|  | /* Extended regular expression matching and search library, | 
|  | version 0.12. | 
|  | (Implements POSIX draft P1003.2/D11.2, except for some of the | 
|  | internationalization features.) | 
|  |  | 
|  | Copyright (C) 1993-2025 Free Software Foundation, Inc. | 
|  | This file is part of the GNU C Library. | 
|  |  | 
|  | The GNU C Library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | The GNU C Library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with the GNU C Library; if not, write to the Free | 
|  | Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | 
|  | 02110-1301 USA.  */ | 
|  |  | 
|  | /* This file has been modified for usage in libiberty.  It includes "xregex.h" | 
|  | instead of <regex.h>.  The "xregex.h" header file renames all external | 
|  | routines with an "x" prefix so they do not collide with the native regex | 
|  | routines or with other components regex routines. */ | 
|  | /* AIX requires this to be the first thing in the file. */ | 
|  | #if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC | 
|  | #pragma alloca | 
|  | #endif | 
|  |  | 
|  | #if __GNUC__ >= 12 | 
|  | #  pragma GCC diagnostic ignored "-Wuse-after-free" | 
|  | #endif | 
|  |  | 
|  | #undef	_GNU_SOURCE | 
|  | #define _GNU_SOURCE | 
|  |  | 
|  | #ifndef INSIDE_RECURSION | 
|  | # ifdef HAVE_CONFIG_H | 
|  | #  include <config.h> | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | #include <ansidecl.h> | 
|  |  | 
|  | #ifndef INSIDE_RECURSION | 
|  |  | 
|  | # if defined STDC_HEADERS && !defined emacs | 
|  | #  include <stddef.h> | 
|  | #  define PTR_INT_TYPE ptrdiff_t | 
|  | # else | 
|  | /* We need this for `regex.h', and perhaps for the Emacs include files.  */ | 
|  | #  include <sys/types.h> | 
|  | #  define PTR_INT_TYPE long | 
|  | # endif | 
|  |  | 
|  | # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC) | 
|  |  | 
|  | /* For platform which support the ISO C amendement 1 functionality we | 
|  | support user defined character classes.  */ | 
|  | # if defined _LIBC || WIDE_CHAR_SUPPORT | 
|  | /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */ | 
|  | #  include <wchar.h> | 
|  | #  include <wctype.h> | 
|  | # endif | 
|  |  | 
|  | # ifdef _LIBC | 
|  | /* We have to keep the namespace clean.  */ | 
|  | #  define regfree(preg) __regfree (preg) | 
|  | #  define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef) | 
|  | #  define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags) | 
|  | #  define regerror(errcode, preg, errbuf, errbuf_size) \ | 
|  | __regerror(errcode, preg, errbuf, errbuf_size) | 
|  | #  define re_set_registers(bu, re, nu, st, en) \ | 
|  | __re_set_registers (bu, re, nu, st, en) | 
|  | #  define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \ | 
|  | __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) | 
|  | #  define re_match(bufp, string, size, pos, regs) \ | 
|  | __re_match (bufp, string, size, pos, regs) | 
|  | #  define re_search(bufp, string, size, startpos, range, regs) \ | 
|  | __re_search (bufp, string, size, startpos, range, regs) | 
|  | #  define re_compile_pattern(pattern, length, bufp) \ | 
|  | __re_compile_pattern (pattern, length, bufp) | 
|  | #  define re_set_syntax(syntax) __re_set_syntax (syntax) | 
|  | #  define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \ | 
|  | __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop) | 
|  | #  define re_compile_fastmap(bufp) __re_compile_fastmap (bufp) | 
|  |  | 
|  | #  define btowc __btowc | 
|  |  | 
|  | /* We are also using some library internals.  */ | 
|  | #  include <locale/localeinfo.h> | 
|  | #  include <locale/elem-hash.h> | 
|  | #  include <langinfo.h> | 
|  | #  include <locale/coll-lookup.h> | 
|  | # endif | 
|  |  | 
|  | /* This is for other GNU distributions with internationalized messages.  */ | 
|  | # if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC | 
|  | #  include <libintl.h> | 
|  | #  ifdef _LIBC | 
|  | #   undef gettext | 
|  | #   define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES) | 
|  | #  endif | 
|  | # else | 
|  | #  define gettext(msgid) (msgid) | 
|  | # endif | 
|  |  | 
|  | # ifndef gettext_noop | 
|  | /* This define is so xgettext can find the internationalizable | 
|  | strings.  */ | 
|  | #  define gettext_noop(String) String | 
|  | # endif | 
|  |  | 
|  | /* The `emacs' switch turns on certain matching commands | 
|  | that make sense only in Emacs. */ | 
|  | # ifdef emacs | 
|  |  | 
|  | #  include "lisp.h" | 
|  | #  include "buffer.h" | 
|  | #  include "syntax.h" | 
|  |  | 
|  | # else  /* not emacs */ | 
|  |  | 
|  | /* If we are not linking with Emacs proper, | 
|  | we can't use the relocating allocator | 
|  | even if config.h says that we can.  */ | 
|  | #  undef REL_ALLOC | 
|  |  | 
|  | #  if defined STDC_HEADERS || defined _LIBC | 
|  | #   include <stdlib.h> | 
|  | #  else | 
|  | char *malloc (); | 
|  | char *realloc (); | 
|  | #  endif | 
|  |  | 
|  | /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow. | 
|  | If nothing else has been done, use the method below.  */ | 
|  | #  ifdef INHIBIT_STRING_HEADER | 
|  | #   if !(defined HAVE_BZERO && defined HAVE_BCOPY) | 
|  | #    if !defined bzero && !defined bcopy | 
|  | #     undef INHIBIT_STRING_HEADER | 
|  | #    endif | 
|  | #   endif | 
|  | #  endif | 
|  |  | 
|  | /* This is the normal way of making sure we have a bcopy and a bzero. | 
|  | This is used in most programs--a few other programs avoid this | 
|  | by defining INHIBIT_STRING_HEADER.  */ | 
|  | #  ifndef INHIBIT_STRING_HEADER | 
|  | #   if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC | 
|  | #    include <string.h> | 
|  | #    ifndef bzero | 
|  | #     ifndef _LIBC | 
|  | #      define bzero(s, n)	((void) memset (s, '\0', n)) | 
|  | #     else | 
|  | #      define bzero(s, n)	__bzero (s, n) | 
|  | #     endif | 
|  | #    endif | 
|  | #   else | 
|  | #    include <strings.h> | 
|  | #    ifndef memcmp | 
|  | #     define memcmp(s1, s2, n)	bcmp (s1, s2, n) | 
|  | #    endif | 
|  | #    ifndef memcpy | 
|  | #     define memcpy(d, s, n)	(bcopy (s, d, n), (d)) | 
|  | #    endif | 
|  | #   endif | 
|  | #  endif | 
|  |  | 
|  | /* Define the syntax stuff for \<, \>, etc.  */ | 
|  |  | 
|  | /* This must be nonzero for the wordchar and notwordchar pattern | 
|  | commands in re_match_2.  */ | 
|  | #  ifndef Sword | 
|  | #   define Sword 1 | 
|  | #  endif | 
|  |  | 
|  | #  ifdef SWITCH_ENUM_BUG | 
|  | #   define SWITCH_ENUM_CAST(x) ((int)(x)) | 
|  | #  else | 
|  | #   define SWITCH_ENUM_CAST(x) (x) | 
|  | #  endif | 
|  |  | 
|  | # endif /* not emacs */ | 
|  |  | 
|  | # if defined _LIBC || HAVE_LIMITS_H | 
|  | #  include <limits.h> | 
|  | # endif | 
|  |  | 
|  | # ifndef MB_LEN_MAX | 
|  | #  define MB_LEN_MAX 1 | 
|  | # endif | 
|  |  | 
|  | /* Get the interface, including the syntax bits.  */ | 
|  | # include "xregex.h"  /* change for libiberty */ | 
|  |  | 
|  | /* isalpha etc. are used for the character classes.  */ | 
|  | # include <ctype.h> | 
|  |  | 
|  | /* Jim Meyering writes: | 
|  |  | 
|  | "... Some ctype macros are valid only for character codes that | 
|  | isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when | 
|  | using /bin/cc or gcc but without giving an ansi option).  So, all | 
|  | ctype uses should be through macros like ISPRINT...  If | 
|  | STDC_HEADERS is defined, then autoconf has verified that the ctype | 
|  | macros don't need to be guarded with references to isascii. ... | 
|  | Defining isascii to 1 should let any compiler worth its salt | 
|  | eliminate the && through constant folding." | 
|  | Solaris defines some of these symbols so we must undefine them first.  */ | 
|  |  | 
|  | # undef ISASCII | 
|  | # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII) | 
|  | #  define ISASCII(c) 1 | 
|  | # else | 
|  | #  define ISASCII(c) isascii(c) | 
|  | # endif | 
|  |  | 
|  | # ifdef isblank | 
|  | #  define ISBLANK(c) (ISASCII (c) && isblank (c)) | 
|  | # else | 
|  | #  define ISBLANK(c) ((c) == ' ' || (c) == '\t') | 
|  | # endif | 
|  | # ifdef isgraph | 
|  | #  define ISGRAPH(c) (ISASCII (c) && isgraph (c)) | 
|  | # else | 
|  | #  define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c)) | 
|  | # endif | 
|  |  | 
|  | # undef ISPRINT | 
|  | # define ISPRINT(c) (ISASCII (c) && isprint (c)) | 
|  | # define ISDIGIT(c) (ISASCII (c) && isdigit (c)) | 
|  | # define ISALNUM(c) (ISASCII (c) && isalnum (c)) | 
|  | # define ISALPHA(c) (ISASCII (c) && isalpha (c)) | 
|  | # define ISCNTRL(c) (ISASCII (c) && iscntrl (c)) | 
|  | # define ISLOWER(c) (ISASCII (c) && islower (c)) | 
|  | # define ISPUNCT(c) (ISASCII (c) && ispunct (c)) | 
|  | # define ISSPACE(c) (ISASCII (c) && isspace (c)) | 
|  | # define ISUPPER(c) (ISASCII (c) && isupper (c)) | 
|  | # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c)) | 
|  |  | 
|  | # ifdef _tolower | 
|  | #  define TOLOWER(c) _tolower(c) | 
|  | # else | 
|  | #  define TOLOWER(c) tolower(c) | 
|  | # endif | 
|  |  | 
|  | # ifndef NULL | 
|  | #  define NULL (void *)0 | 
|  | # endif | 
|  |  | 
|  | /* We remove any previous definition of `SIGN_EXTEND_CHAR', | 
|  | since ours (we hope) works properly with all combinations of | 
|  | machines, compilers, `char' and `unsigned char' argument types. | 
|  | (Per Bothner suggested the basic approach.)  */ | 
|  | # undef SIGN_EXTEND_CHAR | 
|  | # if __STDC__ | 
|  | #  define SIGN_EXTEND_CHAR(c) ((signed char) (c)) | 
|  | # else  /* not __STDC__ */ | 
|  | /* As in Harbison and Steele.  */ | 
|  | #  define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) | 
|  | # endif | 
|  |  | 
|  | # ifndef emacs | 
|  | /* How many characters in the character set.  */ | 
|  | #  define CHAR_SET_SIZE 256 | 
|  |  | 
|  | #  ifdef SYNTAX_TABLE | 
|  |  | 
|  | extern char *re_syntax_table; | 
|  |  | 
|  | #  else /* not SYNTAX_TABLE */ | 
|  |  | 
|  | static char re_syntax_table[CHAR_SET_SIZE]; | 
|  |  | 
|  | static void init_syntax_once (void); | 
|  |  | 
|  | static void | 
|  | init_syntax_once (void) | 
|  | { | 
|  | register int c; | 
|  | static int done = 0; | 
|  |  | 
|  | if (done) | 
|  | return; | 
|  | bzero (re_syntax_table, sizeof re_syntax_table); | 
|  |  | 
|  | for (c = 0; c < CHAR_SET_SIZE; ++c) | 
|  | if (ISALNUM (c)) | 
|  | re_syntax_table[c] = Sword; | 
|  |  | 
|  | re_syntax_table['_'] = Sword; | 
|  |  | 
|  | done = 1; | 
|  | } | 
|  |  | 
|  | #  endif /* not SYNTAX_TABLE */ | 
|  |  | 
|  | #  define SYNTAX(c) re_syntax_table[(unsigned char) (c)] | 
|  |  | 
|  | # endif /* emacs */ | 
|  |  | 
|  | /* Integer type for pointers.  */ | 
|  | # if !defined _LIBC && !defined HAVE_UINTPTR_T | 
|  | typedef unsigned long int uintptr_t; | 
|  | # endif | 
|  |  | 
|  | /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we | 
|  | use `alloca' instead of `malloc'.  This is because using malloc in | 
|  | re_search* or re_match* could cause memory leaks when C-g is used in | 
|  | Emacs; also, malloc is slower and causes storage fragmentation.  On | 
|  | the other hand, malloc is more portable, and easier to debug. | 
|  |  | 
|  | Because we sometimes use alloca, some routines have to be macros, | 
|  | not functions -- `alloca'-allocated space disappears at the end of the | 
|  | function it is called in.  */ | 
|  |  | 
|  | # ifdef REGEX_MALLOC | 
|  |  | 
|  | #  define REGEX_ALLOCATE malloc | 
|  | #  define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) | 
|  | #  define REGEX_FREE free | 
|  |  | 
|  | # else /* not REGEX_MALLOC  */ | 
|  |  | 
|  | /* Emacs already defines alloca, sometimes.  */ | 
|  | #  ifndef alloca | 
|  |  | 
|  | /* Make alloca work the best possible way.  */ | 
|  | #   ifdef __GNUC__ | 
|  | #    define alloca __builtin_alloca | 
|  | #   else /* not __GNUC__ */ | 
|  | #    if HAVE_ALLOCA_H | 
|  | #     include <alloca.h> | 
|  | #    endif /* HAVE_ALLOCA_H */ | 
|  | #   endif /* not __GNUC__ */ | 
|  |  | 
|  | #  endif /* not alloca */ | 
|  |  | 
|  | #  define REGEX_ALLOCATE alloca | 
|  |  | 
|  | /* Assumes a `char *destination' variable.  */ | 
|  | #  define REGEX_REALLOCATE(source, osize, nsize)			\ | 
|  | (destination = (char *) alloca (nsize),				\ | 
|  | memcpy (destination, source, osize)) | 
|  |  | 
|  | /* No need to do anything to free, after alloca.  */ | 
|  | #  define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */ | 
|  |  | 
|  | # endif /* not REGEX_MALLOC */ | 
|  |  | 
|  | /* Define how to allocate the failure stack.  */ | 
|  |  | 
|  | # if defined REL_ALLOC && defined REGEX_MALLOC | 
|  |  | 
|  | #  define REGEX_ALLOCATE_STACK(size)				\ | 
|  | r_alloc (&failure_stack_ptr, (size)) | 
|  | #  define REGEX_REALLOCATE_STACK(source, osize, nsize)		\ | 
|  | r_re_alloc (&failure_stack_ptr, (nsize)) | 
|  | #  define REGEX_FREE_STACK(ptr)					\ | 
|  | r_alloc_free (&failure_stack_ptr) | 
|  |  | 
|  | # else /* not using relocating allocator */ | 
|  |  | 
|  | #  ifdef REGEX_MALLOC | 
|  |  | 
|  | #   define REGEX_ALLOCATE_STACK malloc | 
|  | #   define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize) | 
|  | #   define REGEX_FREE_STACK free | 
|  |  | 
|  | #  else /* not REGEX_MALLOC */ | 
|  |  | 
|  | #   define REGEX_ALLOCATE_STACK alloca | 
|  |  | 
|  | #   define REGEX_REALLOCATE_STACK(source, osize, nsize)			\ | 
|  | REGEX_REALLOCATE (source, osize, nsize) | 
|  | /* No need to explicitly free anything.  */ | 
|  | #   define REGEX_FREE_STACK(arg) | 
|  |  | 
|  | #  endif /* not REGEX_MALLOC */ | 
|  | # endif /* not using relocating allocator */ | 
|  |  | 
|  |  | 
|  | /* True if `size1' is non-NULL and PTR is pointing anywhere inside | 
|  | `string1' or just past its end.  This works if PTR is NULL, which is | 
|  | a good thing.  */ | 
|  | # define FIRST_STRING_P(ptr) 					\ | 
|  | (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) | 
|  |  | 
|  | /* (Re)Allocate N items of type T using malloc, or fail.  */ | 
|  | # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) | 
|  | # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) | 
|  | # define RETALLOC_IF(addr, n, t) \ | 
|  | if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t) | 
|  | # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) | 
|  |  | 
|  | # define BYTEWIDTH 8 /* In bits.  */ | 
|  |  | 
|  | # define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) | 
|  |  | 
|  | # undef MAX | 
|  | # undef MIN | 
|  | # define MAX(a, b) ((a) > (b) ? (a) : (b)) | 
|  | # define MIN(a, b) ((a) < (b) ? (a) : (b)) | 
|  |  | 
|  | typedef char boolean; | 
|  | # define false 0 | 
|  | # define true 1 | 
|  |  | 
|  | static reg_errcode_t byte_regex_compile (const char *pattern, size_t size, | 
|  | reg_syntax_t syntax, | 
|  | struct re_pattern_buffer *bufp); | 
|  |  | 
|  | static int byte_re_match_2_internal (struct re_pattern_buffer *bufp, | 
|  | const char *string1, int size1, | 
|  | const char *string2, int size2, | 
|  | int pos, | 
|  | struct re_registers *regs, | 
|  | int stop); | 
|  | static int byte_re_search_2 (struct re_pattern_buffer *bufp, | 
|  | const char *string1, int size1, | 
|  | const char *string2, int size2, | 
|  | int startpos, int range, | 
|  | struct re_registers *regs, int stop); | 
|  | static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp); | 
|  |  | 
|  | #ifdef MBS_SUPPORT | 
|  | static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size, | 
|  | reg_syntax_t syntax, | 
|  | struct re_pattern_buffer *bufp); | 
|  |  | 
|  |  | 
|  | static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp, | 
|  | const char *cstring1, int csize1, | 
|  | const char *cstring2, int csize2, | 
|  | int pos, | 
|  | struct re_registers *regs, | 
|  | int stop, | 
|  | wchar_t *string1, int size1, | 
|  | wchar_t *string2, int size2, | 
|  | int *mbs_offset1, int *mbs_offset2); | 
|  | static int wcs_re_search_2 (struct re_pattern_buffer *bufp, | 
|  | const char *string1, int size1, | 
|  | const char *string2, int size2, | 
|  | int startpos, int range, | 
|  | struct re_registers *regs, int stop); | 
|  | static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp); | 
|  | #endif | 
|  |  | 
|  | /* These are the command codes that appear in compiled regular | 
|  | expressions.  Some opcodes are followed by argument bytes.  A | 
|  | command code can specify any interpretation whatsoever for its | 
|  | arguments.  Zero bytes may appear in the compiled regular expression.  */ | 
|  |  | 
|  | typedef enum | 
|  | { | 
|  | no_op = 0, | 
|  |  | 
|  | /* Succeed right away--no more backtracking.  */ | 
|  | succeed, | 
|  |  | 
|  | /* Followed by one byte giving n, then by n literal bytes.  */ | 
|  | exactn, | 
|  |  | 
|  | # ifdef MBS_SUPPORT | 
|  | /* Same as exactn, but contains binary data.  */ | 
|  | exactn_bin, | 
|  | # endif | 
|  |  | 
|  | /* Matches any (more or less) character.  */ | 
|  | anychar, | 
|  |  | 
|  | /* Matches any one char belonging to specified set.  First | 
|  | following byte is number of bitmap bytes.  Then come bytes | 
|  | for a bitmap saying which chars are in.  Bits in each byte | 
|  | are ordered low-bit-first.  A character is in the set if its | 
|  | bit is 1.  A character too large to have a bit in the map is | 
|  | automatically not in the set.  */ | 
|  | /* ifdef MBS_SUPPORT, following element is length of character | 
|  | classes, length of collating symbols, length of equivalence | 
|  | classes, length of character ranges, and length of characters. | 
|  | Next, character class element, collating symbols elements, | 
|  | equivalence class elements, range elements, and character | 
|  | elements follow. | 
|  | See regex_compile function.  */ | 
|  | charset, | 
|  |  | 
|  | /* Same parameters as charset, but match any character that is | 
|  | not one of those specified.  */ | 
|  | charset_not, | 
|  |  | 
|  | /* Start remembering the text that is matched, for storing in a | 
|  | register.  Followed by one byte with the register number, in | 
|  | the range 0 to one less than the pattern buffer's re_nsub | 
|  | field.  Then followed by one byte with the number of groups | 
|  | inner to this one.  (This last has to be part of the | 
|  | start_memory only because we need it in the on_failure_jump | 
|  | of re_match_2.)  */ | 
|  | start_memory, | 
|  |  | 
|  | /* Stop remembering the text that is matched and store it in a | 
|  | memory register.  Followed by one byte with the register | 
|  | number, in the range 0 to one less than `re_nsub' in the | 
|  | pattern buffer, and one byte with the number of inner groups, | 
|  | just like `start_memory'.  (We need the number of inner | 
|  | groups here because we don't have any easy way of finding the | 
|  | corresponding start_memory when we're at a stop_memory.)  */ | 
|  | stop_memory, | 
|  |  | 
|  | /* Match a duplicate of something remembered. Followed by one | 
|  | byte containing the register number.  */ | 
|  | duplicate, | 
|  |  | 
|  | /* Fail unless at beginning of line.  */ | 
|  | begline, | 
|  |  | 
|  | /* Fail unless at end of line.  */ | 
|  | endline, | 
|  |  | 
|  | /* Succeeds if at beginning of buffer (if emacs) or at beginning | 
|  | of string to be matched (if not).  */ | 
|  | begbuf, | 
|  |  | 
|  | /* Analogously, for end of buffer/string.  */ | 
|  | endbuf, | 
|  |  | 
|  | /* Followed by two byte relative address to which to jump.  */ | 
|  | jump, | 
|  |  | 
|  | /* Same as jump, but marks the end of an alternative.  */ | 
|  | jump_past_alt, | 
|  |  | 
|  | /* Followed by two-byte relative address of place to resume at | 
|  | in case of failure.  */ | 
|  | /* ifdef MBS_SUPPORT, the size of address is 1.  */ | 
|  | on_failure_jump, | 
|  |  | 
|  | /* Like on_failure_jump, but pushes a placeholder instead of the | 
|  | current string position when executed.  */ | 
|  | on_failure_keep_string_jump, | 
|  |  | 
|  | /* Throw away latest failure point and then jump to following | 
|  | two-byte relative address.  */ | 
|  | /* ifdef MBS_SUPPORT, the size of address is 1.  */ | 
|  | pop_failure_jump, | 
|  |  | 
|  | /* Change to pop_failure_jump if know won't have to backtrack to | 
|  | match; otherwise change to jump.  This is used to jump | 
|  | back to the beginning of a repeat.  If what follows this jump | 
|  | clearly won't match what the repeat does, such that we can be | 
|  | sure that there is no use backtracking out of repetitions | 
|  | already matched, then we change it to a pop_failure_jump. | 
|  | Followed by two-byte address.  */ | 
|  | /* ifdef MBS_SUPPORT, the size of address is 1.  */ | 
|  | maybe_pop_jump, | 
|  |  | 
|  | /* Jump to following two-byte address, and push a dummy failure | 
|  | point. This failure point will be thrown away if an attempt | 
|  | is made to use it for a failure.  A `+' construct makes this | 
|  | before the first repeat.  Also used as an intermediary kind | 
|  | of jump when compiling an alternative.  */ | 
|  | /* ifdef MBS_SUPPORT, the size of address is 1.  */ | 
|  | dummy_failure_jump, | 
|  |  | 
|  | /* Push a dummy failure point and continue.  Used at the end of | 
|  | alternatives.  */ | 
|  | push_dummy_failure, | 
|  |  | 
|  | /* Followed by two-byte relative address and two-byte number n. | 
|  | After matching N times, jump to the address upon failure.  */ | 
|  | /* ifdef MBS_SUPPORT, the size of address is 1.  */ | 
|  | succeed_n, | 
|  |  | 
|  | /* Followed by two-byte relative address, and two-byte number n. | 
|  | Jump to the address N times, then fail.  */ | 
|  | /* ifdef MBS_SUPPORT, the size of address is 1.  */ | 
|  | jump_n, | 
|  |  | 
|  | /* Set the following two-byte relative address to the | 
|  | subsequent two-byte number.  The address *includes* the two | 
|  | bytes of number.  */ | 
|  | /* ifdef MBS_SUPPORT, the size of address is 1.  */ | 
|  | set_number_at, | 
|  |  | 
|  | wordchar,	/* Matches any word-constituent character.  */ | 
|  | notwordchar,	/* Matches any char that is not a word-constituent.  */ | 
|  |  | 
|  | wordbeg,	/* Succeeds if at word beginning.  */ | 
|  | wordend,	/* Succeeds if at word end.  */ | 
|  |  | 
|  | wordbound,	/* Succeeds if at a word boundary.  */ | 
|  | notwordbound	/* Succeeds if not at a word boundary.  */ | 
|  |  | 
|  | # ifdef emacs | 
|  | ,before_dot,	/* Succeeds if before point.  */ | 
|  | at_dot,	/* Succeeds if at point.  */ | 
|  | after_dot,	/* Succeeds if after point.  */ | 
|  |  | 
|  | /* Matches any character whose syntax is specified.  Followed by | 
|  | a byte which contains a syntax code, e.g., Sword.  */ | 
|  | syntaxspec, | 
|  |  | 
|  | /* Matches any character whose syntax is not that specified.  */ | 
|  | notsyntaxspec | 
|  | # endif /* emacs */ | 
|  | } re_opcode_t; | 
|  | #endif /* not INSIDE_RECURSION */ | 
|  |  | 
|  |  | 
|  | #ifdef BYTE | 
|  | # define CHAR_T char | 
|  | # define UCHAR_T unsigned char | 
|  | # define COMPILED_BUFFER_VAR bufp->buffer | 
|  | # define OFFSET_ADDRESS_SIZE 2 | 
|  | # define PREFIX(name) byte_##name | 
|  | # define ARG_PREFIX(name) name | 
|  | # define PUT_CHAR(c) putchar (c) | 
|  | #else | 
|  | # ifdef WCHAR | 
|  | #  define CHAR_T wchar_t | 
|  | #  define UCHAR_T wchar_t | 
|  | #  define COMPILED_BUFFER_VAR wc_buffer | 
|  | #  define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */ | 
|  | #  define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1) | 
|  | #  define PREFIX(name) wcs_##name | 
|  | #  define ARG_PREFIX(name) c##name | 
|  | /* Should we use wide stream??  */ | 
|  | #  define PUT_CHAR(c) printf ("%C", c); | 
|  | #  define TRUE 1 | 
|  | #  define FALSE 0 | 
|  | # else | 
|  | #  ifdef MBS_SUPPORT | 
|  | #   define WCHAR | 
|  | #   define INSIDE_RECURSION | 
|  | #   include "regex.c" | 
|  | #   undef INSIDE_RECURSION | 
|  | #  endif | 
|  | #  define BYTE | 
|  | #  define INSIDE_RECURSION | 
|  | #  include "regex.c" | 
|  | #  undef INSIDE_RECURSION | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | #ifdef INSIDE_RECURSION | 
|  | /* Common operations on the compiled pattern.  */ | 
|  |  | 
|  | /* Store NUMBER in two contiguous bytes starting at DESTINATION.  */ | 
|  | /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */ | 
|  |  | 
|  | # ifdef WCHAR | 
|  | #  define STORE_NUMBER(destination, number)				\ | 
|  | do {									\ | 
|  | *(destination) = (UCHAR_T)(number);				\ | 
|  | } while (0) | 
|  | # else /* BYTE */ | 
|  | #  define STORE_NUMBER(destination, number)				\ | 
|  | do {									\ | 
|  | (destination)[0] = (number) & 0377;					\ | 
|  | (destination)[1] = (number) >> 8;					\ | 
|  | } while (0) | 
|  | # endif /* WCHAR */ | 
|  |  | 
|  | /* Same as STORE_NUMBER, except increment DESTINATION to | 
|  | the byte after where the number is stored.  Therefore, DESTINATION | 
|  | must be an lvalue.  */ | 
|  | /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */ | 
|  |  | 
|  | # define STORE_NUMBER_AND_INCR(destination, number)			\ | 
|  | do {									\ | 
|  | STORE_NUMBER (destination, number);					\ | 
|  | (destination) += OFFSET_ADDRESS_SIZE;				\ | 
|  | } while (0) | 
|  |  | 
|  | /* Put into DESTINATION a number stored in two contiguous bytes starting | 
|  | at SOURCE.  */ | 
|  | /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */ | 
|  |  | 
|  | # ifdef WCHAR | 
|  | #  define EXTRACT_NUMBER(destination, source)				\ | 
|  | do {									\ | 
|  | (destination) = *(source);						\ | 
|  | } while (0) | 
|  | # else /* BYTE */ | 
|  | #  define EXTRACT_NUMBER(destination, source)				\ | 
|  | do {									\ | 
|  | (destination) = *(source) & 0377;					\ | 
|  | (destination) += ((unsigned) SIGN_EXTEND_CHAR (*((source) + 1))) << 8; \ | 
|  | } while (0) | 
|  | # endif | 
|  |  | 
|  | # ifdef DEBUG | 
|  | static void PREFIX(extract_number) (int *dest, UCHAR_T *source); | 
|  | static void | 
|  | PREFIX(extract_number) (int *dest, UCHAR_T *source) | 
|  | { | 
|  | #  ifdef WCHAR | 
|  | *dest = *source; | 
|  | #  else /* BYTE */ | 
|  | int temp = SIGN_EXTEND_CHAR (*(source + 1)); | 
|  | *dest = *source & 0377; | 
|  | *dest += temp << 8; | 
|  | #  endif | 
|  | } | 
|  |  | 
|  | #  ifndef EXTRACT_MACROS /* To debug the macros.  */ | 
|  | #   undef EXTRACT_NUMBER | 
|  | #   define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src) | 
|  | #  endif /* not EXTRACT_MACROS */ | 
|  |  | 
|  | # endif /* DEBUG */ | 
|  |  | 
|  | /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. | 
|  | SOURCE must be an lvalue.  */ | 
|  |  | 
|  | # define EXTRACT_NUMBER_AND_INCR(destination, source)			\ | 
|  | do {									\ | 
|  | EXTRACT_NUMBER (destination, source);				\ | 
|  | (source) += OFFSET_ADDRESS_SIZE; 					\ | 
|  | } while (0) | 
|  |  | 
|  | # ifdef DEBUG | 
|  | static void PREFIX(extract_number_and_incr) (int *destination, | 
|  | UCHAR_T **source); | 
|  | static void | 
|  | PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source) | 
|  | { | 
|  | PREFIX(extract_number) (destination, *source); | 
|  | *source += OFFSET_ADDRESS_SIZE; | 
|  | } | 
|  |  | 
|  | #  ifndef EXTRACT_MACROS | 
|  | #   undef EXTRACT_NUMBER_AND_INCR | 
|  | #   define EXTRACT_NUMBER_AND_INCR(dest, src) \ | 
|  | PREFIX(extract_number_and_incr) (&dest, &src) | 
|  | #  endif /* not EXTRACT_MACROS */ | 
|  |  | 
|  | # endif /* DEBUG */ | 
|  |  | 
|  |  | 
|  |  | 
|  | /* If DEBUG is defined, Regex prints many voluminous messages about what | 
|  | it is doing (if the variable `debug' is nonzero).  If linked with the | 
|  | main program in `iregex.c', you can enter patterns and strings | 
|  | interactively.  And if linked with the main program in `main.c' and | 
|  | the other test files, you can run the already-written tests.  */ | 
|  |  | 
|  | # ifdef DEBUG | 
|  |  | 
|  | #  ifndef DEFINED_ONCE | 
|  |  | 
|  | /* We use standard I/O for debugging.  */ | 
|  | #   include <stdio.h> | 
|  |  | 
|  | /* It is useful to test things that ``must'' be true when debugging.  */ | 
|  | #   include <assert.h> | 
|  |  | 
|  | static int debug; | 
|  |  | 
|  | #   define DEBUG_STATEMENT(e) e | 
|  | #   define DEBUG_PRINT1(x) if (debug) printf (x) | 
|  | #   define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) | 
|  | #   define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) | 
|  | #   define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) | 
|  | #  endif /* not DEFINED_ONCE */ | 
|  |  | 
|  | #  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 			\ | 
|  | if (debug) PREFIX(print_partial_compiled_pattern) (s, e) | 
|  | #  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)		\ | 
|  | if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2) | 
|  |  | 
|  |  | 
|  | /* Print the fastmap in human-readable form.  */ | 
|  |  | 
|  | #  ifndef DEFINED_ONCE | 
|  | void | 
|  | print_fastmap (char *fastmap) | 
|  | { | 
|  | unsigned was_a_range = 0; | 
|  | unsigned i = 0; | 
|  |  | 
|  | while (i < (1 << BYTEWIDTH)) | 
|  | { | 
|  | if (fastmap[i++]) | 
|  | { | 
|  | was_a_range = 0; | 
|  | putchar (i - 1); | 
|  | while (i < (1 << BYTEWIDTH)  &&  fastmap[i]) | 
|  | { | 
|  | was_a_range = 1; | 
|  | i++; | 
|  | } | 
|  | if (was_a_range) | 
|  | { | 
|  | printf ("-"); | 
|  | putchar (i - 1); | 
|  | } | 
|  | } | 
|  | } | 
|  | putchar ('\n'); | 
|  | } | 
|  | #  endif /* not DEFINED_ONCE */ | 
|  |  | 
|  |  | 
|  | /* Print a compiled pattern string in human-readable form, starting at | 
|  | the START pointer into it and ending just before the pointer END.  */ | 
|  |  | 
|  | void | 
|  | PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end) | 
|  | { | 
|  | int mcnt, mcnt2; | 
|  | UCHAR_T *p1; | 
|  | UCHAR_T *p = start; | 
|  | UCHAR_T *pend = end; | 
|  |  | 
|  | if (start == NULL) | 
|  | { | 
|  | printf ("(null)\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Loop over pattern commands.  */ | 
|  | while (p < pend) | 
|  | { | 
|  | #  ifdef _LIBC | 
|  | printf ("%td:\t", p - start); | 
|  | #  else | 
|  | printf ("%ld:\t", (long int) (p - start)); | 
|  | #  endif | 
|  |  | 
|  | switch ((re_opcode_t) *p++) | 
|  | { | 
|  | case no_op: | 
|  | printf ("/no_op"); | 
|  | break; | 
|  |  | 
|  | case exactn: | 
|  | mcnt = *p++; | 
|  | printf ("/exactn/%d", mcnt); | 
|  | do | 
|  | { | 
|  | putchar ('/'); | 
|  | PUT_CHAR (*p++); | 
|  | } | 
|  | while (--mcnt); | 
|  | break; | 
|  |  | 
|  | #  ifdef MBS_SUPPORT | 
|  | case exactn_bin: | 
|  | mcnt = *p++; | 
|  | printf ("/exactn_bin/%d", mcnt); | 
|  | do | 
|  | { | 
|  | printf("/%lx", (long int) *p++); | 
|  | } | 
|  | while (--mcnt); | 
|  | break; | 
|  | #  endif /* MBS_SUPPORT */ | 
|  |  | 
|  | case start_memory: | 
|  | mcnt = *p++; | 
|  | printf ("/start_memory/%d/%ld", mcnt, (long int) *p++); | 
|  | break; | 
|  |  | 
|  | case stop_memory: | 
|  | mcnt = *p++; | 
|  | printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++); | 
|  | break; | 
|  |  | 
|  | case duplicate: | 
|  | printf ("/duplicate/%ld", (long int) *p++); | 
|  | break; | 
|  |  | 
|  | case anychar: | 
|  | printf ("/anychar"); | 
|  | break; | 
|  |  | 
|  | case charset: | 
|  | case charset_not: | 
|  | { | 
|  | #  ifdef WCHAR | 
|  | int i, length; | 
|  | wchar_t *workp = p; | 
|  | printf ("/charset [%s", | 
|  | (re_opcode_t) *(workp - 1) == charset_not ? "^" : ""); | 
|  | p += 5; | 
|  | length = *workp++; /* the length of char_classes */ | 
|  | for (i=0 ; i<length ; i++) | 
|  | printf("[:%lx:]", (long int) *p++); | 
|  | length = *workp++; /* the length of collating_symbol */ | 
|  | for (i=0 ; i<length ;) | 
|  | { | 
|  | printf("[."); | 
|  | while(*p != 0) | 
|  | PUT_CHAR((i++,*p++)); | 
|  | i++,p++; | 
|  | printf(".]"); | 
|  | } | 
|  | length = *workp++; /* the length of equivalence_class */ | 
|  | for (i=0 ; i<length ;) | 
|  | { | 
|  | printf("[="); | 
|  | while(*p != 0) | 
|  | PUT_CHAR((i++,*p++)); | 
|  | i++,p++; | 
|  | printf("=]"); | 
|  | } | 
|  | length = *workp++; /* the length of char_range */ | 
|  | for (i=0 ; i<length ; i++) | 
|  | { | 
|  | wchar_t range_start = *p++; | 
|  | wchar_t range_end = *p++; | 
|  | printf("%C-%C", range_start, range_end); | 
|  | } | 
|  | length = *workp++; /* the length of char */ | 
|  | for (i=0 ; i<length ; i++) | 
|  | printf("%C", *p++); | 
|  | putchar (']'); | 
|  | #  else | 
|  | register int c, last = -100; | 
|  | register int in_range = 0; | 
|  |  | 
|  | printf ("/charset [%s", | 
|  | (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); | 
|  |  | 
|  | assert (p + *p < pend); | 
|  |  | 
|  | for (c = 0; c < 256; c++) | 
|  | if (c / 8 < *p | 
|  | && (p[1 + (c/8)] & (1 << (c % 8)))) | 
|  | { | 
|  | /* Are we starting a range?  */ | 
|  | if (last + 1 == c && ! in_range) | 
|  | { | 
|  | putchar ('-'); | 
|  | in_range = 1; | 
|  | } | 
|  | /* Have we broken a range?  */ | 
|  | else if (last + 1 != c && in_range) | 
|  | { | 
|  | putchar (last); | 
|  | in_range = 0; | 
|  | } | 
|  |  | 
|  | if (! in_range) | 
|  | putchar (c); | 
|  |  | 
|  | last = c; | 
|  | } | 
|  |  | 
|  | if (in_range) | 
|  | putchar (last); | 
|  |  | 
|  | putchar (']'); | 
|  |  | 
|  | p += 1 + *p; | 
|  | #  endif /* WCHAR */ | 
|  | } | 
|  | break; | 
|  |  | 
|  | case begline: | 
|  | printf ("/begline"); | 
|  | break; | 
|  |  | 
|  | case endline: | 
|  | printf ("/endline"); | 
|  | break; | 
|  |  | 
|  | case on_failure_jump: | 
|  | PREFIX(extract_number_and_incr) (&mcnt, &p); | 
|  | #  ifdef _LIBC | 
|  | printf ("/on_failure_jump to %td", p + mcnt - start); | 
|  | #  else | 
|  | printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start)); | 
|  | #  endif | 
|  | break; | 
|  |  | 
|  | case on_failure_keep_string_jump: | 
|  | PREFIX(extract_number_and_incr) (&mcnt, &p); | 
|  | #  ifdef _LIBC | 
|  | printf ("/on_failure_keep_string_jump to %td", p + mcnt - start); | 
|  | #  else | 
|  | printf ("/on_failure_keep_string_jump to %ld", | 
|  | (long int) (p + mcnt - start)); | 
|  | #  endif | 
|  | break; | 
|  |  | 
|  | case dummy_failure_jump: | 
|  | PREFIX(extract_number_and_incr) (&mcnt, &p); | 
|  | #  ifdef _LIBC | 
|  | printf ("/dummy_failure_jump to %td", p + mcnt - start); | 
|  | #  else | 
|  | printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start)); | 
|  | #  endif | 
|  | break; | 
|  |  | 
|  | case push_dummy_failure: | 
|  | printf ("/push_dummy_failure"); | 
|  | break; | 
|  |  | 
|  | case maybe_pop_jump: | 
|  | PREFIX(extract_number_and_incr) (&mcnt, &p); | 
|  | #  ifdef _LIBC | 
|  | printf ("/maybe_pop_jump to %td", p + mcnt - start); | 
|  | #  else | 
