|  | /**************************************************************************** | 
|  |  | 
|  | THIS SOFTWARE IS NOT COPYRIGHTED | 
|  |  | 
|  | HP offers the following for use in the public domain.  HP makes no | 
|  | warranty with regard to the software or it's performance and the | 
|  | user accepts the software "AS IS" with all faults. | 
|  |  | 
|  | HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD | 
|  | TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES | 
|  | OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. | 
|  |  | 
|  | ****************************************************************************/ | 
|  |  | 
|  | /**************************************************************************** | 
|  | *  Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $ | 
|  | * | 
|  | *  Module name: remcom.c $ | 
|  | *  Revision: 1.34 $ | 
|  | *  Date: 91/03/09 12:29:49 $ | 
|  | *  Contributor:     Lake Stevens Instrument Division$ | 
|  | * | 
|  | *  Description:     low level support for gdb debugger. $ | 
|  | * | 
|  | *  Considerations:  only works on target hardware $ | 
|  | * | 
|  | *  Written by:      Glenn Engel $ | 
|  | *  ModuleState:     Experimental $ | 
|  | * | 
|  | *  NOTES:           See Below $ | 
|  | * | 
|  | *  Modified for M32R by Michael Snyder, Cygnus Support. | 
|  | * | 
|  | *  To enable debugger support, two things need to happen.  One, a | 
|  | *  call to set_debug_traps() is necessary in order to allow any breakpoints | 
|  | *  or error conditions to be properly intercepted and reported to gdb. | 
|  | *  Two, a breakpoint needs to be generated to begin communication.  This | 
|  | *  is most easily accomplished by a call to breakpoint().  Breakpoint() | 
|  | *  simulates a breakpoint by executing a trap #1. | 
|  | * | 
|  | *  The external function exceptionHandler() is | 
|  | *  used to attach a specific handler to a specific M32R vector number. | 
|  | *  It should use the same privilege level it runs at.  It should | 
|  | *  install it as an interrupt gate so that interrupts are masked | 
|  | *  while the handler runs. | 
|  | * | 
|  | *  Because gdb will sometimes write to the stack area to execute function | 
|  | *  calls, this program cannot rely on using the supervisor stack so it | 
|  | *  uses it's own stack area reserved in the int array remcomStack. | 
|  | * | 
|  | ************* | 
|  | * | 
|  | *    The following gdb commands are supported: | 
|  | * | 
|  | * command          function                               Return value | 
|  | * | 
|  | *    g             return the value of the CPU registers  hex data or ENN | 
|  | *    G             set the value of the CPU registers     OK or ENN | 
|  | * | 
|  | *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN | 
|  | *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN | 
|  | *    XAA..AA,LLLL: Write LLLL binary bytes at address     OK or ENN | 
|  | *                  AA..AA | 
|  | * | 
|  | *    c             Resume at current address              SNN   ( signal NN) | 
|  | *    cAA..AA       Continue at address AA..AA             SNN | 
|  | * | 
|  | *    s             Step one instruction                   SNN | 
|  | *    sAA..AA       Step one instruction from AA..AA       SNN | 
|  | * | 
|  | *    k             kill | 
|  | * | 
|  | *    ?             What was the last sigval ?             SNN   (signal NN) | 
|  | * | 
|  | * All commands and responses are sent with a packet which includes a | 
|  | * checksum.  A packet consists of | 
|  | * | 
|  | * $<packet info>#<checksum>. | 
|  | * | 
|  | * where | 
|  | * <packet info> :: <characters representing the command or response> | 
|  | * <checksum>    :: <two hex digits computed as modulo 256 sum of <packetinfo>> | 
|  | * | 
|  | * When a packet is received, it is first acknowledged with either '+' or '-'. | 
|  | * '+' indicates a successful transfer.  '-' indicates a failed transfer. | 
|  | * | 
|  | * Example: | 
|  | * | 
|  | * Host:                  Reply: | 
|  | * $m0,10#2a               +$00010203040506070809101112131415#42 | 
|  | * | 
|  | ****************************************************************************/ | 
|  |  | 
|  |  | 
|  | /************************************************************************ | 
|  | * | 
|  | * external low-level support routines | 
|  | */ | 
|  | extern void putDebugChar ();	/* write a single character      */ | 
|  | extern int getDebugChar ();	/* read and return a single char */ | 
|  | extern void exceptionHandler ();	/* assign an exception handler   */ | 
|  |  | 
|  | /***************************************************************************** | 
|  | * BUFMAX defines the maximum number of characters in inbound/outbound buffers | 
|  | * at least NUMREGBYTES*2 are needed for register packets | 
|  | */ | 
|  | #define BUFMAX 400 | 
|  |  | 
|  | static char initialized;	/* boolean flag. != 0 means we've been initialized */ | 
|  |  | 
|  | int remote_debug; | 
|  | /*  debug >  0 prints ill-formed commands in valid packets & checksum errors */ | 
|  |  | 
|  | static const unsigned char hexchars[] = "0123456789abcdef"; | 
|  |  | 
|  | #define NUMREGS 24 | 
|  |  | 
|  | /* Number of bytes of registers.  */ | 
|  | #define NUMREGBYTES (NUMREGS * 4) | 
|  | enum regnames | 
|  | { R0, R1, R2, R3, R4, R5, R6, R7, | 
|  | R8, R9, R10, R11, R12, R13, R14, R15, | 
|  | PSW, CBR, SPI, SPU, BPC, PC, ACCL, ACCH | 
|  | }; | 
|  |  | 
|  | enum SYS_calls | 
|  | { | 
|  | SYS_null, | 
|  | SYS_exit, | 
|  | SYS_open, | 
|  | SYS_close, | 
|  | SYS_read, | 
|  | SYS_write, | 
|  | SYS_lseek, | 
|  | SYS_unlink, | 
|  | SYS_getpid, | 
|  | SYS_kill, | 
|  | SYS_fstat, | 
|  | SYS_sbrk, | 
|  | SYS_fork, | 
|  | SYS_execve, | 
|  | SYS_wait4, | 
|  | SYS_link, | 
|  | SYS_chdir, | 
|  | SYS_stat, | 
|  | SYS_utime, | 
|  | SYS_chown, | 
|  | SYS_chmod, | 
|  | SYS_time, | 
|  | SYS_pipe | 
|  | }; | 
|  |  | 
|  | static int registers[NUMREGS]; | 
|  |  | 
|  | #define STACKSIZE 8096 | 
|  | static unsigned char remcomInBuffer[BUFMAX]; | 
|  | static unsigned char remcomOutBuffer[BUFMAX]; | 
|  | static int remcomStack[STACKSIZE / sizeof (int)]; | 
|  | static int *stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1]; | 
|  |  | 
|  | static unsigned int save_vectors[18];	/* previous exception vectors */ | 
|  |  | 
|  | /* Indicate to caller of mem2hex or hex2mem that there has been an error. */ | 
|  | static volatile int mem_err = 0; | 
|  |  | 
|  | /* Store the vector number here (since GDB only gets the signal | 
|  | number through the usual means, and that's not very specific).  */ | 
|  | int gdb_m32r_vector = -1; | 
|  |  | 
|  | #if 0 | 
|  | #include "syscall.h"		/* for SYS_exit, SYS_write etc. */ | 
|  | #endif | 
|  |  | 
|  | /* Global entry points: | 
|  | */ | 
|  |  | 
|  | extern void handle_exception (int); | 
|  | extern void set_debug_traps (void); | 
|  | extern void breakpoint (void); | 
|  |  | 
|  | /* Local functions: | 
