|  | /* Support for HPPA 64-bit ELF | 
|  | Copyright (C) 1999-2023 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of BFD, the Binary File Descriptor library. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the Free Software | 
|  | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | 
|  | MA 02110-1301, USA.  */ | 
|  |  | 
|  | #include "sysdep.h" | 
|  | #include "bfd.h" | 
|  | #include "libbfd.h" | 
|  | #include "elf-bfd.h" | 
|  | #include "elf/hppa.h" | 
|  | #include "libhppa.h" | 
|  | #include "elf64-hppa.h" | 
|  | #include "libiberty.h" | 
|  |  | 
|  | #define ARCH_SIZE	       64 | 
|  |  | 
|  | #define PLT_ENTRY_SIZE 0x10 | 
|  | #define DLT_ENTRY_SIZE 0x8 | 
|  | #define OPD_ENTRY_SIZE 0x20 | 
|  |  | 
|  | #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl" | 
|  |  | 
|  | /* The stub is supposed to load the target address and target's DP | 
|  | value out of the PLT, then do an external branch to the target | 
|  | address. | 
|  |  | 
|  | LDD PLTOFF(%r27),%r1 | 
|  | BVE (%r1) | 
|  | LDD PLTOFF+8(%r27),%r27 | 
|  |  | 
|  | Note that we must use the LDD with a 14 bit displacement, not the one | 
|  | with a 5 bit displacement.  */ | 
|  | static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00, | 
|  | 0x53, 0x7b, 0x00, 0x00 }; | 
|  |  | 
|  | struct elf64_hppa_link_hash_entry | 
|  | { | 
|  | struct elf_link_hash_entry eh; | 
|  |  | 
|  | /* Offsets for this symbol in various linker sections.  */ | 
|  | bfd_vma dlt_offset; | 
|  | bfd_vma plt_offset; | 
|  | bfd_vma opd_offset; | 
|  | bfd_vma stub_offset; | 
|  |  | 
|  | /* The index of the (possibly local) symbol in the input bfd and its | 
|  | associated BFD.  Needed so that we can have relocs against local | 
|  | symbols in shared libraries.  */ | 
|  | long sym_indx; | 
|  | bfd *owner; | 
|  |  | 
|  | /* Dynamic symbols may need to have two different values.  One for | 
|  | the dynamic symbol table, one for the normal symbol table. | 
|  |  | 
|  | In such cases we store the symbol's real value and section | 
|  | index here so we can restore the real value before we write | 
|  | the normal symbol table.  */ | 
|  | bfd_vma st_value; | 
|  | int st_shndx; | 
|  |  | 
|  | /* Used to count non-got, non-plt relocations for delayed sizing | 
|  | of relocation sections.  */ | 
|  | struct elf64_hppa_dyn_reloc_entry | 
|  | { | 
|  | /* Next relocation in the chain.  */ | 
|  | struct elf64_hppa_dyn_reloc_entry *next; | 
|  |  | 
|  | /* The type of the relocation.  */ | 
|  | int type; | 
|  |  | 
|  | /* The input section of the relocation.  */ | 
|  | asection *sec; | 
|  |  | 
|  | /* Number of relocs copied in this section.  */ | 
|  | bfd_size_type count; | 
|  |  | 
|  | /* The index of the section symbol for the input section of | 
|  | the relocation.  Only needed when building shared libraries.  */ | 
|  | int sec_symndx; | 
|  |  | 
|  | /* The offset within the input section of the relocation.  */ | 
|  | bfd_vma offset; | 
|  |  | 
|  | /* The addend for the relocation.  */ | 
|  | bfd_vma addend; | 
|  |  | 
|  | } *reloc_entries; | 
|  |  | 
|  | /* Nonzero if this symbol needs an entry in one of the linker | 
|  | sections.  */ | 
|  | unsigned want_dlt; | 
|  | unsigned want_plt; | 
|  | unsigned want_opd; | 
|  | unsigned want_stub; | 
|  | }; | 
|  |  | 
|  | struct elf64_hppa_link_hash_table | 
|  | { | 
|  | struct elf_link_hash_table root; | 
|  |  | 
|  | /* Shortcuts to get to the various linker defined sections.  */ | 
|  | asection *dlt_sec; | 
|  | asection *dlt_rel_sec; | 
|  | asection *opd_sec; | 
|  | asection *opd_rel_sec; | 
|  | asection *other_rel_sec; | 
|  |  | 
|  | /* Offset of __gp within .plt section.  When the PLT gets large we want | 
|  | to slide __gp into the PLT section so that we can continue to use | 
|  | single DP relative instructions to load values out of the PLT.  */ | 
|  | bfd_vma gp_offset; | 
|  |  | 
|  | /* Note this is not strictly correct.  We should create a stub section for | 
|  | each input section with calls.  The stub section should be placed before | 
|  | the section with the call.  */ | 
|  | asection *stub_sec; | 
|  |  | 
|  | bfd_vma text_segment_base; | 
|  | bfd_vma data_segment_base; | 
|  |  | 
|  | /* We build tables to map from an input section back to its | 
|  | symbol index.  This is the BFD for which we currently have | 
|  | a map.  */ | 
|  | bfd *section_syms_bfd; | 
|  |  | 
|  | /* Array of symbol numbers for each input section attached to the | 
|  | current BFD.  */ | 
|  | int *section_syms; | 
|  | }; | 
|  |  | 
|  | #define hppa_link_hash_table(p) \ | 
|  | ((is_elf_hash_table ((p)->hash)					\ | 
|  | && elf_hash_table_id (elf_hash_table (p)) == HPPA64_ELF_DATA)	\ | 
|  | ? (struct elf64_hppa_link_hash_table *) (p)->hash : NULL) | 
|  |  | 
|  | #define hppa_elf_hash_entry(ent) \ | 
|  | ((struct elf64_hppa_link_hash_entry *)(ent)) | 
|  |  | 
|  | #define eh_name(eh) \ | 
|  | (eh ? eh->root.root.string : "<undef>") | 
|  |  | 
|  | typedef struct bfd_hash_entry *(*new_hash_entry_func) | 
|  | (struct bfd_hash_entry *, struct bfd_hash_table *, const char *); | 
|  |  | 
|  | static struct bfd_link_hash_table *elf64_hppa_hash_table_create | 
|  | (bfd *abfd); | 
|  |  | 
|  | /* This must follow the definitions of the various derived linker | 
|  | hash tables and shared functions.  */ | 
|  | #include "elf-hppa.h" | 
|  |  | 
|  | static bool elf64_hppa_object_p | 
|  | (bfd *); | 
|  |  | 
|  | static bool elf64_hppa_create_dynamic_sections | 
|  | (bfd *, struct bfd_link_info *); | 
|  |  | 
|  | static bool elf64_hppa_adjust_dynamic_symbol | 
|  | (struct bfd_link_info *, struct elf_link_hash_entry *); | 
|  |  | 
|  | static bool elf64_hppa_mark_milli_and_exported_functions | 
|  | (struct elf_link_hash_entry *, void *); | 
|  |  | 
|  | static bool elf64_hppa_size_dynamic_sections | 
|  | (bfd *, struct bfd_link_info *); | 
|  |  | 
|  | static int elf64_hppa_link_output_symbol_hook | 
|  | (struct bfd_link_info *, const char *, Elf_Internal_Sym *, | 
|  | asection *, struct elf_link_hash_entry *); | 
|  |  | 
|  | static bool elf64_hppa_finish_dynamic_symbol | 
|  | (bfd *, struct bfd_link_info *, | 
|  | struct elf_link_hash_entry *, Elf_Internal_Sym *); | 
|  |  | 
|  | static bool elf64_hppa_finish_dynamic_sections | 
|  | (bfd *, struct bfd_link_info *); | 
|  |  | 
|  | static bool elf64_hppa_check_relocs | 
|  | (bfd *, struct bfd_link_info *, | 
|  | asection *, const Elf_Internal_Rela *); | 
|  |  | 
|  | static bool elf64_hppa_dynamic_symbol_p | 
|  | (struct elf_link_hash_entry *, struct bfd_link_info *); | 
|  |  | 
|  | static bool elf64_hppa_mark_exported_functions | 
|  | (struct elf_link_hash_entry *, void *); | 
|  |  | 
|  | static bool elf64_hppa_finalize_opd | 
|  | (struct elf_link_hash_entry *, void *); | 
|  |  | 
|  | static bool elf64_hppa_finalize_dlt | 
|  | (struct elf_link_hash_entry *, void *); | 
|  |  | 
|  | static bool allocate_global_data_dlt | 
|  | (struct elf_link_hash_entry *, void *); | 
|  |  | 
|  | static bool allocate_global_data_plt | 
|  | (struct elf_link_hash_entry *, void *); | 
|  |  | 
|  | static bool allocate_global_data_stub | 
|  | (struct elf_link_hash_entry *, void *); | 
|  |  | 
|  | static bool allocate_global_data_opd | 
|  | (struct elf_link_hash_entry *, void *); | 
|  |  | 
|  | static bool get_reloc_section | 
|  | (bfd *, struct elf64_hppa_link_hash_table *, asection *); | 
|  |  | 
|  | static bool count_dyn_reloc | 
|  | (bfd *, struct elf64_hppa_link_hash_entry *, | 
|  | int, asection *, int, bfd_vma, bfd_vma); | 
|  |  | 
|  | static bool allocate_dynrel_entries | 
|  | (struct elf_link_hash_entry *, void *); | 
|  |  | 
|  | static bool elf64_hppa_finalize_dynreloc | 
|  | (struct elf_link_hash_entry *, void *); | 
|  |  | 
|  | static bool get_opd | 
|  | (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *); | 
|  |  | 
|  | static bool get_plt | 
|  | (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *); | 
|  |  | 
|  | static bool get_dlt | 
|  | (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *); | 
|  |  | 
|  | static bool get_stub | 
|  | (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *); | 
|  |  | 
|  | static int elf64_hppa_elf_get_symbol_type | 
|  | (Elf_Internal_Sym *, int); | 
|  |  | 
|  | /* Initialize an entry in the link hash table.  */ | 
|  |  | 
|  | static struct bfd_hash_entry * | 
|  | hppa64_link_hash_newfunc (struct bfd_hash_entry *entry, | 
|  | struct bfd_hash_table *table, | 
|  | const char *string) | 
|  | { | 
|  | /* Allocate the structure if it has not already been allocated by a | 
|  | subclass.  */ | 
|  | if (entry == NULL) | 
|  | { | 
|  | entry = bfd_hash_allocate (table, | 
|  | sizeof (struct elf64_hppa_link_hash_entry)); | 
|  | if (entry == NULL) | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* Call the allocation method of the superclass.  */ | 
|  | entry = _bfd_elf_link_hash_newfunc (entry, table, string); | 
|  | if (entry != NULL) | 
|  | { | 
|  | struct elf64_hppa_link_hash_entry *hh; | 
|  |  | 
|  | /* Initialize our local data.  All zeros.  */ | 
|  | hh = hppa_elf_hash_entry (entry); | 
|  | memset (&hh->dlt_offset, 0, | 
|  | (sizeof (struct elf64_hppa_link_hash_entry) | 
|  | - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset))); | 
|  | } | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* Create the derived linker hash table.  The PA64 ELF port uses this | 
|  | derived hash table to keep information specific to the PA ElF | 
|  | linker (without using static variables).  */ | 
|  |  | 
|  | static struct bfd_link_hash_table* | 
|  | elf64_hppa_hash_table_create (bfd *abfd) | 
|  | { | 
|  | struct elf64_hppa_link_hash_table *htab; | 
|  | size_t amt = sizeof (*htab); | 
|  |  | 
|  | htab = bfd_zmalloc (amt); | 
|  | if (htab == NULL) | 
|  | return NULL; | 
|  |  | 
|  | if (!_bfd_elf_link_hash_table_init (&htab->root, abfd, | 
|  | hppa64_link_hash_newfunc, | 
|  | sizeof (struct elf64_hppa_link_hash_entry), | 
|  | HPPA64_ELF_DATA)) | 
|  | { | 
|  | free (htab); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | htab->root.dt_pltgot_required = true; | 
|  | htab->text_segment_base = (bfd_vma) -1; | 
|  | htab->data_segment_base = (bfd_vma) -1; | 
|  |  | 
|  | return &htab->root.root; | 
|  | } | 
|  |  | 
|  | /* Return nonzero if ABFD represents a PA2.0 ELF64 file. | 
|  |  | 
|  | Additionally we set the default architecture and machine.  */ | 
|  | static bool | 
|  | elf64_hppa_object_p (bfd *abfd) | 
|  | { | 
|  | Elf_Internal_Ehdr * i_ehdrp; | 
|  | unsigned int flags; | 
|  |  | 
|  | i_ehdrp = elf_elfheader (abfd); | 
|  | if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0) | 
|  | { | 
|  | /* GCC on hppa-linux produces binaries with OSABI=GNU, | 
|  | but the kernel produces corefiles with OSABI=SysV.  */ | 
|  | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU | 
|  | && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ | 
|  | return false; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* HPUX produces binaries with OSABI=HPUX, | 
|  | but the kernel produces corefiles with OSABI=SysV.  */ | 
|  | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX | 
|  | && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | flags = i_ehdrp->e_flags; | 
|  | switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE)) | 
|  | { | 
|  | case EFA_PARISC_1_0: | 
|  | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10); | 
|  | case EFA_PARISC_1_1: | 
|  | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11); | 
|  | case EFA_PARISC_2_0: | 
|  | if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64) | 
|  | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); | 
|  | else | 
|  | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20); | 
|  | case EFA_PARISC_2_0 | EF_PARISC_WIDE: | 
|  | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); | 
|  | } | 
|  | /* Don't be fussy.  */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Given section type (hdr->sh_type), return a boolean indicating | 
|  | whether or not the section is an elf64-hppa specific section.  */ | 
|  | static bool | 
|  | elf64_hppa_section_from_shdr (bfd *abfd, | 
|  | Elf_Internal_Shdr *hdr, | 
|  | const char *name, | 
|  | int shindex) | 
|  | { | 
|  | switch (hdr->sh_type) | 
|  | { | 
|  | case SHT_PARISC_EXT: | 
|  | if (strcmp (name, ".PARISC.archext") != 0) | 
|  | return false; | 
|  | break; | 
|  | case SHT_PARISC_UNWIND: | 
|  | if (strcmp (name, ".PARISC.unwind") != 0) | 
|  | return false; | 
|  | break; | 
|  | case SHT_PARISC_DOC: | 
|  | case SHT_PARISC_ANNOT: | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) | 
|  | return false; | 
|  |  | 
|  | return ((hdr->sh_flags & SHF_PARISC_SHORT) == 0 | 
|  | || bfd_set_section_flags (hdr->bfd_section, | 
|  | hdr->bfd_section->flags | SEC_SMALL_DATA)); | 
|  | } | 
|  |  | 
|  | /* SEC is a section containing relocs for an input BFD when linking; return | 
|  | a suitable section for holding relocs in the output BFD for a link.  */ | 
|  |  | 
|  | static bool | 
|  | get_reloc_section (bfd *abfd, | 
|  | struct elf64_hppa_link_hash_table *hppa_info, | 
|  | asection *sec) | 
|  | { | 
|  | const char *srel_name; | 
|  | asection *srel; | 
|  | bfd *dynobj; | 
|  |  | 
|  | srel_name = (bfd_elf_string_from_elf_section | 
|  | (abfd, elf_elfheader(abfd)->e_shstrndx, | 
|  | _bfd_elf_single_rel_hdr(sec)->sh_name)); | 
|  | if (srel_name == NULL) | 
|  | return false; | 
|  |  | 
|  | dynobj = hppa_info->root.dynobj; | 
|  | if (!dynobj) | 
|  | hppa_info->root.dynobj = dynobj = abfd; | 
|  |  | 
|  | srel = bfd_get_linker_section (dynobj, srel_name); | 
|  | if (srel == NULL) | 
|  | { | 
|  | srel = bfd_make_section_anyway_with_flags (dynobj, srel_name, | 
|  | (SEC_ALLOC | 
|  | | SEC_LOAD | 
|  | | SEC_HAS_CONTENTS | 
|  | | SEC_IN_MEMORY | 
|  | | SEC_LINKER_CREATED | 
|  | | SEC_READONLY)); | 
|  | if (srel == NULL | 
|  | || !bfd_set_section_alignment (srel, 3)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | hppa_info->other_rel_sec = srel; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Add a new entry to the list of dynamic relocations against DYN_H. | 
|  |  | 
|  | We use this to keep a record of all the FPTR relocations against a | 
|  | particular symbol so that we can create FPTR relocations in the | 
|  | output file.  */ | 
|  |  | 
|  | static bool | 
|  | count_dyn_reloc (bfd *abfd, | 
|  | struct elf64_hppa_link_hash_entry *hh, | 
|  | int type, | 
|  | asection *sec, | 
|  | int sec_symndx, | 
|  | bfd_vma offset, | 
|  | bfd_vma addend) | 
|  | { | 
|  | struct elf64_hppa_dyn_reloc_entry *rent; | 
|  |  | 
|  | rent = (struct elf64_hppa_dyn_reloc_entry *) | 
|  | bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)); | 
|  | if (!rent) | 
|  | return false; | 
|  |  | 
|  | rent->next = hh->reloc_entries; | 
|  | rent->type = type; | 
|  | rent->sec = sec; | 
|  | rent->sec_symndx = sec_symndx; | 
|  | rent->offset = offset; | 
|  | rent->addend = addend; | 
|  | hh->reloc_entries = rent; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return a pointer to the local DLT, PLT and OPD reference counts | 
|  | for ABFD.  Returns NULL if the storage allocation fails.  */ | 
|  |  | 
|  | static bfd_signed_vma * | 
|  | hppa64_elf_local_refcounts (bfd *abfd) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  | bfd_signed_vma *local_refcounts; | 
|  |  | 
|  | local_refcounts = elf_local_got_refcounts (abfd); | 
|  | if (local_refcounts == NULL) | 
|  | { | 
|  | bfd_size_type size; | 
|  |  | 
|  | /* Allocate space for local DLT, PLT and OPD reference | 
|  | counts.  Done this way to save polluting elf_obj_tdata | 
|  | with another target specific pointer.  */ | 
|  | size = symtab_hdr->sh_info; | 
|  | size *= 3 * sizeof (bfd_signed_vma); | 
|  | local_refcounts = bfd_zalloc (abfd, size); | 
|  | elf_local_got_refcounts (abfd) = local_refcounts; | 
|  | } | 
|  | return local_refcounts; | 
|  | } | 
|  |  | 
|  | /* Scan the RELOCS and record the type of dynamic entries that each | 
|  | referenced symbol needs.  */ | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_check_relocs (bfd *abfd, | 
|  | struct bfd_link_info *info, | 
|  | asection *sec, | 
|  | const Elf_Internal_Rela *relocs) | 
|  | { | 
|  | struct elf64_hppa_link_hash_table *hppa_info; | 
|  | const Elf_Internal_Rela *relend; | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | const Elf_Internal_Rela *rel; | 
|  | unsigned int sec_symndx; | 
|  |  | 
|  | if (bfd_link_relocatable (info)) | 
|  | return true; | 
|  |  | 
|  | /* If this is the first dynamic object found in the link, create | 
|  | the special sections required for dynamic linking.  */ | 
|  | if (! elf_hash_table (info)->dynamic_sections_created) | 
|  | { | 
|  | if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | hppa_info = hppa_link_hash_table (info); | 
|  | if (hppa_info == NULL) | 
|  | return false; | 
|  | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  |  | 
|  | /* If necessary, build a new table holding section symbols indices | 
|  | for this BFD.  */ | 
|  |  | 
|  | if (bfd_link_pic (info) && hppa_info->section_syms_bfd != abfd) | 
|  | { | 
|  | unsigned long i; | 
|  | unsigned int highest_shndx; | 
