| /* Target-dependent code for AMD64. | 
 |  | 
 |    Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 | 
 |    Free Software Foundation, Inc. | 
 |  | 
 |    Contributed by Jiri Smid, SuSE Labs. | 
 |  | 
 |    This file is part of GDB. | 
 |  | 
 |    This program is free software; you can redistribute it and/or modify | 
 |    it under the terms of the GNU General Public License as published by | 
 |    the Free Software Foundation; either version 3 of the License, or | 
 |    (at your option) any later version. | 
 |  | 
 |    This program is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |    GNU General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU General Public License | 
 |    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "defs.h" | 
 | #include "opcode/i386.h" | 
 | #include "dis-asm.h" | 
 | #include "arch-utils.h" | 
 | #include "block.h" | 
 | #include "dummy-frame.h" | 
 | #include "frame.h" | 
 | #include "frame-base.h" | 
 | #include "frame-unwind.h" | 
 | #include "inferior.h" | 
 | #include "gdbcmd.h" | 
 | #include "gdbcore.h" | 
 | #include "objfiles.h" | 
 | #include "regcache.h" | 
 | #include "regset.h" | 
 | #include "symfile.h" | 
 |  | 
 | #include "gdb_assert.h" | 
 |  | 
 | #include "amd64-tdep.h" | 
 | #include "i387-tdep.h" | 
 |  | 
 | /* Note that the AMD64 architecture was previously known as x86-64. | 
 |    The latter is (forever) engraved into the canonical system name as | 
 |    returned by config.guess, and used as the name for the AMD64 port | 
 |    of GNU/Linux.  The BSD's have renamed their ports to amd64; they | 
 |    don't like to shout.  For GDB we prefer the amd64_-prefix over the | 
 |    x86_64_-prefix since it's so much easier to type.  */ | 
 |  | 
 | /* Register information.  */ | 
 |  | 
 | static const char *amd64_register_names[] =  | 
 | { | 
 |   "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp", | 
 |  | 
 |   /* %r8 is indeed register number 8.  */ | 
 |   "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | 
 |   "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs", | 
 |  | 
 |   /* %st0 is register number 24.  */ | 
 |   "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7", | 
 |   "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop", | 
 |  | 
 |   /* %xmm0 is register number 40.  */ | 
 |   "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", | 
 |   "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", | 
 |   "mxcsr", | 
 | }; | 
 |  | 
 | /* Total number of registers.  */ | 
 | #define AMD64_NUM_REGS	ARRAY_SIZE (amd64_register_names) | 
 |  | 
 | /* The registers used to pass integer arguments during a function call.  */ | 
 | static int amd64_dummy_call_integer_regs[] = | 
 | { | 
 |   AMD64_RDI_REGNUM,		/* %rdi */ | 
 |   AMD64_RSI_REGNUM,		/* %rsi */ | 
 |   AMD64_RDX_REGNUM,		/* %rdx */ | 
 |   AMD64_RCX_REGNUM,		/* %rcx */ | 
 |   8,				/* %r8 */ | 
 |   9				/* %r9 */ | 
 | }; | 
 |  | 
 | /* Return the name of register REGNUM.  */ | 
 |  | 
 | const char * | 
 | amd64_register_name (struct gdbarch *gdbarch, int regnum) | 
 | { | 
 |   if (regnum >= 0 && regnum < AMD64_NUM_REGS) | 
 |     return amd64_register_names[regnum]; | 
 |  | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* Return the GDB type object for the "standard" data type of data in | 
 |    register REGNUM. */ | 
 |  | 
 | struct type * | 
 | amd64_register_type (struct gdbarch *gdbarch, int regnum) | 
 | { | 
 |   if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_RDI_REGNUM) | 
 |     return builtin_type (gdbarch)->builtin_int64; | 
 |   if (regnum == AMD64_RBP_REGNUM || regnum == AMD64_RSP_REGNUM) | 
 |     return builtin_type (gdbarch)->builtin_data_ptr; | 
 |   if (regnum >= AMD64_R8_REGNUM && regnum <= AMD64_R15_REGNUM) | 
 |     return builtin_type (gdbarch)->builtin_int64; | 
 |   if (regnum == AMD64_RIP_REGNUM) | 
 |     return builtin_type (gdbarch)->builtin_func_ptr; | 
 |   if (regnum == AMD64_EFLAGS_REGNUM) | 
 |     return i386_eflags_type (gdbarch); | 
 |   if (regnum >= AMD64_CS_REGNUM && regnum <= AMD64_GS_REGNUM) | 
 |     return builtin_type (gdbarch)->builtin_int32; | 
 |   if (regnum >= AMD64_ST0_REGNUM && regnum <= AMD64_ST0_REGNUM + 7) | 
 |     return i387_ext_type (gdbarch); | 
 |   if (regnum >= AMD64_FCTRL_REGNUM && regnum <= AMD64_FCTRL_REGNUM + 7) | 
 |     return builtin_type (gdbarch)->builtin_int32; | 
 |   if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15) | 
 |     return i386_sse_type (gdbarch); | 
 |   if (regnum == AMD64_MXCSR_REGNUM) | 
 |     return i386_mxcsr_type (gdbarch); | 
 |  | 
 |   internal_error (__FILE__, __LINE__, _("invalid regnum")); | 
 | } | 
 |  | 
 | /* DWARF Register Number Mapping as defined in the System V psABI, | 
 |    section 3.6.  */ | 
 |  | 
 | static int amd64_dwarf_regmap[] = | 
 | { | 
 |   /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI.  */ | 
 |   AMD64_RAX_REGNUM, AMD64_RDX_REGNUM, | 
 |   AMD64_RCX_REGNUM, AMD64_RBX_REGNUM, | 
 |   AMD64_RSI_REGNUM, AMD64_RDI_REGNUM, | 
 |  | 
 |   /* Frame Pointer Register RBP.  */ | 
 |   AMD64_RBP_REGNUM, | 
 |  | 
 |   /* Stack Pointer Register RSP.  */ | 
 |   AMD64_RSP_REGNUM, | 
 |  | 
 |   /* Extended Integer Registers 8 - 15.  */ | 
 |   8, 9, 10, 11, 12, 13, 14, 15, | 
 |  | 
 |   /* Return Address RA.  Mapped to RIP.  */ | 
 |   AMD64_RIP_REGNUM, | 
 |  | 
 |   /* SSE Registers 0 - 7.  */ | 
 |   AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, | 
 |   AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, | 
 |   AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, | 
 |   AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, | 
 |  | 
 |   /* Extended SSE Registers 8 - 15.  */ | 
 |   AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9, | 
 |   AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11, | 
 |   AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13, | 
 |   AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15, | 
 |  | 
 |   /* Floating Point Registers 0-7.  */ | 
 |   AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1, | 
 |   AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3, | 
 |   AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5, | 
 |   AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7, | 
 |    | 
 |   /* Control and Status Flags Register.  */ | 
 |   AMD64_EFLAGS_REGNUM, | 
 |  | 
 |   /* Selector Registers.  */ | 
 |   AMD64_ES_REGNUM, | 
 |   AMD64_CS_REGNUM, | 
 |   AMD64_SS_REGNUM, | 
 |   AMD64_DS_REGNUM, | 
 |   AMD64_FS_REGNUM, | 
 |   AMD64_GS_REGNUM, | 
 |   -1, | 
 |   -1, | 
 |  | 
 |   /* Segment Base Address Registers.  */ | 
 |   -1, | 
 |   -1, | 
 |   -1, | 
 |   -1, | 
 |  | 
 |   /* Special Selector Registers.  */ | 
 |   -1, | 
 |   -1, | 
 |  | 
 |   /* Floating Point Control Registers.  */ | 
 |   AMD64_MXCSR_REGNUM, | 
 |   AMD64_FCTRL_REGNUM, | 
 |   AMD64_FSTAT_REGNUM | 
 | }; | 
 |  | 
 | static const int amd64_dwarf_regmap_len = | 
 |   (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0])); | 
 |  | 
 | /* Convert DWARF register number REG to the appropriate register | 
 |    number used by GDB.  */ | 
 |  | 
 | static int | 
 | amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) | 
 | { | 
 |   int regnum = -1; | 
 |  | 
 |   if (reg >= 0 && reg < amd64_dwarf_regmap_len) | 
 |     regnum = amd64_dwarf_regmap[reg]; | 
 |  | 
 |   if (regnum == -1) | 
 |     warning (_("Unmapped DWARF Register #%d encountered."), reg); | 
 |  | 
 |   return regnum; | 
 | } | 
 |  | 
 | /* Map architectural register numbers to gdb register numbers.  */ | 
 |  | 
 | static const int amd64_arch_regmap[16] = | 
 | { | 
 |   AMD64_RAX_REGNUM,	/* %rax */ | 
 |   AMD64_RCX_REGNUM,	/* %rcx */ | 
 |   AMD64_RDX_REGNUM,	/* %rdx */ | 
 |   AMD64_RBX_REGNUM,	/* %rbx */ | 
 |   AMD64_RSP_REGNUM,	/* %rsp */ | 
 |   AMD64_RBP_REGNUM,	/* %rbp */ | 
 |   AMD64_RSI_REGNUM,	/* %rsi */ | 
 |   AMD64_RDI_REGNUM,	/* %rdi */ | 
 |   AMD64_R8_REGNUM,	/* %r8 */ | 
 |   AMD64_R9_REGNUM,	/* %r9 */ | 
 |   AMD64_R10_REGNUM,	/* %r10 */ | 
 |   AMD64_R11_REGNUM,	/* %r11 */ | 
 |   AMD64_R12_REGNUM,	/* %r12 */ | 
 |   AMD64_R13_REGNUM,	/* %r13 */ | 
 |   AMD64_R14_REGNUM,	/* %r14 */ | 
 |   AMD64_R15_REGNUM	/* %r15 */ | 
 | }; | 
 |  | 
 | static const int amd64_arch_regmap_len = | 
 |   (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0])); | 
 |  | 
 | /* Convert architectural register number REG to the appropriate register | 
 |    number used by GDB.  */ | 
 |  | 
 | static int | 
 | amd64_arch_reg_to_regnum (int reg) | 
 | { | 
 |   gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len); | 
 |  | 
 |   return amd64_arch_regmap[reg]; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /* Return the union class of CLASS1 and CLASS2.  See the psABI for | 
 |    details.  */ | 
 |  | 
 | static enum amd64_reg_class | 
 | amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2) | 
 | { | 
 |   /* Rule (a): If both classes are equal, this is the resulting class.  */ | 
 |   if (class1 == class2) | 
 |     return class1; | 
 |  | 
 |   /* Rule (b): If one of the classes is NO_CLASS, the resulting class | 
 |      is the other class.  */ | 
 |   if (class1 == AMD64_NO_CLASS) | 
 |     return class2; | 
 |   if (class2 == AMD64_NO_CLASS) | 
 |     return class1; | 
 |  | 
 |   /* Rule (c): If one of the classes is MEMORY, the result is MEMORY.  */ | 
 |   if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY) | 
 |     return AMD64_MEMORY; | 
 |  | 
 |   /* Rule (d): If one of the classes is INTEGER, the result is INTEGER.  */ | 
 |   if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER) | 
 |     return AMD64_INTEGER; | 
 |  | 
 |   /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class, | 
 |      MEMORY is used as class.  */ | 
 |   if (class1 == AMD64_X87 || class1 == AMD64_X87UP | 
 |       || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87 | 
 |       || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87) | 
 |     return AMD64_MEMORY; | 
 |  | 
 |   /* Rule (f): Otherwise class SSE is used.  */ | 
 |   return AMD64_SSE; | 
 | } | 
 |  | 
 | /* Return non-zero if TYPE is a non-POD structure or union type.  */ | 
 |  | 
 | static int | 