|  | */ | 
|  |  | 
|  | static int computeSignal (int); | 
|  | static void putpacket (unsigned char *); | 
|  | static unsigned char *getpacket (void); | 
|  |  | 
|  | static unsigned char *mem2hex (unsigned char *, unsigned char *, int, int); | 
|  | static unsigned char *hex2mem (unsigned char *, unsigned char *, int, int); | 
|  | static int hexToInt (unsigned char **, int *); | 
|  | static unsigned char *bin2mem (unsigned char *, unsigned char *, int, int); | 
|  | static void stash_registers (void); | 
|  | static void restore_registers (void); | 
|  | static int prepare_to_step (int); | 
|  | static int finish_from_step (void); | 
|  | static unsigned long crc32 (unsigned char *, int, unsigned long); | 
|  |  | 
|  | static void gdb_error (char *, char *); | 
|  | static int gdb_putchar (int), gdb_puts (char *), gdb_write (char *, int); | 
|  |  | 
|  | static unsigned char *strcpy (unsigned char *, const unsigned char *); | 
|  | static int strlen (const unsigned char *); | 
|  |  | 
|  | /* | 
|  | * This function does all command procesing for interfacing to gdb. | 
|  | */ | 
|  |  | 
|  | void | 
|  | handle_exception (int exceptionVector) | 
|  | { | 
|  | int sigval, stepping; | 
|  | int addr, length, i; | 
|  | unsigned char *ptr; | 
|  | unsigned char buf[16]; | 
|  | int binary; | 
|  |  | 
|  | if (!finish_from_step ()) | 
|  | return;			/* "false step": let the target continue */ | 
|  |  | 
|  | gdb_m32r_vector = exceptionVector; | 
|  |  | 
|  | if (remote_debug) | 
|  | { | 
|  | mem2hex ((unsigned char *) &exceptionVector, buf, 4, 0); | 
|  | gdb_error ("Handle exception %s, ", buf); | 
|  | mem2hex ((unsigned char *) ®isters[PC], buf, 4, 0); | 
|  | gdb_error ("PC == 0x%s\n", buf); | 
|  | } | 
|  |  | 
|  | /* reply to host that an exception has occurred */ | 
|  | sigval = computeSignal (exceptionVector); | 
|  |  | 
|  | ptr = remcomOutBuffer; | 
|  |  | 
|  | *ptr++ = 'T';			/* notify gdb with signo, PC, FP and SP */ | 
|  | *ptr++ = hexchars[sigval >> 4]; | 
|  | *ptr++ = hexchars[sigval & 0xf]; | 
|  |  | 
|  | *ptr++ = hexchars[PC >> 4]; | 
|  | *ptr++ = hexchars[PC & 0xf]; | 
|  | *ptr++ = ':'; | 
|  | ptr = mem2hex ((unsigned char *) ®isters[PC], ptr, 4, 0);	/* PC */ | 
|  | *ptr++ = ';'; | 
|  |  | 
|  | *ptr++ = hexchars[R13 >> 4]; | 
|  | *ptr++ = hexchars[R13 & 0xf]; | 
|  | *ptr++ = ':'; | 
|  | ptr = mem2hex ((unsigned char *) ®isters[R13], ptr, 4, 0);	/* FP */ | 
|  | *ptr++ = ';'; | 
|  |  | 
|  | *ptr++ = hexchars[R15 >> 4]; | 
|  | *ptr++ = hexchars[R15 & 0xf]; | 
|  | *ptr++ = ':'; | 
|  | ptr = mem2hex ((unsigned char *) ®isters[R15], ptr, 4, 0);	/* SP */ | 
|  | *ptr++ = ';'; | 
|  | *ptr++ = 0; | 
|  |  | 
|  | if (exceptionVector == 0)	/* simulated SYS call stuff */ | 
|  | { | 
|  | mem2hex ((unsigned char *) ®isters[PC], buf, 4, 0); | 
|  | switch (registers[R0]) | 
|  | { | 
|  | case SYS_exit: | 
|  | gdb_error ("Target program has exited at %s\n", buf); | 
|  | ptr = remcomOutBuffer; | 
|  | *ptr++ = 'W'; | 
|  | sigval = registers[R1] & 0xff; | 
|  | *ptr++ = hexchars[sigval >> 4]; | 
|  | *ptr++ = hexchars[sigval & 0xf]; | 
|  | *ptr++ = 0; | 
|  | break; | 
|  | case SYS_open: | 
|  | gdb_error ("Target attempts SYS_open call at %s\n", buf); | 
|  | break; | 
|  | case SYS_close: | 
|  | gdb_error ("Target attempts SYS_close call at %s\n", buf); | 
|  | break; | 
|  | case SYS_read: | 
|  | gdb_error ("Target attempts SYS_read call at %s\n", buf); | 
|  | break; | 
|  | case SYS_write: | 
|  | if (registers[R1] == 1 ||	/* write to stdout  */ | 
|  | registers[R1] == 2)	/* write to stderr  */ | 
|  | {			/* (we can do that) */ | 
|  | registers[R0] = | 
|  | gdb_write ((void *) registers[R2], registers[R3]); | 
|  | return; | 
|  | } | 
|  | else | 
|  | gdb_error ("Target attempts SYS_write call at %s\n", buf); | 
|  | break; | 
|  | case SYS_lseek: | 
|  | gdb_error ("Target attempts SYS_lseek call at %s\n", buf); | 
|  | break; | 
|  | case SYS_unlink: | 
|  | gdb_error ("Target attempts SYS_unlink call at %s\n", buf); | 
|  | break; | 
|  | case SYS_getpid: | 
|  | gdb_error ("Target attempts SYS_getpid call at %s\n", buf); | 
|  | break; | 
|  | case SYS_kill: | 
|  | gdb_error ("Target attempts SYS_kill call at %s\n", buf); | 
|  | break; | 
|  | case SYS_fstat: | 
|  | gdb_error ("Target attempts SYS_fstat call at %s\n", buf); | 
|  | break; | 
|  | default: | 
|  | gdb_error ("Target attempts unknown SYS call at %s\n", buf); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | putpacket (remcomOutBuffer); | 
|  |  | 
|  | stepping = 0; | 
|  |  | 
|  | while (1 == 1) | 
|  | { | 
|  | remcomOutBuffer[0] = 0; | 
|  | ptr = getpacket (); | 
|  | binary = 0; | 
|  | switch (*ptr++) | 
|  | { | 
|  | default:		/* Unknown code.  Return an empty reply message. */ | 
|  | break; | 
|  | case 'R': | 
|  | if (hexToInt (&ptr, &addr)) | 
|  | registers[PC] = addr; | 
|  | strcpy (remcomOutBuffer, "OK"); | 
|  | break; | 
|  | case '!': | 
|  | strcpy (remcomOutBuffer, "OK"); | 
|  | break; | 
|  | case 'X':		/* XAA..AA,LLLL:<binary data>#cs */ | 
|  | binary = 1; | 
|  | case 'M':		/* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */ | 
|  | /* TRY TO READ '%x,%x:'.  IF SUCCEED, SET PTR = 0 */ | 
|  | { | 
|  | if (hexToInt (&ptr, &addr)) | 
|  | if (*(ptr++) == ',') | 
|  | if (hexToInt (&ptr, &length)) | 
|  | if (*(ptr++) == ':') | 
|  | { | 
|  | mem_err = 0; | 
|  | if (binary) | 
|  | bin2mem (ptr, (unsigned char *) addr, length, 1); | 
|  | else | 
|  | hex2mem (ptr, (unsigned char *) addr, length, 1); | 
|  | if (mem_err) | 
|  | { | 
|  | strcpy (remcomOutBuffer, "E03"); | 
|  | gdb_error ("memory fault", ""); | 
|  | } | 
|  | else | 
|  | { | 
|  | strcpy (remcomOutBuffer, "OK"); | 
|  | } | 
|  | ptr = 0; | 
|  | } | 
|  | if (ptr) | 
|  | { | 
|  | strcpy (remcomOutBuffer, "E02"); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 'm':		/* mAA..AA,LLLL  Read LLLL bytes at address AA..AA */ | 
|  | /* TRY TO READ %x,%x.  IF SUCCEED, SET PTR = 0 */ | 
|  | if (hexToInt (&ptr, &addr)) | 
|  | if (*(ptr++) == ',') | 
|  | if (hexToInt (&ptr, &length)) | 
|  | { | 
|  | ptr = 0; | 
|  | mem_err = 0; | 
|  | mem2hex ((unsigned char *) addr, remcomOutBuffer, length, | 
|  | 1); | 
|  | if (mem_err) | 
|  | { | 
|  | strcpy (remcomOutBuffer, "E03"); | 
|  | gdb_error ("memory fault", ""); | 
|  | } | 
|  | } | 
|  | if (ptr) | 
|  | { | 
|  | strcpy (remcomOutBuffer, "E01"); | 
|  | } | 
|  | break; | 
|  | case '?': | 
|  | remcomOutBuffer[0] = 'S'; | 
|  | remcomOutBuffer[1] = hexchars[sigval >> 4]; | 
|  | remcomOutBuffer[2] = hexchars[sigval % 16]; | 
|  | remcomOutBuffer[3] = 0; | 
|  | break; | 
|  | case 'd': | 
|  | remote_debug = !(remote_debug);	/* toggle debug flag */ | 
|  | break; | 
|  | case 'g':		/* return the value of the CPU registers */ | 
|  | mem2hex ((unsigned char *) registers, remcomOutBuffer, NUMREGBYTES, | 
|  | 0); | 
|  | break; | 
|  | case 'P':		/* set the value of a single CPU register - return OK */ | 
|  | { | 
|  | int regno; | 