|  | Elf_Internal_Sym *local_syms = NULL; | 
|  | Elf_Internal_Sym *isym, *isymend; | 
|  | bfd_size_type amt; | 
|  |  | 
|  | /* We're done with the old cache of section index to section symbol | 
|  | index information.  Free it. | 
|  |  | 
|  | ?!? Note we leak the last section_syms array.  Presumably we | 
|  | could free it in one of the later routines in this file.  */ | 
|  | free (hppa_info->section_syms); | 
|  |  | 
|  | /* Read this BFD's local symbols.  */ | 
|  | if (symtab_hdr->sh_info != 0) | 
|  | { | 
|  | local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; | 
|  | if (local_syms == NULL) | 
|  | local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr, | 
|  | symtab_hdr->sh_info, 0, | 
|  | NULL, NULL, NULL); | 
|  | if (local_syms == NULL) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Record the highest section index referenced by the local symbols.  */ | 
|  | highest_shndx = 0; | 
|  | isymend = local_syms + symtab_hdr->sh_info; | 
|  | for (isym = local_syms; isym < isymend; isym++) | 
|  | { | 
|  | if (isym->st_shndx > highest_shndx | 
|  | && isym->st_shndx < SHN_LORESERVE) | 
|  | highest_shndx = isym->st_shndx; | 
|  | } | 
|  |  | 
|  | /* Allocate an array to hold the section index to section symbol index | 
|  | mapping.  Bump by one since we start counting at zero.  */ | 
|  | highest_shndx++; | 
|  | amt = highest_shndx; | 
|  | amt *= sizeof (int); | 
|  | hppa_info->section_syms = (int *) bfd_malloc (amt); | 
|  |  | 
|  | /* Now walk the local symbols again.  If we find a section symbol, | 
|  | record the index of the symbol into the section_syms array.  */ | 
|  | for (i = 0, isym = local_syms; isym < isymend; i++, isym++) | 
|  | { | 
|  | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | 
|  | hppa_info->section_syms[isym->st_shndx] = i; | 
|  | } | 
|  |  | 
|  | /* We are finished with the local symbols.  */ | 
|  | if (local_syms != NULL | 
|  | && symtab_hdr->contents != (unsigned char *) local_syms) | 
|  | { | 
|  | if (! info->keep_memory) | 
|  | free (local_syms); | 
|  | else | 
|  | { | 
|  | /* Cache the symbols for elf_link_input_bfd.  */ | 
|  | symtab_hdr->contents = (unsigned char *) local_syms; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Record which BFD we built the section_syms mapping for.  */ | 
|  | hppa_info->section_syms_bfd = abfd; | 
|  | } | 
|  |  | 
|  | /* Record the symbol index for this input section.  We may need it for | 
|  | relocations when building shared libraries.  When not building shared | 
|  | libraries this value is never really used, but assign it to zero to | 
|  | prevent out of bounds memory accesses in other routines.  */ | 
|  | if (bfd_link_pic (info)) | 
|  | { | 
|  | sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec); | 
|  |  | 
|  | /* If we did not find a section symbol for this section, then | 
|  | something went terribly wrong above.  */ | 
|  | if (sec_symndx == SHN_BAD) | 
|  | return false; | 
|  |  | 
|  | if (sec_symndx < SHN_LORESERVE) | 
|  | sec_symndx = hppa_info->section_syms[sec_symndx]; | 
|  | else | 
|  | sec_symndx = 0; | 
|  | } | 
|  | else | 
|  | sec_symndx = 0; | 
|  |  | 
|  | relend = relocs + sec->reloc_count; | 
|  | for (rel = relocs; rel < relend; ++rel) | 
|  | { | 
|  | enum | 
|  | { | 
|  | NEED_DLT = 1, | 
|  | NEED_PLT = 2, | 
|  | NEED_STUB = 4, | 
|  | NEED_OPD = 8, | 
|  | NEED_DYNREL = 16, | 
|  | }; | 
|  |  | 
|  | unsigned long r_symndx = ELF64_R_SYM (rel->r_info); | 
|  | struct elf64_hppa_link_hash_entry *hh; | 
|  | int need_entry; | 
|  | bool maybe_dynamic; | 
|  | int dynrel_type = R_PARISC_NONE; | 
|  | static reloc_howto_type *howto; | 
|  |  | 
|  | if (r_symndx >= symtab_hdr->sh_info) | 
|  | { | 
|  | /* We're dealing with a global symbol -- find its hash entry | 
|  | and mark it as being referenced.  */ | 
|  | long indx = r_symndx - symtab_hdr->sh_info; | 
|  | hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]); | 
|  | while (hh->eh.root.type == bfd_link_hash_indirect | 
|  | || hh->eh.root.type == bfd_link_hash_warning) | 
|  | hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); | 
|  |  | 
|  | /* PR15323, ref flags aren't set for references in the same | 
|  | object.  */ | 
|  | hh->eh.ref_regular = 1; | 
|  | } | 
|  | else | 
|  | hh = NULL; | 
|  |  | 
|  | /* We can only get preliminary data on whether a symbol is | 
|  | locally or externally defined, as not all of the input files | 
|  | have yet been processed.  Do something with what we know, as | 
|  | this may help reduce memory usage and processing time later.  */ | 
|  | maybe_dynamic = false; | 
|  | if (hh && ((bfd_link_pic (info) | 
|  | && (!info->symbolic | 
|  | || info->unresolved_syms_in_shared_libs == RM_IGNORE)) | 
|  | || !hh->eh.def_regular | 
|  | || hh->eh.root.type == bfd_link_hash_defweak)) | 
|  | maybe_dynamic = true; | 
|  |  | 
|  | howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info); | 
|  | need_entry = 0; | 
|  | switch (howto->type) | 
|  | { | 
|  | /* These are simple indirect references to symbols through the | 
|  | DLT.  We need to create a DLT entry for any symbols which | 
|  | appears in a DLTIND relocation.  */ | 
|  | case R_PARISC_DLTIND21L: | 
|  | case R_PARISC_DLTIND14R: | 
|  | case R_PARISC_DLTIND14F: | 
|  | case R_PARISC_DLTIND14WR: | 
|  | case R_PARISC_DLTIND14DR: | 
|  | need_entry = NEED_DLT; | 
|  | break; | 
|  |  | 
|  | /* ?!?  These need a DLT entry.  But I have no idea what to do with | 
|  | the "link time TP value.  */ | 
|  | case R_PARISC_LTOFF_TP21L: | 
|  | case R_PARISC_LTOFF_TP14R: | 
|  | case R_PARISC_LTOFF_TP14F: | 
|  | case R_PARISC_LTOFF_TP64: | 
|  | case R_PARISC_LTOFF_TP14WR: | 
|  | case R_PARISC_LTOFF_TP14DR: | 
|  | case R_PARISC_LTOFF_TP16F: | 
|  | case R_PARISC_LTOFF_TP16WF: | 
|  | case R_PARISC_LTOFF_TP16DF: | 
|  | need_entry = NEED_DLT; | 
|  | break; | 
|  |  | 
|  | /* These are function calls.  Depending on their precise target we | 
|  | may need to make a stub for them.  The stub uses the PLT, so we | 
|  | need to create PLT entries for these symbols too.  */ | 
|  | case R_PARISC_PCREL12F: | 
|  | case R_PARISC_PCREL17F: | 
|  | case R_PARISC_PCREL22F: | 
|  | case R_PARISC_PCREL32: | 
|  | case R_PARISC_PCREL64: | 
|  | case R_PARISC_PCREL21L: | 
|  | case R_PARISC_PCREL17R: | 
|  | case R_PARISC_PCREL17C: | 
|  | case R_PARISC_PCREL14R: | 
|  | case R_PARISC_PCREL14F: | 
|  | case R_PARISC_PCREL22C: | 
|  | case R_PARISC_PCREL14WR: | 
|  | case R_PARISC_PCREL14DR: | 
|  | case R_PARISC_PCREL16F: | 
|  | case R_PARISC_PCREL16WF: | 
|  | case R_PARISC_PCREL16DF: | 
|  | /* Function calls might need to go through the .plt, and | 
|  | might need a long branch stub.  */ | 
|  | if (hh != NULL && hh->eh.type != STT_PARISC_MILLI) | 
|  | need_entry = (NEED_PLT | NEED_STUB); | 
|  | else | 
|  | need_entry = 0; | 
|  | break; | 
|  |  | 
|  | case R_PARISC_PLTOFF21L: | 
|  | case R_PARISC_PLTOFF14R: | 
|  | case R_PARISC_PLTOFF14F: | 
|  | case R_PARISC_PLTOFF14WR: | 
|  | case R_PARISC_PLTOFF14DR: | 
|  | case R_PARISC_PLTOFF16F: | 
|  | case R_PARISC_PLTOFF16WF: | 
|  | case R_PARISC_PLTOFF16DF: | 
|  | need_entry = (NEED_PLT); | 
|  | break; | 
|  |  | 
|  | case R_PARISC_DIR64: | 
|  | if (bfd_link_pic (info) || maybe_dynamic) | 
|  | need_entry = (NEED_DYNREL); | 
|  | dynrel_type = R_PARISC_DIR64; | 
|  | break; | 
|  |  | 
|  | /* This is an indirect reference through the DLT to get the address | 
|  | of a OPD descriptor.  Thus we need to make a DLT entry that points | 
|  | to an OPD entry.  */ | 
|  | case R_PARISC_LTOFF_FPTR21L: | 
|  | case R_PARISC_LTOFF_FPTR14R: | 
|  | case R_PARISC_LTOFF_FPTR14WR: | 
|  | case R_PARISC_LTOFF_FPTR14DR: | 
|  | case R_PARISC_LTOFF_FPTR32: | 
|  | case R_PARISC_LTOFF_FPTR64: | 
|  | case R_PARISC_LTOFF_FPTR16F: | 
|  | case R_PARISC_LTOFF_FPTR16WF: | 
|  | case R_PARISC_LTOFF_FPTR16DF: | 
|  | if (bfd_link_pic (info) || maybe_dynamic) | 
|  | need_entry = (NEED_DLT | NEED_OPD | NEED_PLT); | 
|  | else | 
|  | need_entry = (NEED_DLT | NEED_OPD | NEED_PLT); | 
|  | dynrel_type = R_PARISC_FPTR64; | 
|  | break; | 
|  |  | 
|  | /* This is a simple OPD entry.  */ | 
|  | case R_PARISC_FPTR64: | 
|  | if (bfd_link_pic (info) || maybe_dynamic) | 
|  | need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL); | 
|  | else | 
|  | need_entry = (NEED_OPD | NEED_PLT); | 
|  | dynrel_type = R_PARISC_FPTR64; | 
|  | break; | 
|  |  | 
|  | /* Add more cases as needed.  */ | 
|  | } | 
|  |  | 
|  | if (!need_entry) | 
|  | continue; | 
|  |  | 
|  | if (hh) | 
|  | { | 
|  | /* Stash away enough information to be able to find this symbol | 
|  | regardless of whether or not it is local or global.  */ | 
|  | hh->owner = abfd; | 
|  | hh->sym_indx = r_symndx; | 
|  | } | 
|  |  | 
|  | /* Create what's needed.  */ | 
|  | if (need_entry & NEED_DLT) | 
|  | { | 
|  | /* Allocate space for a DLT entry, as well as a dynamic | 
|  | relocation for this entry.  */ | 
|  | if (! hppa_info->dlt_sec | 
|  | && ! get_dlt (abfd, info, hppa_info)) | 
|  | goto err_out; | 
|  |  | 
|  | if (hh != NULL) | 
|  | { | 
|  | hh->want_dlt = 1; | 
|  | hh->eh.got.refcount += 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_signed_vma *local_dlt_refcounts; | 
|  |  | 
|  | /* This is a DLT entry for a local symbol.  */ | 
|  | local_dlt_refcounts = hppa64_elf_local_refcounts (abfd); | 
|  | if (local_dlt_refcounts == NULL) | 
|  | return false; | 
|  | local_dlt_refcounts[r_symndx] += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (need_entry & NEED_PLT) | 
|  | { | 
|  | if (! hppa_info->root.splt | 
|  | && ! get_plt (abfd, info, hppa_info)) | 
|  | goto err_out; | 
|  |  | 
|  | if (hh != NULL) | 
|  | { | 
|  | hh->want_plt = 1; | 
|  | hh->eh.needs_plt = 1; | 
|  | hh->eh.plt.refcount += 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_signed_vma *local_dlt_refcounts; | 
|  | bfd_signed_vma *local_plt_refcounts; | 
|  |  | 
|  | /* This is a PLT entry for a local symbol.  */ | 
|  | local_dlt_refcounts = hppa64_elf_local_refcounts (abfd); | 
|  | if (local_dlt_refcounts == NULL) | 
|  | return false; | 
|  | local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info; | 
|  | local_plt_refcounts[r_symndx] += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (need_entry & NEED_STUB) | 
|  | { | 
|  | if (! hppa_info->stub_sec | 
|  | && ! get_stub (abfd, info, hppa_info)) | 
|  | goto err_out; | 
|  | if (hh) | 
|  | hh->want_stub = 1; | 
|  | } | 
|  |  | 
|  | if (need_entry & NEED_OPD) | 
|  | { | 
|  | if (! hppa_info->opd_sec | 
|  | && ! get_opd (abfd, info, hppa_info)) | 
|  | goto err_out; | 
|  |  | 
|  | /* FPTRs are not allocated by the dynamic linker for PA64, | 
|  | though it is possible that will change in the future.  */ | 
|  |  | 
|  | if (hh != NULL) | 
|  | hh->want_opd = 1; | 
|  | else | 
|  | { | 
|  | bfd_signed_vma *local_dlt_refcounts; | 
|  | bfd_signed_vma *local_opd_refcounts; | 
|  |  | 
|  | /* This is a OPD for a local symbol.  */ | 
|  | local_dlt_refcounts = hppa64_elf_local_refcounts (abfd); | 
|  | if (local_dlt_refcounts == NULL) | 
|  | return false; | 
|  | local_opd_refcounts = (local_dlt_refcounts | 
|  | + 2 * symtab_hdr->sh_info); | 
|  | local_opd_refcounts[r_symndx] += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Add a new dynamic relocation to the chain of dynamic | 
|  | relocations for this symbol.  */ | 
|  | if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC)) | 
|  | { | 
|  | if (! hppa_info->other_rel_sec | 
|  | && ! get_reloc_section (abfd, hppa_info, sec)) | 
|  | goto err_out; | 
|  |  | 
|  | /* Count dynamic relocations against global symbols.  */ | 
|  | if (hh != NULL | 
|  | && !count_dyn_reloc (abfd, hh, dynrel_type, sec, | 
|  | sec_symndx, rel->r_offset, rel->r_addend)) | 
|  | goto err_out; | 
|  |  | 
|  | /* If we are building a shared library and we just recorded | 
|  | a dynamic R_PARISC_FPTR64 relocation, then make sure the | 
|  | section symbol for this section ends up in the dynamic | 
|  | symbol table.  */ | 
|  | if (bfd_link_pic (info) && dynrel_type == R_PARISC_FPTR64 | 
|  | && ! (bfd_elf_link_record_local_dynamic_symbol | 
|  | (info, abfd, sec_symndx))) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  |  | 
|  | err_out: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | struct elf64_hppa_allocate_data | 
|  | { | 
|  | struct bfd_link_info *info; | 
|  | bfd_size_type ofs; | 
|  | }; | 
|  |  | 
|  | /* Should we do dynamic things to this symbol?  */ | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh, | 
|  | struct bfd_link_info *info) | 
|  | { | 
|  | /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols | 
|  | and relocations that retrieve a function descriptor?  Assume the | 
|  | worst for now.  */ | 
|  | if (_bfd_elf_dynamic_symbol_p (eh, info, 1)) | 
|  | { | 
|  | /* ??? Why is this here and not elsewhere is_local_label_name.  */ | 
|  | if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$') | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Mark all functions exported by this file so that we can later allocate | 
|  | entries in .opd for them.  */ | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data) | 
|  | { | 
|  | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); | 
|  | struct bfd_link_info *info = (struct bfd_link_info *)data; | 
|  | struct elf64_hppa_link_hash_table *hppa_info; | 
|  |  | 
|  | hppa_info = hppa_link_hash_table (info); | 
|  | if (hppa_info == NULL) | 
|  | return false; | 
|  |  | 
|  | if (eh | 
|  | && (eh->root.type == bfd_link_hash_defined | 
|  | || eh->root.type == bfd_link_hash_defweak) | 
|  | && eh->root.u.def.section->output_section != NULL | 
|  | && eh->type == STT_FUNC) | 
|  | { | 
|  | if (! hppa_info->opd_sec | 
|  | && ! get_opd (hppa_info->root.dynobj, info, hppa_info)) | 
|  | return false; | 
|  |  | 
|  | hh->want_opd = 1; | 
|  |  | 
|  | /* Put a flag here for output_symbol_hook.  */ | 
|  | hh->st_shndx = -1; | 
|  | eh->needs_plt = 1; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Allocate space for a DLT entry.  */ | 
|  |  | 
|  | static bool | 
|  | allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data) | 
|  | { | 
|  | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); | 
|  | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | 
|  |  | 
|  | if (hh->want_dlt) | 
|  | { | 
|  | if (bfd_link_pic (x->info)) | 
|  | { | 
|  | /* Possibly add the symbol to the local dynamic symbol | 
|  | table since we might need to create a dynamic relocation | 
|  | against it.  */ | 
|  | if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI) | 
|  | { | 
|  | bfd *owner = eh->root.u.def.section->owner; | 
|  |  | 
|  | if (! (bfd_elf_link_record_local_dynamic_symbol | 
|  | (x->info, owner, hh->sym_indx))) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | hh->dlt_offset = x->ofs; | 
|  | x->ofs += DLT_ENTRY_SIZE; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Allocate space for a DLT.PLT entry.  */ | 
|  |  | 
|  | static bool | 
|  | allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data) | 
|  | { | 
|  | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); | 
|  | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data; | 
|  |  | 
|  | if (hh->want_plt | 
|  | && elf64_hppa_dynamic_symbol_p (eh, x->info) | 
|  | && !((eh->root.type == bfd_link_hash_defined | 
|  | || eh->root.type == bfd_link_hash_defweak) | 
|  | && eh->root.u.def.section->output_section != NULL)) | 
|  | { | 
|  | hh->plt_offset = x->ofs; | 
|  | x->ofs += PLT_ENTRY_SIZE; | 
|  | if (hh->plt_offset < 0x2000) | 
|  | { | 
|  | struct elf64_hppa_link_hash_table *hppa_info; | 
|  |  | 
|  | hppa_info = hppa_link_hash_table (x->info); | 
|  | if (hppa_info == NULL) | 
|  | return false; | 
|  |  | 
|  | hppa_info->gp_offset = hh->plt_offset; | 
|  | } | 
|  | } | 
|  | else | 
|  | hh->want_plt = 0; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Allocate space for a STUB entry.  */ | 
|  |  | 
|  | static bool | 
|  | allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data) | 
|  | { | 
|  | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); | 
|  | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | 
|  |  | 
|  | if (hh->want_stub | 
|  | && elf64_hppa_dynamic_symbol_p (eh, x->info) | 
|  | && !((eh->root.type == bfd_link_hash_defined | 
|  | || eh->root.type == bfd_link_hash_defweak) | 
|  | && eh->root.u.def.section->output_section != NULL)) | 
|  | { | 
|  | hh->stub_offset = x->ofs; | 
|  | x->ofs += sizeof (plt_stub); | 
|  | } | 
|  | else | 
|  | hh->want_stub = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Allocate space for a FPTR entry.  */ | 
|  |  | 
|  | static bool | 
|  | allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data) | 
|  | { | 
|  | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); | 
|  | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | 
|  |  | 
|  | if (hh && hh->want_opd) | 
|  | { | 
|  | /* We never need an opd entry for a symbol which is not | 
|  | defined by this output file.  */ | 
|  | if (hh && (hh->eh.root.type == bfd_link_hash_undefined | 
|  | || hh->eh.root.type == bfd_link_hash_undefweak | 
|  | || hh->eh.root.u.def.section->output_section == NULL)) | 
|  | hh->want_opd = 0; | 
|  |  | 