 | amd64_non_pod_p (struct type *type) | 
 | { | 
 |   /* ??? A class with a base class certainly isn't POD, but does this | 
 |      catch all non-POD structure types?  */ | 
 |   if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0) | 
 |     return 1; | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Classify TYPE according to the rules for aggregate (structures and | 
 |    arrays) and union types, and store the result in CLASS.  */ | 
 |  | 
 | static void | 
 | amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) | 
 | { | 
 |   int len = TYPE_LENGTH (type); | 
 |  | 
 |   /* 1. If the size of an object is larger than two eightbytes, or in | 
 |         C++, is a non-POD structure or union type, or contains | 
 |         unaligned fields, it has class memory.  */ | 
 |   if (len > 16 || amd64_non_pod_p (type)) | 
 |     { | 
 |       class[0] = class[1] = AMD64_MEMORY; | 
 |       return; | 
 |     } | 
 |  | 
 |   /* 2. Both eightbytes get initialized to class NO_CLASS.  */ | 
 |   class[0] = class[1] = AMD64_NO_CLASS; | 
 |  | 
 |   /* 3. Each field of an object is classified recursively so that | 
 |         always two fields are considered. The resulting class is | 
 |         calculated according to the classes of the fields in the | 
 |         eightbyte: */ | 
 |  | 
 |   if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | 
 |     { | 
 |       struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type)); | 
 |  | 
 |       /* All fields in an array have the same type.  */ | 
 |       amd64_classify (subtype, class); | 
 |       if (len > 8 && class[1] == AMD64_NO_CLASS) | 
 | 	class[1] = class[0]; | 
 |     } | 
 |   else | 
 |     { | 
 |       int i; | 
 |  | 
 |       /* Structure or union.  */ | 
 |       gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | 
 | 		  || TYPE_CODE (type) == TYPE_CODE_UNION); | 
 |  | 
 |       for (i = 0; i < TYPE_NFIELDS (type); i++) | 
 | 	{ | 
 | 	  struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i)); | 
 | 	  int pos = TYPE_FIELD_BITPOS (type, i) / 64; | 
 | 	  enum amd64_reg_class subclass[2]; | 
 | 	  int bitsize = TYPE_FIELD_BITSIZE (type, i); | 
 | 	  int endpos; | 
 |  | 
 | 	  if (bitsize == 0) | 
 | 	    bitsize = TYPE_LENGTH (subtype) * 8; | 
 | 	  endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64; | 
 |  | 
 | 	  /* Ignore static fields.  */ | 
 | 	  if (field_is_static (&TYPE_FIELD (type, i))) | 
 | 	    continue; | 
 |  | 
 | 	  gdb_assert (pos == 0 || pos == 1); | 
 |  | 
 | 	  amd64_classify (subtype, subclass); | 
 | 	  class[pos] = amd64_merge_classes (class[pos], subclass[0]); | 
 | 	  if (bitsize <= 64 && pos == 0 && endpos == 1) | 
 | 	    /* This is a bit of an odd case:  We have a field that would | 
 | 	       normally fit in one of the two eightbytes, except that | 
 | 	       it is placed in a way that this field straddles them. | 
 | 	       This has been seen with a structure containing an array. | 
 |  | 
 | 	       The ABI is a bit unclear in this case, but we assume that | 
 | 	       this field's class (stored in subclass[0]) must also be merged | 
 | 	       into class[1].  In other words, our field has a piece stored | 
 | 	       in the second eight-byte, and thus its class applies to | 
 | 	       the second eight-byte as well. | 
 |  | 
 | 	       In the case where the field length exceeds 8 bytes, | 
 | 	       it should not be necessary to merge the field class | 
 | 	       into class[1].  As LEN > 8, subclass[1] is necessarily | 
 | 	       different from AMD64_NO_CLASS.  If subclass[1] is equal | 
 | 	       to subclass[0], then the normal class[1]/subclass[1] | 
 | 	       merging will take care of everything.  For subclass[1] | 
 | 	       to be different from subclass[0], I can only see the case | 
 | 	       where we have a SSE/SSEUP or X87/X87UP pair, which both | 
 | 	       use up all 16 bytes of the aggregate, and are already | 
 | 	       handled just fine (because each portion sits on its own | 
 | 	       8-byte).  */ | 
 | 	    class[1] = amd64_merge_classes (class[1], subclass[0]); | 
 | 	  if (pos == 0) | 
 | 	    class[1] = amd64_merge_classes (class[1], subclass[1]); | 
 | 	} | 
 |     } | 
 |  | 
 |   /* 4. Then a post merger cleanup is done:  */ | 
 |  | 
 |   /* Rule (a): If one of the classes is MEMORY, the whole argument is | 
 |      passed in memory.  */ | 
 |   if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY) | 
 |     class[0] = class[1] = AMD64_MEMORY; | 
 |  | 
 |   /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to | 
 |      SSE.  */ | 
 |   if (class[0] == AMD64_SSEUP) | 
 |     class[0] = AMD64_SSE; | 
 |   if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE) | 
 |     class[1] = AMD64_SSE; | 
 | } | 
 |  | 
 | /* Classify TYPE, and store the result in CLASS.  */ | 
 |  | 
 | void | 
 | amd64_classify (struct type *type, enum amd64_reg_class class[2]) | 
 | { | 
 |   enum type_code code = TYPE_CODE (type); | 
 |   int len = TYPE_LENGTH (type); | 
 |  | 
 |   class[0] = class[1] = AMD64_NO_CLASS; | 
 |  | 
 |   /* Arguments of types (signed and unsigned) _Bool, char, short, int, | 
 |      long, long long, and pointers are in the INTEGER class.  Similarly, | 
 |      range types, used by languages such as Ada, are also in the INTEGER | 
 |      class.  */ | 
 |   if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM | 
 |        || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE | 
 |        || code == TYPE_CODE_CHAR | 
 |        || code == TYPE_CODE_PTR || code == TYPE_CODE_REF) | 
 |       && (len == 1 || len == 2 || len == 4 || len == 8)) | 
 |     class[0] = AMD64_INTEGER; | 
 |  | 
 |   /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64 | 
 |      are in class SSE.  */ | 
 |   else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT) | 
 | 	   && (len == 4 || len == 8)) | 
 |     /* FIXME: __m64 .  */ | 
 |     class[0] = AMD64_SSE; | 
 |  | 
 |   /* Arguments of types __float128, _Decimal128 and __m128 are split into | 
 |      two halves.  The least significant ones belong to class SSE, the most | 
 |      significant one to class SSEUP.  */ | 
 |   else if (code == TYPE_CODE_DECFLOAT && len == 16) | 
 |     /* FIXME: __float128, __m128.  */ | 
 |     class[0] = AMD64_SSE, class[1] = AMD64_SSEUP; | 
 |  | 
 |   /* The 64-bit mantissa of arguments of type long double belongs to | 
 |      class X87, the 16-bit exponent plus 6 bytes of padding belongs to | 
 |      class X87UP.  */ | 
 |   else if (code == TYPE_CODE_FLT && len == 16) | 
 |     /* Class X87 and X87UP.  */ | 
 |     class[0] = AMD64_X87, class[1] = AMD64_X87UP; | 
 |  | 
 |   /* Aggregates.  */ | 
 |   else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT | 
 | 	   || code == TYPE_CODE_UNION) | 
 |     amd64_classify_aggregate (type, class); | 
 | } | 
 |  | 
 | static enum return_value_convention | 
 | amd64_return_value (struct gdbarch *gdbarch, struct type *func_type, | 
 | 		    struct type *type, struct regcache *regcache, | 
 | 		    gdb_byte *readbuf, const gdb_byte *writebuf) | 
 | { | 
 |   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
 |   enum amd64_reg_class class[2]; | 
 |   int len = TYPE_LENGTH (type); | 
 |   static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM }; | 
 |   static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM }; | 
 |   int integer_reg = 0; | 
 |   int sse_reg = 0; | 
 |   int i; | 
 |  | 
 |   gdb_assert (!(readbuf && writebuf)); | 
 |   gdb_assert (tdep->classify); | 
 |  | 
 |   /* 1. Classify the return type with the classification algorithm.  */ | 
 |   tdep->classify (type, class); | 
 |  | 
 |   /* 2. If the type has class MEMORY, then the caller provides space | 
 |      for the return value and passes the address of this storage in | 
 |      %rdi as if it were the first argument to the function. In effect, | 
 |      this address becomes a hidden first argument. | 
 |  | 
 |      On return %rax will contain the address that has been passed in | 
 |      by the caller in %rdi.  */ | 
 |   if (class[0] == AMD64_MEMORY) | 
 |     { | 
 |       /* As indicated by the comment above, the ABI guarantees that we | 
 |          can always find the return value just after the function has | 
 |          returned.  */ | 
 |  | 
 |       if (readbuf) | 
 | 	{ | 
 | 	  ULONGEST addr; | 
 |  | 
 | 	  regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr); | 
 | 	  read_memory (addr, readbuf, TYPE_LENGTH (type)); | 
 | 	} | 
 |  | 
 |       return RETURN_VALUE_ABI_RETURNS_ADDRESS; | 
 |     } | 
 |  | 
 |   gdb_assert (class[1] != AMD64_MEMORY); | 
 |   gdb_assert (len <= 16); | 
 |  | 
 |   for (i = 0; len > 0; i++, len -= 8) | 
 |     { | 
 |       int regnum = -1; | 
 |       int offset = 0; | 
 |  | 
 |       switch (class[i]) | 
 | 	{ | 
 | 	case AMD64_INTEGER: | 
 | 	  /* 3. If the class is INTEGER, the next available register | 
 | 	     of the sequence %rax, %rdx is used.  */ | 
 | 	  regnum = integer_regnum[integer_reg++]; | 
 | 	  break; | 
 |  | 
 | 	case AMD64_SSE: | 
 | 	  /* 4. If the class is SSE, the next available SSE register | 
 |              of the sequence %xmm0, %xmm1 is used.  */ | 
 | 	  regnum = sse_regnum[sse_reg++]; | 
 | 	  break; | 
 |  | 
 | 	case AMD64_SSEUP: | 
 | 	  /* 5. If the class is SSEUP, the eightbyte is passed in the | 
 | 	     upper half of the last used SSE register.  */ | 
 | 	  gdb_assert (sse_reg > 0); | 
 | 	  regnum = sse_regnum[sse_reg - 1]; | 
 | 	  offset = 8; | 
 | 	  break; | 
 |  | 
 | 	case AMD64_X87: | 
 | 	  /* 6. If the class is X87, the value is returned on the X87 | 
 |              stack in %st0 as 80-bit x87 number.  */ | 
 | 	  regnum = AMD64_ST0_REGNUM; | 
 | 	  if (writebuf) | 
 | 	    i387_return_value (gdbarch, regcache); | 
 | 	  break; | 
 |  | 
 | 	case AMD64_X87UP: | 
 | 	  /* 7. If the class is X87UP, the value is returned together | 
 |              with the previous X87 value in %st0.  */ | 
 | 	  gdb_assert (i > 0 && class[0] == AMD64_X87); | 
 | 	  regnum = AMD64_ST0_REGNUM; | 
 | 	  offset = 8; | 
 | 	  len = 2; | 
 | 	  break; | 
 |  | 
 | 	case AMD64_NO_CLASS: | 
 | 	  continue; | 
 |  | 
 | 	default: | 
 | 	  gdb_assert (!"Unexpected register class."); | 
 | 	} | 