|  |  | 
|  | if (hexToInt (&ptr, ®no) && *ptr++ == '=') | 
|  | if (regno >= 0 && regno < NUMREGS) | 
|  | { | 
|  | int stackmode; | 
|  |  | 
|  | hex2mem (ptr, (unsigned char *) ®isters[regno], 4, 0); | 
|  | /* | 
|  | * Since we just changed a single CPU register, let's | 
|  | * make sure to keep the several stack pointers consistant. | 
|  | */ | 
|  | stackmode = registers[PSW] & 0x80; | 
|  | if (regno == R15)	/* stack pointer changed */ | 
|  | {		/* need to change SPI or SPU */ | 
|  | if (stackmode == 0) | 
|  | registers[SPI] = registers[R15]; | 
|  | else | 
|  | registers[SPU] = registers[R15]; | 
|  | } | 
|  | else if (regno == SPU)	/* "user" stack pointer changed */ | 
|  | { | 
|  | if (stackmode != 0)	/* stack in user mode: copy SP */ | 
|  | registers[R15] = registers[SPU]; | 
|  | } | 
|  | else if (regno == SPI)	/* "interrupt" stack pointer changed */ | 
|  | { | 
|  | if (stackmode == 0)	/* stack in interrupt mode: copy SP */ | 
|  | registers[R15] = registers[SPI]; | 
|  | } | 
|  | else if (regno == PSW)	/* stack mode may have changed! */ | 
|  | {		/* force SP to either SPU or SPI */ | 
|  | if (stackmode == 0)	/* stack in user mode */ | 
|  | registers[R15] = registers[SPI]; | 
|  | else	/* stack in interrupt mode */ | 
|  | registers[R15] = registers[SPU]; | 
|  | } | 
|  | strcpy (remcomOutBuffer, "OK"); | 
|  | break; | 
|  | } | 
|  | strcpy (remcomOutBuffer, "E01"); | 
|  | break; | 
|  | } | 
|  | case 'G':		/* set the value of the CPU registers - return OK */ | 
|  | hex2mem (ptr, (unsigned char *) registers, NUMREGBYTES, 0); | 
|  | strcpy (remcomOutBuffer, "OK"); | 
|  | break; | 
|  | case 's':		/* sAA..AA      Step one instruction from AA..AA(optional) */ | 
|  | stepping = 1; | 
|  | case 'c':		/* cAA..AA      Continue from address AA..AA(optional) */ | 
|  | /* try to read optional parameter, pc unchanged if no parm */ | 
|  | if (hexToInt (&ptr, &addr)) | 
|  | registers[PC] = addr; | 
|  |  | 
|  | if (stepping)		/* single-stepping */ | 
|  | { | 
|  | if (!prepare_to_step (0))	/* set up for single-step */ | 
|  | { | 
|  | /* prepare_to_step has already emulated the target insn: | 
|  | Send SIGTRAP to gdb, don't resume the target at all.  */ | 
|  | ptr = remcomOutBuffer; | 
|  | *ptr++ = 'T';	/* Simulate stopping with SIGTRAP */ | 
|  | *ptr++ = '0'; | 
|  | *ptr++ = '5'; | 
|  |  | 
|  | *ptr++ = hexchars[PC >> 4];	/* send PC */ | 
|  | *ptr++ = hexchars[PC & 0xf]; | 
|  | *ptr++ = ':'; | 
|  | ptr = mem2hex ((unsigned char *) ®isters[PC], ptr, 4, 0); | 
|  | *ptr++ = ';'; | 
|  |  | 
|  | *ptr++ = hexchars[R13 >> 4];	/* send FP */ | 
|  | *ptr++ = hexchars[R13 & 0xf]; | 
|  | *ptr++ = ':'; | 
|  | ptr = | 
|  | mem2hex ((unsigned char *) ®isters[R13], ptr, 4, 0); | 
|  | *ptr++ = ';'; | 
|  |  | 
|  | *ptr++ = hexchars[R15 >> 4];	/* send SP */ | 
|  | *ptr++ = hexchars[R15 & 0xf]; | 
|  | *ptr++ = ':'; | 
|  | ptr = | 
|  | mem2hex ((unsigned char *) ®isters[R15], ptr, 4, 0); | 
|  | *ptr++ = ';'; | 
|  | *ptr++ = 0; | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  | else			/* continuing, not single-stepping */ | 
|  | { | 
|  | /* OK, about to do a "continue".  First check to see if the | 
|  | target pc is on an odd boundary (second instruction in the | 
|  | word).  If so, we must do a single-step first, because | 
|  | ya can't jump or return back to an odd boundary!  */ | 
|  | if ((registers[PC] & 2) != 0) | 
|  | prepare_to_step (1); | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | case 'D':		/* Detach */ | 
|  | #if 0 | 
|  | /* I am interpreting this to mean, release the board from control | 
|  | by the remote stub.  To do this, I am restoring the original | 
|  | (or at least previous) exception vectors. | 
|  | */ | 
|  | for (i = 0; i < 18; i++) | 
|  | exceptionHandler (i, save_vectors[i]); | 
|  | putpacket ("OK"); | 
|  | return;		/* continue the inferior */ | 
|  | #else | 
|  | strcpy (remcomOutBuffer, "OK"); | 
|  | break; | 
|  | #endif | 
|  | case 'q': | 
|  | if (*ptr++ == 'C' && | 
|  | *ptr++ == 'R' && *ptr++ == 'C' && *ptr++ == ':') | 
|  | { | 
|  | unsigned long start, len, our_crc; | 
|  |  | 
|  | if (hexToInt (&ptr, (int *) &start) && | 
|  | *ptr++ == ',' && hexToInt (&ptr, (int *) &len)) | 
|  | { | 
|  | remcomOutBuffer[0] = 'C'; | 
|  | our_crc = crc32 ((unsigned char *) start, len, 0xffffffff); | 
|  | mem2hex ((char *) &our_crc, | 
|  | &remcomOutBuffer[1], sizeof (long), 0); | 
|  | }		/* else do nothing */ | 
|  | }			/* else do nothing */ | 
|  | break; | 
|  |  | 
|  | case 'k':		/* kill the program */ | 
|  | continue; | 
|  | }			/* switch */ | 
|  |  | 
|  | /* reply to the request */ | 
|  | putpacket (remcomOutBuffer); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* qCRC support */ | 
|  |  | 
|  | /* Table used by the crc32 function to calculate the checksum.  */ | 
|  | static unsigned long crc32_table[256] = { 0, 0 }; | 
|  |  | 
|  | static unsigned long | 
|  | crc32 (unsigned char *buf, int len, unsigned long crc) | 
|  | { | 
|  | if (!crc32_table[1]) | 
|  | { | 
|  | /* Initialize the CRC table and the decoding table. */ | 
|  | int i, j; | 
|  | unsigned long c; | 
|  |  | 
|  | for (i = 0; i < 256; i++) | 
|  | { | 
|  | for (c = i << 24, j = 8; j > 0; --j) | 
|  | c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1); | 
|  | crc32_table[i] = c; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (len--) | 
|  | { | 
|  | crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255]; | 
|  | buf++; | 
|  | } | 
|  | return crc; | 
|  | } | 
|  |  | 
|  | static int | 
|  | hex (unsigned char ch) | 
|  | { | 
|  | if ((ch >= 'a') && (ch <= 'f')) | 
|  | return (ch - 'a' + 10); | 
|  | if ((ch >= '0') && (ch <= '9')) | 
|  | return (ch - '0'); | 
|  | if ((ch >= 'A') && (ch <= 'F')) | 
|  | return (ch - 'A' + 10); | 
|  | return (-1); | 
|  | } | 
|  |  | 
|  | /* scan for the sequence $<data>#<checksum>     */ | 
|  |  | 
|  | unsigned char * | 
|  | getpacket (void) | 
|  | { | 
|  | unsigned char *buffer = &remcomInBuffer[0]; | 
|  | unsigned char checksum; | 
|  | unsigned char xmitcsum; | 
|  | int count; | 
|  | char ch; | 
|  |  | 
|  | while (1) | 
|  | { | 
|  | /* wait around for the start character, ignore all other characters */ | 
|  | while ((ch = getDebugChar ()) != '$') | 
|  | ; | 
|  |  | 
|  | retry: | 
|  | checksum = 0; | 
|  | xmitcsum = -1; | 
|  | count = 0; | 
|  |  | 
|  | /* now, read until a # or end of buffer is found */ | 
|  | while (count < BUFMAX - 1) | 
|  | { | 
|  | ch = getDebugChar (); | 
|  | if (ch == '$') | 
|  | goto retry; | 
|  | if (ch == '#') | 
|  | break; | 
|  | checksum = checksum + ch; | 
|  | buffer[count] = ch; | 
|  | count = count + 1; | 
|  | } | 
|  | buffer[count] = 0; | 
|  |  | 
|  | if (ch == '#') | 
|  | { | 
|  | ch = getDebugChar (); | 
|  | xmitcsum = hex (ch) << 4; | 
|  | ch = getDebugChar (); | 
|  | xmitcsum += hex (ch); | 
|  |  | 
|  | if (checksum != xmitcsum) | 
|  | { | 
|  | if (remote_debug) | 
|  | { | 
|  | unsigned char buf[16]; | 
