| // dynobj.cc -- dynamic object support for gold | 
 |  | 
 | // Copyright (C) 2006-2023 Free Software Foundation, Inc. | 
 | // Written by Ian Lance Taylor <iant@google.com>. | 
 |  | 
 | // This file is part of gold. | 
 |  | 
 | // This program is free software; you can redistribute it and/or modify | 
 | // it under the terms of the GNU General Public License as published by | 
 | // the Free Software Foundation; either version 3 of the License, or | 
 | // (at your option) any later version. | 
 |  | 
 | // This program is distributed in the hope that it will be useful, | 
 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | // GNU General Public License for more details. | 
 |  | 
 | // You should have received a copy of the GNU General Public License | 
 | // along with this program; if not, write to the Free Software | 
 | // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | 
 | // MA 02110-1301, USA. | 
 |  | 
 | #include "gold.h" | 
 |  | 
 | #include <vector> | 
 | #include <cstring> | 
 |  | 
 | #include "elfcpp.h" | 
 | #include "parameters.h" | 
 | #include "script.h" | 
 | #include "symtab.h" | 
 | #include "dynobj.h" | 
 |  | 
 | namespace gold | 
 | { | 
 |  | 
 | // Class Dynobj. | 
 |  | 
 | // Sets up the default soname_ to use, in the (rare) cases we never | 
 | // see a DT_SONAME entry. | 
 |  | 
 | Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset) | 
 |   : Object(name, input_file, true, offset), | 
 |     needed_(), | 
 |     unknown_needed_(UNKNOWN_NEEDED_UNSET) | 
 | { | 
 |   // This will be overridden by a DT_SONAME entry, hopefully.  But if | 
 |   // we never see a DT_SONAME entry, our rule is to use the dynamic | 
 |   // object's filename.  The only exception is when the dynamic object | 
 |   // is part of an archive (so the filename is the archive's | 
 |   // filename).  In that case, we use just the dynobj's name-in-archive. | 
 |   if (input_file == NULL) | 
 |     this->soname_ = name; | 
 |   else | 
 |     { | 
 |       this->soname_ = input_file->found_name(); | 
 |       if (this->offset() != 0) | 
 | 	{ | 
 | 	  std::string::size_type open_paren = this->name().find('('); | 
 | 	  std::string::size_type close_paren = this->name().find(')'); | 
 | 	  if (open_paren != std::string::npos | 
 | 	      && close_paren != std::string::npos) | 
 | 	    { | 
 | 	      // It's an archive, and name() is of the form 'foo.a(bar.so)'. | 
 | 	      open_paren += 1; | 
 | 	      this->soname_ = this->name().substr(open_paren, | 
 | 						  close_paren - open_paren); | 
 | 	    } | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | // Class Sized_dynobj. | 
 |  | 
 | template<int size, bool big_endian> | 
 | Sized_dynobj<size, big_endian>::Sized_dynobj( | 
 |     const std::string& name, | 
 |     Input_file* input_file, | 
 |     off_t offset, | 
 |     const elfcpp::Ehdr<size, big_endian>& ehdr) | 
 |   : Dynobj(name, input_file, offset), | 
 |     elf_file_(this, ehdr), | 
 |     dynsym_shndx_(-1U), | 
 |     symbols_(NULL), | 
 |     defined_count_(0) | 
 | { | 
 | } | 
 |  | 
 | // Set up the object. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_dynobj<size, big_endian>::setup() | 
 | { | 
 |   const unsigned int shnum = this->elf_file_.shnum(); | 
 |   this->set_shnum(shnum); | 
 | } | 
 |  | 
 | // Find the SHT_DYNSYM section and the various version sections, and | 
 | // the dynamic section, given the section headers. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_dynobj<size, big_endian>::find_dynsym_sections( | 
 |     const unsigned char* pshdrs, | 
 |     unsigned int* pversym_shndx, | 
 |     unsigned int* pverdef_shndx, | 
 |     unsigned int* pverneed_shndx, | 
 |     unsigned int* pdynamic_shndx) | 
 | { | 
 |   *pversym_shndx = -1U; | 
 |   *pverdef_shndx = -1U; | 
 |   *pverneed_shndx = -1U; | 
 |   *pdynamic_shndx = -1U; | 
 |  | 
 |   unsigned int symtab_shndx = 0; | 
 |   unsigned int xindex_shndx = 0; | 
 |   unsigned int xindex_link = 0; | 
 |   const unsigned int shnum = this->shnum(); | 
 |   const unsigned char* p = pshdrs; | 
 |   for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size) | 
 |     { | 
 |       typename This::Shdr shdr(p); | 
 |  | 
 |       unsigned int* pi; | 
 |       switch (shdr.get_sh_type()) | 
 | 	{ | 
 | 	case elfcpp::SHT_DYNSYM: | 
 | 	  this->dynsym_shndx_ = i; | 
 | 	  if (xindex_shndx > 0 && xindex_link == i) | 
 | 	    { | 
 | 	      Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); | 
 | 	      xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx, | 
 | 							   pshdrs); | 
 | 	      this->set_xindex(xindex); | 
 | 	    } | 
 | 	  pi = NULL; | 
 | 	  break; | 
 | 	case elfcpp::SHT_SYMTAB: | 
 | 	  symtab_shndx = i; | 
 | 	  pi = NULL; | 
 | 	  break; | 
 | 	case elfcpp::SHT_GNU_versym: | 
 | 	  pi = pversym_shndx; | 
 | 	  break; | 
 | 	case elfcpp::SHT_GNU_verdef: | 
 | 	  pi = pverdef_shndx; | 
 | 	  break; | 
 | 	case elfcpp::SHT_GNU_verneed: | 
 | 	  pi = pverneed_shndx; | 
 | 	  break; | 
 | 	case elfcpp::SHT_DYNAMIC: | 
 | 	  pi = pdynamic_shndx; | 
 | 	  break; | 
 | 	case elfcpp::SHT_SYMTAB_SHNDX: | 
 | 	  xindex_shndx = i; | 
 | 	  xindex_link = this->adjust_shndx(shdr.get_sh_link()); | 
 | 	  if (xindex_link == this->dynsym_shndx_) | 
 | 	    { | 
 | 	      Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); | 
 | 	      xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx, | 
 | 							   pshdrs); | 
 | 	      this->set_xindex(xindex); | 
 | 	    } | 
 | 	  pi = NULL; | 
 | 	  break; | 
 | 	default: | 
 | 	  pi = NULL; | 
 | 	  break; | 
 | 	} | 
 |  | 
 |       if (pi == NULL) | 
 | 	continue; | 
 |  | 
 |       if (*pi != -1U) | 
 | 	this->error(_("unexpected duplicate type %u section: %u, %u"), | 
 | 		    shdr.get_sh_type(), *pi, i); | 
 |  | 
 |       *pi = i; | 
 |     } | 
 |  | 
 |   // If there is no dynamic symbol table, use the normal symbol table. | 
 |   // On some SVR4 systems, a shared library is stored in an archive. | 
 |   // The version stored in the archive only has a normal symbol table. | 
 |   // It has an SONAME entry which points to another copy in the file | 
 |   // system which has a dynamic symbol table as usual.  This is way of | 
 |   // addressing the issues which glibc addresses using GROUP with | 
 |   // libc_nonshared.a. | 
 |   if (this->dynsym_shndx_ == -1U && symtab_shndx != 0) | 
 |     { | 
 |       this->dynsym_shndx_ = symtab_shndx; | 
 |       if (xindex_shndx > 0 && xindex_link == symtab_shndx) | 
 | 	{ | 
 | 	  Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); | 
 | 	  xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx, | 
 | 						       pshdrs); | 
 | 	  this->set_xindex(xindex); | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | // Read the contents of section SHNDX.  PSHDRS points to the section | 
 | // headers.  TYPE is the expected section type.  LINK is the expected | 
 | // section link.  Store the data in *VIEW and *VIEW_SIZE.  The | 
 | // section's sh_info field is stored in *VIEW_INFO. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_dynobj<size, big_endian>::read_dynsym_section( | 
 |     const unsigned char* pshdrs, | 
 |     unsigned int shndx, | 
 |     elfcpp::SHT type, | 
 |     unsigned int link, | 
 |     File_view** view, | 
 |     section_size_type* view_size, | 
 |     unsigned int* view_info) | 
 | { | 
 |   if (shndx == -1U) | 
 |     { | 
 |       *view = NULL; | 
 |       *view_size = 0; | 
 |       *view_info = 0; | 
 |       return; | 
 |     } | 
 |  | 
 |   typename This::Shdr shdr(pshdrs + shndx * This::shdr_size); | 
 |  | 
 |   gold_assert(shdr.get_sh_type() == type); | 
 |  | 
 |   if (this->adjust_shndx(shdr.get_sh_link()) != link) | 
 |     this->error(_("unexpected link in section %u header: %u != %u"), | 
 | 	        shndx, this->adjust_shndx(shdr.get_sh_link()), link); | 
 |  | 
 |   *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(), | 
 | 				 true, false); | 
 |   *view_size = convert_to_section_size_type(shdr.get_sh_size()); | 
 |   *view_info = shdr.get_sh_info(); | 
 | } | 
 |  | 
 | // Read the dynamic tags.  Set the soname field if this shared object | 
 | // has a DT_SONAME tag.  Record the DT_NEEDED tags.  PSHDRS points to | 
 | // the section headers.  DYNAMIC_SHNDX is the section index of the | 
