|  | /* Target-machine dependent code for Nios II, for GDB. | 
|  | Copyright (C) 2012-2023 Free Software Foundation, Inc. | 
|  | Contributed by Peter Brookes (pbrookes@altera.com) | 
|  | and Andrew Draper (adraper@altera.com). | 
|  | Contributed by Mentor Graphics, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "defs.h" | 
|  | #include "frame.h" | 
|  | #include "frame-unwind.h" | 
|  | #include "frame-base.h" | 
|  | #include "trad-frame.h" | 
|  | #include "dwarf2/frame.h" | 
|  | #include "symtab.h" | 
|  | #include "inferior.h" | 
|  | #include "gdbtypes.h" | 
|  | #include "gdbcore.h" | 
|  | #include "gdbcmd.h" | 
|  | #include "osabi.h" | 
|  | #include "target.h" | 
|  | #include "dis-asm.h" | 
|  | #include "regcache.h" | 
|  | #include "value.h" | 
|  | #include "symfile.h" | 
|  | #include "arch-utils.h" | 
|  | #include "infcall.h" | 
|  | #include "regset.h" | 
|  | #include "target-descriptions.h" | 
|  |  | 
|  | /* To get entry_point_address.  */ | 
|  | #include "objfiles.h" | 
|  | #include <algorithm> | 
|  |  | 
|  | /* Nios II specific header.  */ | 
|  | #include "nios2-tdep.h" | 
|  |  | 
|  | #include "features/nios2.c" | 
|  |  | 
|  | /* Control debugging information emitted in this file.  */ | 
|  |  | 
|  | static bool nios2_debug = false; | 
|  |  | 
|  | /* The following structures are used in the cache for prologue | 
|  | analysis; see the reg_value and reg_saved tables in | 
|  | struct nios2_unwind_cache, respectively.  */ | 
|  |  | 
|  | /* struct reg_value is used to record that a register has reg's initial | 
|  | value at the start of a function plus the given constant offset. | 
|  | If reg == 0, then the value is just the offset. | 
|  | If reg < 0, then the value is unknown.  */ | 
|  |  | 
|  | struct reg_value | 
|  | { | 
|  | int reg; | 
|  | int offset; | 
|  | }; | 
|  |  | 
|  | /* struct reg_saved is used to record that a register value has been saved at | 
|  | basereg + addr, for basereg >= 0.  If basereg < 0, that indicates | 
|  | that the register is not known to have been saved.  Note that when | 
|  | basereg == NIOS2_Z_REGNUM (that is, r0, which holds value 0), | 
|  | addr is an absolute address.  */ | 
|  |  | 
|  | struct reg_saved | 
|  | { | 
|  | int basereg; | 
|  | CORE_ADDR addr; | 
|  | }; | 
|  |  | 
|  | struct nios2_unwind_cache | 
|  | { | 
|  | /* The frame's base, optionally used by the high-level debug info.  */ | 
|  | CORE_ADDR base; | 
|  |  | 
|  | /* The previous frame's inner most stack address.  Used as this | 
|  | frame ID's stack_addr.  */ | 
|  | CORE_ADDR cfa; | 
|  |  | 
|  | /* The address of the first instruction in this function.  */ | 
|  | CORE_ADDR pc; | 
|  |  | 
|  | /* Which register holds the return address for the frame.  */ | 
|  | int return_regnum; | 
|  |  | 
|  | /* Table indicating what changes have been made to each register.  */ | 
|  | struct reg_value reg_value[NIOS2_NUM_REGS]; | 
|  |  | 
|  | /* Table indicating where each register has been saved.  */ | 
|  | struct reg_saved reg_saved[NIOS2_NUM_REGS]; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* This array is a mapping from Dwarf-2 register numbering to GDB's.  */ | 
|  |  | 
|  | static int nios2_dwarf2gdb_regno_map[] = | 
|  | { | 
|  | 0, 1, 2, 3, | 
|  | 4, 5, 6, 7, | 
|  | 8, 9, 10, 11, | 
|  | 12, 13, 14, 15, | 
|  | 16, 17, 18, 19, | 
|  | 20, 21, 22, 23, | 
|  | 24, 25, | 
|  | NIOS2_GP_REGNUM,        /* 26 */ | 
|  | NIOS2_SP_REGNUM,        /* 27 */ | 
|  | NIOS2_FP_REGNUM,        /* 28 */ | 
|  | NIOS2_EA_REGNUM,        /* 29 */ | 
|  | NIOS2_BA_REGNUM,        /* 30 */ | 
|  | NIOS2_RA_REGNUM,        /* 31 */ | 
|  | NIOS2_PC_REGNUM,        /* 32 */ | 
|  | NIOS2_STATUS_REGNUM,    /* 33 */ | 
|  | NIOS2_ESTATUS_REGNUM,   /* 34 */ | 
|  | NIOS2_BSTATUS_REGNUM,   /* 35 */ | 
|  | NIOS2_IENABLE_REGNUM,   /* 36 */ | 
|  | NIOS2_IPENDING_REGNUM,  /* 37 */ | 
|  | NIOS2_CPUID_REGNUM,     /* 38 */ | 
|  | 39, /* CTL6 */          /* 39 */ | 
|  | NIOS2_EXCEPTION_REGNUM, /* 40 */ | 
|  | NIOS2_PTEADDR_REGNUM,   /* 41 */ | 
|  | NIOS2_TLBACC_REGNUM,    /* 42 */ | 
|  | NIOS2_TLBMISC_REGNUM,   /* 43 */ | 
|  | NIOS2_ECCINJ_REGNUM,    /* 44 */ | 
|  | NIOS2_BADADDR_REGNUM,   /* 45 */ | 
|  | NIOS2_CONFIG_REGNUM,    /* 46 */ | 
|  | NIOS2_MPUBASE_REGNUM,   /* 47 */ | 
|  | NIOS2_MPUACC_REGNUM     /* 48 */ | 
|  | }; | 
|  |  | 
|  | gdb_static_assert (ARRAY_SIZE (nios2_dwarf2gdb_regno_map) == NIOS2_NUM_REGS); | 
|  |  | 
|  | /* Implement the dwarf2_reg_to_regnum gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | nios2_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg) | 
|  | { | 
|  | if (dw_reg < 0 || dw_reg >= NIOS2_NUM_REGS) | 
|  | return -1; | 
|  |  | 
|  | return nios2_dwarf2gdb_regno_map[dw_reg]; | 
|  | } | 
|  |  | 
|  | /* Canonical names for the 49 registers.  */ | 
|  |  | 
|  | static const char *const nios2_reg_names[NIOS2_NUM_REGS] = | 
|  | { | 
|  | "zero", "at", "r2", "r3", "r4", "r5", "r6", "r7", | 
|  | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | 
|  | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | 
|  | "et", "bt", "gp", "sp", "fp", "ea", "sstatus", "ra", | 
|  | "pc", | 
|  | "status", "estatus", "bstatus", "ienable", | 
|  | "ipending", "cpuid", "ctl6", "exception", | 
|  | "pteaddr", "tlbacc", "tlbmisc", "eccinj", | 
|  | "badaddr", "config", "mpubase", "mpuacc" | 
|  | }; | 
|  |  | 
|  | /* Implement the register_name gdbarch method.  */ | 
|  |  | 
|  | static const char * | 
|  | nios2_register_name (struct gdbarch *gdbarch, int regno) | 
|  | { | 
|  | /* Use mnemonic aliases for GPRs.  */ | 
|  | if (regno < NIOS2_NUM_REGS) | 
|  | return nios2_reg_names[regno]; | 
|  | else | 
|  | return tdesc_register_name (gdbarch, regno); | 
|  | } | 
|  |  | 
|  | /* Implement the register_type gdbarch method.  */ | 
|  |  | 
|  | static struct type * | 
|  | nios2_register_type (struct gdbarch *gdbarch, int regno) | 
|  | { | 
|  | /* If the XML description has register information, use that to | 
|  | determine the register type.  */ | 
|  | if (tdesc_has_registers (gdbarch_target_desc (gdbarch))) | 
|  | return tdesc_register_type (gdbarch, regno); | 
|  |  | 
|  | if (regno == NIOS2_PC_REGNUM) | 
|  | return builtin_type (gdbarch)->builtin_func_ptr; | 
|  | else if (regno == NIOS2_SP_REGNUM) | 
|  | return builtin_type (gdbarch)->builtin_data_ptr; | 
|  | else | 
|  | return builtin_type (gdbarch)->builtin_uint32; | 
|  | } | 
|  |  | 
|  | /* Given a return value in REGCACHE with a type VALTYPE, | 
|  | extract and copy its value into VALBUF.  */ | 
|  |  | 
|  | static void | 
|  | nios2_extract_return_value (struct gdbarch *gdbarch, struct type *valtype, | 
|  | struct regcache *regcache, gdb_byte *valbuf) | 
|  | { | 
|  | int len = valtype->length (); | 
|  |  | 
|  | /* Return values of up to 8 bytes are returned in $r2 $r3.  */ | 
|  | if (len <= register_size (gdbarch, NIOS2_R2_REGNUM)) | 
|  | regcache->cooked_read (NIOS2_R2_REGNUM, valbuf); | 
|  | else | 
|  | { | 
|  | gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM) | 
|  | + register_size (gdbarch, NIOS2_R3_REGNUM))); | 
|  | regcache->cooked_read (NIOS2_R2_REGNUM, valbuf); | 
|  | regcache->cooked_read (NIOS2_R3_REGNUM, valbuf + 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Write into appropriate registers a function return value | 
|  | of type TYPE, given in virtual format.  */ | 
|  |  | 
|  | static void | 
|  | nios2_store_return_value (struct gdbarch *gdbarch, struct type *valtype, | 
|  | struct regcache *regcache, const gdb_byte *valbuf) | 
|  | { | 
|  | int len = valtype->length (); | 
|  |  | 
|  | /* Return values of up to 8 bytes are returned in $r2 $r3.  */ | 
|  | if (len <= register_size (gdbarch, NIOS2_R2_REGNUM)) | 
|  | regcache->cooked_write (NIOS2_R2_REGNUM, valbuf); | 
|  | else | 
|  | { | 
|  | gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM) | 
|  | + register_size (gdbarch, NIOS2_R3_REGNUM))); | 
|  | regcache->cooked_write (NIOS2_R2_REGNUM, valbuf); | 
|  | regcache->cooked_write (NIOS2_R3_REGNUM, valbuf + 4); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Set up the default values of the registers.  */ | 
|  |  | 
|  | static void | 
|  | nios2_setup_default (struct nios2_unwind_cache *cache) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NIOS2_NUM_REGS; i++) | 
|  | { | 
|  | /* All registers start off holding their previous values.  */ | 
|  | cache->reg_value[i].reg    = i; | 
|  | cache->reg_value[i].offset = 0; | 
|  |  | 
|  | /* All registers start off not saved.  */ | 
|  | cache->reg_saved[i].basereg = -1; | 
|  | cache->reg_saved[i].addr    = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Initialize the unwind cache.  */ | 
|  |  | 
|  | static void | 
|  | nios2_init_cache (struct nios2_unwind_cache *cache, CORE_ADDR pc) | 
|  | { | 
|  | cache->base = 0; | 
|  | cache->cfa = 0; | 
|  | cache->pc = pc; | 
|  | cache->return_regnum = NIOS2_RA_REGNUM; | 
|  | nios2_setup_default (cache); | 
|  | } | 
|  |  | 
|  | /* Read and identify an instruction at PC.  If INSNP is non-null, | 
|  | store the instruction word into that location.  Return the opcode | 
|  | pointer or NULL if the memory couldn't be read or disassembled.  */ | 
|  |  | 
|  | static const struct nios2_opcode * | 
|  | nios2_fetch_insn (struct gdbarch *gdbarch, CORE_ADDR pc, | 
|  | unsigned int *insnp) | 
|  | { | 
|  | LONGEST memword; | 
|  | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; | 
|  | unsigned int insn; | 
|  |  | 
|  | if (mach == bfd_mach_nios2r2) | 
|  | { | 
|  | if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE, | 
|  | BFD_ENDIAN_LITTLE, &memword) | 
|  | && !safe_read_memory_integer (pc, NIOS2_CDX_OPCODE_SIZE, | 
|  | BFD_ENDIAN_LITTLE, &memword)) | 
|  | return NULL; | 
|  | } | 
|  | else if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE, | 
|  | gdbarch_byte_order (gdbarch), &memword)) | 