|  | printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start)); | 
|  | #  endif | 
|  | break; | 
|  |  | 
|  | case pop_failure_jump: | 
|  | PREFIX(extract_number_and_incr) (&mcnt, &p); | 
|  | #  ifdef _LIBC | 
|  | printf ("/pop_failure_jump to %td", p + mcnt - start); | 
|  | #  else | 
|  | printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start)); | 
|  | #  endif | 
|  | break; | 
|  |  | 
|  | case jump_past_alt: | 
|  | PREFIX(extract_number_and_incr) (&mcnt, &p); | 
|  | #  ifdef _LIBC | 
|  | printf ("/jump_past_alt to %td", p + mcnt - start); | 
|  | #  else | 
|  | printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start)); | 
|  | #  endif | 
|  | break; | 
|  |  | 
|  | case jump: | 
|  | PREFIX(extract_number_and_incr) (&mcnt, &p); | 
|  | #  ifdef _LIBC | 
|  | printf ("/jump to %td", p + mcnt - start); | 
|  | #  else | 
|  | printf ("/jump to %ld", (long int) (p + mcnt - start)); | 
|  | #  endif | 
|  | break; | 
|  |  | 
|  | case succeed_n: | 
|  | PREFIX(extract_number_and_incr) (&mcnt, &p); | 
|  | p1 = p + mcnt; | 
|  | PREFIX(extract_number_and_incr) (&mcnt2, &p); | 
|  | #  ifdef _LIBC | 
|  | printf ("/succeed_n to %td, %d times", p1 - start, mcnt2); | 
|  | #  else | 
|  | printf ("/succeed_n to %ld, %d times", | 
|  | (long int) (p1 - start), mcnt2); | 
|  | #  endif | 
|  | break; | 
|  |  | 
|  | case jump_n: | 
|  | PREFIX(extract_number_and_incr) (&mcnt, &p); | 
|  | p1 = p + mcnt; | 
|  | PREFIX(extract_number_and_incr) (&mcnt2, &p); | 
|  | printf ("/jump_n to %d, %d times", p1 - start, mcnt2); | 
|  | break; | 
|  |  | 
|  | case set_number_at: | 
|  | PREFIX(extract_number_and_incr) (&mcnt, &p); | 
|  | p1 = p + mcnt; | 
|  | PREFIX(extract_number_and_incr) (&mcnt2, &p); | 
|  | #  ifdef _LIBC | 
|  | printf ("/set_number_at location %td to %d", p1 - start, mcnt2); | 
|  | #  else | 
|  | printf ("/set_number_at location %ld to %d", | 
|  | (long int) (p1 - start), mcnt2); | 
|  | #  endif | 
|  | break; | 
|  |  | 
|  | case wordbound: | 
|  | printf ("/wordbound"); | 
|  | break; | 
|  |  | 
|  | case notwordbound: | 
|  | printf ("/notwordbound"); | 
|  | break; | 
|  |  | 
|  | case wordbeg: | 
|  | printf ("/wordbeg"); | 
|  | break; | 
|  |  | 
|  | case wordend: | 
|  | printf ("/wordend"); | 
|  | break; | 
|  |  | 
|  | #  ifdef emacs | 
|  | case before_dot: | 
|  | printf ("/before_dot"); | 
|  | break; | 
|  |  | 
|  | case at_dot: | 
|  | printf ("/at_dot"); | 
|  | break; | 
|  |  | 
|  | case after_dot: | 
|  | printf ("/after_dot"); | 
|  | break; | 
|  |  | 
|  | case syntaxspec: | 
|  | printf ("/syntaxspec"); | 
|  | mcnt = *p++; | 
|  | printf ("/%d", mcnt); | 
|  | break; | 
|  |  | 
|  | case notsyntaxspec: | 
|  | printf ("/notsyntaxspec"); | 
|  | mcnt = *p++; | 
|  | printf ("/%d", mcnt); | 
|  | break; | 
|  | #  endif /* emacs */ | 
|  |  | 
|  | case wordchar: | 
|  | printf ("/wordchar"); | 
|  | break; | 
|  |  | 
|  | case notwordchar: | 
|  | printf ("/notwordchar"); | 
|  | break; | 
|  |  | 
|  | case begbuf: | 
|  | printf ("/begbuf"); | 
|  | break; | 
|  |  | 
|  | case endbuf: | 
|  | printf ("/endbuf"); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | printf ("?%ld", (long int) *(p-1)); | 
|  | } | 
|  |  | 
|  | putchar ('\n'); | 
|  | } | 
|  |  | 
|  | #  ifdef _LIBC | 
|  | printf ("%td:\tend of pattern.\n", p - start); | 
|  | #  else | 
|  | printf ("%ld:\tend of pattern.\n", (long int) (p - start)); | 
|  | #  endif | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp) | 
|  | { | 
|  | UCHAR_T *buffer = (UCHAR_T*) bufp->buffer; | 
|  |  | 
|  | PREFIX(print_partial_compiled_pattern) (buffer, buffer | 
|  | + bufp->used / sizeof(UCHAR_T)); | 
|  | printf ("%ld bytes used/%ld bytes allocated.\n", | 
|  | bufp->used, bufp->allocated); | 
|  |  | 
|  | if (bufp->fastmap_accurate && bufp->fastmap) | 
|  | { | 
|  | printf ("fastmap: "); | 
|  | print_fastmap (bufp->fastmap); | 
|  | } | 
|  |  | 
|  | #  ifdef _LIBC | 
|  | printf ("re_nsub: %Zd\t", bufp->re_nsub); | 
|  | #  else | 
|  | printf ("re_nsub: %ld\t", (long int) bufp->re_nsub); | 
|  | #  endif | 
|  | printf ("regs_alloc: %d\t", bufp->regs_allocated); | 
|  | printf ("can_be_null: %d\t", bufp->can_be_null); | 
|  | printf ("newline_anchor: %d\n", bufp->newline_anchor); | 
|  | printf ("no_sub: %d\t", bufp->no_sub); | 
|  | printf ("not_bol: %d\t", bufp->not_bol); | 
|  | printf ("not_eol: %d\t", bufp->not_eol); | 
|  | printf ("syntax: %lx\n", bufp->syntax); | 
|  | /* Perhaps we should print the translate table?  */ | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | PREFIX(print_double_string) (const CHAR_T *where, const CHAR_T *string1, | 
|  | int size1, const CHAR_T *string2, int size2) | 
|  | { | 
|  | int this_char; | 
|  |  | 
|  | if (where == NULL) | 
|  | printf ("(null)"); | 
|  | else | 
|  | { | 
|  | int cnt; | 
|  |  | 
|  | if (FIRST_STRING_P (where)) | 
|  | { | 
|  | for (this_char = where - string1; this_char < size1; this_char++) | 
|  | PUT_CHAR (string1[this_char]); | 
|  |  | 
|  | where = string2; | 
|  | } | 
|  |  | 
|  | cnt = 0; | 
|  | for (this_char = where - string2; this_char < size2; this_char++) | 
|  | { | 
|  | PUT_CHAR (string2[this_char]); | 
|  | if (++cnt > 100) | 
|  | { | 
|  | fputs ("...", stdout); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #  ifndef DEFINED_ONCE | 
|  | void | 
|  | printchar (int c) | 
|  | { | 
|  | putc (c, stderr); | 
|  | } | 
|  | #  endif | 
|  |  | 
|  | # else /* not DEBUG */ | 
|  |  | 
|  | #  ifndef DEFINED_ONCE | 
|  | #   undef assert | 
|  | #   define assert(e) | 
|  |  | 
|  | #   define DEBUG_STATEMENT(e) | 
|  | #   define DEBUG_PRINT1(x) | 
|  | #   define DEBUG_PRINT2(x1, x2) | 
|  | #   define DEBUG_PRINT3(x1, x2, x3) | 
|  | #   define DEBUG_PRINT4(x1, x2, x3, x4) | 
|  | #  endif /* not DEFINED_ONCE */ | 
|  | #  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) | 
|  | #  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) | 
|  |  | 
|  | # endif /* not DEBUG */ | 
|  |  | 
|  |  | 
|  |  | 
|  | # ifdef WCHAR | 
|  | /* This  convert a multibyte string to a wide character string. | 
|  | And write their correspondances to offset_buffer(see below) | 
|  | and write whether each wchar_t is binary data to is_binary. | 
|  | This assume invalid multibyte sequences as binary data. | 
|  | We assume offset_buffer and is_binary is already allocated | 
|  | enough space.  */ | 
|  |  | 
|  | static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src, | 
|  | size_t len, int *offset_buffer, | 
|  | char *is_binary); | 
|  | static size_t | 
|  | convert_mbs_to_wcs (CHAR_T *dest, const unsigned char*src, size_t len, | 
|  | int *offset_buffer, char *is_binary) | 
|  | /* It hold correspondances between src(char string) and | 
|  | dest(wchar_t string) for optimization. | 
|  | e.g. src  = "xxxyzz" | 
|  | dest = {'X', 'Y', 'Z'} | 
|  | (each "xxx", "y" and "zz" represent one multibyte character | 
|  | corresponding to 'X', 'Y' and 'Z'.) | 
|  | offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")} | 
|  | = {0, 3, 4, 6} | 
|  | */ | 
|  | { | 
|  | wchar_t *pdest = dest; | 
|  | const unsigned char *psrc = src; | 
|  | size_t wc_count = 0; | 
|  |  | 
|  | mbstate_t mbs; | 
|  | int i, consumed; | 
|  | size_t mb_remain = len; | 
|  | size_t mb_count = 0; | 
|  |  | 
|  | /* Initialize the conversion state.  */ | 
|  | memset (&mbs, 0, sizeof (mbstate_t)); | 
|  |  | 
|  | offset_buffer[0] = 0; | 
|  | for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed, | 
|  | psrc += consumed) | 
|  | { | 
|  | #ifdef _LIBC | 
|  | consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs); | 
|  | #else | 
|  | consumed = mbrtowc (pdest, psrc, mb_remain, &mbs); | 
|  | #endif | 
|  |  | 
|  | if (consumed <= 0) | 
|  | /* failed to convert. maybe src contains binary data. | 
|  | So we consume 1 byte manualy.  */ | 
|  | { | 
|  | *pdest = *psrc; | 
|  | consumed = 1; | 
|  | is_binary[wc_count] = TRUE; | 
|  | } | 
|  | else | 
|  | is_binary[wc_count] = FALSE; | 
|  | /* In sjis encoding, we use yen sign as escape character in | 
|  | place of reverse solidus. So we convert 0x5c(yen sign in | 
|  | sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse | 
|  | solidus in UCS2).  */ | 
|  | if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5) | 
|  | *pdest = (wchar_t) *psrc; | 
|  |  | 
|  | offset_buffer[wc_count + 1] = mb_count += consumed; | 
|  | } | 
|  |  | 
|  | /* Fill remain of the buffer with sentinel.  */ | 
|  | for (i = wc_count + 1 ; i <= len ; i++) | 
|  | offset_buffer[i] = mb_count + 1; | 
|  |  | 
|  | return wc_count; | 
|  | } | 
|  |  | 
|  | # endif /* WCHAR */ | 
|  |  | 
|  | #else /* not INSIDE_RECURSION */ | 
|  |  | 
|  | /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can | 
|  | also be assigned to arbitrarily: each pattern buffer stores its own | 
|  | syntax, so it can be changed between regex compilations.  */ | 
|  | /* This has no initializer because initialized variables in Emacs | 
|  | become read-only after dumping.  */ | 
|  | reg_syntax_t re_syntax_options; | 
|  |  | 
|  |  | 
|  | /* Specify the precise syntax of regexps for compilation.  This provides | 
|  | for compatibility for various utilities which historically have | 
|  | different, incompatible syntaxes. | 
|  |  | 
|  | The argument SYNTAX is a bit mask comprised of the various bits | 
|  | defined in regex.h.  We return the old syntax.  */ | 
|  |  | 
|  | reg_syntax_t | 
|  | re_set_syntax (reg_syntax_t syntax) | 
|  | { | 
|  | reg_syntax_t ret = re_syntax_options; | 
|  |  | 
|  | re_syntax_options = syntax; | 
|  | # ifdef DEBUG | 
|  | if (syntax & RE_DEBUG) | 
|  | debug = 1; | 
|  | else if (debug) /* was on but now is not */ | 
|  | debug = 0; | 
|  | # endif /* DEBUG */ | 
|  | return ret; | 
|  | } | 
|  | # ifdef _LIBC | 
|  | weak_alias (__re_set_syntax, re_set_syntax) | 
|  | # endif | 
|  |  | 
|  | /* This table gives an error message for each of the error codes listed | 
|  | in regex.h.  Obviously the order here has to be same as there. | 
|  | POSIX doesn't require that we do anything for REG_NOERROR, | 
|  | but why not be nice?  */ | 
|  |  | 
|  | static const char *re_error_msgid[] = | 
|  | { | 
|  | gettext_noop ("Success"),	/* REG_NOERROR */ | 
|  | gettext_noop ("No match"),	/* REG_NOMATCH */ | 
|  | gettext_noop ("Invalid regular expression"), /* REG_BADPAT */ | 
|  | gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */ | 
|  | gettext_noop ("Invalid character class name"), /* REG_ECTYPE */ | 
|  | gettext_noop ("Trailing backslash"), /* REG_EESCAPE */ | 
|  | gettext_noop ("Invalid back reference"), /* REG_ESUBREG */ | 
|  | gettext_noop ("Unmatched [ or [^"),	/* REG_EBRACK */ | 
|  | gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */ | 
|  | gettext_noop ("Unmatched \\{"), /* REG_EBRACE */ | 
|  | gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */ | 
|  | gettext_noop ("Invalid range end"),	/* REG_ERANGE */ | 
|  | gettext_noop ("Memory exhausted"), /* REG_ESPACE */ | 
|  | gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */ | 
|  | gettext_noop ("Premature end of regular expression"), /* REG_EEND */ | 
|  | gettext_noop ("Regular expression too big"), /* REG_ESIZE */ | 
|  | gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */ | 
|  | }; | 
|  |  | 
|  | #endif /* INSIDE_RECURSION */ | 
|  |  | 
|  | #ifndef DEFINED_ONCE | 
|  | /* Avoiding alloca during matching, to placate r_alloc.  */ | 
|  |  | 
|  | /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the | 
|  | searching and matching functions should not call alloca.  On some | 
|  | systems, alloca is implemented in terms of malloc, and if we're | 
|  | using the relocating allocator routines, then malloc could cause a | 
|  | relocation, which might (if the strings being searched are in the | 
|  | ralloc heap) shift the data out from underneath the regexp | 
|  | routines. | 
|  |  | 
|  | Here's another reason to avoid allocation: Emacs | 
|  | processes input from X in a signal handler; processing X input may | 
|  | call malloc; if input arrives while a matching routine is calling | 
|  | malloc, then we're scrod.  But Emacs can't just block input while | 
|  | calling matching routines; then we don't notice interrupts when | 
|  | they come in.  So, Emacs blocks input around all regexp calls | 
|  | except the matching calls, which it leaves unprotected, in the | 
|  | faith that they will not malloc.  */ | 
|  |  | 
|  | /* Normally, this is fine.  */ | 
|  | # define MATCH_MAY_ALLOCATE | 
|  |  | 
|  | /* When using GNU C, we are not REALLY using the C alloca, no matter | 
|  | what config.h may say.  So don't take precautions for it.  */ | 
|  | # ifdef __GNUC__ | 
|  | #  undef C_ALLOCA | 
|  | # endif | 
|  |  | 
|  | /* The match routines may not allocate if (1) they would do it with malloc | 
|  | and (2) it's not safe for them to use malloc. | 
|  | Note that if REL_ALLOC is defined, matching would not use malloc for the | 
|  | failure stack, but we would still use it for the register vectors; | 
|  | so REL_ALLOC should not affect this.  */ | 
|  | # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs | 
|  | #  undef MATCH_MAY_ALLOCATE | 
|  | # endif | 
|  | #endif /* not DEFINED_ONCE */ | 
|  |  | 
|  | #ifdef INSIDE_RECURSION | 
|  | /* Failure stack declarations and macros; both re_compile_fastmap and | 
|  | re_match_2 use a failure stack.  These have to be macros because of | 
|  | REGEX_ALLOCATE_STACK.  */ | 
|  |  | 
|  |  | 
|  | /* Number of failure points for which to initially allocate space | 
|  | when matching.  If this number is exceeded, we allocate more | 
|  | space, so it is not a hard limit.  */ | 
|  | # ifndef INIT_FAILURE_ALLOC | 
|  | #  define INIT_FAILURE_ALLOC 5 | 
|  | # endif | 
|  |  | 
|  | /* Roughly the maximum number of failure points on the stack.  Would be | 
|  | exactly that if always used MAX_FAILURE_ITEMS items each time we failed. | 
|  | This is a variable only so users of regex can assign to it; we never | 
|  | change it ourselves.  */ | 
|  |  | 
|  | # ifdef INT_IS_16BIT | 
|  |  | 
|  | #  ifndef DEFINED_ONCE | 
|  | #   if defined MATCH_MAY_ALLOCATE | 
|  | /* 4400 was enough to cause a crash on Alpha OSF/1, | 
|  | whose default stack limit is 2mb.  */ | 
|  | long int re_max_failures = 4000; | 
|  | #   else | 
|  | long int re_max_failures = 2000; | 
|  | #   endif | 
|  | #  endif | 
|  |  | 
|  | union PREFIX(fail_stack_elt) | 
|  | { | 
|  | UCHAR_T *pointer; | 
|  | long int integer; | 
|  | }; | 
|  |  | 
|  | typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t); | 
|  |  | 
|  | typedef struct | 
|  | { | 
|  | PREFIX(fail_stack_elt_t) *stack; | 
|  | unsigned long int size; | 
|  | unsigned long int avail;		/* Offset of next open position.  */ | 
|  | } PREFIX(fail_stack_type); | 
|  |  | 
|  | # else /* not INT_IS_16BIT */ | 
|  |  | 
|  | #  ifndef DEFINED_ONCE | 
|  | #   if defined MATCH_MAY_ALLOCATE | 
|  | /* 4400 was enough to cause a crash on Alpha OSF/1, | 
|  | whose default stack limit is 2mb.  */ | 
|  | int re_max_failures = 4000; | 
|  | #   else | 
|  | int re_max_failures = 2000; | 
|  | #   endif | 
|  | #  endif | 
|  |  | 
|  | union PREFIX(fail_stack_elt) | 
|  | { | 
|  | UCHAR_T *pointer; | 
|  | int integer; | 
|  | }; | 
|  |  | 
|  | typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t); | 
|  |  | 
|  | typedef struct | 
|  | { | 
|  | PREFIX(fail_stack_elt_t) *stack; | 
|  | unsigned size; | 
|  | unsigned avail;			/* Offset of next open position.  */ | 
|  | } PREFIX(fail_stack_type); | 
|  |  | 
|  | # endif /* INT_IS_16BIT */ | 
|  |  | 
|  | # ifndef DEFINED_ONCE | 
|  | #  define FAIL_STACK_EMPTY()     (fail_stack.avail == 0) | 
|  | #  define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) | 
|  | #  define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size) | 
|  | # endif | 
|  |  | 
|  |  | 
|  | /* Define macros to initialize and free the failure stack. | 
|  | Do `return -2' if the alloc fails.  */ | 
|  |  | 
|  | # ifdef MATCH_MAY_ALLOCATE | 
|  | #  define INIT_FAIL_STACK()						\ | 
|  | do {									\ | 
|  | fail_stack.stack = (PREFIX(fail_stack_elt_t) *)		\ | 
|  | REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \ | 
|  | \ | 
|  | if (fail_stack.stack == NULL)				\ | 
|  | return -2;							\ | 
|  | \ | 
|  | fail_stack.size = INIT_FAILURE_ALLOC;			\ | 
|  | fail_stack.avail = 0;					\ | 
|  | } while (0) | 
|  |  | 
|  | #  define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack) | 
|  | # else | 
|  | #  define INIT_FAIL_STACK()						\ | 
|  | do {									\ | 
|  | fail_stack.avail = 0;					\ | 
|  | } while (0) | 
|  |  | 
|  | #  define RESET_FAIL_STACK() | 
|  | # endif | 
|  |  | 
|  |  | 
|  | /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. | 
|  |  | 
|  | Return 1 if succeeds, and 0 if either ran out of memory | 
|  | allocating space for it or it was already too large. | 
|  |  | 
|  | REGEX_REALLOCATE_STACK requires `destination' be declared.   */ | 
|  |  | 
|  | # define DOUBLE_FAIL_STACK(fail_stack)					\ | 
|  | ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\ | 
|  | ? 0									\ | 
|  | : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *)			\ | 
|  | REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\ | 
|  | (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)),	\ | 
|  | ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\ | 
|  | \ | 
|  | (fail_stack).stack == NULL					\ | 
|  | ? 0								\ | 
|  | : ((fail_stack).size <<= 1, 					\ | 
|  | 1))) | 
|  |  | 
|  |  | 
|  | /* Push pointer POINTER on FAIL_STACK. | 
|  | Return 1 if was able to do so and 0 if ran out of memory allocating | 
|  | space to do so.  */ | 
|  | # define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\ | 
|  | ((FAIL_STACK_FULL ()							\ | 
|  | && !DOUBLE_FAIL_STACK (FAIL_STACK))					\ | 
|  | ? 0									\ | 
|  | : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\ | 
|  | 1)) | 
|  |  | 
|  | /* Push a pointer value onto the failure stack. | 
|  | Assumes the variable `fail_stack'.  Probably should only | 
|  | be called from within `PUSH_FAILURE_POINT'.  */ | 
|  | # define PUSH_FAILURE_POINTER(item)					\ | 
|  | fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item) | 
|  |  | 
|  | /* This pushes an integer-valued item onto the failure stack. | 
|  | Assumes the variable `fail_stack'.  Probably should only | 
|  | be called from within `PUSH_FAILURE_POINT'.  */ | 
|  | # define PUSH_FAILURE_INT(item)					\ | 
|  | fail_stack.stack[fail_stack.avail++].integer = (item) | 
|  |  | 
|  | /* Push a fail_stack_elt_t value onto the failure stack. | 
|  | Assumes the variable `fail_stack'.  Probably should only | 
|  | be called from within `PUSH_FAILURE_POINT'.  */ | 
|  | # define PUSH_FAILURE_ELT(item)					\ | 
|  | fail_stack.stack[fail_stack.avail++] =  (item) | 
|  |  | 
|  | /* These three POP... operations complement the three PUSH... operations. | 
|  | All assume that `fail_stack' is nonempty.  */ | 
|  | # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer | 
|  | # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer | 
|  | # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail] | 
|  |  | 
|  | /* Used to omit pushing failure point id's when we're not debugging.  */ | 
|  | # ifdef DEBUG | 
|  | #  define DEBUG_PUSH PUSH_FAILURE_INT | 
|  | #  define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT () | 
|  | # else | 
|  | #  define DEBUG_PUSH(item) | 
|  | #  define DEBUG_POP(item_addr) | 
|  | # endif | 
|  |  | 
|  |  | 
|  | /* Push the information about the state we will need | 
|  | if we ever fail back to it. | 
|  |  | 
|  | Requires variables fail_stack, regstart, regend, reg_info, and | 
|  | num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination' | 
|  | be declared. | 
|  |  | 
|  | Does `return FAILURE_CODE' if runs out of memory.  */ | 
|  |  | 
|  | # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\ | 
|  | do {									\ | 
|  | char *destination;							\ | 
|  | /* Must be int, so when we don't save any registers, the arithmetic	\ | 
|  | of 0 + -1 isn't done as unsigned.  */				\ | 
|  | /* Can't be int, since there is not a shred of a guarantee that int	\ | 
|  | is wide enough to hold a value of something to which pointer can	\ | 
|  | be assigned */							\ | 
|  | active_reg_t this_reg;						\ | 
|  | \ | 
|  | DEBUG_STATEMENT (failure_id++);					\ | 
|  | DEBUG_STATEMENT (nfailure_points_pushed++);				\ | 
|  | DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\ | 
|  | DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\ | 
|  | DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\ | 
|  | \ | 
|  | DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);		\ | 
|  | DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\ | 
|  | \ | 
|  | /* Ensure we have enough space allocated for what we will push.  */	\ | 
|  | while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\ | 
|  | {									\ | 
|  | if (!DOUBLE_FAIL_STACK (fail_stack))				\ | 
|  | return failure_code;						\ | 
|  | \ | 
|  | DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\ | 
|  | (fail_stack).size);				\ | 
|  | DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\ | 
|  | }									\ | 
|  | \ | 
|  | /* Push the info, starting with the registers.  */			\ | 
|  | DEBUG_PRINT1 ("\n");						\ | 
|  | \ | 
|  | if (1)								\ | 
|  | for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ | 
|  | this_reg++)							\ | 
|  | {								\ | 
|  | DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);		\ | 
|  | DEBUG_STATEMENT (num_regs_pushed++);				\ | 
|  | \ | 
|  | DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);		\ | 
|  | PUSH_FAILURE_POINTER (regstart[this_reg]);			\ | 
|  | \ | 
|  | DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);		\ | 
|  | PUSH_FAILURE_POINTER (regend[this_reg]);			\ | 
|  | \ | 
|  | DEBUG_PRINT2 ("    info: %p\n      ",				\ | 
|  | reg_info[this_reg].word.pointer);		\ | 
|  | DEBUG_PRINT2 (" match_null=%d",				\ | 
|  | REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\ | 
|  | DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\ | 
|  | DEBUG_PRINT2 (" matched_something=%d",			\ | 
|  | MATCHED_SOMETHING (reg_info[this_reg]));	\ | 
|  | DEBUG_PRINT2 (" ever_matched=%d",				\ | 
|  | EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\ | 
|  | DEBUG_PRINT1 ("\n");						\ | 
|  | PUSH_FAILURE_ELT (reg_info[this_reg].word);			\ | 
|  | }								\ | 
|  | \ | 
|  | DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\ | 
|  | PUSH_FAILURE_INT (lowest_active_reg);				\ | 
|  | \ | 
|  | DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\ | 
|  | PUSH_FAILURE_INT (highest_active_reg);				\ | 
|  | \ | 
|  | DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);		\ | 
|  | DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\ | 
|  | PUSH_FAILURE_POINTER (pattern_place);				\ | 
|  | \ | 
|  | DEBUG_PRINT2 ("  Pushing string %p: `", string_place);		\ | 
|  | DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \ | 
|  | size2);				\ | 
|  | DEBUG_PRINT1 ("'\n");						\ | 
|  | PUSH_FAILURE_POINTER (string_place);				\ | 
|  | \ | 
|  | DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\ | 
|  | DEBUG_PUSH (failure_id);						\ | 
|  | } while (0) | 
|  |  | 
|  | # ifndef DEFINED_ONCE | 
|  | /* This is the number of items that are pushed and popped on the stack | 
|  | for each register.  */ | 
|  | #  define NUM_REG_ITEMS  3 | 
|  |  | 
|  | /* Individual items aside from the registers.  */ | 
|  | #  ifdef DEBUG | 
|  | #   define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */ | 
|  | #  else | 
|  | #   define NUM_NONREG_ITEMS 4 | 
|  | #  endif | 
|  |  | 
|  | /* We push at most this many items on the stack.  */ | 
|  | /* We used to use (num_regs - 1), which is the number of registers | 
|  | this regexp will save; but that was changed to 5 | 
|  | to avoid stack overflow for a regexp with lots of parens.  */ | 
|  | #  define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS) | 
|  |  | 
|  | /* We actually push this many items.  */ | 
|  | #  define NUM_FAILURE_ITEMS				\ | 
|  | (((0							\ | 
|  | ? 0 : highest_active_reg - lowest_active_reg + 1)	\ | 
|  | * NUM_REG_ITEMS)					\ | 
|  | + NUM_NONREG_ITEMS) | 
|  |  | 
|  | /* How many items can still be added to the stack without overflowing it.  */ | 
|  | #  define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) | 
|  | # endif /* not DEFINED_ONCE */ | 
|  |  | 
|  |  | 
|  | /* Pops what PUSH_FAIL_STACK pushes. | 
|  |  | 
|  | We restore into the parameters, all of which should be lvalues: | 
|  | STR -- the saved data position. | 
|  | PAT -- the saved pattern position. | 
|  | LOW_REG, HIGH_REG -- the highest and lowest active registers. | 
|  | REGSTART, REGEND -- arrays of string positions. | 
|  | REG_INFO -- array of information about each subexpression. | 
|  |  | 
|  | Also assumes the variables `fail_stack' and (if debugging), `bufp', | 
|  | `pend', `string1', `size1', `string2', and `size2'.  */ | 
|  | # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ | 
|  | {									\ | 
|  | DEBUG_STATEMENT (unsigned failure_id;)				\ | 
|  | active_reg_t this_reg;						\ | 
|  | const UCHAR_T *string_temp;						\ | 
|  | \ | 
|  | assert (!FAIL_STACK_EMPTY ());					\ | 
|  | \ | 
|  | /* Remove failure points and point to how many regs pushed.  */	\ | 
|  | DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\ | 
|  | DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\ | 
|  | DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\ | 
|  | \ | 
|  | assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\ | 
|  | \ | 
|  | DEBUG_POP (&failure_id);						\ | 
|  | DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\ | 
|  | \ | 
|  | /* If the saved string location is NULL, it came from an		\ | 
|  | on_failure_keep_string_jump opcode, and we want to throw away the	\ | 
|  | saved NULL, thus retaining our current position in the string.  */	\ | 
|  | string_temp = POP_FAILURE_POINTER ();					\ | 
|  | if (string_temp != NULL)						\ | 
|  | str = (const CHAR_T *) string_temp;					\ | 
|  | \ | 
|  | DEBUG_PRINT2 ("  Popping string %p: `", str);				\ | 
|  | DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\ | 
|  | DEBUG_PRINT1 ("'\n");							\ | 
|  | \ | 
|  | pat = (UCHAR_T *) POP_FAILURE_POINTER ();				\ | 
|  | DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);			\ | 
|  | DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\ | 
|  | \ | 
|  | /* Restore register info.  */						\ | 
|  | high_reg = (active_reg_t) POP_FAILURE_INT ();				\ | 
|  | DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);		\ | 
|  | \ | 
|  | low_reg = (active_reg_t) POP_FAILURE_INT ();				\ | 
|  | DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);		\ | 
|  | \ | 
|  | if (1)								\ | 
|  | for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\ | 
|  | {									\ | 
|  | DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);		\ | 
|  | \ | 
|  | reg_info[this_reg].word = POP_FAILURE_ELT ();			\ | 
|  | DEBUG_PRINT2 ("      info: %p\n",				\ | 
|  | reg_info[this_reg].word.pointer);			\ | 
|  | \ | 
|  | regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\ | 
|  | DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);		\ | 
|  | \ | 
|  | regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\ | 
|  | DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);		\ | 
|  | }									\ | 
|  | else									\ | 
|  | {									\ | 
|  | for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \ | 
|  | {								\ | 
|  | reg_info[this_reg].word.integer = 0;				\ | 
|  | regend[this_reg] = 0;						\ | 
|  | regstart[this_reg] = 0;					\ | 
|  | }								\ | 
|  | highest_active_reg = high_reg;					\ | 
|  | }									\ | 
|  | \ | 
|  | set_regs_matched_done = 0;						\ | 
|  | DEBUG_STATEMENT (nfailure_points_popped++);				\ | 
|  | } /* POP_FAILURE_POINT */ | 
|  |  | 
|  | /* Structure for per-register (a.k.a. per-group) information. | 
|  | Other register information, such as the | 
|  | starting and ending positions (which are addresses), and the list of | 
|  | inner groups (which is a bits list) are maintained in separate | 
|  | variables. | 
|  |  | 
|  | We are making a (strictly speaking) nonportable assumption here: that | 
|  | the compiler will pack our bit fields into something that fits into | 
|  | the type of `word', i.e., is something that fits into one item on the | 
|  | failure stack.  */ | 
|  |  | 
|  |  | 
|  | /* Declarations and macros for re_match_2.  */ | 
|  |  | 
|  | typedef union | 
|  | { | 
|  | PREFIX(fail_stack_elt_t) word; | 
|  | struct | 
|  | { | 
|  | /* This field is one if this group can match the empty string, | 
|  | zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */ | 
|  | # define MATCH_NULL_UNSET_VALUE 3 | 
|  | unsigned match_null_string_p : 2; | 
|  | unsigned is_active : 1; | 
|  | unsigned matched_something : 1; | 
|  | unsigned ever_matched_something : 1; | 
|  | } bits; | 
|  | } PREFIX(register_info_type); | 
|  |  | 
|  | # ifndef DEFINED_ONCE | 
|  | #  define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p) | 
|  | #  define IS_ACTIVE(R)  ((R).bits.is_active) | 
|  | #  define MATCHED_SOMETHING(R)  ((R).bits.matched_something) | 
|  | #  define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something) | 
|  |  | 
|  |  | 
|  | /* Call this when have matched a real character; it sets `matched' flags | 
|  | for the subexpressions which we are currently inside.  Also records | 
|  | that those subexprs have matched.  */ | 
|  | #  define SET_REGS_MATCHED()						\ | 
|  | do									\ | 
|  | {									\ | 
|  | if (!set_regs_matched_done)					\ | 
|  | {								\ | 
|  | active_reg_t r;						\ | 
|  | set_regs_matched_done = 1;					\ | 
|  | for (r = lowest_active_reg; r <= highest_active_reg; r++)	\ | 
|  | {								\ | 
|  | MATCHED_SOMETHING (reg_info[r])				\ | 
|  | = EVER_MATCHED_SOMETHING (reg_info[r])			\ | 
|  | = 1;							\ | 
|  | }								\ | 
|  | }								\ | 
|  | }									\ | 
|  | while (0) | 
|  | # endif /* not DEFINED_ONCE */ | 
|  |  | 
|  | /* Registers are set to a sentinel when they haven't yet matched.  */ | 
|  | static CHAR_T PREFIX(reg_unset_dummy); | 
|  | # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy)) | 
|  | # define REG_UNSET(e) ((e) == REG_UNSET_VALUE) | 
|  |  | 
|  | /* Subroutine declarations and macros for regex_compile.  */ | 
|  | static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg); | 
|  | static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, | 
|  | int arg1, int arg2); | 
|  | static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, | 
|  | int arg, UCHAR_T *end); | 
|  | static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, | 
|  | int arg1, int arg2, UCHAR_T *end); | 
|  | static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern, | 
|  | const CHAR_T *p, | 
|  | reg_syntax_t syntax); | 
|  | static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p, | 
|  | const CHAR_T *pend, | 
|  | reg_syntax_t syntax); | 
|  | # ifdef WCHAR | 
|  | static reg_errcode_t wcs_compile_range (CHAR_T range_start, | 
|  | const CHAR_T **p_ptr, | 
|  | const CHAR_T *pend, | 
|  | char *translate, | 
|  | reg_syntax_t syntax, | 
|  | UCHAR_T *b, | 
|  | CHAR_T *char_set); | 
|  | static void insert_space (int num, CHAR_T *loc, CHAR_T *end); | 
|  | # else /* BYTE */ | 
|  | static reg_errcode_t byte_compile_range (unsigned int range_start, | 
|  | const char **p_ptr, | 
|  | const char *pend, | 
|  | char *translate, | 
|  | reg_syntax_t syntax, | 
|  | unsigned char *b); | 
|  | # endif /* WCHAR */ | 
|  |  | 
|  | /* Fetch the next character in the uncompiled pattern---translating it | 
|  | if necessary.  Also cast from a signed character in the constant | 
|  | string passed to us by the user to an unsigned char that we can use | 
|  | as an array index (in, e.g., `translate').  */ | 
|  | /* ifdef MBS_SUPPORT, we translate only if character <= 0xff, | 
|  | because it is impossible to allocate 4GB array for some encodings | 
|  | which have 4 byte character_set like UCS4.  */ | 
|  | # ifndef PATFETCH | 
|  | #  ifdef WCHAR | 
|  | #   define PATFETCH(c)							\ | 
|  | do {if (p == pend) return REG_EEND;					\ | 
|  | c = (UCHAR_T) *p++;							\ | 
|  | if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c];		\ | 
|  | } while (0) | 
|  | #  else /* BYTE */ | 
|  | #   define PATFETCH(c)							\ | 
|  | do {if (p == pend) return REG_EEND;					\ | 
|  | c = (unsigned char) *p++;						\ | 
|  | if (translate) c = (unsigned char) translate[c];			\ | 
|  | } while (0) | 
|  | #  endif /* WCHAR */ | 
|  | # endif | 
|  |  | 
|  | /* Fetch the next character in the uncompiled pattern, with no | 
|  | translation.  */ | 
|  | # define PATFETCH_RAW(c)						\ | 
|  | do {if (p == pend) return REG_EEND;					\ | 
|  | c = (UCHAR_T) *p++; 	       					\ | 
|  | } while (0) | 
|  |  | 
|  | /* Go backwards one character in the pattern.  */ | 
|  | # define PATUNFETCH p-- | 
|  |  | 
|  |  | 
|  | /* If `translate' is non-null, return translate[D], else just D.  We | 
|  | cast the subscript to translate because some data is declared as | 
|  | `char *', to avoid warnings when a string constant is passed.  But | 
|  | when we use a character as a subscript we must make it unsigned.  */ | 
|  | /* ifdef MBS_SUPPORT, we translate only if character <= 0xff, | 
|  | because it is impossible to allocate 4GB array for some encodings | 
|  | which have 4 byte character_set like UCS4.  */ | 
|  |  | 
|  | # ifndef TRANSLATE | 
|  | #  ifdef WCHAR | 
|  | #   define TRANSLATE(d) \ | 
|  | ((translate && ((UCHAR_T) (d)) <= 0xff) \ | 
|  | ? (char) translate[(unsigned char) (d)] : (d)) | 
|  | # else /* BYTE */ | 
|  | #   define TRANSLATE(d) \ | 
|  | (translate ? (char) translate[(unsigned char) (d)] : (char) (d)) | 
|  | #  endif /* WCHAR */ | 
|  | # endif | 
|  |  | 
|  |  | 
|  | /* Macros for outputting the compiled pattern into `buffer'.  */ | 
|  |  | 
|  | /* If the buffer isn't allocated when it comes in, use this.  */ | 
|  | # define INIT_BUF_SIZE  (32 * sizeof(UCHAR_T)) | 
|  |  | 
|  | /* Make sure we have at least N more bytes of space in buffer.  */ | 
|  | # ifdef WCHAR | 
|  | #  define GET_BUFFER_SPACE(n)						\ | 
|  | while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR	\ | 
|  | + (n)*sizeof(CHAR_T)) > bufp->allocated)			\ | 
|  | EXTEND_BUFFER () | 
|  | # else /* BYTE */ | 
|  | #  define GET_BUFFER_SPACE(n)						\ | 