|  | /* If we are creating a shared library, took the address of a local | 
|  | function or might export this function from this object file, then | 
|  | we have to create an opd descriptor.  */ | 
|  | else if (bfd_link_pic (x->info) | 
|  | || hh == NULL | 
|  | || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI) | 
|  | || (hh->eh.root.type == bfd_link_hash_defined | 
|  | || hh->eh.root.type == bfd_link_hash_defweak)) | 
|  | { | 
|  | /* If we are creating a shared library, then we will have to | 
|  | create a runtime relocation for the symbol to properly | 
|  | initialize the .opd entry.  Make sure the symbol gets | 
|  | added to the dynamic symbol table.  */ | 
|  | if (bfd_link_pic (x->info) | 
|  | && (hh == NULL || (hh->eh.dynindx == -1))) | 
|  | { | 
|  | bfd *owner; | 
|  | /* PR 6511: Default to using the dynamic symbol table.  */ | 
|  | owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner); | 
|  |  | 
|  | if (!bfd_elf_link_record_local_dynamic_symbol | 
|  | (x->info, owner, hh->sym_indx)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* This may not be necessary or desirable anymore now that | 
|  | we have some support for dealing with section symbols | 
|  | in dynamic relocs.  But name munging does make the result | 
|  | much easier to debug.  ie, the EPLT reloc will reference | 
|  | a symbol like .foobar, instead of .text + offset.  */ | 
|  | if (bfd_link_pic (x->info) && eh) | 
|  | { | 
|  | char *new_name; | 
|  | struct elf_link_hash_entry *nh; | 
|  |  | 
|  | new_name = concat (".", eh->root.root.string, NULL); | 
|  |  | 
|  | nh = elf_link_hash_lookup (elf_hash_table (x->info), | 
|  | new_name, true, true, true); | 
|  |  | 
|  | free (new_name); | 
|  | nh->root.type = eh->root.type; | 
|  | nh->root.u.def.value = eh->root.u.def.value; | 
|  | nh->root.u.def.section = eh->root.u.def.section; | 
|  |  | 
|  | if (! bfd_elf_link_record_dynamic_symbol (x->info, nh)) | 
|  | return false; | 
|  | } | 
|  | hh->opd_offset = x->ofs; | 
|  | x->ofs += OPD_ENTRY_SIZE; | 
|  | } | 
|  |  | 
|  | /* Otherwise we do not need an opd entry.  */ | 
|  | else | 
|  | hh->want_opd = 0; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* HP requires the EI_OSABI field to be filled in.  The assignment to | 
|  | EI_ABIVERSION may not be strictly necessary.  */ | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_init_file_header (bfd *abfd, struct bfd_link_info *info) | 
|  | { | 
|  | Elf_Internal_Ehdr *i_ehdrp; | 
|  |  | 
|  | if (!_bfd_elf_init_file_header (abfd, info)) | 
|  | return false; | 
|  |  | 
|  | i_ehdrp = elf_elfheader (abfd); | 
|  | i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi; | 
|  | i_ehdrp->e_ident[EI_ABIVERSION] = 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Create function descriptor section (.opd).  This section is called .opd | 
|  | because it contains "official procedure descriptors".  The "official" | 
|  | refers to the fact that these descriptors are used when taking the address | 
|  | of a procedure, thus ensuring a unique address for each procedure.  */ | 
|  |  | 
|  | static bool | 
|  | get_opd (bfd *abfd, | 
|  | struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
|  | struct elf64_hppa_link_hash_table *hppa_info) | 
|  | { | 
|  | asection *opd; | 
|  | bfd *dynobj; | 
|  |  | 
|  | opd = hppa_info->opd_sec; | 
|  | if (!opd) | 
|  | { | 
|  | dynobj = hppa_info->root.dynobj; | 
|  | if (!dynobj) | 
|  | hppa_info->root.dynobj = dynobj = abfd; | 
|  |  | 
|  | opd = bfd_make_section_anyway_with_flags (dynobj, ".opd", | 
|  | (SEC_ALLOC | 
|  | | SEC_LOAD | 
|  | | SEC_HAS_CONTENTS | 
|  | | SEC_IN_MEMORY | 
|  | | SEC_LINKER_CREATED)); | 
|  | if (!opd | 
|  | || !bfd_set_section_alignment (opd, 3)) | 
|  | { | 
|  | BFD_ASSERT (0); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | hppa_info->opd_sec = opd; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Create the PLT section.  */ | 
|  |  | 
|  | static bool | 
|  | get_plt (bfd *abfd, | 
|  | struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
|  | struct elf64_hppa_link_hash_table *hppa_info) | 
|  | { | 
|  | asection *plt; | 
|  | bfd *dynobj; | 
|  |  | 
|  | plt = hppa_info->root.splt; | 
|  | if (!plt) | 
|  | { | 
|  | dynobj = hppa_info->root.dynobj; | 
|  | if (!dynobj) | 
|  | hppa_info->root.dynobj = dynobj = abfd; | 
|  |  | 
|  | plt = bfd_make_section_anyway_with_flags (dynobj, ".plt", | 
|  | (SEC_ALLOC | 
|  | | SEC_LOAD | 
|  | | SEC_HAS_CONTENTS | 
|  | | SEC_IN_MEMORY | 
|  | | SEC_LINKER_CREATED)); | 
|  | if (!plt | 
|  | || !bfd_set_section_alignment (plt, 3)) | 
|  | { | 
|  | BFD_ASSERT (0); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | hppa_info->root.splt = plt; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Create the DLT section.  */ | 
|  |  | 
|  | static bool | 
|  | get_dlt (bfd *abfd, | 
|  | struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
|  | struct elf64_hppa_link_hash_table *hppa_info) | 
|  | { | 
|  | asection *dlt; | 
|  | bfd *dynobj; | 
|  |  | 
|  | dlt = hppa_info->dlt_sec; | 
|  | if (!dlt) | 
|  | { | 
|  | dynobj = hppa_info->root.dynobj; | 
|  | if (!dynobj) | 
|  | hppa_info->root.dynobj = dynobj = abfd; | 
|  |  | 
|  | dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt", | 
|  | (SEC_ALLOC | 
|  | | SEC_LOAD | 
|  | | SEC_HAS_CONTENTS | 
|  | | SEC_IN_MEMORY | 
|  | | SEC_LINKER_CREATED)); | 
|  | if (!dlt | 
|  | || !bfd_set_section_alignment (dlt, 3)) | 
|  | { | 
|  | BFD_ASSERT (0); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | hppa_info->dlt_sec = dlt; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Create the stubs section.  */ | 
|  |  | 
|  | static bool | 
|  | get_stub (bfd *abfd, | 
|  | struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
|  | struct elf64_hppa_link_hash_table *hppa_info) | 
|  | { | 
|  | asection *stub; | 
|  | bfd *dynobj; | 
|  |  | 
|  | stub = hppa_info->stub_sec; | 
|  | if (!stub) | 
|  | { | 
|  | dynobj = hppa_info->root.dynobj; | 
|  | if (!dynobj) | 
|  | hppa_info->root.dynobj = dynobj = abfd; | 
|  |  | 
|  | stub = bfd_make_section_anyway_with_flags (dynobj, ".stub", | 
|  | (SEC_ALLOC | SEC_LOAD | 
|  | | SEC_HAS_CONTENTS | 
|  | | SEC_IN_MEMORY | 
|  | | SEC_READONLY | 
|  | | SEC_LINKER_CREATED)); | 
|  | if (!stub | 
|  | || !bfd_set_section_alignment (stub, 3)) | 
|  | { | 
|  | BFD_ASSERT (0); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | hppa_info->stub_sec = stub; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Create sections necessary for dynamic linking.  This is only a rough | 
|  | cut and will likely change as we learn more about the somewhat | 
|  | unusual dynamic linking scheme HP uses. | 
|  |  | 
|  | .stub: | 
|  | Contains code to implement cross-space calls.  The first time one | 
|  | of the stubs is used it will call into the dynamic linker, later | 
|  | calls will go straight to the target. | 
|  |  | 
|  | The only stub we support right now looks like | 
|  |  | 
|  | ldd OFFSET(%dp),%r1 | 
|  | bve %r0(%r1) | 
|  | ldd OFFSET+8(%dp),%dp | 
|  |  | 
|  | Other stubs may be needed in the future.  We may want the remove | 
|  | the break/nop instruction.  It is only used right now to keep the | 
|  | offset of a .plt entry and a .stub entry in sync. | 
|  |  | 
|  | .dlt: | 
|  | This is what most people call the .got.  HP used a different name. | 
|  | Losers. | 
|  |  | 
|  | .rela.dlt: | 
|  | Relocations for the DLT. | 
|  |  | 
|  | .plt: | 
|  | Function pointers as address,gp pairs. | 
|  |  | 
|  | .rela.plt: | 
|  | Should contain dynamic IPLT (and EPLT?) relocations. | 
|  |  | 
|  | .opd: | 
|  | FPTRS | 
|  |  | 
|  | .rela.opd: | 
|  | EPLT relocations for symbols exported from shared libraries.  */ | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_create_dynamic_sections (bfd *abfd, | 
|  | struct bfd_link_info *info) | 
|  | { | 
|  | asection *s; | 
|  | struct elf64_hppa_link_hash_table *hppa_info; | 
|  |  | 
|  | hppa_info = hppa_link_hash_table (info); | 
|  | if (hppa_info == NULL) | 
|  | return false; | 
|  |  | 
|  | if (! get_stub (abfd, info, hppa_info)) | 
|  | return false; | 
|  |  | 
|  | if (! get_dlt (abfd, info, hppa_info)) | 
|  | return false; | 
|  |  | 
|  | if (! get_plt (abfd, info, hppa_info)) | 
|  | return false; | 
|  |  | 
|  | if (! get_opd (abfd, info, hppa_info)) | 
|  | return false; | 
|  |  | 
|  | s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt", | 
|  | (SEC_ALLOC | SEC_LOAD | 
|  | | SEC_HAS_CONTENTS | 
|  | | SEC_IN_MEMORY | 
|  | | SEC_READONLY | 
|  | | SEC_LINKER_CREATED)); | 
|  | if (s == NULL | 
|  | || !bfd_set_section_alignment (s, 3)) | 
|  | return false; | 
|  | hppa_info->dlt_rel_sec = s; | 
|  |  | 
|  | s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt", | 
|  | (SEC_ALLOC | SEC_LOAD | 
|  | | SEC_HAS_CONTENTS | 
|  | | SEC_IN_MEMORY | 
|  | | SEC_READONLY | 
|  | | SEC_LINKER_CREATED)); | 
|  | if (s == NULL | 
|  | || !bfd_set_section_alignment (s, 3)) | 
|  | return false; | 
|  | hppa_info->root.srelplt = s; | 
|  |  | 
|  | s = bfd_make_section_anyway_with_flags (abfd, ".rela.data", | 
|  | (SEC_ALLOC | SEC_LOAD | 
|  | | SEC_HAS_CONTENTS | 
|  | | SEC_IN_MEMORY | 
|  | | SEC_READONLY | 
|  | | SEC_LINKER_CREATED)); | 
|  | if (s == NULL | 
|  | || !bfd_set_section_alignment (s, 3)) | 
|  | return false; | 
|  | hppa_info->other_rel_sec = s; | 
|  |  | 
|  | s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd", | 
|  | (SEC_ALLOC | SEC_LOAD | 
|  | | SEC_HAS_CONTENTS | 
|  | | SEC_IN_MEMORY | 
|  | | SEC_READONLY | 
|  | | SEC_LINKER_CREATED)); | 
|  | if (s == NULL | 
|  | || !bfd_set_section_alignment (s, 3)) | 
|  | return false; | 
|  | hppa_info->opd_rel_sec = s; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Allocate dynamic relocations for those symbols that turned out | 
|  | to be dynamic.  */ | 
|  |  | 
|  | static bool | 
|  | allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data) | 
|  | { | 
|  | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); | 
|  | struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; | 
|  | struct elf64_hppa_link_hash_table *hppa_info; | 
|  | struct elf64_hppa_dyn_reloc_entry *rent; | 
|  | bool dynamic_symbol, shared; | 
|  |  | 
|  | hppa_info = hppa_link_hash_table (x->info); | 
|  | if (hppa_info == NULL) | 
|  | return false; | 
|  |  | 
|  | dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info); | 
|  | shared = bfd_link_pic (x->info); | 
|  |  | 
|  | /* We may need to allocate relocations for a non-dynamic symbol | 
|  | when creating a shared library.  */ | 
|  | if (!dynamic_symbol && !shared) | 
|  | return true; | 
|  |  | 
|  | /* Take care of the normal data relocations.  */ | 
|  |  | 
|  | for (rent = hh->reloc_entries; rent; rent = rent->next) | 
|  | { | 
|  | /* Allocate one iff we are building a shared library, the relocation | 
|  | isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */ | 
|  | if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd) | 
|  | continue; | 
|  |  | 
|  | hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela); | 
|  |  | 
|  | /* Make sure this symbol gets into the dynamic symbol table if it is | 
|  | not already recorded.  ?!? This should not be in the loop since | 
|  | the symbol need only be added once.  */ | 
|  | if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI) | 
|  | if (!bfd_elf_link_record_local_dynamic_symbol | 
|  | (x->info, rent->sec->owner, hh->sym_indx)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Take care of the GOT and PLT relocations.  */ | 
|  |  | 
|  | if ((dynamic_symbol || shared) && hh->want_dlt) | 
|  | hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela); | 
|  |  | 
|  | /* If we are building a shared library, then every symbol that has an | 
|  | opd entry will need an EPLT relocation to relocate the symbol's address | 
|  | and __gp value based on the runtime load address.  */ | 
|  | if (shared && hh->want_opd) | 
|  | hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela); | 
|  |  | 
|  | if (hh->want_plt && dynamic_symbol) | 
|  | { | 
|  | bfd_size_type t = 0; | 
|  |  | 
|  | /* Dynamic symbols get one IPLT relocation.  Local symbols in | 
|  | shared libraries get two REL relocations.  Local symbols in | 
|  | main applications get nothing.  */ | 
|  | if (dynamic_symbol) | 
|  | t = sizeof (Elf64_External_Rela); | 
|  | else if (shared) | 
|  | t = 2 * sizeof (Elf64_External_Rela); | 
|  |  | 
|  | hppa_info->root.srelplt->size += t; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Adjust a symbol defined by a dynamic object and referenced by a | 
|  | regular object.  */ | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
|  | struct elf_link_hash_entry *eh) | 
|  | { | 
|  | /* ??? Undefined symbols with PLT entries should be re-defined | 
|  | to be the PLT entry.  */ | 
|  |  | 
|  | /* If this is a weak symbol, and there is a real definition, the | 
|  | processor independent code will have arranged for us to see the | 
|  | real definition first, and we can just use the same value.  */ | 
|  | if (eh->is_weakalias) | 
|  | { | 
|  | struct elf_link_hash_entry *def = weakdef (eh); | 
|  | BFD_ASSERT (def->root.type == bfd_link_hash_defined); | 
|  | eh->root.u.def.section = def->root.u.def.section; | 
|  | eh->root.u.def.value = def->root.u.def.value; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* If this is a reference to a symbol defined by a dynamic object which | 
|  | is not a function, we might allocate the symbol in our .dynbss section | 
|  | and allocate a COPY dynamic relocation. | 
|  |  | 
|  | But PA64 code is canonically PIC, so as a rule we can avoid this sort | 
|  | of hackery.  */ | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* This function is called via elf_link_hash_traverse to mark millicode | 
|  | symbols with a dynindx of -1 and to remove the string table reference | 
|  | from the dynamic symbol table.  If the symbol is not a millicode symbol, | 
|  | elf64_hppa_mark_exported_functions is called.  */ | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh, | 
|  | void *data) | 
|  | { | 
|  | struct bfd_link_info *info = (struct bfd_link_info *) data; | 
|  |  | 
|  | if (eh->type == STT_PARISC_MILLI) | 
|  | { | 
|  | if (eh->dynindx != -1) | 
|  | { | 
|  | eh->dynindx = -1; | 
|  | _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, | 
|  | eh->dynstr_index); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return elf64_hppa_mark_exported_functions (eh, data); | 
|  | } | 
|  |  | 
|  | /* Set the final sizes of the dynamic sections and allocate memory for | 
|  | the contents of our special sections.  */ | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) | 
|  | { | 
|  | struct elf64_hppa_link_hash_table *hppa_info; | 
|  | struct elf64_hppa_allocate_data data; | 
|  | bfd *dynobj; | 
|  | bfd *ibfd; | 
|  | asection *sec; | 
|  | bool relocs; | 
|  |  | 
|  | hppa_info = hppa_link_hash_table (info); | 
|  | if (hppa_info == NULL) | 
|  | return false; | 
|  |  | 
|  | dynobj = hppa_info->root.dynobj; | 
|  | BFD_ASSERT (dynobj != NULL); | 
|  |  | 
|  | /* Mark each function this program exports so that we will allocate | 
|  | space in the .opd section for each function's FPTR.  If we are | 
|  | creating dynamic sections, change the dynamic index of millicode | 
|  | symbols to -1 and remove them from the string table for .dynstr. | 
|  |  | 
|  | We have to traverse the main linker hash table since we have to | 
|  | find functions which may not have been mentioned in any relocs.  */ | 
|  | elf_link_hash_traverse (&hppa_info->root, | 
|  | (hppa_info->root.dynamic_sections_created | 
|  | ? elf64_hppa_mark_milli_and_exported_functions | 
|  | : elf64_hppa_mark_exported_functions), | 
|  | info); | 
|  |  | 
|  | if (hppa_info->root.dynamic_sections_created) | 
|  | { | 
|  | /* Set the contents of the .interp section to the interpreter.  */ | 
|  | if (bfd_link_executable (info) && !info->nointerp) | 
|  | { | 
|  | sec = bfd_get_linker_section (dynobj, ".interp"); | 
|  | BFD_ASSERT (sec != NULL); | 
|  | sec->size = sizeof ELF_DYNAMIC_INTERPRETER; | 
|  | sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* We may have created entries in the .rela.got section. | 
|  | However, if we are not creating the dynamic sections, we will | 
|  | not actually use these entries.  Reset the size of .rela.dlt, | 
|  | which will cause it to get stripped from the output file | 
|  | below.  */ | 
|  | sec = hppa_info->dlt_rel_sec; | 
|  | if (sec != NULL) | 
|  | sec->size = 0; | 
|  | } | 
|  |  | 
|  | /* Set up DLT, PLT and OPD offsets for local syms, and space for local | 
|  | dynamic relocs.  */ | 
|  | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) | 
|  | { | 
|  | bfd_signed_vma *local_dlt; | 
|  | bfd_signed_vma *end_local_dlt; | 
|  | bfd_signed_vma *local_plt; | 
|  | bfd_signed_vma *end_local_plt; | 
|  | bfd_signed_vma *local_opd; | 
|  | bfd_signed_vma *end_local_opd; | 
|  | bfd_size_type locsymcount; | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | asection *srel; | 
|  |  | 
|  | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) | 
|  | continue; | 
|  |  | 
|  | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | 
|  | { | 
|  | struct elf64_hppa_dyn_reloc_entry *hdh_p; | 