 |  | 
 |       gdb_assert (regnum != -1); | 
 |  | 
 |       if (readbuf) | 
 | 	regcache_raw_read_part (regcache, regnum, offset, min (len, 8), | 
 | 				readbuf + i * 8); | 
 |       if (writebuf) | 
 | 	regcache_raw_write_part (regcache, regnum, offset, min (len, 8), | 
 | 				 writebuf + i * 8); | 
 |     } | 
 |  | 
 |   return RETURN_VALUE_REGISTER_CONVENTION; | 
 | } | 
 |  | 
 |  | 
 | static CORE_ADDR | 
 | amd64_push_arguments (struct regcache *regcache, int nargs, | 
 | 		      struct value **args, CORE_ADDR sp, int struct_return) | 
 | { | 
 |   struct gdbarch *gdbarch = get_regcache_arch (regcache); | 
 |   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
 |   int *integer_regs = tdep->call_dummy_integer_regs; | 
 |   int num_integer_regs = tdep->call_dummy_num_integer_regs; | 
 |  | 
 |   static int sse_regnum[] = | 
 |   { | 
 |     /* %xmm0 ... %xmm7 */ | 
 |     AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, | 
 |     AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, | 
 |     AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, | 
 |     AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, | 
 |   }; | 
 |   struct value **stack_args = alloca (nargs * sizeof (struct value *)); | 
 |   /* An array that mirrors the stack_args array.  For all arguments | 
 |      that are passed by MEMORY, if that argument's address also needs | 
 |      to be stored in a register, the ARG_ADDR_REGNO array will contain | 
 |      that register number (or a negative value otherwise).  */ | 
 |   int *arg_addr_regno = alloca (nargs * sizeof (int)); | 
 |   int num_stack_args = 0; | 
 |   int num_elements = 0; | 
 |   int element = 0; | 
 |   int integer_reg = 0; | 
 |   int sse_reg = 0; | 
 |   int i; | 
 |  | 
 |   gdb_assert (tdep->classify); | 
 |  | 
 |   /* Reserve a register for the "hidden" argument.  */ | 
 |   if (struct_return) | 
 |     integer_reg++; | 
 |  | 
 |   for (i = 0; i < nargs; i++) | 
 |     { | 
 |       struct type *type = value_type (args[i]); | 
 |       int len = TYPE_LENGTH (type); | 
 |       enum amd64_reg_class class[2]; | 
 |       int needed_integer_regs = 0; | 
 |       int needed_sse_regs = 0; | 
 |       int j; | 
 |  | 
 |       /* Classify argument.  */ | 
 |       tdep->classify (type, class); | 
 |  | 
 |       /* Calculate the number of integer and SSE registers needed for | 
 |          this argument.  */ | 
 |       for (j = 0; j < 2; j++) | 
 | 	{ | 
 | 	  if (class[j] == AMD64_INTEGER) | 
 | 	    needed_integer_regs++; | 
 | 	  else if (class[j] == AMD64_SSE) | 
 | 	    needed_sse_regs++; | 
 | 	} | 
 |  | 
 |       /* Check whether enough registers are available, and if the | 
 |          argument should be passed in registers at all.  */ | 
 |       if (integer_reg + needed_integer_regs > num_integer_regs | 
 | 	  || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum) | 
 | 	  || (needed_integer_regs == 0 && needed_sse_regs == 0)) | 
 | 	{ | 
 | 	  /* The argument will be passed on the stack.  */ | 
 | 	  num_elements += ((len + 7) / 8); | 
 | 	  stack_args[num_stack_args] = args[i]; | 
 |           /* If this is an AMD64_MEMORY argument whose address must also | 
 |              be passed in one of the integer registers, reserve that | 
 |              register and associate this value to that register so that | 
 |              we can store the argument address as soon as we know it.  */ | 
 |           if (class[0] == AMD64_MEMORY | 
 |               && tdep->memory_args_by_pointer | 
 |               && integer_reg < tdep->call_dummy_num_integer_regs) | 
 |             arg_addr_regno[num_stack_args] = | 
 |               tdep->call_dummy_integer_regs[integer_reg++]; | 
 |           else | 
 |             arg_addr_regno[num_stack_args] = -1; | 
 |           num_stack_args++; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  /* The argument will be passed in registers.  */ | 
 | 	  const gdb_byte *valbuf = value_contents (args[i]); | 
 | 	  gdb_byte buf[8]; | 
 |  | 
 | 	  gdb_assert (len <= 16); | 
 |  | 
 | 	  for (j = 0; len > 0; j++, len -= 8) | 
 | 	    { | 
 | 	      int regnum = -1; | 
 | 	      int offset = 0; | 
 |  | 
 | 	      switch (class[j]) | 
 | 		{ | 
 | 		case AMD64_INTEGER: | 
 | 		  regnum = integer_regs[integer_reg++]; | 
 | 		  break; | 
 |  | 
 | 		case AMD64_SSE: | 
 | 		  regnum = sse_regnum[sse_reg++]; | 
 | 		  break; | 
 |  | 
 | 		case AMD64_SSEUP: | 
 | 		  gdb_assert (sse_reg > 0); | 
 | 		  regnum = sse_regnum[sse_reg - 1]; | 
 | 		  offset = 8; | 
 | 		  break; | 
 |  | 
 | 		default: | 
 | 		  gdb_assert (!"Unexpected register class."); | 
 | 		} | 
 |  | 
 | 	      gdb_assert (regnum != -1); | 
 | 	      memset (buf, 0, sizeof buf); | 
 | 	      memcpy (buf, valbuf + j * 8, min (len, 8)); | 
 | 	      regcache_raw_write_part (regcache, regnum, offset, 8, buf); | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Allocate space for the arguments on the stack.  */ | 
 |   sp -= num_elements * 8; | 
 |  | 
 |   /* The psABI says that "The end of the input argument area shall be | 
 |      aligned on a 16 byte boundary."  */ | 
 |   sp &= ~0xf; | 
 |  | 
 |   /* Write out the arguments to the stack.  */ | 
 |   for (i = 0; i < num_stack_args; i++) | 
 |     { | 
 |       struct type *type = value_type (stack_args[i]); | 
 |       const gdb_byte *valbuf = value_contents (stack_args[i]); | 
 |       int len = TYPE_LENGTH (type); | 
 |       CORE_ADDR arg_addr = sp + element * 8; | 
 |  | 
 |       write_memory (arg_addr, valbuf, len); | 
 |       if (arg_addr_regno[i] >= 0) | 
 |         { | 
 |           /* We also need to store the address of that argument in | 
 |              the given register.  */ | 
 |           gdb_byte buf[8]; | 
 |           enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |  | 
 |           store_unsigned_integer (buf, 8, byte_order, arg_addr); | 
 |           regcache_cooked_write (regcache, arg_addr_regno[i], buf); | 
 |         } | 
 |       element += ((len + 7) / 8); | 
 |     } | 
 |  | 
 |   /* The psABI says that "For calls that may call functions that use | 
 |      varargs or stdargs (prototype-less calls or calls to functions | 
 |      containing ellipsis (...) in the declaration) %al is used as | 
 |      hidden argument to specify the number of SSE registers used.  */ | 
 |   regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg); | 
 |   return sp;  | 
 | } | 
 |  | 
 | static CORE_ADDR | 
 | amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | 
 | 		       struct regcache *regcache, CORE_ADDR bp_addr, | 
 | 		       int nargs, struct value **args,	CORE_ADDR sp, | 
 | 		       int struct_return, CORE_ADDR struct_addr) | 
 | { | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
 |   gdb_byte buf[8]; | 
 |  | 
 |   /* Pass arguments.  */ | 
 |   sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return); | 
 |  | 
 |   /* Pass "hidden" argument".  */ | 
 |   if (struct_return) | 
 |     { | 
 |       struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
 |       /* The "hidden" argument is passed throught the first argument | 
 |          register.  */ | 
 |       const int arg_regnum = tdep->call_dummy_integer_regs[0]; | 
 |  | 
 |       store_unsigned_integer (buf, 8, byte_order, struct_addr); | 
 |       regcache_cooked_write (regcache, arg_regnum, buf); | 
 |     } | 
 |  | 
 |   /* Reserve some memory on the stack for the integer-parameter registers, | 
 |      if required by the ABI.  */ | 
 |   if (tdep->integer_param_regs_saved_in_caller_frame) | 
 |     sp -= tdep->call_dummy_num_integer_regs * 8; | 
 |  | 
 |   /* Store return address.  */ | 
 |   sp -= 8; | 
 |   store_unsigned_integer (buf, 8, byte_order, bp_addr); | 
 |   write_memory (sp, buf, 8); | 
 |  | 
 |   /* Finally, update the stack pointer...  */ | 
 |   store_unsigned_integer (buf, 8, byte_order, sp); | 
 |   regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf); | 
 |  | 
 |   /* ...and fake a frame pointer.  */ | 
 |   regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf); | 
 |  | 
 |   return sp + 16; | 
 | } | 
 |  | 
 | /* Displaced instruction handling.  */ | 
 |  | 
 | /* A partially decoded instruction. | 
 |    This contains enough details for displaced stepping purposes.  */ | 
 |  | 
 | struct amd64_insn | 
 | { | 
 |   /* The number of opcode bytes.  */ | 
 |   int opcode_len; | 
 |   /* The offset of the rex prefix or -1 if not present.  */ | 
 |   int rex_offset; | 
 |   /* The offset to the first opcode byte.  */ | 
 |   int opcode_offset; | 
 |   /* The offset to the modrm byte or -1 if not present.  */ | 
 |   int modrm_offset; | 
 |  | 
 |   /* The raw instruction.  */ | 
 |   gdb_byte *raw_insn; | 
 | }; | 
 |  | 
 | struct displaced_step_closure | 
 | { | 
 |   /* For rip-relative insns, saved copy of the reg we use instead of %rip.  */ | 
 |   int tmp_used; | 
 |   int tmp_regno; | 
 |   ULONGEST tmp_save; | 
 |  | 
 |   /* Details of the instruction.  */ | 
 |   struct amd64_insn insn_details; | 
 |  | 
 |   /* Amount of space allocated to insn_buf.  */ | 
 |   int max_len; | 
 |  | 
 |   /* The possibly modified insn. | 
 |      This is a variable-length field.  */ | 
 |   gdb_byte insn_buf[1]; | 
 | }; | 
 |  | 
 | /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with | 
 |    ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative, | 
 |    at which point delete these in favor of libopcodes' versions).  */ | 
 |  | 
 | static const unsigned char onebyte_has_modrm[256] = { | 
 |   /*	   0 1 2 3 4 5 6 7 8 9 a b c d e f	  */ | 
 |   /*	   -------------------------------	  */ | 
 |   /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */ | 
 |   /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */ | 
 |   /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */ | 
 |   /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */ | 
 |   /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */ | 
 |   /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */ | 
 |   /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */ | 
 |   /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */ | 
 |   /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */ | 
