:
using tuple_holding_operation::tuple_holding_operation;
value *evaluate (type *expect_type, expression *exp, noside noside) override
{
value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
value *arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
type *kind_arg = std::get<2> (m_storage);
return FUNC (expect_type, exp, noside, OP, arg1, arg2, kind_arg);
}
exp_opcode opcode () const override
{ return OP; }
};
using fortran_abs_operation = unop_operation<UNOP_ABS, eval_op_f_abs>;
using fortran_ceil_operation_1arg = unop_operation<FORTRAN_CEILING,
eval_op_f_ceil>;
using fortran_ceil_operation_2arg = fortran_kind_2arg<FORTRAN_CEILING,
eval_op_f_ceil>;
using fortran_floor_operation_1arg = unop_operation<FORTRAN_FLOOR,
eval_op_f_floor>;
using fortran_floor_operation_2arg = fortran_kind_2arg<FORTRAN_FLOOR,
eval_op_f_floor>;
using fortran_kind_operation = unop_operation<UNOP_FORTRAN_KIND,
eval_op_f_kind>;
using fortran_allocated_operation = unop_operation<UNOP_FORTRAN_ALLOCATED,
eval_op_f_allocated>;
using fortran_loc_operation = unop_operation<UNOP_FORTRAN_LOC,
eval_op_f_loc>;
using fortran_mod_operation = binop_operation<BINOP_MOD, eval_op_f_mod>;
using fortran_modulo_operation = binop_operation<BINOP_FORTRAN_MODULO,
eval_op_f_modulo>;
using fortran_associated_1arg = unop_operation<FORTRAN_ASSOCIATED,
eval_op_f_associated>;
using fortran_associated_2arg = binop_operation<FORTRAN_ASSOCIATED,
eval_op_f_associated>;
using fortran_rank_operation = unop_operation<UNOP_FORTRAN_RANK,
eval_op_f_rank>;
using fortran_array_size_1arg = unop_operation<FORTRAN_ARRAY_SIZE,
eval_op_f_array_size>;
using fortran_array_size_2arg = binop_operation<FORTRAN_ARRAY_SIZE,
eval_op_f_array_size>;
using fortran_array_size_3arg = fortran_kind_3arg<FORTRAN_ARRAY_SIZE,
eval_op_f_array_size>;
using fortran_array_shape_operation = unop_operation<UNOP_FORTRAN_SHAPE,
eval_op_f_array_shape>;
using fortran_cmplx_operation_1arg = unop_operation<FORTRAN_CMPLX,
eval_op_f_cmplx>;
using fortran_cmplx_operation_2arg = binop_operation<FORTRAN_CMPLX,
eval_op_f_cmplx>;
using fortran_cmplx_operation_3arg = fortran_kind_3arg<FORTRAN_CMPLX,
eval_op_f_cmplx>;
/* OP_RANGE for Fortran. */
class fortran_range_operation
: public tuple_holding_operation<enum range_flag, operation_up, operation_up,
operation_up>
{
public:
using tuple_holding_operation::tuple_holding_operation;
value *evaluate (struct type *expect_type,
struct expression *exp,
enum noside noside) override
{
error (_("ranges not allowed in this context"));
}
range_flag get_flags () const
{
return std::get<0> (m_storage);
}
value *evaluate0 (struct expression *exp, enum noside noside) const
{
return std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
}
value *evaluate1 (struct expression *exp, enum noside noside) const
{
return std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
}
value *evaluate2 (struct expression *exp, enum noside noside) const
{
return std::get<3> (m_storage)->evaluate (nullptr, exp, noside);
}
enum exp_opcode opcode () const override
{ return OP_RANGE; }
};
/* In F77, functions, substring ops and array subscript operations
cannot be disambiguated at parse time. This operation handles
both, deciding which do to at evaluation time. */
class fortran_undetermined
: public tuple_holding_operation<operation_up, std::vector<operation_up>>
{
public:
using tuple_holding_operation::tuple_holding_operation;
value *evaluate (struct type *expect_type,
struct expression *exp,
enum noside noside) override;
enum exp_opcode opcode () const override
{ return OP_F77_UNDETERMINED_ARGLIST; }
private:
value *value_subarray (value *array, struct expression *exp,
enum noside noside);
};
/* Single-argument form of Fortran ubound/lbound intrinsics. */
class fortran_bound_1arg
: public tuple_holding_operation<exp_opcode, operation_up>
{
public:
using tuple_holding_operation::tuple_holding_operation;
value *evaluate (struct type *expect_type,
struct expression *exp,
enum noside noside) override;
enum exp_opcode opcode () const override
{ return std::get<0> (m_storage); }
};
/* Two-argument form of Fortran ubound/lbound intrinsics. */
class fortran_bound_2arg
: public tuple_holding_operation<exp_opcode, operation_up, operation_up>
{
public:
using tuple_holding_operation::tuple_holding_operation;
value *evaluate (struct type *expect_type,
struct expression *exp,
enum noside noside) override;
enum exp_opcode opcode () const override
{ return std::get<0> (m_storage); }
};
/* Three-argument form of Fortran ubound/lbound intrinsics. */
class fortran_bound_3arg
: public tuple_holding_operation<exp_opcode, operation_up, operation_up,
type *>
{
public:
using tuple_holding_operation::tuple_holding_operation;
value *evaluate (type *expect_type, expression *exp, noside noside) override;
exp_opcode opcode () const override
{ return std::get<0> (m_storage); }
};
/* Implement STRUCTOP_STRUCT for Fortran. */
class fortran_structop_operation
: public structop_base_operation
{
public:
using structop_base_operation::structop_base_operation;
value *evaluate (struct type *expect_type,
struct expression *exp,
enum noside noside) override;
enum exp_opcode opcode () const override
{ return STRUCTOP_STRUCT; }
};
} /* namespace expr */
#endif /* FORTRAN_EXP_H */