|  |  | 
|  | for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *) | 
|  | elf_section_data (sec)->local_dynrel); | 
|  | hdh_p != NULL; | 
|  | hdh_p = hdh_p->next) | 
|  | { | 
|  | if (!bfd_is_abs_section (hdh_p->sec) | 
|  | && bfd_is_abs_section (hdh_p->sec->output_section)) | 
|  | { | 
|  | /* Input section has been discarded, either because | 
|  | it is a copy of a linkonce section or due to | 
|  | linker script /DISCARD/, so we'll be discarding | 
|  | the relocs too.  */ | 
|  | } | 
|  | else if (hdh_p->count != 0) | 
|  | { | 
|  | srel = elf_section_data (hdh_p->sec)->sreloc; | 
|  | srel->size += hdh_p->count * sizeof (Elf64_External_Rela); | 
|  | if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0) | 
|  | info->flags |= DF_TEXTREL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | local_dlt = elf_local_got_refcounts (ibfd); | 
|  | if (!local_dlt) | 
|  | continue; | 
|  |  | 
|  | symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; | 
|  | locsymcount = symtab_hdr->sh_info; | 
|  | end_local_dlt = local_dlt + locsymcount; | 
|  | sec = hppa_info->dlt_sec; | 
|  | srel = hppa_info->dlt_rel_sec; | 
|  | for (; local_dlt < end_local_dlt; ++local_dlt) | 
|  | { | 
|  | if (*local_dlt > 0) | 
|  | { | 
|  | *local_dlt = sec->size; | 
|  | sec->size += DLT_ENTRY_SIZE; | 
|  | if (bfd_link_pic (info)) | 
|  | { | 
|  | srel->size += sizeof (Elf64_External_Rela); | 
|  | } | 
|  | } | 
|  | else | 
|  | *local_dlt = (bfd_vma) -1; | 
|  | } | 
|  |  | 
|  | local_plt = end_local_dlt; | 
|  | end_local_plt = local_plt + locsymcount; | 
|  | if (! hppa_info->root.dynamic_sections_created) | 
|  | { | 
|  | /* Won't be used, but be safe.  */ | 
|  | for (; local_plt < end_local_plt; ++local_plt) | 
|  | *local_plt = (bfd_vma) -1; | 
|  | } | 
|  | else | 
|  | { | 
|  | sec = hppa_info->root.splt; | 
|  | srel = hppa_info->root.srelplt; | 
|  | for (; local_plt < end_local_plt; ++local_plt) | 
|  | { | 
|  | if (*local_plt > 0) | 
|  | { | 
|  | *local_plt = sec->size; | 
|  | sec->size += PLT_ENTRY_SIZE; | 
|  | if (bfd_link_pic (info)) | 
|  | srel->size += sizeof (Elf64_External_Rela); | 
|  | } | 
|  | else | 
|  | *local_plt = (bfd_vma) -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | local_opd = end_local_plt; | 
|  | end_local_opd = local_opd + locsymcount; | 
|  | if (! hppa_info->root.dynamic_sections_created) | 
|  | { | 
|  | /* Won't be used, but be safe.  */ | 
|  | for (; local_opd < end_local_opd; ++local_opd) | 
|  | *local_opd = (bfd_vma) -1; | 
|  | } | 
|  | else | 
|  | { | 
|  | sec = hppa_info->opd_sec; | 
|  | srel = hppa_info->opd_rel_sec; | 
|  | for (; local_opd < end_local_opd; ++local_opd) | 
|  | { | 
|  | if (*local_opd > 0) | 
|  | { | 
|  | *local_opd = sec->size; | 
|  | sec->size += OPD_ENTRY_SIZE; | 
|  | if (bfd_link_pic (info)) | 
|  | srel->size += sizeof (Elf64_External_Rela); | 
|  | } | 
|  | else | 
|  | *local_opd = (bfd_vma) -1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allocate the GOT entries.  */ | 
|  |  | 
|  | data.info = info; | 
|  | if (hppa_info->dlt_sec) | 
|  | { | 
|  | data.ofs = hppa_info->dlt_sec->size; | 
|  | elf_link_hash_traverse (&hppa_info->root, | 
|  | allocate_global_data_dlt, &data); | 
|  | hppa_info->dlt_sec->size = data.ofs; | 
|  | } | 
|  |  | 
|  | if (hppa_info->root.splt) | 
|  | { | 
|  | data.ofs = hppa_info->root.splt->size; | 
|  | elf_link_hash_traverse (&hppa_info->root, | 
|  | allocate_global_data_plt, &data); | 
|  | hppa_info->root.splt->size = data.ofs; | 
|  | } | 
|  |  | 
|  | if (hppa_info->stub_sec) | 
|  | { | 
|  | data.ofs = 0x0; | 
|  | elf_link_hash_traverse (&hppa_info->root, | 
|  | allocate_global_data_stub, &data); | 
|  | hppa_info->stub_sec->size = data.ofs; | 
|  | } | 
|  |  | 
|  | /* Allocate space for entries in the .opd section.  */ | 
|  | if (hppa_info->opd_sec) | 
|  | { | 
|  | data.ofs = hppa_info->opd_sec->size; | 
|  | elf_link_hash_traverse (&hppa_info->root, | 
|  | allocate_global_data_opd, &data); | 
|  | hppa_info->opd_sec->size = data.ofs; | 
|  | } | 
|  |  | 
|  | /* Now allocate space for dynamic relocations, if necessary.  */ | 
|  | if (hppa_info->root.dynamic_sections_created) | 
|  | elf_link_hash_traverse (&hppa_info->root, | 
|  | allocate_dynrel_entries, &data); | 
|  |  | 
|  | /* The sizes of all the sections are set.  Allocate memory for them.  */ | 
|  | relocs = false; | 
|  | for (sec = dynobj->sections; sec != NULL; sec = sec->next) | 
|  | { | 
|  | const char *name; | 
|  |  | 
|  | if ((sec->flags & SEC_LINKER_CREATED) == 0) | 
|  | continue; | 
|  |  | 
|  | /* It's OK to base decisions on the section name, because none | 
|  | of the dynobj section names depend upon the input files.  */ | 
|  | name = bfd_section_name (sec); | 
|  |  | 
|  | if (strcmp (name, ".plt") == 0) | 
|  | { | 
|  | /* Remember whether there is a PLT.  */ | 
|  | ; | 
|  | } | 
|  | else if (strcmp (name, ".opd") == 0 | 
|  | || startswith (name, ".dlt") | 
|  | || strcmp (name, ".stub") == 0 | 
|  | || strcmp (name, ".got") == 0) | 
|  | { | 
|  | /* Strip this section if we don't need it; see the comment below.  */ | 
|  | } | 
|  | else if (startswith (name, ".rela")) | 
|  | { | 
|  | if (sec->size != 0) | 
|  | { | 
|  | /* Remember whether there are any reloc sections other | 
|  | than .rela.plt.  */ | 
|  | if (strcmp (name, ".rela.plt") != 0) | 
|  | relocs = true; | 
|  |  | 
|  | /* We use the reloc_count field as a counter if we need | 
|  | to copy relocs into the output file.  */ | 
|  | sec->reloc_count = 0; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* It's not one of our sections, so don't allocate space.  */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (sec->size == 0) | 
|  | { | 
|  | /* If we don't need this section, strip it from the | 
|  | output file.  This is mostly to handle .rela.bss and | 
|  | .rela.plt.  We must create both sections in | 
|  | create_dynamic_sections, because they must be created | 
|  | before the linker maps input sections to output | 
|  | sections.  The linker does that before | 
|  | adjust_dynamic_symbol is called, and it is that | 
|  | function which decides whether anything needs to go | 
|  | into these sections.  */ | 
|  | sec->flags |= SEC_EXCLUDE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((sec->flags & SEC_HAS_CONTENTS) == 0) | 
|  | continue; | 
|  |  | 
|  | /* Allocate memory for the section contents if it has not | 
|  | been allocated already.  We use bfd_zalloc here in case | 
|  | unused entries are not reclaimed before the section's | 
|  | contents are written out.  This should not happen, but this | 
|  | way if it does, we get a R_PARISC_NONE reloc instead of | 
|  | garbage.  */ | 
|  | if (sec->contents == NULL) | 
|  | { | 
|  | sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size); | 
|  | if (sec->contents == NULL) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (hppa_info->root.dynamic_sections_created) | 
|  | { | 
|  | /* Always create a DT_PLTGOT.  It actually has nothing to do with | 
|  | the PLT, it is how we communicate the __gp value of a load | 
|  | module to the dynamic linker.  */ | 
|  | #define add_dynamic_entry(TAG, VAL) \ | 
|  | _bfd_elf_add_dynamic_entry (info, TAG, VAL) | 
|  |  | 
|  | if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)) | 
|  | return false; | 
|  |  | 
|  | /* Add some entries to the .dynamic section.  We fill in the | 
|  | values later, in elf64_hppa_finish_dynamic_sections, but we | 
|  | must add the entries now so that we get the correct size for | 
|  | the .dynamic section.  The DT_DEBUG entry is filled in by the | 
|  | dynamic linker and used by the debugger.  */ | 
|  | if (! bfd_link_pic (info)) | 
|  | { | 
|  | if (!add_dynamic_entry (DT_HP_DLD_HOOK, 0) | 
|  | || !add_dynamic_entry (DT_HP_LOAD_MAP, 0)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Force DT_FLAGS to always be set. | 
|  | Required by HPUX 11.00 patch PHSS_26559.  */ | 
|  | if (!add_dynamic_entry (DT_FLAGS, (info)->flags)) | 
|  | return false; | 
|  | } | 
|  | #undef add_dynamic_entry | 
|  |  | 
|  | return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs); | 
|  | } | 
|  |  | 
|  | /* Called after we have output the symbol into the dynamic symbol | 
|  | table, but before we output the symbol into the normal symbol | 
|  | table. | 
|  |  | 
|  | For some symbols we had to change their address when outputting | 
|  | the dynamic symbol table.  We undo that change here so that | 
|  | the symbols have their expected value in the normal symbol | 
|  | table.  Ick.  */ | 
|  |  | 
|  | static int | 
|  | elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
|  | const char *name, | 
|  | Elf_Internal_Sym *sym, | 
|  | asection *input_sec ATTRIBUTE_UNUSED, | 
|  | struct elf_link_hash_entry *eh) | 
|  | { | 
|  | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); | 
|  |  | 
|  | /* We may be called with the file symbol or section symbols. | 
|  | They never need munging, so it is safe to ignore them.  */ | 
|  | if (!name || !eh) | 
|  | return 1; | 
|  |  | 
|  | /* Function symbols for which we created .opd entries *may* have been | 
|  | munged by finish_dynamic_symbol and have to be un-munged here. | 
|  |  | 
|  | Note that finish_dynamic_symbol sometimes turns dynamic symbols | 
|  | into non-dynamic ones, so we initialize st_shndx to -1 in | 
|  | mark_exported_functions and check to see if it was overwritten | 
|  | here instead of just checking eh->dynindx.  */ | 
|  | if (hh->want_opd && hh->st_shndx != -1) | 
|  | { | 
|  | /* Restore the saved value and section index.  */ | 
|  | sym->st_value = hh->st_value; | 
|  | sym->st_shndx = hh->st_shndx; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Finish up dynamic symbol handling.  We set the contents of various | 
|  | dynamic sections here.  */ | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_finish_dynamic_symbol (bfd *output_bfd, | 
|  | struct bfd_link_info *info, | 
|  | struct elf_link_hash_entry *eh, | 
|  | Elf_Internal_Sym *sym) | 
|  | { | 
|  | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); | 
|  | asection *stub, *splt, *sopd, *spltrel; | 
|  | struct elf64_hppa_link_hash_table *hppa_info; | 
|  |  | 
|  | hppa_info = hppa_link_hash_table (info); | 
|  | if (hppa_info == NULL) | 
|  | return false; | 
|  |  | 
|  | stub = hppa_info->stub_sec; | 
|  | splt = hppa_info->root.splt; | 
|  | sopd = hppa_info->opd_sec; | 
|  | spltrel = hppa_info->root.srelplt; | 
|  |  | 
|  | /* Incredible.  It is actually necessary to NOT use the symbol's real | 
|  | value when building the dynamic symbol table for a shared library. | 
|  | At least for symbols that refer to functions. | 
|  |  | 
|  | We will store a new value and section index into the symbol long | 
|  | enough to output it into the dynamic symbol table, then we restore | 
|  | the original values (in elf64_hppa_link_output_symbol_hook).  */ | 
|  | if (hh->want_opd) | 
|  | { | 
|  | BFD_ASSERT (sopd != NULL); | 
|  |  | 
|  | /* Save away the original value and section index so that we | 
|  | can restore them later.  */ | 
|  | hh->st_value = sym->st_value; | 
|  | hh->st_shndx = sym->st_shndx; | 
|  |  | 
|  | /* For the dynamic symbol table entry, we want the value to be | 
|  | address of this symbol's entry within the .opd section.  */ | 
|  | sym->st_value = (hh->opd_offset | 
|  | + sopd->output_offset | 
|  | + sopd->output_section->vma); | 
|  | sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | 
|  | sopd->output_section); | 
|  | } | 
|  |  | 
|  | /* Initialize a .plt entry if requested.  */ | 
|  | if (hh->want_plt | 
|  | && elf64_hppa_dynamic_symbol_p (eh, info)) | 
|  | { | 
|  | bfd_vma value; | 
|  | Elf_Internal_Rela rel; | 
|  | bfd_byte *loc; | 
|  |  | 
|  | BFD_ASSERT (splt != NULL && spltrel != NULL); | 
|  |  | 
|  | /* We do not actually care about the value in the PLT entry | 
|  | if we are creating a shared library and the symbol is | 
|  | still undefined, we create a dynamic relocation to fill | 
|  | in the correct value.  */ | 
|  | if (bfd_link_pic (info) && eh->root.type == bfd_link_hash_undefined) | 
|  | value = 0; | 
|  | else | 
|  | value = (eh->root.u.def.value + eh->root.u.def.section->vma); | 
|  |  | 
|  | /* Fill in the entry in the procedure linkage table. | 
|  |  | 
|  | The format of a plt entry is | 
|  | <funcaddr> <__gp>. | 
|  |  | 
|  | plt_offset is the offset within the PLT section at which to | 
|  | install the PLT entry. | 
|  |  | 
|  | We are modifying the in-memory PLT contents here, so we do not add | 
|  | in the output_offset of the PLT section.  */ | 
|  |  | 
|  | bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset); | 
|  | value = _bfd_get_gp_value (info->output_bfd); | 
|  | bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8); | 
|  |  | 
|  | /* Create a dynamic IPLT relocation for this entry. | 
|  |  | 
|  | We are creating a relocation in the output file's PLT section, | 
|  | which is included within the DLT secton.  So we do need to include | 
|  | the PLT's output_offset in the computation of the relocation's | 
|  | address.  */ | 
|  | rel.r_offset = (hh->plt_offset + splt->output_offset | 
|  | + splt->output_section->vma); | 
|  | rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT); | 
|  | rel.r_addend = 0; | 
|  |  | 
|  | loc = spltrel->contents; | 
|  | loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela); | 
|  | bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc); | 
|  | } | 
|  |  | 
|  | /* Initialize an external call stub entry if requested.  */ | 
|  | if (hh->want_stub | 
|  | && elf64_hppa_dynamic_symbol_p (eh, info)) | 
|  | { | 
|  | bfd_vma value; | 
|  | int insn; | 
|  | unsigned int max_offset; | 
|  |  | 
|  | BFD_ASSERT (stub != NULL); | 
|  |  | 
|  | /* Install the generic stub template. | 
|  |  | 
|  | We are modifying the contents of the stub section, so we do not | 
|  | need to include the stub section's output_offset here.  */ | 
|  | memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub)); | 
|  |  | 
|  | /* Fix up the first ldd instruction. | 
|  |  | 
|  | We are modifying the contents of the STUB section in memory, | 
|  | so we do not need to include its output offset in this computation. | 
|  |  | 
|  | Note the plt_offset value is the value of the PLT entry relative to | 
|  | the start of the PLT section.  These instructions will reference | 
|  | data relative to the value of __gp, which may not necessarily have | 
|  | the same address as the start of the PLT section. | 
|  |  | 
|  | gp_offset contains the offset of __gp within the PLT section.  */ | 
|  | value = hh->plt_offset - hppa_info->gp_offset; | 
|  |  | 
|  | insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset); | 
|  | if (output_bfd->arch_info->mach >= 25) | 
|  | { | 
|  | /* Wide mode allows 16 bit offsets.  */ | 
|  | max_offset = 32768; | 
|  | insn &= ~ 0xfff1; | 
|  | insn |= re_assemble_16 ((int) value); | 
|  | } | 
|  | else | 
|  | { | 
|  | max_offset = 8192; | 
|  | insn &= ~ 0x3ff1; | 
|  | insn |= re_assemble_14 ((int) value); | 
|  | } | 
|  |  | 
|  | if ((value & 7) || value + max_offset >= 2*max_offset - 8) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("stub entry for %s cannot load .plt, dp offset = %" PRId64), | 
|  | hh->eh.root.root.string, (int64_t) value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bfd_put_32 (stub->owner, (bfd_vma) insn, | 
|  | stub->contents + hh->stub_offset); | 
|  |  | 
|  | /* Fix up the second ldd instruction.  */ | 
|  | value += 8; | 
|  | insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8); | 
|  | if (output_bfd->arch_info->mach >= 25) | 
|  | { | 
|  | insn &= ~ 0xfff1; | 
|  | insn |= re_assemble_16 ((int) value); | 
|  | } | 
|  | else | 
|  | { | 
|  | insn &= ~ 0x3ff1; | 
|  | insn |= re_assemble_14 ((int) value); | 
|  | } | 
|  | bfd_put_32 (stub->owner, (bfd_vma) insn, | 
|  | stub->contents + hh->stub_offset + 8); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* The .opd section contains FPTRs for each function this file | 
|  | exports.  Initialize the FPTR entries.  */ | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data) | 
|  | { | 
|  | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); | 
|  | struct bfd_link_info *info = (struct bfd_link_info *)data; | 
|  | struct elf64_hppa_link_hash_table *hppa_info; | 
|  | asection *sopd; | 
|  | asection *sopdrel; | 
|  |  | 
|  | hppa_info = hppa_link_hash_table (info); | 
|  | if (hppa_info == NULL) | 
|  | return false; | 
|  |  | 
|  | sopd = hppa_info->opd_sec; | 
|  | sopdrel = hppa_info->opd_rel_sec; | 
|  |  | 
|  | if (hh->want_opd) | 
|  | { | 
|  | bfd_vma value; | 
|  |  | 
|  | /* The first two words of an .opd entry are zero. | 
|  |  | 
|  | We are modifying the contents of the OPD section in memory, so we | 
|  | do not need to include its output offset in this computation.  */ | 
|  | memset (sopd->contents + hh->opd_offset, 0, 16); | 
|  |  | 
|  | value = (eh->root.u.def.value | 
|  | + eh->root.u.def.section->output_section->vma | 
|  | + eh->root.u.def.section->output_offset); | 
|  |  | 
|  | /* The next word is the address of the function.  */ | 
|  | bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16); | 