|  | while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\ | 
|  | EXTEND_BUFFER () | 
|  | # endif /* WCHAR */ | 
|  |  | 
|  | /* Make sure we have one more byte of buffer space and then add C to it.  */ | 
|  | # define BUF_PUSH(c)							\ | 
|  | do {									\ | 
|  | GET_BUFFER_SPACE (1);						\ | 
|  | *b++ = (UCHAR_T) (c);						\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* Ensure we have two more bytes of buffer space and then append C1 and C2.  */ | 
|  | # define BUF_PUSH_2(c1, c2)						\ | 
|  | do {									\ | 
|  | GET_BUFFER_SPACE (2);						\ | 
|  | *b++ = (UCHAR_T) (c1);						\ | 
|  | *b++ = (UCHAR_T) (c2);						\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* As with BUF_PUSH_2, except for three bytes.  */ | 
|  | # define BUF_PUSH_3(c1, c2, c3)						\ | 
|  | do {									\ | 
|  | GET_BUFFER_SPACE (3);						\ | 
|  | *b++ = (UCHAR_T) (c1);						\ | 
|  | *b++ = (UCHAR_T) (c2);						\ | 
|  | *b++ = (UCHAR_T) (c3);						\ | 
|  | } while (0) | 
|  |  | 
|  | /* Store a jump with opcode OP at LOC to location TO.  We store a | 
|  | relative address offset by the three bytes the jump itself occupies.  */ | 
|  | # define STORE_JUMP(op, loc, to) \ | 
|  | PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE))) | 
|  |  | 
|  | /* Likewise, for a two-argument jump.  */ | 
|  | # define STORE_JUMP2(op, loc, to, arg) \ | 
|  | PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg) | 
|  |  | 
|  | /* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */ | 
|  | # define INSERT_JUMP(op, loc, to) \ | 
|  | PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b) | 
|  |  | 
|  | /* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */ | 
|  | # define INSERT_JUMP2(op, loc, to, arg) \ | 
|  | PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\ | 
|  | arg, b) | 
|  |  | 
|  | /* This is not an arbitrary limit: the arguments which represent offsets | 
|  | into the pattern are two bytes long.  So if 2^16 bytes turns out to | 
|  | be too small, many things would have to change.  */ | 
|  | /* Any other compiler which, like MSC, has allocation limit below 2^16 | 
|  | bytes will have to use approach similar to what was done below for | 
|  | MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up | 
|  | reallocating to 0 bytes.  Such thing is not going to work too well. | 
|  | You have been warned!!  */ | 
|  | # ifndef DEFINED_ONCE | 
|  | #  if defined _MSC_VER  && !defined WIN32 | 
|  | /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. | 
|  | The REALLOC define eliminates a flurry of conversion warnings, | 
|  | but is not required. */ | 
|  | #   define MAX_BUF_SIZE  65500L | 
|  | #   define REALLOC(p,s) realloc ((p), (size_t) (s)) | 
|  | #  else | 
|  | #   define MAX_BUF_SIZE (1L << 16) | 
|  | #   define REALLOC(p,s) realloc ((p), (s)) | 
|  | #  endif | 
|  |  | 
|  | /* Extend the buffer by twice its current size via realloc and | 
|  | reset the pointers that pointed into the old block to point to the | 
|  | correct places in the new one.  If extending the buffer results in it | 
|  | being larger than MAX_BUF_SIZE, then flag memory exhausted.  */ | 
|  | #  if __BOUNDED_POINTERS__ | 
|  | #   define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated) | 
|  | #   define MOVE_BUFFER_POINTER(P) \ | 
|  | (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr) | 
|  | #   define ELSE_EXTEND_BUFFER_HIGH_BOUND	\ | 
|  | else						\ | 
|  | {						\ | 
|  | SET_HIGH_BOUND (b);			\ | 
|  | SET_HIGH_BOUND (begalt);			\ | 
|  | if (fixup_alt_jump)			\ | 
|  | SET_HIGH_BOUND (fixup_alt_jump);	\ | 
|  | if (laststart)				\ | 
|  | SET_HIGH_BOUND (laststart);		\ | 
|  | if (pending_exact)			\ | 
|  | SET_HIGH_BOUND (pending_exact);		\ | 
|  | } | 
|  | #  else | 
|  | #   define MOVE_BUFFER_POINTER(P) (P) += incr | 
|  | #   define ELSE_EXTEND_BUFFER_HIGH_BOUND | 
|  | #  endif | 
|  | # endif /* not DEFINED_ONCE */ | 
|  |  | 
|  | # ifdef WCHAR | 
|  | #  define EXTEND_BUFFER()						\ | 
|  | do {									\ | 
|  | UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\ | 
|  | int wchar_count;							\ | 
|  | if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE)		\ | 
|  | return REG_ESIZE;							\ | 
|  | bufp->allocated <<= 1;						\ | 
|  | if (bufp->allocated > MAX_BUF_SIZE)					\ | 
|  | bufp->allocated = MAX_BUF_SIZE;					\ | 
|  | /* How many characters the new buffer can have?  */			\ | 
|  | wchar_count = bufp->allocated / sizeof(UCHAR_T);			\ | 
|  | if (wchar_count == 0) wchar_count = 1;				\ | 
|  | /* Truncate the buffer to CHAR_T align.  */				\ | 
|  | bufp->allocated = wchar_count * sizeof(UCHAR_T);			\ | 
|  | RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T);		\ | 
|  | bufp->buffer = (char*)COMPILED_BUFFER_VAR;				\ | 
|  | if (COMPILED_BUFFER_VAR == NULL)					\ | 
|  | return REG_ESPACE;						\ | 
|  | /* If the buffer moved, move all the pointers into it.  */		\ | 
|  | if (old_buffer != COMPILED_BUFFER_VAR)				\ | 
|  | {									\ | 
|  | PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;		\ | 
|  | MOVE_BUFFER_POINTER (b);					\ | 
|  | MOVE_BUFFER_POINTER (begalt);					\ | 
|  | if (fixup_alt_jump)						\ | 
|  | MOVE_BUFFER_POINTER (fixup_alt_jump);				\ | 
|  | if (laststart)							\ | 
|  | MOVE_BUFFER_POINTER (laststart);				\ | 
|  | if (pending_exact)						\ | 
|  | MOVE_BUFFER_POINTER (pending_exact);				\ | 
|  | }									\ | 
|  | ELSE_EXTEND_BUFFER_HIGH_BOUND					\ | 
|  | } while (0) | 
|  | # else /* BYTE */ | 
|  | #  define EXTEND_BUFFER()						\ | 
|  | do {									\ | 
|  | UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\ | 
|  | if (bufp->allocated == MAX_BUF_SIZE)				\ | 
|  | return REG_ESIZE;							\ | 
|  | bufp->allocated <<= 1;						\ | 
|  | if (bufp->allocated > MAX_BUF_SIZE)					\ | 
|  | bufp->allocated = MAX_BUF_SIZE;					\ | 
|  | bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR,		\ | 
|  | bufp->allocated);	\ | 
|  | if (COMPILED_BUFFER_VAR == NULL)					\ | 
|  | return REG_ESPACE;						\ | 
|  | /* If the buffer moved, move all the pointers into it.  */		\ | 
|  | if (old_buffer != COMPILED_BUFFER_VAR)				\ | 
|  | {									\ | 
|  | PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer;		\ | 
|  | MOVE_BUFFER_POINTER (b);					\ | 
|  | MOVE_BUFFER_POINTER (begalt);					\ | 
|  | if (fixup_alt_jump)						\ | 
|  | MOVE_BUFFER_POINTER (fixup_alt_jump);				\ | 
|  | if (laststart)							\ | 
|  | MOVE_BUFFER_POINTER (laststart);				\ | 
|  | if (pending_exact)						\ | 
|  | MOVE_BUFFER_POINTER (pending_exact);				\ | 
|  | }									\ | 
|  | ELSE_EXTEND_BUFFER_HIGH_BOUND					\ | 
|  | } while (0) | 
|  | # endif /* WCHAR */ | 
|  |  | 
|  | # ifndef DEFINED_ONCE | 
|  | /* Since we have one byte reserved for the register number argument to | 
|  | {start,stop}_memory, the maximum number of groups we can report | 
|  | things about is what fits in that byte.  */ | 
|  | #  define MAX_REGNUM 255 | 
|  |  | 
|  | /* But patterns can have more than `MAX_REGNUM' registers.  We just | 
|  | ignore the excess.  */ | 
|  | typedef unsigned regnum_t; | 
|  |  | 
|  |  | 
|  | /* Macros for the compile stack.  */ | 
|  |  | 
|  | /* Since offsets can go either forwards or backwards, this type needs to | 
|  | be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */ | 
|  | /* int may be not enough when sizeof(int) == 2.  */ | 
|  | typedef long pattern_offset_t; | 
|  |  | 
|  | typedef struct | 
|  | { | 
|  | pattern_offset_t begalt_offset; | 
|  | pattern_offset_t fixup_alt_jump; | 
|  | pattern_offset_t inner_group_offset; | 
|  | pattern_offset_t laststart_offset; | 
|  | regnum_t regnum; | 
|  | } compile_stack_elt_t; | 
|  |  | 
|  |  | 
|  | typedef struct | 
|  | { | 
|  | compile_stack_elt_t *stack; | 
|  | unsigned size; | 
|  | unsigned avail;			/* Offset of next open position.  */ | 
|  | } compile_stack_type; | 
|  |  | 
|  |  | 
|  | #  define INIT_COMPILE_STACK_SIZE 32 | 
|  |  | 
|  | #  define COMPILE_STACK_EMPTY  (compile_stack.avail == 0) | 
|  | #  define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size) | 
|  |  | 
|  | /* The next available element.  */ | 
|  | #  define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) | 
|  |  | 
|  | # endif /* not DEFINED_ONCE */ | 
|  |  | 
|  | /* Set the bit for character C in a list.  */ | 
|  | # ifndef DEFINED_ONCE | 
|  | #  define SET_LIST_BIT(c)                               \ | 
|  | (b[((unsigned char) (c)) / BYTEWIDTH]               \ | 
|  | |= 1 << (((unsigned char) c) % BYTEWIDTH)) | 
|  | # endif /* DEFINED_ONCE */ | 
|  |  | 
|  | /* Get the next unsigned number in the uncompiled pattern.  */ | 
|  | # define GET_UNSIGNED_NUMBER(num) \ | 
|  | {									\ | 
|  | while (p != pend)							\ | 
|  | {									\ | 
|  | PATFETCH (c);							\ | 
|  | if (c < '0' || c > '9')						\ | 
|  | break;							\ | 
|  | if (num <= RE_DUP_MAX)						\ | 
|  | {								\ | 
|  | if (num < 0)						\ | 
|  | num = 0;							\ | 
|  | num = num * 10 + c - '0';					\ | 
|  | }								\ | 
|  | }									\ | 
|  | } | 
|  |  | 
|  | # ifndef DEFINED_ONCE | 
|  | #  if defined _LIBC || WIDE_CHAR_SUPPORT | 
|  | /* The GNU C library provides support for user-defined character classes | 
|  | and the functions from ISO C amendement 1.  */ | 
|  | #   ifdef CHARCLASS_NAME_MAX | 
|  | #    define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX | 
|  | #   else | 
|  | /* This shouldn't happen but some implementation might still have this | 
|  | problem.  Use a reasonable default value.  */ | 
|  | #    define CHAR_CLASS_MAX_LENGTH 256 | 
|  | #   endif | 
|  |  | 
|  | #   ifdef _LIBC | 
|  | #    define IS_CHAR_CLASS(string) __wctype (string) | 
|  | #   else | 
|  | #    define IS_CHAR_CLASS(string) wctype (string) | 
|  | #   endif | 
|  | #  else | 
|  | #   define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */ | 
|  |  | 
|  | #   define IS_CHAR_CLASS(string)					\ | 
|  | (STREQ (string, "alpha") || STREQ (string, "upper")			\ | 
|  | || STREQ (string, "lower") || STREQ (string, "digit")		\ | 
|  | || STREQ (string, "alnum") || STREQ (string, "xdigit")		\ | 
|  | || STREQ (string, "space") || STREQ (string, "print")		\ | 
|  | || STREQ (string, "punct") || STREQ (string, "graph")		\ | 
|  | || STREQ (string, "cntrl") || STREQ (string, "blank")) | 
|  | #  endif | 
|  | # endif /* DEFINED_ONCE */ | 
|  |  | 
|  | # ifndef MATCH_MAY_ALLOCATE | 
|  |  | 
|  | /* If we cannot allocate large objects within re_match_2_internal, | 
|  | we make the fail stack and register vectors global. | 
|  | The fail stack, we grow to the maximum size when a regexp | 
|  | is compiled. | 
|  | The register vectors, we adjust in size each time we | 
|  | compile a regexp, according to the number of registers it needs.  */ | 
|  |  | 
|  | static PREFIX(fail_stack_type) fail_stack; | 
|  |  | 
|  | /* Size with which the following vectors are currently allocated. | 
|  | That is so we can make them bigger as needed, | 
|  | but never make them smaller.  */ | 
|  | #  ifdef DEFINED_ONCE | 
|  | static int regs_allocated_size; | 
|  |  | 
|  | static const char **     regstart, **     regend; | 
|  | static const char ** old_regstart, ** old_regend; | 
|  | static const char **best_regstart, **best_regend; | 
|  | static const char **reg_dummy; | 
|  | #  endif /* DEFINED_ONCE */ | 
|  |  | 
|  | static PREFIX(register_info_type) *PREFIX(reg_info); | 
|  | static PREFIX(register_info_type) *PREFIX(reg_info_dummy); | 
|  |  | 
|  | /* Make the register vectors big enough for NUM_REGS registers, | 
|  | but don't make them smaller.  */ | 
|  |  | 
|  | static void | 
|  | PREFIX(regex_grow_registers) (int num_regs) | 
|  | { | 
|  | if (num_regs > regs_allocated_size) | 
|  | { | 
|  | RETALLOC_IF (regstart,	 num_regs, const char *); | 
|  | RETALLOC_IF (regend,	 num_regs, const char *); | 
|  | RETALLOC_IF (old_regstart, num_regs, const char *); | 
|  | RETALLOC_IF (old_regend,	 num_regs, const char *); | 
|  | RETALLOC_IF (best_regstart, num_regs, const char *); | 
|  | RETALLOC_IF (best_regend,	 num_regs, const char *); | 
|  | RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type)); | 
|  | RETALLOC_IF (reg_dummy,	 num_regs, const char *); | 
|  | RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type)); | 
|  |  | 
|  | regs_allocated_size = num_regs; | 
|  | } | 
|  | } | 
|  |  | 
|  | # endif /* not MATCH_MAY_ALLOCATE */ | 
|  |  | 
|  | # ifndef DEFINED_ONCE | 
|  | static boolean group_in_compile_stack (compile_stack_type compile_stack, | 
|  | regnum_t regnum); | 
|  | # endif /* not DEFINED_ONCE */ | 
|  |  | 
|  | /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. | 
|  | Returns one of error codes defined in `regex.h', or zero for success. | 
|  |  | 
|  | Assumes the `allocated' (and perhaps `buffer') and `translate' | 
|  | fields are set in BUFP on entry. | 
|  |  | 
|  | If it succeeds, results are put in BUFP (if it returns an error, the | 
|  | contents of BUFP are undefined): | 
|  | `buffer' is the compiled pattern; | 
|  | `syntax' is set to SYNTAX; | 
|  | `used' is set to the length of the compiled pattern; | 
|  | `fastmap_accurate' is zero; | 
|  | `re_nsub' is the number of subexpressions in PATTERN; | 
|  | `not_bol' and `not_eol' are zero; | 
|  |  | 
|  | The `fastmap' and `newline_anchor' fields are neither | 
|  | examined nor set.  */ | 
|  |  | 
|  | /* Return, freeing storage we allocated.  */ | 
|  | # ifdef WCHAR | 
|  | #  define FREE_STACK_RETURN(value)		\ | 
|  | return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value) | 
|  | # else | 
|  | #  define FREE_STACK_RETURN(value)		\ | 
|  | return (free (compile_stack.stack), value) | 
|  | # endif /* WCHAR */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | PREFIX(regex_compile) (const char *ARG_PREFIX(pattern), | 
|  | size_t ARG_PREFIX(size), reg_syntax_t syntax, | 
|  | struct re_pattern_buffer *bufp) | 
|  | { | 
|  | /* We fetch characters from PATTERN here.  Even though PATTERN is | 
|  | `char *' (i.e., signed), we declare these variables as unsigned, so | 
|  | they can be reliably used as array indices.  */ | 
|  | register UCHAR_T c, c1; | 
|  |  | 
|  | #ifdef WCHAR | 
|  | /* A temporary space to keep wchar_t pattern and compiled pattern.  */ | 
|  | CHAR_T *pattern, *COMPILED_BUFFER_VAR; | 
|  | size_t size; | 
|  | /* offset buffer for optimization. See convert_mbs_to_wc.  */ | 
|  | int *mbs_offset = NULL; | 
|  | /* It hold whether each wchar_t is binary data or not.  */ | 
|  | char *is_binary = NULL; | 
|  | /* A flag whether exactn is handling binary data or not.  */ | 
|  | char is_exactn_bin = FALSE; | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  | /* A random temporary spot in PATTERN.  */ | 
|  | const CHAR_T *p1; | 
|  |  | 
|  | /* Points to the end of the buffer, where we should append.  */ | 
|  | register UCHAR_T *b; | 
|  |  | 
|  | /* Keeps track of unclosed groups.  */ | 
|  | compile_stack_type compile_stack; | 
|  |  | 
|  | /* Points to the current (ending) position in the pattern.  */ | 
|  | #ifdef WCHAR | 
|  | const CHAR_T *p; | 
|  | const CHAR_T *pend; | 
|  | #else /* BYTE */ | 
|  | const CHAR_T *p = pattern; | 
|  | const CHAR_T *pend = pattern + size; | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  | /* How to translate the characters in the pattern.  */ | 
|  | RE_TRANSLATE_TYPE translate = bufp->translate; | 
|  |  | 
|  | /* Address of the count-byte of the most recently inserted `exactn' | 
|  | command.  This makes it possible to tell if a new exact-match | 
|  | character can be added to that command or if the character requires | 
|  | a new `exactn' command.  */ | 
|  | UCHAR_T *pending_exact = 0; | 
|  |  | 
|  | /* Address of start of the most recently finished expression. | 
|  | This tells, e.g., postfix * where to find the start of its | 
|  | operand.  Reset at the beginning of groups and alternatives.  */ | 
|  | UCHAR_T *laststart = 0; | 
|  |  | 
|  | /* Address of beginning of regexp, or inside of last group.  */ | 
|  | UCHAR_T *begalt; | 
|  |  | 
|  | /* Address of the place where a forward jump should go to the end of | 
|  | the containing expression.  Each alternative of an `or' -- except the | 
|  | last -- ends with a forward jump of this sort.  */ | 
|  | UCHAR_T *fixup_alt_jump = 0; | 
|  |  | 
|  | /* Counts open-groups as they are encountered.  Remembered for the | 
|  | matching close-group on the compile stack, so the same register | 
|  | number is put in the stop_memory as the start_memory.  */ | 
|  | regnum_t regnum = 0; | 
|  |  | 
|  | #ifdef WCHAR | 
|  | /* Initialize the wchar_t PATTERN and offset_buffer.  */ | 
|  | p = pend = pattern = TALLOC(csize + 1, CHAR_T); | 
|  | mbs_offset = TALLOC(csize + 1, int); | 
|  | is_binary = TALLOC(csize + 1, char); | 
|  | if (pattern == NULL || mbs_offset == NULL || is_binary == NULL) | 
|  | { | 
|  | free(pattern); | 
|  | free(mbs_offset); | 
|  | free(is_binary); | 
|  | return REG_ESPACE; | 
|  | } | 
|  | pattern[csize] = L'\0';	/* sentinel */ | 
|  | size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary); | 
|  | pend = p + size; | 
|  | if (size < 0) | 
|  | { | 
|  | free(pattern); | 
|  | free(mbs_offset); | 
|  | free(is_binary); | 
|  | return REG_BADPAT; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG | 
|  | DEBUG_PRINT1 ("\nCompiling pattern: "); | 
|  | if (debug) | 
|  | { | 
|  | unsigned debug_count; | 
|  |  | 
|  | for (debug_count = 0; debug_count < size; debug_count++) | 
|  | PUT_CHAR (pattern[debug_count]); | 
|  | putchar ('\n'); | 
|  | } | 
|  | #endif /* DEBUG */ | 
|  |  | 
|  | /* Initialize the compile stack.  */ | 
|  | compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); | 
|  | if (compile_stack.stack == NULL) | 
|  | { | 
|  | #ifdef WCHAR | 
|  | free(pattern); | 
|  | free(mbs_offset); | 
|  | free(is_binary); | 
|  | #endif | 
|  | return REG_ESPACE; | 
|  | } | 
|  |  | 
|  | compile_stack.size = INIT_COMPILE_STACK_SIZE; | 
|  | compile_stack.avail = 0; | 
|  |  | 
|  | /* Initialize the pattern buffer.  */ | 
|  | bufp->syntax = syntax; | 
|  | bufp->fastmap_accurate = 0; | 
|  | bufp->not_bol = bufp->not_eol = 0; | 
|  |  | 
|  | /* Set `used' to zero, so that if we return an error, the pattern | 
|  | printer (for debugging) will think there's no pattern.  We reset it | 
|  | at the end.  */ | 
|  | bufp->used = 0; | 
|  |  | 
|  | /* Always count groups, whether or not bufp->no_sub is set.  */ | 
|  | bufp->re_nsub = 0; | 
|  |  | 
|  | #if !defined emacs && !defined SYNTAX_TABLE | 
|  | /* Initialize the syntax table.  */ | 
|  | init_syntax_once (); | 
|  | #endif | 
|  |  | 
|  | if (bufp->allocated == 0) | 
|  | { | 
|  | if (bufp->buffer) | 
|  | { /* If zero allocated, but buffer is non-null, try to realloc | 
|  | enough space.  This loses if buffer's address is bogus, but | 
|  | that is the user's responsibility.  */ | 
|  | #ifdef WCHAR | 
|  | /* Free bufp->buffer and allocate an array for wchar_t pattern | 
|  | buffer.  */ | 
|  | free(bufp->buffer); | 
|  | COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T), | 
|  | UCHAR_T); | 
|  | #else | 
|  | RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T); | 
|  | #endif /* WCHAR */ | 
|  | } | 
|  | else | 
|  | { /* Caller did not allocate a buffer.  Do it for them.  */ | 
|  | COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T), | 
|  | UCHAR_T); | 
|  | } | 
|  |  | 
|  | if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE); | 
|  | #ifdef WCHAR | 
|  | bufp->buffer = (char*)COMPILED_BUFFER_VAR; | 
|  | #endif /* WCHAR */ | 
|  | bufp->allocated = INIT_BUF_SIZE; | 
|  | } | 
|  | #ifdef WCHAR | 
|  | else | 
|  | COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer; | 
|  | #endif | 
|  |  | 
|  | begalt = b = COMPILED_BUFFER_VAR; | 
|  |  | 
|  | /* Loop through the uncompiled pattern until we're at the end.  */ | 
|  | while (p != pend) | 
|  | { | 
|  | PATFETCH (c); | 
|  |  | 
|  | switch (c) | 
|  | { | 
|  | case '^': | 
|  | { | 
|  | if (   /* If at start of pattern, it's an operator.  */ | 
|  | p == pattern + 1 | 
|  | /* If context independent, it's an operator.  */ | 
|  | || syntax & RE_CONTEXT_INDEP_ANCHORS | 
|  | /* Otherwise, depends on what's come before.  */ | 
|  | || PREFIX(at_begline_loc_p) (pattern, p, syntax)) | 
|  | BUF_PUSH (begline); | 
|  | else | 
|  | goto normal_char; | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | case '$': | 
|  | { | 
|  | if (   /* If at end of pattern, it's an operator.  */ | 
|  | p == pend | 
|  | /* If context independent, it's an operator.  */ | 
|  | || syntax & RE_CONTEXT_INDEP_ANCHORS | 
|  | /* Otherwise, depends on what's next.  */ | 
|  | || PREFIX(at_endline_loc_p) (p, pend, syntax)) | 
|  | BUF_PUSH (endline); | 
|  | else | 
|  | goto normal_char; | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | case '+': | 
|  | case '?': | 
|  | if ((syntax & RE_BK_PLUS_QM) | 
|  | || (syntax & RE_LIMITED_OPS)) | 
|  | goto normal_char; | 
|  | /* Fall through.  */ | 
|  | handle_plus: | 
|  | case '*': | 
|  | /* If there is no previous pattern... */ | 
|  | if (!laststart) | 
|  | { | 
|  | if (syntax & RE_CONTEXT_INVALID_OPS) | 
|  | FREE_STACK_RETURN (REG_BADRPT); | 
|  | else if (!(syntax & RE_CONTEXT_INDEP_OPS)) | 
|  | goto normal_char; | 
|  | } | 
|  |  | 
|  | { | 
|  | /* Are we optimizing this jump?  */ | 
|  | boolean keep_string_p = false; | 
|  |  | 
|  | /* 1 means zero (many) matches is allowed.  */ | 
|  | char zero_times_ok = 0, many_times_ok = 0; | 
|  |  | 
|  | /* If there is a sequence of repetition chars, collapse it | 
|  | down to just one (the right one).  We can't combine | 
|  | interval operators with these because of, e.g., `a{2}*', | 
|  | which should only match an even number of `a's.  */ | 
|  |  | 
|  | for (;;) | 
|  | { | 
|  | zero_times_ok |= c != '+'; | 
|  | many_times_ok |= c != '?'; | 
|  |  | 
|  | if (p == pend) | 
|  | break; | 
|  |  | 
|  | PATFETCH (c); | 
|  |  | 
|  | if (c == '*' | 
|  | || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) | 
|  | ; | 
|  |  | 
|  | else if (syntax & RE_BK_PLUS_QM  &&  c == '\\') | 
|  | { | 
|  | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | 
|  |  | 
|  | PATFETCH (c1); | 
|  | if (!(c1 == '+' || c1 == '?')) | 
|  | { | 
|  | PATUNFETCH; | 
|  | PATUNFETCH; | 
|  | break; | 
|  | } | 
|  |  | 
|  | c = c1; | 
|  | } | 
|  | else | 
|  | { | 
|  | PATUNFETCH; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If we get here, we found another repeat character.  */ | 
|  | } | 
|  |  | 
|  | /* Star, etc. applied to an empty pattern is equivalent | 
|  | to an empty pattern.  */ | 
|  | if (!laststart) | 
|  | break; | 
|  |  | 
|  | /* Now we know whether or not zero matches is allowed | 
|  | and also whether or not two or more matches is allowed.  */ | 
|  | if (many_times_ok) | 
|  | { /* More than one repetition is allowed, so put in at the | 
|  | end a backward relative jump from `b' to before the next | 
|  | jump we're going to put in below (which jumps from | 
|  | laststart to after this jump). | 
|  |  | 
|  | But if we are at the `*' in the exact sequence `.*\n', | 
|  | insert an unconditional jump backwards to the ., | 
|  | instead of the beginning of the loop.  This way we only | 
|  | push a failure point once, instead of every time | 
|  | through the loop.  */ | 
|  | assert (p - 1 > pattern); | 
|  |  | 
|  | /* Allocate the space for the jump.  */ | 
|  | GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); | 
|  |  | 
|  | /* We know we are not at the first character of the pattern, | 
|  | because laststart was nonzero.  And we've already | 
|  | incremented `p', by the way, to be the character after | 
|  | the `*'.  Do we have to do something analogous here | 
|  | for null bytes, because of RE_DOT_NOT_NULL?  */ | 
|  | if (TRANSLATE (*(p - 2)) == TRANSLATE ('.') | 
|  | && zero_times_ok | 
|  | && p < pend && TRANSLATE (*p) == TRANSLATE ('\n') | 
|  | && !(syntax & RE_DOT_NEWLINE)) | 
|  | { /* We have .*\n.  */ | 
|  | STORE_JUMP (jump, b, laststart); | 
|  | keep_string_p = true; | 
|  | } | 
|  | else | 
|  | /* Anything else.  */ | 
|  | STORE_JUMP (maybe_pop_jump, b, laststart - | 
|  | (1 + OFFSET_ADDRESS_SIZE)); | 
|  |  | 
|  | /* We've added more stuff to the buffer.  */ | 
|  | b += 1 + OFFSET_ADDRESS_SIZE; | 
|  | } | 
|  |  | 
|  | /* On failure, jump from laststart to b + 3, which will be the | 
|  | end of the buffer after this jump is inserted.  */ | 
|  | /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of | 
|  | 'b + 3'.  */ | 
|  | GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); | 
|  | INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump | 
|  | : on_failure_jump, | 
|  | laststart, b + 1 + OFFSET_ADDRESS_SIZE); | 
|  | pending_exact = 0; | 
|  | b += 1 + OFFSET_ADDRESS_SIZE; | 
|  |  | 
|  | if (!zero_times_ok) | 
|  | { | 
|  | /* At least one repetition is required, so insert a | 
|  | `dummy_failure_jump' before the initial | 
|  | `on_failure_jump' instruction of the loop. This | 
|  | effects a skip over that instruction the first time | 
|  | we hit that loop.  */ | 
|  | GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); | 
|  | INSERT_JUMP (dummy_failure_jump, laststart, laststart + | 
|  | 2 + 2 * OFFSET_ADDRESS_SIZE); | 
|  | b += 1 + OFFSET_ADDRESS_SIZE; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | case '.': | 
|  | laststart = b; | 
|  | BUF_PUSH (anychar); | 
|  | break; | 
|  |  | 
|  |  | 
|  | case '[': | 
|  | { | 
|  | boolean had_char_class = false; | 
|  | #ifdef WCHAR | 
|  | CHAR_T range_start = 0xffffffff; | 
|  | #else | 
|  | unsigned int range_start = 0xffffffff; | 
|  | #endif | 
|  | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | 
|  |  | 
|  | #ifdef WCHAR | 
|  | /* We assume a charset(_not) structure as a wchar_t array. | 
|  | charset[0] = (re_opcode_t) charset(_not) | 
|  | charset[1] = l (= length of char_classes) | 
|  | charset[2] = m (= length of collating_symbols) | 
|  | charset[3] = n (= length of equivalence_classes) | 
|  | charset[4] = o (= length of char_ranges) | 
|  | charset[5] = p (= length of chars) | 
|  |  | 
|  | charset[6] = char_class (wctype_t) | 
|  | charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t) | 
|  | ... | 
|  | charset[l+5]  = char_class (wctype_t) | 
|  |  | 
|  | charset[l+6]  = collating_symbol (wchar_t) | 
|  | ... | 
|  | charset[l+m+5]  = collating_symbol (wchar_t) | 
|  | ifdef _LIBC we use the index if | 
|  | _NL_COLLATE_SYMB_EXTRAMB instead of | 
|  | wchar_t string. | 
|  |  | 
|  | charset[l+m+6]  = equivalence_classes (wchar_t) | 
|  | ... | 
|  | charset[l+m+n+5]  = equivalence_classes (wchar_t) | 
|  | ifdef _LIBC we use the index in | 
|  | _NL_COLLATE_WEIGHT instead of | 
|  | wchar_t string. | 
|  |  | 
|  | charset[l+m+n+6] = range_start | 
|  | charset[l+m+n+7] = range_end | 
|  | ... | 
|  | charset[l+m+n+2o+4] = range_start | 
|  | charset[l+m+n+2o+5] = range_end | 
|  | ifdef _LIBC we use the value looked up | 
|  | in _NL_COLLATE_COLLSEQ instead of | 
|  | wchar_t character. | 
|  |  | 
|  | charset[l+m+n+2o+6] = char | 
|  | ... | 
|  | charset[l+m+n+2o+p+5] = char | 
|  |  | 
|  | */ | 
|  |  | 
|  | /* We need at least 6 spaces: the opcode, the length of | 
|  | char_classes, the length of collating_symbols, the length of | 
|  | equivalence_classes, the length of char_ranges, the length of | 
|  | chars.  */ | 
|  | GET_BUFFER_SPACE (6); | 
|  |  | 
|  | /* Save b as laststart. And We use laststart as the pointer | 
|  | to the first element of the charset here. | 
|  | In other words, laststart[i] indicates charset[i].  */ | 
|  | laststart = b; | 
|  |  | 
|  | /* We test `*p == '^' twice, instead of using an if | 
|  | statement, so we only need one BUF_PUSH.  */ | 
|  | BUF_PUSH (*p == '^' ? charset_not : charset); | 
|  | if (*p == '^') | 
|  | p++; | 
|  |  | 
|  | /* Push the length of char_classes, the length of | 
|  | collating_symbols, the length of equivalence_classes, the | 
|  | length of char_ranges and the length of chars.  */ | 
|  | BUF_PUSH_3 (0, 0, 0); | 
|  | BUF_PUSH_2 (0, 0); | 
|  |  | 
|  | /* Remember the first position in the bracket expression.  */ | 
|  | p1 = p; | 
|  |  | 
|  | /* charset_not matches newline according to a syntax bit.  */ | 
|  | if ((re_opcode_t) b[-6] == charset_not | 
|  | && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) | 
|  | { | 
|  | BUF_PUSH('\n'); | 
|  | laststart[5]++; /* Update the length of characters  */ | 
|  | } | 
|  |  | 
|  | /* Read in characters and ranges, setting map bits.  */ | 
|  | for (;;) | 
|  | { | 
|  | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | 
|  |  | 
|  | PATFETCH (c); | 
|  |  | 
|  | /* \ might escape characters inside [...] and [^...].  */ | 
|  | if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') | 
|  | { | 
|  | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | 
|  |  | 
|  | PATFETCH (c1); | 
|  | BUF_PUSH(c1); | 
|  | laststart[5]++; /* Update the length of chars  */ | 
|  | range_start = c1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Could be the end of the bracket expression.  If it's | 
|  | not (i.e., when the bracket expression is `[]' so | 
|  | far), the ']' character bit gets set way below.  */ | 
|  | if (c == ']' && p != p1 + 1) | 
|  | break; | 
|  |  | 
|  | /* Look ahead to see if it's a range when the last thing | 
|  | was a character class.  */ | 
|  | if (had_char_class && c == '-' && *p != ']') | 
|  | FREE_STACK_RETURN (REG_ERANGE); | 
|  |  | 
|  | /* Look ahead to see if it's a range when the last thing | 
|  | was a character: if this is a hyphen not at the | 
|  | beginning or the end of a list, then it's the range | 
|  | operator.  */ | 
|  | if (c == '-' | 
|  | && !(p - 2 >= pattern && p[-2] == '[') | 
|  | && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') | 
|  | && *p != ']') | 
|  | { | 
|  | reg_errcode_t ret; | 
|  | /* Allocate the space for range_start and range_end.  */ | 
|  | GET_BUFFER_SPACE (2); | 
|  | /* Update the pointer to indicate end of buffer.  */ | 
|  | b += 2; | 
|  | ret = wcs_compile_range (range_start, &p, pend, translate, | 
|  | syntax, b, laststart); | 
|  | if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); | 
|  | range_start = 0xffffffff; | 
|  | } | 
|  | else if (p[0] == '-' && p[1] != ']') | 
|  | { /* This handles ranges made up of characters only.  */ | 
|  | reg_errcode_t ret; | 
|  |  | 
|  | /* Move past the `-'.  */ | 
|  | PATFETCH (c1); | 
|  | /* Allocate the space for range_start and range_end.  */ | 
|  | GET_BUFFER_SPACE (2); | 
|  | /* Update the pointer to indicate end of buffer.  */ | 
|  | b += 2; | 
|  | ret = wcs_compile_range (c, &p, pend, translate, syntax, b, | 
|  | laststart); | 
|  | if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); | 
|  | range_start = 0xffffffff; | 
|  | } | 
|  |  | 
|  | /* See if we're at the beginning of a possible character | 
|  | class.  */ | 
|  | else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') | 
|  | { /* Leave room for the null.  */ | 
|  | char str[CHAR_CLASS_MAX_LENGTH + 1]; | 
|  |  | 
|  | PATFETCH (c); | 
|  | c1 = 0; | 
|  |  | 
|  | /* If pattern is `[[:'.  */ | 
|  | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | 
|  |  | 
|  | for (;;) | 
|  | { | 
|  | PATFETCH (c); | 
|  | if ((c == ':' && *p == ']') || p == pend) | 
|  | break; | 
|  | if (c1 < CHAR_CLASS_MAX_LENGTH) | 
|  | str[c1++] = c; | 
|  | else | 
|  | /* This is in any case an invalid class name.  */ | 
|  | str[0] = '\0'; | 
|  | } | 
|  | str[c1] = '\0'; | 
|  |  | 
|  | /* If isn't a word bracketed by `[:' and `:]': | 
|  | undo the ending character, the letters, and leave | 
|  | the leading `:' and `[' (but store them as character).  */ | 
|  | if (c == ':' && *p == ']') | 
|  | { | 
|  | wctype_t wt; | 
|  | uintptr_t alignedp; | 
|  |  | 
|  | /* Query the character class as wctype_t.  */ | 
|  | wt = IS_CHAR_CLASS (str); | 
|  | if (wt == 0) | 
|  | FREE_STACK_RETURN (REG_ECTYPE); | 
|  |  | 
|  | /* Throw away the ] at the end of the character | 
|  | class.  */ | 
|  | PATFETCH (c); | 
|  |  | 
|  | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | 
|  |  | 
|  | /* Allocate the space for character class.  */ | 
|  | GET_BUFFER_SPACE(CHAR_CLASS_SIZE); | 
|  | /* Update the pointer to indicate end of buffer.  */ | 
|  | b += CHAR_CLASS_SIZE; | 
|  | /* Move data which follow character classes | 
|  | not to violate the data.  */ | 
|  | insert_space(CHAR_CLASS_SIZE, | 
|  | laststart + 6 + laststart[1], | 
|  | b - 1); | 
|  | alignedp = ((uintptr_t)(laststart + 6 + laststart[1]) | 
|  | + __alignof__(wctype_t) - 1) | 
|  | & ~(uintptr_t)(__alignof__(wctype_t) - 1); | 
|  | /* Store the character class.  */ | 
|  | *((wctype_t*)alignedp) = wt; | 
|  | /* Update length of char_classes */ | 
|  | laststart[1] += CHAR_CLASS_SIZE; | 
|  |  | 
|  | had_char_class = true; | 
|  | } | 
|  | else | 
|  | { | 
|  | c1++; | 
|  | while (c1--) | 
|  | PATUNFETCH; | 
|  | BUF_PUSH ('['); | 
|  | BUF_PUSH (':'); | 
|  | laststart[5] += 2; /* Update the length of characters  */ | 
|  | range_start = ':'; | 
|  | had_char_class = false; | 
|  | } | 
|  | } | 
|  | else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '=' | 
|  | || *p == '.')) | 
|  | { | 
|  | CHAR_T str[128];	/* Should be large enough.  */ | 
|  | CHAR_T delim = *p; /* '=' or '.'  */ | 
|  | # ifdef _LIBC | 
|  | uint32_t nrules = | 
|  | _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | 
|  | # endif | 
|  | PATFETCH (c); | 
|  | c1 = 0; | 
|  |  | 
|  | /* If pattern is `[[=' or '[[.'.  */ | 
|  | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | 
|  |  | 
|  | for (;;) | 
|  | { | 
|  | PATFETCH (c); | 
|  | if ((c == delim && *p == ']') || p == pend) | 
|  | break; | 
|  | if (c1 < sizeof (str) - 1) | 
|  | str[c1++] = c; | 
|  | else | 
|  | /* This is in any case an invalid class name.  */ | 
|  | str[0] = '\0'; | 
|  | } | 
|  | str[c1] = '\0'; | 
|  |  | 
|  | if (c == delim && *p == ']' && str[0] != '\0') | 
|  | { | 
|  | unsigned int i, offset; | 
|  | /* If we have no collation data we use the default | 
|  | collation in which each character is in a class | 
|  | by itself.  It also means that ASCII is the | 
|  | character set and therefore we cannot have character | 
|  | with more than one byte in the multibyte | 
|  | representation.  */ | 
|  |  | 
|  | /* If not defined _LIBC, we push the name and | 
|  | `\0' for the sake of matching performance.  */ | 
|  | int datasize = c1 + 1; | 
|  |  | 
|  | # ifdef _LIBC | 
|  | int32_t idx = 0; | 
|  | if (nrules == 0) | 
|  | # endif | 
|  | { | 
|  | if (c1 != 1) | 