|  | return NULL; | 
|  |  | 
|  | insn = (unsigned int) memword; | 
|  | if (insnp) | 
|  | *insnp = insn; | 
|  | return nios2_find_opcode_hash (insn, mach); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Match and disassemble an ADD-type instruction, with 3 register operands. | 
|  | Returns true on success, and fills in the operand pointers.  */ | 
|  |  | 
|  | static int | 
|  | nios2_match_add (uint32_t insn, const struct nios2_opcode *op, | 
|  | unsigned long mach, int *ra, int *rb, int *rc) | 
|  | { | 
|  | int is_r2 = (mach == bfd_mach_nios2r2); | 
|  |  | 
|  | if (!is_r2 && (op->match == MATCH_R1_ADD || op->match == MATCH_R1_MOV)) | 
|  | { | 
|  | *ra = GET_IW_R_A (insn); | 
|  | *rb = GET_IW_R_B (insn); | 
|  | *rc = GET_IW_R_C (insn); | 
|  | return 1; | 
|  | } | 
|  | else if (!is_r2) | 
|  | return 0; | 
|  | else if (op->match == MATCH_R2_ADD || op->match == MATCH_R2_MOV) | 
|  | { | 
|  | *ra = GET_IW_F3X6L5_A (insn); | 
|  | *rb = GET_IW_F3X6L5_B (insn); | 
|  | *rc = GET_IW_F3X6L5_C (insn); | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_ADD_N) | 
|  | { | 
|  | *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)]; | 
|  | *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)]; | 
|  | *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)]; | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_MOV_N) | 
|  | { | 
|  | *ra = GET_IW_F2_A (insn); | 
|  | *rb = 0; | 
|  | *rc = GET_IW_F2_B (insn); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Match and disassemble a SUB-type instruction, with 3 register operands. | 
|  | Returns true on success, and fills in the operand pointers.  */ | 
|  |  | 
|  | static int | 
|  | nios2_match_sub (uint32_t insn, const struct nios2_opcode *op, | 
|  | unsigned long mach, int *ra, int *rb, int *rc) | 
|  | { | 
|  | int is_r2 = (mach == bfd_mach_nios2r2); | 
|  |  | 
|  | if (!is_r2 && op->match == MATCH_R1_SUB) | 
|  | { | 
|  | *ra = GET_IW_R_A (insn); | 
|  | *rb = GET_IW_R_B (insn); | 
|  | *rc = GET_IW_R_C (insn); | 
|  | return 1; | 
|  | } | 
|  | else if (!is_r2) | 
|  | return 0; | 
|  | else if (op->match == MATCH_R2_SUB) | 
|  | { | 
|  | *ra = GET_IW_F3X6L5_A (insn); | 
|  | *rb = GET_IW_F3X6L5_B (insn); | 
|  | *rc = GET_IW_F3X6L5_C (insn); | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_SUB_N) | 
|  | { | 
|  | *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)]; | 
|  | *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)]; | 
|  | *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)]; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Match and disassemble an ADDI-type instruction, with 2 register operands | 
|  | and one immediate operand. | 
|  | Returns true on success, and fills in the operand pointers.  */ | 
|  |  | 
|  | static int | 
|  | nios2_match_addi (uint32_t insn, const struct nios2_opcode *op, | 
|  | unsigned long mach, int *ra, int *rb, int *imm) | 
|  | { | 
|  | int is_r2 = (mach == bfd_mach_nios2r2); | 
|  |  | 
|  | if (!is_r2 && op->match == MATCH_R1_ADDI) | 
|  | { | 
|  | *ra = GET_IW_I_A (insn); | 
|  | *rb = GET_IW_I_B (insn); | 
|  | *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16; | 
|  | return 1; | 
|  | } | 
|  | else if (!is_r2) | 
|  | return 0; | 
|  | else if (op->match == MATCH_R2_ADDI) | 
|  | { | 
|  | *ra = GET_IW_F2I16_A (insn); | 
|  | *rb = GET_IW_F2I16_B (insn); | 
|  | *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16; | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_ADDI_N || op->match == MATCH_R2_SUBI_N) | 
|  | { | 
|  | *ra = nios2_r2_reg3_mappings[GET_IW_T2X1I3_A3 (insn)]; | 
|  | *rb = nios2_r2_reg3_mappings[GET_IW_T2X1I3_B3 (insn)]; | 
|  | *imm = nios2_r2_asi_n_mappings[GET_IW_T2X1I3_IMM3 (insn)]; | 
|  | if (op->match == MATCH_R2_SUBI_N) | 
|  | *imm = - (*imm); | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_SPADDI_N) | 
|  | { | 
|  | *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)]; | 
|  | *rb = NIOS2_SP_REGNUM; | 
|  | *imm = GET_IW_T1I7_IMM7 (insn) << 2; | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_SPINCI_N || op->match == MATCH_R2_SPDECI_N) | 
|  | { | 
|  | *ra = NIOS2_SP_REGNUM; | 
|  | *rb = NIOS2_SP_REGNUM; | 
|  | *imm = GET_IW_X1I7_IMM7 (insn) << 2; | 
|  | if (op->match == MATCH_R2_SPDECI_N) | 
|  | *imm = - (*imm); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Match and disassemble an ORHI-type instruction, with 2 register operands | 
|  | and one unsigned immediate operand. | 
|  | Returns true on success, and fills in the operand pointers.  */ | 
|  |  | 
|  | static int | 
|  | nios2_match_orhi (uint32_t insn, const struct nios2_opcode *op, | 
|  | unsigned long mach, int *ra, int *rb, unsigned int *uimm) | 
|  | { | 
|  | int is_r2 = (mach == bfd_mach_nios2r2); | 
|  |  | 
|  | if (!is_r2 && op->match == MATCH_R1_ORHI) | 
|  | { | 
|  | *ra = GET_IW_I_A (insn); | 
|  | *rb = GET_IW_I_B (insn); | 
|  | *uimm = GET_IW_I_IMM16 (insn); | 
|  | return 1; | 
|  | } | 
|  | else if (!is_r2) | 
|  | return 0; | 
|  | else if (op->match == MATCH_R2_ORHI) | 
|  | { | 
|  | *ra = GET_IW_F2I16_A (insn); | 
|  | *rb = GET_IW_F2I16_B (insn); | 
|  | *uimm = GET_IW_F2I16_IMM16 (insn); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Match and disassemble a STW-type instruction, with 2 register operands | 
|  | and one immediate operand. | 
|  | Returns true on success, and fills in the operand pointers.  */ | 
|  |  | 
|  | static int | 
|  | nios2_match_stw (uint32_t insn, const struct nios2_opcode *op, | 
|  | unsigned long mach, int *ra, int *rb, int *imm) | 
|  | { | 
|  | int is_r2 = (mach == bfd_mach_nios2r2); | 
|  |  | 
|  | if (!is_r2 && (op->match == MATCH_R1_STW || op->match == MATCH_R1_STWIO)) | 
|  | { | 
|  | *ra = GET_IW_I_A (insn); | 
|  | *rb = GET_IW_I_B (insn); | 
|  | *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16; | 
|  | return 1; | 
|  | } | 
|  | else if (!is_r2) | 
|  | return 0; | 
|  | else if (op->match == MATCH_R2_STW) | 
|  | { | 
|  | *ra = GET_IW_F2I16_A (insn); | 
|  | *rb = GET_IW_F2I16_B (insn); | 
|  | *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16; | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_STWIO) | 
|  | { | 
|  | *ra = GET_IW_F2X4I12_A (insn); | 
|  | *rb = GET_IW_F2X4I12_B (insn); | 
|  | *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20; | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_STW_N) | 
|  | { | 
|  | *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)]; | 
|  | *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)]; | 
|  | *imm = GET_IW_T2I4_IMM4 (insn) << 2; | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_STWSP_N) | 
|  | { | 
|  | *ra = NIOS2_SP_REGNUM; | 
|  | *rb = GET_IW_F1I5_B (insn); | 
|  | *imm = GET_IW_F1I5_IMM5 (insn) << 2; | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_STWZ_N) | 
|  | { | 
|  | *ra = nios2_r2_reg3_mappings[GET_IW_T1X1I6_A3 (insn)]; | 
|  | *rb = 0; | 
|  | *imm = GET_IW_T1X1I6_IMM6 (insn) << 2; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Match and disassemble a LDW-type instruction, with 2 register operands | 
|  | and one immediate operand. | 
|  | Returns true on success, and fills in the operand pointers.  */ | 
|  |  | 
|  | static int | 
|  | nios2_match_ldw (uint32_t insn, const struct nios2_opcode *op, | 
|  | unsigned long mach, int *ra, int *rb, int *imm) | 
|  | { | 
|  | int is_r2 = (mach == bfd_mach_nios2r2); | 
|  |  | 
|  | if (!is_r2 && (op->match == MATCH_R1_LDW || op->match == MATCH_R1_LDWIO)) | 
|  | { | 
|  | *ra = GET_IW_I_A (insn); | 
|  | *rb = GET_IW_I_B (insn); | 
|  | *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16; | 
|  | return 1; | 
|  | } | 
|  | else if (!is_r2) | 
|  | return 0; | 
|  | else if (op->match == MATCH_R2_LDW) | 
|  | { | 
|  | *ra = GET_IW_F2I16_A (insn); | 
|  | *rb = GET_IW_F2I16_B (insn); | 
|  | *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16; | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_LDWIO) | 
|  | { | 
|  | *ra = GET_IW_F2X4I12_A (insn); | 
|  | *rb = GET_IW_F2X4I12_B (insn); | 
|  | *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20; | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_LDW_N) | 
|  | { | 
|  | *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)]; | 
|  | *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)]; | 
|  | *imm = GET_IW_T2I4_IMM4 (insn) << 2; | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_LDWSP_N) | 
|  | { | 
|  | *ra = NIOS2_SP_REGNUM; | 
|  | *rb = GET_IW_F1I5_B (insn); | 
|  | *imm = GET_IW_F1I5_IMM5 (insn) << 2; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Match and disassemble a RDCTL instruction, with 2 register operands. | 
|  | Returns true on success, and fills in the operand pointers.  */ | 
|  |  | 
|  | static int | 
|  | nios2_match_rdctl (uint32_t insn, const struct nios2_opcode *op, | 
|  | unsigned long mach, int *ra, int *rc) | 
|  | { | 
|  | int is_r2 = (mach == bfd_mach_nios2r2); | 
|  |  | 
|  | if (!is_r2 && (op->match == MATCH_R1_RDCTL)) | 
|  | { | 
|  | *ra = GET_IW_R_IMM5 (insn); | 
|  | *rc = GET_IW_R_C (insn); | 
|  | return 1; | 
|  | } | 
|  | else if (!is_r2) | 
|  | return 0; | 
|  | else if (op->match == MATCH_R2_RDCTL) | 
|  | { | 
|  | *ra = GET_IW_F3X6L5_IMM5 (insn); | 
|  | *rc = GET_IW_F3X6L5_C (insn); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Match and disassemble a PUSH.N or STWM instruction. | 
|  | Returns true on success, and fills in the operand pointers.  */ | 
|  |  | 
|  | static int | 
|  | nios2_match_stwm (uint32_t insn, const struct nios2_opcode *op, | 
|  | unsigned long mach, unsigned int *reglist, | 
|  | int *ra, int *imm, int *wb, int *id) | 
|  | { | 
|  | int is_r2 = (mach == bfd_mach_nios2r2); | 
|  |  | 
|  | if (!is_r2) | 
|  | return 0; | 
|  | else if (op->match == MATCH_R2_PUSH_N) | 
|  | { | 
|  | *reglist = 1 << 31; | 
|  | if (GET_IW_L5I4X1_FP (insn)) | 
