|  | /* RISC-V-specific support for NN-bit ELF. | 
|  | Copyright (C) 2011-2021 Free Software Foundation, Inc. | 
|  |  | 
|  | Contributed by Andrew Waterman (andrew@sifive.com). | 
|  | Based on TILE-Gx and MIPS targets. | 
|  |  | 
|  | This file is part of BFD, the Binary File Descriptor library. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; see the file COPYING3. If not, | 
|  | see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | /* This file handles RISC-V ELF targets.  */ | 
|  |  | 
|  | #include "sysdep.h" | 
|  | #include "bfd.h" | 
|  | #include "libbfd.h" | 
|  | #include "bfdlink.h" | 
|  | #include "genlink.h" | 
|  | #include "elf-bfd.h" | 
|  | #include "elfxx-riscv.h" | 
|  | #include "elf/riscv.h" | 
|  | #include "opcode/riscv.h" | 
|  | #include "objalloc.h" | 
|  |  | 
|  | #include <limits.h> | 
|  | #ifndef CHAR_BIT | 
|  | #define CHAR_BIT 8 | 
|  | #endif | 
|  |  | 
|  | /* Internal relocations used exclusively by the relaxation pass.  */ | 
|  | #define R_RISCV_DELETE (R_RISCV_max + 1) | 
|  |  | 
|  | #define ARCH_SIZE NN | 
|  |  | 
|  | #define MINUS_ONE ((bfd_vma)0 - 1) | 
|  |  | 
|  | #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3) | 
|  |  | 
|  | #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES) | 
|  |  | 
|  | /* The name of the dynamic interpreter.  This is put in the .interp | 
|  | section.  */ | 
|  |  | 
|  | #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1" | 
|  | #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1" | 
|  |  | 
|  | #define ELF_ARCH			bfd_arch_riscv | 
|  | #define ELF_TARGET_ID			RISCV_ELF_DATA | 
|  | #define ELF_MACHINE_CODE		EM_RISCV | 
|  | #define ELF_MAXPAGESIZE			0x1000 | 
|  | #define ELF_COMMONPAGESIZE		0x1000 | 
|  |  | 
|  | #define RISCV_ATTRIBUTES_SECTION_NAME ".riscv.attributes" | 
|  |  | 
|  | /* RISC-V ELF linker hash entry.  */ | 
|  |  | 
|  | struct riscv_elf_link_hash_entry | 
|  | { | 
|  | struct elf_link_hash_entry elf; | 
|  |  | 
|  | #define GOT_UNKNOWN	0 | 
|  | #define GOT_NORMAL	1 | 
|  | #define GOT_TLS_GD	2 | 
|  | #define GOT_TLS_IE	4 | 
|  | #define GOT_TLS_LE	8 | 
|  | char tls_type; | 
|  | }; | 
|  |  | 
|  | #define riscv_elf_hash_entry(ent) \ | 
|  | ((struct riscv_elf_link_hash_entry *) (ent)) | 
|  |  | 
|  | struct _bfd_riscv_elf_obj_tdata | 
|  | { | 
|  | struct elf_obj_tdata root; | 
|  |  | 
|  | /* tls_type for each local got entry.  */ | 
|  | char *local_got_tls_type; | 
|  | }; | 
|  |  | 
|  | #define _bfd_riscv_elf_tdata(abfd) \ | 
|  | ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any) | 
|  |  | 
|  | #define _bfd_riscv_elf_local_got_tls_type(abfd) \ | 
|  | (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type) | 
|  |  | 
|  | #define _bfd_riscv_elf_tls_type(abfd, h, symndx)		\ | 
|  | (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type		\ | 
|  | : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx])) | 
|  |  | 
|  | #define is_riscv_elf(bfd)				\ | 
|  | (bfd_get_flavour (bfd) == bfd_target_elf_flavour	\ | 
|  | && elf_tdata (bfd) != NULL				\ | 
|  | && elf_object_id (bfd) == RISCV_ELF_DATA) | 
|  |  | 
|  | static bool | 
|  | elfNN_riscv_mkobject (bfd *abfd) | 
|  | { | 
|  | return bfd_elf_allocate_object (abfd, | 
|  | sizeof (struct _bfd_riscv_elf_obj_tdata), | 
|  | RISCV_ELF_DATA); | 
|  | } | 
|  |  | 
|  | #include "elf/common.h" | 
|  | #include "elf/internal.h" | 
|  |  | 
|  | struct riscv_elf_link_hash_table | 
|  | { | 
|  | struct elf_link_hash_table elf; | 
|  |  | 
|  | /* Short-cuts to get to dynamic linker sections.  */ | 
|  | asection *sdyntdata; | 
|  |  | 
|  | /* The max alignment of output sections.  */ | 
|  | bfd_vma max_alignment; | 
|  |  | 
|  | /* Used by local STT_GNU_IFUNC symbols.  */ | 
|  | htab_t loc_hash_table; | 
|  | void * loc_hash_memory; | 
|  |  | 
|  | /* The index of the last unused .rel.iplt slot.  */ | 
|  | bfd_vma last_iplt_index; | 
|  |  | 
|  | /* Re-run the relaxations from relax pass 0 if TRUE.  */ | 
|  | bool restart_relax; | 
|  |  | 
|  | /* The data segment phase, don't relax the section | 
|  | when it is exp_seg_relro_adjust.  */ | 
|  | int *data_segment_phase; | 
|  | }; | 
|  |  | 
