|  | /* Miscellaneous utilities. | 
|  | Copyright (C) 2019-2023 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of libctf. | 
|  |  | 
|  | libctf is free software; you can redistribute it and/or modify it under | 
|  | the terms of the GNU General Public License as published by the Free | 
|  | Software Foundation; either version 3, or (at your option) any later | 
|  | version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, but | 
|  | WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | 
|  | See the GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; see the file COPYING.  If not see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include <ctf-impl.h> | 
|  | #include <string.h> | 
|  | #include "ctf-endian.h" | 
|  |  | 
|  | /* Simple doubly-linked list append routine.  This implementation assumes that | 
|  | each list element contains an embedded ctf_list_t as the first member. | 
|  | An additional ctf_list_t is used to store the head (l_next) and tail | 
|  | (l_prev) pointers.  The current head and tail list elements have their | 
|  | previous and next pointers set to NULL, respectively.  */ | 
|  |  | 
|  | void | 
|  | ctf_list_append (ctf_list_t *lp, void *newp) | 
|  | { | 
|  | ctf_list_t *p = lp->l_prev;	/* p = tail list element.  */ | 
|  | ctf_list_t *q = newp;		/* q = new list element.  */ | 
|  |  | 
|  | lp->l_prev = q; | 
|  | q->l_prev = p; | 
|  | q->l_next = NULL; | 
|  |  | 
|  | if (p != NULL) | 
|  | p->l_next = q; | 
|  | else | 
|  | lp->l_next = q; | 
|  | } | 
|  |  | 
|  | /* Prepend the specified existing element to the given ctf_list_t.  The | 
|  | existing pointer should be pointing at a struct with embedded ctf_list_t.  */ | 
|  |  | 
|  | void | 
|  | ctf_list_prepend (ctf_list_t * lp, void *newp) | 
|  | { | 
|  | ctf_list_t *p = newp;		/* p = new list element.  */ | 
|  | ctf_list_t *q = lp->l_next;	/* q = head list element.  */ | 
|  |  | 
|  | lp->l_next = p; | 
|  | p->l_prev = NULL; | 
|  | p->l_next = q; | 
|  |  | 
|  | if (q != NULL) | 
|  | q->l_prev = p; | 
|  | else | 
|  | lp->l_prev = p; | 
|  | } | 
|  |  | 
|  | /* Delete the specified existing element from the given ctf_list_t.  The | 
|  | existing pointer should be pointing at a struct with embedded ctf_list_t.  */ | 
|  |  | 
|  | void | 
|  | ctf_list_delete (ctf_list_t *lp, void *existing) | 
|  | { | 
|  | ctf_list_t *p = existing; | 
|  |  | 
|  | if (p->l_prev != NULL) | 
|  | p->l_prev->l_next = p->l_next; | 
|  | else | 
|  | lp->l_next = p->l_next; | 
|  |  | 
|  | if (p->l_next != NULL) | 
|  | p->l_next->l_prev = p->l_prev; | 
|  | else | 
|  | lp->l_prev = p->l_prev; | 
|  | } | 
|  |  | 
|  | /* Return 1 if the list is empty.  */ | 
|  |  | 
|  | int | 
|  | ctf_list_empty_p (ctf_list_t *lp) | 
|  | { | 
|  | return (lp->l_next == NULL && lp->l_prev == NULL); | 
|  | } | 
|  |  | 
|  | /* Splice one entire list onto the end of another one.  The existing list is | 
|  | emptied.  */ | 
|  |  | 
|  | void | 
|  | ctf_list_splice (ctf_list_t *lp, ctf_list_t *append) | 