 |   /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */ | 
 |   /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */ | 
 |   /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */ | 
 |   /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */ | 
 |   /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */ | 
 |   /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */ | 
 |   /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1  /* f0 */ | 
 |   /*	   -------------------------------	  */ | 
 |   /*	   0 1 2 3 4 5 6 7 8 9 a b c d e f	  */ | 
 | }; | 
 |  | 
 | static const unsigned char twobyte_has_modrm[256] = { | 
 |   /*	   0 1 2 3 4 5 6 7 8 9 a b c d e f	  */ | 
 |   /*	   -------------------------------	  */ | 
 |   /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */ | 
 |   /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */ | 
 |   /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */ | 
 |   /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */ | 
 |   /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */ | 
 |   /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */ | 
 |   /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */ | 
 |   /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */ | 
 |   /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */ | 
 |   /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */ | 
 |   /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */ | 
 |   /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */ | 
 |   /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */ | 
 |   /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */ | 
 |   /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */ | 
 |   /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0  /* ff */ | 
 |   /*	   -------------------------------	  */ | 
 |   /*	   0 1 2 3 4 5 6 7 8 9 a b c d e f	  */ | 
 | }; | 
 |  | 
 | static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp); | 
 |  | 
 | static int | 
 | rex_prefix_p (gdb_byte pfx) | 
 | { | 
 |   return REX_PREFIX_P (pfx); | 
 | } | 
 |  | 
 | /* Skip the legacy instruction prefixes in INSN. | 
 |    We assume INSN is properly sentineled so we don't have to worry | 
 |    about falling off the end of the buffer.  */ | 
 |  | 
 | static gdb_byte * | 
 | amd64_skip_prefixes (gdb_byte *insn) | 
 | { | 
 |   while (1) | 
 |     { | 
 |       switch (*insn) | 
 | 	{ | 
 | 	case DATA_PREFIX_OPCODE: | 
 | 	case ADDR_PREFIX_OPCODE: | 
 | 	case CS_PREFIX_OPCODE: | 
 | 	case DS_PREFIX_OPCODE: | 
 | 	case ES_PREFIX_OPCODE: | 
 | 	case FS_PREFIX_OPCODE: | 
 | 	case GS_PREFIX_OPCODE: | 
 | 	case SS_PREFIX_OPCODE: | 
 | 	case LOCK_PREFIX_OPCODE: | 
 | 	case REPE_PREFIX_OPCODE: | 
 | 	case REPNE_PREFIX_OPCODE: | 
 | 	  ++insn; | 
 | 	  continue; | 
 | 	default: | 
 | 	  break; | 
 | 	} | 
 |       break; | 
 |     } | 
 |  | 
 |   return insn; | 
 | } | 
 |  | 
 | /* fprintf-function for amd64_insn_length. | 
 |    This function is a nop, we don't want to print anything, we just want to | 
 |    compute the length of the insn.  */ | 
 |  | 
 | static int ATTR_FORMAT (printf, 2, 3) | 
 | amd64_insn_length_fprintf (void *stream, const char *format, ...) | 
 | { | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Initialize a struct disassemble_info for amd64_insn_length.	*/ | 
 |  | 
 | static void | 
 | amd64_insn_length_init_dis (struct gdbarch *gdbarch, | 
 | 			    struct disassemble_info *di, | 
 | 			    const gdb_byte *insn, int max_len, | 
 | 			    CORE_ADDR addr) | 
 | { | 
 |   init_disassemble_info (di, NULL, amd64_insn_length_fprintf); | 
 |  | 
 |   /* init_disassemble_info installs buffer_read_memory, etc. | 
 |      so we don't need to do that here. | 
 |      The cast is necessary until disassemble_info is const-ified.  */ | 
 |   di->buffer = (gdb_byte *) insn; | 
 |   di->buffer_length = max_len; | 
 |   di->buffer_vma = addr; | 
 |  | 
 |   di->arch = gdbarch_bfd_arch_info (gdbarch)->arch; | 
 |   di->mach = gdbarch_bfd_arch_info (gdbarch)->mach; | 
 |   di->endian = gdbarch_byte_order (gdbarch); | 
 |   di->endian_code = gdbarch_byte_order_for_code (gdbarch); | 
 |  | 
 |   disassemble_init_for_target (di); | 
 | } | 
 |  | 
 | /* Return the length in bytes of INSN. | 
 |    MAX_LEN is the size of the buffer containing INSN. | 
 |    libopcodes currently doesn't export a utility to compute the | 
 |    instruction length, so use the disassembler until then.  */ | 
 |  | 
 | static int | 
 | amd64_insn_length (struct gdbarch *gdbarch, | 
 | 		   const gdb_byte *insn, int max_len, CORE_ADDR addr) | 
 | { | 
 |   struct disassemble_info di; | 
 |  | 
 |   amd64_insn_length_init_dis (gdbarch, &di, insn, max_len, addr); | 
 |  | 
 |   return gdbarch_print_insn (gdbarch, addr, &di); | 
 | } | 
 |  | 
 | /* Return an integer register (other than RSP) that is unused as an input | 
 |    operand in INSN. | 
 |    In order to not require adding a rex prefix if the insn doesn't already | 
 |    have one, the result is restricted to RAX ... RDI, sans RSP. | 
 |    The register numbering of the result follows architecture ordering, | 
 |    e.g. RDI = 7.  */ | 
 |  | 
 | static int | 
 | amd64_get_unused_input_int_reg (const struct amd64_insn *details) | 
 | { | 
 |   /* 1 bit for each reg */ | 
 |   int used_regs_mask = 0; | 
 |  | 
 |   /* There can be at most 3 int regs used as inputs in an insn, and we have | 
 |      7 to choose from (RAX ... RDI, sans RSP). | 
 |      This allows us to take a conservative approach and keep things simple. | 
 |      E.g. By avoiding RAX, we don't have to specifically watch for opcodes | 
 |      that implicitly specify RAX.  */ | 
 |  | 
 |   /* Avoid RAX.  */ | 
 |   used_regs_mask |= 1 << EAX_REG_NUM; | 
 |   /* Similarily avoid RDX, implicit operand in divides.  */ | 
 |   used_regs_mask |= 1 << EDX_REG_NUM; | 
 |   /* Avoid RSP.  */ | 
 |   used_regs_mask |= 1 << ESP_REG_NUM; | 
 |  | 
 |   /* If the opcode is one byte long and there's no ModRM byte, | 
 |      assume the opcode specifies a register.  */ | 
 |   if (details->opcode_len == 1 && details->modrm_offset == -1) | 
 |     used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7); | 
 |  | 
 |   /* Mark used regs in the modrm/sib bytes.  */ | 
 |   if (details->modrm_offset != -1) | 
 |     { | 
 |       int modrm = details->raw_insn[details->modrm_offset]; | 
 |       int mod = MODRM_MOD_FIELD (modrm); | 
 |       int reg = MODRM_REG_FIELD (modrm); | 
 |       int rm = MODRM_RM_FIELD (modrm); | 
 |       int have_sib = mod != 3 && rm == 4; | 
 |  | 
 |       /* Assume the reg field of the modrm byte specifies a register.  */ | 
 |       used_regs_mask |= 1 << reg; | 
 |  | 
 |       if (have_sib) | 
 | 	{ | 
 | 	  int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]); | 
 | 	  int index = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]); | 
 | 	  used_regs_mask |= 1 << base; | 
 | 	  used_regs_mask |= 1 << index; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  used_regs_mask |= 1 << rm; | 
 | 	} | 
 |     } | 
 |  | 
 |   gdb_assert (used_regs_mask < 256); | 
 |   gdb_assert (used_regs_mask != 255); | 
 |  | 
 |   /* Finally, find a free reg.  */ | 
 |   { | 
 |     int i; | 
 |  | 
 |     for (i = 0; i < 8; ++i) | 
 |       { | 
 | 	if (! (used_regs_mask & (1 << i))) | 
 | 	  return i; | 
 |       } | 
 |  | 
 |     /* We shouldn't get here.  */ | 
 |     internal_error (__FILE__, __LINE__, _("unable to find free reg")); | 
 |   } | 
 | } | 
 |  | 
 | /* Extract the details of INSN that we need.  */ | 
 |  | 
 | static void | 
 | amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details) | 
 | { | 
 |   gdb_byte *start = insn; | 
 |   int need_modrm; | 
 |  | 
 |   details->raw_insn = insn; | 
 |  | 
 |   details->opcode_len = -1; | 
 |   details->rex_offset = -1; | 
 |   details->opcode_offset = -1; | 
 |   details->modrm_offset = -1; | 
 |  | 
 |   /* Skip legacy instruction prefixes.  */ | 
 |   insn = amd64_skip_prefixes (insn); | 
 |  | 
 |   /* Skip REX instruction prefix.  */ | 
 |   if (rex_prefix_p (*insn)) | 
 |     { | 
 |       details->rex_offset = insn - start; | 
 |       ++insn; | 
 |     } | 
 |  | 
 |   details->opcode_offset = insn - start; | 
 |  | 
 |   if (*insn == TWO_BYTE_OPCODE_ESCAPE) | 
 |     { | 
 |       /* Two or three-byte opcode.  */ | 
 |       ++insn; | 
 |       need_modrm = twobyte_has_modrm[*insn]; | 
 |  | 
 |       /* Check for three-byte opcode.  */ | 
 |       switch (*insn) | 
 | 	{ | 
 | 	case 0x24: | 
 | 	case 0x25: | 
 | 	case 0x38: | 
 | 	case 0x3a: | 
 | 	case 0x7a: | 
 | 	case 0x7b: | 
 | 	  ++insn; | 
 | 	  details->opcode_len = 3; | 
 | 	  break; | 
 | 	default: | 
 | 	  details->opcode_len = 2; | 
 | 	  break; | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       /* One-byte opcode.  */ | 
 |       need_modrm = onebyte_has_modrm[*insn]; | 
 |       details->opcode_len = 1; | 
 |     } | 
 |  | 
 |   if (need_modrm) | 
 |     { | 
 |       ++insn; | 
 |       details->modrm_offset = insn - start; | 
 |     } | 
 | } | 
 |  | 
 | /* Update %rip-relative addressing in INSN. | 
 |  | 
 |    %rip-relative addressing only uses a 32-bit displacement. | 
 |    32 bits is not enough to be guaranteed to cover the distance between where | 
 |    the real instruction is and where its copy is. | 
 |    Convert the insn to use base+disp addressing. | 
 |    We set base = pc + insn_length so we can leave disp unchanged.  */ | 
 |  | 
 | static void | 
 | fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc, | 
 | 	      CORE_ADDR from, CORE_ADDR to, struct regcache *regs) | 
 | { | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   const struct amd64_insn *insn_details = &dsc->insn_details; | 
 |   int modrm_offset = insn_details->modrm_offset; | 
 |   gdb_byte *insn = insn_details->raw_insn + modrm_offset; | 
 |   CORE_ADDR rip_base; | 
 |   int32_t disp; | 
 |   int insn_length; | 
 |   int arch_tmp_regno, tmp_regno; | 
 |   ULONGEST orig_value; | 
 |  | 
 |   /* %rip+disp32 addressing mode, displacement follows ModRM byte.  */ | 
 |   ++insn; | 
 |  | 
 |   /* Compute the rip-relative address.	*/ | 
 |   disp = extract_signed_integer (insn, sizeof (int32_t), byte_order); | 