|  | *reglist |= (1 << 28); | 
|  | if (GET_IW_L5I4X1_CS (insn)) | 
|  | { | 
|  | int val = GET_IW_L5I4X1_REGRANGE (insn); | 
|  | *reglist |= nios2_r2_reg_range_mappings[val]; | 
|  | } | 
|  | *ra = NIOS2_SP_REGNUM; | 
|  | *imm = GET_IW_L5I4X1_IMM4 (insn) << 2; | 
|  | *wb = 1; | 
|  | *id = 0; | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_STWM) | 
|  | { | 
|  | unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn); | 
|  | if (GET_IW_F1X4L17_RS (insn)) | 
|  | { | 
|  | *reglist = ((rawmask << 14) & 0x00ffc000); | 
|  | if (rawmask & (1 << 10)) | 
|  | *reglist |= (1 << 28); | 
|  | if (rawmask & (1 << 11)) | 
|  | *reglist |= (1 << 31); | 
|  | } | 
|  | else | 
|  | *reglist = rawmask << 2; | 
|  | *ra = GET_IW_F1X4L17_A (insn); | 
|  | *imm = 0; | 
|  | *wb = GET_IW_F1X4L17_WB (insn); | 
|  | *id = GET_IW_F1X4L17_ID (insn); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Match and disassemble a POP.N or LDWM instruction. | 
|  | Returns true on success, and fills in the operand pointers.  */ | 
|  |  | 
|  | static int | 
|  | nios2_match_ldwm (uint32_t insn, const struct nios2_opcode *op, | 
|  | unsigned long mach, unsigned int *reglist, | 
|  | int *ra, int *imm, int *wb, int *id, int *ret) | 
|  | { | 
|  | int is_r2 = (mach == bfd_mach_nios2r2); | 
|  |  | 
|  | if (!is_r2) | 
|  | return 0; | 
|  | else if (op->match == MATCH_R2_POP_N) | 
|  | { | 
|  | *reglist = 1 << 31; | 
|  | if (GET_IW_L5I4X1_FP (insn)) | 
|  | *reglist |= (1 << 28); | 
|  | if (GET_IW_L5I4X1_CS (insn)) | 
|  | { | 
|  | int val = GET_IW_L5I4X1_REGRANGE (insn); | 
|  | *reglist |= nios2_r2_reg_range_mappings[val]; | 
|  | } | 
|  | *ra = NIOS2_SP_REGNUM; | 
|  | *imm = GET_IW_L5I4X1_IMM4 (insn) << 2; | 
|  | *wb = 1; | 
|  | *id = 1; | 
|  | *ret = 1; | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_LDWM) | 
|  | { | 
|  | unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn); | 
|  | if (GET_IW_F1X4L17_RS (insn)) | 
|  | { | 
|  | *reglist = ((rawmask << 14) & 0x00ffc000); | 
|  | if (rawmask & (1 << 10)) | 
|  | *reglist |= (1 << 28); | 
|  | if (rawmask & (1 << 11)) | 
|  | *reglist |= (1 << 31); | 
|  | } | 
|  | else | 
|  | *reglist = rawmask << 2; | 
|  | *ra = GET_IW_F1X4L17_A (insn); | 
|  | *imm = 0; | 
|  | *wb = GET_IW_F1X4L17_WB (insn); | 
|  | *id = GET_IW_F1X4L17_ID (insn); | 
|  | *ret = GET_IW_F1X4L17_PC (insn); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Match and disassemble a branch instruction, with (potentially) | 
|  | 2 register operands and one immediate operand. | 
|  | Returns true on success, and fills in the operand pointers.  */ | 
|  |  | 
|  | enum branch_condition { | 
|  | branch_none, | 
|  | branch_eq, | 
|  | branch_ne, | 
|  | branch_ge, | 
|  | branch_geu, | 
|  | branch_lt, | 
|  | branch_ltu | 
|  | }; | 
|  |  | 
|  | static int | 
|  | nios2_match_branch (uint32_t insn, const struct nios2_opcode *op, | 
|  | unsigned long mach, int *ra, int *rb, int *imm, | 
|  | enum branch_condition *cond) | 
|  | { | 
|  | int is_r2 = (mach == bfd_mach_nios2r2); | 
|  |  | 
|  | if (!is_r2) | 
|  | { | 
|  | switch (op->match) | 
|  | { | 
|  | case MATCH_R1_BR: | 
|  | *cond = branch_none; | 
|  | break; | 
|  | case MATCH_R1_BEQ: | 
|  | *cond = branch_eq; | 
|  | break; | 
|  | case MATCH_R1_BNE: | 
|  | *cond = branch_ne; | 
|  | break; | 
|  | case MATCH_R1_BGE: | 
|  | *cond = branch_ge; | 
|  | break; | 
|  | case MATCH_R1_BGEU: | 
|  | *cond = branch_geu; | 
|  | break; | 
|  | case MATCH_R1_BLT: | 
|  | *cond = branch_lt; | 
|  | break; | 
|  | case MATCH_R1_BLTU: | 
|  | *cond = branch_ltu; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16; | 
|  | *ra = GET_IW_I_A (insn); | 
|  | *rb = GET_IW_I_B (insn); | 
|  | return 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | switch (op->match) | 
|  | { | 
|  | case MATCH_R2_BR_N: | 
|  | *cond = branch_none; | 
|  | *ra = NIOS2_Z_REGNUM; | 
|  | *rb = NIOS2_Z_REGNUM; | 
|  | *imm = (signed) ((GET_IW_I10_IMM10 (insn) << 1) << 21) >> 21; | 
|  | return 1; | 
|  | case MATCH_R2_BEQZ_N: | 
|  | *cond = branch_eq; | 
|  | *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)]; | 
|  | *rb = NIOS2_Z_REGNUM; | 
|  | *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24; | 
|  | return 1; | 
|  | case MATCH_R2_BNEZ_N: | 
|  | *cond = branch_ne; | 
|  | *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)]; | 
|  | *rb = NIOS2_Z_REGNUM; | 
|  | *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24; | 
|  | return 1; | 
|  | case MATCH_R2_BR: | 
|  | *cond = branch_none; | 
|  | break; | 
|  | case MATCH_R2_BEQ: | 
|  | *cond = branch_eq; | 
|  | break; | 
|  | case MATCH_R2_BNE: | 
|  | *cond = branch_ne; | 
|  | break; | 
|  | case MATCH_R2_BGE: | 
|  | *cond = branch_ge; | 
|  | break; | 
|  | case MATCH_R2_BGEU: | 
|  | *cond = branch_geu; | 
|  | break; | 
|  | case MATCH_R2_BLT: | 
|  | *cond = branch_lt; | 
|  | break; | 
|  | case MATCH_R2_BLTU: | 
|  | *cond = branch_ltu; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | *ra = GET_IW_F2I16_A (insn); | 
|  | *rb = GET_IW_F2I16_B (insn); | 
|  | *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Match and disassemble a direct jump instruction, with an | 
|  | unsigned operand.  Returns true on success, and fills in the operand | 
|  | pointer.  */ | 
|  |  | 
|  | static int | 
|  | nios2_match_jmpi (uint32_t insn, const struct nios2_opcode *op, | 
|  | unsigned long mach, unsigned int *uimm) | 
|  | { | 
|  | int is_r2 = (mach == bfd_mach_nios2r2); | 
|  |  | 
|  | if (!is_r2 && op->match == MATCH_R1_JMPI) | 
|  | { | 
|  | *uimm = GET_IW_J_IMM26 (insn) << 2; | 
|  | return 1; | 
|  | } | 
|  | else if (!is_r2) | 
|  | return 0; | 
|  | else if (op->match == MATCH_R2_JMPI) | 
|  | { | 
|  | *uimm = GET_IW_L26_IMM26 (insn) << 2; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Match and disassemble a direct call instruction, with an | 
|  | unsigned operand.  Returns true on success, and fills in the operand | 
|  | pointer.  */ | 
|  |  | 
|  | static int | 
|  | nios2_match_calli (uint32_t insn, const struct nios2_opcode *op, | 
|  | unsigned long mach, unsigned int *uimm) | 
|  | { | 
|  | int is_r2 = (mach == bfd_mach_nios2r2); | 
|  |  | 
|  | if (!is_r2 && op->match == MATCH_R1_CALL) | 
|  | { | 
|  | *uimm = GET_IW_J_IMM26 (insn) << 2; | 
|  | return 1; | 
|  | } | 
|  | else if (!is_r2) | 
|  | return 0; | 
|  | else if (op->match == MATCH_R2_CALL) | 
|  | { | 
|  | *uimm = GET_IW_L26_IMM26 (insn) << 2; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Match and disassemble an indirect jump instruction, with a | 
|  | (possibly implicit) register operand.  Returns true on success, and fills | 
|  | in the operand pointer.  */ | 
|  |  | 
|  | static int | 
|  | nios2_match_jmpr (uint32_t insn, const struct nios2_opcode *op, | 
|  | unsigned long mach, int *ra) | 
|  | { | 
|  | int is_r2 = (mach == bfd_mach_nios2r2); | 
|  |  | 
|  | if (!is_r2) | 
|  | switch (op->match) | 
|  | { | 
|  | case MATCH_R1_JMP: | 
|  | *ra = GET_IW_I_A (insn); | 
|  | return 1; | 
|  | case MATCH_R1_RET: | 
|  | *ra = NIOS2_RA_REGNUM; | 
|  | return 1; | 
|  | case MATCH_R1_ERET: | 
|  | *ra = NIOS2_EA_REGNUM; | 
|  | return 1; | 
|  | case MATCH_R1_BRET: | 
|  | *ra = NIOS2_BA_REGNUM; | 
|  | return 1; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | else | 
|  | switch (op->match) | 
|  | { | 
|  | case MATCH_R2_JMP: | 
|  | *ra = GET_IW_F2I16_A (insn); | 
|  | return 1; | 
|  | case MATCH_R2_JMPR_N: | 
|  | *ra = GET_IW_F1X1_A (insn); | 
|  | return 1; | 
|  | case MATCH_R2_RET: | 
|  | case MATCH_R2_RET_N: | 
|  | *ra = NIOS2_RA_REGNUM; | 
|  | return 1; | 
|  | case MATCH_R2_ERET: | 
|  | *ra = NIOS2_EA_REGNUM; | 
|  | return 1; | 
|  | case MATCH_R2_BRET: | 
|  | *ra = NIOS2_BA_REGNUM; | 
|  | return 1; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Match and disassemble an indirect call instruction, with a register | 
|  | operand.  Returns true on success, and fills in the operand pointer.  */ | 
|  |  | 
|  | static int | 
|  | nios2_match_callr (uint32_t insn, const struct nios2_opcode *op, | 
|  | unsigned long mach, int *ra) | 
|  | { | 
|  | int is_r2 = (mach == bfd_mach_nios2r2); | 
|  |  | 
|  | if (!is_r2 && op->match == MATCH_R1_CALLR) | 
|  | { | 
|  | *ra = GET_IW_I_A (insn); | 
|  | return 1; | 
|  | } | 
|  | else if (!is_r2) | 
|  | return 0; | 
|  | else if (op->match == MATCH_R2_CALLR) | 
|  | { | 
|  | *ra = GET_IW_F2I16_A (insn); | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_CALLR_N) | 
|  | { | 
|  | *ra = GET_IW_F1X1_A (insn); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Match and disassemble a break instruction, with an unsigned operand. | 
|  | Returns true on success, and fills in the operand pointer.  */ | 
|  |  | 
|  | static int | 
|  | nios2_match_break (uint32_t insn, const struct nios2_opcode *op, | 
|  | unsigned long mach, unsigned int *uimm) | 
|  | { | 
|  | int is_r2 = (mach == bfd_mach_nios2r2); | 
|  |  | 
|  | if (!is_r2 && op->match == MATCH_R1_BREAK) | 
|  | { | 
|  | *uimm = GET_IW_R_IMM5 (insn); | 
|  | return 1; | 
|  | } | 
|  | else if (!is_r2) | 
|  | return 0; | 
|  | else if (op->match == MATCH_R2_BREAK) | 
|  | { | 
|  | *uimm = GET_IW_F3X6L5_IMM5 (insn); | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_BREAK_N) | 
|  | { | 
|  | *uimm = GET_IW_X2L5_IMM5 (insn); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Match and disassemble a trap instruction, with an unsigned operand. | 
|  | Returns true on success, and fills in the operand pointer.  */ | 
|  |  | 
|  | static int | 
|  | nios2_match_trap (uint32_t insn, const struct nios2_opcode *op, | 
|  | unsigned long mach, unsigned int *uimm) | 
|  | { | 
|  | int is_r2 = (mach == bfd_mach_nios2r2); | 
|  |  | 
|  | if (!is_r2 && op->match == MATCH_R1_TRAP) | 
|  | { | 
|  | *uimm = GET_IW_R_IMM5 (insn); | 
|  | return 1; | 
|  | } | 
|  | else if (!is_r2) | 