|  |  | 
|  | /* The last word is our local __gp value.  */ | 
|  | value = _bfd_get_gp_value (info->output_bfd); | 
|  | bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24); | 
|  | } | 
|  |  | 
|  | /* If we are generating a shared library, we must generate EPLT relocations | 
|  | for each entry in the .opd, even for static functions (they may have | 
|  | had their address taken).  */ | 
|  | if (bfd_link_pic (info) && hh->want_opd) | 
|  | { | 
|  | Elf_Internal_Rela rel; | 
|  | bfd_byte *loc; | 
|  | int dynindx; | 
|  |  | 
|  | /* We may need to do a relocation against a local symbol, in | 
|  | which case we have to look up it's dynamic symbol index off | 
|  | the local symbol hash table.  */ | 
|  | if (eh->dynindx != -1) | 
|  | dynindx = eh->dynindx; | 
|  | else | 
|  | dynindx | 
|  | = _bfd_elf_link_lookup_local_dynindx (info, hh->owner, | 
|  | hh->sym_indx); | 
|  |  | 
|  | /* The offset of this relocation is the absolute address of the | 
|  | .opd entry for this symbol.  */ | 
|  | rel.r_offset = (hh->opd_offset + sopd->output_offset | 
|  | + sopd->output_section->vma); | 
|  |  | 
|  | /* If H is non-null, then we have an external symbol. | 
|  |  | 
|  | It is imperative that we use a different dynamic symbol for the | 
|  | EPLT relocation if the symbol has global scope. | 
|  |  | 
|  | In the dynamic symbol table, the function symbol will have a value | 
|  | which is address of the function's .opd entry. | 
|  |  | 
|  | Thus, we can not use that dynamic symbol for the EPLT relocation | 
|  | (if we did, the data in the .opd would reference itself rather | 
|  | than the actual address of the function).  Instead we have to use | 
|  | a new dynamic symbol which has the same value as the original global | 
|  | function symbol. | 
|  |  | 
|  | We prefix the original symbol with a "." and use the new symbol in | 
|  | the EPLT relocation.  This new symbol has already been recorded in | 
|  | the symbol table, we just have to look it up and use it. | 
|  |  | 
|  | We do not have such problems with static functions because we do | 
|  | not make their addresses in the dynamic symbol table point to | 
|  | the .opd entry.  Ultimately this should be safe since a static | 
|  | function can not be directly referenced outside of its shared | 
|  | library. | 
|  |  | 
|  | We do have to play similar games for FPTR relocations in shared | 
|  | libraries, including those for static symbols.  See the FPTR | 
|  | handling in elf64_hppa_finalize_dynreloc.  */ | 
|  | if (eh) | 
|  | { | 
|  | char *new_name; | 
|  | struct elf_link_hash_entry *nh; | 
|  |  | 
|  | new_name = concat (".", eh->root.root.string, NULL); | 
|  |  | 
|  | nh = elf_link_hash_lookup (elf_hash_table (info), | 
|  | new_name, true, true, false); | 
|  |  | 
|  | /* All we really want from the new symbol is its dynamic | 
|  | symbol index.  */ | 
|  | if (nh) | 
|  | dynindx = nh->dynindx; | 
|  | free (new_name); | 
|  | } | 
|  |  | 
|  | rel.r_addend = 0; | 
|  | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT); | 
|  |  | 
|  | loc = sopdrel->contents; | 
|  | loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela); | 
|  | bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* The .dlt section contains addresses for items referenced through the | 
|  | dlt.  Note that we can have a DLTIND relocation for a local symbol, thus | 
|  | we can not depend on finish_dynamic_symbol to initialize the .dlt.  */ | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data) | 
|  | { | 
|  | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); | 
|  | struct bfd_link_info *info = (struct bfd_link_info *)data; | 
|  | struct elf64_hppa_link_hash_table *hppa_info; | 
|  | asection *sdlt, *sdltrel; | 
|  |  | 
|  | hppa_info = hppa_link_hash_table (info); | 
|  | if (hppa_info == NULL) | 
|  | return false; | 
|  |  | 
|  | sdlt = hppa_info->dlt_sec; | 
|  | sdltrel = hppa_info->dlt_rel_sec; | 
|  |  | 
|  | /* H/DYN_H may refer to a local variable and we know it's | 
|  | address, so there is no need to create a relocation.  Just install | 
|  | the proper value into the DLT, note this shortcut can not be | 
|  | skipped when building a shared library.  */ | 
|  | if (! bfd_link_pic (info) && hh && hh->want_dlt) | 
|  | { | 
|  | bfd_vma value; | 
|  |  | 
|  | /* If we had an LTOFF_FPTR style relocation we want the DLT entry | 
|  | to point to the FPTR entry in the .opd section. | 
|  |  | 
|  | We include the OPD's output offset in this computation as | 
|  | we are referring to an absolute address in the resulting | 
|  | object file.  */ | 
|  | if (hh->want_opd) | 
|  | { | 
|  | value = (hh->opd_offset | 
|  | + hppa_info->opd_sec->output_offset | 
|  | + hppa_info->opd_sec->output_section->vma); | 
|  | } | 
|  | else if ((eh->root.type == bfd_link_hash_defined | 
|  | || eh->root.type == bfd_link_hash_defweak) | 
|  | && eh->root.u.def.section) | 
|  | { | 
|  | value = eh->root.u.def.value + eh->root.u.def.section->output_offset; | 
|  | if (eh->root.u.def.section->output_section) | 
|  | value += eh->root.u.def.section->output_section->vma; | 
|  | else | 
|  | value += eh->root.u.def.section->vma; | 
|  | } | 
|  | else | 
|  | /* We have an undefined function reference.  */ | 
|  | value = 0; | 
|  |  | 
|  | /* We do not need to include the output offset of the DLT section | 
|  | here because we are modifying the in-memory contents.  */ | 
|  | bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset); | 
|  | } | 
|  |  | 
|  | /* Create a relocation for the DLT entry associated with this symbol. | 
|  | When building a shared library the symbol does not have to be dynamic.  */ | 
|  | if (hh->want_dlt | 
|  | && (elf64_hppa_dynamic_symbol_p (eh, info) || bfd_link_pic (info))) | 
|  | { | 
|  | Elf_Internal_Rela rel; | 
|  | bfd_byte *loc; | 
|  | int dynindx; | 
|  |  | 
|  | /* We may need to do a relocation against a local symbol, in | 
|  | which case we have to look up it's dynamic symbol index off | 
|  | the local symbol hash table.  */ | 
|  | if (eh && eh->dynindx != -1) | 
|  | dynindx = eh->dynindx; | 
|  | else | 
|  | dynindx | 
|  | = _bfd_elf_link_lookup_local_dynindx (info, hh->owner, | 
|  | hh->sym_indx); | 
|  |  | 
|  | /* Create a dynamic relocation for this entry.  Do include the output | 
|  | offset of the DLT entry since we need an absolute address in the | 
|  | resulting object file.  */ | 
|  | rel.r_offset = (hh->dlt_offset + sdlt->output_offset | 
|  | + sdlt->output_section->vma); | 
|  | if (eh && eh->type == STT_FUNC) | 
|  | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64); | 
|  | else | 
|  | rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64); | 
|  | rel.r_addend = 0; | 
|  |  | 
|  | loc = sdltrel->contents; | 
|  | loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela); | 
|  | bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Finalize the dynamic relocations.  Specifically the FPTR relocations | 
|  | for dynamic functions used to initialize static data.  */ | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh, | 
|  | void *data) | 
|  | { | 
|  | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); | 
|  | struct bfd_link_info *info = (struct bfd_link_info *)data; | 
|  | struct elf64_hppa_link_hash_table *hppa_info; | 
|  | int dynamic_symbol; | 
|  |  | 
|  | dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info); | 
|  |  | 
|  | if (!dynamic_symbol && !bfd_link_pic (info)) | 
|  | return true; | 
|  |  | 
|  | if (hh->reloc_entries) | 
|  | { | 
|  | struct elf64_hppa_dyn_reloc_entry *rent; | 
|  | int dynindx; | 
|  |  | 
|  | hppa_info = hppa_link_hash_table (info); | 
|  | if (hppa_info == NULL) | 
|  | return false; | 
|  |  | 
|  | /* We may need to do a relocation against a local symbol, in | 
|  | which case we have to look up it's dynamic symbol index off | 
|  | the local symbol hash table.  */ | 
|  | if (eh->dynindx != -1) | 
|  | dynindx = eh->dynindx; | 
|  | else | 
|  | dynindx | 
|  | = _bfd_elf_link_lookup_local_dynindx (info, hh->owner, | 
|  | hh->sym_indx); | 
|  |  | 
|  | for (rent = hh->reloc_entries; rent; rent = rent->next) | 
|  | { | 
|  | Elf_Internal_Rela rel; | 
|  | bfd_byte *loc; | 
|  |  | 
|  | /* Allocate one iff we are building a shared library, the relocation | 
|  | isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */ | 
|  | if (!bfd_link_pic (info) | 
|  | && rent->type == R_PARISC_FPTR64 && hh->want_opd) | 
|  | continue; | 
|  |  | 
|  | /* Create a dynamic relocation for this entry. | 
|  |  | 
|  | We need the output offset for the reloc's section because | 
|  | we are creating an absolute address in the resulting object | 
|  | file.  */ | 
|  | rel.r_offset = (rent->offset + rent->sec->output_offset | 
|  | + rent->sec->output_section->vma); | 
|  |  | 
|  | /* An FPTR64 relocation implies that we took the address of | 
|  | a function and that the function has an entry in the .opd | 
|  | section.  We want the FPTR64 relocation to reference the | 
|  | entry in .opd. | 
|  |  | 
|  | We could munge the symbol value in the dynamic symbol table | 
|  | (in fact we already do for functions with global scope) to point | 
|  | to the .opd entry.  Then we could use that dynamic symbol in | 
|  | this relocation. | 
|  |  | 
|  | Or we could do something sensible, not munge the symbol's | 
|  | address and instead just use a different symbol to reference | 
|  | the .opd entry.  At least that seems sensible until you | 
|  | realize there's no local dynamic symbols we can use for that | 
|  | purpose.  Thus the hair in the check_relocs routine. | 
|  |  | 
|  | We use a section symbol recorded by check_relocs as the | 
|  | base symbol for the relocation.  The addend is the difference | 
|  | between the section symbol and the address of the .opd entry.  */ | 
|  | if (bfd_link_pic (info) | 
|  | && rent->type == R_PARISC_FPTR64 && hh->want_opd) | 
|  | { | 
|  | bfd_vma value, value2; | 
|  |  | 
|  | /* First compute the address of the opd entry for this symbol.  */ | 
|  | value = (hh->opd_offset | 
|  | + hppa_info->opd_sec->output_section->vma | 
|  | + hppa_info->opd_sec->output_offset); | 
|  |  | 
|  | /* Compute the value of the start of the section with | 
|  | the relocation.  */ | 
|  | value2 = (rent->sec->output_section->vma | 
|  | + rent->sec->output_offset); | 
|  |  | 
|  | /* Compute the difference between the start of the section | 
|  | with the relocation and the opd entry.  */ | 
|  | value -= value2; | 
|  |  | 
|  | /* The result becomes the addend of the relocation.  */ | 
|  | rel.r_addend = value; | 
|  |  | 
|  | /* The section symbol becomes the symbol for the dynamic | 
|  | relocation.  */ | 
|  | dynindx | 
|  | = _bfd_elf_link_lookup_local_dynindx (info, | 
|  | rent->sec->owner, | 
|  | rent->sec_symndx); | 
|  | } | 
|  | else | 
|  | rel.r_addend = rent->addend; | 
|  |  | 
|  | rel.r_info = ELF64_R_INFO (dynindx, rent->type); | 
|  |  | 
|  | loc = hppa_info->other_rel_sec->contents; | 
|  | loc += (hppa_info->other_rel_sec->reloc_count++ | 
|  | * sizeof (Elf64_External_Rela)); | 
|  | bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Used to decide how to sort relocs in an optimal manner for the | 
|  | dynamic linker, before writing them out.  */ | 
|  |  | 
|  | static enum elf_reloc_type_class | 
|  | elf64_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
|  | const asection *rel_sec ATTRIBUTE_UNUSED, | 
|  | const Elf_Internal_Rela *rela) | 
|  | { | 
|  | if (ELF64_R_SYM (rela->r_info) == STN_UNDEF) | 
|  | return reloc_class_relative; | 
|  |  | 
|  | switch ((int) ELF64_R_TYPE (rela->r_info)) | 
|  | { | 
|  | case R_PARISC_IPLT: | 
|  | return reloc_class_plt; | 
|  | case R_PARISC_COPY: | 
|  | return reloc_class_copy; | 
|  | default: | 
|  | return reloc_class_normal; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Finish up the dynamic sections.  */ | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_finish_dynamic_sections (bfd *output_bfd, | 
|  | struct bfd_link_info *info) | 
|  | { | 
|  | bfd *dynobj; | 
|  | asection *sdyn; | 
|  | struct elf64_hppa_link_hash_table *hppa_info; | 
|  |  | 
|  | hppa_info = hppa_link_hash_table (info); | 
|  | if (hppa_info == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Finalize the contents of the .opd section.  */ | 
|  | elf_link_hash_traverse (elf_hash_table (info), | 
|  | elf64_hppa_finalize_opd, | 
|  | info); | 
|  |  | 
|  | elf_link_hash_traverse (elf_hash_table (info), | 
|  | elf64_hppa_finalize_dynreloc, | 
|  | info); | 
|  |  | 
|  | /* Finalize the contents of the .dlt section.  */ | 
|  | dynobj = elf_hash_table (info)->dynobj; | 
|  | /* Finalize the contents of the .dlt section.  */ | 
|  | elf_link_hash_traverse (elf_hash_table (info), | 
|  | elf64_hppa_finalize_dlt, | 
|  | info); | 
|  |  | 
|  | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); | 
|  |  | 
|  | if (elf_hash_table (info)->dynamic_sections_created) | 
|  | { | 
|  | Elf64_External_Dyn *dyncon, *dynconend; | 
|  |  | 
|  | BFD_ASSERT (sdyn != NULL); | 
|  |  | 
|  | dyncon = (Elf64_External_Dyn *) sdyn->contents; | 
|  | dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size); | 
|  | for (; dyncon < dynconend; dyncon++) | 
|  | { | 
|  | Elf_Internal_Dyn dyn; | 
|  | asection *s; | 
|  |  | 
|  | bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn); | 
|  |  | 
|  | switch (dyn.d_tag) | 
|  | { | 
|  | default: | 
|  | break; | 
|  |  | 
|  | case DT_HP_LOAD_MAP: | 
|  | /* Compute the absolute address of 16byte scratchpad area | 
|  | for the dynamic linker. | 
|  |  | 
|  | By convention the linker script will allocate the scratchpad | 
|  | area at the start of the .data section.  So all we have to | 
|  | to is find the start of the .data section.  */ | 
|  | s = bfd_get_section_by_name (output_bfd, ".data"); | 
|  | if (!s) | 
|  | return false; | 
|  | dyn.d_un.d_ptr = s->vma; | 
|  | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | 
|  | break; | 
|  |  | 
|  | case DT_PLTGOT: | 
|  | /* HP's use PLTGOT to set the GOT register.  */ | 
|  | dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd); | 
|  | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | 
|  | break; | 
|  |  | 
|  | case DT_JMPREL: | 
|  | s = hppa_info->root.srelplt; | 
|  | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | 
|  | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | 
|  | break; | 
|  |  | 
|  | case DT_PLTRELSZ: | 
|  | s = hppa_info->root.srelplt; | 
|  | dyn.d_un.d_val = s->size; | 
|  | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | 
|  | break; | 
|  |  | 
|  | case DT_RELA: | 
|  | s = hppa_info->other_rel_sec; | 
|  | if (! s || ! s->size) | 
|  | s = hppa_info->dlt_rel_sec; | 
|  | if (! s || ! s->size) | 
|  | s = hppa_info->opd_rel_sec; | 
|  | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | 
|  | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | 
|  | break; | 
|  |  | 
|  | case DT_RELASZ: | 
|  | s = hppa_info->other_rel_sec; | 
|  | dyn.d_un.d_val = s->size; | 
|  | s = hppa_info->dlt_rel_sec; | 
|  | dyn.d_un.d_val += s->size; | 
|  | s = hppa_info->opd_rel_sec; | 
|  | dyn.d_un.d_val += s->size; | 
|  | /* There is some question about whether or not the size of | 
|  | the PLT relocs should be included here.  HP's tools do | 
|  | it, so we'll emulate them.  */ | 
|  | s = hppa_info->root.srelplt; | 
|  | dyn.d_un.d_val += s->size; | 
|  | bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); | 
|  | break; | 
|  |  | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Support for core dump NOTE sections.  */ | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | int offset; | 
|  | size_t size; | 
|  |  | 
|  | switch (note->descsz) | 
|  | { | 
|  | default: | 
|  | return false; | 
|  |  | 
|  | case 760:		/* Linux/hppa */ | 
|  | /* pr_cursig */ | 
|  | elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); | 
|  |  | 
|  | /* pr_pid */ | 
|  | elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32); | 
|  |  | 
|  | /* pr_reg */ | 
|  | offset = 112; | 
|  | size = 640; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Make a ".reg/999" section.  */ | 
|  | return _bfd_elfcore_make_pseudosection (abfd, ".reg", | 
|  | size, note->descpos + offset); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | char * command; | 
|  | int n; | 
|  |  | 
|  | switch (note->descsz) | 
|  | { | 
|  | default: | 
|  | return false; | 
|  |  | 
|  | case 136:		/* Linux/hppa elf_prpsinfo.  */ | 
|  | elf_tdata (abfd)->core->program | 
|  | = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16); | 
|  | elf_tdata (abfd)->core->command | 
|  | = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80); | 
|  | } | 
|  |  | 
|  | /* Note that for some reason, a spurious space is tacked | 
|  | onto the end of the args in some (at least one anyway) | 
|  | implementations, so strip it off if it exists.  */ | 
|  | command = elf_tdata (abfd)->core->command; | 
|  | n = strlen (command); | 
|  |  | 
|  | if (0 < n && command[n - 1] == ' ') | 
|  | command[n - 1] = '\0'; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return the number of additional phdrs we will need. | 
|  |  | 
|  | The generic ELF code only creates PT_PHDRs for executables.  The HP | 