 | // SHT_DYNAMIC section.  STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the | 
 | // section index and contents of a string table which may be the one | 
 | // associated with the SHT_DYNAMIC section. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs, | 
 | 					     unsigned int dynamic_shndx, | 
 | 					     unsigned int strtab_shndx, | 
 | 					     const unsigned char* strtabu, | 
 | 					     off_t strtab_size) | 
 | { | 
 |   typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size); | 
 |   gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC); | 
 |  | 
 |   const off_t dynamic_size = dynamicshdr.get_sh_size(); | 
 |   const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(), | 
 | 						 dynamic_size, true, false); | 
 |  | 
 |   const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link()); | 
 |   if (link != strtab_shndx) | 
 |     { | 
 |       if (link >= this->shnum()) | 
 | 	{ | 
 | 	  this->error(_("DYNAMIC section %u link out of range: %u"), | 
 | 		      dynamic_shndx, link); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size); | 
 |       if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) | 
 | 	{ | 
 | 	  this->error(_("DYNAMIC section %u link %u is not a strtab"), | 
 | 		      dynamic_shndx, link); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       strtab_size = strtabshdr.get_sh_size(); | 
 |       strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false, | 
 | 			       false); | 
 |     } | 
 |  | 
 |   const char* const strtab = reinterpret_cast<const char*>(strtabu); | 
 |  | 
 |   for (const unsigned char* p = pdynamic; | 
 |        p < pdynamic + dynamic_size; | 
 |        p += This::dyn_size) | 
 |     { | 
 |       typename This::Dyn dyn(p); | 
 |  | 
 |       switch (dyn.get_d_tag()) | 
 | 	{ | 
 | 	case elfcpp::DT_NULL: | 
 | 	  // We should always see DT_NULL at the end of the dynamic | 
 | 	  // tags. | 
 | 	  return; | 
 |  | 
 | 	case elfcpp::DT_SONAME: | 
 | 	  { | 
 | 	    off_t val = dyn.get_d_val(); | 
 | 	    if (val >= strtab_size) | 
 | 	      this->error(_("DT_SONAME value out of range: %lld >= %lld"), | 
 | 			  static_cast<long long>(val), | 
 | 			  static_cast<long long>(strtab_size)); | 
 | 	    else | 
 | 	      this->set_soname_string(strtab + val); | 
 | 	  } | 
 | 	  break; | 
 |  | 
 | 	case elfcpp::DT_NEEDED: | 
 | 	  { | 
 | 	    off_t val = dyn.get_d_val(); | 
 | 	    if (val >= strtab_size) | 
 | 	      this->error(_("DT_NEEDED value out of range: %lld >= %lld"), | 
 | 			  static_cast<long long>(val), | 
 | 			  static_cast<long long>(strtab_size)); | 
 | 	    else | 
 | 	      this->add_needed(strtab + val); | 
 | 	  } | 
 | 	  break; | 
 |  | 
 | 	default: | 
 | 	  break; | 
 | 	} | 
 |     } | 
 |  | 
 |   this->error(_("missing DT_NULL in dynamic segment")); | 
 | } | 
 |  | 
 | // Read the symbols and sections from a dynamic object.  We read the | 
 | // dynamic symbols, not the normal symbols. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd) | 
 | { | 
 |   this->base_read_symbols(sd); | 
 | } | 
 |  | 
 | // Read the symbols and sections from a dynamic object.  We read the | 
 | // dynamic symbols, not the normal symbols.  This is common code for | 
 | // all target-specific overrides of do_read_symbols(). | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_dynobj<size, big_endian>::base_read_symbols(Read_symbols_data* sd) | 
 | { | 
 |   this->read_section_data(&this->elf_file_, sd); | 
 |  | 
 |   const unsigned char* const pshdrs = sd->section_headers->data(); | 
 |  | 
 |   unsigned int versym_shndx; | 
 |   unsigned int verdef_shndx; | 
 |   unsigned int verneed_shndx; | 
 |   unsigned int dynamic_shndx; | 
 |   this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx, | 
 | 			     &verneed_shndx, &dynamic_shndx); | 
 |  | 
 |   unsigned int strtab_shndx = -1U; | 
 |  | 
 |   sd->symbols = NULL; | 
 |   sd->symbols_size = 0; | 
 |   sd->external_symbols_offset = 0; | 
 |   sd->symbol_names = NULL; | 
 |   sd->symbol_names_size = 0; | 
 |   sd->versym = NULL; | 
 |   sd->versym_size = 0; | 
 |   sd->verdef = NULL; | 
 |   sd->verdef_size = 0; | 
 |   sd->verdef_info = 0; | 
 |   sd->verneed = NULL; | 
 |   sd->verneed_size = 0; | 
 |   sd->verneed_info = 0; | 
 |  | 
 |   const unsigned char* namesu = sd->section_names->data(); | 
 |   const char* names = reinterpret_cast<const char*>(namesu); | 
 |   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL) | 
 |     { | 
 |       Compressed_section_map* compressed_sections = | 
 | 	  build_compressed_section_map<size, big_endian>( | 
 | 	      pshdrs, this->shnum(), names, sd->section_names_size, this, true); | 
 |       if (compressed_sections != NULL) | 
 |         this->set_compressed_sections(compressed_sections); | 
 |     } | 
 |  | 
 |   if (this->dynsym_shndx_ != -1U) | 
 |     { | 
 |       // Get the dynamic symbols. | 
 |       typename This::Shdr dynsymshdr(pshdrs | 
 | 				     + this->dynsym_shndx_ * This::shdr_size); | 
 |  | 
 |       sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(), | 
 | 					   dynsymshdr.get_sh_size(), true, | 
 | 					   false); | 
 |       sd->symbols_size = | 
 | 	convert_to_section_size_type(dynsymshdr.get_sh_size()); | 
 |  | 
 |       // Get the symbol names. | 
 |       strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link()); | 
 |       if (strtab_shndx >= this->shnum()) | 
 | 	{ | 
 | 	  this->error(_("invalid dynamic symbol table name index: %u"), | 
 | 		      strtab_shndx); | 
 | 	  return; | 
 | 	} | 
 |       typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size); | 
 |       if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) | 
 | 	{ | 
 | 	  this->error(_("dynamic symbol table name section " | 
 | 			"has wrong type: %u"), | 
 | 		      static_cast<unsigned int>(strtabshdr.get_sh_type())); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(), | 
 | 						strtabshdr.get_sh_size(), | 
 | 						false, false); | 
 |       sd->symbol_names_size = | 
 | 	convert_to_section_size_type(strtabshdr.get_sh_size()); | 
 |  | 
 |       // Get the version information. | 
 |  | 
 |       unsigned int dummy; | 
 |       this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym, | 
 | 				this->dynsym_shndx_, | 
 | 				&sd->versym, &sd->versym_size, &dummy); | 
 |  | 
 |       // We require that the version definition and need section link | 
 |       // to the same string table as the dynamic symbol table.  This | 
 |       // is not a technical requirement, but it always happens in | 
 |       // practice.  We could change this if necessary. | 
 |  | 
 |       this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef, | 
 | 				strtab_shndx, &sd->verdef, &sd->verdef_size, | 
 | 				&sd->verdef_info); | 
 |  | 
 |       this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed, | 
 | 				strtab_shndx, &sd->verneed, &sd->verneed_size, | 
 | 				&sd->verneed_info); | 
 |     } | 
 |  | 
 |   // Read the SHT_DYNAMIC section to find whether this shared object | 
 |   // has a DT_SONAME tag and to record any DT_NEEDED tags.  This | 
 |   // doesn't really have anything to do with reading the symbols, but | 
 |   // this is a convenient place to do it. | 
 |   if (dynamic_shndx != -1U) | 
 |     this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx, | 
 | 		       (sd->symbol_names == NULL | 
 | 			? NULL | 
 | 			: sd->symbol_names->data()), | 
 | 		       sd->symbol_names_size); | 
 | } | 
 |  | 
 | // Return the Xindex structure to use for object with lots of | 
 | // sections. | 
 |  | 
 | template<int size, bool big_endian> | 
 | Xindex* | 
 | Sized_dynobj<size, big_endian>::do_initialize_xindex() | 
 | { | 
 |   gold_assert(this->dynsym_shndx_ != -1U); | 
 |   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); | 
 |   xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_); | 
 |   return xindex; | 
 | } | 
 |  | 
 | // Lay out the input sections for a dynamic object.  We don't want to | 
 | // include sections from a dynamic object, so all that we actually do | 
 | // here is check for .gnu.warning and .note.GNU-split-stack sections. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab, | 
 | 					  Layout*, | 
 | 					  Read_symbols_data* sd) | 
 | { | 
 |   const unsigned int shnum = this->shnum(); | 
 |   if (shnum == 0) | 
 |     return; | 
 |  | 