|  | return 0; | 
|  | else if (op->match == MATCH_R2_TRAP) | 
|  | { | 
|  | *uimm = GET_IW_F3X6L5_IMM5 (insn); | 
|  | return 1; | 
|  | } | 
|  | else if (op->match == MATCH_R2_TRAP_N) | 
|  | { | 
|  | *uimm = GET_IW_X2L5_IMM5 (insn); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Helper function to identify when we're in a function epilogue; | 
|  | that is, the part of the function from the point at which the | 
|  | stack adjustments are made, to the return or sibcall. | 
|  | Note that we may have several stack adjustment instructions, and | 
|  | this function needs to test whether the stack teardown has already | 
|  | started before current_pc, not whether it has completed.  */ | 
|  |  | 
|  | static int | 
|  | nios2_in_epilogue_p (struct gdbarch *gdbarch, | 
|  | CORE_ADDR current_pc, | 
|  | CORE_ADDR start_pc) | 
|  | { | 
|  | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; | 
|  | int is_r2 = (mach == bfd_mach_nios2r2); | 
|  | /* Maximum number of possibly-epilogue instructions to check. | 
|  | Note that this number should not be too large, else we can | 
|  | potentially end up iterating through unmapped memory.  */ | 
|  | int ninsns, max_insns = 5; | 
|  | unsigned int insn; | 
|  | const struct nios2_opcode *op = NULL; | 
|  | unsigned int uimm; | 
|  | int imm; | 
|  | int wb, id, ret; | 
|  | int ra, rb, rc; | 
|  | enum branch_condition cond; | 
|  | CORE_ADDR pc; | 
|  |  | 
|  | /* There has to be a previous instruction in the function.  */ | 
|  | if (current_pc <= start_pc) | 
|  | return 0; | 
|  |  | 
|  | /* Find the previous instruction before current_pc.  For R2, it might | 
|  | be either a 16-bit or 32-bit instruction; the only way to know for | 
|  | sure is to scan through from the beginning of the function, | 
|  | disassembling as we go.  */ | 
|  | if (is_r2) | 
|  | for (pc = start_pc; ; ) | 
|  | { | 
|  | op = nios2_fetch_insn (gdbarch, pc, &insn); | 
|  | if (op == NULL) | 
|  | return 0; | 
|  | if (pc + op->size < current_pc) | 
|  | pc += op->size; | 
|  | else | 
|  | break; | 
|  | /* We can skip over insns to a forward branch target.  Since | 
|  | the branch offset is relative to the next instruction, | 
|  | it's correct to do this after incrementing the pc above.  */ | 
|  | if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond) | 
|  | && imm > 0 | 
|  | && pc + imm < current_pc) | 
|  | pc += imm; | 
|  | } | 
|  | /* Otherwise just go back to the previous 32-bit insn.  */ | 
|  | else | 
|  | pc = current_pc - NIOS2_OPCODE_SIZE; | 
|  |  | 
|  | /* Beginning with the previous instruction we just located, check whether | 
|  | we are in a sequence of at least one stack adjustment instruction. | 
|  | Possible instructions here include: | 
|  | ADDI sp, sp, n | 
|  | ADD sp, sp, rn | 
|  | LDW sp, n(sp) | 
|  | SPINCI.N n | 
|  | LDWSP.N sp, n(sp) | 
|  | LDWM {reglist}, (sp)++, wb */ | 
|  | for (ninsns = 0; ninsns < max_insns; ninsns++) | 
|  | { | 
|  | int ok = 0; | 
|  |  | 
|  | /* Fetch the insn at pc.  */ | 
|  | op = nios2_fetch_insn (gdbarch, pc, &insn); | 
|  | if (op == NULL) | 
|  | return 0; | 
|  | pc += op->size; | 
|  |  | 
|  | /* Was it a stack adjustment?  */ | 
|  | if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm)) | 
|  | ok = (rb == NIOS2_SP_REGNUM); | 
|  | else if (nios2_match_add (insn, op, mach, &ra, &rb, &rc)) | 
|  | ok = (rc == NIOS2_SP_REGNUM); | 
|  | else if (nios2_match_ldw (insn, op, mach, &ra, &rb, &imm)) | 
|  | ok = (rb == NIOS2_SP_REGNUM); | 
|  | else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra, | 
|  | &imm, &wb, &ret, &id)) | 
|  | ok = (ra == NIOS2_SP_REGNUM && wb && id); | 
|  | if (!ok) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* No stack adjustments found.  */ | 
|  | if (ninsns == 0) | 
|  | return 0; | 
|  |  | 
|  | /* We found more stack adjustments than we expect GCC to be generating. | 
|  | Since it looks like a stack unwind might be in progress tell GDB to | 
|  | treat it as such.  */ | 
|  | if (ninsns == max_insns) | 
|  | return 1; | 
|  |  | 
|  | /* The next instruction following the stack adjustments must be a | 
|  | return, jump, or unconditional branch, or a CDX pop.n or ldwm | 
|  | that does an implicit return.  */ | 
|  | if (nios2_match_jmpr (insn, op, mach, &ra) | 
|  | || nios2_match_jmpi (insn, op, mach, &uimm) | 
|  | || (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret) | 
|  | && ret) | 
|  | || (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond) | 
|  | && cond == branch_none)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Implement the stack_frame_destroyed_p gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | nios2_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | CORE_ADDR func_addr; | 
|  |  | 
|  | if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) | 
|  | return nios2_in_epilogue_p (gdbarch, pc, func_addr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Do prologue analysis, returning the PC of the first instruction | 
|  | after the function prologue.  Assumes CACHE has already been | 
|  | initialized.  THIS_FRAME can be null, in which case we are only | 
|  | interested in skipping the prologue.  Otherwise CACHE is filled in | 
|  | from the frame information. | 
|  |  | 
|  | The prologue may consist of the following parts: | 
|  | 1) Profiling instrumentation.  For non-PIC code it looks like: | 
|  | mov	 r8, ra | 
|  | call	 mcount | 
|  | mov	 ra, r8 | 
|  |  | 
|  | 2) A stack adjustment and save of R4-R7 for varargs functions. | 
|  | For R2 CDX this is typically handled with a STWM, otherwise | 
|  | this is typically merged with item 3. | 
|  |  | 
|  | 3) A stack adjustment and save of the callee-saved registers. | 
|  | For R2 CDX these are typically handled with a PUSH.N or STWM, | 
|  | otherwise as an explicit SP decrement and individual register | 
|  | saves. | 
|  |  | 
|  | There may also be a stack switch here in an exception handler | 
|  | in place of a stack adjustment.  It looks like: | 
|  | movhi  rx, %hiadj(newstack) | 
|  | addhi  rx, rx, %lo(newstack) | 
|  | stw    sp, constant(rx) | 
|  | mov    sp, rx | 
|  |  | 
|  | 4) A frame pointer save, which can be either a MOV or ADDI. | 
|  |  | 
|  | 5) A further stack pointer adjustment.  This is normally included | 
|  | adjustment in step 3 unless the total adjustment is too large | 
|  | to be done in one step. | 
|  |  | 
|  | 7) A stack overflow check, which can take either of these forms: | 
|  | bgeu   sp, rx, +8 | 
|  | trap  3 | 
|  | or | 
|  | bltu   sp, rx, .Lstack_overflow | 
|  | ... | 
|  | .Lstack_overflow: | 
|  | trap  3 | 
|  |  | 
|  | Older versions of GCC emitted "break 3" instead of "trap 3" here, | 
|  | so we check for both cases. | 
|  |  | 
|  | Older GCC versions emitted stack overflow checks after the SP | 
|  | adjustments in both steps 3 and 4.  Starting with GCC 6, there is | 
|  | at most one overflow check, which is placed before the first | 
|  | stack adjustment for R2 CDX and after the first stack adjustment | 
|  | otherwise. | 
|  |  | 
|  | The prologue instructions may be combined or interleaved with other | 
|  | instructions. | 
|  |  | 
|  | To cope with all this variability we decode all the instructions | 
|  | from the start of the prologue until we hit an instruction that | 
|  | cannot possibly be a prologue instruction, such as a branch, call, | 
|  | return, or epilogue instruction.  The prologue is considered to end | 
|  | at the last instruction that can definitely be considered a | 
|  | prologue instruction.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | nios2_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc, | 
|  | const CORE_ADDR current_pc, | 
|  | struct nios2_unwind_cache *cache, | 
|  | frame_info_ptr this_frame) | 
|  | { | 
|  | /* Maximum number of possibly-prologue instructions to check. | 
|  | Note that this number should not be too large, else we can | 
|  | potentially end up iterating through unmapped memory.  */ | 
|  | int ninsns, max_insns = 50; | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; | 
|  |  | 
|  | /* Does the frame set up the FP register?  */ | 
|  | int base_reg = 0; | 
|  |  | 
|  | struct reg_value *value = cache->reg_value; | 
|  | struct reg_value temp_value[NIOS2_NUM_REGS]; | 
|  |  | 
|  | /* Save the starting PC so we can correct the pc after running | 
|  | through the prolog, using symbol info.  */ | 
|  | CORE_ADDR pc = start_pc; | 
|  |  | 
|  | /* Is this an exception handler?  */ | 
|  | int exception_handler = 0; | 
|  |  | 
|  | /* What was the original value of SP (or fake original value for | 
|  | functions which switch stacks?  */ | 
|  | CORE_ADDR frame_high; | 
|  |  | 
|  | /* The last definitely-prologue instruction seen.  */ | 
|  | CORE_ADDR prologue_end; | 
|  |  | 
|  | /* Is this the innermost function?  */ | 
|  | int innermost = (this_frame ? (frame_relative_level (this_frame) == 0) : 1); | 
|  |  | 
|  | if (nios2_debug) | 
|  | gdb_printf (gdb_stdlog, | 
|  | "{ nios2_analyze_prologue start=%s, current=%s ", | 
|  | paddress (gdbarch, start_pc), | 
|  | paddress (gdbarch, current_pc)); | 
|  |  | 
|  | /* Set up the default values of the registers.  */ | 
|  | nios2_setup_default (cache); | 
|  |  | 
|  | /* Find the prologue instructions.  */ | 
|  | prologue_end = start_pc; | 
|  | for (ninsns = 0; ninsns < max_insns; ninsns++) | 
|  | { | 
|  | /* Present instruction.  */ | 
|  | uint32_t insn; | 
|  | const struct nios2_opcode *op; | 
|  | int ra, rb, rc, imm; | 
|  | unsigned int uimm; | 
|  | unsigned int reglist; | 
|  | int wb, id, ret; | 
|  | enum branch_condition cond; | 
|  |  | 
|  | if (pc == current_pc) | 
|  | { | 
|  | /* When we reach the current PC we must save the current | 
|  | register state (for the backtrace) but keep analysing | 
|  | because there might be more to find out (eg. is this an | 