|  |  | 
|  | mem2hex ((unsigned char *) &checksum, buf, 4, 0); | 
|  | gdb_error ("Bad checksum: my count = %s, ", buf); | 
|  | mem2hex ((unsigned char *) &xmitcsum, buf, 4, 0); | 
|  | gdb_error ("sent count = %s\n", buf); | 
|  | gdb_error (" -- Bad buffer: \"%s\"\n", buffer); | 
|  | } | 
|  | putDebugChar ('-');	/* failed checksum */ | 
|  | } | 
|  | else | 
|  | { | 
|  | putDebugChar ('+');	/* successful transfer */ | 
|  |  | 
|  | /* if a sequence char is present, reply the sequence ID */ | 
|  | if (buffer[2] == ':') | 
|  | { | 
|  | putDebugChar (buffer[0]); | 
|  | putDebugChar (buffer[1]); | 
|  |  | 
|  | return &buffer[3]; | 
|  | } | 
|  |  | 
|  | return &buffer[0]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* send the packet in buffer.  */ | 
|  |  | 
|  | static void | 
|  | putpacket (unsigned char *buffer) | 
|  | { | 
|  | unsigned char checksum; | 
|  | int count; | 
|  | char ch; | 
|  |  | 
|  | /*  $<packet info>#<checksum>. */ | 
|  | do | 
|  | { | 
|  | putDebugChar ('$'); | 
|  | checksum = 0; | 
|  | count = 0; | 
|  |  | 
|  | while (ch = buffer[count]) | 
|  | { | 
|  | putDebugChar (ch); | 
|  | checksum += ch; | 
|  | count += 1; | 
|  | } | 
|  | putDebugChar ('#'); | 
|  | putDebugChar (hexchars[checksum >> 4]); | 
|  | putDebugChar (hexchars[checksum % 16]); | 
|  | } | 
|  | while (getDebugChar () != '+'); | 
|  | } | 
|  |  | 
|  | /* Address of a routine to RTE to if we get a memory fault.  */ | 
|  |  | 
|  | static void (*volatile mem_fault_routine) () = 0; | 
|  |  | 
|  | static void | 
|  | set_mem_err (void) | 
|  | { | 
|  | mem_err = 1; | 
|  | } | 
|  |  | 
|  | /* Check the address for safe access ranges.  As currently defined, | 
|  | this routine will reject the "expansion bus" address range(s). | 
|  | To make those ranges useable, someone must implement code to detect | 
|  | whether there's anything connected to the expansion bus. */ | 
|  |  | 
|  | static int | 
|  | mem_safe (unsigned char *addr) | 
|  | { | 
|  | #define BAD_RANGE_ONE_START	((unsigned char *) 0x600000) | 
|  | #define BAD_RANGE_ONE_END	((unsigned char *) 0xa00000) | 
|  | #define BAD_RANGE_TWO_START	((unsigned char *) 0xff680000) | 
|  | #define BAD_RANGE_TWO_END	((unsigned char *) 0xff800000) | 
|  |  | 
|  | if (addr < BAD_RANGE_ONE_START) | 
|  | return 1;			/* safe */ | 
|  | if (addr < BAD_RANGE_ONE_END) | 
|  | return 0;			/* unsafe */ | 
|  | if (addr < BAD_RANGE_TWO_START) | 
|  | return 1;			/* safe */ | 
|  | if (addr < BAD_RANGE_TWO_END) | 
|  | return 0;			/* unsafe */ | 
|  | } | 
|  |  | 
|  | /* These are separate functions so that they are so short and sweet | 
|  | that the compiler won't save any registers (if there is a fault | 
|  | to mem_fault, they won't get restored, so there better not be any | 
|  | saved).  */ | 
|  | static int | 
|  | get_char (unsigned char *addr) | 
|  | { | 
|  | #if 1 | 
|  | if (mem_fault_routine && !mem_safe (addr)) | 
|  | { | 
|  | mem_fault_routine (); | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  | return *addr; | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_char (unsigned char *addr, unsigned char val) | 
|  | { | 
|  | #if 1 | 
|  | if (mem_fault_routine && !mem_safe (addr)) | 
|  | { | 
|  | mem_fault_routine (); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | *addr = val; | 
|  | } | 
|  |  | 
|  | /* Convert the memory pointed to by mem into hex, placing result in buf. | 
|  | Return a pointer to the last char put in buf (null). | 
|  | If MAY_FAULT is non-zero, then we should set mem_err in response to | 
|  | a fault; if zero treat a fault like any other fault in the stub.  */ | 
|  |  | 
|  | static unsigned char * | 
|  | mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault) | 
|  | { | 
|  | int i; | 
|  | unsigned char ch; | 
|  |  | 
|  | if (may_fault) | 
|  | mem_fault_routine = set_mem_err; | 
|  | for (i = 0; i < count; i++) | 
|  | { | 
|  | ch = get_char (mem++); | 
|  | if (may_fault && mem_err) | 
|  | return (buf); | 
|  | *buf++ = hexchars[ch >> 4]; | 
|  | *buf++ = hexchars[ch % 16]; | 
|  | } | 
|  | *buf = 0; | 
|  | if (may_fault) | 
|  | mem_fault_routine = 0; | 
|  | return (buf); | 
|  | } | 
|  |  | 
|  | /* Convert the hex array pointed to by buf into binary to be placed in mem. | 
|  | Return a pointer to the character AFTER the last byte written. */ | 
|  |  | 
|  | static unsigned char * | 
|  | hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault) | 
|  | { | 
|  | int i; | 
|  | unsigned char ch; | 
|  |  | 
|  | if (may_fault) | 
|  | mem_fault_routine = set_mem_err; | 
|  | for (i = 0; i < count; i++) | 
|  | { | 
|  | ch = hex (*buf++) << 4; | 
|  | ch = ch + hex (*buf++); | 
|  | set_char (mem++, ch); | 
|  | if (may_fault && mem_err) | 
|  | return (mem); | 
|  | } | 
|  | if (may_fault) | 
|  | mem_fault_routine = 0; | 
|  | return (mem); | 
|  | } | 
|  |  | 
|  | /* Convert the binary stream in BUF to memory. | 
|  |  | 
|  | Gdb will escape $, #, and the escape char (0x7d). | 
|  | COUNT is the total number of bytes to write into | 
|  | memory. */ | 
|  | static unsigned char * | 
|  | bin2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault) | 
|  | { | 
|  | int i; | 
|  | unsigned char ch; | 
|  |  | 
|  | if (may_fault) | 
|  | mem_fault_routine = set_mem_err; | 
|  | for (i = 0; i < count; i++) | 
|  | { | 
|  | /* Check for any escaped characters. Be paranoid and | 
|  | only unescape chars that should be escaped. */ | 
|  | if (*buf == 0x7d) | 
|  | { | 
|  | switch (*(buf + 1)) | 
|  | { | 
|  | case 0x3:		/* # */ | 
|  | case 0x4:		/* $ */ | 
|  | case 0x5d:		/* escape char */ | 
|  | buf++; | 
|  | *buf |= 0x20; | 
|  | break; | 
|  | default: | 
|  | /* nothing */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | set_char (mem++, *buf++); | 
|  |  | 
|  | if (may_fault && mem_err) | 
|  | return mem; | 
|  | } | 
|  |  | 
|  | if (may_fault) | 
|  | mem_fault_routine = 0; | 
|  | return mem; | 
|  | } | 
|  |  | 
|  | /* this function takes the m32r exception vector and attempts to | 
|  | translate this number into a unix compatible signal value */ | 
|  |  | 
|  | static int | 
|  | computeSignal (int exceptionVector) | 
|  | { | 
|  | int sigval; | 
|  | switch (exceptionVector) | 
|  | { | 
|  | case 0: | 
|  | sigval = 23; | 
|  | break;			/* I/O trap                    */ | 
|  | case 1: | 
|  | sigval = 5; | 
|  | break;			/* breakpoint                  */ | 
|  | case 2: | 
|  | sigval = 5; | 
|  | break;			/* breakpoint                  */ | 
|  | case 3: | 
|  | sigval = 5; | 
|  | break;			/* breakpoint                  */ | 
|  | case 4: | 
|  | sigval = 5; | 
|  | break;			/* breakpoint                  */ | 
|  | case 5: | 
|  | sigval = 5; | 
|  | break;			/* breakpoint                  */ | 
|  | case 6: | 
|  | sigval = 5; | 
|  | break;			/* breakpoint                  */ | 
|  | case 7: | 
|  | sigval = 5; | 
|  | break;			/* breakpoint                  */ | 
|  | case 8: | 
|  | sigval = 5; | 