|  | dynamic linker requires PT_PHDRs for dynamic libraries too. | 
|  |  | 
|  | This routine indicates that the backend needs one additional program | 
|  | header for that case. | 
|  |  | 
|  | Note we do not have access to the link info structure here, so we have | 
|  | to guess whether or not we are building a shared library based on the | 
|  | existence of a .interp section.  */ | 
|  |  | 
|  | static int | 
|  | elf64_hppa_additional_program_headers (bfd *abfd, | 
|  | struct bfd_link_info *info ATTRIBUTE_UNUSED) | 
|  | { | 
|  | asection *s; | 
|  |  | 
|  | /* If we are creating a shared library, then we have to create a | 
|  | PT_PHDR segment.  HP's dynamic linker chokes without it.  */ | 
|  | s = bfd_get_section_by_name (abfd, ".interp"); | 
|  | if (! s) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_allow_non_load_phdr (bfd *abfd ATTRIBUTE_UNUSED, | 
|  | const Elf_Internal_Phdr *phdr ATTRIBUTE_UNUSED, | 
|  | unsigned int count ATTRIBUTE_UNUSED) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Allocate and initialize any program headers required by this | 
|  | specific backend. | 
|  |  | 
|  | The generic ELF code only creates PT_PHDRs for executables.  The HP | 
|  | dynamic linker requires PT_PHDRs for dynamic libraries too. | 
|  |  | 
|  | This allocates the PT_PHDR and initializes it in a manner suitable | 
|  | for the HP linker. | 
|  |  | 
|  | Note we do not have access to the link info structure here, so we have | 
|  | to guess whether or not we are building a shared library based on the | 
|  | existence of a .interp section.  */ | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_modify_segment_map (bfd *abfd, struct bfd_link_info *info) | 
|  | { | 
|  | struct elf_segment_map *m; | 
|  |  | 
|  | m = elf_seg_map (abfd); | 
|  | if (info != NULL && !info->user_phdrs && m != NULL && m->p_type != PT_PHDR) | 
|  | { | 
|  | m = ((struct elf_segment_map *) | 
|  | bfd_zalloc (abfd, (bfd_size_type) sizeof *m)); | 
|  | if (m == NULL) | 
|  | return false; | 
|  |  | 
|  | m->p_type = PT_PHDR; | 
|  | m->p_flags = PF_R | PF_X; | 
|  | m->p_flags_valid = 1; | 
|  | m->p_paddr_valid = 1; | 
|  | m->includes_phdrs = 1; | 
|  |  | 
|  | m->next = elf_seg_map (abfd); | 
|  | elf_seg_map (abfd) = m; | 
|  | } | 
|  |  | 
|  | for (m = elf_seg_map (abfd) ; m != NULL; m = m->next) | 
|  | if (m->p_type == PT_LOAD) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < m->count; i++) | 
|  | { | 
|  | /* The code "hint" is not really a hint.  It is a requirement | 
|  | for certain versions of the HP dynamic linker.  Worse yet, | 
|  | it must be set even if the shared library does not have | 
|  | any code in its "text" segment (thus the check for .hash | 
|  | to catch this situation).  */ | 
|  | if (m->sections[i]->flags & SEC_CODE | 
|  | || (strcmp (m->sections[i]->name, ".hash") == 0)) | 
|  | m->p_flags |= (PF_X | PF_HP_CODE); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Called when writing out an object file to decide the type of a | 
|  | symbol.  */ | 
|  | static int | 
|  | elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, | 
|  | int type) | 
|  | { | 
|  | if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI) | 
|  | return STT_PARISC_MILLI; | 
|  | else | 
|  | return type; | 
|  | } | 
|  |  | 
|  | /* Support HP specific sections for core files.  */ | 
|  |  | 
|  | static bool | 
|  | elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index, | 
|  | const char *typename) | 
|  | { | 
|  | if (hdr->p_type == PT_HP_CORE_KERNEL) | 
|  | { | 
|  | asection *sect; | 
|  |  | 
|  | if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename)) | 
|  | return false; | 
|  |  | 
|  | sect = bfd_make_section_anyway (abfd, ".kernel"); | 
|  | if (sect == NULL) | 
|  | return false; | 
|  | sect->size = hdr->p_filesz; | 
|  | sect->filepos = hdr->p_offset; | 
|  | sect->flags = SEC_HAS_CONTENTS | SEC_READONLY; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (hdr->p_type == PT_HP_CORE_PROC) | 
|  | { | 
|  | int sig; | 
|  |  | 
|  | if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0) | 
|  | return false; | 
|  | if (bfd_read (&sig, 4, abfd) != 4) | 
|  | return false; | 
|  |  | 
|  | elf_tdata (abfd)->core->signal = sig; | 
|  |  | 
|  | if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename)) | 
|  | return false; | 
|  |  | 
|  | /* GDB uses the ".reg" section to read register contents.  */ | 
|  | return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz, | 
|  | hdr->p_offset); | 
|  | } | 
|  |  | 
|  | if (hdr->p_type == PT_HP_CORE_LOADABLE | 
|  | || hdr->p_type == PT_HP_CORE_STACK | 
|  | || hdr->p_type == PT_HP_CORE_MMF) | 
|  | hdr->p_type = PT_LOAD; | 
|  |  | 
|  | return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename); | 
|  | } | 
|  |  | 
|  | /* Hook called by the linker routine which adds symbols from an object | 
|  | file.  HP's libraries define symbols with HP specific section | 
|  | indices, which we have to handle.  */ | 
|  |  | 
|  | static bool | 
|  | elf_hppa_add_symbol_hook (bfd *abfd, | 
|  | struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
|  | Elf_Internal_Sym *sym, | 
|  | const char **namep ATTRIBUTE_UNUSED, | 
|  | flagword *flagsp ATTRIBUTE_UNUSED, | 
|  | asection **secp, | 
|  | bfd_vma *valp) | 
|  | { | 
|  | unsigned int sec_index = sym->st_shndx; | 
|  |  | 
|  | switch (sec_index) | 
|  | { | 
|  | case SHN_PARISC_ANSI_COMMON: | 
|  | *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common"); | 
|  | (*secp)->flags |= SEC_IS_COMMON; | 
|  | *valp = sym->st_size; | 
|  | break; | 
|  |  | 
|  | case SHN_PARISC_HUGE_COMMON: | 
|  | *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common"); | 
|  | (*secp)->flags |= SEC_IS_COMMON; | 
|  | *valp = sym->st_size; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h, | 
|  | void *data) | 
|  | { | 
|  | struct bfd_link_info *info = data; | 
|  |  | 
|  | /* If we are not creating a shared library, and this symbol is | 
|  | referenced by a shared library but is not defined anywhere, then | 
|  | the generic code will warn that it is undefined. | 
|  |  | 
|  | This behavior is undesirable on HPs since the standard shared | 
|  | libraries contain references to undefined symbols. | 
|  |  | 
|  | So we twiddle the flags associated with such symbols so that they | 
|  | will not trigger the warning.  ?!? FIXME.  This is horribly fragile. | 
|  |  | 
|  | Ultimately we should have better controls over the generic ELF BFD | 
|  | linker code.  */ | 
|  | if (! bfd_link_relocatable (info) | 
|  | && info->unresolved_syms_in_shared_libs != RM_IGNORE | 
|  | && h->root.type == bfd_link_hash_undefined | 
|  | && h->ref_dynamic | 
|  | && !h->ref_regular) | 
|  | { | 
|  | h->ref_dynamic = 0; | 
|  | h->pointer_equality_needed = 1; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h, | 
|  | void *data) | 
|  | { | 
|  | struct bfd_link_info *info = data; | 
|  |  | 
|  | /* If we are not creating a shared library, and this symbol is | 
|  | referenced by a shared library but is not defined anywhere, then | 
|  | the generic code will warn that it is undefined. | 
|  |  | 
|  | This behavior is undesirable on HPs since the standard shared | 
|  | libraries contain references to undefined symbols. | 
|  |  | 
|  | So we twiddle the flags associated with such symbols so that they | 
|  | will not trigger the warning.  ?!? FIXME.  This is horribly fragile. | 
|  |  | 
|  | Ultimately we should have better controls over the generic ELF BFD | 
|  | linker code.  */ | 
|  | if (! bfd_link_relocatable (info) | 
|  | && info->unresolved_syms_in_shared_libs != RM_IGNORE | 
|  | && h->root.type == bfd_link_hash_undefined | 
|  | && !h->ref_dynamic | 
|  | && !h->ref_regular | 
|  | && h->pointer_equality_needed) | 
|  | { | 
|  | h->ref_dynamic = 1; | 
|  | h->pointer_equality_needed = 0; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elf_hppa_is_dynamic_loader_symbol (const char *name) | 
|  | { | 
|  | return (! strcmp (name, "__CPU_REVISION") | 
|  | || ! strcmp (name, "__CPU_KEYBITS_1") | 
|  | || ! strcmp (name, "__SYSTEM_ID_D") | 
|  | || ! strcmp (name, "__FPU_MODEL") | 
|  | || ! strcmp (name, "__FPU_REVISION") | 
|  | || ! strcmp (name, "__ARGC") | 
|  | || ! strcmp (name, "__ARGV") | 
|  | || ! strcmp (name, "__ENVP") | 
|  | || ! strcmp (name, "__TLS_SIZE_D") | 
|  | || ! strcmp (name, "__LOAD_INFO") | 
|  | || ! strcmp (name, "__systab")); | 
|  | } | 
|  |  | 
|  | /* Record the lowest address for the data and text segments.  */ | 
|  | static void | 
|  | elf_hppa_record_segment_addrs (bfd *abfd, | 
|  | asection *section, | 
|  | void *data) | 
|  | { | 
|  | struct elf64_hppa_link_hash_table *hppa_info = data; | 
|  |  | 
|  | if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) | 
|  | { | 
|  | bfd_vma value; | 
|  | Elf_Internal_Phdr *p; | 
|  |  | 
|  | p = _bfd_elf_find_segment_containing_section (abfd, section->output_section); | 
|  | BFD_ASSERT (p != NULL); | 
|  | value = p->p_vaddr; | 
|  |  | 
|  | if (section->flags & SEC_READONLY) | 
|  | { | 
|  | if (value < hppa_info->text_segment_base) | 
|  | hppa_info->text_segment_base = value; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (value < hppa_info->data_segment_base) | 
|  | hppa_info->data_segment_base = value; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Called after we have seen all the input files/sections, but before | 
|  | final symbol resolution and section placement has been determined. | 
|  |  | 
|  | We use this hook to (possibly) provide a value for __gp, then we | 
|  | fall back to the generic ELF final link routine.  */ | 
|  |  | 
|  | static bool | 
|  | elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info) | 
|  | { | 
|  | struct stat buf; | 
|  | struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info); | 
|  |  | 
|  | if (hppa_info == NULL) | 
|  | return false; | 
|  |  | 
|  | if (! bfd_link_relocatable (info)) | 
|  | { | 
|  | struct elf_link_hash_entry *gp; | 
|  | bfd_vma gp_val; | 
|  |  | 
|  | /* The linker script defines a value for __gp iff it was referenced | 
|  | by one of the objects being linked.  First try to find the symbol | 
|  | in the hash table.  If that fails, just compute the value __gp | 
|  | should have had.  */ | 
|  | gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", false, | 
|  | false, false); | 
|  |  | 
|  | if (gp) | 
|  | { | 
|  |  | 
|  | /* Adjust the value of __gp as we may want to slide it into the | 
|  | .plt section so that the stubs can access PLT entries without | 
|  | using an addil sequence.  */ | 
|  | gp->root.u.def.value += hppa_info->gp_offset; | 
|  |  | 
|  | gp_val = (gp->root.u.def.section->output_section->vma | 
|  | + gp->root.u.def.section->output_offset | 
|  | + gp->root.u.def.value); | 
|  | } | 
|  | else | 
|  | { | 
|  | asection *sec; | 
|  |  | 
|  | /* First look for a .plt section.  If found, then __gp is the | 
|  | address of the .plt + gp_offset. | 
|  |  | 
|  | If no .plt is found, then look for .dlt, .opd and .data (in | 
|  | that order) and set __gp to the base address of whichever | 
|  | section is found first.  */ | 
|  |  | 
|  | sec = hppa_info->root.splt; | 
|  | if (sec && ! (sec->flags & SEC_EXCLUDE)) | 
|  | gp_val = (sec->output_offset | 
|  | + sec->output_section->vma | 
|  | + hppa_info->gp_offset); | 
|  | else | 
|  | { | 
|  | sec = hppa_info->dlt_sec; | 
|  | if (!sec || (sec->flags & SEC_EXCLUDE)) | 
|  | sec = hppa_info->opd_sec; | 
|  | if (!sec || (sec->flags & SEC_EXCLUDE)) | 
|  | sec = bfd_get_section_by_name (abfd, ".data"); | 
|  | if (!sec || (sec->flags & SEC_EXCLUDE)) | 
|  | gp_val = 0; | 
|  | else | 
|  | gp_val = sec->output_offset + sec->output_section->vma; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Install whatever value we found/computed for __gp.  */ | 
|  | _bfd_set_gp_value (abfd, gp_val); | 
|  | } | 
|  |  | 
|  | /* We need to know the base of the text and data segments so that we | 
|  | can perform SEGREL relocations.  We will record the base addresses | 
|  | when we encounter the first SEGREL relocation.  */ | 
|  | hppa_info->text_segment_base = (bfd_vma)-1; | 
|  | hppa_info->data_segment_base = (bfd_vma)-1; | 
|  |  | 
|  | /* HP's shared libraries have references to symbols that are not | 
|  | defined anywhere.  The generic ELF BFD linker code will complain | 
|  | about such symbols. | 
|  |  | 
|  | So we detect the losing case and arrange for the flags on the symbol | 
|  | to indicate that it was never referenced.  This keeps the generic | 
|  | ELF BFD link code happy and appears to not create any secondary | 
|  | problems.  Ultimately we need a way to control the behavior of the | 
|  | generic ELF BFD link code better.  */ | 
|  | elf_link_hash_traverse (elf_hash_table (info), | 
|  | elf_hppa_unmark_useless_dynamic_symbols, | 
|  | info); | 
|  |  | 
|  | /* Invoke the regular ELF backend linker to do all the work.  */ | 
|  | if (!bfd_elf_final_link (abfd, info)) | 
|  | return false; | 
|  |  | 
|  | elf_link_hash_traverse (elf_hash_table (info), | 
|  | elf_hppa_remark_useless_dynamic_symbols, | 
|  | info); | 
|  |  | 
|  | /* If we're producing a final executable, sort the contents of the | 
|  | unwind section. */ | 
|  | if (bfd_link_relocatable (info)) | 
|  | return true; | 
|  |  | 
|  | /* Do not attempt to sort non-regular files.  This is here | 
|  | especially for configure scripts and kernel builds which run | 
|  | tests with "ld [...] -o /dev/null".  */ | 
|  | if (stat (bfd_get_filename (abfd), &buf) != 0 | 
|  | || !S_ISREG(buf.st_mode)) | 
|  | return true; | 
|  |  | 
|  | return elf_hppa_sort_unwind (abfd); | 
|  | } | 
|  |  | 
|  | /* Relocate the given INSN.  VALUE should be the actual value we want | 
|  | to insert into the instruction, ie by this point we should not be | 
|  | concerned with computing an offset relative to the DLT, PC, etc. | 
|  | Instead this routine is meant to handle the bit manipulations needed | 
|  | to insert the relocation into the given instruction.  */ | 
|  |  | 
|  | static int | 
|  | elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type) | 
|  | { | 
|  | switch (r_type) | 
|  | { | 
|  | /* This is any 22 bit branch.  In PA2.0 syntax it corresponds to | 
|  | the "B" instruction.  */ | 
|  | case R_PARISC_PCREL22F: | 
|  | case R_PARISC_PCREL22C: | 
|  | return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value); | 
|  |  | 
|  | /* This is any 12 bit branch.  */ | 
|  | case R_PARISC_PCREL12F: | 
|  | return (insn & ~0x1ffd) | re_assemble_12 (sym_value); | 
|  |  | 
|  | /* This is any 17 bit branch.  In PA2.0 syntax it also corresponds | 
|  | to the "B" instruction as well as BE.  */ | 
|  | case R_PARISC_PCREL17F: | 
|  | case R_PARISC_DIR17F: | 
|  | case R_PARISC_DIR17R: | 
|  | case R_PARISC_PCREL17C: | 
|  | case R_PARISC_PCREL17R: | 
|  | return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value); | 
|  |  | 
|  | /* ADDIL or LDIL instructions.  */ | 
|  | case R_PARISC_DLTREL21L: | 
|  | case R_PARISC_DLTIND21L: | 
|  | case R_PARISC_LTOFF_FPTR21L: | 
|  | case R_PARISC_PCREL21L: | 
|  | case R_PARISC_LTOFF_TP21L: | 
|  | case R_PARISC_DPREL21L: | 
|  | case R_PARISC_PLTOFF21L: | 
|  | case R_PARISC_DIR21L: | 
|  | return (insn & ~0x1fffff) | re_assemble_21 (sym_value); | 
|  |  | 
|  | /* LDO and integer loads/stores with 14 bit displacements.  */ | 
|  | case R_PARISC_DLTREL14R: | 
|  | case R_PARISC_DLTREL14F: | 
|  | case R_PARISC_DLTIND14R: | 
|  | case R_PARISC_DLTIND14F: | 
|  | case R_PARISC_LTOFF_FPTR14R: | 
|  | case R_PARISC_PCREL14R: | 
|  | case R_PARISC_PCREL14F: | 
|  | case R_PARISC_LTOFF_TP14R: | 
|  | case R_PARISC_LTOFF_TP14F: | 
|  | case R_PARISC_DPREL14R: | 
|  | case R_PARISC_DPREL14F: | 
|  | case R_PARISC_PLTOFF14R: | 
|  | case R_PARISC_PLTOFF14F: | 
|  | case R_PARISC_DIR14R: | 
|  | case R_PARISC_DIR14F: | 
|  | return (insn & ~0x3fff) | low_sign_unext (sym_value, 14); | 
|  |  | 
|  | /* PA2.0W LDO and integer loads/stores with 16 bit displacements.  */ | 
|  | case R_PARISC_LTOFF_FPTR16F: | 
|  | case R_PARISC_PCREL16F: | 
|  | case R_PARISC_LTOFF_TP16F: | 
|  | case R_PARISC_GPREL16F: | 
|  | case R_PARISC_PLTOFF16F: | 
|  | case R_PARISC_DIR16F: | 
|  | case R_PARISC_LTOFF16F: | 
|  | return (insn & ~0xffff) | re_assemble_16 (sym_value); | 
|  |  | 
|  | /* Doubleword loads and stores with a 14 bit displacement.  */ | 
|  | case R_PARISC_DLTREL14DR: | 
|  | case R_PARISC_DLTIND14DR: | 
|  | case R_PARISC_LTOFF_FPTR14DR: | 
|  | case R_PARISC_LTOFF_FPTR16DF: | 
|  | case R_PARISC_PCREL14DR: | 
|  | case R_PARISC_PCREL16DF: | 
|  | case R_PARISC_LTOFF_TP14DR: | 
|  | case R_PARISC_LTOFF_TP16DF: | 
|  | case R_PARISC_DPREL14DR: | 
|  | case R_PARISC_GPREL16DF: | 
|  | case R_PARISC_PLTOFF14DR: | 
|  | case R_PARISC_PLTOFF16DF: | 
|  | case R_PARISC_DIR14DR: | 
|  | case R_PARISC_DIR16DF: | 
|  | case R_PARISC_LTOFF16DF: | 
|  | return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13) | 
|  | | ((sym_value & 0x1ff8) << 1)); | 
|  |  | 
|  | /* Floating point single word load/store instructions.  */ | 
|  | case R_PARISC_DLTREL14WR: | 
|  | case R_PARISC_DLTIND14WR: | 
|  | case R_PARISC_LTOFF_FPTR14WR: | 
|  | case R_PARISC_LTOFF_FPTR16WF: | 
|  | case R_PARISC_PCREL14WR: | 
|  | case R_PARISC_PCREL16WF: | 