 |   insn_length = amd64_insn_length (gdbarch, dsc->insn_buf, dsc->max_len, from); | 
 |   rip_base = from + insn_length; | 
 |  | 
 |   /* We need a register to hold the address. | 
 |      Pick one not used in the insn. | 
 |      NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7.  */ | 
 |   arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details); | 
 |   tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno); | 
 |  | 
 |   /* REX.B should be unset as we were using rip-relative addressing, | 
 |      but ensure it's unset anyway, tmp_regno is not r8-r15.  */ | 
 |   if (insn_details->rex_offset != -1) | 
 |     dsc->insn_buf[insn_details->rex_offset] &= ~REX_B; | 
 |  | 
 |   regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value); | 
 |   dsc->tmp_regno = tmp_regno; | 
 |   dsc->tmp_save = orig_value; | 
 |   dsc->tmp_used = 1; | 
 |  | 
 |   /* Convert the ModRM field to be base+disp.  */ | 
 |   dsc->insn_buf[modrm_offset] &= ~0xc7; | 
 |   dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno; | 
 |  | 
 |   regcache_cooked_write_unsigned (regs, tmp_regno, rip_base); | 
 |  | 
 |   if (debug_displaced) | 
 |     fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n" | 
 | 			"displaced: using temp reg %d, old value %s, new value %s\n", | 
 | 			dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save), | 
 | 			paddress (gdbarch, rip_base)); | 
 | } | 
 |  | 
 | static void | 
 | fixup_displaced_copy (struct gdbarch *gdbarch, | 
 | 		      struct displaced_step_closure *dsc, | 
 | 		      CORE_ADDR from, CORE_ADDR to, struct regcache *regs) | 
 | { | 
 |   const struct amd64_insn *details = &dsc->insn_details; | 
 |  | 
 |   if (details->modrm_offset != -1) | 
 |     { | 
 |       gdb_byte modrm = details->raw_insn[details->modrm_offset]; | 
 |  | 
 |       if ((modrm & 0xc7) == 0x05) | 
 | 	{ | 
 | 	  /* The insn uses rip-relative addressing. | 
 | 	     Deal with it.  */ | 
 | 	  fixup_riprel (gdbarch, dsc, from, to, regs); | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | struct displaced_step_closure * | 
 | amd64_displaced_step_copy_insn (struct gdbarch *gdbarch, | 
 | 				CORE_ADDR from, CORE_ADDR to, | 
 | 				struct regcache *regs) | 
 | { | 
 |   int len = gdbarch_max_insn_length (gdbarch); | 
 |   /* Extra space for sentinels so fixup_{riprel,displaced_copy don't have to | 
 |      continually watch for running off the end of the buffer.  */ | 
 |   int fixup_sentinel_space = len; | 
 |   struct displaced_step_closure *dsc = | 
 |     xmalloc (sizeof (*dsc) + len + fixup_sentinel_space); | 
 |   gdb_byte *buf = &dsc->insn_buf[0]; | 
 |   struct amd64_insn *details = &dsc->insn_details; | 
 |  | 
 |   dsc->tmp_used = 0; | 
 |   dsc->max_len = len + fixup_sentinel_space; | 
 |  | 
 |   read_memory (from, buf, len); | 
 |  | 
 |   /* Set up the sentinel space so we don't have to worry about running | 
 |      off the end of the buffer.  An excessive number of leading prefixes | 
 |      could otherwise cause this.  */ | 
 |   memset (buf + len, 0, fixup_sentinel_space); | 
 |  | 
 |   amd64_get_insn_details (buf, details); | 
 |  | 
 |   /* GDB may get control back after the insn after the syscall. | 
 |      Presumably this is a kernel bug. | 
 |      If this is a syscall, make sure there's a nop afterwards.  */ | 
 |   { | 
 |     int syscall_length; | 
 |  | 
 |     if (amd64_syscall_p (details, &syscall_length)) | 
 |       buf[details->opcode_offset + syscall_length] = NOP_OPCODE; | 
 |   } | 
 |  | 
 |   /* Modify the insn to cope with the address where it will be executed from. | 
 |      In particular, handle any rip-relative addressing.	 */ | 
 |   fixup_displaced_copy (gdbarch, dsc, from, to, regs); | 
 |  | 
 |   write_memory (to, buf, len); | 
 |  | 
 |   if (debug_displaced) | 
 |     { | 
 |       fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ", | 
 | 			  paddress (gdbarch, from), paddress (gdbarch, to)); | 
 |       displaced_step_dump_bytes (gdb_stdlog, buf, len); | 
 |     } | 
 |  | 
 |   return dsc; | 
 | } | 
 |  | 
 | static int | 
 | amd64_absolute_jmp_p (const struct amd64_insn *details) | 
 | { | 
 |   const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | 
 |  | 
 |   if (insn[0] == 0xff) | 
 |     { | 
 |       /* jump near, absolute indirect (/4) */ | 
 |       if ((insn[1] & 0x38) == 0x20) | 
 | 	return 1; | 
 |  | 
 |       /* jump far, absolute indirect (/5) */ | 
 |       if ((insn[1] & 0x38) == 0x28) | 
 | 	return 1; | 
 |     } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | static int | 
 | amd64_absolute_call_p (const struct amd64_insn *details) | 
 | { | 
 |   const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | 
 |  | 
 |   if (insn[0] == 0xff) | 
 |     { | 
 |       /* Call near, absolute indirect (/2) */ | 
 |       if ((insn[1] & 0x38) == 0x10) | 
 | 	return 1; | 
 |  | 
 |       /* Call far, absolute indirect (/3) */ | 
 |       if ((insn[1] & 0x38) == 0x18) | 
 | 	return 1; | 
 |     } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | static int | 
 | amd64_ret_p (const struct amd64_insn *details) | 
 | { | 
 |   /* NOTE: gcc can emit "repz ; ret".  */ | 
 |   const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | 
 |  | 
 |   switch (insn[0]) | 
 |     { | 
 |     case 0xc2: /* ret near, pop N bytes */ | 
 |     case 0xc3: /* ret near */ | 
 |     case 0xca: /* ret far, pop N bytes */ | 
 |     case 0xcb: /* ret far */ | 
 |     case 0xcf: /* iret */ | 
 |       return 1; | 
 |  | 
 |     default: | 
 |       return 0; | 
 |     } | 
 | } | 
 |  | 
 | static int | 
 | amd64_call_p (const struct amd64_insn *details) | 
 | { | 
 |   const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | 
 |  | 
 |   if (amd64_absolute_call_p (details)) | 
 |     return 1; | 
 |  | 
 |   /* call near, relative */ | 
 |   if (insn[0] == 0xe8) | 
 |     return 1; | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Return non-zero if INSN is a system call, and set *LENGTHP to its | 
 |    length in bytes.  Otherwise, return zero.  */ | 
 |  | 
 | static int | 
 | amd64_syscall_p (const struct amd64_insn *details, int *lengthp) | 
 | { | 
 |   const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | 
 |  | 
 |   if (insn[0] == 0x0f && insn[1] == 0x05) | 
 |     { | 
 |       *lengthp = 2; | 
 |       return 1; | 
 |     } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Fix up the state of registers and memory after having single-stepped | 
 |    a displaced instruction.  */ | 
 |  | 
 | void | 
 | amd64_displaced_step_fixup (struct gdbarch *gdbarch, | 
 | 			    struct displaced_step_closure *dsc, | 
 | 			    CORE_ADDR from, CORE_ADDR to, | 
 | 			    struct regcache *regs) | 
 | { | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   /* The offset we applied to the instruction's address.  */ | 
 |   ULONGEST insn_offset = to - from; | 
 |   gdb_byte *insn = dsc->insn_buf; | 
 |   const struct amd64_insn *insn_details = &dsc->insn_details; | 
 |  | 
 |   if (debug_displaced) | 
 |     fprintf_unfiltered (gdb_stdlog, | 
 | 			"displaced: fixup (%s, %s), " | 
 | 			"insn = 0x%02x 0x%02x ...\n", | 
 | 			paddress (gdbarch, from), paddress (gdbarch, to), | 
 | 			insn[0], insn[1]); | 
 |  | 
 |   /* If we used a tmp reg, restore it.	*/ | 
 |  | 
 |   if (dsc->tmp_used) | 
 |     { | 
 |       if (debug_displaced) | 
 | 	fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n", | 
 | 			    dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save)); | 
 |       regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save); | 
 |     } | 
 |  | 
 |   /* The list of issues to contend with here is taken from | 
 |      resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28. | 
 |      Yay for Free Software!  */ | 
 |  | 
 |   /* Relocate the %rip back to the program's instruction stream, | 
 |      if necessary.  */ | 
 |  | 
 |   /* Except in the case of absolute or indirect jump or call | 
 |      instructions, or a return instruction, the new rip is relative to | 
 |      the displaced instruction; make it relative to the original insn. | 
 |      Well, signal handler returns don't need relocation either, but we use the | 
 |      value of %rip to recognize those; see below.  */ | 
 |   if (! amd64_absolute_jmp_p (insn_details) | 
 |       && ! amd64_absolute_call_p (insn_details) | 
 |       && ! amd64_ret_p (insn_details)) | 
 |     { | 
 |       ULONGEST orig_rip; | 
 |       int insn_len; | 
 |  | 
 |       regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip); | 
 |  | 
 |       /* A signal trampoline system call changes the %rip, resuming | 
 | 	 execution of the main program after the signal handler has | 
 | 	 returned.  That makes them like 'return' instructions; we | 
 | 	 shouldn't relocate %rip. | 
 |  | 
 | 	 But most system calls don't, and we do need to relocate %rip. | 
 |  | 
 | 	 Our heuristic for distinguishing these cases: if stepping | 
 | 	 over the system call instruction left control directly after | 
 | 	 the instruction, the we relocate --- control almost certainly | 
 | 	 doesn't belong in the displaced copy.	Otherwise, we assume | 
 | 	 the instruction has put control where it belongs, and leave | 
 | 	 it unrelocated.  Goodness help us if there are PC-relative | 
 | 	 system calls.	*/ | 
 |       if (amd64_syscall_p (insn_details, &insn_len) | 
 | 	  && orig_rip != to + insn_len | 
 | 	  /* GDB can get control back after the insn after the syscall. | 
 | 	     Presumably this is a kernel bug. | 
 | 	     Fixup ensures its a nop, we add one to the length for it.  */ | 
 | 	  && orig_rip != to + insn_len + 1) | 
 | 	{ | 
 | 	  if (debug_displaced) | 
 | 	    fprintf_unfiltered (gdb_stdlog, | 
 | 				"displaced: syscall changed %%rip; " | 
 | 				"not relocating\n"); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  ULONGEST rip = orig_rip - insn_offset; | 
 |  | 
 | 	  /* If we just stepped over a breakpoint insn, we don't backup | 
 | 	     the pc on purpose; this is to match behaviour without | 
 | 	     stepping.  */ | 
 |  | 
 | 	  regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip); | 
 |  | 
 | 	  if (debug_displaced) | 
 | 	    fprintf_unfiltered (gdb_stdlog, | 
 | 				"displaced: " | 
 | 				"relocated %%rip from %s to %s\n", | 