|  | FREE_STACK_RETURN (REG_ECOLLATE); | 
|  | } | 
|  | # ifdef _LIBC | 
|  | else | 
|  | { | 
|  | const int32_t *table; | 
|  | const int32_t *weights; | 
|  | const int32_t *extra; | 
|  | const int32_t *indirect; | 
|  | wint_t *cp; | 
|  |  | 
|  | /* This #include defines a local function!  */ | 
|  | #  include <locale/weightwc.h> | 
|  |  | 
|  | if(delim == '=') | 
|  | { | 
|  | /* We push the index for equivalence class.  */ | 
|  | cp = (wint_t*)str; | 
|  |  | 
|  | table = (const int32_t *) | 
|  | _NL_CURRENT (LC_COLLATE, | 
|  | _NL_COLLATE_TABLEWC); | 
|  | weights = (const int32_t *) | 
|  | _NL_CURRENT (LC_COLLATE, | 
|  | _NL_COLLATE_WEIGHTWC); | 
|  | extra = (const int32_t *) | 
|  | _NL_CURRENT (LC_COLLATE, | 
|  | _NL_COLLATE_EXTRAWC); | 
|  | indirect = (const int32_t *) | 
|  | _NL_CURRENT (LC_COLLATE, | 
|  | _NL_COLLATE_INDIRECTWC); | 
|  |  | 
|  | idx = findidx ((const wint_t**)&cp); | 
|  | if (idx == 0 || cp < (wint_t*) str + c1) | 
|  | /* This is no valid character.  */ | 
|  | FREE_STACK_RETURN (REG_ECOLLATE); | 
|  |  | 
|  | str[0] = (wchar_t)idx; | 
|  | } | 
|  | else /* delim == '.' */ | 
|  | { | 
|  | /* We push collation sequence value | 
|  | for collating symbol.  */ | 
|  | int32_t table_size; | 
|  | const int32_t *symb_table; | 
|  | const unsigned char *extra; | 
|  | int32_t idx; | 
|  | int32_t elem; | 
|  | int32_t second; | 
|  | int32_t hash; | 
|  | char char_str[c1]; | 
|  |  | 
|  | /* We have to convert the name to a single-byte | 
|  | string.  This is possible since the names | 
|  | consist of ASCII characters and the internal | 
|  | representation is UCS4.  */ | 
|  | for (i = 0; i < c1; ++i) | 
|  | char_str[i] = str[i]; | 
|  |  | 
|  | table_size = | 
|  | _NL_CURRENT_WORD (LC_COLLATE, | 
|  | _NL_COLLATE_SYMB_HASH_SIZEMB); | 
|  | symb_table = (const int32_t *) | 
|  | _NL_CURRENT (LC_COLLATE, | 
|  | _NL_COLLATE_SYMB_TABLEMB); | 
|  | extra = (const unsigned char *) | 
|  | _NL_CURRENT (LC_COLLATE, | 
|  | _NL_COLLATE_SYMB_EXTRAMB); | 
|  |  | 
|  | /* Locate the character in the hashing table.  */ | 
|  | hash = elem_hash (char_str, c1); | 
|  |  | 
|  | idx = 0; | 
|  | elem = hash % table_size; | 
|  | second = hash % (table_size - 2); | 
|  | while (symb_table[2 * elem] != 0) | 
|  | { | 
|  | /* First compare the hashing value.  */ | 
|  | if (symb_table[2 * elem] == hash | 
|  | && c1 == extra[symb_table[2 * elem + 1]] | 
|  | && memcmp (char_str, | 
|  | &extra[symb_table[2 * elem + 1] | 
|  | + 1], c1) == 0) | 
|  | { | 
|  | /* Yep, this is the entry.  */ | 
|  | idx = symb_table[2 * elem + 1]; | 
|  | idx += 1 + extra[idx]; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Next entry.  */ | 
|  | elem += second; | 
|  | } | 
|  |  | 
|  | if (symb_table[2 * elem] != 0) | 
|  | { | 
|  | /* Compute the index of the byte sequence | 
|  | in the table.  */ | 
|  | idx += 1 + extra[idx]; | 
|  | /* Adjust for the alignment.  */ | 
|  | idx = (idx + 3) & ~3; | 
|  |  | 
|  | str[0] = (wchar_t) idx + 4; | 
|  | } | 
|  | else if (symb_table[2 * elem] == 0 && c1 == 1) | 
|  | { | 
|  | /* No valid character.  Match it as a | 
|  | single byte character.  */ | 
|  | had_char_class = false; | 
|  | BUF_PUSH(str[0]); | 
|  | /* Update the length of characters  */ | 
|  | laststart[5]++; | 
|  | range_start = str[0]; | 
|  |  | 
|  | /* Throw away the ] at the end of the | 
|  | collating symbol.  */ | 
|  | PATFETCH (c); | 
|  | /* exit from the switch block.  */ | 
|  | continue; | 
|  | } | 
|  | else | 
|  | FREE_STACK_RETURN (REG_ECOLLATE); | 
|  | } | 
|  | datasize = 1; | 
|  | } | 
|  | # endif | 
|  | /* Throw away the ] at the end of the equivalence | 
|  | class (or collating symbol).  */ | 
|  | PATFETCH (c); | 
|  |  | 
|  | /* Allocate the space for the equivalence class | 
|  | (or collating symbol) (and '\0' if needed).  */ | 
|  | GET_BUFFER_SPACE(datasize); | 
|  | /* Update the pointer to indicate end of buffer.  */ | 
|  | b += datasize; | 
|  |  | 
|  | if (delim == '=') | 
|  | { /* equivalence class  */ | 
|  | /* Calculate the offset of char_ranges, | 
|  | which is next to equivalence_classes.  */ | 
|  | offset = laststart[1] + laststart[2] | 
|  | + laststart[3] +6; | 
|  | /* Insert space.  */ | 
|  | insert_space(datasize, laststart + offset, b - 1); | 
|  |  | 
|  | /* Write the equivalence_class and \0.  */ | 
|  | for (i = 0 ; i < datasize ; i++) | 
|  | laststart[offset + i] = str[i]; | 
|  |  | 
|  | /* Update the length of equivalence_classes.  */ | 
|  | laststart[3] += datasize; | 
|  | had_char_class = true; | 
|  | } | 
|  | else /* delim == '.' */ | 
|  | { /* collating symbol  */ | 
|  | /* Calculate the offset of the equivalence_classes, | 
|  | which is next to collating_symbols.  */ | 
|  | offset = laststart[1] + laststart[2] + 6; | 
|  | /* Insert space and write the collationg_symbol | 
|  | and \0.  */ | 
|  | insert_space(datasize, laststart + offset, b-1); | 
|  | for (i = 0 ; i < datasize ; i++) | 
|  | laststart[offset + i] = str[i]; | 
|  |  | 
|  | /* In re_match_2_internal if range_start < -1, we | 
|  | assume -range_start is the offset of the | 
|  | collating symbol which is specified as | 
|  | the character of the range start.  So we assign | 
|  | -(laststart[1] + laststart[2] + 6) to | 
|  | range_start.  */ | 
|  | range_start = -(laststart[1] + laststart[2] + 6); | 
|  | /* Update the length of collating_symbol.  */ | 
|  | laststart[2] += datasize; | 
|  | had_char_class = false; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | c1++; | 
|  | while (c1--) | 
|  | PATUNFETCH; | 
|  | BUF_PUSH ('['); | 
|  | BUF_PUSH (delim); | 
|  | laststart[5] += 2; /* Update the length of characters  */ | 
|  | range_start = delim; | 
|  | had_char_class = false; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | had_char_class = false; | 
|  | BUF_PUSH(c); | 
|  | laststart[5]++;  /* Update the length of characters  */ | 
|  | range_start = c; | 
|  | } | 
|  | } | 
|  |  | 
|  | #else /* BYTE */ | 
|  | /* Ensure that we have enough space to push a charset: the | 
|  | opcode, the length count, and the bitset; 34 bytes in all.  */ | 
|  | GET_BUFFER_SPACE (34); | 
|  |  | 
|  | laststart = b; | 
|  |  | 
|  | /* We test `*p == '^' twice, instead of using an if | 
|  | statement, so we only need one BUF_PUSH.  */ | 
|  | BUF_PUSH (*p == '^' ? charset_not : charset); | 
|  | if (*p == '^') | 
|  | p++; | 
|  |  | 
|  | /* Remember the first position in the bracket expression.  */ | 
|  | p1 = p; | 
|  |  | 
|  | /* Push the number of bytes in the bitmap.  */ | 
|  | BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); | 
|  |  | 
|  | /* Clear the whole map.  */ | 
|  | bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH); | 
|  |  | 
|  | /* charset_not matches newline according to a syntax bit.  */ | 
|  | if ((re_opcode_t) b[-2] == charset_not | 
|  | && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) | 
|  | SET_LIST_BIT ('\n'); | 
|  |  | 
|  | /* Read in characters and ranges, setting map bits.  */ | 
|  | for (;;) | 
|  | { | 
|  | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | 
|  |  | 
|  | PATFETCH (c); | 
|  |  | 
|  | /* \ might escape characters inside [...] and [^...].  */ | 
|  | if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') | 
|  | { | 
|  | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | 
|  |  | 
|  | PATFETCH (c1); | 
|  | SET_LIST_BIT (c1); | 
|  | range_start = c1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Could be the end of the bracket expression.  If it's | 
|  | not (i.e., when the bracket expression is `[]' so | 
|  | far), the ']' character bit gets set way below.  */ | 
|  | if (c == ']' && p != p1 + 1) | 
|  | break; | 
|  |  | 
|  | /* Look ahead to see if it's a range when the last thing | 
|  | was a character class.  */ | 
|  | if (had_char_class && c == '-' && *p != ']') | 
|  | FREE_STACK_RETURN (REG_ERANGE); | 
|  |  | 
|  | /* Look ahead to see if it's a range when the last thing | 
|  | was a character: if this is a hyphen not at the | 
|  | beginning or the end of a list, then it's the range | 
|  | operator.  */ | 
|  | if (c == '-' | 
|  | && !(p - 2 >= pattern && p[-2] == '[') | 
|  | && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') | 
|  | && *p != ']') | 
|  | { | 
|  | reg_errcode_t ret | 
|  | = byte_compile_range (range_start, &p, pend, translate, | 
|  | syntax, b); | 
|  | if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); | 
|  | range_start = 0xffffffff; | 
|  | } | 
|  |  | 
|  | else if (p[0] == '-' && p[1] != ']') | 
|  | { /* This handles ranges made up of characters only.  */ | 
|  | reg_errcode_t ret; | 
|  |  | 
|  | /* Move past the `-'.  */ | 
|  | PATFETCH (c1); | 
|  |  | 
|  | ret = byte_compile_range (c, &p, pend, translate, syntax, b); | 
|  | if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); | 
|  | range_start = 0xffffffff; | 
|  | } | 
|  |  | 
|  | /* See if we're at the beginning of a possible character | 
|  | class.  */ | 
|  |  | 
|  | else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') | 
|  | { /* Leave room for the null.  */ | 
|  | char str[CHAR_CLASS_MAX_LENGTH + 1]; | 
|  |  | 
|  | PATFETCH (c); | 
|  | c1 = 0; | 
|  |  | 
|  | /* If pattern is `[[:'.  */ | 
|  | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | 
|  |  | 
|  | for (;;) | 
|  | { | 
|  | PATFETCH (c); | 
|  | if ((c == ':' && *p == ']') || p == pend) | 
|  | break; | 
|  | if (c1 < CHAR_CLASS_MAX_LENGTH) | 
|  | str[c1++] = c; | 
|  | else | 
|  | /* This is in any case an invalid class name.  */ | 
|  | str[0] = '\0'; | 
|  | } | 
|  | str[c1] = '\0'; | 
|  |  | 
|  | /* If isn't a word bracketed by `[:' and `:]': | 
|  | undo the ending character, the letters, and leave | 
|  | the leading `:' and `[' (but set bits for them).  */ | 
|  | if (c == ':' && *p == ']') | 
|  | { | 
|  | # if defined _LIBC || WIDE_CHAR_SUPPORT | 
|  | boolean is_lower = STREQ (str, "lower"); | 
|  | boolean is_upper = STREQ (str, "upper"); | 
|  | wctype_t wt; | 
|  | int ch; | 
|  |  | 
|  | wt = IS_CHAR_CLASS (str); | 
|  | if (wt == 0) | 
|  | FREE_STACK_RETURN (REG_ECTYPE); | 
|  |  | 
|  | /* Throw away the ] at the end of the character | 
|  | class.  */ | 
|  | PATFETCH (c); | 
|  |  | 
|  | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | 
|  |  | 
|  | for (ch = 0; ch < 1 << BYTEWIDTH; ++ch) | 
|  | { | 
|  | #  ifdef _LIBC | 
|  | if (__iswctype (__btowc (ch), wt)) | 
|  | SET_LIST_BIT (ch); | 
|  | #  else | 
|  | if (iswctype (btowc (ch), wt)) | 
|  | SET_LIST_BIT (ch); | 
|  | #  endif | 
|  |  | 
|  | if (translate && (is_upper || is_lower) | 
|  | && (ISUPPER (ch) || ISLOWER (ch))) | 
|  | SET_LIST_BIT (ch); | 
|  | } | 
|  |  | 
|  | had_char_class = true; | 
|  | # else | 
|  | int ch; | 
|  | boolean is_alnum = STREQ (str, "alnum"); | 
|  | boolean is_alpha = STREQ (str, "alpha"); | 
|  | boolean is_blank = STREQ (str, "blank"); | 
|  | boolean is_cntrl = STREQ (str, "cntrl"); | 
|  | boolean is_digit = STREQ (str, "digit"); | 
|  | boolean is_graph = STREQ (str, "graph"); | 
|  | boolean is_lower = STREQ (str, "lower"); | 
|  | boolean is_print = STREQ (str, "print"); | 
|  | boolean is_punct = STREQ (str, "punct"); | 
|  | boolean is_space = STREQ (str, "space"); | 
|  | boolean is_upper = STREQ (str, "upper"); | 
|  | boolean is_xdigit = STREQ (str, "xdigit"); | 
|  |  | 
|  | if (!IS_CHAR_CLASS (str)) | 
|  | FREE_STACK_RETURN (REG_ECTYPE); | 
|  |  | 
|  | /* Throw away the ] at the end of the character | 
|  | class.  */ | 
|  | PATFETCH (c); | 
|  |  | 
|  | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | 
|  |  | 
|  | for (ch = 0; ch < 1 << BYTEWIDTH; ch++) | 
|  | { | 
|  | /* This was split into 3 if's to | 
|  | avoid an arbitrary limit in some compiler.  */ | 
|  | if (   (is_alnum  && ISALNUM (ch)) | 
|  | || (is_alpha  && ISALPHA (ch)) | 
|  | || (is_blank  && ISBLANK (ch)) | 
|  | || (is_cntrl  && ISCNTRL (ch))) | 
|  | SET_LIST_BIT (ch); | 
|  | if (   (is_digit  && ISDIGIT (ch)) | 
|  | || (is_graph  && ISGRAPH (ch)) | 
|  | || (is_lower  && ISLOWER (ch)) | 
|  | || (is_print  && ISPRINT (ch))) | 
|  | SET_LIST_BIT (ch); | 
|  | if (   (is_punct  && ISPUNCT (ch)) | 
|  | || (is_space  && ISSPACE (ch)) | 
|  | || (is_upper  && ISUPPER (ch)) | 
|  | || (is_xdigit && ISXDIGIT (ch))) | 
|  | SET_LIST_BIT (ch); | 
|  | if (   translate && (is_upper || is_lower) | 
|  | && (ISUPPER (ch) || ISLOWER (ch))) | 
|  | SET_LIST_BIT (ch); | 
|  | } | 
|  | had_char_class = true; | 
|  | # endif	/* libc || wctype.h */ | 
|  | } | 
|  | else | 
|  | { | 
|  | c1++; | 
|  | while (c1--) | 
|  | PATUNFETCH; | 
|  | SET_LIST_BIT ('['); | 
|  | SET_LIST_BIT (':'); | 
|  | range_start = ':'; | 
|  | had_char_class = false; | 
|  | } | 
|  | } | 
|  | else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=') | 
|  | { | 
|  | unsigned char str[MB_LEN_MAX + 1]; | 
|  | # ifdef _LIBC | 
|  | uint32_t nrules = | 
|  | _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | 
|  | # endif | 
|  |  | 
|  | PATFETCH (c); | 
|  | c1 = 0; | 
|  |  | 
|  | /* If pattern is `[[='.  */ | 
|  | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | 
|  |  | 
|  | for (;;) | 
|  | { | 
|  | PATFETCH (c); | 
|  | if ((c == '=' && *p == ']') || p == pend) | 
|  | break; | 
|  | if (c1 < MB_LEN_MAX) | 
|  | str[c1++] = c; | 
|  | else | 
|  | /* This is in any case an invalid class name.  */ | 
|  | str[0] = '\0'; | 
|  | } | 
|  | str[c1] = '\0'; | 
|  |  | 
|  | if (c == '=' && *p == ']' && str[0] != '\0') | 
|  | { | 
|  | /* If we have no collation data we use the default | 
|  | collation in which each character is in a class | 
|  | by itself.  It also means that ASCII is the | 
|  | character set and therefore we cannot have character | 
|  | with more than one byte in the multibyte | 
|  | representation.  */ | 
|  | # ifdef _LIBC | 
|  | if (nrules == 0) | 
|  | # endif | 
|  | { | 
|  | if (c1 != 1) | 
|  | FREE_STACK_RETURN (REG_ECOLLATE); | 
|  |  | 
|  | /* Throw away the ] at the end of the equivalence | 
|  | class.  */ | 
|  | PATFETCH (c); | 
|  |  | 
|  | /* Set the bit for the character.  */ | 
|  | SET_LIST_BIT (str[0]); | 
|  | } | 
|  | # ifdef _LIBC | 
|  | else | 
|  | { | 
|  | /* Try to match the byte sequence in `str' against | 
|  | those known to the collate implementation. | 
|  | First find out whether the bytes in `str' are | 
|  | actually from exactly one character.  */ | 
|  | const int32_t *table; | 
|  | const unsigned char *weights; | 
|  | const unsigned char *extra; | 
|  | const int32_t *indirect; | 
|  | int32_t idx; | 
|  | const unsigned char *cp = str; | 
|  | int ch; | 
|  |  | 
|  | /* This #include defines a local function!  */ | 
|  | #  include <locale/weight.h> | 
|  |  | 
|  | table = (const int32_t *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | 
|  | weights = (const unsigned char *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB); | 
|  | extra = (const unsigned char *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); | 
|  | indirect = (const int32_t *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB); | 
|  |  | 
|  | idx = findidx (&cp); | 
|  | if (idx == 0 || cp < str + c1) | 
|  | /* This is no valid character.  */ | 
|  | FREE_STACK_RETURN (REG_ECOLLATE); | 
|  |  | 
|  | /* Throw away the ] at the end of the equivalence | 
|  | class.  */ | 
|  | PATFETCH (c); | 
|  |  | 
|  | /* Now we have to go through the whole table | 
|  | and find all characters which have the same | 
|  | first level weight. | 
|  |  | 
|  | XXX Note that this is not entirely correct. | 
|  | we would have to match multibyte sequences | 
|  | but this is not possible with the current | 
|  | implementation.  */ | 
|  | for (ch = 1; ch < 256; ++ch) | 
|  | /* XXX This test would have to be changed if we | 
|  | would allow matching multibyte sequences.  */ | 
|  | if (table[ch] > 0) | 
|  | { | 
|  | int32_t idx2 = table[ch]; | 
|  | size_t len = weights[idx2]; | 
|  |  | 
|  | /* Test whether the lenghts match.  */ | 
|  | if (weights[idx] == len) | 
|  | { | 
|  | /* They do.  New compare the bytes of | 
|  | the weight.  */ | 
|  | size_t cnt = 0; | 
|  |  | 
|  | while (cnt < len | 
|  | && (weights[idx + 1 + cnt] | 
|  | == weights[idx2 + 1 + cnt])) | 
|  | ++cnt; | 
|  |  | 
|  | if (cnt == len) | 
|  | /* They match.  Mark the character as | 
|  | acceptable.  */ | 
|  | SET_LIST_BIT (ch); | 
|  | } | 
|  | } | 
|  | } | 
|  | # endif | 
|  | had_char_class = true; | 
|  | } | 
|  | else | 
|  | { | 
|  | c1++; | 
|  | while (c1--) | 
|  | PATUNFETCH; | 
|  | SET_LIST_BIT ('['); | 
|  | SET_LIST_BIT ('='); | 
|  | range_start = '='; | 
|  | had_char_class = false; | 
|  | } | 
|  | } | 
|  | else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.') | 
|  | { | 
|  | unsigned char str[128];	/* Should be large enough.  */ | 
|  | # ifdef _LIBC | 
|  | uint32_t nrules = | 
|  | _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | 
|  | # endif | 
|  |  | 
|  | PATFETCH (c); | 
|  | c1 = 0; | 
|  |  | 
|  | /* If pattern is `[[.'.  */ | 
|  | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | 
|  |  | 
|  | for (;;) | 
|  | { | 
|  | PATFETCH (c); | 
|  | if ((c == '.' && *p == ']') || p == pend) | 
|  | break; | 
|  | if (c1 < sizeof (str)) | 
|  | str[c1++] = c; | 
|  | else | 
|  | /* This is in any case an invalid class name.  */ | 
|  | str[0] = '\0'; | 
|  | } | 
|  | str[c1] = '\0'; | 
|  |  | 
|  | if (c == '.' && *p == ']' && str[0] != '\0') | 
|  | { | 
|  | /* If we have no collation data we use the default | 
|  | collation in which each character is the name | 
|  | for its own class which contains only the one | 
|  | character.  It also means that ASCII is the | 
|  | character set and therefore we cannot have character | 
|  | with more than one byte in the multibyte | 
|  | representation.  */ | 
|  | # ifdef _LIBC | 
|  | if (nrules == 0) | 
|  | # endif | 
|  | { | 
|  | if (c1 != 1) | 
|  | FREE_STACK_RETURN (REG_ECOLLATE); | 
|  |  | 
|  | /* Throw away the ] at the end of the equivalence | 
|  | class.  */ | 
|  | PATFETCH (c); | 
|  |  | 
|  | /* Set the bit for the character.  */ | 
|  | SET_LIST_BIT (str[0]); | 
|  | range_start = ((const unsigned char *) str)[0]; | 
|  | } | 
|  | # ifdef _LIBC | 
|  | else | 
|  | { | 
|  | /* Try to match the byte sequence in `str' against | 
|  | those known to the collate implementation. | 
|  | First find out whether the bytes in `str' are | 
|  | actually from exactly one character.  */ | 
|  | int32_t table_size; | 
|  | const int32_t *symb_table; | 
|  | const unsigned char *extra; | 
|  | int32_t idx; | 
|  | int32_t elem; | 
|  | int32_t second; | 
|  | int32_t hash; | 
|  |  | 
|  | table_size = | 
|  | _NL_CURRENT_WORD (LC_COLLATE, | 
|  | _NL_COLLATE_SYMB_HASH_SIZEMB); | 
|  | symb_table = (const int32_t *) | 
|  | _NL_CURRENT (LC_COLLATE, | 
|  | _NL_COLLATE_SYMB_TABLEMB); | 
|  | extra = (const unsigned char *) | 
|  | _NL_CURRENT (LC_COLLATE, | 
|  | _NL_COLLATE_SYMB_EXTRAMB); | 
|  |  | 
|  | /* Locate the character in the hashing table.  */ | 
|  | hash = elem_hash (str, c1); | 
|  |  | 
|  | idx = 0; | 
|  | elem = hash % table_size; | 
|  | second = hash % (table_size - 2); | 
|  | while (symb_table[2 * elem] != 0) | 
|  | { | 
|  | /* First compare the hashing value.  */ | 
|  | if (symb_table[2 * elem] == hash | 
|  | && c1 == extra[symb_table[2 * elem + 1]] | 
|  | && memcmp (str, | 
|  | &extra[symb_table[2 * elem + 1] | 
|  | + 1], | 
|  | c1) == 0) | 
|  | { | 
|  | /* Yep, this is the entry.  */ | 
|  | idx = symb_table[2 * elem + 1]; | 
|  | idx += 1 + extra[idx]; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Next entry.  */ | 
|  | elem += second; | 
|  | } | 
|  |  | 
|  | if (symb_table[2 * elem] == 0) | 
|  | /* This is no valid character.  */ | 
|  | FREE_STACK_RETURN (REG_ECOLLATE); | 
|  |  | 
|  | /* Throw away the ] at the end of the equivalence | 
|  | class.  */ | 
|  | PATFETCH (c); | 
|  |  | 
|  | /* Now add the multibyte character(s) we found | 
|  | to the accept list. | 
|  |  | 
|  | XXX Note that this is not entirely correct. | 
|  | we would have to match multibyte sequences | 
|  | but this is not possible with the current | 
|  | implementation.  Also, we have to match | 
|  | collating symbols, which expand to more than | 
|  | one file, as a whole and not allow the | 
|  | individual bytes.  */ | 
|  | c1 = extra[idx++]; | 
|  | if (c1 == 1) | 
|  | range_start = extra[idx]; | 
|  | while (c1-- > 0) | 
|  | { | 
|  | SET_LIST_BIT (extra[idx]); | 
|  | ++idx; | 
|  | } | 
|  | } | 
|  | # endif | 
|  | had_char_class = false; | 
|  | } | 
|  | else | 
|  | { | 
|  | c1++; | 
|  | while (c1--) | 
|  | PATUNFETCH; | 
|  | SET_LIST_BIT ('['); | 
|  | SET_LIST_BIT ('.'); | 
|  | range_start = '.'; | 
|  | had_char_class = false; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | had_char_class = false; | 
|  | SET_LIST_BIT (c); | 
|  | range_start = c; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Discard any (non)matching list bytes that are all 0 at the | 
|  | end of the map.  Decrease the map-length byte too.  */ | 
|  | while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) | 
|  | b[-1]--; | 
|  | b += b[-1]; | 
|  | #endif /* WCHAR */ | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | case '(': | 
|  | if (syntax & RE_NO_BK_PARENS) | 
|  | goto handle_open; | 
|  | else | 
|  | goto normal_char; | 
|  |  | 
|  |  | 
|  | case ')': | 
|  | if (syntax & RE_NO_BK_PARENS) | 
|  | goto handle_close; | 
|  | else | 
|  | goto normal_char; | 
|  |  | 
|  |  | 
|  | case '\n': | 
|  | if (syntax & RE_NEWLINE_ALT) | 
|  | goto handle_alt; | 
|  | else | 
|  | goto normal_char; | 
|  |  | 
|  |  | 
|  | case '|': | 
|  | if (syntax & RE_NO_BK_VBAR) | 
|  | goto handle_alt; | 
|  | else | 
|  | goto normal_char; | 
|  |  | 
|  |  | 
|  | case '{': | 
|  | if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) | 
|  | goto handle_interval; | 
|  | else | 
|  | goto normal_char; | 
|  |  | 
|  |  | 
|  | case '\\': | 
|  | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | 
|  |  | 
|  | /* Do not translate the character after the \, so that we can | 
|  | distinguish, e.g., \B from \b, even if we normally would | 
|  | translate, e.g., B to b.  */ | 
|  | PATFETCH_RAW (c); | 
|  |  | 
|  | switch (c) | 
|  | { | 
|  | case '(': | 
|  | if (syntax & RE_NO_BK_PARENS) | 
|  | goto normal_backslash; | 
|  |  | 
|  | handle_open: | 
|  | bufp->re_nsub++; | 
|  | regnum++; | 
|  |  | 
|  | if (COMPILE_STACK_FULL) | 
|  | { | 
|  | RETALLOC (compile_stack.stack, compile_stack.size << 1, | 
|  | compile_stack_elt_t); | 
|  | if (compile_stack.stack == NULL) return REG_ESPACE; | 
|  |  | 
|  | compile_stack.size <<= 1; | 
|  | } | 
|  |  | 
|  | /* These are the values to restore when we hit end of this | 
|  | group.  They are all relative offsets, so that if the | 
|  | whole pattern moves because of realloc, they will still | 
|  | be valid.  */ | 
|  | COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR; | 
|  | COMPILE_STACK_TOP.fixup_alt_jump | 
|  | = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0; | 
|  | COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR; | 
|  | COMPILE_STACK_TOP.regnum = regnum; | 
|  |  | 
|  | /* We will eventually replace the 0 with the number of | 
|  | groups inner to this one.  But do not push a | 
|  | start_memory for groups beyond the last one we can | 
|  | represent in the compiled pattern.  */ | 
|  | if (regnum <= MAX_REGNUM) | 
|  | { | 
|  | COMPILE_STACK_TOP.inner_group_offset = b | 
|  | - COMPILED_BUFFER_VAR + 2; | 
|  | BUF_PUSH_3 (start_memory, regnum, 0); | 
|  | } | 
|  |  | 
|  | compile_stack.avail++; | 
|  |  | 
|  | fixup_alt_jump = 0; | 
|  | laststart = 0; | 
|  | begalt = b; | 
|  | /* If we've reached MAX_REGNUM groups, then this open | 
|  | won't actually generate any code, so we'll have to | 
|  | clear pending_exact explicitly.  */ | 
|  | pending_exact = 0; | 
|  | break; | 
|  |  | 
|  |  | 
|  | case ')': | 
|  | if (syntax & RE_NO_BK_PARENS) goto normal_backslash; | 
|  |  | 
|  | if (COMPILE_STACK_EMPTY) | 
|  | { | 
|  | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | 
|  | goto normal_backslash; | 
|  | else | 
|  | FREE_STACK_RETURN (REG_ERPAREN); | 
|  | } | 
|  |  | 
|  | handle_close: | 
|  | if (fixup_alt_jump) | 
|  | { /* Push a dummy failure point at the end of the | 
|  | alternative for a possible future | 
|  | `pop_failure_jump' to pop.  See comments at | 
|  | `push_dummy_failure' in `re_match_2'.  */ | 
|  | BUF_PUSH (push_dummy_failure); | 
|  |  | 
|  | /* We allocated space for this jump when we assigned | 
|  | to `fixup_alt_jump', in the `handle_alt' case below.  */ | 
|  | STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1); | 
|  | } | 
|  |  | 
|  | /* See similar code for backslashed left paren above.  */ | 
|  | if (COMPILE_STACK_EMPTY) | 
|  | { | 
|  | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | 
|  | goto normal_char; | 
|  | else | 
|  | FREE_STACK_RETURN (REG_ERPAREN); | 
|  | } | 
|  |  | 
|  | /* Since we just checked for an empty stack above, this | 
|  | ``can't happen''.  */ | 
|  | assert (compile_stack.avail != 0); | 
|  | { | 
|  | /* We don't just want to restore into `regnum', because | 
|  | later groups should continue to be numbered higher, | 
|  | as in `(ab)c(de)' -- the second group is #2.  */ | 
|  | regnum_t this_group_regnum; | 
|  |  | 
|  | compile_stack.avail--; | 
|  | begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset; | 
|  | fixup_alt_jump | 
|  | = COMPILE_STACK_TOP.fixup_alt_jump | 
|  | ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1 | 
|  | : 0; | 
|  | laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset; | 
|  | this_group_regnum = COMPILE_STACK_TOP.regnum; | 
|  | /* If we've reached MAX_REGNUM groups, then this open | 
|  | won't actually generate any code, so we'll have to | 
|  | clear pending_exact explicitly.  */ | 
|  | pending_exact = 0; | 
|  |  | 
|  | /* We're at the end of the group, so now we know how many | 
|  | groups were inside this one.  */ | 
|  | if (this_group_regnum <= MAX_REGNUM) | 
|  | { | 
|  | UCHAR_T *inner_group_loc | 
|  | = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset; | 
|  |  | 
|  | *inner_group_loc = regnum - this_group_regnum; | 
|  | BUF_PUSH_3 (stop_memory, this_group_regnum, | 
|  | regnum - this_group_regnum); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | case '|':					/* `\|'.  */ | 
|  | if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) | 
|  | goto normal_backslash; | 
|  | handle_alt: | 
|  | if (syntax & RE_LIMITED_OPS) | 
|  | goto normal_char; | 
|  |  | 
|  | /* Insert before the previous alternative a jump which | 
|  | jumps to this alternative if the former fails.  */ | 
|  | GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); | 
|  | INSERT_JUMP (on_failure_jump, begalt, | 
|  | b + 2 + 2 * OFFSET_ADDRESS_SIZE); | 
|  | pending_exact = 0; | 
|  | b += 1 + OFFSET_ADDRESS_SIZE; | 
|  |  | 
|  | /* The alternative before this one has a jump after it | 
|  | which gets executed if it gets matched.  Adjust that | 
|  | jump so it will jump to this alternative's analogous | 
|  | jump (put in below, which in turn will jump to the next | 
|  | (if any) alternative's such jump, etc.).  The last such | 
|  | jump jumps to the correct final destination.  A picture: | 
|  | _____ _____ | 
|  | |   | |   | | 
|  | |   v |   v | 
|  | a | b   | c | 
|  |  | 
|  | If we are at `b', then fixup_alt_jump right now points to a | 
|  | three-byte space after `a'.  We'll put in the jump, set | 
|  | fixup_alt_jump to right after `b', and leave behind three | 
|  | bytes which we'll fill in when we get to after `c'.  */ | 
|  |  | 
|  | if (fixup_alt_jump) | 
|  | STORE_JUMP (jump_past_alt, fixup_alt_jump, b); | 
|  |  | 
|  | /* Mark and leave space for a jump after this alternative, | 
|  | to be filled in later either by next alternative or | 
|  | when know we're at the end of a series of alternatives.  */ | 
|  | fixup_alt_jump = b; | 
|  | GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); | 
|  | b += 1 + OFFSET_ADDRESS_SIZE; | 
|  |  | 
|  | laststart = 0; | 
|  | begalt = b; | 
|  | break; | 
|  |  | 
|  |  | 
|  | case '{': | 
|  | /* If \{ is a literal.  */ | 
|  | if (!(syntax & RE_INTERVALS) | 
|  | /* If we're at `\{' and it's not the open-interval | 
|  | operator.  */ | 
|  | || (syntax & RE_NO_BK_BRACES)) | 
|  | goto normal_backslash; | 
|  |  | 
|  | handle_interval: | 
|  | { | 
|  | /* If got here, then the syntax allows intervals.  */ | 
|  |  | 
|  | /* At least (most) this many matches must be made.  */ | 
|  | int lower_bound = -1, upper_bound = -1; | 
|  |  | 
|  | /* Place in the uncompiled pattern (i.e., just after | 
|  | the '{') to go back to if the interval is invalid.  */ | 
|  | const CHAR_T *beg_interval = p; | 
|  |  | 
|  | if (p == pend) | 
|  | goto invalid_interval; | 
|  |  | 
|  | GET_UNSIGNED_NUMBER (lower_bound); | 
|  |  | 
|  | if (c == ',') | 
|  | { | 
|  | GET_UNSIGNED_NUMBER (upper_bound); | 
|  | if (upper_bound < 0) | 
|  | upper_bound = RE_DUP_MAX; | 
|  | } | 
|  | else | 
|  | /* Interval such as `{1}' => match exactly once. */ | 
|  | upper_bound = lower_bound; | 
|  |  | 
|  | if (! (0 <= lower_bound && lower_bound <= upper_bound)) | 
|  | goto invalid_interval; | 
|  |  | 
|  | if (!(syntax & RE_NO_BK_BRACES)) | 
|  | { | 
|  | if (c != '\\' || p == pend) | 
|  | goto invalid_interval; | 
|  | PATFETCH (c); | 
|  | } | 
|  |  | 
|  | if (c != '}') | 
|  | goto invalid_interval; | 
|  |  | 
|  | /* If it's invalid to have no preceding re.  */ | 
|  | if (!laststart) | 
|  | { | 
|  | if (syntax & RE_CONTEXT_INVALID_OPS | 
|  | && !(syntax & RE_INVALID_INTERVAL_ORD)) | 
|  | FREE_STACK_RETURN (REG_BADRPT); | 
|  | else if (syntax & RE_CONTEXT_INDEP_OPS) | 
|  | laststart = b; | 
|  | else | 
|  | goto unfetch_interval; | 
|  | } | 
|  |  | 
|  | /* We just parsed a valid interval.  */ | 
|  |  | 
|  | if (RE_DUP_MAX < upper_bound) | 
|  | FREE_STACK_RETURN (REG_BADBR); | 
|  |  | 
|  | /* If the upper bound is zero, don't want to succeed at | 
|  | all; jump from `laststart' to `b + 3', which will be | 
|  | the end of the buffer after we insert the jump.  */ | 
|  | /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' | 
|  | instead of 'b + 3'.  */ | 
|  | if (upper_bound == 0) | 
|  | { | 
|  | GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); | 
|  | INSERT_JUMP (jump, laststart, b + 1 | 
|  | + OFFSET_ADDRESS_SIZE); | 
|  | b += 1 + OFFSET_ADDRESS_SIZE; | 
|  | } | 
|  |  | 
|  | /* Otherwise, we have a nontrivial interval.  When | 
|  | we're all done, the pattern will look like: | 
|  | set_number_at <jump count> <upper bound> | 
|  | set_number_at <succeed_n count> <lower bound> | 
|  | succeed_n <after jump addr> <succeed_n count> | 
|  | <body of loop> | 
|  | jump_n <succeed_n addr> <jump count> | 
|  | (The upper bound and `jump_n' are omitted if | 
|  | `upper_bound' is 1, though.)  */ | 
|  | else | 
|  | { /* If the upper bound is > 1, we need to insert | 
|  | more at the end of the loop.  */ | 
|  | unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE + | 
|  | (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE); | 
|  |  | 
|  | GET_BUFFER_SPACE (nbytes); | 
|  |  | 
|  | /* Initialize lower bound of the `succeed_n', even | 
|  | though it will be set during matching by its | 
|  | attendant `set_number_at' (inserted next), | 
|  | because `re_compile_fastmap' needs to know. | 
|  | Jump to the `jump_n' we might insert below.  */ | 
|  | INSERT_JUMP2 (succeed_n, laststart, | 
|  | b + 1 + 2 * OFFSET_ADDRESS_SIZE | 
|  | + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE) | 
|  | , lower_bound); | 
|  | b += 1 + 2 * OFFSET_ADDRESS_SIZE; | 
|  |  | 
|  | /* Code to initialize the lower bound.  Insert | 
|  | before the `succeed_n'.  The `5' is the last two | 
|  | bytes of this `set_number_at', plus 3 bytes of | 
|  | the following `succeed_n'.  */ | 
|  | /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE' | 
|  | is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE' | 
|  | of the following `succeed_n'.  */ | 
|  | PREFIX(insert_op2) (set_number_at, laststart, 1 | 
|  | + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b); | 
|  | b += 1 + 2 * OFFSET_ADDRESS_SIZE; | 
|  |  | 
|  | if (upper_bound > 1) | 
|  | { /* More than one repetition is allowed, so | 
|  | append a backward jump to the `succeed_n' | 
|  | that starts this interval. | 
|  |  | 
|  | When we've reached this during matching, | 
|  | we'll have matched the interval once, so | 
|  | jump back only `upper_bound - 1' times.  */ | 
|  | STORE_JUMP2 (jump_n, b, laststart | 
|  | + 2 * OFFSET_ADDRESS_SIZE + 1, | 
|  | upper_bound - 1); | 
|  | b += 1 + 2 * OFFSET_ADDRESS_SIZE; | 
|  |  | 
|  | /* The location we want to set is the second | 
|  | parameter of the `jump_n'; that is `b-2' as | 
|  | an absolute address.  `laststart' will be | 
|  | the `set_number_at' we're about to insert; | 
|  | `laststart+3' the number to set, the source | 
|  | for the relative address.  But we are | 
|  | inserting into the middle of the pattern -- | 
|  | so everything is getting moved up by 5. | 
|  | Conclusion: (b - 2) - (laststart + 3) + 5, | 
|  | i.e., b - laststart. | 
|  |  | 
|  | We insert this at the beginning of the loop | 
|  | so that if we fail during matching, we'll | 
|  | reinitialize the bounds.  */ | 
|  | PREFIX(insert_op2) (set_number_at, laststart, | 
|  | b - laststart, | 
|  | upper_bound - 1, b); | 
|  | b += 1 + 2 * OFFSET_ADDRESS_SIZE; | 
|  | } | 
|  | } | 
|  | pending_exact = 0; | 
|  | break; | 
|  |  | 
|  | invalid_interval: | 
|  | if (!(syntax & RE_INVALID_INTERVAL_ORD)) | 
|  | FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR); | 
|  | unfetch_interval: | 
|  | /* Match the characters as literals.  */ | 
|  | p = beg_interval; | 
|  | c = '{'; | 
|  | if (syntax & RE_NO_BK_BRACES) | 
|  | goto normal_char; | 
|  | else | 
|  | goto normal_backslash; | 
|  | } | 
|  |  | 
|  | #ifdef emacs | 
|  | /* There is no way to specify the before_dot and after_dot | 
|  | operators.  rms says this is ok.  --karl  */ | 
|  | case '=': | 
|  | BUF_PUSH (at_dot); | 
|  | break; | 
|  |  | 
|  | case 's': | 
|  | laststart = b; | 
|  | PATFETCH (c); | 
|  | BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); | 
|  | break; | 
|  |  | 
|  | case 'S': | 
|  | laststart = b; | 
|  | PATFETCH (c); | 
|  | BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); | 
|  | break; | 
|  | #endif /* emacs */ | 
|  |  | 
|  |  | 
|  | case 'w': | 