|  | break;			/* breakpoint                  */ | 
|  | case 9: | 
|  | sigval = 5; | 
|  | break;			/* breakpoint                  */ | 
|  | case 10: | 
|  | sigval = 5; | 
|  | break;			/* breakpoint                  */ | 
|  | case 11: | 
|  | sigval = 5; | 
|  | break;			/* breakpoint                  */ | 
|  | case 12: | 
|  | sigval = 5; | 
|  | break;			/* breakpoint                  */ | 
|  | case 13: | 
|  | sigval = 5; | 
|  | break;			/* breakpoint                  */ | 
|  | case 14: | 
|  | sigval = 5; | 
|  | break;			/* breakpoint                  */ | 
|  | case 15: | 
|  | sigval = 5; | 
|  | break;			/* breakpoint                  */ | 
|  | case 16: | 
|  | sigval = 10; | 
|  | break;			/* BUS ERROR (alignment)       */ | 
|  | case 17: | 
|  | sigval = 2; | 
|  | break;			/* INTerrupt                   */ | 
|  | default: | 
|  | sigval = 7; | 
|  | break;			/* "software generated"        */ | 
|  | } | 
|  | return (sigval); | 
|  | } | 
|  |  | 
|  | /**********************************************/ | 
|  | /* WHILE WE FIND NICE HEX CHARS, BUILD AN INT */ | 
|  | /* RETURN NUMBER OF CHARS PROCESSED           */ | 
|  | /**********************************************/ | 
|  | static int | 
|  | hexToInt (unsigned char **ptr, int *intValue) | 
|  | { | 
|  | int numChars = 0; | 
|  | int hexValue; | 
|  |  | 
|  | *intValue = 0; | 
|  | while (**ptr) | 
|  | { | 
|  | hexValue = hex (**ptr); | 
|  | if (hexValue >= 0) | 
|  | { | 
|  | *intValue = (*intValue << 4) | hexValue; | 
|  | numChars++; | 
|  | } | 
|  | else | 
|  | break; | 
|  | (*ptr)++; | 
|  | } | 
|  | return (numChars); | 
|  | } | 
|  |  | 
|  | /* | 
|  | Table of branch instructions: | 
|  |  | 
|  | 10B6		RTE	return from trap or exception | 
|  | 1FCr		JMP	jump | 
|  | 1ECr		JL	jump and link | 
|  | 7Fxx		BRA	branch | 
|  | FFxxxxxx	BRA	branch (long) | 
|  | B09rxxxx	BNEZ	branch not-equal-zero | 
|  | Br1rxxxx	BNE	branch not-equal | 
|  | 7Dxx		BNC	branch not-condition | 
|  | FDxxxxxx	BNC	branch not-condition (long) | 
|  | B0Arxxxx	BLTZ	branch less-than-zero | 
|  | B0Crxxxx	BLEZ	branch less-equal-zero | 
|  | 7Exx		BL	branch and link | 
|  | FExxxxxx	BL	branch and link (long) | 
|  | B0Drxxxx	BGTZ	branch greater-than-zero | 
|  | B0Brxxxx	BGEZ	branch greater-equal-zero | 
|  | B08rxxxx	BEQZ	branch equal-zero | 
|  | Br0rxxxx	BEQ	branch equal | 
|  | 7Cxx		BC	branch condition | 
|  | FCxxxxxx	BC	branch condition (long) | 
|  | */ | 
|  |  | 
|  | static int | 
|  | isShortBranch (unsigned char *instr) | 
|  | { | 
|  | unsigned char instr0 = instr[0] & 0x7F;	/* mask off high bit */ | 
|  |  | 
|  | if (instr0 == 0x10 && instr[1] == 0xB6)	/* RTE */ | 
|  | return 1;			/* return from trap or exception */ | 
|  |  | 
|  | if (instr0 == 0x1E || instr0 == 0x1F)	/* JL or JMP */ | 
|  | if ((instr[1] & 0xF0) == 0xC0) | 
|  | return 2;			/* jump thru a register */ | 
|  |  | 
|  | if (instr0 == 0x7C || instr0 == 0x7D ||	/* BC, BNC, BL, BRA */ | 
|  | instr0 == 0x7E || instr0 == 0x7F) | 
|  | return 3;			/* eight bit PC offset */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | isLongBranch (unsigned char *instr) | 
|  | { | 
|  | if (instr[0] == 0xFC || instr[0] == 0xFD ||	/* BRA, BNC, BL, BC */ | 
|  | instr[0] == 0xFE || instr[0] == 0xFF)	/* 24 bit relative */ | 
|  | return 4; | 
|  | if ((instr[0] & 0xF0) == 0xB0)	/* 16 bit relative */ | 
|  | { | 
|  | if ((instr[1] & 0xF0) == 0x00 ||	/* BNE, BEQ */ | 
|  | (instr[1] & 0xF0) == 0x10) | 
|  | return 5; | 
|  | if (instr[0] == 0xB0)	/* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ, BEQZ */ | 
|  | if ((instr[1] & 0xF0) == 0x80 || (instr[1] & 0xF0) == 0x90 || | 
|  | (instr[1] & 0xF0) == 0xA0 || (instr[1] & 0xF0) == 0xB0 || | 
|  | (instr[1] & 0xF0) == 0xC0 || (instr[1] & 0xF0) == 0xD0) | 
|  | return 6; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* if address is NOT on a 4-byte boundary, or high-bit of instr is zero, | 
|  | then it's a 2-byte instruction, else it's a 4-byte instruction.  */ | 
|  |  | 
|  | #define INSTRUCTION_SIZE(addr) \ | 
|  | ((((int) addr & 2) || (((unsigned char *) addr)[0] & 0x80) == 0) ? 2 : 4) | 
|  |  | 
|  | static int | 
|  | isBranch (unsigned char *instr) | 
|  | { | 
|  | if (INSTRUCTION_SIZE (instr) == 2) | 
|  | return isShortBranch (instr); | 
|  | else | 
|  | return isLongBranch (instr); | 
|  | } | 
|  |  | 
|  | static int | 
|  | willBranch (unsigned char *instr, int branchCode) | 
|  | { | 
|  | switch (branchCode) | 
|  | { | 
|  | case 0: | 
|  | return 0;			/* not a branch */ | 
|  | case 1: | 
|  | return 1;			/* RTE */ | 
|  | case 2: | 
|  | return 1;			/* JL or JMP    */ | 
|  | case 3:			/* BC, BNC, BL, BRA (short) */ | 
|  | case 4:			/* BC, BNC, BL, BRA (long) */ | 
|  | switch (instr[0] & 0x0F) | 
|  | { | 
|  | case 0xC:		/* Branch if Condition Register */ | 
|  | return (registers[CBR] != 0); | 
|  | case 0xD:		/* Branch if NOT Condition Register */ | 
|  | return (registers[CBR] == 0); | 
|  | case 0xE:		/* Branch and Link */ | 
|  | case 0xF:		/* Branch (unconditional) */ | 
|  | return 1; | 
|  | default:		/* oops? */ | 
|  | return 0; | 
|  | } | 
|  | case 5:			/* BNE, BEQ */ | 
|  | switch (instr[1] & 0xF0) | 
|  | { | 
|  | case 0x00:		/* Branch if r1 equal to r2 */ | 
|  | return (registers[instr[0] & 0x0F] == registers[instr[1] & 0x0F]); | 
|  | case 0x10:		/* Branch if r1 NOT equal to r2 */ | 
|  | return (registers[instr[0] & 0x0F] != registers[instr[1] & 0x0F]); | 
|  | default:		/* oops? */ | 
|  | return 0; | 
|  | } | 
|  | case 6:			/* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ */ | 
|  | switch (instr[1] & 0xF0) | 
|  | { | 
|  | case 0x80:		/* Branch if reg equal to zero */ | 
|  | return (registers[instr[1] & 0x0F] == 0); | 
|  | case 0x90:		/* Branch if reg NOT equal to zero */ | 
|  | return (registers[instr[1] & 0x0F] != 0); | 
|  | case 0xA0:		/* Branch if reg less than zero */ | 
|  | return (registers[instr[1] & 0x0F] < 0); | 
|  | case 0xB0:		/* Branch if reg greater or equal to zero */ | 
|  | return (registers[instr[1] & 0x0F] >= 0); | 
|  | case 0xC0:		/* Branch if reg less than or equal to zero */ | 
|  | return (registers[instr[1] & 0x0F] <= 0); | 
|  | case 0xD0:		/* Branch if reg greater than zero */ | 
|  | return (registers[instr[1] & 0x0F] > 0); | 
|  | default:		/* oops? */ | 
|  | return 0; | 
|  | } | 
|  | default:			/* oops? */ | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | branchDestination (unsigned char *instr, int branchCode) | 
|  | { | 
|  | switch (branchCode) | 
|  | { | 
|  | default: | 
|  | case 0:			/* not a branch */ | 
|  | return 0; | 
|  | case 1:			/* RTE */ | 
|  | return registers[BPC] & ~3;	/* pop BPC into PC */ | 
|  | case 2:			/* JL or JMP */ | 
|  | return registers[instr[1] & 0x0F] & ~3;	/* jump thru a register */ | 
|  | case 3:			/* BC, BNC, BL, BRA (short, 8-bit relative offset) */ | 
|  | return (((int) instr) & ~3) + ((char) instr[1] << 2); | 
|  | case 4:			/* BC, BNC, BL, BRA (long, 24-bit relative offset) */ | 