 | 				paddress (gdbarch, orig_rip), | 
 | 				paddress (gdbarch, rip)); | 
 | 	} | 
 |     } | 
 |  | 
 |   /* If the instruction was PUSHFL, then the TF bit will be set in the | 
 |      pushed value, and should be cleared.  We'll leave this for later, | 
 |      since GDB already messes up the TF flag when stepping over a | 
 |      pushfl.  */ | 
 |  | 
 |   /* If the instruction was a call, the return address now atop the | 
 |      stack is the address following the copied instruction.  We need | 
 |      to make it the address following the original instruction.	 */ | 
 |   if (amd64_call_p (insn_details)) | 
 |     { | 
 |       ULONGEST rsp; | 
 |       ULONGEST retaddr; | 
 |       const ULONGEST retaddr_len = 8; | 
 |  | 
 |       regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp); | 
 |       retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order); | 
 |       retaddr = (retaddr - insn_offset) & 0xffffffffUL; | 
 |       write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr); | 
 |  | 
 |       if (debug_displaced) | 
 | 	fprintf_unfiltered (gdb_stdlog, | 
 | 			    "displaced: relocated return addr at %s " | 
 | 			    "to %s\n", | 
 | 			    paddress (gdbarch, rsp), | 
 | 			    paddress (gdbarch, retaddr)); | 
 |     } | 
 | } | 
 |  | 
 | /* The maximum number of saved registers.  This should include %rip.  */ | 
 | #define AMD64_NUM_SAVED_REGS	AMD64_NUM_GREGS | 
 |  | 
 | struct amd64_frame_cache | 
 | { | 
 |   /* Base address.  */ | 
 |   CORE_ADDR base; | 
 |   CORE_ADDR sp_offset; | 
 |   CORE_ADDR pc; | 
 |  | 
 |   /* Saved registers.  */ | 
 |   CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS]; | 
 |   CORE_ADDR saved_sp; | 
 |   int saved_sp_reg; | 
 |  | 
 |   /* Do we have a frame?  */ | 
 |   int frameless_p; | 
 | }; | 
 |  | 
 | /* Initialize a frame cache.  */ | 
 |  | 
 | static void | 
 | amd64_init_frame_cache (struct amd64_frame_cache *cache) | 
 | { | 
 |   int i; | 
 |  | 
 |   /* Base address.  */ | 
 |   cache->base = 0; | 
 |   cache->sp_offset = -8; | 
 |   cache->pc = 0; | 
 |  | 
 |   /* Saved registers.  We initialize these to -1 since zero is a valid | 
 |      offset (that's where %rbp is supposed to be stored). | 
 |      The values start out as being offsets, and are later converted to | 
 |      addresses (at which point -1 is interpreted as an address, still meaning | 
 |      "invalid").  */ | 
 |   for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) | 
 |     cache->saved_regs[i] = -1; | 
 |   cache->saved_sp = 0; | 
 |   cache->saved_sp_reg = -1; | 
 |  | 
 |   /* Frameless until proven otherwise.  */ | 
 |   cache->frameless_p = 1; | 
 | } | 
 |  | 
 | /* Allocate and initialize a frame cache.  */ | 
 |  | 
 | static struct amd64_frame_cache * | 
 | amd64_alloc_frame_cache (void) | 
 | { | 
 |   struct amd64_frame_cache *cache; | 
 |  | 
 |   cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache); | 
 |   amd64_init_frame_cache (cache); | 
 |   return cache; | 
 | } | 
 |  | 
 | /* GCC 4.4 and later, can put code in the prologue to realign the | 
 |    stack pointer.  Check whether PC points to such code, and update | 
 |    CACHE accordingly.  Return the first instruction after the code | 
 |    sequence or CURRENT_PC, whichever is smaller.  If we don't | 
 |    recognize the code, return PC.  */ | 
 |  | 
 | static CORE_ADDR | 
 | amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc, | 
 | 			   struct amd64_frame_cache *cache) | 
 | { | 
 |   /* There are 2 code sequences to re-align stack before the frame | 
 |      gets set up: | 
 |  | 
 | 	1. Use a caller-saved saved register: | 
 |  | 
 | 		leaq  8(%rsp), %reg | 
 | 		andq  $-XXX, %rsp | 
 | 		pushq -8(%reg) | 
 |  | 
 | 	2. Use a callee-saved saved register: | 
 |  | 
 | 		pushq %reg | 
 | 		leaq  16(%rsp), %reg | 
 | 		andq  $-XXX, %rsp | 
 | 		pushq -8(%reg) | 
 |  | 
 |      "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes: | 
 |       | 
 |      	0x48 0x83 0xe4 0xf0			andq $-16, %rsp | 
 |      	0x48 0x81 0xe4 0x00 0xff 0xff 0xff	andq $-256, %rsp | 
 |    */ | 
 |  | 
 |   gdb_byte buf[18]; | 
 |   int reg, r; | 
 |   int offset, offset_and; | 
 |  | 
 |   if (target_read_memory (pc, buf, sizeof buf)) | 
 |     return pc; | 
 |  | 
 |   /* Check caller-saved saved register.  The first instruction has | 
 |      to be "leaq 8(%rsp), %reg".  */ | 
 |   if ((buf[0] & 0xfb) == 0x48 | 
 |       && buf[1] == 0x8d | 
 |       && buf[3] == 0x24 | 
 |       && buf[4] == 0x8) | 
 |     { | 
 |       /* MOD must be binary 10 and R/M must be binary 100.  */ | 
 |       if ((buf[2] & 0xc7) != 0x44) | 
 | 	return pc; | 
 |  | 
 |       /* REG has register number.  */ | 
 |       reg = (buf[2] >> 3) & 7; | 
 |  | 
 |       /* Check the REX.R bit.  */ | 
 |       if (buf[0] == 0x4c) | 
 | 	reg += 8; | 
 |  | 
 |       offset = 5; | 
 |     } | 
 |   else | 
 |     { | 
 |       /* Check callee-saved saved register.  The first instruction | 
 | 	 has to be "pushq %reg".  */ | 
 |       reg = 0; | 
 |       if ((buf[0] & 0xf8) == 0x50) | 
 | 	offset = 0; | 
 |       else if ((buf[0] & 0xf6) == 0x40 | 
 | 	       && (buf[1] & 0xf8) == 0x50) | 
 | 	{ | 
 | 	  /* Check the REX.B bit.  */ | 
 | 	  if ((buf[0] & 1) != 0) | 
 | 	    reg = 8; | 
 |  | 
 | 	  offset = 1; | 
 | 	} | 
 |       else | 
 | 	return pc; | 
 |  | 
 |       /* Get register.  */ | 
 |       reg += buf[offset] & 0x7; | 
 |  | 
 |       offset++; | 
 |  | 
 |       /* The next instruction has to be "leaq 16(%rsp), %reg".  */ | 
 |       if ((buf[offset] & 0xfb) != 0x48 | 
 | 	  || buf[offset + 1] != 0x8d | 
 | 	  || buf[offset + 3] != 0x24 | 
 | 	  || buf[offset + 4] != 0x10) | 
 | 	return pc; | 
 |  | 
 |       /* MOD must be binary 10 and R/M must be binary 100.  */ | 
 |       if ((buf[offset + 2] & 0xc7) != 0x44) | 
 | 	return pc; | 
 |        | 
 |       /* REG has register number.  */ | 
 |       r = (buf[offset + 2] >> 3) & 7; | 
 |  | 
 |       /* Check the REX.R bit.  */ | 
 |       if (buf[offset] == 0x4c) | 
 | 	r += 8; | 
 |  | 
 |       /* Registers in pushq and leaq have to be the same.  */ | 
 |       if (reg != r) | 
 | 	return pc; | 
 |  | 
 |       offset += 5; | 
 |     } | 
 |  | 
 |   /* Rigister can't be %rsp nor %rbp.  */ | 
 |   if (reg == 4 || reg == 5) | 
 |     return pc; | 
 |  | 
 |   /* The next instruction has to be "andq $-XXX, %rsp".  */ | 
 |   if (buf[offset] != 0x48 | 
 |       || buf[offset + 2] != 0xe4 | 
 |       || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83)) | 
 |     return pc; | 
 |  | 
 |   offset_and = offset; | 
 |   offset += buf[offset + 1] == 0x81 ? 7 : 4; | 
 |  | 
 |   /* The next instruction has to be "pushq -8(%reg)".  */ | 
 |   r = 0; | 
 |   if (buf[offset] == 0xff) | 
 |     offset++; | 
 |   else if ((buf[offset] & 0xf6) == 0x40 | 
 | 	   && buf[offset + 1] == 0xff) | 
 |     { | 
 |       /* Check the REX.B bit.  */ | 
 |       if ((buf[offset] & 0x1) != 0) | 
 | 	r = 8; | 
 |       offset += 2; | 
 |     } | 
 |   else | 
 |     return pc; | 
 |  | 
 |   /* 8bit -8 is 0xf8.  REG must be binary 110 and MOD must be binary | 
 |      01.  */ | 
 |   if (buf[offset + 1] != 0xf8 | 
 |       || (buf[offset] & 0xf8) != 0x70) | 
 |     return pc; | 
 |  | 
 |   /* R/M has register.  */ | 
 |   r += buf[offset] & 7; | 
 |  | 
 |   /* Registers in leaq and pushq have to be the same.  */ | 
 |   if (reg != r) | 
 |     return pc; | 
 |  | 
 |   if (current_pc > pc + offset_and) | 
 |     cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg); | 
 |  | 
 |   return min (pc + offset + 2, current_pc); | 
 | } | 
 |  | 
 | /* Do a limited analysis of the prologue at PC and update CACHE | 
 |    accordingly.  Bail out early if CURRENT_PC is reached.  Return the | 
 |    address where the analysis stopped. | 
 |  | 
 |    We will handle only functions beginning with: | 
 |  | 
 |       pushq %rbp        0x55 | 
 |       movq %rsp, %rbp   0x48 0x89 0xe5 | 
 |  | 
 |    Any function that doesn't start with this sequence will be assumed | 
 |    to have no prologue and thus no valid frame pointer in %rbp.  */ | 
 |  | 
 | static CORE_ADDR | 
 | amd64_analyze_prologue (struct gdbarch *gdbarch, | 
 | 			CORE_ADDR pc, CORE_ADDR current_pc, | 
 | 			struct amd64_frame_cache *cache) | 
 | { | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */ | 
 |   gdb_byte buf[3]; | 
 |   gdb_byte op; | 
 |  | 
 |   if (current_pc <= pc) | 
 |     return current_pc; | 
 |  | 
 |   pc = amd64_analyze_stack_align (pc, current_pc, cache); | 
 |  | 
 |   op = read_memory_unsigned_integer (pc, 1, byte_order); | 
 |  | 
 |   if (op == 0x55)		/* pushq %rbp */ | 
 |     { | 
 |       /* Take into account that we've executed the `pushq %rbp' that | 
 |          starts this instruction sequence.  */ | 
 |       cache->saved_regs[AMD64_RBP_REGNUM] = 0; | 
 |       cache->sp_offset += 8; | 
 |  | 
 |       /* If that's all, return now.  */ | 
 |       if (current_pc <= pc + 1) | 
 |         return current_pc; | 
 |  | 
 |       /* Check for `movq %rsp, %rbp'.  */ | 
 |       read_memory (pc + 1, buf, 3); | 
 |       if (memcmp (buf, proto, 3) != 0) | 
 | 	return pc + 1; | 
 |  | 
 |       /* OK, we actually have a frame.  */ | 
 |       cache->frameless_p = 0; | 
 |       return pc + 4; | 
 |     } | 
 |  | 
 |   return pc; | 
 | } | 
 |  | 
 | /* Return PC of first real instruction.  */ | 
 |  | 
 | static CORE_ADDR | 
 | amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) | 
 | { | 
 |   struct amd64_frame_cache cache; | 
 |   CORE_ADDR pc; | 
 |  | 
 |   amd64_init_frame_cache (&cache); | 
 |   pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL, | 
 | 			       &cache); | 
 |   if (cache.frameless_p) | 
 |     return start_pc; | 
 |  | 
 |   return pc; | 
 | } | 
 |  | 
 |  | 
 | /* Normal frames.  */ | 
 |  | 
 | static struct amd64_frame_cache * | 
 | amd64_frame_cache (struct frame_info *this_frame, void **this_cache) | 
 | { | 
 |   struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   struct amd64_frame_cache *cache; | 
 |   gdb_byte buf[8]; | 
 |   int i; | 
 |  | 
 |   if (*this_cache) | 
 |     return *this_cache; | 
 |  | 
 |   cache = amd64_alloc_frame_cache (); | 
 |   *this_cache = cache; | 