|  | exception handler).  */ | 
|  | memcpy (temp_value, value, sizeof (temp_value)); | 
|  | value = temp_value; | 
|  | if (nios2_debug) | 
|  | gdb_printf (gdb_stdlog, "*"); | 
|  | } | 
|  |  | 
|  | op = nios2_fetch_insn (gdbarch, pc, &insn); | 
|  |  | 
|  | /* Unknown opcode?  Stop scanning.  */ | 
|  | if (op == NULL) | 
|  | break; | 
|  | pc += op->size; | 
|  |  | 
|  | if (nios2_debug) | 
|  | { | 
|  | if (op->size == 2) | 
|  | gdb_printf (gdb_stdlog, "[%04X]", insn & 0xffff); | 
|  | else | 
|  | gdb_printf (gdb_stdlog, "[%08X]", insn); | 
|  | } | 
|  |  | 
|  | /* The following instructions can appear in the prologue.  */ | 
|  |  | 
|  | if (nios2_match_add (insn, op, mach, &ra, &rb, &rc)) | 
|  | { | 
|  | /* ADD   rc, ra, rb  (also used for MOV) */ | 
|  | if (rc == NIOS2_SP_REGNUM | 
|  | && rb == 0 | 
|  | && value[ra].reg == cache->reg_saved[NIOS2_SP_REGNUM].basereg) | 
|  | { | 
|  | /* If the previous value of SP is available somewhere | 
|  | near the new stack pointer value then this is a | 
|  | stack switch.  */ | 
|  |  | 
|  | /* If any registers were saved on the stack before then | 
|  | we can't backtrace into them now.  */ | 
|  | for (int i = 0 ; i < NIOS2_NUM_REGS ; i++) | 
|  | { | 
|  | if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM) | 
|  | cache->reg_saved[i].basereg = -1; | 
|  | if (value[i].reg == NIOS2_SP_REGNUM) | 
|  | value[i].reg = -1; | 
|  | } | 
|  |  | 
|  | /* Create a fake "high water mark" 4 bytes above where SP | 
|  | was stored and fake up the registers to be consistent | 
|  | with that.  */ | 
|  | value[NIOS2_SP_REGNUM].reg = NIOS2_SP_REGNUM; | 
|  | value[NIOS2_SP_REGNUM].offset | 
|  | = (value[ra].offset | 
|  | - cache->reg_saved[NIOS2_SP_REGNUM].addr | 
|  | - 4); | 
|  | cache->reg_saved[NIOS2_SP_REGNUM].basereg = NIOS2_SP_REGNUM; | 
|  | cache->reg_saved[NIOS2_SP_REGNUM].addr = -4; | 
|  | } | 
|  |  | 
|  | else if (rc == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM) | 
|  | /* This is setting SP from FP.  This only happens in the | 
|  | function epilogue.  */ | 
|  | break; | 
|  |  | 
|  | else if (rc != 0) | 
|  | { | 
|  | if (value[rb].reg == 0) | 
|  | value[rc].reg = value[ra].reg; | 
|  | else if (value[ra].reg == 0) | 
|  | value[rc].reg = value[rb].reg; | 
|  | else | 
|  | value[rc].reg = -1; | 
|  | value[rc].offset = value[ra].offset + value[rb].offset; | 
|  | } | 
|  |  | 
|  | /* The add/move is only considered a prologue instruction | 
|  | if the destination is SP or FP.  */ | 
|  | if (rc == NIOS2_SP_REGNUM || rc == NIOS2_FP_REGNUM) | 
|  | prologue_end = pc; | 
|  | } | 
|  |  | 
|  | else if (nios2_match_sub (insn, op, mach, &ra, &rb, &rc)) | 
|  | { | 
|  | /* SUB   rc, ra, rb */ | 
|  | if (rc == NIOS2_SP_REGNUM && rb == NIOS2_SP_REGNUM | 
|  | && value[rc].reg != 0) | 
|  | /* If we are decrementing the SP by a non-constant amount, | 
|  | this is alloca, not part of the prologue.  */ | 
|  | break; | 
|  | else if (rc != 0) | 
|  | { | 
|  | if (value[rb].reg == 0) | 
|  | value[rc].reg = value[ra].reg; | 
|  | else | 
|  | value[rc].reg = -1; | 
|  | value[rc].offset = value[ra].offset - value[rb].offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | else if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm)) | 
|  | { | 
|  | /* ADDI    rb, ra, imm */ | 
|  |  | 
|  | /* A positive stack adjustment has to be part of the epilogue.  */ | 
|  | if (rb == NIOS2_SP_REGNUM | 
|  | && (imm > 0 || value[ra].reg != NIOS2_SP_REGNUM)) | 
|  | break; | 
|  |  | 
|  | /* Likewise restoring SP from FP.  */ | 
|  | else if (rb == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM) | 
|  | break; | 
|  |  | 
|  | if (rb != 0) | 
|  | { | 
|  | value[rb].reg    = value[ra].reg; | 
|  | value[rb].offset = value[ra].offset + imm; | 
|  | } | 
|  |  | 
|  | /* The add is only considered a prologue instruction | 
|  | if the destination is SP or FP.  */ | 
|  | if (rb == NIOS2_SP_REGNUM || rb == NIOS2_FP_REGNUM) | 
|  | prologue_end = pc; | 
|  | } | 
|  |  | 
|  | else if (nios2_match_orhi (insn, op, mach, &ra, &rb, &uimm)) | 
|  | { | 
|  | /* ORHI  rb, ra, uimm   (also used for MOVHI) */ | 
|  | if (rb != 0) | 
|  | { | 
|  | value[rb].reg    = (value[ra].reg == 0) ? 0 : -1; | 
|  | value[rb].offset = value[ra].offset | (uimm << 16); | 
|  | } | 
|  | } | 
|  |  | 
|  | else if (nios2_match_stw (insn, op, mach, &ra, &rb, &imm)) | 
|  | { | 
|  | /* STW rb, imm(ra) */ | 
|  |  | 
|  | /* Are we storing the original value of a register to the stack? | 
|  | For exception handlers the value of EA-4 (return | 
|  | address from interrupts etc) is sometimes stored.  */ | 
|  | int orig = value[rb].reg; | 
|  | if (orig > 0 | 
|  | && (value[rb].offset == 0 | 
|  | || (orig == NIOS2_EA_REGNUM && value[rb].offset == -4)) | 
|  | && value[ra].reg == NIOS2_SP_REGNUM) | 
|  | { | 
|  | if (pc < current_pc) | 
|  | { | 
|  | /* Save off callee saved registers.  */ | 
|  | cache->reg_saved[orig].basereg = value[ra].reg; | 
|  | cache->reg_saved[orig].addr = value[ra].offset + imm; | 
|  | } | 
|  |  | 
|  | prologue_end = pc; | 
|  |  | 
|  | if (orig == NIOS2_EA_REGNUM || orig == NIOS2_ESTATUS_REGNUM) | 
|  | exception_handler = 1; | 
|  | } | 
|  | else | 
|  | /* Non-stack memory writes cannot appear in the prologue.  */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | else if (nios2_match_stwm (insn, op, mach, | 
|  | ®list, &ra, &imm, &wb, &id)) | 
|  | { | 
|  | /* PUSH.N {reglist}, adjust | 
|  | or | 
|  | STWM {reglist}, --(SP)[, writeback] */ | 
|  | int off = 0; | 
|  |  | 
|  | if (ra != NIOS2_SP_REGNUM || id != 0) | 
|  | /* This is a non-stack-push memory write and cannot be | 
|  | part of the prologue.  */ | 
|  | break; | 
|  |  | 
|  | for (int i = 31; i >= 0; i--) | 
|  | if (reglist & (1 << i)) | 
|  | { | 
|  | int orig = value[i].reg; | 
|  |  | 
|  | off += 4; | 
|  | if (orig > 0 && value[i].offset == 0 && pc < current_pc) | 
|  | { | 
|  | cache->reg_saved[orig].basereg | 
|  | = value[NIOS2_SP_REGNUM].reg; | 
|  | cache->reg_saved[orig].addr | 
|  | = value[NIOS2_SP_REGNUM].offset - off; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (wb) | 
|  | value[NIOS2_SP_REGNUM].offset -= off; | 
|  | value[NIOS2_SP_REGNUM].offset -= imm; | 
|  |  | 
|  | prologue_end = pc; | 
|  | } | 
|  |  | 
|  | else if (nios2_match_rdctl (insn, op, mach, &ra, &rc)) | 
|  | { | 
|  | /* RDCTL rC, ctlN | 
|  | This can appear in exception handlers in combination with | 
|  | a subsequent save to the stack frame.  */ | 
|  | if (rc != 0) | 
|  | { | 
|  | value[rc].reg    = NIOS2_STATUS_REGNUM + ra; | 
|  | value[rc].offset = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | else if (nios2_match_calli (insn, op, mach, &uimm)) | 
|  | { | 
|  | if (value[8].reg == NIOS2_RA_REGNUM | 
|  | && value[8].offset == 0 | 
|  | && value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM | 
|  | && value[NIOS2_SP_REGNUM].offset == 0) | 
|  | { | 
|  | /* A CALL instruction.  This is treated as a call to mcount | 
|  | if ra has been stored into r8 beforehand and if it's | 
|  | before the stack adjust. | 
|  | Note mcount corrupts r2-r3, r9-r15 & ra.  */ | 
|  | for (int i = 2 ; i <= 3 ; i++) | 
|  | value[i].reg = -1; | 
|  | for (int i = 9 ; i <= 15 ; i++) | 
|  | value[i].reg = -1; | 
|  | value[NIOS2_RA_REGNUM].reg = -1; | 
|  |  | 
|  | prologue_end = pc; | 
|  | } | 
|  |  | 
|  | /* Other calls are not part of the prologue.  */ | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | else if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)) | 
|  | { | 
|  | /* Branches not involving a stack overflow check aren't part of | 
|  | the prologue.  */ | 
|  | if (ra != NIOS2_SP_REGNUM) | 
|  | break; | 
|  | else if (cond == branch_geu) | 
|  | { | 
|  | /* BGEU sp, rx, +8 | 
|  | TRAP 3  (or BREAK 3) | 
|  | This instruction sequence is used in stack checking; | 
|  | we can ignore it.  */ | 
|  | unsigned int next_insn; | 
|  | const struct nios2_opcode *next_op | 
|  | = nios2_fetch_insn (gdbarch, pc, &next_insn); | 
|  | if (next_op != NULL | 
|  | && (nios2_match_trap (next_insn, op, mach, &uimm) | 
|  | || nios2_match_break (next_insn, op, mach, &uimm))) | 
|  | pc += next_op->size; | 
|  | else | 
|  | break; | 
|  | } | 
|  | else if (cond == branch_ltu) | 
|  | { | 
|  | /* BLTU sp, rx, .Lstackoverflow | 
|  | If the location branched to holds a TRAP or BREAK | 
|  | instruction then this is also stack overflow detection.  */ | 
|  | unsigned int next_insn; | 
|  | const struct nios2_opcode *next_op | 
|  | = nios2_fetch_insn (gdbarch, pc + imm, &next_insn); | 
|  | if (next_op != NULL | 
|  | && (nios2_match_trap (next_insn, op, mach, &uimm) | 
|  | || nios2_match_break (next_insn, op, mach, &uimm))) | 
|  | ; | 
|  | else | 
|  | break; | 
|  | } | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* All other calls, jumps, returns, TRAPs, or BREAKs terminate | 
|  | the prologue.  */ | 
|  | else if (nios2_match_callr (insn, op, mach, &ra) | 
|  | || nios2_match_jmpr (insn, op, mach, &ra) | 
|  | || nios2_match_jmpi (insn, op, mach, &uimm) | 
|  | || (nios2_match_ldwm (insn, op, mach, ®list, &ra, | 
|  | &imm, &wb, &id, &ret) | 
|  | && ret) | 
|  | || nios2_match_trap (insn, op, mach, &uimm) | 
|  | || nios2_match_break (insn, op, mach, &uimm)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If THIS_FRAME is NULL, we are being called from skip_prologue | 
|  | and are only interested in the PROLOGUE_END value, so just | 
|  | return that now and skip over the cache updates, which depend | 
|  | on having frame information.  */ | 
|  | if (this_frame == NULL) | 
|  | return prologue_end; | 
|  |  | 
|  | /* If we are in the function epilogue and have already popped | 
|  | registers off the stack in preparation for returning, then we | 
|  | want to go back to the original register values.  */ | 