|  | /* Instruction access functions. */ | 
|  | #define riscv_get_insn(bits, ptr)		\ | 
|  | ((bits) == 16 ? bfd_getl16 (ptr)		\ | 
|  | : (bits) == 32 ? bfd_getl32 (ptr)		\ | 
|  | : (bits) == 64 ? bfd_getl64 (ptr)		\ | 
|  | : (abort (), (bfd_vma) - 1)) | 
|  | #define riscv_put_insn(bits, val, ptr)		\ | 
|  | ((bits) == 16 ? bfd_putl16 (val, ptr)		\ | 
|  | : (bits) == 32 ? bfd_putl32 (val, ptr)	\ | 
|  | : (bits) == 64 ? bfd_putl64 (val, ptr)	\ | 
|  | : (abort (), (void) 0)) | 
|  |  | 
|  | /* Get the RISC-V ELF linker hash table from a link_info structure.  */ | 
|  | #define riscv_elf_hash_table(p) \ | 
|  | ((is_elf_hash_table ((p)->hash)					\ | 
|  | && elf_hash_table_id (elf_hash_table (p)) == RISCV_ELF_DATA)	\ | 
|  | ? (struct riscv_elf_link_hash_table *) (p)->hash : NULL) | 
|  |  | 
|  | static bool | 
|  | riscv_info_to_howto_rela (bfd *abfd, | 
|  | arelent *cache_ptr, | 
|  | Elf_Internal_Rela *dst) | 
|  | { | 
|  | cache_ptr->howto = riscv_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info)); | 
|  | return cache_ptr->howto != NULL; | 
|  | } | 
|  |  | 
|  | static void | 
|  | riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) | 
|  | { | 
|  | const struct elf_backend_data *bed; | 
|  | bfd_byte *loc; | 
|  |  | 
|  | bed = get_elf_backend_data (abfd); | 
|  | loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); | 
|  | bed->s->swap_reloca_out (abfd, rel, loc); | 
|  | } | 
|  |  | 
|  | /* Return true if a relocation is modifying an instruction. */ | 
|  |  | 
|  | static bool | 
|  | riscv_is_insn_reloc (const reloc_howto_type *howto) | 
|  | { | 
|  | /* Heuristic: A multibyte destination with a nontrivial mask | 
|  | is an instruction */ | 
|  | return (howto->bitsize > 8 | 
|  | && howto->dst_mask != 0 | 
|  | && ~(howto->dst_mask | (howto->bitsize < sizeof(bfd_vma) * CHAR_BIT | 
|  | ? (MINUS_ONE << howto->bitsize) : (bfd_vma)0)) != 0); | 
|  | } | 
|  |  | 
|  | /* PLT/GOT stuff.  */ | 
|  | #define PLT_HEADER_INSNS 8 | 
|  | #define PLT_ENTRY_INSNS 4 | 
|  | #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4) | 
|  | #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4) | 
|  | #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES | 
|  | /* Reserve two entries of GOTPLT for ld.so, one is used for PLT resolver, | 
|  | the other is used for link map.  Other targets also reserve one more | 
|  | entry used for runtime profile?  */ | 
|  | #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE) | 
|  |  | 
|  | #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset) | 
|  |  | 
|  | #if ARCH_SIZE == 32 | 
|  | # define MATCH_LREG MATCH_LW | 
|  | #else | 
|  | # define MATCH_LREG MATCH_LD | 
|  | #endif | 
|  |  | 
|  | /* Generate a PLT header.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_make_plt_header (bfd *output_bfd, bfd_vma gotplt_addr, bfd_vma addr, | 
|  | uint32_t *entry) | 
|  | { | 
|  | bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr); | 
|  | bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr); | 
|  |  | 
|  | /* RVE has no t3 register, so this won't work, and is not supported.  */ | 
|  | if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE) | 
|  | { | 
|  | _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"), | 
|  | output_bfd); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* auipc  t2, %hi(.got.plt) | 
|  | sub    t1, t1, t3		     # shifted .got.plt offset + hdr size + 12 | 
|  | l[w|d] t3, %lo(.got.plt)(t2)    # _dl_runtime_resolve | 
|  | addi   t1, t1, -(hdr size + 12) # shifted .got.plt offset | 
|  | addi   t0, t2, %lo(.got.plt)    # &.got.plt | 
|  | srli   t1, t1, log2(16/PTRSIZE) # .got.plt offset | 
|  | l[w|d] t0, PTRSIZE(t0)	     # link map | 
|  | jr	    t3  */ | 
|  |  | 
|  | entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high); | 
|  | entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3); | 
|  | entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low); | 
|  | entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, (uint32_t) -(PLT_HEADER_SIZE + 12)); | 
|  | entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low); | 
|  | entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES); | 