 |  | 
 |   cache->pc = get_frame_func (this_frame); | 
 |   if (cache->pc != 0) | 
 |     amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame), | 
 | 			    cache); | 
 |  | 
 |   if (cache->saved_sp_reg != -1) | 
 |     { | 
 |       /* Stack pointer has been saved.  */ | 
 |       get_frame_register (this_frame, cache->saved_sp_reg, buf); | 
 |       cache->saved_sp = extract_unsigned_integer(buf, 8, byte_order); | 
 |     } | 
 |  | 
 |   if (cache->frameless_p) | 
 |     { | 
 |       /* We didn't find a valid frame.  If we're at the start of a | 
 | 	 function, or somewhere half-way its prologue, the function's | 
 | 	 frame probably hasn't been fully setup yet.  Try to | 
 | 	 reconstruct the base address for the stack frame by looking | 
 | 	 at the stack pointer.  For truly "frameless" functions this | 
 | 	 might work too.  */ | 
 |  | 
 |       if (cache->saved_sp_reg != -1) | 
 | 	{ | 
 | 	  /* We're halfway aligning the stack.  */ | 
 | 	  cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8; | 
 | 	  cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8; | 
 |  | 
 | 	  /* This will be added back below.  */ | 
 | 	  cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); | 
 | 	  cache->base = extract_unsigned_integer (buf, 8, byte_order) | 
 | 			+ cache->sp_offset; | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       get_frame_register (this_frame, AMD64_RBP_REGNUM, buf); | 
 |       cache->base = extract_unsigned_integer (buf, 8, byte_order); | 
 |     } | 
 |  | 
 |   /* Now that we have the base address for the stack frame we can | 
 |      calculate the value of %rsp in the calling frame.  */ | 
 |   cache->saved_sp = cache->base + 16; | 
 |  | 
 |   /* For normal frames, %rip is stored at 8(%rbp).  If we don't have a | 
 |      frame we find it at the same offset from the reconstructed base | 
 |      address.  If we're halfway aligning the stack, %rip is handled | 
 |      differently (see above).  */ | 
 |   if (!cache->frameless_p || cache->saved_sp_reg == -1) | 
 |     cache->saved_regs[AMD64_RIP_REGNUM] = 8; | 
 |  | 
 |   /* Adjust all the saved registers such that they contain addresses | 
 |      instead of offsets.  */ | 
 |   for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) | 
 |     if (cache->saved_regs[i] != -1) | 
 |       cache->saved_regs[i] += cache->base; | 
 |  | 
 |   return cache; | 
 | } | 
 |  | 
 | static void | 
 | amd64_frame_this_id (struct frame_info *this_frame, void **this_cache, | 
 | 		     struct frame_id *this_id) | 
 | { | 
 |   struct amd64_frame_cache *cache = | 
 |     amd64_frame_cache (this_frame, this_cache); | 
 |  | 
 |   /* This marks the outermost frame.  */ | 
 |   if (cache->base == 0) | 
 |     return; | 
 |  | 
 |   (*this_id) = frame_id_build (cache->base + 16, cache->pc); | 
 | } | 
 |  | 
 | static struct value * | 
 | amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache, | 
 | 			   int regnum) | 
 | { | 
 |   struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
 |   struct amd64_frame_cache *cache = | 
 |     amd64_frame_cache (this_frame, this_cache); | 
 |  | 
 |   gdb_assert (regnum >= 0); | 
 |  | 
 |   if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp) | 
 |     return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp); | 
 |  | 
 |   if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1) | 
 |     return frame_unwind_got_memory (this_frame, regnum, | 
 | 				    cache->saved_regs[regnum]); | 
 |  | 
 |   return frame_unwind_got_register (this_frame, regnum, regnum); | 
 | } | 
 |  | 
 | static const struct frame_unwind amd64_frame_unwind = | 
 | { | 
 |   NORMAL_FRAME, | 
 |   amd64_frame_this_id, | 
 |   amd64_frame_prev_register, | 
 |   NULL, | 
 |   default_frame_sniffer | 
 | }; | 
 |  | 
 |  | 
 | /* Signal trampolines.  */ | 
 |  | 
 | /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and | 
 |    64-bit variants.  This would require using identical frame caches | 
 |    on both platforms.  */ | 
 |  | 
 | static struct amd64_frame_cache * | 
 | amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache) | 
 | { | 
 |   struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
 |   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   struct amd64_frame_cache *cache; | 
 |   CORE_ADDR addr; | 
 |   gdb_byte buf[8]; | 
 |   int i; | 
 |  | 
 |   if (*this_cache) | 
 |     return *this_cache; | 
 |  | 
 |   cache = amd64_alloc_frame_cache (); | 
 |  | 
 |   get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); | 
 |   cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8; | 
 |  | 
 |   addr = tdep->sigcontext_addr (this_frame); | 
 |   gdb_assert (tdep->sc_reg_offset); | 
 |   gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS); | 
 |   for (i = 0; i < tdep->sc_num_regs; i++) | 
 |     if (tdep->sc_reg_offset[i] != -1) | 
 |       cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; | 
 |  | 
 |   *this_cache = cache; | 
 |   return cache; | 
 | } | 
 |  | 
 | static void | 
 | amd64_sigtramp_frame_this_id (struct frame_info *this_frame, | 
 | 			      void **this_cache, struct frame_id *this_id) | 
 | { | 
 |   struct amd64_frame_cache *cache = | 
 |     amd64_sigtramp_frame_cache (this_frame, this_cache); | 
 |  | 
 |   (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame)); | 
 | } | 
 |  | 
 | static struct value * | 
 | amd64_sigtramp_frame_prev_register (struct frame_info *this_frame, | 
 | 				    void **this_cache, int regnum) | 
 | { | 
 |   /* Make sure we've initialized the cache.  */ | 
 |   amd64_sigtramp_frame_cache (this_frame, this_cache); | 
 |  | 
 |   return amd64_frame_prev_register (this_frame, this_cache, regnum); | 
 | } | 
 |  | 
 | static int | 
 | amd64_sigtramp_frame_sniffer (const struct frame_unwind *self, | 
 | 			      struct frame_info *this_frame, | 
 | 			      void **this_cache) | 
 | { | 
 |   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame)); | 
 |  | 
 |   /* We shouldn't even bother if we don't have a sigcontext_addr | 
 |      handler.  */ | 
 |   if (tdep->sigcontext_addr == NULL) | 
 |     return 0; | 
 |  | 
 |   if (tdep->sigtramp_p != NULL) | 
 |     { | 
 |       if (tdep->sigtramp_p (this_frame)) | 
 | 	return 1; | 
 |     } | 
 |  | 
 |   if (tdep->sigtramp_start != 0) | 
 |     { | 
 |       CORE_ADDR pc = get_frame_pc (this_frame); | 
 |  | 
 |       gdb_assert (tdep->sigtramp_end != 0); | 
 |       if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end) | 
 | 	return 1; | 
 |     } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | static const struct frame_unwind amd64_sigtramp_frame_unwind = | 
 | { | 
 |   SIGTRAMP_FRAME, | 
 |   amd64_sigtramp_frame_this_id, | 
 |   amd64_sigtramp_frame_prev_register, | 
 |   NULL, | 
 |   amd64_sigtramp_frame_sniffer | 
 | }; | 
 |  | 
 |  | 
 | static CORE_ADDR | 
 | amd64_frame_base_address (struct frame_info *this_frame, void **this_cache) | 
 | { | 
 |   struct amd64_frame_cache *cache = | 
 |     amd64_frame_cache (this_frame, this_cache); | 
 |  | 
 |   return cache->base; | 
 | } | 
 |  | 
 | static const struct frame_base amd64_frame_base = | 
 | { | 
 |   &amd64_frame_unwind, | 
 |   amd64_frame_base_address, | 
 |   amd64_frame_base_address, | 
 |   amd64_frame_base_address | 
 | }; | 
 |  | 
 | /* Normal frames, but in a function epilogue.  */ | 
 |  | 
 | /* The epilogue is defined here as the 'ret' instruction, which will | 
 |    follow any instruction such as 'leave' or 'pop %ebp' that destroys | 
 |    the function's stack frame.  */ | 
 |  | 
 | static int | 
 | amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | 
 | { | 
 |   gdb_byte insn; | 
 |  | 
 |   if (target_read_memory (pc, &insn, 1)) | 
 |     return 0;   /* Can't read memory at pc.  */ | 
 |  | 
 |   if (insn != 0xc3)     /* 'ret' instruction.  */ | 
 |     return 0; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static int | 
 | amd64_epilogue_frame_sniffer (const struct frame_unwind *self, | 
 | 			      struct frame_info *this_frame, | 
 | 			      void **this_prologue_cache) | 
 | { | 
 |   if (frame_relative_level (this_frame) == 0) | 
 |     return amd64_in_function_epilogue_p (get_frame_arch (this_frame), | 
 | 					 get_frame_pc (this_frame)); | 
 |   else | 
 |     return 0; | 
 | } | 
 |  | 
 | static struct amd64_frame_cache * | 
 | amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache) | 
 | { | 
 |   struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   struct amd64_frame_cache *cache; | 
 |   gdb_byte buf[8]; | 
 |  | 
 |   if (*this_cache) | 
 |     return *this_cache; | 
 |  | 
 |   cache = amd64_alloc_frame_cache (); | 
 |   *this_cache = cache; | 
 |  | 
 |   /* Cache base will be %esp plus cache->sp_offset (-8).  */ | 
 |   get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); | 
 |   cache->base = extract_unsigned_integer (buf, 8,  | 
 | 					  byte_order) + cache->sp_offset; | 
 |  | 
 |   /* Cache pc will be the frame func.  */ | 
 |   cache->pc = get_frame_pc (this_frame); | 
 |  | 
 |   /* The saved %esp will be at cache->base plus 16.  */ | 
 |   cache->saved_sp = cache->base + 16; | 
 |  | 
 |   /* The saved %eip will be at cache->base plus 8.  */ | 
 |   cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8; | 
 |  | 
 |   return cache; | 
 | } | 
 |  | 
 | static void | 
 | amd64_epilogue_frame_this_id (struct frame_info *this_frame, | 
 | 			      void **this_cache, | 
 | 			      struct frame_id *this_id) | 
 | { | 
 |   struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame, | 
 | 							       this_cache); | 
 |  | 
 |   (*this_id) = frame_id_build (cache->base + 8, cache->pc); | 
 | } | 
 |  | 
 | static const struct frame_unwind amd64_epilogue_frame_unwind = | 
 | { | 
 |   NORMAL_FRAME, | 
 |   amd64_epilogue_frame_this_id, | 
 |   amd64_frame_prev_register, | 
 |   NULL,  | 
 |   amd64_epilogue_frame_sniffer | 
 | }; | 
 |  | 
 | static struct frame_id | 
 | amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) | 
 | { | 
 |   CORE_ADDR fp; | 
 |  | 
 |   fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM); | 
 |  | 
 |   return frame_id_build (fp + 16, get_frame_pc (this_frame)); | 
 | } | 
 |  | 
 | /* 16 byte align the SP per frame requirements.  */ | 