|  | { | 
|  | if (ctf_list_empty_p (append)) | 
|  | return; | 
|  |  | 
|  | if (lp->l_prev != NULL) | 
|  | lp->l_prev->l_next = append->l_next; | 
|  | else | 
|  | lp->l_next = append->l_next; | 
|  |  | 
|  | append->l_next->l_prev = lp->l_prev; | 
|  | lp->l_prev = append->l_prev; | 
|  | append->l_next = NULL; | 
|  | append->l_prev = NULL; | 
|  | } | 
|  |  | 
|  | /* Convert a 32-bit ELF symbol to a ctf_link_sym_t.  */ | 
|  |  | 
|  | ctf_link_sym_t * | 
|  | ctf_elf32_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst, const Elf32_Sym *src, | 
|  | uint32_t symidx) | 
|  | { | 
|  | Elf32_Sym tmp; | 
|  | int needs_flipping = 0; | 
|  |  | 
|  | #ifdef WORDS_BIGENDIAN | 
|  | if (fp->ctf_symsect_little_endian) | 
|  | needs_flipping = 1; | 
|  | #else | 
|  | if (!fp->ctf_symsect_little_endian) | 
|  | needs_flipping = 1; | 
|  | #endif | 
|  |  | 
|  | memcpy (&tmp, src, sizeof (Elf32_Sym)); | 
|  | if (needs_flipping) | 
|  | { | 
|  | swap_thing (tmp.st_name); | 
|  | swap_thing (tmp.st_size); | 
|  | swap_thing (tmp.st_shndx); | 
|  | swap_thing (tmp.st_value); | 
|  | } | 
|  | /* The name must be in the external string table.  */ | 
|  | if (tmp.st_name < fp->ctf_str[CTF_STRTAB_1].cts_len) | 
|  | dst->st_name = (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + tmp.st_name; | 
|  | else | 
|  | dst->st_name = _CTF_NULLSTR; | 
|  | dst->st_nameidx_set = 0; | 
|  | dst->st_symidx = symidx; | 
|  | dst->st_shndx = tmp.st_shndx; | 
|  | dst->st_type = ELF32_ST_TYPE (tmp.st_info); | 
|  | dst->st_value = tmp.st_value; | 
|  |  | 
|  | return dst; | 
|  | } | 
|  |  | 
|  | /* Convert a 64-bit ELF symbol to a ctf_link_sym_t.  */ | 
|  |  | 
|  | ctf_link_sym_t * | 
|  | ctf_elf64_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst, const Elf64_Sym *src, | 
|  | uint32_t symidx) | 
|  | { | 
|  | Elf64_Sym tmp; | 
|  | int needs_flipping = 0; | 
|  |  | 
|  | #ifdef WORDS_BIGENDIAN | 
|  | if (fp->ctf_symsect_little_endian) | 
|  | needs_flipping = 1; | 
|  | #else | 
|  | if (!fp->ctf_symsect_little_endian) | 
|  | needs_flipping = 1; | 
|  | #endif | 
|  |  | 
|  | memcpy (&tmp, src, sizeof (Elf64_Sym)); | 
|  | if (needs_flipping) | 
|  | { | 
|  | swap_thing (tmp.st_name); | 
|  | swap_thing (tmp.st_size); | 
|  | swap_thing (tmp.st_shndx); | 
|  | swap_thing (tmp.st_value); | 
|  | } | 
|  |  | 
|  | /* The name must be in the external string table.  */ | 
|  | if (tmp.st_name < fp->ctf_str[CTF_STRTAB_1].cts_len) | 
|  | dst->st_name = (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + tmp.st_name; | 
|  | else | 
|  | dst->st_name = _CTF_NULLSTR; | 
|  | dst->st_nameidx_set = 0; | 
|  | dst->st_symidx = symidx; | 
|  | dst->st_shndx = tmp.st_shndx; | 
|  | dst->st_type = ELF32_ST_TYPE (tmp.st_info); | 
|  |  | 
|  | /* We only care if the value is zero, so avoid nonzeroes turning into | 
|  | zeroes.  */ | 
|  | if (_libctf_unlikely_ (tmp.st_value != 0 && ((uint32_t) tmp.st_value == 0))) | 
|  | dst->st_value = 1; | 
|  | else | 