 |   // Get the section headers. | 
 |   const unsigned char* pshdrs = sd->section_headers->data(); | 
 |  | 
 |   // Get the section names. | 
 |   const unsigned char* pnamesu = sd->section_names->data(); | 
 |   const char* pnames = reinterpret_cast<const char*>(pnamesu); | 
 |  | 
 |   // Skip the first, dummy, section. | 
 |   pshdrs += This::shdr_size; | 
 |   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size) | 
 |     { | 
 |       typename This::Shdr shdr(pshdrs); | 
 |  | 
 |       if (shdr.get_sh_name() >= sd->section_names_size) | 
 | 	{ | 
 | 	  this->error(_("bad section name offset for section %u: %lu"), | 
 | 		      i, static_cast<unsigned long>(shdr.get_sh_name())); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       const char* name = pnames + shdr.get_sh_name(); | 
 |  | 
 |       this->handle_gnu_warning_section(name, i, symtab); | 
 |       this->handle_split_stack_section(name); | 
 |     } | 
 |  | 
 |   delete sd->section_headers; | 
 |   sd->section_headers = NULL; | 
 |   delete sd->section_names; | 
 |   sd->section_names = NULL; | 
 | } | 
 |  | 
 | // Add an entry to the vector mapping version numbers to version | 
 | // strings. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_dynobj<size, big_endian>::set_version_map( | 
 |     Version_map* version_map, | 
 |     unsigned int ndx, | 
 |     const char* name) const | 
 | { | 
 |   if (ndx >= version_map->size()) | 
 |     version_map->resize(ndx + 1); | 
 |   if ((*version_map)[ndx] != NULL) | 
 |     this->error(_("duplicate definition for version %u"), ndx); | 
 |   (*version_map)[ndx] = name; | 
 | } | 
 |  | 
 | // Add mappings for the version definitions to VERSION_MAP. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_dynobj<size, big_endian>::make_verdef_map( | 
 |     Read_symbols_data* sd, | 
 |     Version_map* version_map) const | 
 | { | 
 |   if (sd->verdef == NULL) | 
 |     return; | 
 |  | 
 |   const char* names = reinterpret_cast<const char*>(sd->symbol_names->data()); | 
 |   section_size_type names_size = sd->symbol_names_size; | 
 |  | 
 |   const unsigned char* pverdef = sd->verdef->data(); | 
 |   section_size_type verdef_size = sd->verdef_size; | 
 |   const unsigned int count = sd->verdef_info; | 
 |  | 
 |   const unsigned char* p = pverdef; | 
 |   for (unsigned int i = 0; i < count; ++i) | 
 |     { | 
 |       elfcpp::Verdef<size, big_endian> verdef(p); | 
 |  | 
 |       if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT) | 
 | 	{ | 
 | 	  this->error(_("unexpected verdef version %u"), | 
 | 		      verdef.get_vd_version()); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       const section_size_type vd_ndx = verdef.get_vd_ndx(); | 
 |  | 
 |       // The GNU linker clears the VERSYM_HIDDEN bit.  I'm not | 
 |       // sure why. | 
 |  | 
 |       // The first Verdaux holds the name of this version.  Subsequent | 
 |       // ones are versions that this one depends upon, which we don't | 
 |       // care about here. | 
 |       const section_size_type vd_cnt = verdef.get_vd_cnt(); | 
 |       if (vd_cnt < 1) | 
 | 	{ | 
 | 	  this->error(_("verdef vd_cnt field too small: %u"), | 
 |                       static_cast<unsigned int>(vd_cnt)); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       const section_size_type vd_aux = verdef.get_vd_aux(); | 
 |       if ((p - pverdef) + vd_aux >= verdef_size) | 
 | 	{ | 
 | 	  this->error(_("verdef vd_aux field out of range: %u"), | 
 |                       static_cast<unsigned int>(vd_aux)); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       const unsigned char* pvda = p + vd_aux; | 
 |       elfcpp::Verdaux<size, big_endian> verdaux(pvda); | 
 |  | 
 |       const section_size_type vda_name = verdaux.get_vda_name(); | 
 |       if (vda_name >= names_size) | 
 | 	{ | 
 | 	  this->error(_("verdaux vda_name field out of range: %u"), | 
 |                       static_cast<unsigned int>(vda_name)); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       this->set_version_map(version_map, vd_ndx, names + vda_name); | 
 |  | 
 |       const section_size_type vd_next = verdef.get_vd_next(); | 
 |       if ((p - pverdef) + vd_next >= verdef_size) | 
 | 	{ | 
 | 	  this->error(_("verdef vd_next field out of range: %u"), | 
 |                       static_cast<unsigned int>(vd_next)); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       p += vd_next; | 
 |     } | 
 | } | 
 |  | 
 | // Add mappings for the required versions to VERSION_MAP. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_dynobj<size, big_endian>::make_verneed_map( | 
 |     Read_symbols_data* sd, | 
 |     Version_map* version_map) const | 
 | { | 
 |   if (sd->verneed == NULL) | 
 |     return; | 
 |  | 
 |   const char* names = reinterpret_cast<const char*>(sd->symbol_names->data()); | 
 |   section_size_type names_size = sd->symbol_names_size; | 
 |  | 
 |   const unsigned char* pverneed = sd->verneed->data(); | 
 |   const section_size_type verneed_size = sd->verneed_size; | 
 |   const unsigned int count = sd->verneed_info; | 
 |  | 
 |   const unsigned char* p = pverneed; | 
 |   for (unsigned int i = 0; i < count; ++i) | 
 |     { | 
 |       elfcpp::Verneed<size, big_endian> verneed(p); | 
 |  | 
 |       if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT) | 
 | 	{ | 
 | 	  this->error(_("unexpected verneed version %u"), | 
 | 		      verneed.get_vn_version()); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       const section_size_type vn_aux = verneed.get_vn_aux(); | 
 |  | 
 |       if ((p - pverneed) + vn_aux >= verneed_size) | 
 | 	{ | 
 | 	  this->error(_("verneed vn_aux field out of range: %u"), | 
 |                       static_cast<unsigned int>(vn_aux)); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       const unsigned int vn_cnt = verneed.get_vn_cnt(); | 
 |       const unsigned char* pvna = p + vn_aux; | 
 |       for (unsigned int j = 0; j < vn_cnt; ++j) | 
 | 	{ | 
 | 	  elfcpp::Vernaux<size, big_endian> vernaux(pvna); | 
 |  | 
 | 	  const unsigned int vna_name = vernaux.get_vna_name(); | 
 | 	  if (vna_name >= names_size) | 
 | 	    { | 
 | 	      this->error(_("vernaux vna_name field out of range: %u"), | 
 | 			  static_cast<unsigned int>(vna_name)); | 
 | 	      return; | 
 | 	    } | 
 |  | 
 | 	  this->set_version_map(version_map, vernaux.get_vna_other(), | 
 | 				names + vna_name); | 
 |  | 
 | 	  const section_size_type vna_next = vernaux.get_vna_next(); | 
 | 	  if ((pvna - pverneed) + vna_next >= verneed_size) | 
 | 	    { | 
 | 	      this->error(_("verneed vna_next field out of range: %u"), | 
 | 			  static_cast<unsigned int>(vna_next)); | 
 | 	      return; | 
 | 	    } | 
 |  | 
 | 	  pvna += vna_next; | 
 | 	} | 
 |  | 
 |       const section_size_type vn_next = verneed.get_vn_next(); | 
 |       if ((p - pverneed) + vn_next >= verneed_size) | 
 | 	{ | 
 | 	  this->error(_("verneed vn_next field out of range: %u"), | 
 |                       static_cast<unsigned int>(vn_next)); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       p += vn_next; | 
 |     } | 
 | } | 
 |  | 
 | // Create a vector mapping version numbers to version strings. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_dynobj<size, big_endian>::make_version_map( | 
 |     Read_symbols_data* sd, | 
 |     Version_map* version_map) const | 
 | { | 
 |   if (sd->verdef == NULL && sd->verneed == NULL) | 
 |     return; | 
 |  | 
 |   // A guess at the maximum version number we will see.  If this is | 
 |   // wrong we will be less efficient but still correct. | 
 |   version_map->reserve(sd->verdef_info + sd->verneed_info * 10); | 
 |  | 
 |   this->make_verdef_map(sd, version_map); | 
 |   this->make_verneed_map(sd, version_map); | 
 | } | 
 |  | 
 | // Add the dynamic symbols to the symbol table. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab, | 
 | 					       Read_symbols_data* sd, | 
 | 					       Layout*) | 
 | { | 
 |   if (sd->symbols == NULL) | 
 |     { | 
 |       gold_assert(sd->symbol_names == NULL); | 
 |       gold_assert(sd->versym == NULL && sd->verdef == NULL | 
 | 		  && sd->verneed == NULL); | 
 |       return; | 
 |     } | 
 |  | 
 |   const int sym_size = This::sym_size; | 
 |   const size_t symcount = sd->symbols_size / sym_size; | 