|  | if (innermost && nios2_in_epilogue_p (gdbarch, current_pc, start_pc)) | 
|  | nios2_setup_default (cache); | 
|  |  | 
|  | /* Exception handlers use a different return address register.  */ | 
|  | if (exception_handler) | 
|  | cache->return_regnum = NIOS2_EA_REGNUM; | 
|  |  | 
|  | if (nios2_debug) | 
|  | gdb_printf (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum); | 
|  |  | 
|  | if (cache->reg_value[NIOS2_FP_REGNUM].reg == NIOS2_SP_REGNUM) | 
|  | /* If the FP now holds an offset from the CFA then this is a | 
|  | normal frame which uses the frame pointer.  */ | 
|  | base_reg = NIOS2_FP_REGNUM; | 
|  | else if (cache->reg_value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM) | 
|  | /* FP doesn't hold an offset from the CFA.  If SP still holds an | 
|  | offset from the CFA then we might be in a function which omits | 
|  | the frame pointer, or we might be partway through the prologue. | 
|  | In both cases we can find the CFA using SP.  */ | 
|  | base_reg = NIOS2_SP_REGNUM; | 
|  | else | 
|  | { | 
|  | /* Somehow the stack pointer has been corrupted. | 
|  | We can't return.  */ | 
|  | if (nios2_debug) | 
|  | gdb_printf (gdb_stdlog, "<can't reach cfa> }\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (cache->reg_value[base_reg].offset == 0 | 
|  | || cache->reg_saved[NIOS2_RA_REGNUM].basereg != NIOS2_SP_REGNUM | 
|  | || cache->reg_saved[cache->return_regnum].basereg != NIOS2_SP_REGNUM) | 
|  | { | 
|  | /* If the frame didn't adjust the stack, didn't save RA or | 
|  | didn't save EA in an exception handler then it must either | 
|  | be a leaf function (doesn't call any other functions) or it | 
|  | can't return.  If it has called another function then it | 
|  | can't be a leaf, so set base == 0 to indicate that we can't | 
|  | backtrace past it.  */ | 
|  |  | 
|  | if (!innermost) | 
|  | { | 
|  | /* If it isn't the innermost function then it can't be a | 
|  | leaf, unless it was interrupted.  Check whether RA for | 
|  | this frame is the same as PC.  If so then it probably | 
|  | wasn't interrupted.  */ | 
|  | CORE_ADDR ra | 
|  | = get_frame_register_unsigned (this_frame, NIOS2_RA_REGNUM); | 
|  |  | 
|  | if (ra == current_pc) | 
|  | { | 
|  | if (nios2_debug) | 
|  | gdb_printf | 
|  | (gdb_stdlog, | 
|  | "<noreturn ADJUST %s, r31@r%d+?>, r%d@r%d+?> }\n", | 
|  | paddress (gdbarch, cache->reg_value[base_reg].offset), | 
|  | cache->reg_saved[NIOS2_RA_REGNUM].basereg, | 
|  | cache->return_regnum, | 
|  | cache->reg_saved[cache->return_regnum].basereg); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Get the value of whichever register we are using for the | 
|  | base.  */ | 
|  | cache->base = get_frame_register_unsigned (this_frame, base_reg); | 
|  |  | 
|  | /* What was the value of SP at the start of this function (or just | 
|  | after the stack switch).  */ | 
|  | frame_high = cache->base - cache->reg_value[base_reg].offset; | 
|  |  | 
|  | /* Adjust all the saved registers such that they contain addresses | 
|  | instead of offsets.  */ | 
|  | for (int i = 0; i < NIOS2_NUM_REGS; i++) | 
|  | if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM) | 
|  | { | 
|  | cache->reg_saved[i].basereg = NIOS2_Z_REGNUM; | 
|  | cache->reg_saved[i].addr += frame_high; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < NIOS2_NUM_REGS; i++) | 
|  | if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM) | 
|  | { | 
|  | CORE_ADDR gp = get_frame_register_unsigned (this_frame, | 
|  | NIOS2_GP_REGNUM); | 
|  |  | 
|  | for ( ; i < NIOS2_NUM_REGS; i++) | 
|  | if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM) | 
|  | { | 
|  | cache->reg_saved[i].basereg = NIOS2_Z_REGNUM; | 
|  | cache->reg_saved[i].addr += gp; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Work out what the value of SP was on the first instruction of | 
|  | this function.  If we didn't switch stacks then this can be | 
|  | trivially computed from the base address.  */ | 
|  | if (cache->reg_saved[NIOS2_SP_REGNUM].basereg == NIOS2_Z_REGNUM) | 
|  | cache->cfa | 
|  | = read_memory_unsigned_integer (cache->reg_saved[NIOS2_SP_REGNUM].addr, | 
|  | 4, byte_order); | 
|  | else | 
|  | cache->cfa = frame_high; | 
|  |  | 
|  | /* Exception handlers restore ESTATUS into STATUS.  */ | 
|  | if (exception_handler) | 
|  | { | 
|  | cache->reg_saved[NIOS2_STATUS_REGNUM] | 
|  | = cache->reg_saved[NIOS2_ESTATUS_REGNUM]; | 
|  | cache->reg_saved[NIOS2_ESTATUS_REGNUM].basereg = -1; | 
|  | } | 
|  |  | 
|  | if (nios2_debug) | 
|  | gdb_printf (gdb_stdlog, "cfa=%s }\n", | 
|  | paddress (gdbarch, cache->cfa)); | 
|  |  | 
|  | return prologue_end; | 
|  | } | 
|  |  | 
|  | /* Implement the skip_prologue gdbarch hook.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | nios2_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) | 
|  | { | 
|  | CORE_ADDR func_addr; | 
|  |  | 
|  | struct nios2_unwind_cache cache; | 
|  |  | 
|  | /* See if we can determine the end of the prologue via the symbol | 
|  | table.  If so, then return either PC, or the PC after the | 
|  | prologue, whichever is greater.  */ | 
|  | if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL)) | 
|  | { | 
|  | CORE_ADDR post_prologue_pc | 
|  | = skip_prologue_using_sal (gdbarch, func_addr); | 
|  |  | 
|  | if (post_prologue_pc != 0) | 
|  | return std::max (start_pc, post_prologue_pc); | 
|  | } | 
|  |  | 
|  | /* Prologue analysis does the rest....  */ | 
|  | nios2_init_cache (&cache, start_pc); | 
|  | return nios2_analyze_prologue (gdbarch, start_pc, start_pc, &cache, NULL); | 
|  | } | 
|  |  | 
|  | /* Implement the breakpoint_kind_from_pc gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | nios2_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) | 
|  | { | 
|  | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; | 
|  |  | 
|  | if (mach == bfd_mach_nios2r2) | 
|  | { | 
|  | unsigned int insn; | 
|  | const struct nios2_opcode *op | 
|  | = nios2_fetch_insn (gdbarch, *pcptr, &insn); | 
|  |  | 
|  | if (op && op->size == NIOS2_CDX_OPCODE_SIZE) | 
|  | return NIOS2_CDX_OPCODE_SIZE; | 
|  | else | 
|  | return NIOS2_OPCODE_SIZE; | 
|  | } | 
|  | else | 
|  | return NIOS2_OPCODE_SIZE; | 
|  | } | 
|  |  | 
|  | /* Implement the sw_breakpoint_from_kind gdbarch method.  */ | 
|  |  | 
|  | static const gdb_byte * | 
|  | nios2_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) | 
|  | { | 
|  | /* The Nios II ABI for Linux says: "Userspace programs should not use | 
|  | the break instruction and userspace debuggers should not insert | 
|  | one." and "Userspace breakpoints are accomplished using the trap | 
|  | instruction with immediate operand 31 (all ones)." | 
|  |  | 
|  | So, we use "trap 31" consistently as the breakpoint on bare-metal | 
|  | as well as Linux targets.  */ | 
|  |  | 
|  | /* R2 trap encoding: | 
|  | ((0x2d << 26) | (0x1f << 21) | (0x1d << 16) | (0x20 << 0)) | 
|  | 0xb7fd0020 | 
|  | CDX trap.n encoding: | 
|  | ((0xd << 12) | (0x1f << 6) | (0x9 << 0)) | 
|  | 0xd7c9 | 
|  | Note that code is always little-endian on R2.  */ | 
|  | *size = kind; | 
|  |  | 
|  | if (kind == NIOS2_CDX_OPCODE_SIZE) | 
|  | { | 
|  | static const gdb_byte cdx_breakpoint_le[] = {0xc9, 0xd7}; | 
|  |  | 
|  | return cdx_breakpoint_le; | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; | 
|  |  | 
|  | if (mach == bfd_mach_nios2r2) | 
|  | { | 
|  | static const gdb_byte r2_breakpoint_le[] = {0x20, 0x00, 0xfd, 0xb7}; | 
|  |  | 
|  | return r2_breakpoint_le; | 
|  | } | 
|  | else | 
|  | { | 
|  | enum bfd_endian byte_order_for_code | 
|  | = gdbarch_byte_order_for_code (gdbarch); | 
|  | /* R1 trap encoding: | 
|  | ((0x1d << 17) | (0x2d << 11) | (0x1f << 6) | (0x3a << 0)) | 
|  | 0x003b6ffa */ | 
|  | static const gdb_byte r1_breakpoint_le[] = {0xfa, 0x6f, 0x3b, 0x0}; | 
|  | static const gdb_byte r1_breakpoint_be[] = {0x0, 0x3b, 0x6f, 0xfa}; | 
|  |  | 
|  | if (byte_order_for_code == BFD_ENDIAN_BIG) | 
|  | return r1_breakpoint_be; | 
|  | else | 
|  | return r1_breakpoint_le; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Implement the frame_align gdbarch method.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | 
|  | { | 
|  | return align_down (addr, 4); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Implement the return_value gdbarch method.  */ | 
|  |  | 
|  | static enum return_value_convention | 
|  | nios2_return_value (struct gdbarch *gdbarch, struct value *function, | 
|  | struct type *type, struct regcache *regcache, | 
|  | gdb_byte *readbuf, const gdb_byte *writebuf) | 
|  | { | 
|  | if (type->length () > 8) | 
|  | return RETURN_VALUE_STRUCT_CONVENTION; | 
|  |  | 
|  | if (readbuf) | 
|  | nios2_extract_return_value (gdbarch, type, regcache, readbuf); | 
|  | if (writebuf) | 
|  | nios2_store_return_value (gdbarch, type, regcache, writebuf); | 
|  |  | 
|  | return RETURN_VALUE_REGISTER_CONVENTION; | 
|  | } | 
|  |  | 
|  | /* Implement the push_dummy_call gdbarch method.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | nios2_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | 
|  | struct regcache *regcache, CORE_ADDR bp_addr, | 
|  | int nargs, struct value **args, CORE_ADDR sp, | 
|  | function_call_return_method return_method, | 
|  | CORE_ADDR struct_addr) | 
|  | { | 
|  | int argreg; | 
|  | int argnum; | 
|  | int arg_space = 0; | 
|  | int stack_offset = 0; | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | /* Set the return address register to point to the entry point of | 
|  | the program, where a breakpoint lies in wait.  */ | 
|  | regcache_cooked_write_signed (regcache, NIOS2_RA_REGNUM, bp_addr); | 
|  |  | 
|  | /* Now make space on the stack for the args.  */ | 
|  | for (argnum = 0; argnum < nargs; argnum++) | 
|  | arg_space += align_up (args[argnum]->type ()->length (), 4); | 
|  | sp -= arg_space; | 
|  |  | 
|  | /* Initialize the register pointer.  */ | 