|  | return ((int) instr + | 
|  | ((((char) instr[1] << 16) | (instr[2] << 8) | (instr[3])) << | 
|  | 2)); | 
|  | case 5:			/* BNE, BEQ (16-bit relative offset) */ | 
|  | case 6:			/* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ (ditto) */ | 
|  | return ((int) instr + ((((char) instr[2] << 8) | (instr[3])) << 2)); | 
|  | } | 
|  |  | 
|  | /* An explanatory note: in the last three return expressions, I have | 
|  | cast the most-significant byte of the return offset to char. | 
|  | What this accomplishes is sign extension.  If the other | 
|  | less-significant bytes were signed as well, they would get sign | 
|  | extended too and, if negative, their leading bits would clobber | 
|  | the bits of the more-significant bytes ahead of them.  There are | 
|  | other ways I could have done this, but sign extension from | 
|  | odd-sized integers is always a pain. */ | 
|  | } | 
|  |  | 
|  | static void | 
|  | branchSideEffects (unsigned char *instr, int branchCode) | 
|  | { | 
|  | switch (branchCode) | 
|  | { | 
|  | case 1:			/* RTE */ | 
|  | return;			/* I <THINK> this is already handled... */ | 
|  | case 2:			/* JL (or JMP) */ | 
|  | case 3:			/* BL (or BC, BNC, BRA) */ | 
|  | case 4: | 
|  | if ((instr[0] & 0x0F) == 0x0E)	/* branch/jump and link */ | 
|  | registers[R14] = (registers[PC] & ~3) + 4; | 
|  | return; | 
|  | default:			/* any other branch has no side effects */ | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct STEPPING_CONTEXT | 
|  | { | 
|  | int stepping;			/* true when we've started a single-step */ | 
|  | unsigned long target_addr;	/* the instr we're trying to execute */ | 
|  | unsigned long target_size;	/* the size of the target instr */ | 
|  | unsigned long noop_addr;	/* where we've inserted a no-op, if any */ | 
|  | unsigned long trap1_addr;	/* the trap following the target instr */ | 
|  | unsigned long trap2_addr;	/* the trap at a branch destination, if any */ | 
|  | unsigned short noop_save;	/* instruction overwritten by our no-op */ | 
|  | unsigned short trap1_save;	/* instruction overwritten by trap1 */ | 
|  | unsigned short trap2_save;	/* instruction overwritten by trap2 */ | 
|  | unsigned short continue_p;	/* true if NOT returning to gdb after step */ | 
|  | } stepping; | 
|  |  | 
|  | /* Function: prepare_to_step | 
|  | Called from handle_exception to prepare the user program to single-step. | 
|  | Places a trap instruction after the target instruction, with special | 
|  | extra handling for branch instructions and for instructions in the | 
|  | second half-word of a word. | 
|  |  | 
|  | Returns: True  if we should actually execute the instruction; | 
|  | False if we are going to emulate executing the instruction, | 
|  | in which case we simply report to GDB that the instruction | 
|  | has already been executed.  */ | 
|  |  | 
|  | #define TRAP1  0x10f1;		/* trap #1 instruction */ | 
|  | #define NOOP   0x7000;		/* noop    instruction */ | 
|  |  | 
|  | static unsigned short trap1 = TRAP1; | 
|  | static unsigned short noop = NOOP; | 
|  |  | 
|  | static int | 
|  | prepare_to_step (continue_p) | 
|  | int continue_p;		/* if this isn't REALLY a single-step (see below) */ | 
|  | { | 
|  | unsigned long pc = registers[PC]; | 
|  | int branchCode = isBranch ((unsigned char *) pc); | 
|  | unsigned char *p; | 
|  |  | 
|  | /* zero out the stepping context | 
|  | (paranoia -- it should already be zeroed) */ | 
|  | for (p = (unsigned char *) &stepping; | 
|  | p < ((unsigned char *) &stepping) + sizeof (stepping); p++) | 
|  | *p = 0; | 
|  |  | 
|  | if (branchCode != 0)		/* next instruction is a branch */ | 
|  | { | 
|  | branchSideEffects ((unsigned char *) pc, branchCode); | 
|  | if (willBranch ((unsigned char *) pc, branchCode)) | 
|  | registers[PC] = branchDestination ((unsigned char *) pc, branchCode); | 
|  | else | 
|  | registers[PC] = pc + INSTRUCTION_SIZE (pc); | 
|  | return 0;			/* branch "executed" -- just notify GDB */ | 
|  | } | 
|  | else if (((int) pc & 2) != 0)	/* "second-slot" instruction */ | 
|  | { | 
|  | /* insert no-op before pc */ | 
|  | stepping.noop_addr = pc - 2; | 
|  | stepping.noop_save = *(unsigned short *) stepping.noop_addr; | 
|  | *(unsigned short *) stepping.noop_addr = noop; | 
|  | /* insert trap  after  pc */ | 
|  | stepping.trap1_addr = pc + 2; | 
|  | stepping.trap1_save = *(unsigned short *) stepping.trap1_addr; | 
|  | *(unsigned short *) stepping.trap1_addr = trap1; | 
|  | } | 
|  | else				/* "first-slot" instruction */ | 
|  | { | 
|  | /* insert trap  after  pc */ | 
|  | stepping.trap1_addr = pc + INSTRUCTION_SIZE (pc); | 
|  | stepping.trap1_save = *(unsigned short *) stepping.trap1_addr; | 
|  | *(unsigned short *) stepping.trap1_addr = trap1; | 
|  | } | 
|  | /* "continue_p" means that we are actually doing a continue, and not | 
|  | being requested to single-step by GDB.  Sometimes we have to do | 
|  | one single-step before continuing, because the PC is on a half-word | 
|  | boundary.  There's no way to simply resume at such an address.  */ | 
|  | stepping.continue_p = continue_p; | 
|  | stepping.stepping = 1;	/* starting a single-step */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Function: finish_from_step | 
|  | Called from handle_exception to finish up when the user program | 
|  | returns from a single-step.  Replaces the instructions that had | 
|  | been overwritten by traps or no-ops, | 
|  |  | 
|  | Returns: True  if we should notify GDB that the target stopped. | 
|  | False if we only single-stepped because we had to before we | 
|  | could continue (ie. we were trying to continue at a | 
|  | half-word boundary).  In that case don't notify GDB: | 
|  | just "continue continuing".  */ | 
|  |  | 
|  | static int | 
|  | finish_from_step (void) | 
|  | { | 
|  | if (stepping.stepping)	/* anything to do? */ | 
|  | { | 
|  | int continue_p = stepping.continue_p; | 
|  | unsigned char *p; | 
|  |  | 
|  | if (stepping.noop_addr)	/* replace instr "under" our no-op */ | 
|  | *(unsigned short *) stepping.noop_addr = stepping.noop_save; | 
|  | if (stepping.trap1_addr)	/* replace instr "under" our trap  */ | 
|  | *(unsigned short *) stepping.trap1_addr = stepping.trap1_save; | 
|  | if (stepping.trap2_addr)	/* ditto our other trap, if any    */ | 
|  | *(unsigned short *) stepping.trap2_addr = stepping.trap2_save; | 
|  |  | 
|  | for (p = (unsigned char *) &stepping;	/* zero out the stepping context */ | 
|  | p < ((unsigned char *) &stepping) + sizeof (stepping); p++) | 
|  | *p = 0; | 
|  |  | 
|  | return !(continue_p); | 
|  | } | 
|  | else				/* we didn't single-step, therefore this must be a legitimate stop */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | struct PSWreg | 
|  | {				/* separate out the bit flags in the PSW register */ | 
|  | int pad1:16; | 
|  | int bsm:1; | 
|  | int bie:1; | 
|  | int pad2:5; | 
|  | int bc:1; | 
|  | int sm:1; | 
|  | int ie:1; | 
|  | int pad3:5; | 
|  | int c:1; | 
|  | } *psw; | 
|  |  | 