 |   gold_assert(sd->external_symbols_offset == 0); | 
 |   if (symcount * sym_size != sd->symbols_size) | 
 |     { | 
 |       this->error(_("size of dynamic symbols is not multiple of symbol size")); | 
 |       return; | 
 |     } | 
 |  | 
 |   Version_map version_map; | 
 |   this->make_version_map(sd, &version_map); | 
 |  | 
 |   // If printing symbol counts or a cross reference table or | 
 |   // preparing for an incremental link, we want to track symbols. | 
 |   if (parameters->options().user_set_print_symbol_counts() | 
 |       || parameters->options().cref() | 
 |       || parameters->incremental()) | 
 |     { | 
 |       this->symbols_ = new Symbols(); | 
 |       this->symbols_->resize(symcount); | 
 |     } | 
 |  | 
 |   const char* sym_names = | 
 |     reinterpret_cast<const char*>(sd->symbol_names->data()); | 
 |   symtab->add_from_dynobj(this, sd->symbols->data(), symcount, | 
 | 			  sym_names, sd->symbol_names_size, | 
 | 			  (sd->versym == NULL | 
 | 			   ? NULL | 
 | 			   : sd->versym->data()), | 
 | 			  sd->versym_size, | 
 | 			  &version_map, | 
 | 			  this->symbols_, | 
 | 			  &this->defined_count_); | 
 |  | 
 |   delete sd->symbols; | 
 |   sd->symbols = NULL; | 
 |   delete sd->symbol_names; | 
 |   sd->symbol_names = NULL; | 
 |   if (sd->versym != NULL) | 
 |     { | 
 |       delete sd->versym; | 
 |       sd->versym = NULL; | 
 |     } | 
 |   if (sd->verdef != NULL) | 
 |     { | 
 |       delete sd->verdef; | 
 |       sd->verdef = NULL; | 
 |     } | 
 |   if (sd->verneed != NULL) | 
 |     { | 
 |       delete sd->verneed; | 
 |       sd->verneed = NULL; | 
 |     } | 
 |  | 
 |   // This is normally the last time we will read any data from this | 
 |   // file. | 
 |   this->clear_view_cache_marks(); | 
 | } | 
 |  | 
 | template<int size, bool big_endian> | 
 | Archive::Should_include | 
 | Sized_dynobj<size, big_endian>::do_should_include_member(Symbol_table*, | 
 | 							 Layout*, | 
 | 							 Read_symbols_data*, | 
 | 							 std::string*) | 
 | { | 
 |   return Archive::SHOULD_INCLUDE_YES; | 
 | } | 
 |  | 
 | // Iterate over global symbols, calling a visitor class V for each. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_dynobj<size, big_endian>::do_for_all_global_symbols( | 
 |     Read_symbols_data* sd, | 
 |     Library_base::Symbol_visitor_base* v) | 
 | { | 
 |   const char* sym_names = | 
 |       reinterpret_cast<const char*>(sd->symbol_names->data()); | 
 |   const unsigned char* syms = | 
 |       sd->symbols->data() + sd->external_symbols_offset; | 
 |   const int sym_size = elfcpp::Elf_sizes<size>::sym_size; | 
 |   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset) | 
 |                      / sym_size); | 
 |   const unsigned char* p = syms; | 
 |  | 
 |   for (size_t i = 0; i < symcount; ++i, p += sym_size) | 
 |     { | 
 |       elfcpp::Sym<size, big_endian> sym(p); | 
 |       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF | 
 | 	  && sym.get_st_bind() != elfcpp::STB_LOCAL) | 
 | 	v->visit(sym_names + sym.get_st_name()); | 
 |     } | 
 | } | 
 |  | 
 | // Iterate over local symbols, calling a visitor class V for each GOT offset | 
 | // associated with a local symbol. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_dynobj<size, big_endian>::do_for_all_local_got_entries( | 
 |     Got_offset_list::Visitor*) const | 
 | { | 
 | } | 
 |  | 
 | // Get symbol counts. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_dynobj<size, big_endian>::do_get_global_symbol_counts( | 
 |     const Symbol_table*, | 
 |     size_t* defined, | 
 |     size_t* used) const | 
 | { | 
 |   *defined = this->defined_count_; | 
 |   size_t count = 0; | 
 |   for (typename Symbols::const_iterator p = this->symbols_->begin(); | 
 |        p != this->symbols_->end(); | 
 |        ++p) | 
 |     if (*p != NULL | 
 | 	&& (*p)->source() == Symbol::FROM_OBJECT | 
 | 	&& (*p)->object() == this | 
 | 	&& (*p)->is_defined() | 
 | 	&& (*p)->has_dynsym_index()) | 
 |       ++count; | 
 |   *used = count; | 
 | } | 
 |  | 
 | // Given a vector of hash codes, compute the number of hash buckets to | 
 | // use. | 
 |  | 
 | unsigned int | 
 | Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes, | 
 | 			     bool for_gnu_hash_table) | 
 | { | 
 |   // FIXME: Implement optional hash table optimization. | 
 |  | 
 |   // Array used to determine the number of hash table buckets to use | 
 |   // based on the number of symbols there are.  If there are fewer | 
 |   // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 | 
 |   // buckets, fewer than 37 we use 17 buckets, and so forth.  We never | 
 |   // use more than 262147 buckets.  This is straight from the old GNU | 
 |   // linker. | 
 |   static const unsigned int buckets[] = | 
 |   { | 
 |     1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, | 
 |     16411, 32771, 65537, 131101, 262147 | 
 |   }; | 
 |   const int buckets_count = sizeof buckets / sizeof buckets[0]; | 
 |  | 
 |   unsigned int symcount = hashcodes.size(); | 
 |   unsigned int ret = 1; | 
 |   const double full_fraction | 
 |     = 1.0 - parameters->options().hash_bucket_empty_fraction(); | 
 |   for (int i = 0; i < buckets_count; ++i) | 
 |     { | 
 |       if (symcount < buckets[i] * full_fraction) | 
 | 	break; | 
 |       ret = buckets[i]; | 
 |     } | 
 |  | 
 |   if (for_gnu_hash_table && ret < 2) | 
 |     ret = 2; | 
 |  | 
 |   return ret; | 
 | } | 
 |  | 
 | // The standard ELF hash function.  This hash function must not | 
 | // change, as the dynamic linker uses it also. | 
 |  | 
 | uint32_t | 
 | Dynobj::elf_hash(const char* name) | 
 | { | 
 |   const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name); | 
 |   uint32_t h = 0; | 
 |   unsigned char c; | 
 |   while ((c = *nameu++) != '\0') | 
 |     { | 
 |       h = (h << 4) + c; | 
 |       uint32_t g = h & 0xf0000000; | 
 |       if (g != 0) | 
 | 	{ | 
 | 	  h ^= g >> 24; | 
 | 	  // The ELF ABI says h &= ~g, but using xor is equivalent in | 
 | 	  // this case (since g was set from h) and may save one | 
 | 	  // instruction. | 
 | 	  h ^= g; | 
 | 	} | 
 |     } | 
 |   return h; | 
 | } | 
 |  | 
 | // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN. | 
 | // DYNSYMS is a vector with all the global dynamic symbols. | 
 | // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic | 
 | // symbol table. | 
 |  | 
 | void | 
 | Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms, | 
 | 			      unsigned int local_dynsym_count, | 
 | 			      unsigned char** pphash, | 
 | 			      unsigned int* phashlen) | 
 | { | 
 |   unsigned int dynsym_count = dynsyms.size(); | 
 |  | 
 |   // Get the hash values for all the symbols. | 
 |   std::vector<uint32_t> dynsym_hashvals(dynsym_count); | 
 |   for (unsigned int i = 0; i < dynsym_count; ++i) | 
 |     dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name()); | 
 |  | 
 |   const unsigned int bucketcount = | 
 |     Dynobj::compute_bucket_count(dynsym_hashvals, false); | 
 |  | 
 |   std::vector<uint32_t> bucket(bucketcount); | 
 |   std::vector<uint32_t> chain(local_dynsym_count + dynsym_count); | 
 |  | 
 |   for (unsigned int i = 0; i < dynsym_count; ++i) | 
 |     { | 
 |       unsigned int dynsym_index = dynsyms[i]->dynsym_index(); | 
 |       unsigned int bucketpos = dynsym_hashvals[i] % bucketcount; | 
 |       chain[dynsym_index] = bucket[bucketpos]; | 
 |       bucket[bucketpos] = dynsym_index; | 
 |     } | 
 |  | 
 |   int size = parameters->target().hash_entry_size(); | 
 |   unsigned int hashlen = ((2 | 
 | 			   + bucketcount | 
 | 			   + local_dynsym_count | 
 | 			   + dynsym_count) | 
 | 			  * size / 8); | 
 |   unsigned char* phash = new unsigned char[hashlen]; | 
 |  | 
 |   bool big_endian = parameters->target().is_big_endian(); | 
 |   if (size == 32) | 
 |     { | 
 |       if (big_endian) | 
 | 	{ | 
 | #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG) | 
 | 	  Dynobj::sized_create_elf_hash_table<32, true>(bucket, chain, phash, | 
 | 							hashlen); | 
 | #else | 
 | 	  gold_unreachable(); | 
 | #endif | 
 | 	} | 
 |       else | 
 | 	{ | 
 | #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE) | 
 | 	  Dynobj::sized_create_elf_hash_table<32, false>(bucket, chain, phash, | 
 | 							 hashlen); | 
 | #else | 
 | 	  gold_unreachable(); | 
 | #endif | 