|  | argreg = NIOS2_FIRST_ARGREG; | 
|  |  | 
|  | /* The struct_return pointer occupies the first parameter-passing | 
|  | register.  */ | 
|  | if (return_method == return_method_struct) | 
|  | regcache_cooked_write_unsigned (regcache, argreg++, struct_addr); | 
|  |  | 
|  | /* Now load as many as possible of the first arguments into | 
|  | registers, and push the rest onto the stack.  Loop through args | 
|  | from first to last.  */ | 
|  | for (argnum = 0; argnum < nargs; argnum++) | 
|  | { | 
|  | const gdb_byte *val; | 
|  | struct value *arg = args[argnum]; | 
|  | struct type *arg_type = check_typedef (arg->type ()); | 
|  | int len = arg_type->length (); | 
|  |  | 
|  | val = arg->contents ().data (); | 
|  |  | 
|  | /* Copy the argument to general registers or the stack in | 
|  | register-sized pieces.  Large arguments are split between | 
|  | registers and stack.  */ | 
|  | while (len > 0) | 
|  | { | 
|  | int partial_len = (len < 4 ? len : 4); | 
|  |  | 
|  | if (argreg <= NIOS2_LAST_ARGREG) | 
|  | { | 
|  | /* The argument is being passed in a register.  */ | 
|  | CORE_ADDR regval = extract_unsigned_integer (val, partial_len, | 
|  | byte_order); | 
|  |  | 
|  | regcache_cooked_write_unsigned (regcache, argreg, regval); | 
|  | argreg++; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* The argument is being passed on the stack.  */ | 
|  | CORE_ADDR addr = sp + stack_offset; | 
|  |  | 
|  | write_memory (addr, val, partial_len); | 
|  | stack_offset += align_up (partial_len, 4); | 
|  | } | 
|  |  | 
|  | len -= partial_len; | 
|  | val += partial_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | regcache_cooked_write_signed (regcache, NIOS2_SP_REGNUM, sp); | 
|  |  | 
|  | /* Return adjusted stack pointer.  */ | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | /* Implement the unwind_pc gdbarch method.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | nios2_unwind_pc (struct gdbarch *gdbarch, frame_info_ptr next_frame) | 
|  | { | 
|  | gdb_byte buf[4]; | 
|  |  | 
|  | frame_unwind_register (next_frame, NIOS2_PC_REGNUM, buf); | 
|  | return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr); | 
|  | } | 
|  |  | 
|  | /* Use prologue analysis to fill in the register cache | 
|  | *THIS_PROLOGUE_CACHE for THIS_FRAME.  This function initializes | 
|  | *THIS_PROLOGUE_CACHE first.  */ | 
|  |  | 
|  | static struct nios2_unwind_cache * | 
|  | nios2_frame_unwind_cache (frame_info_ptr this_frame, | 
|  | void **this_prologue_cache) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | CORE_ADDR current_pc; | 
|  | struct nios2_unwind_cache *cache; | 
|  |  | 
|  | if (*this_prologue_cache) | 
|  | return (struct nios2_unwind_cache *) *this_prologue_cache; | 
|  |  | 
|  | cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache); | 
|  | *this_prologue_cache = cache; | 
|  |  | 
|  | /* Zero all fields.  */ | 
|  | nios2_init_cache (cache, get_frame_func (this_frame)); | 
|  |  | 
|  | /* Prologue analysis does the rest...  */ | 
|  | current_pc = get_frame_pc (this_frame); | 
|  | if (cache->pc != 0) | 
|  | nios2_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame); | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | /* Implement the this_id function for the normal unwinder.  */ | 
|  |  | 
|  | static void | 
|  | nios2_frame_this_id (frame_info_ptr this_frame, void **this_cache, | 
|  | struct frame_id *this_id) | 
|  | { | 
|  | struct nios2_unwind_cache *cache = | 
|  | nios2_frame_unwind_cache (this_frame, this_cache); | 
|  |  | 
|  | /* This marks the outermost frame.  */ | 
|  | if (cache->base == 0) | 
|  | return; | 
|  |  | 
|  | *this_id = frame_id_build (cache->cfa, cache->pc); | 
|  | } | 
|  |  | 
|  | /* Implement the prev_register function for the normal unwinder.  */ | 
|  |  | 
|  | static struct value * | 
|  | nios2_frame_prev_register (frame_info_ptr this_frame, void **this_cache, | 
|  | int regnum) | 
|  | { | 
|  | struct nios2_unwind_cache *cache = | 
|  | nios2_frame_unwind_cache (this_frame, this_cache); | 
|  |  | 
|  | gdb_assert (regnum >= 0 && regnum < NIOS2_NUM_REGS); | 
|  |  | 
|  | /* The PC of the previous frame is stored in the RA register of | 
|  | the current frame.  Frob regnum so that we pull the value from | 
|  | the correct place.  */ | 
|  | if (regnum == NIOS2_PC_REGNUM) | 
|  | regnum = cache->return_regnum; | 
|  |  | 
|  | if (regnum == NIOS2_SP_REGNUM && cache->cfa) | 
|  | return frame_unwind_got_constant (this_frame, regnum, cache->cfa); | 
|  |  | 
|  | /* If we've worked out where a register is stored then load it from | 
|  | there.  */ | 
|  | if (cache->reg_saved[regnum].basereg == NIOS2_Z_REGNUM) | 
|  | return frame_unwind_got_memory (this_frame, regnum, | 
|  | cache->reg_saved[regnum].addr); | 
|  |  | 
|  | return frame_unwind_got_register (this_frame, regnum, regnum); | 
|  | } | 
|  |  | 
|  | /* Implement the this_base, this_locals, and this_args hooks | 
|  | for the normal unwinder.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | nios2_frame_base_address (frame_info_ptr this_frame, void **this_cache) | 
|  | { | 
|  | struct nios2_unwind_cache *info | 
|  | = nios2_frame_unwind_cache (this_frame, this_cache); | 
|  |  | 
|  | return info->base; | 
|  | } | 
|  |  | 
|  | /* Data structures for the normal prologue-analysis-based | 
|  | unwinder.  */ | 
|  |  | 
|  | static const struct frame_unwind nios2_frame_unwind = | 
|  | { | 
|  | "nios2 prologue", | 
|  | NORMAL_FRAME, | 
|  | default_frame_unwind_stop_reason, | 
|  | nios2_frame_this_id, | 
|  | nios2_frame_prev_register, | 
|  | NULL, | 
|  | default_frame_sniffer | 
|  | }; | 
|  |  | 
|  | static const struct frame_base nios2_frame_base = | 
|  | { | 
|  | &nios2_frame_unwind, | 
|  | nios2_frame_base_address, | 
|  | nios2_frame_base_address, | 
|  | nios2_frame_base_address | 
|  | }; | 
|  |  | 
|  | /* Fill in the register cache *THIS_CACHE for THIS_FRAME for use | 
|  | in the stub unwinder.  */ | 
|  |  | 
|  | static struct trad_frame_cache * | 
|  | nios2_stub_frame_cache (frame_info_ptr this_frame, void **this_cache) | 
|  | { | 
|  | CORE_ADDR pc; | 
|  | CORE_ADDR start_addr; | 
|  | CORE_ADDR stack_addr; | 
|  | struct trad_frame_cache *this_trad_cache; | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  |  | 
|  | if (*this_cache != NULL) | 
|  | return (struct trad_frame_cache *) *this_cache; | 
|  | this_trad_cache = trad_frame_cache_zalloc (this_frame); | 
|  | *this_cache = this_trad_cache; | 
|  |  | 
|  | /* The return address is in the link register.  */ | 
|  | trad_frame_set_reg_realreg (this_trad_cache, | 
|  | gdbarch_pc_regnum (gdbarch), | 
|  | NIOS2_RA_REGNUM); | 
|  |  | 
|  | /* Frame ID, since it's a frameless / stackless function, no stack | 
|  | space is allocated and SP on entry is the current SP.  */ | 
|  | pc = get_frame_pc (this_frame); | 
|  | find_pc_partial_function (pc, NULL, &start_addr, NULL); | 
|  | stack_addr = get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM); | 
|  | trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr)); | 
|  | /* Assume that the frame's base is the same as the stack pointer.  */ | 
|  | trad_frame_set_this_base (this_trad_cache, stack_addr); | 
|  |  | 
|  | return this_trad_cache; | 
|  | } | 
|  |  | 
|  | /* Implement the this_id function for the stub unwinder.  */ | 
|  |  | 
|  | static void | 
|  | nios2_stub_frame_this_id (frame_info_ptr this_frame, void **this_cache, | 
|  | struct frame_id *this_id) | 
|  | { | 
|  | struct trad_frame_cache *this_trad_cache | 
|  | = nios2_stub_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | trad_frame_get_id (this_trad_cache, this_id); | 
|  | } | 
|  |  | 
|  | /* Implement the prev_register function for the stub unwinder.  */ | 
|  |  | 
|  | static struct value * | 
|  | nios2_stub_frame_prev_register (frame_info_ptr this_frame, | 
|  | void **this_cache, int regnum) | 
|  | { | 
|  | struct trad_frame_cache *this_trad_cache | 
|  | = nios2_stub_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | return trad_frame_get_register (this_trad_cache, this_frame, regnum); | 
|  | } | 
|  |  | 
|  | /* Implement the sniffer function for the stub unwinder. | 
|  | This unwinder is used for cases where the normal | 
|  | prologue-analysis-based unwinder can't work, | 
|  | such as PLT stubs.  */ | 
|  |  | 
|  | static int | 
|  | nios2_stub_frame_sniffer (const struct frame_unwind *self, | 
|  | frame_info_ptr this_frame, void **cache) | 
|  | { | 
|  | gdb_byte dummy[4]; | 
|  | CORE_ADDR pc = get_frame_address_in_block (this_frame); | 
|  |  | 
|  | /* Use the stub unwinder for unreadable code.  */ | 
|  | if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0) | 
|  | return 1; | 
|  |  | 
|  | if (in_plt_section (pc)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Define the data structures for the stub unwinder.  */ | 
|  |  | 
|  | static const struct frame_unwind nios2_stub_frame_unwind = | 
|  | { | 
|  | "nios2 stub", | 
|  | NORMAL_FRAME, | 
|  | default_frame_unwind_stop_reason, | 
|  | nios2_stub_frame_this_id, | 
|  | nios2_stub_frame_prev_register, | 
|  | NULL, | 
|  | nios2_stub_frame_sniffer | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  | /* Determine where to set a single step breakpoint while considering | 
|  | branch prediction.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | nios2_get_next_pc (struct regcache *regcache, CORE_ADDR pc) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | nios2_gdbarch_tdep *tdep = gdbarch_tdep<nios2_gdbarch_tdep> (gdbarch); | 
|  | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; | 
|  | unsigned int insn; | 
|  | const struct nios2_opcode *op = nios2_fetch_insn (gdbarch, pc, &insn); | 
|  | int ra; | 
|  | int rb; | 
|  | int imm; | 
|  | unsigned int uimm; | 
|  | int wb, id, ret; | 
|  | enum branch_condition cond; | 
|  |  | 