|  | if (syntax & RE_NO_GNU_OPS) | 
|  | goto normal_char; | 
|  | laststart = b; | 
|  | BUF_PUSH (wordchar); | 
|  | break; | 
|  |  | 
|  |  | 
|  | case 'W': | 
|  | if (syntax & RE_NO_GNU_OPS) | 
|  | goto normal_char; | 
|  | laststart = b; | 
|  | BUF_PUSH (notwordchar); | 
|  | break; | 
|  |  | 
|  |  | 
|  | case '<': | 
|  | if (syntax & RE_NO_GNU_OPS) | 
|  | goto normal_char; | 
|  | BUF_PUSH (wordbeg); | 
|  | break; | 
|  |  | 
|  | case '>': | 
|  | if (syntax & RE_NO_GNU_OPS) | 
|  | goto normal_char; | 
|  | BUF_PUSH (wordend); | 
|  | break; | 
|  |  | 
|  | case 'b': | 
|  | if (syntax & RE_NO_GNU_OPS) | 
|  | goto normal_char; | 
|  | BUF_PUSH (wordbound); | 
|  | break; | 
|  |  | 
|  | case 'B': | 
|  | if (syntax & RE_NO_GNU_OPS) | 
|  | goto normal_char; | 
|  | BUF_PUSH (notwordbound); | 
|  | break; | 
|  |  | 
|  | case '`': | 
|  | if (syntax & RE_NO_GNU_OPS) | 
|  | goto normal_char; | 
|  | BUF_PUSH (begbuf); | 
|  | break; | 
|  |  | 
|  | case '\'': | 
|  | if (syntax & RE_NO_GNU_OPS) | 
|  | goto normal_char; | 
|  | BUF_PUSH (endbuf); | 
|  | break; | 
|  |  | 
|  | case '1': case '2': case '3': case '4': case '5': | 
|  | case '6': case '7': case '8': case '9': | 
|  | if (syntax & RE_NO_BK_REFS) | 
|  | goto normal_char; | 
|  |  | 
|  | c1 = c - '0'; | 
|  |  | 
|  | if (c1 > regnum) | 
|  | FREE_STACK_RETURN (REG_ESUBREG); | 
|  |  | 
|  | /* Can't back reference to a subexpression if inside of it.  */ | 
|  | if (group_in_compile_stack (compile_stack, (regnum_t) c1)) | 
|  | goto normal_char; | 
|  |  | 
|  | laststart = b; | 
|  | BUF_PUSH_2 (duplicate, c1); | 
|  | break; | 
|  |  | 
|  |  | 
|  | case '+': | 
|  | case '?': | 
|  | if (syntax & RE_BK_PLUS_QM) | 
|  | goto handle_plus; | 
|  | else | 
|  | goto normal_backslash; | 
|  |  | 
|  | default: | 
|  | normal_backslash: | 
|  | /* You might think it would be useful for \ to mean | 
|  | not to translate; but if we don't translate it | 
|  | it will never match anything.  */ | 
|  | c = TRANSLATE (c); | 
|  | goto normal_char; | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | default: | 
|  | /* Expects the character in `c'.  */ | 
|  | normal_char: | 
|  | /* If no exactn currently being built.  */ | 
|  | if (!pending_exact | 
|  | #ifdef WCHAR | 
|  | /* If last exactn handle binary(or character) and | 
|  | new exactn handle character(or binary).  */ | 
|  | || is_exactn_bin != is_binary[p - 1 - pattern] | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  | /* If last exactn not at current position.  */ | 
|  | || pending_exact + *pending_exact + 1 != b | 
|  |  | 
|  | /* We have only one byte following the exactn for the count.  */ | 
|  | || *pending_exact == (1 << BYTEWIDTH) - 1 | 
|  |  | 
|  | /* If followed by a repetition operator.  */ | 
|  | || *p == '*' || *p == '^' | 
|  | || ((syntax & RE_BK_PLUS_QM) | 
|  | ? *p == '\\' && (p[1] == '+' || p[1] == '?') | 
|  | : (*p == '+' || *p == '?')) | 
|  | || ((syntax & RE_INTERVALS) | 
|  | && ((syntax & RE_NO_BK_BRACES) | 
|  | ? *p == '{' | 
|  | : (p[0] == '\\' && p[1] == '{')))) | 
|  | { | 
|  | /* Start building a new exactn.  */ | 
|  |  | 
|  | laststart = b; | 
|  |  | 
|  | #ifdef WCHAR | 
|  | /* Is this exactn binary data or character? */ | 
|  | is_exactn_bin = is_binary[p - 1 - pattern]; | 
|  | if (is_exactn_bin) | 
|  | BUF_PUSH_2 (exactn_bin, 0); | 
|  | else | 
|  | BUF_PUSH_2 (exactn, 0); | 
|  | #else | 
|  | BUF_PUSH_2 (exactn, 0); | 
|  | #endif /* WCHAR */ | 
|  | pending_exact = b - 1; | 
|  | } | 
|  |  | 
|  | BUF_PUSH (c); | 
|  | (*pending_exact)++; | 
|  | break; | 
|  | } /* switch (c) */ | 
|  | } /* while p != pend */ | 
|  |  | 
|  |  | 
|  | /* Through the pattern now.  */ | 
|  |  | 
|  | if (fixup_alt_jump) | 
|  | STORE_JUMP (jump_past_alt, fixup_alt_jump, b); | 
|  |  | 
|  | if (!COMPILE_STACK_EMPTY) | 
|  | FREE_STACK_RETURN (REG_EPAREN); | 
|  |  | 
|  | /* If we don't want backtracking, force success | 
|  | the first time we reach the end of the compiled pattern.  */ | 
|  | if (syntax & RE_NO_POSIX_BACKTRACKING) | 
|  | BUF_PUSH (succeed); | 
|  |  | 
|  | #ifdef WCHAR | 
|  | free (pattern); | 
|  | free (mbs_offset); | 
|  | free (is_binary); | 
|  | #endif | 
|  | free (compile_stack.stack); | 
|  |  | 
|  | /* We have succeeded; set the length of the buffer.  */ | 
|  | #ifdef WCHAR | 
|  | bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR; | 
|  | #else | 
|  | bufp->used = b - bufp->buffer; | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG | 
|  | if (debug) | 
|  | { | 
|  | DEBUG_PRINT1 ("\nCompiled pattern: \n"); | 
|  | PREFIX(print_compiled_pattern) (bufp); | 
|  | } | 
|  | #endif /* DEBUG */ | 
|  |  | 
|  | #ifndef MATCH_MAY_ALLOCATE | 
|  | /* Initialize the failure stack to the largest possible stack.  This | 
|  | isn't necessary unless we're trying to avoid calling alloca in | 
|  | the search and match routines.  */ | 
|  | { | 
|  | int num_regs = bufp->re_nsub + 1; | 
|  |  | 
|  | /* Since DOUBLE_FAIL_STACK refuses to double only if the current size | 
|  | is strictly greater than re_max_failures, the largest possible stack | 
|  | is 2 * re_max_failures failure points.  */ | 
|  | if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS)) | 
|  | { | 
|  | fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS); | 
|  |  | 
|  | # ifdef emacs | 
|  | if (! fail_stack.stack) | 
|  | fail_stack.stack | 
|  | = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size | 
|  | * sizeof (PREFIX(fail_stack_elt_t))); | 
|  | else | 
|  | fail_stack.stack | 
|  | = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack, | 
|  | (fail_stack.size | 
|  | * sizeof (PREFIX(fail_stack_elt_t)))); | 
|  | # else /* not emacs */ | 
|  | if (! fail_stack.stack) | 
|  | fail_stack.stack | 
|  | = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size | 
|  | * sizeof (PREFIX(fail_stack_elt_t))); | 
|  | else | 
|  | fail_stack.stack | 
|  | = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack, | 
|  | (fail_stack.size | 
|  | * sizeof (PREFIX(fail_stack_elt_t)))); | 
|  | # endif /* not emacs */ | 
|  | } | 
|  |  | 
|  | PREFIX(regex_grow_registers) (num_regs); | 
|  | } | 
|  | #endif /* not MATCH_MAY_ALLOCATE */ | 
|  |  | 
|  | return REG_NOERROR; | 
|  | } /* regex_compile */ | 
|  |  | 
|  | /* Subroutines for `regex_compile'.  */ | 
|  |  | 
|  | /* Store OP at LOC followed by two-byte integer parameter ARG.  */ | 
|  | /* ifdef WCHAR, integer parameter is 1 wchar_t.  */ | 
|  |  | 
|  | static void | 
|  | PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg) | 
|  | { | 
|  | *loc = (UCHAR_T) op; | 
|  | STORE_NUMBER (loc + 1, arg); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */ | 
|  | /* ifdef WCHAR, integer parameter is 1 wchar_t.  */ | 
|  |  | 
|  | static void | 
|  | PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2) | 
|  | { | 
|  | *loc = (UCHAR_T) op; | 
|  | STORE_NUMBER (loc + 1, arg1); | 
|  | STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Copy the bytes from LOC to END to open up three bytes of space at LOC | 
|  | for OP followed by two-byte integer parameter ARG.  */ | 
|  | /* ifdef WCHAR, integer parameter is 1 wchar_t.  */ | 
|  |  | 
|  | static void | 
|  | PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end) | 
|  | { | 
|  | register UCHAR_T *pfrom = end; | 
|  | register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE; | 
|  |  | 
|  | while (pfrom != loc) | 
|  | *--pto = *--pfrom; | 
|  |  | 
|  | PREFIX(store_op1) (op, loc, arg); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */ | 
|  | /* ifdef WCHAR, integer parameter is 1 wchar_t.  */ | 
|  |  | 
|  | static void | 
|  | PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, | 
|  | int arg2, UCHAR_T *end) | 
|  | { | 
|  | register UCHAR_T *pfrom = end; | 
|  | register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE; | 
|  |  | 
|  | while (pfrom != loc) | 
|  | *--pto = *--pfrom; | 
|  |  | 
|  | PREFIX(store_op2) (op, loc, arg1, arg2); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* P points to just after a ^ in PATTERN.  Return true if that ^ comes | 
|  | after an alternative or a begin-subexpression.  We assume there is at | 
|  | least one character before the ^.  */ | 
|  |  | 
|  | static boolean | 
|  | PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p, | 
|  | reg_syntax_t syntax) | 
|  | { | 
|  | const CHAR_T *prev = p - 2; | 
|  | boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; | 
|  |  | 
|  | return | 
|  | /* After a subexpression?  */ | 
|  | (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) | 
|  | /* After an alternative?  */ | 
|  | || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* The dual of at_begline_loc_p.  This one is for $.  We assume there is | 
|  | at least one character after the $, i.e., `P < PEND'.  */ | 
|  |  | 
|  | static boolean | 
|  | PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend, | 
|  | reg_syntax_t syntax) | 
|  | { | 
|  | const CHAR_T *next = p; | 
|  | boolean next_backslash = *next == '\\'; | 
|  | const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0; | 
|  |  | 
|  | return | 
|  | /* Before a subexpression?  */ | 
|  | (syntax & RE_NO_BK_PARENS ? *next == ')' | 
|  | : next_backslash && next_next && *next_next == ')') | 
|  | /* Before an alternative?  */ | 
|  | || (syntax & RE_NO_BK_VBAR ? *next == '|' | 
|  | : next_backslash && next_next && *next_next == '|'); | 
|  | } | 
|  |  | 
|  | #else /* not INSIDE_RECURSION */ | 
|  |  | 
|  | /* Returns true if REGNUM is in one of COMPILE_STACK's elements and | 
|  | false if it's not.  */ | 
|  |  | 
|  | static boolean | 
|  | group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum) | 
|  | { | 
|  | int this_element; | 
|  |  | 
|  | for (this_element = compile_stack.avail - 1; | 
|  | this_element >= 0; | 
|  | this_element--) | 
|  | if (compile_stack.stack[this_element].regnum == regnum) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  | #endif /* not INSIDE_RECURSION */ | 
|  |  | 
|  | #ifdef INSIDE_RECURSION | 
|  |  | 
|  | #ifdef WCHAR | 
|  | /* This insert space, which size is "num", into the pattern at "loc". | 
|  | "end" must point the end of the allocated buffer.  */ | 
|  | static void | 
|  | insert_space (int num, CHAR_T *loc, CHAR_T *end) | 
|  | { | 
|  | register CHAR_T *pto = end; | 
|  | register CHAR_T *pfrom = end - num; | 
|  |  | 
|  | while (pfrom >= loc) | 
|  | *pto-- = *pfrom--; | 
|  | } | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  | #ifdef WCHAR | 
|  | static reg_errcode_t | 
|  | wcs_compile_range (CHAR_T range_start_char, const CHAR_T **p_ptr, | 
|  | const CHAR_T *pend, RE_TRANSLATE_TYPE translate, | 
|  | reg_syntax_t syntax, CHAR_T *b, CHAR_T *char_set) | 
|  | { | 
|  | const CHAR_T *p = *p_ptr; | 
|  | CHAR_T range_start, range_end; | 
|  | reg_errcode_t ret; | 
|  | # ifdef _LIBC | 
|  | uint32_t nrules; | 
|  | uint32_t start_val, end_val; | 
|  | # endif | 
|  | if (p == pend) | 
|  | return REG_ERANGE; | 
|  |  | 
|  | # ifdef _LIBC | 
|  | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | 
|  | if (nrules != 0) | 
|  | { | 
|  | const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE, | 
|  | _NL_COLLATE_COLLSEQWC); | 
|  | const unsigned char *extra = (const unsigned char *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); | 
|  |  | 
|  | if (range_start_char < -1) | 
|  | { | 
|  | /* range_start is a collating symbol.  */ | 
|  | int32_t *wextra; | 
|  | /* Retreive the index and get collation sequence value.  */ | 
|  | wextra = (int32_t*)(extra + char_set[-range_start_char]); | 
|  | start_val = wextra[1 + *wextra]; | 
|  | } | 
|  | else | 
|  | start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char)); | 
|  |  | 
|  | end_val = collseq_table_lookup (collseq, TRANSLATE (p[0])); | 
|  |  | 
|  | /* Report an error if the range is empty and the syntax prohibits | 
|  | this.  */ | 
|  | ret = ((syntax & RE_NO_EMPTY_RANGES) | 
|  | && (start_val > end_val))? REG_ERANGE : REG_NOERROR; | 
|  |  | 
|  | /* Insert space to the end of the char_ranges.  */ | 
|  | insert_space(2, b - char_set[5] - 2, b - 1); | 
|  | *(b - char_set[5] - 2) = (wchar_t)start_val; | 
|  | *(b - char_set[5] - 1) = (wchar_t)end_val; | 
|  | char_set[4]++; /* ranges_index */ | 
|  | } | 
|  | else | 
|  | # endif | 
|  | { | 
|  | range_start = (range_start_char >= 0)? TRANSLATE (range_start_char): | 
|  | range_start_char; | 
|  | range_end = TRANSLATE (p[0]); | 
|  | /* Report an error if the range is empty and the syntax prohibits | 
|  | this.  */ | 
|  | ret = ((syntax & RE_NO_EMPTY_RANGES) | 
|  | && (range_start > range_end))? REG_ERANGE : REG_NOERROR; | 
|  |  | 
|  | /* Insert space to the end of the char_ranges.  */ | 
|  | insert_space(2, b - char_set[5] - 2, b - 1); | 
|  | *(b - char_set[5] - 2) = range_start; | 
|  | *(b - char_set[5] - 1) = range_end; | 
|  | char_set[4]++; /* ranges_index */ | 
|  | } | 
|  | /* Have to increment the pointer into the pattern string, so the | 
|  | caller isn't still at the ending character.  */ | 
|  | (*p_ptr)++; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #else /* BYTE */ | 
|  | /* Read the ending character of a range (in a bracket expression) from the | 
|  | uncompiled pattern *P_PTR (which ends at PEND).  We assume the | 
|  | starting character is in `P[-2]'.  (`P[-1]' is the character `-'.) | 
|  | Then we set the translation of all bits between the starting and | 
|  | ending characters (inclusive) in the compiled pattern B. | 
|  |  | 
|  | Return an error code. | 
|  |  | 
|  | We use these short variable names so we can use the same macros as | 
|  | `regex_compile' itself.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | byte_compile_range (unsigned int range_start_char, const char **p_ptr, | 
|  | const char *pend, RE_TRANSLATE_TYPE translate, | 
|  | reg_syntax_t syntax, unsigned char *b) | 
|  | { | 
|  | unsigned this_char; | 
|  | const char *p = *p_ptr; | 
|  | reg_errcode_t ret; | 
|  | # if _LIBC | 
|  | const unsigned char *collseq; | 
|  | unsigned int start_colseq; | 
|  | unsigned int end_colseq; | 
|  | # else | 
|  | unsigned end_char; | 
|  | # endif | 
|  |  | 
|  | if (p == pend) | 
|  | return REG_ERANGE; | 
|  |  | 
|  | /* Have to increment the pointer into the pattern string, so the | 
|  | caller isn't still at the ending character.  */ | 
|  | (*p_ptr)++; | 
|  |  | 
|  | /* Report an error if the range is empty and the syntax prohibits this.  */ | 
|  | ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; | 
|  |  | 
|  | # if _LIBC | 
|  | collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | 
|  | _NL_COLLATE_COLLSEQMB); | 
|  |  | 
|  | start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)]; | 
|  | end_colseq = collseq[(unsigned char) TRANSLATE (p[0])]; | 
|  | for (this_char = 0; this_char <= (unsigned char) -1; ++this_char) | 
|  | { | 
|  | unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)]; | 
|  |  | 
|  | if (start_colseq <= this_colseq && this_colseq <= end_colseq) | 
|  | { | 
|  | SET_LIST_BIT (TRANSLATE (this_char)); | 
|  | ret = REG_NOERROR; | 
|  | } | 
|  | } | 
|  | # else | 
|  | /* Here we see why `this_char' has to be larger than an `unsigned | 
|  | char' -- we would otherwise go into an infinite loop, since all | 
|  | characters <= 0xff.  */ | 
|  | range_start_char = TRANSLATE (range_start_char); | 
|  | /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE, | 
|  | and some compilers cast it to int implicitly, so following for_loop | 
|  | may fall to (almost) infinite loop. | 
|  | e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff. | 
|  | To avoid this, we cast p[0] to unsigned int and truncate it.  */ | 
|  | end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1)); | 
|  |  | 
|  | for (this_char = range_start_char; this_char <= end_char; ++this_char) | 
|  | { | 
|  | SET_LIST_BIT (TRANSLATE (this_char)); | 
|  | ret = REG_NOERROR; | 
|  | } | 
|  | # endif | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  | /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in | 
|  | BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible | 
|  | characters can start a string that matches the pattern.  This fastmap | 
|  | is used by re_search to skip quickly over impossible starting points. | 
|  |  | 
|  | The caller must supply the address of a (1 << BYTEWIDTH)-byte data | 
|  | area as BUFP->fastmap. | 
|  |  | 
|  | We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in | 
|  | the pattern buffer. | 
|  |  | 
|  | Returns 0 if we succeed, -2 if an internal error.   */ | 
|  |  | 
|  | #ifdef WCHAR | 
|  | /* local function for re_compile_fastmap. | 
|  | truncate wchar_t character to char.  */ | 
|  | static unsigned char truncate_wchar (CHAR_T c); | 
|  |  | 
|  | static unsigned char | 
|  | truncate_wchar (CHAR_T c) | 
|  | { | 
|  | unsigned char buf[MB_CUR_MAX]; | 
|  | mbstate_t state; | 
|  | int retval; | 
|  | memset (&state, '\0', sizeof (state)); | 
|  | # ifdef _LIBC | 
|  | retval = __wcrtomb (buf, c, &state); | 
|  | # else | 
|  | retval = wcrtomb (buf, c, &state); | 
|  | # endif | 
|  | return retval > 0 ? buf[0] : (unsigned char) c; | 
|  | } | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  | static int | 
|  | PREFIX(re_compile_fastmap) (struct re_pattern_buffer *bufp) | 
|  | { | 
|  | int j, k; | 
|  | #ifdef MATCH_MAY_ALLOCATE | 
|  | PREFIX(fail_stack_type) fail_stack; | 
|  | #endif | 
|  | #ifndef REGEX_MALLOC | 
|  | char *destination; | 
|  | #endif | 
|  |  | 
|  | register char *fastmap = bufp->fastmap; | 
|  |  | 
|  | #ifdef WCHAR | 
|  | /* We need to cast pattern to (wchar_t*), because we casted this compiled | 
|  | pattern to (char*) in regex_compile.  */ | 
|  | UCHAR_T *pattern = (UCHAR_T*)bufp->buffer; | 
|  | register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used); | 
|  | #else /* BYTE */ | 
|  | UCHAR_T *pattern = bufp->buffer; | 
|  | register UCHAR_T *pend = pattern + bufp->used; | 
|  | #endif /* WCHAR */ | 
|  | UCHAR_T *p = pattern; | 
|  |  | 
|  | #ifdef REL_ALLOC | 
|  | /* This holds the pointer to the failure stack, when | 
|  | it is allocated relocatably.  */ | 
|  | fail_stack_elt_t *failure_stack_ptr; | 
|  | #endif | 
|  |  | 
|  | /* Assume that each path through the pattern can be null until | 
|  | proven otherwise.  We set this false at the bottom of switch | 
|  | statement, to which we get only if a particular path doesn't | 
|  | match the empty string.  */ | 
|  | boolean path_can_be_null = true; | 
|  |  | 
|  | /* We aren't doing a `succeed_n' to begin with.  */ | 
|  | boolean succeed_n_p = false; | 
|  |  | 
|  | assert (fastmap != NULL && p != NULL); | 
|  |  | 
|  | INIT_FAIL_STACK (); | 
|  | bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */ | 
|  | bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */ | 
|  | bufp->can_be_null = 0; | 
|  |  | 
|  | while (1) | 
|  | { | 
|  | if (p == pend || *p == (UCHAR_T) succeed) | 
|  | { | 
|  | /* We have reached the (effective) end of pattern.  */ | 
|  | if (!FAIL_STACK_EMPTY ()) | 
|  | { | 
|  | bufp->can_be_null |= path_can_be_null; | 
|  |  | 
|  | /* Reset for next path.  */ | 
|  | path_can_be_null = true; | 
|  |  | 
|  | p = fail_stack.stack[--fail_stack.avail].pointer; | 
|  |  | 
|  | continue; | 
|  | } | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* We should never be about to go beyond the end of the pattern.  */ | 
|  | assert (p < pend); | 
|  |  | 
|  | switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) | 
|  | { | 
|  |  | 
|  | /* I guess the idea here is to simply not bother with a fastmap | 
|  | if a backreference is used, since it's too hard to figure out | 
|  | the fastmap for the corresponding group.  Setting | 
|  | `can_be_null' stops `re_search_2' from using the fastmap, so | 
|  | that is all we do.  */ | 
|  | case duplicate: | 
|  | bufp->can_be_null = 1; | 
|  | goto done; | 
|  |  | 
|  |  | 
|  | /* Following are the cases which match a character.  These end | 
|  | with `break'.  */ | 
|  |  | 
|  | #ifdef WCHAR | 
|  | case exactn: | 
|  | fastmap[truncate_wchar(p[1])] = 1; | 
|  | break; | 
|  | #else /* BYTE */ | 
|  | case exactn: | 
|  | fastmap[p[1]] = 1; | 
|  | break; | 
|  | #endif /* WCHAR */ | 
|  | #ifdef MBS_SUPPORT | 
|  | case exactn_bin: | 
|  | fastmap[p[1]] = 1; | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | #ifdef WCHAR | 
|  | /* It is hard to distinguish fastmap from (multi byte) characters | 
|  | which depends on current locale.  */ | 
|  | case charset: | 
|  | case charset_not: | 
|  | case wordchar: | 
|  | case notwordchar: | 
|  | bufp->can_be_null = 1; | 
|  | goto done; | 
|  | #else /* BYTE */ | 
|  | case charset: | 
|  | for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | 
|  | if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) | 
|  | fastmap[j] = 1; | 
|  | break; | 
|  |  | 
|  |  | 
|  | case charset_not: | 
|  | /* Chars beyond end of map must be allowed.  */ | 
|  | for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) | 
|  | fastmap[j] = 1; | 
|  |  | 
|  | for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | 
|  | if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) | 
|  | fastmap[j] = 1; | 
|  | break; | 
|  |  | 
|  |  | 
|  | case wordchar: | 
|  | for (j = 0; j < (1 << BYTEWIDTH); j++) | 
|  | if (SYNTAX (j) == Sword) | 
|  | fastmap[j] = 1; | 
|  | break; | 
|  |  | 
|  |  | 
|  | case notwordchar: | 
|  | for (j = 0; j < (1 << BYTEWIDTH); j++) | 
|  | if (SYNTAX (j) != Sword) | 
|  | fastmap[j] = 1; | 
|  | break; | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  | case anychar: | 
|  | { | 
|  | int fastmap_newline = fastmap['\n']; | 
|  |  | 
|  | /* `.' matches anything ...  */ | 
|  | for (j = 0; j < (1 << BYTEWIDTH); j++) | 
|  | fastmap[j] = 1; | 
|  |  | 
|  | /* ... except perhaps newline.  */ | 
|  | if (!(bufp->syntax & RE_DOT_NEWLINE)) | 
|  | fastmap['\n'] = fastmap_newline; | 
|  |  | 
|  | /* Return if we have already set `can_be_null'; if we have, | 
|  | then the fastmap is irrelevant.  Something's wrong here.  */ | 
|  | else if (bufp->can_be_null) | 
|  | goto done; | 
|  |  | 
|  | /* Otherwise, have to check alternative paths.  */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | #ifdef emacs | 
|  | case syntaxspec: | 
|  | k = *p++; | 
|  | for (j = 0; j < (1 << BYTEWIDTH); j++) | 
|  | if (SYNTAX (j) == (enum syntaxcode) k) | 
|  | fastmap[j] = 1; | 
|  | break; | 
|  |  | 
|  |  | 
|  | case notsyntaxspec: | 
|  | k = *p++; | 
|  | for (j = 0; j < (1 << BYTEWIDTH); j++) | 
|  | if (SYNTAX (j) != (enum syntaxcode) k) | 
|  | fastmap[j] = 1; | 
|  | break; | 
|  |  | 
|  |  | 
|  | /* All cases after this match the empty string.  These end with | 
|  | `continue'.  */ | 
|  |  | 
|  |  | 
|  | case before_dot: | 
|  | case at_dot: | 
|  | case after_dot: | 
|  | continue; | 
|  | #endif /* emacs */ | 
|  |  | 
|  |  | 
|  | case no_op: | 
|  | case begline: | 
|  | case endline: | 
|  | case begbuf: | 
|  | case endbuf: | 
|  | case wordbound: | 
|  | case notwordbound: | 
|  | case wordbeg: | 
|  | case wordend: | 
|  | case push_dummy_failure: | 
|  | continue; | 
|  |  | 
|  |  | 
|  | case jump_n: | 
|  | case pop_failure_jump: | 
|  | case maybe_pop_jump: | 
|  | case jump: | 
|  | case jump_past_alt: | 
|  | case dummy_failure_jump: | 
|  | EXTRACT_NUMBER_AND_INCR (j, p); | 
|  | p += j; | 
|  | if (j > 0) | 
|  | continue; | 
|  |  | 
|  | /* Jump backward implies we just went through the body of a | 
|  | loop and matched nothing.  Opcode jumped to should be | 
|  | `on_failure_jump' or `succeed_n'.  Just treat it like an | 
|  | ordinary jump.  For a * loop, it has pushed its failure | 
|  | point already; if so, discard that as redundant.  */ | 
|  | if ((re_opcode_t) *p != on_failure_jump | 
|  | && (re_opcode_t) *p != succeed_n) | 
|  | continue; | 
|  |  | 
|  | p++; | 
|  | EXTRACT_NUMBER_AND_INCR (j, p); | 
|  | p += j; | 
|  |  | 
|  | /* If what's on the stack is where we are now, pop it.  */ | 
|  | if (!FAIL_STACK_EMPTY () | 
|  | && fail_stack.stack[fail_stack.avail - 1].pointer == p) | 
|  | fail_stack.avail--; | 
|  |  | 
|  | continue; | 
|  |  | 
|  |  | 
|  | case on_failure_jump: | 
|  | case on_failure_keep_string_jump: | 
|  | handle_on_failure_jump: | 
|  | EXTRACT_NUMBER_AND_INCR (j, p); | 
|  |  | 
|  | /* For some patterns, e.g., `(a?)?', `p+j' here points to the | 
|  | end of the pattern.  We don't want to push such a point, | 
|  | since when we restore it above, entering the switch will | 
|  | increment `p' past the end of the pattern.  We don't need | 
|  | to push such a point since we obviously won't find any more | 
|  | fastmap entries beyond `pend'.  Such a pattern can match | 
|  | the null string, though.  */ | 
|  | if (p + j < pend) | 
|  | { | 
|  | if (!PUSH_PATTERN_OP (p + j, fail_stack)) | 
|  | { | 
|  | RESET_FAIL_STACK (); | 
|  | return -2; | 
|  | } | 
|  | } | 
|  | else | 
|  | bufp->can_be_null = 1; | 
|  |  | 
|  | if (succeed_n_p) | 
|  | { | 
|  | EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */ | 
|  | succeed_n_p = false; | 
|  | } | 
|  |  | 
|  | continue; | 
|  |  | 
|  |  | 
|  | case succeed_n: | 
|  | /* Get to the number of times to succeed.  */ | 
|  | p += OFFSET_ADDRESS_SIZE; | 
|  |  | 
|  | /* Increment p past the n for when k != 0.  */ | 
|  | EXTRACT_NUMBER_AND_INCR (k, p); | 
|  | if (k == 0) | 
|  | { | 
|  | p -= 2 * OFFSET_ADDRESS_SIZE; | 
|  | succeed_n_p = true;  /* Spaghetti code alert.  */ | 
|  | goto handle_on_failure_jump; | 
|  | } | 
|  | continue; | 
|  |  | 
|  |  | 
|  | case set_number_at: | 
|  | p += 2 * OFFSET_ADDRESS_SIZE; | 
|  | continue; | 
|  |  | 
|  |  | 
|  | case start_memory: | 
|  | case stop_memory: | 
|  | p += 2; | 
|  | continue; | 
|  |  | 
|  |  | 
|  | default: | 
|  | abort (); /* We have listed all the cases.  */ | 
|  | } /* switch *p++ */ | 
|  |  | 
|  | /* Getting here means we have found the possible starting | 
|  | characters for one path of the pattern -- and that the empty | 
|  | string does not match.  We need not follow this path further. | 
|  | Instead, look at the next alternative (remembered on the | 
|  | stack), or quit if no more.  The test at the top of the loop | 
|  | does these things.  */ | 
|  | path_can_be_null = false; | 
|  | p = pend; | 
|  | } /* while p */ | 
|  |  | 
|  | /* Set `can_be_null' for the last path (also the first path, if the | 
|  | pattern is empty).  */ | 
|  | bufp->can_be_null |= path_can_be_null; | 
|  |  | 
|  | done: | 
|  | RESET_FAIL_STACK (); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else /* not INSIDE_RECURSION */ | 
|  |  | 
|  | int | 
|  | re_compile_fastmap (struct re_pattern_buffer *bufp) | 
|  | { | 
|  | # ifdef MBS_SUPPORT | 
|  | if (MB_CUR_MAX != 1) | 
|  | return wcs_re_compile_fastmap(bufp); | 
|  | else | 
|  | # endif | 
|  | return byte_re_compile_fastmap(bufp); | 
|  | } /* re_compile_fastmap */ | 
|  | #ifdef _LIBC | 
|  | weak_alias (__re_compile_fastmap, re_compile_fastmap) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | 
|  | ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use | 
|  | this memory for recording register information.  STARTS and ENDS | 
|  | must be allocated using the malloc library routine, and must each | 
|  | be at least NUM_REGS * sizeof (regoff_t) bytes long. | 
|  |  | 
|  | If NUM_REGS == 0, then subsequent matches should allocate their own | 
|  | register data. | 
|  |  | 
|  | Unless this function is called, the first search or match using | 
|  | PATTERN_BUFFER will allocate its own register data, without | 
|  | freeing the old data.  */ | 
|  |  | 
|  | void | 
|  | re_set_registers (struct re_pattern_buffer *bufp, | 
|  | struct re_registers *regs, unsigned num_regs, | 
|  | regoff_t *starts, regoff_t *ends) | 
|  | { | 
|  | if (num_regs) | 
|  | { | 
|  | bufp->regs_allocated = REGS_REALLOCATE; | 
|  | regs->num_regs = num_regs; | 
|  | regs->start = starts; | 
|  | regs->end = ends; | 
|  | } | 
|  | else | 
|  | { | 
|  | bufp->regs_allocated = REGS_UNALLOCATED; | 
|  | regs->num_regs = 0; | 
|  | regs->start = regs->end = (regoff_t *) 0; | 
|  | } | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__re_set_registers, re_set_registers) | 
|  | #endif | 
|  |  | 
|  | /* Searching routines.  */ | 
|  |  | 
|  | /* Like re_search_2, below, but only one string is specified, and | 
|  | doesn't let you say where to stop matching.  */ | 
|  |  | 
|  | int | 
|  | re_search (struct re_pattern_buffer *bufp, const char *string, int size, | 
|  | int startpos, int range, struct re_registers *regs) | 
|  | { | 
|  | return re_search_2 (bufp, NULL, 0, string, size, startpos, range, | 
|  | regs, size); | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__re_search, re_search) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* Using the compiled pattern in BUFP->buffer, first tries to match the | 
|  | virtual concatenation of STRING1 and STRING2, starting first at index | 
|  | STARTPOS, then at STARTPOS + 1, and so on. | 
|  |  | 
|  | STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. | 
|  |  | 
|  | RANGE is how far to scan while trying to match.  RANGE = 0 means try | 
|  | only at STARTPOS; in general, the last start tried is STARTPOS + | 
|  | RANGE. | 
|  |  | 
|  | In REGS, return the indices of the virtual concatenation of STRING1 | 
|  | and STRING2 that matched the entire BUFP->buffer and its contained | 
|  | subexpressions. | 
|  |  | 
|  | Do not consider matching one past the index STOP in the virtual | 
|  | concatenation of STRING1 and STRING2. | 
|  |  | 
|  | We return either the position in the strings at which the match was | 
|  | found, -1 if no match, or -2 if error (such as failure | 
|  | stack overflow).  */ | 
|  |  | 
|  | int | 
|  | re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1, | 
|  | const char *string2, int size2, int startpos, int range, | 
|  | struct re_registers *regs, int stop) | 
|  | { | 
|  | # ifdef MBS_SUPPORT | 
|  | if (MB_CUR_MAX != 1) | 
|  | return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos, | 
|  | range, regs, stop); | 
|  | else | 
|  | # endif | 
|  | return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos, | 
|  | range, regs, stop); | 
|  | } /* re_search_2 */ | 
|  | #ifdef _LIBC | 
|  | weak_alias (__re_search_2, re_search_2) | 
|  | #endif | 
|  |  | 
|  | #endif /* not INSIDE_RECURSION */ | 
|  |  | 
|  | #ifdef INSIDE_RECURSION | 
|  |  | 
|  | #ifdef MATCH_MAY_ALLOCATE | 
|  | # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL | 
|  | #else | 
|  | # define FREE_VAR(var) free (var); var = NULL | 
|  | #endif | 
|  |  | 
|  | #ifdef WCHAR | 
|  | # define MAX_ALLOCA_SIZE	2000 | 
|  |  | 
|  | # define FREE_WCS_BUFFERS() \ | 
|  | do {									      \ | 
|  | if (size1 > MAX_ALLOCA_SIZE)					      \ | 
|  | {									      \ | 
|  | free (wcs_string1);						      \ | 
|  | free (mbs_offset1);						      \ | 
|  | }									      \ | 
|  | else								      \ | 
|  | {									      \ | 
|  | FREE_VAR (wcs_string1);						      \ | 
|  | FREE_VAR (mbs_offset1);						      \ | 
|  | }									      \ | 
|  | if (size2 > MAX_ALLOCA_SIZE) 					      \ | 
|  | {									      \ | 
|  | free (wcs_string2);						      \ | 
|  | free (mbs_offset2);						      \ | 
|  | }									      \ | 
|  | else								      \ | 
|  | {									      \ | 
|  | FREE_VAR (wcs_string2);						      \ | 
|  | FREE_VAR (mbs_offset2);						      \ | 
|  | }									      \ | 
|  | } while (0) | 
|  |  | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static int | 
|  | PREFIX(re_search_2) (struct re_pattern_buffer *bufp, const char *string1, | 
|  | int size1, const char *string2, int size2, | 
|  | int startpos, int range, | 
|  | struct re_registers *regs, int stop) | 
|  | { | 
|  | int val; | 
|  | register char *fastmap = bufp->fastmap; | 
|  | register RE_TRANSLATE_TYPE translate = bufp->translate; | 
|  | int total_size = size1 + size2; | 
|  | int endpos = startpos + range; | 
|  | #ifdef WCHAR | 
|  | /* We need wchar_t* buffers correspond to cstring1, cstring2.  */ | 
|  | wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL; | 
|  | /* We need the size of wchar_t buffers correspond to csize1, csize2.  */ | 
|  | int wcs_size1 = 0, wcs_size2 = 0; | 
|  | /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */ | 
|  | int *mbs_offset1 = NULL, *mbs_offset2 = NULL; | 
|  | /* They hold whether each wchar_t is binary data or not.  */ | 
|  | char *is_binary = NULL; | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  | /* Check for out-of-range STARTPOS.  */ | 
|  | if (startpos < 0 || startpos > total_size) | 
|  | return -1; | 
|  |  | 
|  | /* Fix up RANGE if it might eventually take us outside | 
|  | the virtual concatenation of STRING1 and STRING2. | 
|  | Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */ | 
|  | if (endpos < 0) | 
|  | range = 0 - startpos; | 
|  | else if (endpos > total_size) | 
|  | range = total_size - startpos; | 
|  |  | 
|  | /* If the search isn't to be a backwards one, don't waste time in a | 
|  | search for a pattern that must be anchored.  */ | 
|  | if (bufp->used > 0 && range > 0 | 
|  | && ((re_opcode_t) bufp->buffer[0] == begbuf | 
|  | /* `begline' is like `begbuf' if it cannot match at newlines.  */ | 
|  | || ((re_opcode_t) bufp->buffer[0] == begline | 
|  | && !bufp->newline_anchor))) | 
|  | { | 
|  | if (startpos > 0) | 
|  | return -1; | 
|  | else | 
|  | range = 1; | 
|  | } | 
|  |  | 
|  | #ifdef emacs | 
|  | /* In a forward search for something that starts with \=. | 
|  | don't keep searching past point.  */ | 
|  | if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0) | 
|  | { | 
|  | range = PT - startpos; | 
|  | if (range <= 0) | 
|  | return -1; | 
|  | } | 
|  | #endif /* emacs */ | 
|  |  | 
|  | /* Update the fastmap now if not correct already.  */ | 
|  | if (fastmap && !bufp->fastmap_accurate) | 
|  | if (re_compile_fastmap (bufp) == -2) | 
|  | return -2; | 
|  |  | 
|  | #ifdef WCHAR | 
|  | /* Allocate wchar_t array for wcs_string1 and wcs_string2 and | 
|  | fill them with converted string.  */ | 
|  | if (size1 != 0) | 
|  | { | 
|  | if (size1 > MAX_ALLOCA_SIZE) | 
|  | { | 
|  | wcs_string1 = TALLOC (size1 + 1, CHAR_T); | 
|  | mbs_offset1 = TALLOC (size1 + 1, int); | 
|  | is_binary = TALLOC (size1 + 1, char); | 
|  | } | 
|  | else | 
|  | { | 
|  | wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T); | 
|  | mbs_offset1 = REGEX_TALLOC (size1 + 1, int); | 
|  | is_binary = REGEX_TALLOC (size1 + 1, char); | 
|  | } | 