|  | /* Upon entry the value for LR to save has been pushed. | 
|  | We unpush that so that the value for the stack pointer saved is correct. | 
|  | Upon entry, all other registers are assumed to have not been modified | 
|  | since the interrupt/trap occured.  */ | 
|  |  | 
|  | asm ("\n\ | 
|  | stash_registers:\n\ | 
|  | push r0\n\ | 
|  | push r1\n\ | 
|  | seth r1, #shigh(registers)\n\ | 
|  | add3 r1, r1, #low(registers)\n\ | 
|  | pop r0		; r1\n\ | 
|  | st r0, @(4,r1)\n\ | 
|  | pop r0		; r0\n\ | 
|  | st r0, @r1\n\ | 
|  | addi r1, #4	; only add 4 as subsequent saves are `pre inc'\n\ | 
|  | st r2, @+r1\n\ | 
|  | st r3, @+r1\n\ | 
|  | st r4, @+r1\n\ | 
|  | st r5, @+r1\n\ | 
|  | st r6, @+r1\n\ | 
|  | st r7, @+r1\n\ | 
|  | st r8, @+r1\n\ | 
|  | st r9, @+r1\n\ | 
|  | st r10, @+r1\n\ | 
|  | st r11, @+r1\n\ | 
|  | st r12, @+r1\n\ | 
|  | st r13, @+r1    ; fp\n\ | 
|  | pop r0		; lr (r14)\n\ | 
|  | st r0, @+r1\n\ | 
|  | st sp, @+r1	; sp contains right value at this point\n\ | 
|  | mvfc r0, cr0\n\ | 
|  | st r0, @+r1	; cr0 == PSW\n\ | 
|  | mvfc r0, cr1\n\ | 
|  | st r0, @+r1	; cr1 == CBR\n\ | 
|  | mvfc r0, cr2\n\ | 
|  | st r0, @+r1	; cr2 == SPI\n\ | 
|  | mvfc r0, cr3\n\ | 
|  | st r0, @+r1	; cr3 == SPU\n\ | 
|  | mvfc r0, cr6\n\ | 
|  | st r0, @+r1	; cr6 == BPC\n\ | 
|  | st r0, @+r1	; PC  == BPC\n\ | 
|  | mvfaclo r0\n\ | 
|  | st r0, @+r1	; ACCL\n\ | 
|  | mvfachi r0\n\ | 
|  | st r0, @+r1	; ACCH\n\ | 
|  | jmp lr"); | 
|  |  | 
|  | /* C routine to clean up what stash_registers did. | 
|  | It is called after calling stash_registers. | 
|  | This is separate from stash_registers as we want to do this in C | 
|  | but doing stash_registers in C isn't straightforward.  */ | 
|  |  | 
|  | static void | 
|  | cleanup_stash (void) | 
|  | { | 
|  | psw = (struct PSWreg *) ®isters[PSW];	/* fields of PSW register */ | 
|  | psw->sm = psw->bsm;		/* fix up pre-trap values of psw fields */ | 
|  | psw->ie = psw->bie; | 
|  | psw->c = psw->bc; | 
|  | registers[CBR] = psw->bc;	/* fix up pre-trap "C" register */ | 
|  |  | 
|  | #if 0				/* FIXME: Was in previous version.  Necessary? | 
|  | (Remember that we use the "rte" insn to return from the | 
|  | trap/interrupt so the values of bsm, bie, bc are important.  */ | 
|  | psw->bsm = psw->bie = psw->bc = 0;	/* zero post-trap values */ | 
|  | #endif | 
|  |  | 
|  | /* FIXME: Copied from previous version.  This can probably be deleted | 
|  | since methinks stash_registers has already done this.  */ | 
|  | registers[PC] = registers[BPC];	/* pre-trap PC */ | 
|  |  | 
|  | /* FIXME: Copied from previous version.  Necessary?  */ | 
|  | if (psw->sm)			/* copy R15 into (psw->sm ? SPU : SPI) */ | 
|  | registers[SPU] = registers[R15]; | 
|  | else | 
|  | registers[SPI] = registers[R15]; | 
|  | } | 
|  |  | 
|  | asm ("\n\ | 
|  | restore_and_return:\n\ | 
|  | seth r0, #shigh(registers+8)\n\ | 
|  | add3 r0, r0, #low(registers+8)\n\ | 
|  | ld r2, @r0+	; restore r2\n\ | 
|  | ld r3, @r0+	; restore r3\n\ | 
|  | ld r4, @r0+	; restore r4\n\ | 
|  | ld r5, @r0+	; restore r5\n\ | 
|  | ld r6, @r0+	; restore r6\n\ | 
|  | ld r7, @r0+	; restore r7\n\ | 
|  | ld r8, @r0+	; restore r8\n\ | 
|  | ld r9, @r0+	; restore r9\n\ | 
|  | ld r10, @r0+	; restore r10\n\ | 
|  | ld r11, @r0+	; restore r11\n\ | 
|  | ld r12, @r0+	; restore r12\n\ | 
|  | ld r13, @r0+	; restore r13\n\ | 
|  | ld r14, @r0+	; restore r14\n\ | 
|  | ld r15, @r0+	; restore r15\n\ | 
|  | ld r1, @r0+	; restore cr0 == PSW\n\ | 
|  | mvtc r1, cr0\n\ | 
|  | ld r1, @r0+	; restore cr1 == CBR (no-op, because it's read only)\n\ | 
|  | mvtc r1, cr1\n\ | 
|  | ld r1, @r0+	; restore cr2 == SPI\n\ | 
|  | mvtc r1, cr2\n\ | 
|  | ld r1, @r0+	; restore cr3 == SPU\n\ | 
|  | mvtc r1, cr3\n\ | 
|  | addi r0, #4	; skip BPC\n\ | 
|  | ld r1, @r0+	; restore cr6 (BPC) == PC\n\ | 
|  | mvtc r1, cr6\n\ | 
|  | ld r1, @r0+	; restore ACCL\n\ | 
|  | mvtaclo r1\n\ | 
|  | ld r1, @r0+	; restore ACCH\n\ | 
|  | mvtachi r1\n\ | 
|  | seth r0, #shigh(registers)\n\ | 
|  | add3 r0, r0, #low(registers)\n\ | 
|  | ld r1, @(4,r0)	; restore r1\n\ | 
|  | ld r0, @r0	; restore r0\n\ | 
|  | rte"); | 
|  |  | 
|  | /* General trap handler, called after the registers have been stashed. | 
|  | NUM is the trap/exception number.  */ | 
|  |  | 
|  | static void | 
|  | process_exception (int num) | 
|  | { | 
|  | cleanup_stash (); | 
|  | asm volatile ("\n\ | 
|  | seth r1, #shigh(stackPtr)\n\ | 
|  | add3 r1, r1, #low(stackPtr)\n\ | 
|  | ld r15, @r1		; setup local stack (protect user stack)\n\ | 
|  | mv r0, %0\n\ | 
|  | bl handle_exception\n\ | 
|  | bl restore_and_return"::"r" (num):"r0", "r1"); | 
|  | } | 
|  |  | 
|  | void _catchException0 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException0:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | ldi r0, #0\n\ | 
|  | bl process_exception"); | 
|  |  | 
|  | void _catchException1 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException1:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | bl cleanup_stash\n\ | 
|  | seth r1, #shigh(stackPtr)\n\ | 
|  | add3 r1, r1, #low(stackPtr)\n\ | 
|  | ld r15, @r1		; setup local stack (protect user stack)\n\ | 
|  | seth r1, #shigh(registers + 21*4) ; PC\n\ | 
|  | add3 r1, r1, #low(registers + 21*4)\n\ | 
|  | ld r0, @r1\n\ | 
|  | addi r0, #-4		; back up PC for breakpoint trap.\n\ | 
|  | st r0, @r1		; FIXME: what about bp in right slot?\n\ | 
|  | ldi r0, #1\n\ | 
|  | bl handle_exception\n\ | 
|  | bl restore_and_return"); | 
|  |  | 
|  | void _catchException2 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException2:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | ldi r0, #2\n\ | 
|  | bl process_exception"); | 
|  |  | 
|  | void _catchException3 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException3:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | ldi r0, #3\n\ | 
|  | bl process_exception"); | 
|  |  | 
|  | void _catchException4 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException4:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | ldi r0, #4\n\ | 
|  | bl process_exception"); | 
|  |  | 
|  | void _catchException5 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException5:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | ldi r0, #5\n\ | 
|  | bl process_exception"); | 
|  |  | 
|  | void _catchException6 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException6:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | ldi r0, #6\n\ | 
|  | bl process_exception"); | 
|  |  | 
|  | void _catchException7 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException7:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | ldi r0, #7\n\ | 
|  | bl process_exception"); | 
|  |  | 
|  | void _catchException8 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException8:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | ldi r0, #8\n\ | 
|  | bl process_exception"); | 
|  |  | 
|  | void _catchException9 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException9:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | ldi r0, #9\n\ | 