|  | case R_PARISC_LTOFF_TP14WR: | 
|  | case R_PARISC_LTOFF_TP16WF: | 
|  | case R_PARISC_DPREL14WR: | 
|  | case R_PARISC_GPREL16WF: | 
|  | case R_PARISC_PLTOFF14WR: | 
|  | case R_PARISC_PLTOFF16WF: | 
|  | case R_PARISC_DIR16WF: | 
|  | case R_PARISC_DIR14WR: | 
|  | case R_PARISC_LTOFF16WF: | 
|  | return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13) | 
|  | | ((sym_value & 0x1ffc) << 1)); | 
|  |  | 
|  | default: | 
|  | return insn; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Compute the value for a relocation (REL) during a final link stage, | 
|  | then insert the value into the proper location in CONTENTS. | 
|  |  | 
|  | VALUE is a tentative value for the relocation and may be overridden | 
|  | and modified here based on the specific relocation to be performed. | 
|  |  | 
|  | For example we do conversions for PC-relative branches in this routine | 
|  | or redirection of calls to external routines to stubs. | 
|  |  | 
|  | The work of actually applying the relocation is left to a helper | 
|  | routine in an attempt to reduce the complexity and size of this | 
|  | function.  */ | 
|  |  | 
|  | static bfd_reloc_status_type | 
|  | elf_hppa_final_link_relocate (Elf_Internal_Rela *rel, | 
|  | bfd *input_bfd, | 
|  | bfd *output_bfd, | 
|  | asection *input_section, | 
|  | bfd_byte *contents, | 
|  | bfd_vma value, | 
|  | struct bfd_link_info *info, | 
|  | asection *sym_sec, | 
|  | struct elf_link_hash_entry *eh) | 
|  | { | 
|  | struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info); | 
|  | struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); | 
|  | bfd_vma *local_offsets; | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | int insn; | 
|  | bfd_vma max_branch_offset = 0; | 
|  | bfd_vma offset = rel->r_offset; | 
|  | bfd_signed_vma addend = rel->r_addend; | 
|  | reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info); | 
|  | unsigned int r_symndx = ELF_R_SYM (rel->r_info); | 
|  | unsigned int r_type = howto->type; | 
|  | bfd_byte *hit_data = contents + offset; | 
|  |  | 
|  | if (hppa_info == NULL) | 
|  | return bfd_reloc_notsupported; | 
|  |  | 
|  | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | 
|  | local_offsets = elf_local_got_offsets (input_bfd); | 
|  | insn = bfd_get_32 (input_bfd, hit_data); | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | case R_PARISC_NONE: | 
|  | break; | 
|  |  | 
|  | /* Basic function call support. | 
|  |  | 
|  | Note for a call to a function defined in another dynamic library | 
|  | we want to redirect the call to a stub.  */ | 
|  |  | 
|  | /* PC relative relocs without an implicit offset.  */ | 
|  | case R_PARISC_PCREL21L: | 
|  | case R_PARISC_PCREL14R: | 
|  | case R_PARISC_PCREL14F: | 
|  | case R_PARISC_PCREL14WR: | 
|  | case R_PARISC_PCREL14DR: | 
|  | case R_PARISC_PCREL16F: | 
|  | case R_PARISC_PCREL16WF: | 
|  | case R_PARISC_PCREL16DF: | 
|  | { | 
|  | /* If this is a call to a function defined in another dynamic | 
|  | library, then redirect the call to the local stub for this | 
|  | function.  */ | 
|  | if (sym_sec == NULL || sym_sec->output_section == NULL) | 
|  | value = (hh->stub_offset + hppa_info->stub_sec->output_offset | 
|  | + hppa_info->stub_sec->output_section->vma); | 
|  |  | 
|  | /* Turn VALUE into a proper PC relative address.  */ | 
|  | value -= (offset + input_section->output_offset | 
|  | + input_section->output_section->vma); | 
|  |  | 
|  | /* Adjust for any field selectors.  */ | 
|  | if (r_type == R_PARISC_PCREL21L) | 
|  | value = hppa_field_adjust (value, -8 + addend, e_lsel); | 
|  | else if (r_type == R_PARISC_PCREL14F | 
|  | || r_type == R_PARISC_PCREL16F | 
|  | || r_type == R_PARISC_PCREL16WF | 
|  | || r_type == R_PARISC_PCREL16DF) | 
|  | value = hppa_field_adjust (value, -8 + addend, e_fsel); | 
|  | else | 
|  | value = hppa_field_adjust (value, -8 + addend, e_rsel); | 
|  |  | 
|  | /* Apply the relocation to the given instruction.  */ | 
|  | insn = elf_hppa_relocate_insn (insn, (int) value, r_type); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case R_PARISC_PCREL12F: | 
|  | case R_PARISC_PCREL22F: | 
|  | case R_PARISC_PCREL17F: | 
|  | case R_PARISC_PCREL22C: | 
|  | case R_PARISC_PCREL17C: | 
|  | case R_PARISC_PCREL17R: | 
|  | { | 
|  | /* If this is a call to a function defined in another dynamic | 
|  | library, then redirect the call to the local stub for this | 
|  | function.  */ | 
|  | if (sym_sec == NULL || sym_sec->output_section == NULL) | 
|  | value = (hh->stub_offset + hppa_info->stub_sec->output_offset | 
|  | + hppa_info->stub_sec->output_section->vma); | 
|  |  | 
|  | /* Turn VALUE into a proper PC relative address.  */ | 
|  | value -= (offset + input_section->output_offset | 
|  | + input_section->output_section->vma); | 
|  | addend -= 8; | 
|  |  | 
|  | if (r_type == (unsigned int) R_PARISC_PCREL22F) | 
|  | max_branch_offset = (1 << (22-1)) << 2; | 
|  | else if (r_type == (unsigned int) R_PARISC_PCREL17F) | 
|  | max_branch_offset = (1 << (17-1)) << 2; | 
|  | else if (r_type == (unsigned int) R_PARISC_PCREL12F) | 
|  | max_branch_offset = (1 << (12-1)) << 2; | 
|  |  | 
|  | /* Make sure we can reach the branch target.  */ | 
|  | if (max_branch_offset != 0 | 
|  | && value + addend + max_branch_offset >= 2*max_branch_offset) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA+%#" PRIx64 "): cannot reach %s"), | 
|  | input_bfd, | 
|  | input_section, | 
|  | (uint64_t) offset, | 
|  | eh ? eh->root.root.string : "unknown"); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return bfd_reloc_overflow; | 
|  | } | 
|  |  | 
|  | /* Adjust for any field selectors.  */ | 
|  | if (r_type == R_PARISC_PCREL17R) | 
|  | value = hppa_field_adjust (value, addend, e_rsel); | 
|  | else | 
|  | value = hppa_field_adjust (value, addend, e_fsel); | 
|  |  | 
|  | /* All branches are implicitly shifted by 2 places.  */ | 
|  | value >>= 2; | 
|  |  | 
|  | /* Apply the relocation to the given instruction.  */ | 
|  | insn = elf_hppa_relocate_insn (insn, (int) value, r_type); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Indirect references to data through the DLT.  */ | 
|  | case R_PARISC_DLTIND14R: | 
|  | case R_PARISC_DLTIND14F: | 
|  | case R_PARISC_DLTIND14DR: | 
|  | case R_PARISC_DLTIND14WR: | 
|  | case R_PARISC_DLTIND21L: | 
|  | case R_PARISC_LTOFF_FPTR14R: | 
|  | case R_PARISC_LTOFF_FPTR14DR: | 
|  | case R_PARISC_LTOFF_FPTR14WR: | 
|  | case R_PARISC_LTOFF_FPTR21L: | 
|  | case R_PARISC_LTOFF_FPTR16F: | 
|  | case R_PARISC_LTOFF_FPTR16WF: | 
|  | case R_PARISC_LTOFF_FPTR16DF: | 
|  | case R_PARISC_LTOFF_TP21L: | 
|  | case R_PARISC_LTOFF_TP14R: | 
|  | case R_PARISC_LTOFF_TP14F: | 
|  | case R_PARISC_LTOFF_TP14WR: | 
|  | case R_PARISC_LTOFF_TP14DR: | 
|  | case R_PARISC_LTOFF_TP16F: | 
|  | case R_PARISC_LTOFF_TP16WF: | 
|  | case R_PARISC_LTOFF_TP16DF: | 
|  | case R_PARISC_LTOFF16F: | 
|  | case R_PARISC_LTOFF16WF: | 
|  | case R_PARISC_LTOFF16DF: | 
|  | { | 
|  | bfd_vma off; | 
|  |  | 
|  | /* If this relocation was against a local symbol, then we still | 
|  | have not set up the DLT entry (it's not convenient to do so | 
|  | in the "finalize_dlt" routine because it is difficult to get | 
|  | to the local symbol's value). | 
|  |  | 
|  | So, if this is a local symbol (h == NULL), then we need to | 
|  | fill in its DLT entry. | 
|  |  | 
|  | Similarly we may still need to set up an entry in .opd for | 
|  | a local function which had its address taken.  */ | 
|  | if (hh == NULL) | 
|  | { | 
|  | bfd_vma *local_opd_offsets, *local_dlt_offsets; | 
|  |  | 
|  | if (local_offsets == NULL) | 
|  | abort (); | 
|  |  | 
|  | /* Now do .opd creation if needed.  */ | 
|  | if (r_type == R_PARISC_LTOFF_FPTR14R | 
|  | || r_type == R_PARISC_LTOFF_FPTR14DR | 
|  | || r_type == R_PARISC_LTOFF_FPTR14WR | 
|  | || r_type == R_PARISC_LTOFF_FPTR21L | 
|  | || r_type == R_PARISC_LTOFF_FPTR16F | 
|  | || r_type == R_PARISC_LTOFF_FPTR16WF | 
|  | || r_type == R_PARISC_LTOFF_FPTR16DF) | 
|  | { | 
|  | local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info; | 
|  | off = local_opd_offsets[r_symndx]; | 
|  |  | 
|  | /* The last bit records whether we've already initialised | 
|  | this local .opd entry.  */ | 
|  | if ((off & 1) != 0) | 
|  | { | 
|  | BFD_ASSERT (off != (bfd_vma) -1); | 
|  | off &= ~1; | 
|  | } | 
|  | else | 
|  | { | 
|  | local_opd_offsets[r_symndx] |= 1; | 
|  |  | 
|  | /* The first two words of an .opd entry are zero.  */ | 
|  | memset (hppa_info->opd_sec->contents + off, 0, 16); | 
|  |  | 
|  | /* The next word is the address of the function.  */ | 
|  | bfd_put_64 (hppa_info->opd_sec->owner, value + addend, | 
|  | (hppa_info->opd_sec->contents + off + 16)); | 
|  |  | 
|  | /* The last word is our local __gp value.  */ | 
|  | value = _bfd_get_gp_value (info->output_bfd); | 
|  | bfd_put_64 (hppa_info->opd_sec->owner, value, | 
|  | (hppa_info->opd_sec->contents + off + 24)); | 
|  | } | 
|  |  | 
|  | /* The DLT value is the address of the .opd entry.  */ | 
|  | value = (off | 
|  | + hppa_info->opd_sec->output_offset | 
|  | + hppa_info->opd_sec->output_section->vma); | 
|  | addend = 0; | 
|  | } | 
|  |  | 
|  | local_dlt_offsets = local_offsets; | 
|  | off = local_dlt_offsets[r_symndx]; | 
|  |  | 
|  | if ((off & 1) != 0) | 
|  | { | 
|  | BFD_ASSERT (off != (bfd_vma) -1); | 
|  | off &= ~1; | 
|  | } | 
|  | else | 
|  | { | 
|  | local_dlt_offsets[r_symndx] |= 1; | 
|  | bfd_put_64 (hppa_info->dlt_sec->owner, | 
|  | value + addend, | 
|  | hppa_info->dlt_sec->contents + off); | 
|  | } | 
|  | } | 
|  | else | 
|  | off = hh->dlt_offset; | 
|  |  | 
|  | /* We want the value of the DLT offset for this symbol, not | 
|  | the symbol's actual address.  Note that __gp may not point | 
|  | to the start of the DLT, so we have to compute the absolute | 
|  | address, then subtract out the value of __gp.  */ | 
|  | value = (off | 
|  | + hppa_info->dlt_sec->output_offset | 
|  | + hppa_info->dlt_sec->output_section->vma); | 
|  | value -= _bfd_get_gp_value (output_bfd); | 
|  |  | 
|  | /* All DLTIND relocations are basically the same at this point, | 
|  | except that we need different field selectors for the 21bit | 
|  | version vs the 14bit versions.  */ | 
|  | if (r_type == R_PARISC_DLTIND21L | 
|  | || r_type == R_PARISC_LTOFF_FPTR21L | 
|  | || r_type == R_PARISC_LTOFF_TP21L) | 
|  | value = hppa_field_adjust (value, 0, e_lsel); | 
|  | else if (r_type == R_PARISC_DLTIND14F | 
|  | || r_type == R_PARISC_LTOFF_FPTR16F | 
|  | || r_type == R_PARISC_LTOFF_FPTR16WF | 
|  | || r_type == R_PARISC_LTOFF_FPTR16DF | 
|  | || r_type == R_PARISC_LTOFF16F | 
|  | || r_type == R_PARISC_LTOFF16DF | 
|  | || r_type == R_PARISC_LTOFF16WF | 
|  | || r_type == R_PARISC_LTOFF_TP16F | 
|  | || r_type == R_PARISC_LTOFF_TP16WF | 
|  | || r_type == R_PARISC_LTOFF_TP16DF) | 
|  | value = hppa_field_adjust (value, 0, e_fsel); | 
|  | else | 
|  | value = hppa_field_adjust (value, 0, e_rsel); | 
|  |  | 
|  | insn = elf_hppa_relocate_insn (insn, (int) value, r_type); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case R_PARISC_DLTREL14R: | 
|  | case R_PARISC_DLTREL14F: | 
|  | case R_PARISC_DLTREL14DR: | 
|  | case R_PARISC_DLTREL14WR: | 
|  | case R_PARISC_DLTREL21L: | 
|  | case R_PARISC_DPREL21L: | 
|  | case R_PARISC_DPREL14WR: | 
|  | case R_PARISC_DPREL14DR: | 
|  | case R_PARISC_DPREL14R: | 
|  | case R_PARISC_DPREL14F: | 
|  | case R_PARISC_GPREL16F: | 
|  | case R_PARISC_GPREL16WF: | 
|  | case R_PARISC_GPREL16DF: | 
|  | { | 
|  | /* Subtract out the global pointer value to make value a DLT | 
|  | relative address.  */ | 
|  | value -= _bfd_get_gp_value (output_bfd); | 
|  |  | 
|  | /* All DLTREL relocations are basically the same at this point, | 
|  | except that we need different field selectors for the 21bit | 
|  | version vs the 14bit versions.  */ | 
|  | if (r_type == R_PARISC_DLTREL21L | 
|  | || r_type == R_PARISC_DPREL21L) | 
|  | value = hppa_field_adjust (value, addend, e_lrsel); | 
|  | else if (r_type == R_PARISC_DLTREL14F | 
|  | || r_type == R_PARISC_DPREL14F | 
|  | || r_type == R_PARISC_GPREL16F | 
|  | || r_type == R_PARISC_GPREL16WF | 
|  | || r_type == R_PARISC_GPREL16DF) | 
|  | value = hppa_field_adjust (value, addend, e_fsel); | 
|  | else | 
|  | value = hppa_field_adjust (value, addend, e_rrsel); | 
|  |  | 
|  | insn = elf_hppa_relocate_insn (insn, (int) value, r_type); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case R_PARISC_DIR21L: | 
|  | case R_PARISC_DIR17R: | 
|  | case R_PARISC_DIR17F: | 
|  | case R_PARISC_DIR14R: | 
|  | case R_PARISC_DIR14F: | 
|  | case R_PARISC_DIR14WR: | 
|  | case R_PARISC_DIR14DR: | 
|  | case R_PARISC_DIR16F: | 
|  | case R_PARISC_DIR16WF: | 
|  | case R_PARISC_DIR16DF: | 
|  | { | 
|  | /* All DIR relocations are basically the same at this point, | 
|  | except that branch offsets need to be divided by four, and | 
|  | we need different field selectors.  Note that we don't | 
|  | redirect absolute calls to local stubs.  */ | 
|  |  | 
|  | if (r_type == R_PARISC_DIR21L) | 
|  | value = hppa_field_adjust (value, addend, e_lrsel); | 
|  | else if (r_type == R_PARISC_DIR17F | 
|  | || r_type == R_PARISC_DIR16F | 
|  | || r_type == R_PARISC_DIR16WF | 
|  | || r_type == R_PARISC_DIR16DF | 
|  | || r_type == R_PARISC_DIR14F) | 
|  | value = hppa_field_adjust (value, addend, e_fsel); | 
|  | else | 
|  | value = hppa_field_adjust (value, addend, e_rrsel); | 
|  |  | 
|  | if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F) | 
|  | /* All branches are implicitly shifted by 2 places.  */ | 
|  | value >>= 2; | 
|  |  | 
|  | insn = elf_hppa_relocate_insn (insn, (int) value, r_type); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case R_PARISC_PLTOFF21L: | 
|  | case R_PARISC_PLTOFF14R: | 
|  | case R_PARISC_PLTOFF14F: | 
|  | case R_PARISC_PLTOFF14WR: | 
|  | case R_PARISC_PLTOFF14DR: | 
|  | case R_PARISC_PLTOFF16F: | 
|  | case R_PARISC_PLTOFF16WF: | 
|  | case R_PARISC_PLTOFF16DF: | 
|  | { | 
|  | /* We want the value of the PLT offset for this symbol, not | 
|  | the symbol's actual address.  Note that __gp may not point | 
|  | to the start of the DLT, so we have to compute the absolute | 
|  | address, then subtract out the value of __gp.  */ | 
|  | value = (hh->plt_offset | 
|  | + hppa_info->root.splt->output_offset | 
|  | + hppa_info->root.splt->output_section->vma); | 
|  | value -= _bfd_get_gp_value (output_bfd); | 
|  |  | 
|  | /* All PLTOFF relocations are basically the same at this point, | 
|  | except that we need different field selectors for the 21bit | 
|  | version vs the 14bit versions.  */ | 
|  | if (r_type == R_PARISC_PLTOFF21L) | 
|  | value = hppa_field_adjust (value, addend, e_lrsel); | 
|  | else if (r_type == R_PARISC_PLTOFF14F | 
|  | || r_type == R_PARISC_PLTOFF16F | 
|  | || r_type == R_PARISC_PLTOFF16WF | 
|  | || r_type == R_PARISC_PLTOFF16DF) | 
|  | value = hppa_field_adjust (value, addend, e_fsel); | 
|  | else | 
|  | value = hppa_field_adjust (value, addend, e_rrsel); | 
|  |  | 
|  | insn = elf_hppa_relocate_insn (insn, (int) value, r_type); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case R_PARISC_LTOFF_FPTR32: | 
|  | { | 
|  | /* FIXME: There used to be code here to create the FPTR itself if | 
|  | the relocation was against a local symbol.  But the code could | 
|  | never have worked.  If the assert below is ever triggered then | 
|  | the code will need to be reinstated and fixed so that it does | 
|  | what is needed.  */ | 
|  | BFD_ASSERT (hh != NULL); | 
|  |  | 
|  | /* We want the value of the DLT offset for this symbol, not | 
|  | the symbol's actual address.  Note that __gp may not point | 
|  | to the start of the DLT, so we have to compute the absolute | 
|  | address, then subtract out the value of __gp.  */ | 
|  | value = (hh->dlt_offset | 
|  | + hppa_info->dlt_sec->output_offset | 
|  | + hppa_info->dlt_sec->output_section->vma); | 
|  | value -= _bfd_get_gp_value (output_bfd); | 
|  | bfd_put_32 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | case R_PARISC_LTOFF_FPTR64: | 
|  | case R_PARISC_LTOFF_TP64: | 
|  | { | 
|  | /* We may still need to create the FPTR itself if it was for | 
|  | a local symbol.  */ | 
|  | if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64) | 
|  | { | 
|  | /* The first two words of an .opd entry are zero.  */ | 
|  | memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16); | 
|  |  | 
|  | /* The next word is the address of the function.  */ | 
|  | bfd_put_64 (hppa_info->opd_sec->owner, value + addend, | 
|  | (hppa_info->opd_sec->contents | 
|  | + hh->opd_offset + 16)); | 
|  |  | 
|  | /* The last word is our local __gp value.  */ | 
|  | value = _bfd_get_gp_value (info->output_bfd); | 
|  | bfd_put_64 (hppa_info->opd_sec->owner, value, | 
|  | hppa_info->opd_sec->contents + hh->opd_offset + 24); | 
|  |  | 
|  | /* The DLT value is the address of the .opd entry.  */ | 
|  | value = (hh->opd_offset | 
|  | + hppa_info->opd_sec->output_offset | 
|  | + hppa_info->opd_sec->output_section->vma); | 
|  |  | 
|  | bfd_put_64 (hppa_info->dlt_sec->owner, | 
|  | value, | 
|  | hppa_info->dlt_sec->contents + hh->dlt_offset); | 
|  | } | 
|  |  | 
|  | /* We want the value of the DLT offset for this symbol, not | 