|  | if (!wcs_string1 || !mbs_offset1 || !is_binary) | 
|  | { | 
|  | if (size1 > MAX_ALLOCA_SIZE) | 
|  | { | 
|  | free (wcs_string1); | 
|  | free (mbs_offset1); | 
|  | free (is_binary); | 
|  | } | 
|  | else | 
|  | { | 
|  | FREE_VAR (wcs_string1); | 
|  | FREE_VAR (mbs_offset1); | 
|  | FREE_VAR (is_binary); | 
|  | } | 
|  | return -2; | 
|  | } | 
|  | wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1, | 
|  | mbs_offset1, is_binary); | 
|  | wcs_string1[wcs_size1] = L'\0'; /* for a sentinel  */ | 
|  | if (size1 > MAX_ALLOCA_SIZE) | 
|  | free (is_binary); | 
|  | else | 
|  | FREE_VAR (is_binary); | 
|  | } | 
|  | if (size2 != 0) | 
|  | { | 
|  | if (size2 > MAX_ALLOCA_SIZE) | 
|  | { | 
|  | wcs_string2 = TALLOC (size2 + 1, CHAR_T); | 
|  | mbs_offset2 = TALLOC (size2 + 1, int); | 
|  | is_binary = TALLOC (size2 + 1, char); | 
|  | } | 
|  | else | 
|  | { | 
|  | wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T); | 
|  | mbs_offset2 = REGEX_TALLOC (size2 + 1, int); | 
|  | is_binary = REGEX_TALLOC (size2 + 1, char); | 
|  | } | 
|  | if (!wcs_string2 || !mbs_offset2 || !is_binary) | 
|  | { | 
|  | FREE_WCS_BUFFERS (); | 
|  | if (size2 > MAX_ALLOCA_SIZE) | 
|  | free (is_binary); | 
|  | else | 
|  | FREE_VAR (is_binary); | 
|  | return -2; | 
|  | } | 
|  | wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2, | 
|  | mbs_offset2, is_binary); | 
|  | wcs_string2[wcs_size2] = L'\0'; /* for a sentinel  */ | 
|  | if (size2 > MAX_ALLOCA_SIZE) | 
|  | free (is_binary); | 
|  | else | 
|  | FREE_VAR (is_binary); | 
|  | } | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  |  | 
|  | /* Loop through the string, looking for a place to start matching.  */ | 
|  | for (;;) | 
|  | { | 
|  | /* If a fastmap is supplied, skip quickly over characters that | 
|  | cannot be the start of a match.  If the pattern can match the | 
|  | null string, however, we don't need to skip characters; we want | 
|  | the first null string.  */ | 
|  | if (fastmap && startpos < total_size && !bufp->can_be_null) | 
|  | { | 
|  | if (range > 0)	/* Searching forwards.  */ | 
|  | { | 
|  | register const char *d; | 
|  | register int lim = 0; | 
|  | int irange = range; | 
|  |  | 
|  | if (startpos < size1 && startpos + range >= size1) | 
|  | lim = range - (size1 - startpos); | 
|  |  | 
|  | d = (startpos >= size1 ? string2 - size1 : string1) + startpos; | 
|  |  | 
|  | /* Written out as an if-else to avoid testing `translate' | 
|  | inside the loop.  */ | 
|  | if (translate) | 
|  | while (range > lim | 
|  | && !fastmap[(unsigned char) | 
|  | translate[(unsigned char) *d++]]) | 
|  | range--; | 
|  | else | 
|  | while (range > lim && !fastmap[(unsigned char) *d++]) | 
|  | range--; | 
|  |  | 
|  | startpos += irange - range; | 
|  | } | 
|  | else				/* Searching backwards.  */ | 
|  | { | 
|  | register CHAR_T c = (size1 == 0 || startpos >= size1 | 
|  | ? string2[startpos - size1] | 
|  | : string1[startpos]); | 
|  |  | 
|  | if (!fastmap[(unsigned char) TRANSLATE (c)]) | 
|  | goto advance; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If can't match the null string, and that's all we have left, fail.  */ | 
|  | if (range >= 0 && startpos == total_size && fastmap | 
|  | && !bufp->can_be_null) | 
|  | { | 
|  | #ifdef WCHAR | 
|  | FREE_WCS_BUFFERS (); | 
|  | #endif | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | #ifdef WCHAR | 
|  | val = wcs_re_match_2_internal (bufp, string1, size1, string2, | 
|  | size2, startpos, regs, stop, | 
|  | wcs_string1, wcs_size1, | 
|  | wcs_string2, wcs_size2, | 
|  | mbs_offset1, mbs_offset2); | 
|  | #else /* BYTE */ | 
|  | val = byte_re_match_2_internal (bufp, string1, size1, string2, | 
|  | size2, startpos, regs, stop); | 
|  | #endif /* BYTE */ | 
|  |  | 
|  | #ifndef REGEX_MALLOC | 
|  | # ifdef C_ALLOCA | 
|  | alloca (0); | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | if (val >= 0) | 
|  | { | 
|  | #ifdef WCHAR | 
|  | FREE_WCS_BUFFERS (); | 
|  | #endif | 
|  | return startpos; | 
|  | } | 
|  |  | 
|  | if (val == -2) | 
|  | { | 
|  | #ifdef WCHAR | 
|  | FREE_WCS_BUFFERS (); | 
|  | #endif | 
|  | return -2; | 
|  | } | 
|  |  | 
|  | advance: | 
|  | if (!range) | 
|  | break; | 
|  | else if (range > 0) | 
|  | { | 
|  | range--; | 
|  | startpos++; | 
|  | } | 
|  | else | 
|  | { | 
|  | range++; | 
|  | startpos--; | 
|  | } | 
|  | } | 
|  | #ifdef WCHAR | 
|  | FREE_WCS_BUFFERS (); | 
|  | #endif | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | #ifdef WCHAR | 
|  | /* This converts PTR, a pointer into one of the search wchar_t strings | 
|  | `string1' and `string2' into an multibyte string offset from the | 
|  | beginning of that string. We use mbs_offset to optimize. | 
|  | See convert_mbs_to_wcs.  */ | 
|  | # define POINTER_TO_OFFSET(ptr)						\ | 
|  | (FIRST_STRING_P (ptr)							\ | 
|  | ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))	\ | 
|  | : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)	\ | 
|  | + csize1))) | 
|  | #else /* BYTE */ | 
|  | /* This converts PTR, a pointer into one of the search strings `string1' | 
|  | and `string2' into an offset from the beginning of that string.  */ | 
|  | # define POINTER_TO_OFFSET(ptr)			\ | 
|  | (FIRST_STRING_P (ptr)				\ | 
|  | ? ((regoff_t) ((ptr) - string1))		\ | 
|  | : ((regoff_t) ((ptr) - string2 + size1))) | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  | /* Macros for dealing with the split strings in re_match_2.  */ | 
|  |  | 
|  | #define MATCHING_IN_FIRST_STRING  (dend == end_match_1) | 
|  |  | 
|  | /* Call before fetching a character with *d.  This switches over to | 
|  | string2 if necessary.  */ | 
|  | #define PREFETCH()							\ | 
|  | while (d == dend)						    	\ | 
|  | {									\ | 
|  | /* End of string2 => fail.  */					\ | 
|  | if (dend == end_match_2) 						\ | 
|  | goto fail;							\ | 
|  | /* End of string1 => advance to string2.  */ 			\ | 
|  | d = string2;						        \ | 
|  | dend = end_match_2;						\ | 
|  | } | 
|  |  | 
|  | /* Test if at very beginning or at very end of the virtual concatenation | 
|  | of `string1' and `string2'.  If only one string, it's `string2'.  */ | 
|  | #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) | 
|  | #define AT_STRINGS_END(d) ((d) == end2) | 
|  |  | 
|  |  | 
|  | /* Test if D points to a character which is word-constituent.  We have | 
|  | two special cases to check for: if past the end of string1, look at | 
|  | the first character in string2; and if before the beginning of | 
|  | string2, look at the last character in string1.  */ | 
|  | #ifdef WCHAR | 
|  | /* Use internationalized API instead of SYNTAX.  */ | 
|  | # define WORDCHAR_P(d)							\ | 
|  | (iswalnum ((wint_t)((d) == end1 ? *string2				\ | 
|  | : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0		\ | 
|  | || ((d) == end1 ? *string2						\ | 
|  | : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_') | 
|  | #else /* BYTE */ | 
|  | # define WORDCHAR_P(d)							\ | 
|  | (SYNTAX ((d) == end1 ? *string2					\ | 
|  | : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\ | 
|  | == Sword) | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  | /* Disabled due to a compiler bug -- see comment at case wordbound */ | 
|  | #if 0 | 
|  | /* Test if the character before D and the one at D differ with respect | 
|  | to being word-constituent.  */ | 
|  | #define AT_WORD_BOUNDARY(d)						\ | 
|  | (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\ | 
|  | || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) | 
|  | #endif | 
|  |  | 
|  | /* Free everything we malloc.  */ | 
|  | #ifdef MATCH_MAY_ALLOCATE | 
|  | # ifdef WCHAR | 
|  | #  define FREE_VARIABLES()						\ | 
|  | do {									\ | 
|  | REGEX_FREE_STACK (fail_stack.stack);				\ | 
|  | FREE_VAR (regstart);						\ | 
|  | FREE_VAR (regend);							\ | 
|  | FREE_VAR (old_regstart);						\ | 
|  | FREE_VAR (old_regend);						\ | 
|  | FREE_VAR (best_regstart);						\ | 
|  | FREE_VAR (best_regend);						\ | 
|  | FREE_VAR (reg_info);						\ | 
|  | FREE_VAR (reg_dummy);						\ | 
|  | FREE_VAR (reg_info_dummy);						\ | 
|  | if (!cant_free_wcs_buf)						\ | 
|  | {									\ | 
|  | FREE_VAR (string1);						\ | 
|  | FREE_VAR (string2);						\ | 
|  | FREE_VAR (mbs_offset1);						\ | 
|  | FREE_VAR (mbs_offset2);						\ | 
|  | }									\ | 
|  | } while (0) | 
|  | # else /* BYTE */ | 
|  | #  define FREE_VARIABLES()						\ | 
|  | do {									\ | 
|  | REGEX_FREE_STACK (fail_stack.stack);				\ | 
|  | FREE_VAR (regstart);						\ | 
|  | FREE_VAR (regend);							\ | 
|  | FREE_VAR (old_regstart);						\ | 
|  | FREE_VAR (old_regend);						\ | 
|  | FREE_VAR (best_regstart);						\ | 
|  | FREE_VAR (best_regend);						\ | 
|  | FREE_VAR (reg_info);						\ | 
|  | FREE_VAR (reg_dummy);						\ | 
|  | FREE_VAR (reg_info_dummy);						\ | 
|  | } while (0) | 
|  | # endif /* WCHAR */ | 
|  | #else | 
|  | # ifdef WCHAR | 
|  | #  define FREE_VARIABLES()						\ | 
|  | do {									\ | 
|  | if (!cant_free_wcs_buf)						\ | 
|  | {									\ | 
|  | FREE_VAR (string1);						\ | 
|  | FREE_VAR (string2);						\ | 
|  | FREE_VAR (mbs_offset1);						\ | 
|  | FREE_VAR (mbs_offset2);						\ | 
|  | }									\ | 
|  | } while (0) | 
|  | # else /* BYTE */ | 
|  | #  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */ | 
|  | # endif /* WCHAR */ | 
|  | #endif /* not MATCH_MAY_ALLOCATE */ | 
|  |  | 
|  | /* These values must meet several constraints.  They must not be valid | 
|  | register values; since we have a limit of 255 registers (because | 
|  | we use only one byte in the pattern for the register number), we can | 
|  | use numbers larger than 255.  They must differ by 1, because of | 
|  | NUM_FAILURE_ITEMS above.  And the value for the lowest register must | 
|  | be larger than the value for the highest register, so we do not try | 
|  | to actually save any registers when none are active.  */ | 
|  | #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) | 
|  | #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) | 
|  |  | 
|  | #else /* not INSIDE_RECURSION */ | 
|  | /* Matching routines.  */ | 
|  |  | 
|  | #ifndef emacs   /* Emacs never uses this.  */ | 
|  | /* re_match is like re_match_2 except it takes only a single string.  */ | 
|  |  | 
|  | int | 
|  | re_match (struct re_pattern_buffer *bufp, const char *string, | 
|  | int size, int pos, struct re_registers *regs) | 
|  | { | 
|  | int result; | 
|  | # ifdef MBS_SUPPORT | 
|  | if (MB_CUR_MAX != 1) | 
|  | result = wcs_re_match_2_internal (bufp, NULL, 0, string, size, | 
|  | pos, regs, size, | 
|  | NULL, 0, NULL, 0, NULL, NULL); | 
|  | else | 
|  | # endif | 
|  | result = byte_re_match_2_internal (bufp, NULL, 0, string, size, | 
|  | pos, regs, size); | 
|  | # ifndef REGEX_MALLOC | 
|  | #  ifdef C_ALLOCA | 
|  | alloca (0); | 
|  | #  endif | 
|  | # endif | 
|  | return result; | 
|  | } | 
|  | # ifdef _LIBC | 
|  | weak_alias (__re_match, re_match) | 
|  | # endif | 
|  | #endif /* not emacs */ | 
|  |  | 
|  | #endif /* not INSIDE_RECURSION */ | 
|  |  | 
|  | #ifdef INSIDE_RECURSION | 
|  | static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p, | 
|  | UCHAR_T *end, | 
|  | PREFIX(register_info_type) *reg_info); | 
|  | static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p, | 
|  | UCHAR_T *end, | 
|  | PREFIX(register_info_type) *reg_info); | 
|  | static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p, | 
|  | UCHAR_T *end, | 
|  | PREFIX(register_info_type) *reg_info); | 
|  | static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, | 
|  | int len, char *translate); | 
|  | #else /* not INSIDE_RECURSION */ | 
|  |  | 
|  | /* re_match_2 matches the compiled pattern in BUFP against the | 
|  | the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 | 
|  | and SIZE2, respectively).  We start matching at POS, and stop | 
|  | matching at STOP. | 
|  |  | 
|  | If REGS is non-null and the `no_sub' field of BUFP is nonzero, we | 
|  | store offsets for the substring each group matched in REGS.  See the | 
|  | documentation for exactly how many groups we fill. | 
|  |  | 
|  | We return -1 if no match, -2 if an internal error (such as the | 
|  | failure stack overflowing).  Otherwise, we return the length of the | 
|  | matched substring.  */ | 
|  |  | 
|  | int | 
|  | re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1, | 
|  | const char *string2, int size2, int pos, | 
|  | struct re_registers *regs, int stop) | 
|  | { | 
|  | int result; | 
|  | # ifdef MBS_SUPPORT | 
|  | if (MB_CUR_MAX != 1) | 
|  | result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2, | 
|  | pos, regs, stop, | 
|  | NULL, 0, NULL, 0, NULL, NULL); | 
|  | else | 
|  | # endif | 
|  | result = byte_re_match_2_internal (bufp, string1, size1, string2, size2, | 
|  | pos, regs, stop); | 
|  |  | 
|  | #ifndef REGEX_MALLOC | 
|  | # ifdef C_ALLOCA | 
|  | alloca (0); | 
|  | # endif | 
|  | #endif | 
|  | return result; | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__re_match_2, re_match_2) | 
|  | #endif | 
|  |  | 
|  | #endif /* not INSIDE_RECURSION */ | 
|  |  | 
|  | #ifdef INSIDE_RECURSION | 
|  |  | 
|  | #ifdef WCHAR | 
|  | static int count_mbs_length (int *, int); | 
|  |  | 
|  | /* This check the substring (from 0, to length) of the multibyte string, | 
|  | to which offset_buffer correspond. And count how many wchar_t_characters | 
|  | the substring occupy. We use offset_buffer to optimization. | 
|  | See convert_mbs_to_wcs.  */ | 
|  |  | 
|  | static int | 
|  | count_mbs_length(int *offset_buffer, int length) | 
|  | { | 
|  | int upper, lower; | 
|  |  | 
|  | /* Check whether the size is valid.  */ | 
|  | if (length < 0) | 
|  | return -1; | 
|  |  | 
|  | if (offset_buffer == NULL) | 
|  | return 0; | 
|  |  | 
|  | /* If there are no multibyte character, offset_buffer[i] == i. | 
|  | Optmize for this case.  */ | 
|  | if (offset_buffer[length] == length) | 
|  | return length; | 
|  |  | 
|  | /* Set up upper with length. (because for all i, offset_buffer[i] >= i)  */ | 
|  | upper = length; | 
|  | lower = 0; | 
|  |  | 
|  | while (true) | 
|  | { | 
|  | int middle = (lower + upper) / 2; | 
|  | if (middle == lower || middle == upper) | 
|  | break; | 
|  | if (offset_buffer[middle] > length) | 
|  | upper = middle; | 
|  | else if (offset_buffer[middle] < length) | 
|  | lower = middle; | 
|  | else | 
|  | return middle; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  | /* This is a separate function so that we can force an alloca cleanup | 
|  | afterwards.  */ | 
|  | #ifdef WCHAR | 
|  | static int | 
|  | wcs_re_match_2_internal (struct re_pattern_buffer *bufp, | 
|  | const char *cstring1, int csize1, | 
|  | const char *cstring2, int csize2, | 
|  | int pos, | 
|  | struct re_registers *regs, | 
|  | int stop, | 
|  | /* string1 == string2 == NULL means string1/2, size1/2 and | 
|  | mbs_offset1/2 need seting up in this function.  */ | 
|  | /* We need wchar_t* buffers correspond to cstring1, cstring2.  */ | 
|  | wchar_t *string1, int size1, | 
|  | wchar_t *string2, int size2, | 
|  | /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */ | 
|  | int *mbs_offset1, int *mbs_offset2) | 
|  | #else /* BYTE */ | 
|  | static int | 
|  | byte_re_match_2_internal (struct re_pattern_buffer *bufp, | 
|  | const char *string1, int size1, | 
|  | const char *string2, int size2, | 
|  | int pos, | 
|  | struct re_registers *regs, int stop) | 
|  | #endif /* BYTE */ | 
|  | { | 
|  | /* General temporaries.  */ | 
|  | int mcnt; | 
|  | UCHAR_T *p1; | 
|  | #ifdef WCHAR | 
|  | /* They hold whether each wchar_t is binary data or not.  */ | 
|  | char *is_binary = NULL; | 
|  | /* If true, we can't free string1/2, mbs_offset1/2.  */ | 
|  | int cant_free_wcs_buf = 1; | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  | /* Just past the end of the corresponding string.  */ | 
|  | const CHAR_T *end1, *end2; | 
|  |  | 
|  | /* Pointers into string1 and string2, just past the last characters in | 
|  | each to consider matching.  */ | 
|  | const CHAR_T *end_match_1, *end_match_2; | 
|  |  | 
|  | /* Where we are in the data, and the end of the current string.  */ | 
|  | const CHAR_T *d, *dend; | 
|  |  | 
|  | /* Where we are in the pattern, and the end of the pattern.  */ | 
|  | #ifdef WCHAR | 
|  | UCHAR_T *pattern, *p; | 
|  | register UCHAR_T *pend; | 
|  | #else /* BYTE */ | 
|  | UCHAR_T *p = bufp->buffer; | 
|  | register UCHAR_T *pend = p + bufp->used; | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  | /* Mark the opcode just after a start_memory, so we can test for an | 
|  | empty subpattern when we get to the stop_memory.  */ | 
|  | UCHAR_T *just_past_start_mem = 0; | 
|  |  | 
|  | /* We use this to map every character in the string.  */ | 
|  | RE_TRANSLATE_TYPE translate = bufp->translate; | 
|  |  | 
|  | /* Failure point stack.  Each place that can handle a failure further | 
|  | down the line pushes a failure point on this stack.  It consists of | 
|  | restart, regend, and reg_info for all registers corresponding to | 
|  | the subexpressions we're currently inside, plus the number of such | 
|  | registers, and, finally, two char *'s.  The first char * is where | 
|  | to resume scanning the pattern; the second one is where to resume | 
|  | scanning the strings.  If the latter is zero, the failure point is | 
|  | a ``dummy''; if a failure happens and the failure point is a dummy, | 
|  | it gets discarded and the next one is tried.  */ | 
|  | #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */ | 
|  | PREFIX(fail_stack_type) fail_stack; | 
|  | #endif | 
|  | #ifdef DEBUG | 
|  | static unsigned failure_id; | 
|  | unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; | 
|  | #endif | 
|  |  | 
|  | #ifdef REL_ALLOC | 
|  | /* This holds the pointer to the failure stack, when | 
|  | it is allocated relocatably.  */ | 
|  | fail_stack_elt_t *failure_stack_ptr; | 
|  | #endif | 
|  |  | 
|  | /* We fill all the registers internally, independent of what we | 
|  | return, for use in backreferences.  The number here includes | 
|  | an element for register zero.  */ | 
|  | size_t num_regs = bufp->re_nsub + 1; | 
|  |  | 
|  | /* The currently active registers.  */ | 
|  | active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG; | 
|  | active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG; | 
|  |  | 
|  | /* Information on the contents of registers. These are pointers into | 
|  | the input strings; they record just what was matched (on this | 
|  | attempt) by a subexpression part of the pattern, that is, the | 
|  | regnum-th regstart pointer points to where in the pattern we began | 
|  | matching and the regnum-th regend points to right after where we | 
|  | stopped matching the regnum-th subexpression.  (The zeroth register | 
|  | keeps track of what the whole pattern matches.)  */ | 
|  | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */ | 
|  | const CHAR_T **regstart, **regend; | 
|  | #endif | 
|  |  | 
|  | /* If a group that's operated upon by a repetition operator fails to | 
|  | match anything, then the register for its start will need to be | 
|  | restored because it will have been set to wherever in the string we | 
|  | are when we last see its open-group operator.  Similarly for a | 
|  | register's end.  */ | 
|  | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */ | 
|  | const CHAR_T **old_regstart, **old_regend; | 
|  | #endif | 
|  |  | 
|  | /* The is_active field of reg_info helps us keep track of which (possibly | 
|  | nested) subexpressions we are currently in. The matched_something | 
|  | field of reg_info[reg_num] helps us tell whether or not we have | 
|  | matched any of the pattern so far this time through the reg_num-th | 
|  | subexpression.  These two fields get reset each time through any | 
|  | loop their register is in.  */ | 
|  | #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */ | 
|  | PREFIX(register_info_type) *reg_info; | 
|  | #endif | 
|  |  | 
|  | /* The following record the register info as found in the above | 
|  | variables when we find a match better than any we've seen before. | 
|  | This happens as we backtrack through the failure points, which in | 
|  | turn happens only if we have not yet matched the entire string. */ | 
|  | unsigned best_regs_set = false; | 
|  | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */ | 
|  | const CHAR_T **best_regstart, **best_regend; | 
|  | #endif | 
|  |  | 
|  | /* Logically, this is `best_regend[0]'.  But we don't want to have to | 
|  | allocate space for that if we're not allocating space for anything | 
|  | else (see below).  Also, we never need info about register 0 for | 
|  | any of the other register vectors, and it seems rather a kludge to | 
|  | treat `best_regend' differently than the rest.  So we keep track of | 
|  | the end of the best match so far in a separate variable.  We | 
|  | initialize this to NULL so that when we backtrack the first time | 
|  | and need to test it, it's not garbage.  */ | 
|  | const CHAR_T *match_end = NULL; | 
|  |  | 
|  | /* This helps SET_REGS_MATCHED avoid doing redundant work.  */ | 
|  | int set_regs_matched_done = 0; | 
|  |  | 
|  | /* Used when we pop values we don't care about.  */ | 
|  | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */ | 
|  | const CHAR_T **reg_dummy; | 
|  | PREFIX(register_info_type) *reg_info_dummy; | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG | 
|  | /* Counts the total number of registers pushed.  */ | 
|  | unsigned num_regs_pushed = 0; | 
|  | #endif | 
|  |  | 
|  | DEBUG_PRINT1 ("\n\nEntering re_match_2.\n"); | 
|  |  | 
|  | INIT_FAIL_STACK (); | 
|  |  | 
|  | #ifdef MATCH_MAY_ALLOCATE | 
|  | /* Do not bother to initialize all the register variables if there are | 
|  | no groups in the pattern, as it takes a fair amount of time.  If | 
|  | there are groups, we include space for register 0 (the whole | 
|  | pattern), even though we never use it, since it simplifies the | 
|  | array indexing.  We should fix this.  */ | 
|  | if (bufp->re_nsub) | 
|  | { | 
|  | regstart = REGEX_TALLOC (num_regs, const CHAR_T *); | 
|  | regend = REGEX_TALLOC (num_regs, const CHAR_T *); | 
|  | old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *); | 
|  | old_regend = REGEX_TALLOC (num_regs, const CHAR_T *); | 
|  | best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *); | 
|  | best_regend = REGEX_TALLOC (num_regs, const CHAR_T *); | 
|  | reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type)); | 
|  | reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *); | 
|  | reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type)); | 
|  |  | 
|  | if (!(regstart && regend && old_regstart && old_regend && reg_info | 
|  | && best_regstart && best_regend && reg_dummy && reg_info_dummy)) | 
|  | { | 
|  | FREE_VARIABLES (); | 
|  | return -2; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* We must initialize all our variables to NULL, so that | 
|  | `FREE_VARIABLES' doesn't try to free them.  */ | 
|  | regstart = regend = old_regstart = old_regend = best_regstart | 
|  | = best_regend = reg_dummy = NULL; | 
|  | reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL; | 
|  | } | 
|  | #endif /* MATCH_MAY_ALLOCATE */ | 
|  |  | 
|  | /* The starting position is bogus.  */ | 
|  | #ifdef WCHAR | 
|  | if (pos < 0 || pos > csize1 + csize2) | 
|  | #else /* BYTE */ | 
|  | if (pos < 0 || pos > size1 + size2) | 
|  | #endif | 
|  | { | 
|  | FREE_VARIABLES (); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | #ifdef WCHAR | 
|  | /* Allocate wchar_t array for string1 and string2 and | 
|  | fill them with converted string.  */ | 
|  | if (string1 == NULL && string2 == NULL) | 
|  | { | 
|  | /* We need seting up buffers here.  */ | 
|  |  | 
|  | /* We must free wcs buffers in this function.  */ | 
|  | cant_free_wcs_buf = 0; | 
|  |  | 
|  | if (csize1 != 0) | 
|  | { | 
|  | string1 = REGEX_TALLOC (csize1 + 1, CHAR_T); | 
|  | mbs_offset1 = REGEX_TALLOC (csize1 + 1, int); | 
|  | is_binary = REGEX_TALLOC (csize1 + 1, char); | 
|  | if (!string1 || !mbs_offset1 || !is_binary) | 
|  | { | 
|  | FREE_VAR (string1); | 
|  | FREE_VAR (mbs_offset1); | 
|  | FREE_VAR (is_binary); | 
|  | return -2; | 
|  | } | 
|  | } | 
|  | if (csize2 != 0) | 
|  | { | 
|  | string2 = REGEX_TALLOC (csize2 + 1, CHAR_T); | 
|  | mbs_offset2 = REGEX_TALLOC (csize2 + 1, int); | 
|  | is_binary = REGEX_TALLOC (csize2 + 1, char); | 
|  | if (!string2 || !mbs_offset2 || !is_binary) | 
|  | { | 
|  | FREE_VAR (string1); | 
|  | FREE_VAR (mbs_offset1); | 
|  | FREE_VAR (string2); | 
|  | FREE_VAR (mbs_offset2); | 
|  | FREE_VAR (is_binary); | 
|  | return -2; | 
|  | } | 
|  | size2 = convert_mbs_to_wcs(string2, cstring2, csize2, | 
|  | mbs_offset2, is_binary); | 
|  | string2[size2] = L'\0'; /* for a sentinel  */ | 
|  | FREE_VAR (is_binary); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We need to cast pattern to (wchar_t*), because we casted this compiled | 
|  | pattern to (char*) in regex_compile.  */ | 
|  | p = pattern = (CHAR_T*)bufp->buffer; | 
|  | pend = (CHAR_T*)(bufp->buffer + bufp->used); | 
|  |  | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  | /* Initialize subexpression text positions to -1 to mark ones that no | 
|  | start_memory/stop_memory has been seen for. Also initialize the | 
|  | register information struct.  */ | 
|  | for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) | 
|  | { | 
|  | regstart[mcnt] = regend[mcnt] | 
|  | = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; | 
|  |  | 
|  | REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; | 
|  | IS_ACTIVE (reg_info[mcnt]) = 0; | 
|  | MATCHED_SOMETHING (reg_info[mcnt]) = 0; | 
|  | EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; | 
|  | } | 
|  |  | 
|  | /* We move `string1' into `string2' if the latter's empty -- but not if | 
|  | `string1' is null.  */ | 
|  | if (size2 == 0 && string1 != NULL) | 
|  | { | 
|  | string2 = string1; | 
|  | size2 = size1; | 
|  | string1 = 0; | 
|  | size1 = 0; | 
|  | #ifdef WCHAR | 
|  | mbs_offset2 = mbs_offset1; | 
|  | csize2 = csize1; | 
|  | mbs_offset1 = NULL; | 
|  | csize1 = 0; | 
|  | #endif | 
|  | } | 
|  | end1 = string1 + size1; | 
|  | end2 = string2 + size2; | 
|  |  | 
|  | /* Compute where to stop matching, within the two strings.  */ | 
|  | #ifdef WCHAR | 
|  | if (stop <= csize1) | 
|  | { | 
|  | mcnt = count_mbs_length(mbs_offset1, stop); | 
|  | end_match_1 = string1 + mcnt; | 
|  | end_match_2 = string2; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (stop > csize1 + csize2) | 
|  | stop = csize1 + csize2; | 
|  | end_match_1 = end1; | 
|  | mcnt = count_mbs_length(mbs_offset2, stop-csize1); | 
|  | end_match_2 = string2 + mcnt; | 
|  | } | 
|  | if (mcnt < 0) | 
|  | { /* count_mbs_length return error.  */ | 
|  | FREE_VARIABLES (); | 
|  | return -1; | 
|  | } | 
|  | #else | 
|  | if (stop <= size1) | 
|  | { | 
|  | end_match_1 = string1 + stop; | 
|  | end_match_2 = string2; | 
|  | } | 
|  | else | 
|  | { | 
|  | end_match_1 = end1; | 
|  | end_match_2 = string2 + stop - size1; | 
|  | } | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  | /* `p' scans through the pattern as `d' scans through the data. | 
|  | `dend' is the end of the input string that `d' points within.  `d' | 
|  | is advanced into the following input string whenever necessary, but | 
|  | this happens before fetching; therefore, at the beginning of the | 
|  | loop, `d' can be pointing at the end of a string, but it cannot | 
|  | equal `string2'.  */ | 
|  | #ifdef WCHAR | 
|  | if (size1 > 0 && pos <= csize1) | 
|  | { | 
|  | mcnt = count_mbs_length(mbs_offset1, pos); | 
|  | d = string1 + mcnt; | 
|  | dend = end_match_1; | 
|  | } | 
|  | else | 
|  | { | 
|  | mcnt = count_mbs_length(mbs_offset2, pos-csize1); | 
|  | d = string2 + mcnt; | 
|  | dend = end_match_2; | 
|  | } | 
|  |  | 
|  | if (mcnt < 0) | 
|  | { /* count_mbs_length return error.  */ | 
|  | FREE_VARIABLES (); | 
|  | return -1; | 
|  | } | 
|  | #else | 
|  | if (size1 > 0 && pos <= size1) | 
|  | { | 
|  | d = string1 + pos; | 
|  | dend = end_match_1; | 
|  | } | 
|  | else | 
|  | { | 
|  | d = string2 + pos - size1; | 
|  | dend = end_match_2; | 
|  | } | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  | DEBUG_PRINT1 ("The compiled pattern is:\n"); | 
|  | DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); | 
|  | DEBUG_PRINT1 ("The string to match is: `"); | 
|  | DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); | 
|  | DEBUG_PRINT1 ("'\n"); | 
|  |  | 
|  | /* This loops over pattern commands.  It exits by returning from the | 
|  | function if the match is complete, or it drops through if the match | 
|  | fails at this starting point in the input data.  */ | 
|  | for (;;) | 
|  | { | 
|  | #ifdef _LIBC | 
|  | DEBUG_PRINT2 ("\n%p: ", p); | 
|  | #else | 
|  | DEBUG_PRINT2 ("\n0x%x: ", p); | 
|  | #endif | 
|  |  | 
|  | if (p == pend) | 
|  | { /* End of pattern means we might have succeeded.  */ | 
|  | DEBUG_PRINT1 ("end of pattern ... "); | 
|  |  | 
|  | /* If we haven't matched the entire string, and we want the | 
|  | longest match, try backtracking.  */ | 
|  | if (d != end_match_2) | 
|  | { | 
|  | /* 1 if this match ends in the same string (string1 or string2) | 
|  | as the best previous match.  */ | 
|  | boolean same_str_p; | 
|  |  | 
|  | /* 1 if this match is the best seen so far.  */ | 
|  | boolean best_match_p; | 
|  |  | 
|  | same_str_p = (FIRST_STRING_P (match_end) | 
|  | == MATCHING_IN_FIRST_STRING); | 
|  |  | 
|  | /* AIX compiler got confused when this was combined | 
|  | with the previous declaration.  */ | 
|  | if (same_str_p) | 
|  | best_match_p = d > match_end; | 
|  | else | 
|  | best_match_p = !MATCHING_IN_FIRST_STRING; | 
|  |  | 
|  | DEBUG_PRINT1 ("backtracking.\n"); | 
|  |  | 
|  | if (!FAIL_STACK_EMPTY ()) | 
|  | { /* More failure points to try.  */ | 
|  |  | 
|  | /* If exceeds best match so far, save it.  */ | 
|  | if (!best_regs_set || best_match_p) | 
|  | { | 
|  | best_regs_set = true; | 
|  | match_end = d; | 
|  |  | 
|  | DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); | 
|  |  | 
|  | for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) | 
|  | { | 
|  | best_regstart[mcnt] = regstart[mcnt]; | 
|  | best_regend[mcnt] = regend[mcnt]; | 
|  | } | 
|  | } | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* If no failure points, don't restore garbage.  And if | 
|  | last match is real best match, don't restore second | 
|  | best one. */ | 
|  | else if (best_regs_set && !best_match_p) | 
|  | { | 
|  | restore_best_regs: | 
|  | /* Restore best match.  It may happen that `dend == | 
|  | end_match_1' while the restored d is in string2. | 
|  | For example, the pattern `x.*y.*z' against the | 
|  | strings `x-' and `y-z-', if the two strings are | 
|  | not consecutive in memory.  */ | 
|  | DEBUG_PRINT1 ("Restoring best registers.\n"); | 
|  |  | 
|  | d = match_end; | 
|  | dend = ((d >= string1 && d <= end1) | 
|  | ? end_match_1 : end_match_2); | 
|  |  | 
|  | for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) | 
|  | { | 
|  | regstart[mcnt] = best_regstart[mcnt]; | 
|  | regend[mcnt] = best_regend[mcnt]; | 
|  | } | 
|  | } | 
|  | } /* d != end_match_2 */ | 
|  |  | 
|  | succeed_label: | 
|  | DEBUG_PRINT1 ("Accepting match.\n"); | 
|  | /* If caller wants register contents data back, do it.  */ | 
|  | if (regs && !bufp->no_sub) | 
|  | { | 
|  | /* Have the register data arrays been allocated?  */ | 
|  | if (bufp->regs_allocated == REGS_UNALLOCATED) | 
|  | { /* No.  So allocate them with malloc.  We need one | 
|  | extra element beyond `num_regs' for the `-1' marker | 
|  | GNU code uses.  */ | 
|  | regs->num_regs = MAX (RE_NREGS, num_regs + 1); | 
|  | regs->start = TALLOC (regs->num_regs, regoff_t); | 
|  | regs->end = TALLOC (regs->num_regs, regoff_t); | 
|  | if (regs->start == NULL || regs->end == NULL) | 
|  | { | 
|  | FREE_VARIABLES (); | 
|  | return -2; | 
|  | } | 
|  | bufp->regs_allocated = REGS_REALLOCATE; | 
|  | } | 
|  | else if (bufp->regs_allocated == REGS_REALLOCATE) | 
|  | { /* Yes.  If we need more elements than were already | 
|  | allocated, reallocate them.  If we need fewer, just | 
|  | leave it alone.  */ | 
|  | if (regs->num_regs < num_regs + 1) | 
|  | { | 
|  | regs->num_regs = num_regs + 1; | 
|  | RETALLOC (regs->start, regs->num_regs, regoff_t); | 
|  | RETALLOC (regs->end, regs->num_regs, regoff_t); | 
|  | if (regs->start == NULL || regs->end == NULL) | 
|  | { | 
|  | FREE_VARIABLES (); | 
|  | return -2; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* These braces fend off a "empty body in an else-statement" | 
|  | warning under GCC when assert expands to nothing.  */ | 
|  | assert (bufp->regs_allocated == REGS_FIXED); | 
|  | } | 
|  |  | 
|  | /* Convert the pointer data in `regstart' and `regend' to | 
|  | indices.  Register zero has to be set differently, | 
|  | since we haven't kept track of any info for it.  */ | 
|  | if (regs->num_regs > 0) | 
|  | { | 
|  | regs->start[0] = pos; | 
|  | #ifdef WCHAR | 
|  | if (MATCHING_IN_FIRST_STRING) | 
|  | regs->end[0] = mbs_offset1 != NULL ? | 
|  | mbs_offset1[d-string1] : 0; | 
|  | else | 
|  | regs->end[0] = csize1 + (mbs_offset2 != NULL ? | 
|  | mbs_offset2[d-string2] : 0); | 
|  | #else | 
|  | regs->end[0] = (MATCHING_IN_FIRST_STRING | 
|  | ? ((regoff_t) (d - string1)) | 
|  | : ((regoff_t) (d - string2 + size1))); | 
|  | #endif /* WCHAR */ | 
|  | } | 
|  |  | 
|  | /* Go through the first `min (num_regs, regs->num_regs)' | 
|  | registers, since that is all we initialized.  */ | 
|  | for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs); | 
|  | mcnt++) | 
|  | { | 
|  | if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) | 
|  | regs->start[mcnt] = regs->end[mcnt] = -1; | 
|  | else | 
|  | { | 
|  | regs->start[mcnt] | 
|  | = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]); | 
|  | regs->end[mcnt] | 
|  | = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If the regs structure we return has more elements than | 
|  | were in the pattern, set the extra elements to -1.  If | 
|  | we (re)allocated the registers, this is the case, | 
|  | because we always allocate enough to have at least one | 
|  | -1 at the end.  */ | 
|  | for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++) | 
|  | regs->start[mcnt] = regs->end[mcnt] = -1; | 
|  | } /* regs && !bufp->no_sub */ | 
|  |  | 
|  | DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", | 