|  | /* Do something stupid if we can't disassemble the insn at pc.  */ | 
|  | if (op == NULL) | 
|  | return pc + NIOS2_OPCODE_SIZE; | 
|  |  | 
|  | if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)) | 
|  | { | 
|  | int ras = regcache_raw_get_signed (regcache, ra); | 
|  | int rbs = regcache_raw_get_signed (regcache, rb); | 
|  | unsigned int rau = regcache_raw_get_unsigned (regcache, ra); | 
|  | unsigned int rbu = regcache_raw_get_unsigned (regcache, rb); | 
|  |  | 
|  | pc += op->size; | 
|  | switch (cond) | 
|  | { | 
|  | case branch_none: | 
|  | pc += imm; | 
|  | break; | 
|  | case branch_eq: | 
|  | if (ras == rbs) | 
|  | pc += imm; | 
|  | break; | 
|  | case branch_ne: | 
|  | if (ras != rbs) | 
|  | pc += imm; | 
|  | break; | 
|  | case branch_ge: | 
|  | if (ras >= rbs) | 
|  | pc += imm; | 
|  | break; | 
|  | case branch_geu: | 
|  | if (rau >= rbu) | 
|  | pc += imm; | 
|  | break; | 
|  | case branch_lt: | 
|  | if (ras < rbs) | 
|  | pc += imm; | 
|  | break; | 
|  | case branch_ltu: | 
|  | if (rau < rbu) | 
|  | pc += imm; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | else if (nios2_match_jmpi (insn, op, mach, &uimm)) | 
|  | pc = (pc & 0xf0000000) | uimm; | 
|  | else if (nios2_match_calli (insn, op, mach, &uimm)) | 
|  | { | 
|  | CORE_ADDR callto = (pc & 0xf0000000) | uimm; | 
|  | if (tdep->is_kernel_helper != NULL | 
|  | && tdep->is_kernel_helper (callto)) | 
|  | /* Step over call to kernel helper, which we cannot debug | 
|  | from user space.  */ | 
|  | pc += op->size; | 
|  | else | 
|  | pc = callto; | 
|  | } | 
|  |  | 
|  | else if (nios2_match_jmpr (insn, op, mach, &ra)) | 
|  | pc = regcache_raw_get_unsigned (regcache, ra); | 
|  | else if (nios2_match_callr (insn, op, mach, &ra)) | 
|  | { | 
|  | CORE_ADDR callto = regcache_raw_get_unsigned (regcache, ra); | 
|  | if (tdep->is_kernel_helper != NULL | 
|  | && tdep->is_kernel_helper (callto)) | 
|  | /* Step over call to kernel helper.  */ | 
|  | pc += op->size; | 
|  | else | 
|  | pc = callto; | 
|  | } | 
|  |  | 
|  | else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret) | 
|  | && ret) | 
|  | { | 
|  | /* If ra is in the reglist, we have to use the value saved in the | 
|  | stack frame rather than the current value.  */ | 
|  | if (uimm & (1 << NIOS2_RA_REGNUM)) | 
|  | pc = nios2_unwind_pc (gdbarch, get_current_frame ()); | 
|  | else | 
|  | pc = regcache_raw_get_unsigned (regcache, NIOS2_RA_REGNUM); | 
|  | } | 
|  |  | 
|  | else if (nios2_match_trap (insn, op, mach, &uimm) && uimm == 0) | 
|  | { | 
|  | if (tdep->syscall_next_pc != NULL) | 
|  | return tdep->syscall_next_pc (get_current_frame (), op); | 
|  | } | 
|  |  | 
|  | else | 
|  | pc += op->size; | 
|  |  | 
|  | return pc; | 
|  | } | 
|  |  | 
|  | /* Implement the software_single_step gdbarch method.  */ | 
|  |  | 
|  | static std::vector<CORE_ADDR> | 
|  | nios2_software_single_step (struct regcache *regcache) | 
|  | { | 
|  | CORE_ADDR next_pc = nios2_get_next_pc (regcache, regcache_read_pc (regcache)); | 
|  |  | 
|  | return {next_pc}; | 
|  | } | 
|  |  | 
|  | /* Implement the get_longjump_target gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | nios2_get_longjmp_target (frame_info_ptr frame, CORE_ADDR *pc) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | nios2_gdbarch_tdep *tdep = gdbarch_tdep<nios2_gdbarch_tdep> (gdbarch); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR jb_addr = get_frame_register_unsigned (frame, NIOS2_R4_REGNUM); | 
|  | gdb_byte buf[4]; | 
|  |  | 
|  | if (target_read_memory (jb_addr + (tdep->jb_pc * 4), buf, 4)) | 
|  | return 0; | 
|  |  | 
|  | *pc = extract_unsigned_integer (buf, 4, byte_order); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Implement the type_align gdbarch function.  */ | 
|  |  | 
|  | static ULONGEST | 
|  | nios2_type_align (struct gdbarch *gdbarch, struct type *type) | 
|  | { | 
|  | switch (type->code ()) | 
|  | { | 
|  | case TYPE_CODE_PTR: | 
|  | case TYPE_CODE_FUNC: | 
|  | case TYPE_CODE_FLAGS: | 
|  | case TYPE_CODE_INT: | 
|  | case TYPE_CODE_RANGE: | 
|  | case TYPE_CODE_FLT: | 
|  | case TYPE_CODE_ENUM: | 
|  | case TYPE_CODE_REF: | 
|  | case TYPE_CODE_RVALUE_REF: | 
|  | case TYPE_CODE_CHAR: | 
|  | case TYPE_CODE_BOOL: | 
|  | case TYPE_CODE_DECFLOAT: | 
|  | case TYPE_CODE_METHODPTR: | 
|  | case TYPE_CODE_MEMBERPTR: | 
|  | type = check_typedef (type); | 
|  | return std::min<ULONGEST> (4, type->length ()); | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Implement the gcc_target_options gdbarch method.  */ | 
|  | static std::string | 
|  | nios2_gcc_target_options (struct gdbarch *gdbarch) | 
|  | { | 
|  | /* GCC doesn't know "-m32".  */ | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | /* Initialize the Nios II gdbarch.  */ | 
|  |  | 
|  | static struct gdbarch * | 
|  | nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | 
|  | { | 
|  | int i; | 
|  | tdesc_arch_data_up tdesc_data; | 
|  | const struct target_desc *tdesc = info.target_desc; | 
|  |  | 
|  | if (!tdesc_has_registers (tdesc)) | 
|  | /* Pick a default target description.  */ | 
|  | tdesc = tdesc_nios2; | 
|  |  | 
|  | /* Check any target description for validity.  */ | 
|  | if (tdesc_has_registers (tdesc)) | 
|  | { | 
|  | const struct tdesc_feature *feature; | 
|  | int valid_p; | 
|  |  | 
|  | feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nios2.cpu"); | 
|  | if (feature == NULL) | 
|  | return NULL; | 
|  |  | 
|  | tdesc_data = tdesc_data_alloc (); | 
|  |  | 
|  | valid_p = 1; | 
|  |  | 
|  | for (i = 0; i < NIOS2_NUM_REGS; i++) | 
|  | valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i, | 
|  | nios2_reg_names[i]); | 
|  |  | 
|  | if (!valid_p) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Find a candidate among the list of pre-declared architectures.  */ | 
|  | arches = gdbarch_list_lookup_by_info (arches, &info); | 
|  | if (arches != NULL) | 
|  | return arches->gdbarch; | 
|  |  | 
|  | /* None found, create a new architecture from the information | 
|  | provided.  */ | 
|  | gdbarch *gdbarch | 
|  | = gdbarch_alloc (&info, gdbarch_tdep_up (new nios2_gdbarch_tdep)); | 
|  | nios2_gdbarch_tdep *tdep = gdbarch_tdep<nios2_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | /* longjmp support not enabled by default.  */ | 
|  | tdep->jb_pc = -1; | 
|  |  | 
|  | /* Data type sizes.  */ | 
|  | set_gdbarch_ptr_bit (gdbarch, 32); | 
|  | set_gdbarch_addr_bit (gdbarch, 32); | 
|  | set_gdbarch_short_bit (gdbarch, 16); | 
|  | set_gdbarch_int_bit (gdbarch, 32); | 
|  | set_gdbarch_long_bit (gdbarch, 32); | 
|  | set_gdbarch_long_long_bit (gdbarch, 64); | 
|  | set_gdbarch_float_bit (gdbarch, 32); | 
|  | set_gdbarch_double_bit (gdbarch, 64); | 
|  |  | 
|  | set_gdbarch_type_align (gdbarch, nios2_type_align); | 
|  |  | 
|  | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); | 
|  | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | 
|  |  | 
|  | /* The register set.  */ | 
|  | set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS); | 
|  | set_gdbarch_sp_regnum (gdbarch, NIOS2_SP_REGNUM); | 
|  | set_gdbarch_pc_regnum (gdbarch, NIOS2_PC_REGNUM);	/* Pseudo register PC */ | 
|  |  | 
|  | set_gdbarch_register_name (gdbarch, nios2_register_name); | 
|  | set_gdbarch_register_type (gdbarch, nios2_register_type); | 
|  |  | 
|  | /* Provide register mappings for stabs and dwarf2.  */ | 
|  | set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum); | 
|  | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum); | 
|  |  | 
|  | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | 
|  |  | 
|  | /* Call dummy code.  */ | 
|  | set_gdbarch_frame_align (gdbarch, nios2_frame_align); | 
|  |  | 
|  | set_gdbarch_return_value (gdbarch, nios2_return_value); | 
|  |  | 
|  | set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue); | 
|  | set_gdbarch_stack_frame_destroyed_p (gdbarch, nios2_stack_frame_destroyed_p); | 
|  | set_gdbarch_breakpoint_kind_from_pc (gdbarch, nios2_breakpoint_kind_from_pc); | 
|  | set_gdbarch_sw_breakpoint_from_kind (gdbarch, nios2_sw_breakpoint_from_kind); | 
|  |  | 
|  | set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc); | 
|  |  | 
|  | /* The dwarf2 unwinder will normally produce the best results if | 
|  | the debug information is available, so register it first.  */ | 
|  | dwarf2_append_unwinders (gdbarch); | 
|  | frame_unwind_append_unwinder (gdbarch, &nios2_stub_frame_unwind); | 
|  | frame_unwind_append_unwinder (gdbarch, &nios2_frame_unwind); | 
|  |  | 
|  | /* Single stepping.  */ | 
|  | set_gdbarch_software_single_step (gdbarch, nios2_software_single_step); | 
|  |  | 
|  | /* Target options for compile.  */ | 
|  | set_gdbarch_gcc_target_options (gdbarch, nios2_gcc_target_options); | 
|  |  | 
|  | /* Hook in ABI-specific overrides, if they have been registered.  */ | 
|  | gdbarch_init_osabi (info, gdbarch); | 
|  |  | 
|  | if (tdep->jb_pc >= 0) | 
|  | set_gdbarch_get_longjmp_target (gdbarch, nios2_get_longjmp_target); | 
|  |  | 
|  | frame_base_set_default (gdbarch, &nios2_frame_base); | 
|  |  | 
|  | /* Enable inferior call support.  */ | 
|  | set_gdbarch_push_dummy_call (gdbarch, nios2_push_dummy_call); | 
|  |  | 
|  | if (tdesc_data != nullptr) | 
|  | tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data)); | 
|  |  | 
|  | return gdbarch; | 
|  | } | 
|  |  | 
|  | void _initialize_nios2_tdep (); | 
|  | void | 
|  | _initialize_nios2_tdep () | 
|  | { | 
|  | gdbarch_register (bfd_arch_nios2, nios2_gdbarch_init, NULL); | 
|  | initialize_tdesc_nios2 (); | 
|  |  | 
|  | /* Allow debugging this file's internals.  */ | 
|  | add_setshow_boolean_cmd ("nios2", class_maintenance, &nios2_debug, | 
|  | _("Set Nios II debugging."), | 
|  | _("Show Nios II debugging."), | 
|  | _("When on, Nios II specific debugging is enabled."), | 
|  | NULL, | 
|  | NULL, | 
|  | &setdebuglist, &showdebuglist); | 
|  | } |