|  | bl process_exception"); | 
|  |  | 
|  | void _catchException10 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException10:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | ldi r0, #10\n\ | 
|  | bl process_exception"); | 
|  |  | 
|  | void _catchException11 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException11:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | ldi r0, #11\n\ | 
|  | bl process_exception"); | 
|  |  | 
|  | void _catchException12 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException12:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | ldi r0, #12\n\ | 
|  | bl process_exception"); | 
|  |  | 
|  | void _catchException13 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException13:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | ldi r0, #13\n\ | 
|  | bl process_exception"); | 
|  |  | 
|  | void _catchException14 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException14:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | ldi r0, #14\n\ | 
|  | bl process_exception"); | 
|  |  | 
|  | void _catchException15 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException15:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | ldi r0, #15\n\ | 
|  | bl process_exception"); | 
|  |  | 
|  | void _catchException16 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException16:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | ldi r0, #16\n\ | 
|  | bl process_exception"); | 
|  |  | 
|  | void _catchException17 (); | 
|  |  | 
|  | asm ("\n\ | 
|  | _catchException17:\n\ | 
|  | push lr\n\ | 
|  | bl stash_registers\n\ | 
|  | ; Note that at this point the pushed value of `lr' has been popped\n\ | 
|  | ldi r0, #17\n\ | 
|  | bl process_exception"); | 
|  |  | 
|  |  | 
|  | /* this function is used to set up exception handlers for tracing and | 
|  | breakpoints */ | 
|  | void | 
|  | set_debug_traps (void) | 
|  | { | 
|  | /*  extern void remcomHandler(); */ | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 18; i++)	/* keep a copy of old vectors */ | 
|  | if (save_vectors[i] == 0)	/* only copy them the first time */ | 
|  | save_vectors[i] = getExceptionHandler (i); | 
|  |  | 
|  | stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1]; | 
|  |  | 
|  | exceptionHandler (0, _catchException0); | 
|  | exceptionHandler (1, _catchException1); | 
|  | exceptionHandler (2, _catchException2); | 
|  | exceptionHandler (3, _catchException3); | 
|  | exceptionHandler (4, _catchException4); | 
|  | exceptionHandler (5, _catchException5); | 
|  | exceptionHandler (6, _catchException6); | 
|  | exceptionHandler (7, _catchException7); | 
|  | exceptionHandler (8, _catchException8); | 
|  | exceptionHandler (9, _catchException9); | 
|  | exceptionHandler (10, _catchException10); | 
|  | exceptionHandler (11, _catchException11); | 
|  | exceptionHandler (12, _catchException12); | 
|  | exceptionHandler (13, _catchException13); | 
|  | exceptionHandler (14, _catchException14); | 
|  | exceptionHandler (15, _catchException15); | 
|  | exceptionHandler (16, _catchException16); | 
|  | /*  exceptionHandler (17, _catchException17); */ | 
|  |  | 
|  | initialized = 1; | 
|  | } | 
|  |  | 
|  | /* This function will generate a breakpoint exception.  It is used at the | 
|  | beginning of a program to sync up with a debugger and can be used | 
|  | otherwise as a quick means to stop program execution and "break" into | 
|  | the debugger. */ | 
|  |  | 
|  | #define BREAKPOINT() asm volatile ("	trap #2"); | 
|  |  | 
|  | void | 
|  | breakpoint (void) | 
|  | { | 
|  | if (initialized) | 
|  | BREAKPOINT (); | 
|  | } | 
|  |  | 
|  | /* STDOUT section: | 
|  | Stuff pertaining to simulating stdout by sending chars to gdb to be echoed. | 
|  | Functions: gdb_putchar(char ch) | 
|  | gdb_puts(char *str) | 
|  | gdb_write(char *str, int len) | 
|  | gdb_error(char *format, char *parm) | 
|  | */ | 
|  |  | 
|  | /* Function: gdb_putchar(int) | 
|  | Make gdb write a char to stdout. | 
|  | Returns: the char */ | 
|  |  | 
|  | static int | 
|  | gdb_putchar (int ch) | 
|  | { | 
|  | char buf[4]; | 
|  |  | 
|  | buf[0] = 'O'; | 
|  | buf[1] = hexchars[ch >> 4]; | 
|  | buf[2] = hexchars[ch & 0x0F]; | 
|  | buf[3] = 0; | 
|  | putpacket (buf); | 
|  | return ch; | 
|  | } | 
|  |  | 
|  | /* Function: gdb_write(char *, int) | 
|  | Make gdb write n bytes to stdout (not assumed to be null-terminated). | 
|  | Returns: number of bytes written */ | 
|  |  | 
|  | static int | 
|  | gdb_write (char *data, int len) | 
|  | { | 
|  | char *buf, *cpy; | 
|  | int i; | 
|  |  | 
|  | buf = remcomOutBuffer; | 
|  | buf[0] = 'O'; | 
|  | i = 0; | 
|  | while (i < len) | 
|  | { | 
|  | for (cpy = buf + 1; | 
|  | i < len && cpy < buf + sizeof (remcomOutBuffer) - 3; i++) | 
|  | { | 
|  | *cpy++ = hexchars[data[i] >> 4]; | 
|  | *cpy++ = hexchars[data[i] & 0x0F]; | 
|  | } | 
|  | *cpy = 0; | 
|  | putpacket (buf); | 
|  | } | 
|  | return len; | 
|  | } | 
|  |  | 
|  | /* Function: gdb_puts(char *) | 
|  | Make gdb write a null-terminated string to stdout. | 
|  | Returns: the length of the string */ | 
|  |  | 
|  | static int | 
|  | gdb_puts (char *str) | 
|  | { | 
|  | return gdb_write (str, strlen (str)); | 
|  | } | 
|  |  | 
|  | /* Function: gdb_error(char *, char *) | 
|  | Send an error message to gdb's stdout. | 
|  | First string may have 1 (one) optional "%s" in it, which | 
|  | will cause the optional second string to be inserted.  */ | 
|  |  | 
|  | static void | 
|  | gdb_error (char *format, char *parm) | 
|  | { | 
|  | char buf[400], *cpy; | 
|  | int len; | 
|  |  | 
|  | if (remote_debug) | 
|  | { | 
|  | if (format && *format) | 
|  | len = strlen (format); | 
|  | else | 
|  | return;			/* empty input */ | 
|  |  | 
|  | if (parm && *parm) | 
|  | len += strlen (parm); | 
|  |  | 
|  | for (cpy = buf; *format;) | 
|  | { | 
|  | if (format[0] == '%' && format[1] == 's')	/* include second string */ | 
|  | { | 
|  | format += 2;	/* advance two chars instead of just one */ | 
|  | while (parm && *parm) | 
|  | *cpy++ = *parm++; | 
|  | } | 
|  | else | 
|  | *cpy++ = *format++; | 
|  | } | 
|  | *cpy = '\0'; | 
|  | gdb_puts (buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned char * | 
|  | strcpy (unsigned char *dest, const unsigned char *src) | 
|  | { | 
|  | unsigned char *ret = dest; | 
|  |  | 
|  | if (dest && src) | 
|  | { | 
|  | while (*src) | 
|  | *dest++ = *src++; | 
|  | *dest = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | strlen (const unsigned char *src) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | for (ret = 0; *src; src++) | 
|  | ret++; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | void | 
|  | exit (code) | 
|  | int code; | 
|  | { | 
|  | _exit (code); | 
|  | } | 
|  |  | 
|  | int | 
|  | atexit (void *p) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | abort (void) | 
|  | { | 
|  | _exit (1); | 
|  | } | 
|  | #endif |