|  | dst->st_value = (uint32_t) tmp.st_value; | 
|  |  | 
|  | return dst; | 
|  | } | 
|  |  | 
|  | /* A string appender working on dynamic strings.  Returns NULL on OOM.  */ | 
|  |  | 
|  | char * | 
|  | ctf_str_append (char *s, const char *append) | 
|  | { | 
|  | size_t s_len = 0; | 
|  |  | 
|  | if (append == NULL) | 
|  | return s; | 
|  |  | 
|  | if (s != NULL) | 
|  | s_len = strlen (s); | 
|  |  | 
|  | size_t append_len = strlen (append); | 
|  |  | 
|  | if ((s = realloc (s, s_len + append_len + 1)) == NULL) | 
|  | return NULL; | 
|  |  | 
|  | memcpy (s + s_len, append, append_len); | 
|  | s[s_len + append_len] = '\0'; | 
|  |  | 
|  | return s; | 
|  | } | 
|  |  | 
|  | /* A version of ctf_str_append that returns the old string on OOM.  */ | 
|  |  | 
|  | char * | 
|  | ctf_str_append_noerr (char *s, const char *append) | 
|  | { | 
|  | char *new_s; | 
|  |  | 
|  | new_s = ctf_str_append (s, append); | 
|  | if (!new_s) | 
|  | return s; | 
|  | return new_s; | 
|  | } | 
|  |  | 
|  | /* A realloc() that fails noisily if called with any ctf_str_num_users.  */ | 
|  | void * | 
|  | ctf_realloc (ctf_dict_t *fp, void *ptr, size_t size) | 
|  | { | 
|  | if (fp->ctf_str_num_refs > 0) | 
|  | { | 
|  | ctf_dprintf ("%p: attempt to realloc() string table with %lu active refs\n", | 
|  | (void *) fp, (unsigned long) fp->ctf_str_num_refs); | 
|  | return NULL; | 
|  | } | 
|  | return realloc (ptr, size); | 
|  | } | 
|  |  | 
|  | /* Store the specified error code into errp if it is non-NULL, and then | 
|  | return NULL for the benefit of the caller.  */ | 
|  |  | 
|  | void * | 
|  | ctf_set_open_errno (int *errp, int error) | 
|  | { | 
|  | if (errp != NULL) | 
|  | *errp = error; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Create a ctf_next_t.  */ | 
|  |  | 
|  | ctf_next_t * | 
|  | ctf_next_create (void) | 
|  | { | 
|  | return calloc (1, sizeof (struct ctf_next)); | 
|  | } | 
|  |  | 
|  | /* Destroy a ctf_next_t, for early exit from iterators.  */ | 
|  |  | 
|  | void | 
|  | ctf_next_destroy (ctf_next_t *i) | 
|  | { | 
|  | if (i == NULL) | 
|  | return; | 
|  |  | 
|  | if (i->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted) | 
|  | free (i->u.ctn_sorted_hkv); | 
|  | if (i->ctn_next) | 
|  | ctf_next_destroy (i->ctn_next); | 
|  | free (i); | 
|  | } | 
|  |  | 
|  | /* Copy a ctf_next_t.  */ | 
|  |  | 
|  | ctf_next_t * | 
|  | ctf_next_copy (ctf_next_t *i) | 
|  | { | 
|  | ctf_next_t *i2; | 
|  |  | 
|  | if ((i2 = ctf_next_create()) == NULL) | 
|  | return NULL; | 
|  | memcpy (i2, i, sizeof (struct ctf_next)); | 
|  |  | 
|  | if (i2->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted) | 
|  | { | 
|  | size_t els = ctf_dynhash_elements ((ctf_dynhash_t *) i->cu.ctn_h); | 
|  | if ((i2->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL) | 
|  | { | 
|  | free (i2); | 
|  | return NULL; | 
|  | } | 
|  | memcpy (i2->u.ctn_sorted_hkv, i->u.ctn_sorted_hkv, | 
|  | els * sizeof (ctf_next_hkv_t)); | 
|  | } | 
|  | return i2; | 
|  | } |