 | 	} | 
 |     } | 
 |   else if (size == 64) | 
 |     { | 
 |       if (big_endian) | 
 | 	{ | 
 | #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG) | 
 | 	  Dynobj::sized_create_elf_hash_table<64, true>(bucket, chain, phash, | 
 | 							hashlen); | 
 | #else | 
 | 	  gold_unreachable(); | 
 | #endif | 
 | 	} | 
 |       else | 
 | 	{ | 
 | #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE) | 
 | 	  Dynobj::sized_create_elf_hash_table<64, false>(bucket, chain, phash, | 
 | 							 hashlen); | 
 | #else | 
 | 	  gold_unreachable(); | 
 | #endif | 
 | 	} | 
 |     } | 
 |   else | 
 |     gold_unreachable(); | 
 |  | 
 |   *pphash = phash; | 
 |   *phashlen = hashlen; | 
 | } | 
 |  | 
 | // Fill in an ELF hash table. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket, | 
 | 				    const std::vector<uint32_t>& chain, | 
 | 				    unsigned char* phash, | 
 | 				    unsigned int hashlen) | 
 | { | 
 |   unsigned char* p = phash; | 
 |  | 
 |   const unsigned int bucketcount = bucket.size(); | 
 |   const unsigned int chaincount = chain.size(); | 
 |  | 
 |   elfcpp::Swap<size, big_endian>::writeval(p, bucketcount); | 
 |   p += size / 8; | 
 |   elfcpp::Swap<size, big_endian>::writeval(p, chaincount); | 
 |   p += size / 8; | 
 |  | 
 |   for (unsigned int i = 0; i < bucketcount; ++i) | 
 |     { | 
 |       elfcpp::Swap<size, big_endian>::writeval(p, bucket[i]); | 
 |       p += size / 8; | 
 |     } | 
 |  | 
 |   for (unsigned int i = 0; i < chaincount; ++i) | 
 |     { | 
 |       elfcpp::Swap<size, big_endian>::writeval(p, chain[i]); | 
 |       p += size / 8; | 
 |     } | 
 |  | 
 |   gold_assert(static_cast<unsigned int>(p - phash) == hashlen); | 
 | } | 
 |  | 
 | // The hash function used for the GNU hash table.  This hash function | 
 | // must not change, as the dynamic linker uses it also. | 
 |  | 
 | uint32_t | 
 | Dynobj::gnu_hash(const char* name) | 
 | { | 
 |   const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name); | 
 |   uint32_t h = 5381; | 
 |   unsigned char c; | 
 |   while ((c = *nameu++) != '\0') | 
 |     h = (h << 5) + h + c; | 
 |   return h; | 
 | } | 
 |  | 
 | // Create a GNU hash table, setting *PPHASH and *PHASHLEN.  GNU hash | 
 | // tables are an extension to ELF which are recognized by the GNU | 
 | // dynamic linker.  They are referenced using dynamic tag DT_GNU_HASH. | 
 | // TARGET is the target.  DYNSYMS is a vector with all the global | 
 | // symbols which will be going into the dynamic symbol table. | 
 | // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic | 
 | // symbol table. | 
 |  | 
 | void | 
 | Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms, | 
 | 			      unsigned int local_dynsym_count, | 
 | 			      unsigned char** pphash, | 
 | 			      unsigned int* phashlen) | 
 | { | 
 |   const unsigned int count = dynsyms.size(); | 
 |  | 
 |   // Sort the dynamic symbols into two vectors.  Symbols which we do | 
 |   // not want to put into the hash table we store into | 
 |   // UNHASHED_DYNSYMS.  Symbols which we do want to store we put into | 
 |   // HASHED_DYNSYMS.  DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS, | 
 |   // and records the hash codes. | 
 |  | 
 |   std::vector<Symbol*> unhashed_dynsyms; | 
 |   unhashed_dynsyms.reserve(count); | 
 |  | 
 |   std::vector<Symbol*> hashed_dynsyms; | 
 |   hashed_dynsyms.reserve(count); | 
 |  | 
 |   std::vector<uint32_t> dynsym_hashvals; | 
 |   dynsym_hashvals.reserve(count); | 
 |    | 
 |   for (unsigned int i = 0; i < count; ++i) | 
 |     { | 
 |       Symbol* sym = dynsyms[i]; | 
 |  | 
 |       if (!sym->needs_dynsym_value() | 
 | 	  && (sym->is_undefined() | 
 | 	      || sym->is_from_dynobj() | 
 | 	      || sym->is_forced_local())) | 
 | 	unhashed_dynsyms.push_back(sym); | 
 |       else | 
 | 	{ | 
 | 	  hashed_dynsyms.push_back(sym); | 
 | 	  dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name())); | 
 | 	} | 
 |     } | 
 |  | 
 |   // Put the unhashed symbols at the start of the global portion of | 
 |   // the dynamic symbol table. | 
 |   const unsigned int unhashed_count = unhashed_dynsyms.size(); | 
 |   unsigned int unhashed_dynsym_index = local_dynsym_count; | 
 |   for (unsigned int i = 0; i < unhashed_count; ++i) | 
 |     { | 
 |       unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index); | 
 |       ++unhashed_dynsym_index; | 
 |     } | 
 |  | 
 |   // For the actual data generation we call out to a templatized | 
 |   // function. | 
 |   int size = parameters->target().get_size(); | 
 |   bool big_endian = parameters->target().is_big_endian(); | 
 |   if (size == 32) | 
 |     { | 
 |       if (big_endian) | 
 | 	{ | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | 	  Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms, | 
 | 							dynsym_hashvals, | 
 | 							unhashed_dynsym_index, | 
 | 							pphash, | 
 | 							phashlen); | 
 | #else | 
 | 	  gold_unreachable(); | 
 | #endif | 
 | 	} | 
 |       else | 
 | 	{ | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | 	  Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms, | 
 | 							 dynsym_hashvals, | 
 | 							 unhashed_dynsym_index, | 
 | 							 pphash, | 
 | 							 phashlen); | 
 | #else | 
 | 	  gold_unreachable(); | 
 | #endif | 
 | 	} | 
 |     } | 
 |   else if (size == 64) | 
 |     { | 
 |       if (big_endian) | 
 | 	{ | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | 	  Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms, | 
 | 							dynsym_hashvals, | 
 | 							unhashed_dynsym_index, | 
 | 							pphash, | 
 | 							phashlen); | 
 | #else | 
 | 	  gold_unreachable(); | 
 | #endif | 
 | 	} | 
 |       else | 
 | 	{ | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | 	  Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms, | 
 | 							 dynsym_hashvals, | 
 | 							 unhashed_dynsym_index, | 
 | 							 pphash, | 
 | 							 phashlen); | 
 | #else | 
 | 	  gold_unreachable(); | 
 | #endif | 
 | 	} | 
 |     } | 
 |   else | 
 |     gold_unreachable(); | 
 | } | 
 |  | 
 | // Create the actual data for a GNU hash table.  This is just a copy | 
 | // of the code from the old GNU linker. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Dynobj::sized_create_gnu_hash_table( | 
 |     const std::vector<Symbol*>& hashed_dynsyms, | 
 |     const std::vector<uint32_t>& dynsym_hashvals, | 
 |     unsigned int unhashed_dynsym_count, | 
 |     unsigned char** pphash, | 
 |     unsigned int* phashlen) | 
 | { | 
 |   if (hashed_dynsyms.empty()) | 
 |     { | 
 |       // Special case for the empty hash table. | 
 |       unsigned int hashlen = 5 * 4 + size / 8; | 
 |       unsigned char* phash = new unsigned char[hashlen]; | 
 |       // One empty bucket. | 
 |       elfcpp::Swap<32, big_endian>::writeval(phash, 1); | 
 |       // Symbol index above unhashed symbols. | 
 |       elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count); | 
 |       // One word for bitmask. | 
 |       elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1); | 
 |       // Only bloom filter. | 
 |       elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0); | 
 |       // No valid hashes. | 
 |       elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0); | 
 |       // No hashes in only bucket. | 
 |       elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0); | 
 |  | 
 |       *phashlen = hashlen; | 
 |       *pphash = phash; | 
 |  | 
 |       return; | 
 |     } | 
 |  | 
 |   const unsigned int bucketcount = | 
 |     Dynobj::compute_bucket_count(dynsym_hashvals, true); | 
 |  | 
 |   const unsigned int nsyms = hashed_dynsyms.size(); | 
 |  | 
 |   uint32_t maskbitslog2 = 1; | 
 |   uint32_t x = nsyms >> 1; | 
 |   while (x != 0) | 
 |     { | 
 |       ++maskbitslog2; | 
 |       x >>= 1; | 
 |     } | 
 |   if (maskbitslog2 < 3) | 
 |     maskbitslog2 = 5; | 
 |   else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0) | 
 |     maskbitslog2 += 3; | 
 |   else | 
 |     maskbitslog2 += 2; | 
 |  | 
 |   uint32_t shift1; | 
 |   if (size == 32) | 
 |     shift1 = 5; | 
 |   else | 
 |     { | 
 |       if (maskbitslog2 == 5) | 
 | 	maskbitslog2 = 6; | 
 |       shift1 = 6; | 
 |     } | 
 |   uint32_t mask = (1U << shift1) - 1U; | 
 |   uint32_t shift2 = maskbitslog2; | 
 |   uint32_t maskbits = 1U << maskbitslog2; | 