 |  | 
 | static CORE_ADDR | 
 | amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | 
 | { | 
 |   return sp & -(CORE_ADDR)16; | 
 | } | 
 |  | 
 |  | 
 | /* Supply register REGNUM from the buffer specified by FPREGS and LEN | 
 |    in the floating-point register set REGSET to register cache | 
 |    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */ | 
 |  | 
 | static void | 
 | amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache, | 
 | 		       int regnum, const void *fpregs, size_t len) | 
 | { | 
 |   const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch); | 
 |  | 
 |   gdb_assert (len == tdep->sizeof_fpregset); | 
 |   amd64_supply_fxsave (regcache, regnum, fpregs); | 
 | } | 
 |  | 
 | /* Collect register REGNUM from the register cache REGCACHE and store | 
 |    it in the buffer specified by FPREGS and LEN as described by the | 
 |    floating-point register set REGSET.  If REGNUM is -1, do this for | 
 |    all registers in REGSET.  */ | 
 |  | 
 | static void | 
 | amd64_collect_fpregset (const struct regset *regset, | 
 | 			const struct regcache *regcache, | 
 | 			int regnum, void *fpregs, size_t len) | 
 | { | 
 |   const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch); | 
 |  | 
 |   gdb_assert (len == tdep->sizeof_fpregset); | 
 |   amd64_collect_fxsave (regcache, regnum, fpregs); | 
 | } | 
 |  | 
 | /* Return the appropriate register set for the core section identified | 
 |    by SECT_NAME and SECT_SIZE.  */ | 
 |  | 
 | static const struct regset * | 
 | amd64_regset_from_core_section (struct gdbarch *gdbarch, | 
 | 				const char *sect_name, size_t sect_size) | 
 | { | 
 |   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
 |  | 
 |   if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset) | 
 |     { | 
 |       if (tdep->fpregset == NULL) | 
 | 	tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset, | 
 | 				       amd64_collect_fpregset); | 
 |  | 
 |       return tdep->fpregset; | 
 |     } | 
 |  | 
 |   return i386_regset_from_core_section (gdbarch, sect_name, sect_size); | 
 | } | 
 |  | 
 |  | 
 | /* Figure out where the longjmp will land.  Slurp the jmp_buf out of | 
 |    %rdi.  We expect its value to be a pointer to the jmp_buf structure | 
 |    from which we extract the address that we will land at.  This | 
 |    address is copied into PC.  This routine returns non-zero on | 
 |    success.  */ | 
 |  | 
 | static int | 
 | amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) | 
 | { | 
 |   gdb_byte buf[8]; | 
 |   CORE_ADDR jb_addr; | 
 |   struct gdbarch *gdbarch = get_frame_arch (frame); | 
 |   int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset; | 
 |   int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr); | 
 |  | 
 |   /* If JB_PC_OFFSET is -1, we have no way to find out where the | 
 |      longjmp will land.	 */ | 
 |   if (jb_pc_offset == -1) | 
 |     return 0; | 
 |  | 
 |   get_frame_register (frame, AMD64_RDI_REGNUM, buf); | 
 |   jb_addr= extract_typed_address | 
 | 	    (buf, builtin_type (gdbarch)->builtin_data_ptr); | 
 |   if (target_read_memory (jb_addr + jb_pc_offset, buf, len)) | 
 |     return 0; | 
 |  | 
 |   *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr); | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static const int amd64_record_regmap[] = | 
 | { | 
 |   AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM, | 
 |   AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM, | 
 |   AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM, | 
 |   AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM, | 
 |   AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM, | 
 |   AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM | 
 | }; | 
 |  | 
 | void | 
 | amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) | 
 | { | 
 |   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
 |  | 
 |   /* AMD64 generally uses `fxsave' instead of `fsave' for saving its | 
 |      floating-point registers.  */ | 
 |   tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE; | 
 |  | 
 |   /* AMD64 has an FPU and 16 SSE registers.  */ | 
 |   tdep->st0_regnum = AMD64_ST0_REGNUM; | 
 |   tdep->num_xmm_regs = 16; | 
 |  | 
 |   /* This is what all the fuss is about.  */ | 
 |   set_gdbarch_long_bit (gdbarch, 64); | 
 |   set_gdbarch_long_long_bit (gdbarch, 64); | 
 |   set_gdbarch_ptr_bit (gdbarch, 64); | 
 |  | 
 |   /* In contrast to the i386, on AMD64 a `long double' actually takes | 
 |      up 128 bits, even though it's still based on the i387 extended | 
 |      floating-point format which has only 80 significant bits.  */ | 
 |   set_gdbarch_long_double_bit (gdbarch, 128); | 
 |  | 
 |   set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS); | 
 |   set_gdbarch_register_name (gdbarch, amd64_register_name); | 
 |   set_gdbarch_register_type (gdbarch, amd64_register_type); | 
 |  | 
 |   /* Register numbers of various important registers.  */ | 
 |   set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */ | 
 |   set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */ | 
 |   set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */ | 
 |   set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */ | 
 |  | 
 |   /* The "default" register numbering scheme for AMD64 is referred to | 
 |      as the "DWARF Register Number Mapping" in the System V psABI. | 
 |      The preferred debugging format for all known AMD64 targets is | 
 |      actually DWARF2, and GCC doesn't seem to support DWARF (that is | 
 |      DWARF-1), but we provide the same mapping just in case.  This | 
 |      mapping is also used for stabs, which GCC does support.  */ | 
 |   set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | 
 |   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | 
 |  | 
 |   /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to | 
 |      be in use on any of the supported AMD64 targets.  */ | 
 |  | 
 |   /* Call dummy code.  */ | 
 |   set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call); | 
 |   set_gdbarch_frame_align (gdbarch, amd64_frame_align); | 
 |   set_gdbarch_frame_red_zone_size (gdbarch, 128); | 
 |   tdep->call_dummy_num_integer_regs = | 
 |     ARRAY_SIZE (amd64_dummy_call_integer_regs); | 
 |   tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs; | 
 |   tdep->classify = amd64_classify; | 
 |  | 
 |   set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p); | 
 |   set_gdbarch_register_to_value (gdbarch, i387_register_to_value); | 
 |   set_gdbarch_value_to_register (gdbarch, i387_value_to_register); | 
 |  | 
 |   set_gdbarch_return_value (gdbarch, amd64_return_value); | 
 |  | 
 |   set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue); | 
 |  | 
 |   /* Avoid wiring in the MMX registers for now.  */ | 
 |   set_gdbarch_num_pseudo_regs (gdbarch, 0); | 
 |   tdep->mm0_regnum = -1; | 
 |  | 
 |   tdep->record_regmap = amd64_record_regmap; | 
 |  | 
 |   set_gdbarch_dummy_id (gdbarch, amd64_dummy_id); | 
 |  | 
 |   /* Hook the function epilogue frame unwinder.  This unwinder is | 
 |      appended to the list first, so that it supercedes the other | 
 |      unwinders in function epilogues.  */ | 
 |   frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind); | 
 |  | 
 |   /* Hook the prologue-based frame unwinders.  */ | 
 |   frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind); | 
 |   frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind); | 
 |   frame_base_set_default (gdbarch, &amd64_frame_base); | 
 |  | 
 |   /* If we have a register mapping, enable the generic core file support.  */ | 
 |   if (tdep->gregset_reg_offset) | 
 |     set_gdbarch_regset_from_core_section (gdbarch, | 
 | 					  amd64_regset_from_core_section); | 
 |  | 
 |   set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target); | 
 | } | 
 |  | 
 |  | 
 | /* The 64-bit FXSAVE format differs from the 32-bit format in the | 
 |    sense that the instruction pointer and data pointer are simply | 
 |    64-bit offsets into the code segment and the data segment instead | 
 |    of a selector offset pair.  The functions below store the upper 32 | 
 |    bits of these pointers (instead of just the 16-bits of the segment | 
 |    selector).  */ | 
 |  | 
 | /* Fill register REGNUM in REGCACHE with the appropriate | 
 |    floating-point or SSE register value from *FXSAVE.  If REGNUM is | 
 |    -1, do this for all registers.  This function masks off any of the | 
 |    reserved bits in *FXSAVE.  */ | 
 |  | 
 | void | 
 | amd64_supply_fxsave (struct regcache *regcache, int regnum, | 
 | 		     const void *fxsave) | 
 | { | 
 |   struct gdbarch *gdbarch = get_regcache_arch (regcache); | 
 |   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
 |  | 
 |   i387_supply_fxsave (regcache, regnum, fxsave); | 
 |  | 
 |   if (fxsave && gdbarch_ptr_bit (gdbarch) == 64) | 
 |     { | 
 |       const gdb_byte *regs = fxsave; | 
 |  | 
 |       if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) | 
 | 	regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12); | 
 |       if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) | 
 | 	regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20); | 
 |     } | 
 | } | 
 |  | 
 | /* Fill register REGNUM (if it is a floating-point or SSE register) in | 
 |    *FXSAVE with the value from REGCACHE.  If REGNUM is -1, do this for | 
 |    all registers.  This function doesn't touch any of the reserved | 
 |    bits in *FXSAVE.  */ | 
 |  | 
 | void | 
 | amd64_collect_fxsave (const struct regcache *regcache, int regnum, | 
 | 		      void *fxsave) | 
 | { | 
 |   struct gdbarch *gdbarch = get_regcache_arch (regcache); | 
 |   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
 |   gdb_byte *regs = fxsave; | 
 |  | 
 |   i387_collect_fxsave (regcache, regnum, fxsave); | 
 |  | 
 |   if (gdbarch_ptr_bit (gdbarch) == 64) | 
 |     { | 
 |       if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) | 
 | 	regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12); | 
 |       if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) | 
 | 	regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20); | 
 |     } | 
 | } |