|  | nfailure_points_pushed, nfailure_points_popped, | 
|  | nfailure_points_pushed - nfailure_points_popped); | 
|  | DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); | 
|  |  | 
|  | #ifdef WCHAR | 
|  | if (MATCHING_IN_FIRST_STRING) | 
|  | mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0; | 
|  | else | 
|  | mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) + | 
|  | csize1; | 
|  | mcnt -= pos; | 
|  | #else | 
|  | mcnt = d - pos - (MATCHING_IN_FIRST_STRING | 
|  | ? string1 | 
|  | : string2 - size1); | 
|  | #endif /* WCHAR */ | 
|  |  | 
|  | DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); | 
|  |  | 
|  | FREE_VARIABLES (); | 
|  | return mcnt; | 
|  | } | 
|  |  | 
|  | /* Otherwise match next pattern command.  */ | 
|  | switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) | 
|  | { | 
|  | /* Ignore these.  Used to ignore the n of succeed_n's which | 
|  | currently have n == 0.  */ | 
|  | case no_op: | 
|  | DEBUG_PRINT1 ("EXECUTING no_op.\n"); | 
|  | break; | 
|  |  | 
|  | case succeed: | 
|  | DEBUG_PRINT1 ("EXECUTING succeed.\n"); | 
|  | goto succeed_label; | 
|  |  | 
|  | /* Match the next n pattern characters exactly.  The following | 
|  | byte in the pattern defines n, and the n bytes after that | 
|  | are the characters to match.  */ | 
|  | case exactn: | 
|  | #ifdef MBS_SUPPORT | 
|  | case exactn_bin: | 
|  | #endif | 
|  | mcnt = *p++; | 
|  | DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); | 
|  |  | 
|  | /* This is written out as an if-else so we don't waste time | 
|  | testing `translate' inside the loop.  */ | 
|  | if (translate) | 
|  | { | 
|  | do | 
|  | { | 
|  | PREFETCH (); | 
|  | #ifdef WCHAR | 
|  | if (*d <= 0xff) | 
|  | { | 
|  | if ((UCHAR_T) translate[(unsigned char) *d++] | 
|  | != (UCHAR_T) *p++) | 
|  | goto fail; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (*d++ != (CHAR_T) *p++) | 
|  | goto fail; | 
|  | } | 
|  | #else | 
|  | if ((UCHAR_T) translate[(unsigned char) *d++] | 
|  | != (UCHAR_T) *p++) | 
|  | goto fail; | 
|  | #endif /* WCHAR */ | 
|  | } | 
|  | while (--mcnt); | 
|  | } | 
|  | else | 
|  | { | 
|  | do | 
|  | { | 
|  | PREFETCH (); | 
|  | if (*d++ != (CHAR_T) *p++) goto fail; | 
|  | } | 
|  | while (--mcnt); | 
|  | } | 
|  | SET_REGS_MATCHED (); | 
|  | break; | 
|  |  | 
|  |  | 
|  | /* Match any character except possibly a newline or a null.  */ | 
|  | case anychar: | 
|  | DEBUG_PRINT1 ("EXECUTING anychar.\n"); | 
|  |  | 
|  | PREFETCH (); | 
|  |  | 
|  | if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n') | 
|  | || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000')) | 
|  | goto fail; | 
|  |  | 
|  | SET_REGS_MATCHED (); | 
|  | DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d); | 
|  | d++; | 
|  | break; | 
|  |  | 
|  |  | 
|  | case charset: | 
|  | case charset_not: | 
|  | { | 
|  | register UCHAR_T c; | 
|  | #ifdef WCHAR | 
|  | unsigned int i, char_class_length, coll_symbol_length, | 
|  | equiv_class_length, ranges_length, chars_length, length; | 
|  | CHAR_T *workp, *workp2, *charset_top; | 
|  | #define WORK_BUFFER_SIZE 128 | 
|  | CHAR_T str_buf[WORK_BUFFER_SIZE]; | 
|  | # ifdef _LIBC | 
|  | uint32_t nrules; | 
|  | # endif /* _LIBC */ | 
|  | #endif /* WCHAR */ | 
|  | boolean negate = (re_opcode_t) *(p - 1) == charset_not; | 
|  |  | 
|  | DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate ? "_not" : ""); | 
|  | PREFETCH (); | 
|  | c = TRANSLATE (*d); /* The character to match.  */ | 
|  | #ifdef WCHAR | 
|  | # ifdef _LIBC | 
|  | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | 
|  | # endif /* _LIBC */ | 
|  | charset_top = p - 1; | 
|  | char_class_length = *p++; | 
|  | coll_symbol_length = *p++; | 
|  | equiv_class_length = *p++; | 
|  | ranges_length = *p++; | 
|  | chars_length = *p++; | 
|  | /* p points charset[6], so the address of the next instruction | 
|  | (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'], | 
|  | where l=length of char_classes, m=length of collating_symbol, | 
|  | n=equivalence_class, o=length of char_range, | 
|  | p'=length of character.  */ | 
|  | workp = p; | 
|  | /* Update p to indicate the next instruction.  */ | 
|  | p += char_class_length + coll_symbol_length+ equiv_class_length + | 
|  | 2*ranges_length + chars_length; | 
|  |  | 
|  | /* match with char_class?  */ | 
|  | for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE) | 
|  | { | 
|  | wctype_t wctype; | 
|  | uintptr_t alignedp = ((uintptr_t)workp | 
|  | + __alignof__(wctype_t) - 1) | 
|  | & ~(uintptr_t)(__alignof__(wctype_t) - 1); | 
|  | wctype = *((wctype_t*)alignedp); | 
|  | workp += CHAR_CLASS_SIZE; | 
|  | # ifdef _LIBC | 
|  | if (__iswctype((wint_t)c, wctype)) | 
|  | goto char_set_matched; | 
|  | # else | 
|  | if (iswctype((wint_t)c, wctype)) | 
|  | goto char_set_matched; | 
|  | # endif | 
|  | } | 
|  |  | 
|  | /* match with collating_symbol?  */ | 
|  | # ifdef _LIBC | 
|  | if (nrules != 0) | 
|  | { | 
|  | const unsigned char *extra = (const unsigned char *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); | 
|  |  | 
|  | for (workp2 = workp + coll_symbol_length ; workp < workp2 ; | 
|  | workp++) | 
|  | { | 
|  | int32_t *wextra; | 
|  | wextra = (int32_t*)(extra + *workp++); | 
|  | for (i = 0; i < *wextra; ++i) | 
|  | if (TRANSLATE(d[i]) != wextra[1 + i]) | 
|  | break; | 
|  |  | 
|  | if (i == *wextra) | 
|  | { | 
|  | /* Update d, however d will be incremented at | 
|  | char_set_matched:, we decrement d here.  */ | 
|  | d += i - 1; | 
|  | goto char_set_matched; | 
|  | } | 
|  | } | 
|  | } | 
|  | else /* (nrules == 0) */ | 
|  | # endif | 
|  | /* If we can't look up collation data, we use wcscoll | 
|  | instead.  */ | 
|  | { | 
|  | for (workp2 = workp + coll_symbol_length ; workp < workp2 ;) | 
|  | { | 
|  | const CHAR_T *backup_d = d, *backup_dend = dend; | 
|  | # ifdef _LIBC | 
|  | length = __wcslen (workp); | 
|  | # else | 
|  | length = wcslen (workp); | 
|  | # endif | 
|  |  | 
|  | /* If wcscoll(the collating symbol, whole string) > 0, | 
|  | any substring of the string never match with the | 
|  | collating symbol.  */ | 
|  | # ifdef _LIBC | 
|  | if (__wcscoll (workp, d) > 0) | 
|  | # else | 
|  | if (wcscoll (workp, d) > 0) | 
|  | # endif | 
|  | { | 
|  | workp += length + 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* First, we compare the collating symbol with | 
|  | the first character of the string. | 
|  | If it don't match, we add the next character to | 
|  | the compare buffer in turn.  */ | 
|  | for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++) | 
|  | { | 
|  | int match; | 
|  | if (d == dend) | 
|  | { | 
|  | if (dend == end_match_2) | 
|  | break; | 
|  | d = string2; | 
|  | dend = end_match_2; | 
|  | } | 
|  |  | 
|  | /* add next character to the compare buffer.  */ | 
|  | str_buf[i] = TRANSLATE(*d); | 
|  | str_buf[i+1] = '\0'; | 
|  |  | 
|  | # ifdef _LIBC | 
|  | match = __wcscoll (workp, str_buf); | 
|  | # else | 
|  | match = wcscoll (workp, str_buf); | 
|  | # endif | 
|  | if (match == 0) | 
|  | goto char_set_matched; | 
|  |  | 
|  | if (match < 0) | 
|  | /* (str_buf > workp) indicate (str_buf + X > workp), | 
|  | because for all X (str_buf + X > str_buf). | 
|  | So we don't need continue this loop.  */ | 
|  | break; | 
|  |  | 
|  | /* Otherwise(str_buf < workp), | 
|  | (str_buf+next_character) may equals (workp). | 
|  | So we continue this loop.  */ | 
|  | } | 
|  | /* not matched */ | 
|  | d = backup_d; | 
|  | dend = backup_dend; | 
|  | workp += length + 1; | 
|  | } | 
|  | } | 
|  | /* match with equivalence_class?  */ | 
|  | # ifdef _LIBC | 
|  | if (nrules != 0) | 
|  | { | 
|  | const CHAR_T *backup_d = d, *backup_dend = dend; | 
|  | /* Try to match the equivalence class against | 
|  | those known to the collate implementation.  */ | 
|  | const int32_t *table; | 
|  | const int32_t *weights; | 
|  | const int32_t *extra; | 
|  | const int32_t *indirect; | 
|  | int32_t idx, idx2; | 
|  | wint_t *cp; | 
|  | size_t len; | 
|  |  | 
|  | /* This #include defines a local function!  */ | 
|  | #  include <locale/weightwc.h> | 
|  |  | 
|  | table = (const int32_t *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC); | 
|  | weights = (const wint_t *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC); | 
|  | extra = (const wint_t *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC); | 
|  | indirect = (const int32_t *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC); | 
|  |  | 
|  | /* Write 1 collating element to str_buf, and | 
|  | get its index.  */ | 
|  | idx2 = 0; | 
|  |  | 
|  | for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++) | 
|  | { | 
|  | cp = (wint_t*)str_buf; | 
|  | if (d == dend) | 
|  | { | 
|  | if (dend == end_match_2) | 
|  | break; | 
|  | d = string2; | 
|  | dend = end_match_2; | 
|  | } | 
|  | str_buf[i] = TRANSLATE(*(d+i)); | 
|  | str_buf[i+1] = '\0'; /* sentinel */ | 
|  | idx2 = findidx ((const wint_t**)&cp); | 
|  | } | 
|  |  | 
|  | /* Update d, however d will be incremented at | 
|  | char_set_matched:, we decrement d here.  */ | 
|  | d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1); | 
|  | if (d >= dend) | 
|  | { | 
|  | if (dend == end_match_2) | 
|  | d = dend; | 
|  | else | 
|  | { | 
|  | d = string2; | 
|  | dend = end_match_2; | 
|  | } | 
|  | } | 
|  |  | 
|  | len = weights[idx2]; | 
|  |  | 
|  | for (workp2 = workp + equiv_class_length ; workp < workp2 ; | 
|  | workp++) | 
|  | { | 
|  | idx = (int32_t)*workp; | 
|  | /* We already checked idx != 0 in regex_compile. */ | 
|  |  | 
|  | if (idx2 != 0 && len == weights[idx]) | 
|  | { | 
|  | int cnt = 0; | 
|  | while (cnt < len && (weights[idx + 1 + cnt] | 
|  | == weights[idx2 + 1 + cnt])) | 
|  | ++cnt; | 
|  |  | 
|  | if (cnt == len) | 
|  | goto char_set_matched; | 
|  | } | 
|  | } | 
|  | /* not matched */ | 
|  | d = backup_d; | 
|  | dend = backup_dend; | 
|  | } | 
|  | else /* (nrules == 0) */ | 
|  | # endif | 
|  | /* If we can't look up collation data, we use wcscoll | 
|  | instead.  */ | 
|  | { | 
|  | for (workp2 = workp + equiv_class_length ; workp < workp2 ;) | 
|  | { | 
|  | const CHAR_T *backup_d = d, *backup_dend = dend; | 
|  | # ifdef _LIBC | 
|  | length = __wcslen (workp); | 
|  | # else | 
|  | length = wcslen (workp); | 
|  | # endif | 
|  |  | 
|  | /* If wcscoll(the collating symbol, whole string) > 0, | 
|  | any substring of the string never match with the | 
|  | collating symbol.  */ | 
|  | # ifdef _LIBC | 
|  | if (__wcscoll (workp, d) > 0) | 
|  | # else | 
|  | if (wcscoll (workp, d) > 0) | 
|  | # endif | 
|  | { | 
|  | workp += length + 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* First, we compare the equivalence class with | 
|  | the first character of the string. | 
|  | If it don't match, we add the next character to | 
|  | the compare buffer in turn.  */ | 
|  | for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++) | 
|  | { | 
|  | int match; | 
|  | if (d == dend) | 
|  | { | 
|  | if (dend == end_match_2) | 
|  | break; | 
|  | d = string2; | 
|  | dend = end_match_2; | 
|  | } | 
|  |  | 
|  | /* add next character to the compare buffer.  */ | 
|  | str_buf[i] = TRANSLATE(*d); | 
|  | str_buf[i+1] = '\0'; | 
|  |  | 
|  | # ifdef _LIBC | 
|  | match = __wcscoll (workp, str_buf); | 
|  | # else | 
|  | match = wcscoll (workp, str_buf); | 
|  | # endif | 
|  |  | 
|  | if (match == 0) | 
|  | goto char_set_matched; | 
|  |  | 
|  | if (match < 0) | 
|  | /* (str_buf > workp) indicate (str_buf + X > workp), | 
|  | because for all X (str_buf + X > str_buf). | 
|  | So we don't need continue this loop.  */ | 
|  | break; | 
|  |  | 
|  | /* Otherwise(str_buf < workp), | 
|  | (str_buf+next_character) may equals (workp). | 
|  | So we continue this loop.  */ | 
|  | } | 
|  | /* not matched */ | 
|  | d = backup_d; | 
|  | dend = backup_dend; | 
|  | workp += length + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* match with char_range?  */ | 
|  | # ifdef _LIBC | 
|  | if (nrules != 0) | 
|  | { | 
|  | uint32_t collseqval; | 
|  | const char *collseq = (const char *) | 
|  | _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC); | 
|  |  | 
|  | collseqval = collseq_table_lookup (collseq, c); | 
|  |  | 
|  | for (; workp < p - chars_length ;) | 
|  | { | 
|  | uint32_t start_val, end_val; | 
|  |  | 
|  | /* We already compute the collation sequence value | 
|  | of the characters (or collating symbols).  */ | 
|  | start_val = (uint32_t) *workp++; /* range_start */ | 
|  | end_val = (uint32_t) *workp++; /* range_end */ | 
|  |  | 
|  | if (start_val <= collseqval && collseqval <= end_val) | 
|  | goto char_set_matched; | 
|  | } | 
|  | } | 
|  | else | 
|  | # endif | 
|  | { | 
|  | /* We set range_start_char at str_buf[0], range_end_char | 
|  | at str_buf[4], and compared char at str_buf[2].  */ | 
|  | str_buf[1] = 0; | 
|  | str_buf[2] = c; | 
|  | str_buf[3] = 0; | 
|  | str_buf[5] = 0; | 
|  | for (; workp < p - chars_length ;) | 
|  | { | 
|  | wchar_t *range_start_char, *range_end_char; | 
|  |  | 
|  | /* match if (range_start_char <= c <= range_end_char).  */ | 
|  |  | 
|  | /* If range_start(or end) < 0, we assume -range_start(end) | 
|  | is the offset of the collating symbol which is specified | 
|  | as the character of the range start(end).  */ | 
|  |  | 
|  | /* range_start */ | 
|  | if (*workp < 0) | 
|  | range_start_char = charset_top - (*workp++); | 
|  | else | 
|  | { | 
|  | str_buf[0] = *workp++; | 
|  | range_start_char = str_buf; | 
|  | } | 
|  |  | 
|  | /* range_end */ | 
|  | if (*workp < 0) | 
|  | range_end_char = charset_top - (*workp++); | 
|  | else | 
|  | { | 
|  | str_buf[4] = *workp++; | 
|  | range_end_char = str_buf + 4; | 
|  | } | 
|  |  | 
|  | # ifdef _LIBC | 
|  | if (__wcscoll (range_start_char, str_buf+2) <= 0 | 
|  | && __wcscoll (str_buf+2, range_end_char) <= 0) | 
|  | # else | 
|  | if (wcscoll (range_start_char, str_buf+2) <= 0 | 
|  | && wcscoll (str_buf+2, range_end_char) <= 0) | 
|  | # endif | 
|  | goto char_set_matched; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* match with char?  */ | 
|  | for (; workp < p ; workp++) | 
|  | if (c == *workp) | 
|  | goto char_set_matched; | 
|  |  | 
|  | negate = !negate; | 
|  |  | 
|  | char_set_matched: | 
|  | if (negate) goto fail; | 
|  | #else | 
|  | /* Cast to `unsigned' instead of `unsigned char' in case the | 
|  | bit list is a full 32 bytes long.  */ | 
|  | if (c < (unsigned) (*p * BYTEWIDTH) | 
|  | && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) | 
|  | negate = !negate; | 
|  |  | 
|  | p += 1 + *p; | 
|  |  | 
|  | if (!negate) goto fail; | 
|  | #undef WORK_BUFFER_SIZE | 
|  | #endif /* WCHAR */ | 
|  | SET_REGS_MATCHED (); | 
|  | d++; | 
|  | break; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* The beginning of a group is represented by start_memory. | 
|  | The arguments are the register number in the next byte, and the | 
|  | number of groups inner to this one in the next.  The text | 
|  | matched within the group is recorded (in the internal | 
|  | registers data structure) under the register number.  */ | 
|  | case start_memory: | 
|  | DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n", | 
|  | (long int) *p, (long int) p[1]); | 
|  |  | 
|  | /* Find out if this group can match the empty string.  */ | 
|  | p1 = p;		/* To send to group_match_null_string_p.  */ | 
|  |  | 
|  | if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) | 
|  | REG_MATCH_NULL_STRING_P (reg_info[*p]) | 
|  | = PREFIX(group_match_null_string_p) (&p1, pend, reg_info); | 
|  |  | 
|  | /* Save the position in the string where we were the last time | 
|  | we were at this open-group operator in case the group is | 
|  | operated upon by a repetition operator, e.g., with `(a*)*b' | 
|  | against `ab'; then we want to ignore where we are now in | 
|  | the string in case this attempt to match fails.  */ | 
|  | old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | 
|  | ? REG_UNSET (regstart[*p]) ? d : regstart[*p] | 
|  | : regstart[*p]; | 
|  | DEBUG_PRINT2 ("  old_regstart: %d\n", | 
|  | POINTER_TO_OFFSET (old_regstart[*p])); | 
|  |  | 
|  | regstart[*p] = d; | 
|  | DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); | 
|  |  | 
|  | IS_ACTIVE (reg_info[*p]) = 1; | 
|  | MATCHED_SOMETHING (reg_info[*p]) = 0; | 
|  |  | 
|  | /* Clear this whenever we change the register activity status.  */ | 
|  | set_regs_matched_done = 0; | 
|  |  | 
|  | /* This is the new highest active register.  */ | 
|  | highest_active_reg = *p; | 
|  |  | 
|  | /* If nothing was active before, this is the new lowest active | 
|  | register.  */ | 
|  | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | 
|  | lowest_active_reg = *p; | 
|  |  | 
|  | /* Move past the register number and inner group count.  */ | 
|  | p += 2; | 
|  | just_past_start_mem = p; | 
|  |  | 
|  | break; | 
|  |  | 
|  |  | 
|  | /* The stop_memory opcode represents the end of a group.  Its | 
|  | arguments are the same as start_memory's: the register | 
|  | number, and the number of inner groups.  */ | 
|  | case stop_memory: | 
|  | DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n", | 
|  | (long int) *p, (long int) p[1]); | 
|  |  | 
|  | /* We need to save the string position the last time we were at | 
|  | this close-group operator in case the group is operated | 
|  | upon by a repetition operator, e.g., with `((a*)*(b*)*)*' | 
|  | against `aba'; then we want to ignore where we are now in | 
|  | the string in case this attempt to match fails.  */ | 
|  | old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | 
|  | ? REG_UNSET (regend[*p]) ? d : regend[*p] | 
|  | : regend[*p]; | 
|  | DEBUG_PRINT2 ("      old_regend: %d\n", | 
|  | POINTER_TO_OFFSET (old_regend[*p])); | 
|  |  | 
|  | regend[*p] = d; | 
|  | DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p])); | 
|  |  | 
|  | /* This register isn't active anymore.  */ | 
|  | IS_ACTIVE (reg_info[*p]) = 0; | 
|  |  | 
|  | /* Clear this whenever we change the register activity status.  */ | 
|  | set_regs_matched_done = 0; | 
|  |  | 
|  | /* If this was the only register active, nothing is active | 
|  | anymore.  */ | 
|  | if (lowest_active_reg == highest_active_reg) | 
|  | { | 
|  | lowest_active_reg = NO_LOWEST_ACTIVE_REG; | 
|  | highest_active_reg = NO_HIGHEST_ACTIVE_REG; | 
|  | } | 
|  | else | 
|  | { /* We must scan for the new highest active register, since | 
|  | it isn't necessarily one less than now: consider | 
|  | (a(b)c(d(e)f)g).  When group 3 ends, after the f), the | 
|  | new highest active register is 1.  */ | 
|  | UCHAR_T r = *p - 1; | 
|  | while (r > 0 && !IS_ACTIVE (reg_info[r])) | 
|  | r--; | 
|  |  | 
|  | /* If we end up at register zero, that means that we saved | 
|  | the registers as the result of an `on_failure_jump', not | 
|  | a `start_memory', and we jumped to past the innermost | 
|  | `stop_memory'.  For example, in ((.)*) we save | 
|  | registers 1 and 2 as a result of the *, but when we pop | 
|  | back to the second ), we are at the stop_memory 1. | 
|  | Thus, nothing is active.  */ | 
|  | if (r == 0) | 
|  | { | 
|  | lowest_active_reg = NO_LOWEST_ACTIVE_REG; | 
|  | highest_active_reg = NO_HIGHEST_ACTIVE_REG; | 
|  | } | 
|  | else | 
|  | highest_active_reg = r; | 
|  | } | 
|  |  | 
|  | /* If just failed to match something this time around with a | 
|  | group that's operated on by a repetition operator, try to | 
|  | force exit from the ``loop'', and restore the register | 
|  | information for this group that we had before trying this | 
|  | last match.  */ | 
|  | if ((!MATCHED_SOMETHING (reg_info[*p]) | 
|  | || just_past_start_mem == p - 1) | 
|  | && (p + 2) < pend) | 
|  | { | 
|  | boolean is_a_jump_n = false; | 
|  |  | 
|  | p1 = p + 2; | 
|  | mcnt = 0; | 
|  | switch ((re_opcode_t) *p1++) | 
|  | { | 
|  | case jump_n: | 
|  | is_a_jump_n = true; | 
|  | /* Fall through.  */ | 
|  | case pop_failure_jump: | 
|  | case maybe_pop_jump: | 
|  | case jump: | 
|  | case dummy_failure_jump: | 
|  | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 
|  | if (is_a_jump_n) | 
|  | p1 += OFFSET_ADDRESS_SIZE; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* do nothing */ ; | 
|  | } | 
|  | p1 += mcnt; | 
|  |  | 
|  | /* If the next operation is a jump backwards in the pattern | 
|  | to an on_failure_jump right before the start_memory | 
|  | corresponding to this stop_memory, exit from the loop | 
|  | by forcing a failure after pushing on the stack the | 
|  | on_failure_jump's jump in the pattern, and d.  */ | 
|  | if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump | 
|  | && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory | 
|  | && p1[2+OFFSET_ADDRESS_SIZE] == *p) | 
|  | { | 
|  | /* If this group ever matched anything, then restore | 
|  | what its registers were before trying this last | 
|  | failed match, e.g., with `(a*)*b' against `ab' for | 
|  | regstart[1], and, e.g., with `((a*)*(b*)*)*' | 
|  | against `aba' for regend[3]. | 
|  |  | 
|  | Also restore the registers for inner groups for, | 
|  | e.g., `((a*)(b*))*' against `aba' (register 3 would | 
|  | otherwise get trashed).  */ | 
|  |  | 
|  | if (EVER_MATCHED_SOMETHING (reg_info[*p])) | 
|  | { | 
|  | unsigned r; | 
|  |  | 
|  | EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; | 
|  |  | 
|  | /* Restore this and inner groups' (if any) registers.  */ | 
|  | for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1); | 
|  | r++) | 
|  | { | 
|  | regstart[r] = old_regstart[r]; | 
|  |  | 
|  | /* xx why this test?  */ | 
|  | if (old_regend[r] >= regstart[r]) | 
|  | regend[r] = old_regend[r]; | 
|  | } | 
|  | } | 
|  | p1++; | 
|  | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 
|  | PUSH_FAILURE_POINT (p1 + mcnt, d, -2); | 
|  |  | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Move past the register number and the inner group count.  */ | 
|  | p += 2; | 
|  | break; | 
|  |  | 
|  |  | 
|  | /* \<digit> has been turned into a `duplicate' command which is | 
|  | followed by the numeric value of <digit> as the register number.  */ | 
|  | case duplicate: | 
|  | { | 
|  | register const CHAR_T *d2, *dend2; | 
|  | int regno = *p++;   /* Get which register to match against.  */ | 
|  | DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); | 
|  |  | 
|  | /* Can't back reference a group which we've never matched.  */ | 
|  | if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) | 
|  | goto fail; | 
|  |  | 
|  | /* Where in input to try to start matching.  */ | 
|  | d2 = regstart[regno]; | 
|  |  | 
|  | /* Where to stop matching; if both the place to start and | 
|  | the place to stop matching are in the same string, then | 
|  | set to the place to stop, otherwise, for now have to use | 
|  | the end of the first string.  */ | 
|  |  | 
|  | dend2 = ((FIRST_STRING_P (regstart[regno]) | 
|  | == FIRST_STRING_P (regend[regno])) | 
|  | ? regend[regno] : end_match_1); | 
|  | for (;;) | 
|  | { | 
|  | /* If necessary, advance to next segment in register | 
|  | contents.  */ | 
|  | while (d2 == dend2) | 
|  | { | 
|  | if (dend2 == end_match_2) break; | 
|  | if (dend2 == regend[regno]) break; | 
|  |  | 
|  | /* End of string1 => advance to string2. */ | 
|  | d2 = string2; | 
|  | dend2 = regend[regno]; | 
|  | } | 
|  | /* At end of register contents => success */ | 
|  | if (d2 == dend2) break; | 
|  |  | 
|  | /* If necessary, advance to next segment in data.  */ | 
|  | PREFETCH (); | 
|  |  | 
|  | /* How many characters left in this segment to match.  */ | 
|  | mcnt = dend - d; | 
|  |  | 
|  | /* Want how many consecutive characters we can match in | 
|  | one shot, so, if necessary, adjust the count.  */ | 
|  | if (mcnt > dend2 - d2) | 
|  | mcnt = dend2 - d2; | 
|  |  | 
|  | /* Compare that many; failure if mismatch, else move | 
|  | past them.  */ | 
|  | if (translate | 
|  | ? PREFIX(bcmp_translate) (d, d2, mcnt, translate) | 
|  | : memcmp (d, d2, mcnt*sizeof(UCHAR_T))) | 
|  | goto fail; | 
|  | d += mcnt, d2 += mcnt; | 
|  |  | 
|  | /* Do this because we've match some characters.  */ | 
|  | SET_REGS_MATCHED (); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | /* begline matches the empty string at the beginning of the string | 
|  | (unless `not_bol' is set in `bufp'), and, if | 
|  | `newline_anchor' is set, after newlines.  */ | 
|  | case begline: | 
|  | DEBUG_PRINT1 ("EXECUTING begline.\n"); | 
|  |  | 
|  | if (AT_STRINGS_BEG (d)) | 
|  | { | 
|  | if (!bufp->not_bol) break; | 
|  | } | 
|  | else if (d[-1] == '\n' && bufp->newline_anchor) | 
|  | { | 
|  | break; | 
|  | } | 
|  | /* In all other cases, we fail.  */ | 
|  | goto fail; | 
|  |  | 
|  |  | 
|  | /* endline is the dual of begline.  */ | 
|  | case endline: | 
|  | DEBUG_PRINT1 ("EXECUTING endline.\n"); | 
|  |  | 
|  | if (AT_STRINGS_END (d)) | 
|  | { | 
|  | if (!bufp->not_eol) break; | 
|  | } | 
|  |  | 
|  | /* We have to ``prefetch'' the next character.  */ | 
|  | else if ((d == end1 ? *string2 : *d) == '\n' | 
|  | && bufp->newline_anchor) | 
|  | { | 
|  | break; | 
|  | } | 
|  | goto fail; | 
|  |  | 
|  |  | 
|  | /* Match at the very beginning of the data.  */ | 
|  | case begbuf: | 
|  | DEBUG_PRINT1 ("EXECUTING begbuf.\n"); | 
|  | if (AT_STRINGS_BEG (d)) | 
|  | break; | 
|  | goto fail; | 
|  |  | 
|  |  | 
|  | /* Match at the very end of the data.  */ | 
|  | case endbuf: | 
|  | DEBUG_PRINT1 ("EXECUTING endbuf.\n"); | 
|  | if (AT_STRINGS_END (d)) | 
|  | break; | 
|  | goto fail; | 
|  |  | 
|  |  | 
|  | /* on_failure_keep_string_jump is used to optimize `.*\n'.  It | 
|  | pushes NULL as the value for the string on the stack.  Then | 
|  | `pop_failure_point' will keep the current value for the | 
|  | string, instead of restoring it.  To see why, consider | 
|  | matching `foo\nbar' against `.*\n'.  The .* matches the foo; | 
|  | then the . fails against the \n.  But the next thing we want | 
|  | to do is match the \n against the \n; if we restored the | 
|  | string value, we would be back at the foo. | 
|  |  | 
|  | Because this is used only in specific cases, we don't need to | 
|  | check all the things that `on_failure_jump' does, to make | 
|  | sure the right things get saved on the stack.  Hence we don't | 
|  | share its code.  The only reason to push anything on the | 
|  | stack at all is that otherwise we would have to change | 
|  | `anychar's code to do something besides goto fail in this | 
|  | case; that seems worse than this.  */ | 
|  | case on_failure_keep_string_jump: | 
|  | DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); | 
|  |  | 
|  | EXTRACT_NUMBER_AND_INCR (mcnt, p); | 
|  | #ifdef _LIBC | 
|  | DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt); | 
|  | #else | 
|  | DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); | 
|  | #endif | 
|  |  | 
|  | PUSH_FAILURE_POINT (p + mcnt, NULL, -2); | 
|  | break; | 
|  |  | 
|  |  | 
|  | /* Uses of on_failure_jump: | 
|  |  | 
|  | Each alternative starts with an on_failure_jump that points | 
|  | to the beginning of the next alternative.  Each alternative | 
|  | except the last ends with a jump that in effect jumps past | 
|  | the rest of the alternatives.  (They really jump to the | 
|  | ending jump of the following alternative, because tensioning | 
|  | these jumps is a hassle.) | 
|  |  | 
|  | Repeats start with an on_failure_jump that points past both | 
|  | the repetition text and either the following jump or | 
|  | pop_failure_jump back to this on_failure_jump.  */ | 
|  | case on_failure_jump: | 
|  | on_failure: | 
|  | DEBUG_PRINT1 ("EXECUTING on_failure_jump"); | 
|  |  | 
|  | EXTRACT_NUMBER_AND_INCR (mcnt, p); | 
|  | #ifdef _LIBC | 
|  | DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt); | 
|  | #else | 
|  | DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); | 
|  | #endif | 
|  |  | 
|  | /* If this on_failure_jump comes right before a group (i.e., | 
|  | the original * applied to a group), save the information | 
|  | for that group and all inner ones, so that if we fail back | 
|  | to this point, the group's information will be correct. | 
|  | For example, in \(a*\)*\1, we need the preceding group, | 
|  | and in \(zz\(a*\)b*\)\2, we need the inner group.  */ | 
|  |  | 
|  | /* We can't use `p' to check ahead because we push | 
|  | a failure point to `p + mcnt' after we do this.  */ | 
|  | p1 = p; | 
|  |  | 
|  | /* We need to skip no_op's before we look for the | 
|  | start_memory in case this on_failure_jump is happening as | 
|  | the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 | 
|  | against aba.  */ | 
|  | while (p1 < pend && (re_opcode_t) *p1 == no_op) | 
|  | p1++; | 
|  |  | 
|  | if (p1 < pend && (re_opcode_t) *p1 == start_memory) | 
|  | { | 
|  | /* We have a new highest active register now.  This will | 
|  | get reset at the start_memory we are about to get to, | 
|  | but we will have saved all the registers relevant to | 
|  | this repetition op, as described above.  */ | 
|  | highest_active_reg = *(p1 + 1) + *(p1 + 2); | 
|  | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | 
|  | lowest_active_reg = *(p1 + 1); | 
|  | } | 
|  |  | 
|  | DEBUG_PRINT1 (":\n"); | 
|  | PUSH_FAILURE_POINT (p + mcnt, d, -2); | 
|  | break; | 
|  |  | 
|  |  | 
|  | /* A smart repeat ends with `maybe_pop_jump'. | 
|  | We change it to either `pop_failure_jump' or `jump'.  */ | 
|  | case maybe_pop_jump: | 
|  | EXTRACT_NUMBER_AND_INCR (mcnt, p); | 
|  | DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); | 
|  | { | 
|  | register UCHAR_T *p2 = p; | 
|  |  | 
|  | /* Compare the beginning of the repeat with what in the | 
|  | pattern follows its end. If we can establish that there | 
|  | is nothing that they would both match, i.e., that we | 
|  | would have to backtrack because of (as in, e.g., `a*a') | 
|  | then we can change to pop_failure_jump, because we'll | 
|  | never have to backtrack. | 
|  |  | 
|  | This is not true in the case of alternatives: in | 
|  | `(a|ab)*' we do need to backtrack to the `ab' alternative | 
|  | (e.g., if the string was `ab').  But instead of trying to | 
|  | detect that here, the alternative has put on a dummy | 
|  | failure point which is what we will end up popping.  */ | 
|  |  | 
|  | /* Skip over open/close-group commands. | 
|  | If what follows this loop is a ...+ construct, | 
|  | look at what begins its body, since we will have to | 
|  | match at least one of that.  */ | 
|  | while (1) | 
|  | { | 
|  | if (p2 + 2 < pend | 
|  | && ((re_opcode_t) *p2 == stop_memory | 
|  | || (re_opcode_t) *p2 == start_memory)) | 
|  | p2 += 3; | 
|  | else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend | 
|  | && (re_opcode_t) *p2 == dummy_failure_jump) | 
|  | p2 += 2 + 2 * OFFSET_ADDRESS_SIZE; | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | p1 = p + mcnt; | 
|  | /* p1[0] ... p1[2] are the `on_failure_jump' corresponding | 
|  | to the `maybe_finalize_jump' of this case.  Examine what | 
|  | follows.  */ | 
|  |  | 
|  | /* If we're at the end of the pattern, we can change.  */ | 
|  | if (p2 == pend) | 
|  | { | 
|  | /* Consider what happens when matching ":\(.*\)" | 
|  | against ":/".  I don't really understand this code | 
|  | yet.  */ | 
|  | p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T) | 
|  | pop_failure_jump; | 
|  | DEBUG_PRINT1 | 
|  | ("  End of pattern: change to `pop_failure_jump'.\n"); | 
|  | } | 
|  |  | 
|  | else if ((re_opcode_t) *p2 == exactn | 
|  | #ifdef MBS_SUPPORT | 
|  | || (re_opcode_t) *p2 == exactn_bin | 
|  | #endif | 
|  | || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) | 
|  | { | 
|  | register UCHAR_T c | 
|  | = *p2 == (UCHAR_T) endline ? '\n' : p2[2]; | 
|  |  | 
|  | if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn | 
|  | #ifdef MBS_SUPPORT | 
|  | || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin | 
|  | #endif | 
|  | ) && p1[3+OFFSET_ADDRESS_SIZE] != c) | 
|  | { | 
|  | p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T) | 
|  | pop_failure_jump; | 
|  | #ifdef WCHAR | 
|  | DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n", | 
|  | (wint_t) c, | 
|  | (wint_t) p1[3+OFFSET_ADDRESS_SIZE]); | 
|  | #else | 
|  | DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n", | 
|  | (char) c, | 
|  | (char) p1[3+OFFSET_ADDRESS_SIZE]); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifndef WCHAR | 
|  | else if ((re_opcode_t) p1[3] == charset | 
|  | || (re_opcode_t) p1[3] == charset_not) | 
|  | { | 
|  | int negate = (re_opcode_t) p1[3] == charset_not; | 
|  |  | 
|  | if (c < (unsigned) (p1[4] * BYTEWIDTH) | 
|  | && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) | 
|  | negate = !negate; | 
|  |  | 
|  | /* `negate' is equal to 1 if c would match, which means | 
|  | that we can't change to pop_failure_jump.  */ | 
|  | if (!negate) | 
|  | { | 
|  | p[-3] = (unsigned char) pop_failure_jump; | 
|  | DEBUG_PRINT1 ("  No match => pop_failure_jump.\n"); | 
|  | } | 
|  | } | 
|  | #endif /* not WCHAR */ | 
|  | } | 
|  | #ifndef WCHAR | 
|  | else if ((re_opcode_t) *p2 == charset) | 
|  | { | 
|  | /* We win if the first character of the loop is not part | 
|  | of the charset.  */ | 
|  | if ((re_opcode_t) p1[3] == exactn | 
|  | && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5] | 
|  | && (p2[2 + p1[5] / BYTEWIDTH] | 
|  | & (1 << (p1[5] % BYTEWIDTH))))) | 
|  | { | 
|  | p[-3] = (unsigned char) pop_failure_jump; | 
|  | DEBUG_PRINT1 ("  No match => pop_failure_jump.\n"); | 
|  | } | 
|  |  | 
|  | else if ((re_opcode_t) p1[3] == charset_not) | 
|  | { | 
|  | int idx; | 
|  | /* We win if the charset_not inside the loop | 
|  | lists every character listed in the charset after.  */ | 
|  | for (idx = 0; idx < (int) p2[1]; idx++) | 
|  | if (! (p2[2 + idx] == 0 | 
|  | || (idx < (int) p1[4] | 
|  | && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) | 
|  | break; | 
|  |  | 
|  | if (idx == p2[1]) | 
|  | { | 
|  | p[-3] = (unsigned char) pop_failure_jump; | 
|  | DEBUG_PRINT1 ("  No match => pop_failure_jump.\n"); | 
|  | } | 
|  | } | 
|  | else if ((re_opcode_t) p1[3] == charset) | 
|  | { | 
|  | int idx; | 
|  | /* We win if the charset inside the loop | 
|  | has no overlap with the one after the loop.  */ | 
|  | for (idx = 0; | 
|  | idx < (int) p2[1] && idx < (int) p1[4]; | 
|  | idx++) | 
|  | if ((p2[2 + idx] & p1[5 + idx]) != 0) | 
|  | break; | 
|  |  | 
|  | if (idx == p2[1] || idx == p1[4]) | 