 |   uint32_t maskwords = 1U << (maskbitslog2 - shift1); | 
 |  | 
 |   typedef typename elfcpp::Elf_types<size>::Elf_WXword Word; | 
 |   std::vector<Word> bitmask(maskwords); | 
 |   std::vector<uint32_t> counts(bucketcount); | 
 |   std::vector<uint32_t> indx(bucketcount); | 
 |   uint32_t symindx = unhashed_dynsym_count; | 
 |  | 
 |   // Count the number of times each hash bucket is used. | 
 |   for (unsigned int i = 0; i < nsyms; ++i) | 
 |     ++counts[dynsym_hashvals[i] % bucketcount]; | 
 |  | 
 |   unsigned int cnt = symindx; | 
 |   for (unsigned int i = 0; i < bucketcount; ++i) | 
 |     { | 
 |       indx[i] = cnt; | 
 |       cnt += counts[i]; | 
 |     } | 
 |  | 
 |   unsigned int hashlen = (4 + bucketcount + nsyms) * 4; | 
 |   hashlen += maskbits / 8; | 
 |   unsigned char* phash = new unsigned char[hashlen]; | 
 |  | 
 |   elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount); | 
 |   elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx); | 
 |   elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords); | 
 |   elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2); | 
 |  | 
 |   unsigned char* p = phash + 16 + maskbits / 8; | 
 |   for (unsigned int i = 0; i < bucketcount; ++i) | 
 |     { | 
 |       if (counts[i] == 0) | 
 | 	elfcpp::Swap<32, big_endian>::writeval(p, 0); | 
 |       else | 
 | 	elfcpp::Swap<32, big_endian>::writeval(p, indx[i]); | 
 |       p += 4; | 
 |     } | 
 |  | 
 |   for (unsigned int i = 0; i < nsyms; ++i) | 
 |     { | 
 |       Symbol* sym = hashed_dynsyms[i]; | 
 |       uint32_t hashval = dynsym_hashvals[i]; | 
 |  | 
 |       unsigned int bucket = hashval % bucketcount; | 
 |       unsigned int val = ((hashval >> shift1) | 
 | 			  & ((maskbits >> shift1) - 1)); | 
 |       bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask); | 
 |       bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask); | 
 |       val = hashval & ~ 1U; | 
 |       if (counts[bucket] == 1) | 
 | 	{ | 
 | 	  // Last element terminates the chain. | 
 | 	  val |= 1; | 
 | 	} | 
 |       elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4, | 
 | 					     val); | 
 |       --counts[bucket]; | 
 |  | 
 |       sym->set_dynsym_index(indx[bucket]); | 
 |       ++indx[bucket]; | 
 |     } | 
 |  | 
 |   p = phash + 16; | 
 |   for (unsigned int i = 0; i < maskwords; ++i) | 
 |     { | 
 |       elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]); | 
 |       p += size / 8; | 
 |     } | 
 |  | 
 |   *phashlen = hashlen; | 
 |   *pphash = phash; | 
 | } | 
 |  | 
 | // Verdef methods. | 
 |  | 
 | // Write this definition to a buffer for the output section. | 
 |  | 
 | template<int size, bool big_endian> | 
 | unsigned char* | 
 | Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const | 
 | { | 
 |   const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size; | 
 |   const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size; | 
 |  | 
 |   elfcpp::Verdef_write<size, big_endian> vd(pb); | 
 |   vd.set_vd_version(elfcpp::VER_DEF_CURRENT); | 
 |   vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0) | 
 | 		  | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0) | 
 | 		  | (this->is_info_ ? elfcpp::VER_FLG_INFO : 0)); | 
 |   vd.set_vd_ndx(this->index()); | 
 |   vd.set_vd_cnt(1 + this->deps_.size()); | 
 |   vd.set_vd_hash(Dynobj::elf_hash(this->name())); | 
 |   vd.set_vd_aux(verdef_size); | 
 |   vd.set_vd_next(is_last | 
 | 		 ? 0 | 
 | 		 : verdef_size + (1 + this->deps_.size()) * verdaux_size); | 
 |   pb += verdef_size; | 
 |  | 
 |   elfcpp::Verdaux_write<size, big_endian> vda(pb); | 
 |   vda.set_vda_name(dynpool->get_offset(this->name())); | 
 |   vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size); | 
 |   pb += verdaux_size; | 
 |  | 
 |   Deps::const_iterator p; | 
 |   unsigned int i; | 
 |   for (p = this->deps_.begin(), i = 0; | 
 |        p != this->deps_.end(); | 
 |        ++p, ++i) | 
 |     { | 
 |       elfcpp::Verdaux_write<size, big_endian> vda(pb); | 
 |       vda.set_vda_name(dynpool->get_offset(*p)); | 
 |       vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size); | 
 |       pb += verdaux_size; | 
 |     } | 
 |  | 
 |   return pb; | 
 | } | 
 |  | 
 | // Verneed methods. | 
 |  | 
 | Verneed::~Verneed() | 
 | { | 
 |   for (Need_versions::iterator p = this->need_versions_.begin(); | 
 |        p != this->need_versions_.end(); | 
 |        ++p) | 
 |     delete *p; | 
 | } | 
 |  | 
 | // Add a new version to this file reference. | 
 |  | 
 | Verneed_version* | 
 | Verneed::add_name(const char* name) | 
 | { | 
 |   Verneed_version* vv = new Verneed_version(name); | 
 |   this->need_versions_.push_back(vv); | 
 |   return vv; | 
 | } | 
 |  | 
 | // Set the version indexes starting at INDEX. | 
 |  | 
 | unsigned int | 
 | Verneed::finalize(unsigned int index) | 
 | { | 
 |   for (Need_versions::iterator p = this->need_versions_.begin(); | 
 |        p != this->need_versions_.end(); | 
 |        ++p) | 
 |     { | 
 |       (*p)->set_index(index); | 
 |       ++index; | 
 |     } | 
 |   return index; | 
 | } | 
 |  | 
 | // Write this list of referenced versions to a buffer for the output | 
 | // section. | 
 |  | 
 | template<int size, bool big_endian> | 
 | unsigned char* | 
 | Verneed::write(const Stringpool* dynpool, bool is_last, | 
 | 	       unsigned char* pb) const | 
 | { | 
 |   const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size; | 
 |   const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size; | 
 |  | 
 |   elfcpp::Verneed_write<size, big_endian> vn(pb); | 
 |   vn.set_vn_version(elfcpp::VER_NEED_CURRENT); | 
 |   vn.set_vn_cnt(this->need_versions_.size()); | 
 |   vn.set_vn_file(dynpool->get_offset(this->filename())); | 
 |   vn.set_vn_aux(verneed_size); | 
 |   vn.set_vn_next(is_last | 
 | 		 ? 0 | 
 | 		 : verneed_size + this->need_versions_.size() * vernaux_size); | 
 |   pb += verneed_size; | 
 |  | 
 |   Need_versions::const_iterator p; | 
 |   unsigned int i; | 
 |   for (p = this->need_versions_.begin(), i = 0; | 
 |        p != this->need_versions_.end(); | 
 |        ++p, ++i) | 
 |     { | 
 |       elfcpp::Vernaux_write<size, big_endian> vna(pb); | 
 |       vna.set_vna_hash(Dynobj::elf_hash((*p)->version())); | 
 |       // FIXME: We need to sometimes set VER_FLG_WEAK here. | 
 |       vna.set_vna_flags(0); | 
 |       vna.set_vna_other((*p)->index()); | 
 |       vna.set_vna_name(dynpool->get_offset((*p)->version())); | 
 |       vna.set_vna_next(i + 1 >= this->need_versions_.size() | 
 | 		       ? 0 | 
 | 		       : vernaux_size); | 
 |       pb += vernaux_size; | 
 |     } | 
 |  | 
 |   return pb; | 
 | } | 
 |  | 
 | // Versions methods. | 
 |  | 
 | Versions::Versions(const Version_script_info& version_script, | 
 |                    Stringpool* dynpool) | 
 |   : defs_(), needs_(), version_table_(), | 
 |     is_finalized_(false), version_script_(version_script), | 
 |     needs_base_version_(true) | 
 | { | 
 |   if (!this->version_script_.empty()) | 
 |     { | 
 |       // Parse the version script, and insert each declared version into | 
 |       // defs_ and version_table_. | 
 |       std::vector<std::string> versions = this->version_script_.get_versions(); | 
 |  | 
 |       if (this->needs_base_version_ && !versions.empty()) | 
 | 	this->define_base_version(dynpool); | 
 |  | 
 |       for (size_t k = 0; k < versions.size(); ++k) | 
 |         { | 
 |           Stringpool::Key version_key; | 
 |           const char* version = dynpool->add(versions[k].c_str(), | 
 |                                              true, &version_key); | 
 |           Verdef* const vd = new Verdef( | 
 |               version, | 
 |               this->version_script_.get_dependencies(version), | 
 |               false, false, false, false); | 
 |           this->defs_.push_back(vd); | 
 |           Key key(version_key, 0); | 
 |           this->version_table_.insert(std::make_pair(key, vd)); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | Versions::~Versions() | 
 | { | 
 |   for (Defs::iterator p = this->defs_.begin(); | 
 |        p != this->defs_.end(); | 
 |        ++p) | 
 |     delete *p; | 
 |  | 
 |   for (Needs::iterator p = this->needs_.begin(); | 
 |        p != this->needs_.end(); | 
 |        ++p) | 