|  | the symbol's actual address.  Note that __gp may not point | 
|  | to the start of the DLT, so we have to compute the absolute | 
|  | address, then subtract out the value of __gp.  */ | 
|  | value = (hh->dlt_offset | 
|  | + hppa_info->dlt_sec->output_offset | 
|  | + hppa_info->dlt_sec->output_section->vma); | 
|  | value -= _bfd_get_gp_value (output_bfd); | 
|  | bfd_put_64 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | case R_PARISC_DIR32: | 
|  | bfd_put_32 (input_bfd, value + addend, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_PARISC_DIR64: | 
|  | bfd_put_64 (input_bfd, value + addend, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_PARISC_GPREL64: | 
|  | /* Subtract out the global pointer value to make value a DLT | 
|  | relative address.  */ | 
|  | value -= _bfd_get_gp_value (output_bfd); | 
|  |  | 
|  | bfd_put_64 (input_bfd, value + addend, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_PARISC_LTOFF64: | 
|  | /* We want the value of the DLT offset for this symbol, not | 
|  | the symbol's actual address.  Note that __gp may not point | 
|  | to the start of the DLT, so we have to compute the absolute | 
|  | address, then subtract out the value of __gp.  */ | 
|  | value = (hh->dlt_offset | 
|  | + hppa_info->dlt_sec->output_offset | 
|  | + hppa_info->dlt_sec->output_section->vma); | 
|  | value -= _bfd_get_gp_value (output_bfd); | 
|  |  | 
|  | bfd_put_64 (input_bfd, value + addend, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_PARISC_PCREL32: | 
|  | { | 
|  | /* If this is a call to a function defined in another dynamic | 
|  | library, then redirect the call to the local stub for this | 
|  | function.  */ | 
|  | if (sym_sec == NULL || sym_sec->output_section == NULL) | 
|  | value = (hh->stub_offset + hppa_info->stub_sec->output_offset | 
|  | + hppa_info->stub_sec->output_section->vma); | 
|  |  | 
|  | /* Turn VALUE into a proper PC relative address.  */ | 
|  | value -= (offset + input_section->output_offset | 
|  | + input_section->output_section->vma); | 
|  |  | 
|  | value += addend; | 
|  | value -= 8; | 
|  | bfd_put_32 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | case R_PARISC_PCREL64: | 
|  | { | 
|  | /* If this is a call to a function defined in another dynamic | 
|  | library, then redirect the call to the local stub for this | 
|  | function.  */ | 
|  | if (sym_sec == NULL || sym_sec->output_section == NULL) | 
|  | value = (hh->stub_offset + hppa_info->stub_sec->output_offset | 
|  | + hppa_info->stub_sec->output_section->vma); | 
|  |  | 
|  | /* Turn VALUE into a proper PC relative address.  */ | 
|  | value -= (offset + input_section->output_offset | 
|  | + input_section->output_section->vma); | 
|  |  | 
|  | value += addend; | 
|  | value -= 8; | 
|  | bfd_put_64 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | case R_PARISC_FPTR64: | 
|  | { | 
|  | bfd_vma off; | 
|  |  | 
|  | /* We may still need to create the FPTR itself if it was for | 
|  | a local symbol.  */ | 
|  | if (hh == NULL) | 
|  | { | 
|  | bfd_vma *local_opd_offsets; | 
|  |  | 
|  | if (local_offsets == NULL) | 
|  | abort (); | 
|  |  | 
|  | local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info; | 
|  | off = local_opd_offsets[r_symndx]; | 
|  |  | 
|  | /* The last bit records whether we've already initialised | 
|  | this local .opd entry.  */ | 
|  | if ((off & 1) != 0) | 
|  | { | 
|  | BFD_ASSERT (off != (bfd_vma) -1); | 
|  | off &= ~1; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* The first two words of an .opd entry are zero.  */ | 
|  | memset (hppa_info->opd_sec->contents + off, 0, 16); | 
|  |  | 
|  | /* The next word is the address of the function.  */ | 
|  | bfd_put_64 (hppa_info->opd_sec->owner, value + addend, | 
|  | (hppa_info->opd_sec->contents + off + 16)); | 
|  |  | 
|  | /* The last word is our local __gp value.  */ | 
|  | value = _bfd_get_gp_value (info->output_bfd); | 
|  | bfd_put_64 (hppa_info->opd_sec->owner, value, | 
|  | hppa_info->opd_sec->contents + off + 24); | 
|  | } | 
|  | } | 
|  | else | 
|  | off = hh->opd_offset; | 
|  |  | 
|  | if (hh == NULL || hh->want_opd) | 
|  | /* We want the value of the OPD offset for this symbol.  */ | 
|  | value = (off | 
|  | + hppa_info->opd_sec->output_offset | 
|  | + hppa_info->opd_sec->output_section->vma); | 
|  | else | 
|  | /* We want the address of the symbol.  */ | 
|  | value += addend; | 
|  |  | 
|  | bfd_put_64 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | case R_PARISC_SECREL32: | 
|  | if (sym_sec && sym_sec->output_section) | 
|  | value -= sym_sec->output_section->vma; | 
|  | bfd_put_32 (input_bfd, value + addend, hit_data); | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | case R_PARISC_SEGREL32: | 
|  | case R_PARISC_SEGREL64: | 
|  | { | 
|  | /* If this is the first SEGREL relocation, then initialize | 
|  | the segment base values.  */ | 
|  | if (hppa_info->text_segment_base == (bfd_vma) -1) | 
|  | bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs, | 
|  | hppa_info); | 
|  |  | 
|  | /* VALUE holds the absolute address.  We want to include the | 
|  | addend, then turn it into a segment relative address. | 
|  |  | 
|  | The segment is derived from SYM_SEC.  We assume that there are | 
|  | only two segments of note in the resulting executable/shlib. | 
|  | A readonly segment (.text) and a readwrite segment (.data).  */ | 
|  | value += addend; | 
|  |  | 
|  | if (sym_sec->flags & SEC_CODE) | 
|  | value -= hppa_info->text_segment_base; | 
|  | else | 
|  | value -= hppa_info->data_segment_base; | 
|  |  | 
|  | if (r_type == R_PARISC_SEGREL32) | 
|  | bfd_put_32 (input_bfd, value, hit_data); | 
|  | else | 
|  | bfd_put_64 (input_bfd, value, hit_data); | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | /* Something we don't know how to handle.  */ | 
|  | default: | 
|  | return bfd_reloc_notsupported; | 
|  | } | 
|  |  | 
|  | /* Update the instruction word.  */ | 
|  | bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data); | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | /* Relocate an HPPA ELF section.  */ | 
|  |  | 
|  | static int | 
|  | elf64_hppa_relocate_section (bfd *output_bfd, | 
|  | struct bfd_link_info *info, | 
|  | bfd *input_bfd, | 
|  | asection *input_section, | 
|  | bfd_byte *contents, | 
|  | Elf_Internal_Rela *relocs, | 
|  | Elf_Internal_Sym *local_syms, | 
|  | asection **local_sections) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | Elf_Internal_Rela *rel; | 
|  | Elf_Internal_Rela *relend; | 
|  | struct elf64_hppa_link_hash_table *hppa_info; | 
|  |  | 
|  | hppa_info = hppa_link_hash_table (info); | 
|  | if (hppa_info == NULL) | 
|  | return false; | 
|  |  | 
|  | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | 
|  |  | 
|  | rel = relocs; | 
|  | relend = relocs + input_section->reloc_count; | 
|  | for (; rel < relend; rel++) | 
|  | { | 
|  | int r_type; | 
|  | reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info); | 
|  | unsigned long r_symndx; | 
|  | struct elf_link_hash_entry *eh; | 
|  | Elf_Internal_Sym *sym; | 
|  | asection *sym_sec; | 
|  | bfd_vma relocation; | 
|  | bfd_reloc_status_type r; | 
|  |  | 
|  | r_type = ELF_R_TYPE (rel->r_info); | 
|  | if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED) | 
|  | { | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  | if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY | 
|  | || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT) | 
|  | continue; | 
|  |  | 
|  | /* This is a final link.  */ | 
|  | r_symndx = ELF_R_SYM (rel->r_info); | 
|  | eh = NULL; | 
|  | sym = NULL; | 
|  | sym_sec = NULL; | 
|  | if (r_symndx < symtab_hdr->sh_info) | 
|  | { | 
|  | /* This is a local symbol, hh defaults to NULL.  */ | 
|  | sym = local_syms + r_symndx; | 
|  | sym_sec = local_sections[r_symndx]; | 
|  | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* This is not a local symbol.  */ | 
|  | struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); | 
|  |  | 
|  | /* It seems this can happen with erroneous or unsupported | 
|  | input (mixing a.out and elf in an archive, for example.)  */ | 
|  | if (sym_hashes == NULL) | 
|  | return false; | 
|  |  | 
|  | eh = sym_hashes[r_symndx - symtab_hdr->sh_info]; | 
|  |  | 
|  | if (info->wrap_hash != NULL | 
|  | && (input_section->flags & SEC_DEBUGGING) != 0) | 
|  | eh = ((struct elf_link_hash_entry *) | 
|  | unwrap_hash_lookup (info, input_bfd, &eh->root)); | 
|  |  | 
|  | while (eh->root.type == bfd_link_hash_indirect | 
|  | || eh->root.type == bfd_link_hash_warning) | 
|  | eh = (struct elf_link_hash_entry *) eh->root.u.i.link; | 
|  |  | 
|  | relocation = 0; | 
|  | if (eh->root.type == bfd_link_hash_defined | 
|  | || eh->root.type == bfd_link_hash_defweak) | 
|  | { | 
|  | sym_sec = eh->root.u.def.section; | 
|  | if (sym_sec != NULL | 
|  | && sym_sec->output_section != NULL) | 
|  | relocation = (eh->root.u.def.value | 
|  | + sym_sec->output_section->vma | 
|  | + sym_sec->output_offset); | 
|  | } | 
|  | else if (eh->root.type == bfd_link_hash_undefweak) | 
|  | ; | 
|  | else if (info->unresolved_syms_in_objects == RM_IGNORE | 
|  | && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT) | 
|  | ; | 
|  | else if (!bfd_link_relocatable (info) | 
|  | && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string)) | 
|  | continue; | 
|  | else if (!bfd_link_relocatable (info)) | 
|  | { | 
|  | bool err; | 
|  |  | 
|  | err = (info->unresolved_syms_in_objects == RM_DIAGNOSE | 
|  | && !info->warn_unresolved_syms) | 
|  | || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT; | 
|  |  | 
|  | info->callbacks->undefined_symbol | 
|  | (info, eh->root.root.string, input_bfd, | 
|  | input_section, rel->r_offset, err); | 
|  | } | 
|  |  | 
|  | if (!bfd_link_relocatable (info) | 
|  | && relocation == 0 | 
|  | && eh->root.type != bfd_link_hash_defined | 
|  | && eh->root.type != bfd_link_hash_defweak | 
|  | && eh->root.type != bfd_link_hash_undefweak) | 
|  | { | 
|  | if (info->unresolved_syms_in_objects == RM_IGNORE | 
|  | && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT | 
|  | && eh->type == STT_PARISC_MILLI) | 
|  | info->callbacks->undefined_symbol | 
|  | (info, eh_name (eh), input_bfd, | 
|  | input_section, rel->r_offset, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sym_sec != NULL && discarded_section (sym_sec)) | 
|  | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, | 
|  | rel, 1, relend, howto, 0, contents); | 
|  |  | 
|  | if (bfd_link_relocatable (info)) | 
|  | continue; | 
|  |  | 
|  | r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd, | 
|  | input_section, contents, | 
|  | relocation, info, sym_sec, | 
|  | eh); | 
|  |  | 
|  | if (r != bfd_reloc_ok) | 
|  | { | 
|  | switch (r) | 
|  | { | 
|  | default: | 
|  | abort (); | 
|  | case bfd_reloc_overflow: | 
|  | { | 
|  | const char *sym_name; | 
|  |  | 
|  | if (eh != NULL) | 
|  | sym_name = NULL; | 
|  | else | 
|  | { | 
|  | sym_name = bfd_elf_string_from_elf_section (input_bfd, | 
|  | symtab_hdr->sh_link, | 
|  | sym->st_name); | 
|  | if (sym_name == NULL) | 
|  | return false; | 
|  | if (*sym_name == '\0') | 
|  | sym_name = bfd_section_name (sym_sec); | 
|  | } | 
|  |  | 
|  | (*info->callbacks->reloc_overflow) | 
|  | (info, (eh ? &eh->root : NULL), sym_name, howto->name, | 
|  | (bfd_vma) 0, input_bfd, input_section, rel->r_offset); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static const struct bfd_elf_special_section elf64_hppa_special_sections[] = | 
|  | { | 
|  | { STRING_COMMA_LEN (".tbss"),	 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS }, | 
|  | { STRING_COMMA_LEN (".fini"),	 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, | 
|  | { STRING_COMMA_LEN (".init"),	 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, | 
|  | { STRING_COMMA_LEN (".plt"),	 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, | 
|  | { STRING_COMMA_LEN (".dlt"),	 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, | 
|  | { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, | 
|  | { STRING_COMMA_LEN (".sbss"),	 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, | 
|  | { NULL,		     0,	 0, 0,		  0 } | 
|  | }; | 
|  |  | 
|  | /* The hash bucket size is the standard one, namely 4.  */ | 
|  |  | 
|  | const struct elf_size_info hppa64_elf_size_info = | 
|  | { | 
|  | sizeof (Elf64_External_Ehdr), | 
|  | sizeof (Elf64_External_Phdr), | 
|  | sizeof (Elf64_External_Shdr), | 
|  | sizeof (Elf64_External_Rel), | 
|  | sizeof (Elf64_External_Rela), | 
|  | sizeof (Elf64_External_Sym), | 
|  | sizeof (Elf64_External_Dyn), | 
|  | sizeof (Elf_External_Note), | 
|  | 4, | 
|  | 1, | 
|  | 64, 3, | 
|  | ELFCLASS64, EV_CURRENT, | 
|  | bfd_elf64_write_out_phdrs, | 
|  | bfd_elf64_write_shdrs_and_ehdr, | 
|  | bfd_elf64_checksum_contents, | 
|  | bfd_elf64_write_relocs, | 
|  | bfd_elf64_swap_symbol_in, | 
|  | bfd_elf64_swap_symbol_out, | 
|  | bfd_elf64_slurp_reloc_table, | 
|  | bfd_elf64_slurp_symbol_table, | 
|  | bfd_elf64_swap_dyn_in, | 
|  | bfd_elf64_swap_dyn_out, | 
|  | bfd_elf64_swap_reloc_in, | 
|  | bfd_elf64_swap_reloc_out, | 
|  | bfd_elf64_swap_reloca_in, | 
|  | bfd_elf64_swap_reloca_out | 
|  | }; | 
|  |  | 
|  | #define TARGET_BIG_SYM			hppa_elf64_vec | 
|  | #define TARGET_BIG_NAME			"elf64-hppa" | 
|  | #define ELF_ARCH			bfd_arch_hppa | 
|  | #define ELF_TARGET_ID			HPPA64_ELF_DATA | 
|  | #define ELF_MACHINE_CODE		EM_PARISC | 
|  | /* This is not strictly correct.  The maximum page size for PA2.0 is | 
|  | 64M.  But everything still uses 4k.  */ | 
|  | #define ELF_MAXPAGESIZE			0x1000 | 
|  | #define ELF_OSABI			ELFOSABI_HPUX | 
|  |  | 
|  | #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup | 
|  | #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup | 
|  | #define bfd_elf64_bfd_is_local_label_name       elf_hppa_is_local_label_name | 
|  | #define elf_info_to_howto		elf_hppa_info_to_howto | 
|  | #define elf_info_to_howto_rel		elf_hppa_info_to_howto_rel | 
|  |  | 
|  | #define elf_backend_section_from_shdr	elf64_hppa_section_from_shdr | 
|  | #define elf_backend_object_p		elf64_hppa_object_p | 
|  | #define elf_backend_final_write_processing \ | 
|  | elf_hppa_final_write_processing | 
|  | #define elf_backend_fake_sections	elf_hppa_fake_sections | 
|  | #define elf_backend_add_symbol_hook	elf_hppa_add_symbol_hook | 
|  |  | 
|  | #define elf_backend_relocate_section	elf_hppa_relocate_section | 
|  |  | 
|  | #define bfd_elf64_bfd_final_link	elf_hppa_final_link | 
|  |  | 
|  | #define elf_backend_create_dynamic_sections \ | 
|  | elf64_hppa_create_dynamic_sections | 
|  | #define elf_backend_init_file_header	elf64_hppa_init_file_header | 
|  |  | 
|  | #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all | 
|  |  | 
|  | #define elf_backend_adjust_dynamic_symbol \ | 
|  | elf64_hppa_adjust_dynamic_symbol | 
|  |  | 
|  | #define elf_backend_size_dynamic_sections \ | 
|  | elf64_hppa_size_dynamic_sections | 
|  |  | 
|  | #define elf_backend_finish_dynamic_symbol \ | 
|  | elf64_hppa_finish_dynamic_symbol | 
|  | #define elf_backend_finish_dynamic_sections \ | 
|  | elf64_hppa_finish_dynamic_sections | 
|  | #define elf_backend_grok_prstatus	elf64_hppa_grok_prstatus | 
|  | #define elf_backend_grok_psinfo		elf64_hppa_grok_psinfo | 
|  |  | 
|  | /* Stuff for the BFD linker: */ | 
|  | #define bfd_elf64_bfd_link_hash_table_create \ | 
|  | elf64_hppa_hash_table_create | 
|  |  | 
|  | #define elf_backend_check_relocs \ | 
|  | elf64_hppa_check_relocs | 
|  |  | 
|  | #define elf_backend_size_info \ | 
|  | hppa64_elf_size_info | 
|  |  | 
|  | #define elf_backend_additional_program_headers \ | 
|  | elf64_hppa_additional_program_headers | 
|  |  | 
|  | #define elf_backend_modify_segment_map \ | 
|  | elf64_hppa_modify_segment_map | 
|  |  | 
|  | #define elf_backend_allow_non_load_phdr \ | 
|  | elf64_hppa_allow_non_load_phdr | 
|  |  | 
|  | #define elf_backend_link_output_symbol_hook \ | 
|  | elf64_hppa_link_output_symbol_hook | 
|  |  | 
|  | #define elf_backend_want_got_plt	0 | 
|  | #define elf_backend_plt_readonly	0 | 
|  | #define elf_backend_want_plt_sym	0 | 
|  | #define elf_backend_got_header_size     0 | 
|  | #define elf_backend_type_change_ok	true | 
|  | #define elf_backend_get_symbol_type	elf64_hppa_elf_get_symbol_type | 
|  | #define elf_backend_reloc_type_class	elf64_hppa_reloc_type_class | 
|  | #define elf_backend_rela_normal		1 | 
|  | #define elf_backend_special_sections	elf64_hppa_special_sections | 
|  | #define elf_backend_action_discarded	elf_hppa_action_discarded | 
|  | #define elf_backend_section_from_phdr   elf64_hppa_section_from_phdr | 
|  |  | 
|  | #define elf64_bed			elf64_hppa_hpux_bed | 
|  |  | 
|  | #include "elf64-target.h" | 
|  |  | 
|  | #undef TARGET_BIG_SYM | 
|  | #define TARGET_BIG_SYM			hppa_elf64_linux_vec | 
|  | #undef TARGET_BIG_NAME | 
|  | #define TARGET_BIG_NAME			"elf64-hppa-linux" | 
|  | #undef ELF_OSABI | 
|  | #define ELF_OSABI			ELFOSABI_GNU | 
|  | #undef elf64_bed | 
|  | #define elf64_bed			elf64_hppa_linux_bed | 
|  | #undef elf_backend_special_sections | 
|  | #define elf_backend_special_sections	(elf64_hppa_special_sections + 1) | 
|  |  | 
|  | #include "elf64-target.h" |