|  | { | 
|  | p[-3] = (unsigned char) pop_failure_jump; | 
|  | DEBUG_PRINT1 ("  No match => pop_failure_jump.\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif /* not WCHAR */ | 
|  | } | 
|  | p -= OFFSET_ADDRESS_SIZE;	/* Point at relative address again.  */ | 
|  | if ((re_opcode_t) p[-1] != pop_failure_jump) | 
|  | { | 
|  | p[-1] = (UCHAR_T) jump; | 
|  | DEBUG_PRINT1 ("  Match => jump.\n"); | 
|  | goto unconditional_jump; | 
|  | } | 
|  | /* Fall through.  */ | 
|  |  | 
|  |  | 
|  | /* The end of a simple repeat has a pop_failure_jump back to | 
|  | its matching on_failure_jump, where the latter will push a | 
|  | failure point.  The pop_failure_jump takes off failure | 
|  | points put on by this pop_failure_jump's matching | 
|  | on_failure_jump; we got through the pattern to here from the | 
|  | matching on_failure_jump, so didn't fail.  */ | 
|  | case pop_failure_jump: | 
|  | { | 
|  | /* We need to pass separate storage for the lowest and | 
|  | highest registers, even though we don't care about the | 
|  | actual values.  Otherwise, we will restore only one | 
|  | register from the stack, since lowest will == highest in | 
|  | `pop_failure_point'.  */ | 
|  | active_reg_t dummy_low_reg, dummy_high_reg; | 
|  | UCHAR_T *pdummy ATTRIBUTE_UNUSED = NULL; | 
|  | const CHAR_T *sdummy ATTRIBUTE_UNUSED = NULL; | 
|  |  | 
|  | DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); | 
|  | POP_FAILURE_POINT (sdummy, pdummy, | 
|  | dummy_low_reg, dummy_high_reg, | 
|  | reg_dummy, reg_dummy, reg_info_dummy); | 
|  | } | 
|  | /* Fall through.  */ | 
|  |  | 
|  | unconditional_jump: | 
|  | #ifdef _LIBC | 
|  | DEBUG_PRINT2 ("\n%p: ", p); | 
|  | #else | 
|  | DEBUG_PRINT2 ("\n0x%x: ", p); | 
|  | #endif | 
|  | /* Note fall through.  */ | 
|  |  | 
|  | /* Unconditionally jump (without popping any failure points).  */ | 
|  | case jump: | 
|  | EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */ | 
|  | DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); | 
|  | p += mcnt;				/* Do the jump.  */ | 
|  | #ifdef _LIBC | 
|  | DEBUG_PRINT2 ("(to %p).\n", p); | 
|  | #else | 
|  | DEBUG_PRINT2 ("(to 0x%x).\n", p); | 
|  | #endif | 
|  | break; | 
|  |  | 
|  |  | 
|  | /* We need this opcode so we can detect where alternatives end | 
|  | in `group_match_null_string_p' et al.  */ | 
|  | case jump_past_alt: | 
|  | DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); | 
|  | goto unconditional_jump; | 
|  |  | 
|  |  | 
|  | /* Normally, the on_failure_jump pushes a failure point, which | 
|  | then gets popped at pop_failure_jump.  We will end up at | 
|  | pop_failure_jump, also, and with a pattern of, say, `a+', we | 
|  | are skipping over the on_failure_jump, so we have to push | 
|  | something meaningless for pop_failure_jump to pop.  */ | 
|  | case dummy_failure_jump: | 
|  | DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); | 
|  | /* It doesn't matter what we push for the string here.  What | 
|  | the code at `fail' tests is the value for the pattern.  */ | 
|  | PUSH_FAILURE_POINT (NULL, NULL, -2); | 
|  | goto unconditional_jump; | 
|  |  | 
|  |  | 
|  | /* At the end of an alternative, we need to push a dummy failure | 
|  | point in case we are followed by a `pop_failure_jump', because | 
|  | we don't want the failure point for the alternative to be | 
|  | popped.  For example, matching `(a|ab)*' against `aab' | 
|  | requires that we match the `ab' alternative.  */ | 
|  | case push_dummy_failure: | 
|  | DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); | 
|  | /* See comments just above at `dummy_failure_jump' about the | 
|  | two zeroes.  */ | 
|  | PUSH_FAILURE_POINT (NULL, NULL, -2); | 
|  | break; | 
|  |  | 
|  | /* Have to succeed matching what follows at least n times. | 
|  | After that, handle like `on_failure_jump'.  */ | 
|  | case succeed_n: | 
|  | EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE); | 
|  | DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); | 
|  |  | 
|  | assert (mcnt >= 0); | 
|  | /* Originally, this is how many times we HAVE to succeed.  */ | 
|  | if (mcnt > 0) | 
|  | { | 
|  | mcnt--; | 
|  | p += OFFSET_ADDRESS_SIZE; | 
|  | STORE_NUMBER_AND_INCR (p, mcnt); | 
|  | #ifdef _LIBC | 
|  | DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE | 
|  | , mcnt); | 
|  | #else | 
|  | DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE | 
|  | , mcnt); | 
|  | #endif | 
|  | } | 
|  | else if (mcnt == 0) | 
|  | { | 
|  | #ifdef _LIBC | 
|  | DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n", | 
|  | p + OFFSET_ADDRESS_SIZE); | 
|  | #else | 
|  | DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", | 
|  | p + OFFSET_ADDRESS_SIZE); | 
|  | #endif /* _LIBC */ | 
|  |  | 
|  | #ifdef WCHAR | 
|  | p[1] = (UCHAR_T) no_op; | 
|  | #else | 
|  | p[2] = (UCHAR_T) no_op; | 
|  | p[3] = (UCHAR_T) no_op; | 
|  | #endif /* WCHAR */ | 
|  | goto on_failure; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case jump_n: | 
|  | EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE); | 
|  | DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); | 
|  |  | 
|  | /* Originally, this is how many times we CAN jump.  */ | 
|  | if (mcnt) | 
|  | { | 
|  | mcnt--; | 
|  | STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt); | 
|  |  | 
|  | #ifdef _LIBC | 
|  | DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE, | 
|  | mcnt); | 
|  | #else | 
|  | DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE, | 
|  | mcnt); | 
|  | #endif /* _LIBC */ | 
|  | goto unconditional_jump; | 
|  | } | 
|  | /* If don't have to jump any more, skip over the rest of command.  */ | 
|  | else | 
|  | p += 2 * OFFSET_ADDRESS_SIZE; | 
|  | break; | 
|  |  | 
|  | case set_number_at: | 
|  | { | 
|  | DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); | 
|  |  | 
|  | EXTRACT_NUMBER_AND_INCR (mcnt, p); | 
|  | p1 = p + mcnt; | 
|  | EXTRACT_NUMBER_AND_INCR (mcnt, p); | 
|  | #ifdef _LIBC | 
|  | DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt); | 
|  | #else | 
|  | DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt); | 
|  | #endif | 
|  | STORE_NUMBER (p1, mcnt); | 
|  | break; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | /* The DEC Alpha C compiler 3.x generates incorrect code for the | 
|  | test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of | 
|  | AT_WORD_BOUNDARY, so this code is disabled.  Expanding the | 
|  | macro and introducing temporary variables works around the bug.  */ | 
|  |  | 
|  | case wordbound: | 
|  | DEBUG_PRINT1 ("EXECUTING wordbound.\n"); | 
|  | if (AT_WORD_BOUNDARY (d)) | 
|  | break; | 
|  | goto fail; | 
|  |  | 
|  | case notwordbound: | 
|  | DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); | 
|  | if (AT_WORD_BOUNDARY (d)) | 
|  | goto fail; | 
|  | break; | 
|  | #else | 
|  | case wordbound: | 
|  | { | 
|  | boolean prevchar, thischar; | 
|  |  | 
|  | DEBUG_PRINT1 ("EXECUTING wordbound.\n"); | 
|  | if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)) | 
|  | break; | 
|  |  | 
|  | prevchar = WORDCHAR_P (d - 1); | 
|  | thischar = WORDCHAR_P (d); | 
|  | if (prevchar != thischar) | 
|  | break; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | case notwordbound: | 
|  | { | 
|  | boolean prevchar, thischar; | 
|  |  | 
|  | DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); | 
|  | if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)) | 
|  | goto fail; | 
|  |  | 
|  | prevchar = WORDCHAR_P (d - 1); | 
|  | thischar = WORDCHAR_P (d); | 
|  | if (prevchar != thischar) | 
|  | goto fail; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | case wordbeg: | 
|  | DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); | 
|  | if (!AT_STRINGS_END (d) && WORDCHAR_P (d) | 
|  | && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1))) | 
|  | break; | 
|  | goto fail; | 
|  |  | 
|  | case wordend: | 
|  | DEBUG_PRINT1 ("EXECUTING wordend.\n"); | 
|  | if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1) | 
|  | && (AT_STRINGS_END (d) || !WORDCHAR_P (d))) | 
|  | break; | 
|  | goto fail; | 
|  |  | 
|  | #ifdef emacs | 
|  | case before_dot: | 
|  | DEBUG_PRINT1 ("EXECUTING before_dot.\n"); | 
|  | if (PTR_CHAR_POS ((unsigned char *) d) >= point) | 
|  | goto fail; | 
|  | break; | 
|  |  | 
|  | case at_dot: | 
|  | DEBUG_PRINT1 ("EXECUTING at_dot.\n"); | 
|  | if (PTR_CHAR_POS ((unsigned char *) d) != point) | 
|  | goto fail; | 
|  | break; | 
|  |  | 
|  | case after_dot: | 
|  | DEBUG_PRINT1 ("EXECUTING after_dot.\n"); | 
|  | if (PTR_CHAR_POS ((unsigned char *) d) <= point) | 
|  | goto fail; | 
|  | break; | 
|  |  | 
|  | case syntaxspec: | 
|  | DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); | 
|  | mcnt = *p++; | 
|  | goto matchsyntax; | 
|  |  | 
|  | case wordchar: | 
|  | DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); | 
|  | mcnt = (int) Sword; | 
|  | matchsyntax: | 
|  | PREFETCH (); | 
|  | /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */ | 
|  | d++; | 
|  | if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt) | 
|  | goto fail; | 
|  | SET_REGS_MATCHED (); | 
|  | break; | 
|  |  | 
|  | case notsyntaxspec: | 
|  | DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); | 
|  | mcnt = *p++; | 
|  | goto matchnotsyntax; | 
|  |  | 
|  | case notwordchar: | 
|  | DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); | 
|  | mcnt = (int) Sword; | 
|  | matchnotsyntax: | 
|  | PREFETCH (); | 
|  | /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */ | 
|  | d++; | 
|  | if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt) | 
|  | goto fail; | 
|  | SET_REGS_MATCHED (); | 
|  | break; | 
|  |  | 
|  | #else /* not emacs */ | 
|  | case wordchar: | 
|  | DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); | 
|  | PREFETCH (); | 
|  | if (!WORDCHAR_P (d)) | 
|  | goto fail; | 
|  | SET_REGS_MATCHED (); | 
|  | d++; | 
|  | break; | 
|  |  | 
|  | case notwordchar: | 
|  | DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); | 
|  | PREFETCH (); | 
|  | if (WORDCHAR_P (d)) | 
|  | goto fail; | 
|  | SET_REGS_MATCHED (); | 
|  | d++; | 
|  | break; | 
|  | #endif /* not emacs */ | 
|  |  | 
|  | default: | 
|  | abort (); | 
|  | } | 
|  | continue;  /* Successfully executed one pattern command; keep going.  */ | 
|  |  | 
|  |  | 
|  | /* We goto here if a matching operation fails. */ | 
|  | fail: | 
|  | if (!FAIL_STACK_EMPTY ()) | 
|  | { /* A restart point is known.  Restore to that state.  */ | 
|  | DEBUG_PRINT1 ("\nFAIL:\n"); | 
|  | POP_FAILURE_POINT (d, p, | 
|  | lowest_active_reg, highest_active_reg, | 
|  | regstart, regend, reg_info); | 
|  |  | 
|  | /* If this failure point is a dummy, try the next one.  */ | 
|  | if (!p) | 
|  | goto fail; | 
|  |  | 
|  | /* If we failed to the end of the pattern, don't examine *p.  */ | 
|  | assert (p <= pend); | 
|  | if (p < pend) | 
|  | { | 
|  | boolean is_a_jump_n = false; | 
|  |  | 
|  | /* If failed to a backwards jump that's part of a repetition | 
|  | loop, need to pop this failure point and use the next one.  */ | 
|  | switch ((re_opcode_t) *p) | 
|  | { | 
|  | case jump_n: | 
|  | is_a_jump_n = true; | 
|  | /* Fall through.  */ | 
|  | case maybe_pop_jump: | 
|  | case pop_failure_jump: | 
|  | case jump: | 
|  | p1 = p + 1; | 
|  | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 
|  | p1 += mcnt; | 
|  |  | 
|  | if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) | 
|  | || (!is_a_jump_n | 
|  | && (re_opcode_t) *p1 == on_failure_jump)) | 
|  | goto fail; | 
|  | break; | 
|  | default: | 
|  | /* do nothing */ ; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (d >= string1 && d <= end1) | 
|  | dend = end_match_1; | 
|  | } | 
|  | else | 
|  | break;   /* Matching at this starting point really fails.  */ | 
|  | } /* for (;;) */ | 
|  |  | 
|  | if (best_regs_set) | 
|  | goto restore_best_regs; | 
|  |  | 
|  | FREE_VARIABLES (); | 
|  |  | 
|  | return -1;         			/* Failure to match.  */ | 
|  | } /* re_match_2 */ | 
|  |  | 
|  | /* Subroutine definitions for re_match_2.  */ | 
|  |  | 
|  |  | 
|  | /* We are passed P pointing to a register number after a start_memory. | 
|  |  | 
|  | Return true if the pattern up to the corresponding stop_memory can | 
|  | match the empty string, and false otherwise. | 
|  |  | 
|  | If we find the matching stop_memory, sets P to point to one past its number. | 
|  | Otherwise, sets P to an undefined byte less than or equal to END. | 
|  |  | 
|  | We don't handle duplicates properly (yet).  */ | 
|  |  | 
|  | static boolean | 
|  | PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end, | 
|  | PREFIX(register_info_type) *reg_info) | 
|  | { | 
|  | int mcnt; | 
|  | /* Point to after the args to the start_memory.  */ | 
|  | UCHAR_T *p1 = *p + 2; | 
|  |  | 
|  | while (p1 < end) | 
|  | { | 
|  | /* Skip over opcodes that can match nothing, and return true or | 
|  | false, as appropriate, when we get to one that can't, or to the | 
|  | matching stop_memory.  */ | 
|  |  | 
|  | switch ((re_opcode_t) *p1) | 
|  | { | 
|  | /* Could be either a loop or a series of alternatives.  */ | 
|  | case on_failure_jump: | 
|  | p1++; | 
|  | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 
|  |  | 
|  | /* If the next operation is not a jump backwards in the | 
|  | pattern.  */ | 
|  |  | 
|  | if (mcnt >= 0) | 
|  | { | 
|  | /* Go through the on_failure_jumps of the alternatives, | 
|  | seeing if any of the alternatives cannot match nothing. | 
|  | The last alternative starts with only a jump, | 
|  | whereas the rest start with on_failure_jump and end | 
|  | with a jump, e.g., here is the pattern for `a|b|c': | 
|  |  | 
|  | /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 | 
|  | /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 | 
|  | /exactn/1/c | 
|  |  | 
|  | So, we have to first go through the first (n-1) | 
|  | alternatives and then deal with the last one separately.  */ | 
|  |  | 
|  |  | 
|  | /* Deal with the first (n-1) alternatives, which start | 
|  | with an on_failure_jump (see above) that jumps to right | 
|  | past a jump_past_alt.  */ | 
|  |  | 
|  | while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] == | 
|  | jump_past_alt) | 
|  | { | 
|  | /* `mcnt' holds how many bytes long the alternative | 
|  | is, including the ending `jump_past_alt' and | 
|  | its number.  */ | 
|  |  | 
|  | if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt - | 
|  | (1 + OFFSET_ADDRESS_SIZE), | 
|  | reg_info)) | 
|  | return false; | 
|  |  | 
|  | /* Move to right after this alternative, including the | 
|  | jump_past_alt.  */ | 
|  | p1 += mcnt; | 
|  |  | 
|  | /* Break if it's the beginning of an n-th alternative | 
|  | that doesn't begin with an on_failure_jump.  */ | 
|  | if ((re_opcode_t) *p1 != on_failure_jump) | 
|  | break; | 
|  |  | 
|  | /* Still have to check that it's not an n-th | 
|  | alternative that starts with an on_failure_jump.  */ | 
|  | p1++; | 
|  | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 
|  | if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] != | 
|  | jump_past_alt) | 
|  | { | 
|  | /* Get to the beginning of the n-th alternative.  */ | 
|  | p1 -= 1 + OFFSET_ADDRESS_SIZE; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Deal with the last alternative: go back and get number | 
|  | of the `jump_past_alt' just before it.  `mcnt' contains | 
|  | the length of the alternative.  */ | 
|  | EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE); | 
|  |  | 
|  | if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info)) | 
|  | return false; | 
|  |  | 
|  | p1 += mcnt;	/* Get past the n-th alternative.  */ | 
|  | } /* if mcnt > 0 */ | 
|  | break; | 
|  |  | 
|  |  | 
|  | case stop_memory: | 
|  | assert (p1[1] == **p); | 
|  | *p = p1 + 2; | 
|  | return true; | 
|  |  | 
|  |  | 
|  | default: | 
|  | if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info)) | 
|  | return false; | 
|  | } | 
|  | } /* while p1 < end */ | 
|  |  | 
|  | return false; | 
|  | } /* group_match_null_string_p */ | 
|  |  | 
|  |  | 
|  | /* Similar to group_match_null_string_p, but doesn't deal with alternatives: | 
|  | It expects P to be the first byte of a single alternative and END one | 
|  | byte past the last. The alternative can contain groups.  */ | 
|  |  | 
|  | static boolean | 
|  | PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end, | 
|  | PREFIX(register_info_type) *reg_info) | 
|  | { | 
|  | int mcnt; | 
|  | UCHAR_T *p1 = p; | 
|  |  | 
|  | while (p1 < end) | 
|  | { | 
|  | /* Skip over opcodes that can match nothing, and break when we get | 
|  | to one that can't.  */ | 
|  |  | 
|  | switch ((re_opcode_t) *p1) | 
|  | { | 
|  | /* It's a loop.  */ | 
|  | case on_failure_jump: | 
|  | p1++; | 
|  | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 
|  | p1 += mcnt; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info)) | 
|  | return false; | 
|  | } | 
|  | }  /* while p1 < end */ | 
|  |  | 
|  | return true; | 
|  | } /* alt_match_null_string_p */ | 
|  |  | 
|  |  | 
|  | /* Deals with the ops common to group_match_null_string_p and | 
|  | alt_match_null_string_p. | 
|  |  | 
|  | Sets P to one after the op and its arguments, if any.  */ | 
|  |  | 
|  | static boolean | 
|  | PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end, | 
|  | PREFIX(register_info_type) *reg_info) | 
|  | { | 
|  | int mcnt; | 
|  | boolean ret; | 
|  | int reg_no; | 
|  | UCHAR_T *p1 = *p; | 
|  |  | 
|  | switch ((re_opcode_t) *p1++) | 
|  | { | 
|  | case no_op: | 
|  | case begline: | 
|  | case endline: | 
|  | case begbuf: | 
|  | case endbuf: | 
|  | case wordbeg: | 
|  | case wordend: | 
|  | case wordbound: | 
|  | case notwordbound: | 
|  | #ifdef emacs | 
|  | case before_dot: | 
|  | case at_dot: | 
|  | case after_dot: | 
|  | #endif | 
|  | break; | 
|  |  | 
|  | case start_memory: | 
|  | reg_no = *p1; | 
|  | assert (reg_no > 0 && reg_no <= MAX_REGNUM); | 
|  | ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info); | 
|  |  | 
|  | /* Have to set this here in case we're checking a group which | 
|  | contains a group and a back reference to it.  */ | 
|  |  | 
|  | if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) | 
|  | REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; | 
|  |  | 
|  | if (!ret) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | /* If this is an optimized succeed_n for zero times, make the jump.  */ | 
|  | case jump: | 
|  | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 
|  | if (mcnt >= 0) | 
|  | p1 += mcnt; | 
|  | else | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case succeed_n: | 
|  | /* Get to the number of times to succeed.  */ | 
|  | p1 += OFFSET_ADDRESS_SIZE; | 
|  | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 
|  |  | 
|  | if (mcnt == 0) | 
|  | { | 
|  | p1 -= 2 * OFFSET_ADDRESS_SIZE; | 
|  | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 
|  | p1 += mcnt; | 
|  | } | 
|  | else | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case duplicate: | 
|  | if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case set_number_at: | 
|  | p1 += 2 * OFFSET_ADDRESS_SIZE; | 
|  | return false; | 
|  |  | 
|  | default: | 
|  | /* All other opcodes mean we cannot match the empty string.  */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | *p = p1; | 
|  | return true; | 
|  | } /* common_op_match_null_string_p */ | 
|  |  | 
|  |  | 
|  | /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN | 
|  | bytes; nonzero otherwise.  */ | 
|  |  | 
|  | static int | 
|  | PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, register int len, | 
|  | RE_TRANSLATE_TYPE translate) | 
|  | { | 
|  | register const UCHAR_T *p1 = (const UCHAR_T *) s1; | 
|  | register const UCHAR_T *p2 = (const UCHAR_T *) s2; | 
|  | while (len) | 
|  | { | 
|  | #ifdef WCHAR | 
|  | if (((*p1<=0xff)?translate[*p1++]:*p1++) | 
|  | != ((*p2<=0xff)?translate[*p2++]:*p2++)) | 
|  | return 1; | 
|  | #else /* BYTE */ | 
|  | if (translate[*p1++] != translate[*p2++]) return 1; | 
|  | #endif /* WCHAR */ | 
|  | len--; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | #else /* not INSIDE_RECURSION */ | 
|  |  | 
|  | /* Entry points for GNU code.  */ | 
|  |  | 
|  | /* re_compile_pattern is the GNU regular expression compiler: it | 
|  | compiles PATTERN (of length SIZE) and puts the result in BUFP. | 
|  | Returns 0 if the pattern was valid, otherwise an error string. | 
|  |  | 
|  | Assumes the `allocated' (and perhaps `buffer') and `translate' fields | 
|  | are set in BUFP on entry. | 
|  |  | 
|  | We call regex_compile to do the actual compilation.  */ | 
|  |  | 
|  | const char * | 
|  | re_compile_pattern (const char *pattern, size_t length, | 
|  | struct re_pattern_buffer *bufp) | 
|  | { | 
|  | reg_errcode_t ret; | 
|  |  | 
|  | /* GNU code is written to assume at least RE_NREGS registers will be set | 
|  | (and at least one extra will be -1).  */ | 
|  | bufp->regs_allocated = REGS_UNALLOCATED; | 
|  |  | 
|  | /* And GNU code determines whether or not to get register information | 
|  | by passing null for the REGS argument to re_match, etc., not by | 
|  | setting no_sub.  */ | 
|  | bufp->no_sub = 0; | 
|  |  | 
|  | /* Match anchors at newline.  */ | 
|  | bufp->newline_anchor = 1; | 
|  |  | 
|  | # ifdef MBS_SUPPORT | 
|  | if (MB_CUR_MAX != 1) | 
|  | ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp); | 
|  | else | 
|  | # endif | 
|  | ret = byte_regex_compile (pattern, length, re_syntax_options, bufp); | 
|  |  | 
|  | if (!ret) | 
|  | return NULL; | 
|  | return gettext (re_error_msgid[(int) ret]); | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__re_compile_pattern, re_compile_pattern) | 
|  | #endif | 
|  |  | 
|  | /* Entry points compatible with 4.2 BSD regex library.  We don't define | 
|  | them unless specifically requested.  */ | 
|  |  | 
|  | #if defined _REGEX_RE_COMP || defined _LIBC | 
|  |  | 
|  | /* BSD has one and only one pattern buffer.  */ | 
|  | static struct re_pattern_buffer re_comp_buf; | 
|  |  | 
|  | char * | 
|  | #ifdef _LIBC | 
|  | /* Make these definitions weak in libc, so POSIX programs can redefine | 
|  | these names if they don't use our functions, and still use | 
|  | regcomp/regexec below without link errors.  */ | 
|  | weak_function | 
|  | #endif | 
|  | re_comp (const char *s) | 
|  | { | 
|  | reg_errcode_t ret; | 
|  |  | 
|  | if (!s) | 
|  | { | 
|  | if (!re_comp_buf.buffer) | 
|  | return (char *) gettext ("No previous regular expression"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!re_comp_buf.buffer) | 
|  | { | 
|  | re_comp_buf.buffer = (unsigned char *) malloc (200); | 
|  | if (re_comp_buf.buffer == NULL) | 
|  | return (char *) gettext (re_error_msgid[(int) REG_ESPACE]); | 
|  | re_comp_buf.allocated = 200; | 
|  |  | 
|  | re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); | 
|  | if (re_comp_buf.fastmap == NULL) | 
|  | return (char *) gettext (re_error_msgid[(int) REG_ESPACE]); | 
|  | } | 
|  |  | 
|  | /* Since `re_exec' always passes NULL for the `regs' argument, we | 
|  | don't need to initialize the pattern buffer fields which affect it.  */ | 
|  |  | 
|  | /* Match anchors at newlines.  */ | 
|  | re_comp_buf.newline_anchor = 1; | 
|  |  | 
|  | # ifdef MBS_SUPPORT | 
|  | if (MB_CUR_MAX != 1) | 
|  | ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); | 
|  | else | 
|  | # endif | 
|  | ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); | 
|  |  | 
|  | if (!ret) | 
|  | return NULL; | 
|  |  | 
|  | /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */ | 
|  | return (char *) gettext (re_error_msgid[(int) ret]); | 
|  | } | 
|  |  | 
|  |  | 
|  | int | 
|  | #ifdef _LIBC | 
|  | weak_function | 
|  | #endif | 
|  | re_exec (const char *s) | 
|  | { | 
|  | const int len = strlen (s); | 
|  | return | 
|  | 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0); | 
|  | } | 
|  |  | 
|  | #endif /* _REGEX_RE_COMP */ | 
|  |  | 
|  | /* POSIX.2 functions.  Don't define these for Emacs.  */ | 
|  |  | 
|  | #ifndef emacs | 
|  |  | 
|  | /* regcomp takes a regular expression as a string and compiles it. | 
|  |  | 
|  | PREG is a regex_t *.  We do not expect any fields to be initialized, | 
|  | since POSIX says we shouldn't.  Thus, we set | 
|  |  | 
|  | `buffer' to the compiled pattern; | 
|  | `used' to the length of the compiled pattern; | 
|  | `syntax' to RE_SYNTAX_POSIX_EXTENDED if the | 
|  | REG_EXTENDED bit in CFLAGS is set; otherwise, to | 
|  | RE_SYNTAX_POSIX_BASIC; | 
|  | `newline_anchor' to REG_NEWLINE being set in CFLAGS; | 
|  | `fastmap' to an allocated space for the fastmap; | 
|  | `fastmap_accurate' to zero; | 
|  | `re_nsub' to the number of subexpressions in PATTERN. | 
|  |  | 
|  | PATTERN is the address of the pattern string. | 
|  |  | 
|  | CFLAGS is a series of bits which affect compilation. | 
|  |  | 
|  | If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we | 
|  | use POSIX basic syntax. | 
|  |  | 
|  | If REG_NEWLINE is set, then . and [^...] don't match newline. | 
|  | Also, regexec will try a match beginning after every newline. | 
|  |  | 
|  | If REG_ICASE is set, then we considers upper- and lowercase | 
|  | versions of letters to be equivalent when matching. | 
|  |  | 
|  | If REG_NOSUB is set, then when PREG is passed to regexec, that | 
|  | routine will report only success or failure, and nothing about the | 
|  | registers. | 
|  |  | 
|  | It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for | 
|  | the return codes and their meanings.)  */ | 
|  |  | 
|  | int | 
|  | regcomp (regex_t *preg, const char *pattern, int cflags) | 
|  | { | 
|  | reg_errcode_t ret; | 
|  | reg_syntax_t syntax | 
|  | = (cflags & REG_EXTENDED) ? | 
|  | RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; | 
|  |  | 
|  | /* regex_compile will allocate the space for the compiled pattern.  */ | 
|  | preg->buffer = 0; | 
|  | preg->allocated = 0; | 
|  | preg->used = 0; | 
|  |  | 
|  | /* Try to allocate space for the fastmap.  */ | 
|  | preg->fastmap = (char *) malloc (1 << BYTEWIDTH); | 
|  |  | 
|  | if (cflags & REG_ICASE) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | preg->translate | 
|  | = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE | 
|  | * sizeof (*(RE_TRANSLATE_TYPE)0)); | 
|  | if (preg->translate == NULL) | 
|  | return (int) REG_ESPACE; | 
|  |  | 
|  | /* Map uppercase characters to corresponding lowercase ones.  */ | 
|  | for (i = 0; i < CHAR_SET_SIZE; i++) | 
|  | preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i; | 
|  | } | 
|  | else | 
|  | preg->translate = NULL; | 
|  |  | 
|  | /* If REG_NEWLINE is set, newlines are treated differently.  */ | 
|  | if (cflags & REG_NEWLINE) | 
|  | { /* REG_NEWLINE implies neither . nor [^...] match newline.  */ | 
|  | syntax &= ~RE_DOT_NEWLINE; | 
|  | syntax |= RE_HAT_LISTS_NOT_NEWLINE; | 
|  | /* It also changes the matching behavior.  */ | 
|  | preg->newline_anchor = 1; | 
|  | } | 
|  | else | 
|  | preg->newline_anchor = 0; | 
|  |  | 
|  | preg->no_sub = !!(cflags & REG_NOSUB); | 
|  |  | 
|  | /* POSIX says a null character in the pattern terminates it, so we | 
|  | can use strlen here in compiling the pattern.  */ | 
|  | # ifdef MBS_SUPPORT | 
|  | if (MB_CUR_MAX != 1) | 
|  | ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg); | 
|  | else | 
|  | # endif | 
|  | ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg); | 
|  |  | 
|  | /* POSIX doesn't distinguish between an unmatched open-group and an | 
|  | unmatched close-group: both are REG_EPAREN.  */ | 
|  | if (ret == REG_ERPAREN) ret = REG_EPAREN; | 
|  |  | 
|  | if (ret == REG_NOERROR && preg->fastmap) | 
|  | { | 
|  | /* Compute the fastmap now, since regexec cannot modify the pattern | 
|  | buffer.  */ | 
|  | if (re_compile_fastmap (preg) == -2) | 
|  | { | 
|  | /* Some error occurred while computing the fastmap, just forget | 
|  | about it.  */ | 
|  | free (preg->fastmap); | 
|  | preg->fastmap = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return (int) ret; | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__regcomp, regcomp) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* regexec searches for a given pattern, specified by PREG, in the | 
|  | string STRING. | 
|  |  | 
|  | If NMATCH is zero or REG_NOSUB was set in the cflags argument to | 
|  | `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at | 
|  | least NMATCH elements, and we set them to the offsets of the | 
|  | corresponding matched substrings. | 
|  |  | 
|  | EFLAGS specifies `execution flags' which affect matching: if | 
|  | REG_NOTBOL is set, then ^ does not match at the beginning of the | 
|  | string; if REG_NOTEOL is set, then $ does not match at the end. | 
|  |  | 
|  | We return 0 if we find a match and REG_NOMATCH if not.  */ | 
|  |  | 
|  | int | 
|  | regexec (const regex_t *preg, const char *string, size_t nmatch, | 
|  | regmatch_t pmatch[], int eflags) | 
|  | { | 
|  | int ret; | 
|  | struct re_registers regs; | 
|  | regex_t private_preg; | 
|  | int len = strlen (string); | 
|  | boolean want_reg_info = !preg->no_sub && nmatch > 0; | 
|  |  | 
|  | private_preg = *preg; | 
|  |  | 
|  | private_preg.not_bol = !!(eflags & REG_NOTBOL); | 
|  | private_preg.not_eol = !!(eflags & REG_NOTEOL); | 
|  |  | 
|  | /* The user has told us exactly how many registers to return | 
|  | information about, via `nmatch'.  We have to pass that on to the | 
|  | matching routines.  */ | 
|  | private_preg.regs_allocated = REGS_FIXED; | 
|  |  | 
|  | if (want_reg_info) | 
|  | { | 
|  | regs.num_regs = nmatch; | 
|  | regs.start = TALLOC (nmatch * 2, regoff_t); | 
|  | if (regs.start == NULL) | 
|  | return (int) REG_NOMATCH; | 
|  | regs.end = regs.start + nmatch; | 
|  | } | 
|  |  | 
|  | /* Perform the searching operation.  */ | 
|  | ret = re_search (&private_preg, string, len, | 
|  | /* start: */ 0, /* range: */ len, | 
|  | want_reg_info ? ®s : (struct re_registers *) 0); | 
|  |  | 
|  | /* Copy the register information to the POSIX structure.  */ | 
|  | if (want_reg_info) | 
|  | { | 
|  | if (ret >= 0) | 
|  | { | 
|  | unsigned r; | 
|  |  | 
|  | for (r = 0; r < nmatch; r++) | 
|  | { | 
|  | pmatch[r].rm_so = regs.start[r]; | 
|  | pmatch[r].rm_eo = regs.end[r]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we needed the temporary register info, free the space now.  */ | 
|  | free (regs.start); | 
|  | } | 
|  |  | 
|  | /* We want zero return to mean success, unlike `re_search'.  */ | 
|  | return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__regexec, regexec) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* Returns a message corresponding to an error code, ERRCODE, returned | 
|  | from either regcomp or regexec.   We don't use PREG here.  */ | 
|  |  | 
|  | size_t | 
|  | regerror (int errcode, const regex_t *preg ATTRIBUTE_UNUSED, | 
|  | char *errbuf, size_t errbuf_size) | 
|  | { | 
|  | const char *msg; | 
|  | size_t msg_size; | 
|  |  | 
|  | if (errcode < 0 | 
|  | || errcode >= (int) (sizeof (re_error_msgid) | 
|  | / sizeof (re_error_msgid[0]))) | 
|  | /* Only error codes returned by the rest of the code should be passed | 
|  | to this routine.  If we are given anything else, or if other regex | 
|  | code generates an invalid error code, then the program has a bug. | 
|  | Dump core so we can fix it.  */ | 
|  | abort (); | 
|  |  | 
|  | msg = gettext (re_error_msgid[errcode]); | 
|  |  | 
|  | msg_size = strlen (msg) + 1; /* Includes the null.  */ | 
|  |  | 
|  | if (errbuf_size != 0) | 
|  | { | 
|  | if (msg_size > errbuf_size) | 
|  | { | 
|  | #if defined HAVE_MEMPCPY || defined _LIBC | 
|  | *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0'; | 
|  | #else | 
|  | (void) memcpy (errbuf, msg, errbuf_size - 1); | 
|  | errbuf[errbuf_size - 1] = 0; | 
|  | #endif | 
|  | } | 
|  | else | 
|  | (void) memcpy (errbuf, msg, msg_size); | 
|  | } | 
|  |  | 
|  | return msg_size; | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__regerror, regerror) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* Free dynamically allocated space used by PREG.  */ | 
|  |  | 
|  | void | 
|  | regfree (regex_t *preg) | 
|  | { | 
|  | free (preg->buffer); | 
|  | preg->buffer = NULL; | 
|  |  | 
|  | preg->allocated = 0; | 
|  | preg->used = 0; | 
|  |  | 
|  | free (preg->fastmap); | 
|  | preg->fastmap = NULL; | 
|  | preg->fastmap_accurate = 0; | 
|  |  | 
|  | free (preg->translate); | 
|  | preg->translate = NULL; | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__regfree, regfree) | 
|  | #endif | 
|  |  | 
|  | #endif /* not emacs  */ | 
|  |  | 
|  | #endif /* not INSIDE_RECURSION */ | 
|  |  | 
|  |  | 
|  | #undef STORE_NUMBER | 
|  | #undef STORE_NUMBER_AND_INCR | 
|  | #undef EXTRACT_NUMBER | 
|  | #undef EXTRACT_NUMBER_AND_INCR | 
|  |  | 
|  | #undef DEBUG_PRINT_COMPILED_PATTERN | 
|  | #undef DEBUG_PRINT_DOUBLE_STRING | 
|  |  | 
|  | #undef INIT_FAIL_STACK | 
|  | #undef RESET_FAIL_STACK | 
|  | #undef DOUBLE_FAIL_STACK | 
|  | #undef PUSH_PATTERN_OP | 
|  | #undef PUSH_FAILURE_POINTER | 
|  | #undef PUSH_FAILURE_INT | 
|  | #undef PUSH_FAILURE_ELT | 
|  | #undef POP_FAILURE_POINTER | 
|  | #undef POP_FAILURE_INT | 
|  | #undef POP_FAILURE_ELT | 
|  | #undef DEBUG_PUSH | 
|  | #undef DEBUG_POP | 
|  | #undef PUSH_FAILURE_POINT | 
|  | #undef POP_FAILURE_POINT | 
|  |  | 
|  | #undef REG_UNSET_VALUE | 
|  | #undef REG_UNSET | 
|  |  | 
|  | #undef PATFETCH | 
|  | #undef PATFETCH_RAW | 
|  | #undef PATUNFETCH | 
|  | #undef TRANSLATE | 
|  |  | 
|  | #undef INIT_BUF_SIZE | 
|  | #undef GET_BUFFER_SPACE | 
|  | #undef BUF_PUSH | 
|  | #undef BUF_PUSH_2 | 
|  | #undef BUF_PUSH_3 | 
|  | #undef STORE_JUMP | 
|  | #undef STORE_JUMP2 | 
|  | #undef INSERT_JUMP | 
|  | #undef INSERT_JUMP2 | 
|  | #undef EXTEND_BUFFER | 
|  | #undef GET_UNSIGNED_NUMBER | 
|  | #undef FREE_STACK_RETURN | 
|  |  | 
|  | # undef POINTER_TO_OFFSET | 
|  | # undef MATCHING_IN_FRST_STRING | 
|  | # undef PREFETCH | 
|  | # undef AT_STRINGS_BEG | 
|  | # undef AT_STRINGS_END | 
|  | # undef WORDCHAR_P | 
|  | # undef FREE_VAR | 
|  | # undef FREE_VARIABLES | 
|  | # undef NO_HIGHEST_ACTIVE_REG | 
|  | # undef NO_LOWEST_ACTIVE_REG | 
|  |  | 
|  | # undef CHAR_T | 
|  | # undef UCHAR_T | 
|  | # undef COMPILED_BUFFER_VAR | 
|  | # undef OFFSET_ADDRESS_SIZE | 
|  | # undef CHAR_CLASS_SIZE | 
|  | # undef PREFIX | 
|  | # undef ARG_PREFIX | 
|  | # undef PUT_CHAR | 
|  | # undef BYTE | 
|  | # undef WCHAR | 
|  |  | 
|  | # define DEFINED_ONCE |