 |     delete *p; | 
 | } | 
 |  | 
 | // Define the base version of a shared library.  The base version definition | 
 | // must be the first entry in defs_.  We insert it lazily so that defs_ is | 
 | // empty if no symbol versioning is used.  Then layout can just drop the | 
 | // version sections. | 
 |  | 
 | void | 
 | Versions::define_base_version(Stringpool* dynpool) | 
 | { | 
 |   // If we do any versioning at all,  we always need a base version, so | 
 |   // define that first.  Nothing explicitly declares itself as part of base, | 
 |   // so it doesn't need to be in version_table_. | 
 |   gold_assert(this->defs_.empty()); | 
 |   const char* name = parameters->options().soname(); | 
 |   if (name == NULL) | 
 |     name = parameters->options().output_file_name(); | 
 |   name = dynpool->add(name, false, NULL); | 
 |   Verdef* vdbase = new Verdef(name, std::vector<std::string>(), | 
 |                               true, false, false, true); | 
 |   this->defs_.push_back(vdbase); | 
 |   this->needs_base_version_ = false; | 
 | } | 
 |  | 
 | // Return the dynamic object which a symbol refers to. | 
 |  | 
 | Dynobj* | 
 | Versions::get_dynobj_for_sym(const Symbol_table* symtab, | 
 | 			     const Symbol* sym) const | 
 | { | 
 |   if (sym->is_copied_from_dynobj()) | 
 |     return symtab->get_copy_source(sym); | 
 |   else | 
 |     { | 
 |       Object* object = sym->object(); | 
 |       gold_assert(object->is_dynamic()); | 
 |       return static_cast<Dynobj*>(object); | 
 |     } | 
 | } | 
 |  | 
 | // Record version information for a symbol going into the dynamic | 
 | // symbol table. | 
 |  | 
 | void | 
 | Versions::record_version(const Symbol_table* symtab, | 
 | 			 Stringpool* dynpool, const Symbol* sym) | 
 | { | 
 |   gold_assert(!this->is_finalized_); | 
 |   gold_assert(sym->version() != NULL); | 
 |  | 
 |   // A symbol defined as "sym@" is bound to an unspecified base version. | 
 |   if (sym->version()[0] == '\0') | 
 |     return; | 
 |  | 
 |   Stringpool::Key version_key; | 
 |   const char* version = dynpool->add(sym->version(), false, &version_key); | 
 |  | 
 |   if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj()) | 
 |     { | 
 |       this->add_def(dynpool, sym, version, version_key); | 
 |     } | 
 |   else | 
 |     { | 
 |       // This is a version reference. | 
 |       Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym); | 
 |       this->add_need(dynpool, dynobj->soname(), version, version_key); | 
 |     } | 
 | } | 
 |  | 
 | // We've found a symbol SYM defined in version VERSION. | 
 |  | 
 | void | 
 | Versions::add_def(Stringpool* dynpool, const Symbol* sym, const char* version, | 
 | 		  Stringpool::Key version_key) | 
 | { | 
 |   Key k(version_key, 0); | 
 |   Version_base* const vbnull = NULL; | 
 |   std::pair<Version_table::iterator, bool> ins = | 
 |     this->version_table_.insert(std::make_pair(k, vbnull)); | 
 |  | 
 |   if (!ins.second) | 
 |     { | 
 |       // We already have an entry for this version. | 
 |       Version_base* vb = ins.first->second; | 
 |  | 
 |       // We have now seen a symbol in this version, so it is not | 
 |       // weak. | 
 |       gold_assert(vb != NULL); | 
 |       vb->clear_weak(); | 
 |     } | 
 |   else | 
 |     { | 
 |       // If we are creating a shared object, it is an error to | 
 |       // find a definition of a symbol with a version which is not | 
 |       // in the version script. | 
 |       if (parameters->options().shared()) | 
 | 	gold_error(_("symbol %s has undefined version %s"), | 
 | 		   sym->demangled_name().c_str(), version); | 
 |  | 
 |       // When creating a regular executable, automatically define | 
 |       // a new version. | 
 |       if (this->needs_base_version_) | 
 | 	this->define_base_version(dynpool); | 
 |       Verdef* vd = new Verdef(version, std::vector<std::string>(), | 
 |                               false, false, false, false); | 
 |       this->defs_.push_back(vd); | 
 |       ins.first->second = vd; | 
 |     } | 
 | } | 
 |  | 
 | // Add a reference to version NAME in file FILENAME. | 
 |  | 
 | void | 
 | Versions::add_need(Stringpool* dynpool, const char* filename, const char* name, | 
 | 		   Stringpool::Key name_key) | 
 | { | 
 |   Stringpool::Key filename_key; | 
 |   filename = dynpool->add(filename, true, &filename_key); | 
 |  | 
 |   Key k(name_key, filename_key); | 
 |   Version_base* const vbnull = NULL; | 
 |   std::pair<Version_table::iterator, bool> ins = | 
 |     this->version_table_.insert(std::make_pair(k, vbnull)); | 
 |  | 
 |   if (!ins.second) | 
 |     { | 
 |       // We already have an entry for this filename/version. | 
 |       return; | 
 |     } | 
 |  | 
 |   // See whether we already have this filename.  We don't expect many | 
 |   // version references, so we just do a linear search.  This could be | 
 |   // replaced by a hash table. | 
 |   Verneed* vn = NULL; | 
 |   for (Needs::iterator p = this->needs_.begin(); | 
 |        p != this->needs_.end(); | 
 |        ++p) | 
 |     { | 
 |       if ((*p)->filename() == filename) | 
 | 	{ | 
 | 	  vn = *p; | 
 | 	  break; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (vn == NULL) | 
 |     { | 
 |       // Create base version definition lazily for shared library. | 
 |       if (parameters->options().shared() && this->needs_base_version_) | 
 | 	this->define_base_version(dynpool); | 
 |  | 
 |       // We have a new filename. | 
 |       vn = new Verneed(filename); | 
 |       this->needs_.push_back(vn); | 
 |     } | 
 |  | 
 |   ins.first->second = vn->add_name(name); | 
 | } | 
 |  | 
 | // Set the version indexes.  Create a new dynamic version symbol for | 
 | // each new version definition. | 
 |  | 
 | unsigned int | 
 | Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index, | 
 | 		   std::vector<Symbol*>* syms) | 
 | { | 
 |   gold_assert(!this->is_finalized_); | 
 |  | 
 |   unsigned int vi = 1; | 
 |  | 
 |   for (Defs::iterator p = this->defs_.begin(); | 
 |        p != this->defs_.end(); | 
 |        ++p) | 
 |     { | 
 |       (*p)->set_index(vi); | 
 |       ++vi; | 
 |  | 
 |       // Create a version symbol if necessary. | 
 |       if (!(*p)->is_symbol_created()) | 
 | 	{ | 
 | 	  Symbol* vsym = symtab->define_as_constant((*p)->name(), | 
 | 						    (*p)->name(), | 
 | 						    Symbol_table::PREDEFINED, | 
 | 						    0, 0, | 
 | 						    elfcpp::STT_OBJECT, | 
 | 						    elfcpp::STB_GLOBAL, | 
 | 						    elfcpp::STV_DEFAULT, 0, | 
 | 						    false, false); | 
 | 	  vsym->set_needs_dynsym_entry(); | 
 |           vsym->set_dynsym_index(dynsym_index); | 
 | 	  vsym->set_is_default(); | 
 | 	  ++dynsym_index; | 
 | 	  syms->push_back(vsym); | 
 | 	  // The name is already in the dynamic pool. | 
 | 	} | 
 |     } | 
 |  | 
 |   // Index 1 is used for global symbols. | 
 |   if (vi == 1) | 
 |     { | 
 |       gold_assert(this->defs_.empty()); | 
 |       vi = 2; | 
 |     } | 
 |  | 
 |   for (Needs::iterator p = this->needs_.begin(); | 
 |        p != this->needs_.end(); | 
 |        ++p) | 
 |     vi = (*p)->finalize(vi); | 
 |  | 
 |   this->is_finalized_ = true; | 
 |  | 
 |   return dynsym_index; | 
 | } | 
 |  | 
 | // Return the version index to use for a symbol.  This does two hash | 
 | // table lookups: one in DYNPOOL and one in this->version_table_. | 
 | // Another approach alternative would be store a pointer in SYM, which | 
 | // would increase the size of the symbol table.  Or perhaps we could | 
 | // use a hash table from dynamic symbol pointer values to Version_base | 
 | // pointers. | 
 |  | 
 | unsigned int | 
 | Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool, | 
 | 			const Symbol* sym) const | 
 | { | 
 |   Stringpool::Key version_key; | 
 |   const char* version = dynpool->find(sym->version(), &version_key); | 
 |   gold_assert(version != NULL); | 
 |  | 
 |   Key k; | 
 |   if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj()) | 
 |     { | 
 |       k = Key(version_key, 0); | 
 |     } | 
 |   else | 
 |     { | 
 |       Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym); | 
 |  | 
 |       Stringpool::Key filename_key; | 
 |       const char* filename = dynpool->find(dynobj->soname(), &filename_key); | 
 |       gold_assert(filename != NULL); | 
 |  | 
 |       k = Key(version_key, filename_key); | 
 |     } | 
 |  | 
 |   Version_table::const_iterator p = this->version_table_.find(k); | 
 |   gold_assert(p != this->version_table_.end()); | 
 |  | 
 |   return p->second->index(); | 
 | } | 
 |  | 
 | // Return an allocated buffer holding the contents of the symbol | 
 | // version section. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Versions::symbol_section_contents(const Symbol_table* symtab, | 
 | 				  const Stringpool* dynpool, | 
 | 				  unsigned int local_symcount, | 
 | 				  const std::vector<Symbol*>& syms, | 
 | 				  unsigned char** pp, | 
 | 				  unsigned int* psize) const | 
 | { | 
 |   gold_assert(this->is_finalized_); | 
 |  | 
 |   unsigned int sz = (local_symcount + syms.size()) * 2; | 
 |   unsigned char* pbuf = new unsigned char[sz]; | 
 |  | 
 |   for (unsigned int i = 0; i < local_symcount; ++i) | 
 |     elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2, | 
 | 					   elfcpp::VER_NDX_LOCAL); | 
 |  | 
 |   for (std::vector<Symbol*>::const_iterator p = syms.begin(); | 
 |        p != syms.end(); | 
 |        ++p) | 
 |     { | 
 |       unsigned int version_index; | 
 |       const char* version = (*p)->version(); | 
 |       if (version == NULL) | 
 | 	{ | 
 | 	  if ((*p)->is_defined() && !(*p)->is_from_dynobj()) | 
 | 	    version_index = elfcpp::VER_NDX_GLOBAL; | 
 | 	  else | 
 | 	    version_index = elfcpp::VER_NDX_LOCAL; | 
 | 	} | 
 |       else if (version[0] == '\0') | 
 |         version_index = elfcpp::VER_NDX_GLOBAL; | 
 |       else | 
 | 	version_index = this->version_index(symtab, dynpool, *p); | 
 |       // If the symbol was defined as foo@V1 instead of foo@@V1, add | 
 |       // the hidden bit. | 
 |       if ((*p)->version() != NULL | 
 | 	  && (*p)->is_defined() | 
 | 	  && !(*p)->is_default() | 
 | 	  && !(*p)->from_dyn()) | 
 |         version_index |= elfcpp::VERSYM_HIDDEN; | 
 |       elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2, | 
 |                                              version_index); | 
 |     } | 
 |  | 
 |   *pp = pbuf; | 
 |   *psize = sz; | 
 | } | 
 |  | 
 | // Return an allocated buffer holding the contents of the version | 
 | // definition section. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Versions::def_section_contents(const Stringpool* dynpool, | 
 | 			       unsigned char** pp, unsigned int* psize, | 
 | 			       unsigned int* pentries) const | 
 | { | 
 |   gold_assert(this->is_finalized_); | 
 |   gold_assert(!this->defs_.empty()); | 
 |  | 
 |   const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size; | 
 |   const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size; | 
 |  | 
 |   unsigned int sz = 0; | 
 |   for (Defs::const_iterator p = this->defs_.begin(); | 
 |        p != this->defs_.end(); | 
 |        ++p) | 
 |     { | 
 |       sz += verdef_size + verdaux_size; | 
 |       sz += (*p)->count_dependencies() * verdaux_size; | 
 |     } | 
 |  | 
 |   unsigned char* pbuf = new unsigned char[sz]; | 
 |  | 
 |   unsigned char* pb = pbuf; | 
 |   Defs::const_iterator p; | 
 |   unsigned int i; | 
 |   for (p = this->defs_.begin(), i = 0; | 
 |        p != this->defs_.end(); | 
 |        ++p, ++i) | 
 |     pb = (*p)->write<size, big_endian>(dynpool, | 
 | 				       i + 1 >= this->defs_.size(), | 
 | 				       pb); | 
 |  | 
 |   gold_assert(static_cast<unsigned int>(pb - pbuf) == sz); | 
 |  | 
 |   *pp = pbuf; | 
 |   *psize = sz; | 
 |   *pentries = this->defs_.size(); | 
 | } | 
 |  | 
 | // Return an allocated buffer holding the contents of the version | 
 | // reference section. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Versions::need_section_contents(const Stringpool* dynpool, | 
 | 				unsigned char** pp, unsigned int* psize, | 
 | 				unsigned int* pentries) const | 
 | { | 
 |   gold_assert(this->is_finalized_); | 
 |   gold_assert(!this->needs_.empty()); | 
 |  | 
 |   const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size; | 
 |   const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size; | 
 |  | 
 |   unsigned int sz = 0; | 
 |   for (Needs::const_iterator p = this->needs_.begin(); | 
 |        p != this->needs_.end(); | 
 |        ++p) | 
 |     { | 
 |       sz += verneed_size; | 
 |       sz += (*p)->count_versions() * vernaux_size; | 
 |     } | 
 |  | 
 |   unsigned char* pbuf = new unsigned char[sz]; | 
 |  | 
 |   unsigned char* pb = pbuf; | 
 |   Needs::const_iterator p; | 
 |   unsigned int i; | 
 |   for (p = this->needs_.begin(), i = 0; | 
 |        p != this->needs_.end(); | 
 |        ++p, ++i) | 
 |     pb = (*p)->write<size, big_endian>(dynpool, | 
 | 				       i + 1 >= this->needs_.size(), | 
 | 				       pb); | 
 |  | 
 |   gold_assert(static_cast<unsigned int>(pb - pbuf) == sz); | 
 |  | 
 |   *pp = pbuf; | 
 |   *psize = sz; | 
 |   *pentries = this->needs_.size(); | 
 | } | 
 |  | 
 | // Instantiate the templates we need.  We could use the configure | 
 | // script to restrict this to only the ones for implemented targets. | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | class Sized_dynobj<32, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | class Sized_dynobj<32, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | class Sized_dynobj<64, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | class Sized_dynobj<64, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | void | 
 | Versions::symbol_section_contents<32, false>( | 
 |     const Symbol_table*, | 
 |     const Stringpool*, | 
 |     unsigned int, | 
 |     const std::vector<Symbol*>&, | 
 |     unsigned char**, | 
 |     unsigned int*) const; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | void | 
 | Versions::symbol_section_contents<32, true>( | 
 |     const Symbol_table*, | 
 |     const Stringpool*, | 
 |     unsigned int, | 
 |     const std::vector<Symbol*>&, | 
 |     unsigned char**, | 
 |     unsigned int*) const; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | void | 
 | Versions::symbol_section_contents<64, false>( | 
 |     const Symbol_table*, | 
 |     const Stringpool*, | 
 |     unsigned int, | 
 |     const std::vector<Symbol*>&, | 
 |     unsigned char**, | 
 |     unsigned int*) const; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | void | 
 | Versions::symbol_section_contents<64, true>( | 
 |     const Symbol_table*, | 
 |     const Stringpool*, | 
 |     unsigned int, | 
 |     const std::vector<Symbol*>&, | 
 |     unsigned char**, | 
 |     unsigned int*) const; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | void | 
 | Versions::def_section_contents<32, false>( | 
 |     const Stringpool*, | 
 |     unsigned char**, | 
 |     unsigned int*, | 
 |     unsigned int*) const; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | void | 
 | Versions::def_section_contents<32, true>( | 
 |     const Stringpool*, | 
 |     unsigned char**, | 
 |     unsigned int*, | 
 |     unsigned int*) const; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | void | 
 | Versions::def_section_contents<64, false>( | 
 |     const Stringpool*, | 
 |     unsigned char**, | 
 |     unsigned int*, | 
 |     unsigned int*) const; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | void | 
 | Versions::def_section_contents<64, true>( | 
 |     const Stringpool*, | 
 |     unsigned char**, | 
 |     unsigned int*, | 
 |     unsigned int*) const; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | void | 
 | Versions::need_section_contents<32, false>( | 
 |     const Stringpool*, | 
 |     unsigned char**, | 
 |     unsigned int*, | 
 |     unsigned int*) const; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | void | 
 | Versions::need_section_contents<32, true>( | 
 |     const Stringpool*, | 
 |     unsigned char**, | 
 |     unsigned int*, | 
 |     unsigned int*) const; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | void | 
 | Versions::need_section_contents<64, false>( | 
 |     const Stringpool*, | 
 |     unsigned char**, | 
 |     unsigned int*, | 
 |     unsigned int*) const; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | void | 
 | Versions::need_section_contents<64, true>( | 
 |     const Stringpool*, | 
 |     unsigned char**, | 
 |     unsigned int*, | 
 |     unsigned int*) const; | 
 | #endif | 
 |  | 
 | } // End namespace gold. |