|  | entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES); | 
|  | entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Generate a PLT entry.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_make_plt_entry (bfd *output_bfd, bfd_vma got, bfd_vma addr, | 
|  | uint32_t *entry) | 
|  | { | 
|  | /* RVE has no t3 register, so this won't work, and is not supported.  */ | 
|  | if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE) | 
|  | { | 
|  | _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"), | 
|  | output_bfd); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* auipc  t3, %hi(.got.plt entry) | 
|  | l[w|d] t3, %lo(.got.plt entry)(t3) | 
|  | jalr   t1, t3 | 
|  | nop  */ | 
|  |  | 
|  | entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr)); | 
|  | entry[1] = RISCV_ITYPE (LREG,  X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr)); | 
|  | entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0); | 
|  | entry[3] = RISCV_NOP; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Create an entry in an RISC-V ELF linker hash table.  */ | 
|  |  | 
|  | static struct bfd_hash_entry * | 
|  | link_hash_newfunc (struct bfd_hash_entry *entry, | 
|  | struct bfd_hash_table *table, const char *string) | 
|  | { | 
|  | /* Allocate the structure if it has not already been allocated by a | 
|  | subclass.  */ | 
|  | if (entry == NULL) | 
|  | { | 
|  | entry = | 
|  | bfd_hash_allocate (table, | 
|  | sizeof (struct riscv_elf_link_hash_entry)); | 
|  | if (entry == NULL) | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* Call the allocation method of the superclass.  */ | 
|  | entry = _bfd_elf_link_hash_newfunc (entry, table, string); | 
|  | if (entry != NULL) | 
|  | { | 
|  | struct riscv_elf_link_hash_entry *eh; | 
|  |  | 
|  | eh = (struct riscv_elf_link_hash_entry *) entry; | 
|  | eh->tls_type = GOT_UNKNOWN; | 
|  | } | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* Compute a hash of a local hash entry.  We use elf_link_hash_entry | 
|  | for local symbol so that we can handle local STT_GNU_IFUNC symbols | 
|  | as global symbol.  We reuse indx and dynstr_index for local symbol | 
|  | hash since they aren't used by global symbols in this backend.  */ | 
|  |  | 
|  | static hashval_t | 
|  | riscv_elf_local_htab_hash (const void *ptr) | 
|  | { | 
|  | struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) ptr; | 
|  | return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index); | 
|  | } | 
|  |  | 
|  | /* Compare local hash entries.  */ | 
|  |  | 
|  | static int | 
|  | riscv_elf_local_htab_eq (const void *ptr1, const void *ptr2) | 
|  | { | 
|  | struct elf_link_hash_entry *h1 = (struct elf_link_hash_entry *) ptr1; | 
|  | struct elf_link_hash_entry *h2 = (struct elf_link_hash_entry *) ptr2; | 
|  |  | 
|  | return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index; | 
|  | } | 
|  |  | 
|  | /* Find and/or create a hash entry for local symbol.  */ | 
|  |  | 
|  | static struct elf_link_hash_entry * | 
|  | riscv_elf_get_local_sym_hash (struct riscv_elf_link_hash_table *htab, | 
|  | bfd *abfd, const Elf_Internal_Rela *rel, | 
|  | bool create) | 
|  | { | 
|  | struct riscv_elf_link_hash_entry eh, *ret; | 
|  | asection *sec = abfd->sections; | 
|  | hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id, | 
|  | ELFNN_R_SYM (rel->r_info)); | 
|  | void **slot; | 
|  |  | 
|  | eh.elf.indx = sec->id; | 
|  | eh.elf.dynstr_index = ELFNN_R_SYM (rel->r_info); | 
|  | slot = htab_find_slot_with_hash (htab->loc_hash_table, &eh, h, | 
|  | create ? INSERT : NO_INSERT); | 
|  |  | 
|  | if (!slot) | 
|  | return NULL; | 
|  |  | 
|  | if (*slot) | 
|  | { | 
|  | ret = (struct riscv_elf_link_hash_entry *) *slot; | 
|  | return &ret->elf; | 
|  | } | 
|  |  | 
|  | ret = (struct riscv_elf_link_hash_entry *) | 
|  | objalloc_alloc ((struct objalloc *) htab->loc_hash_memory, | 
|  | sizeof (struct riscv_elf_link_hash_entry)); | 
|  | if (ret) | 
|  | { | 
|  | memset (ret, 0, sizeof (*ret)); | 
|  | ret->elf.indx = sec->id; | 
|  | ret->elf.dynstr_index = ELFNN_R_SYM (rel->r_info); | 
|  | ret->elf.dynindx = -1; | 
|  | *slot = ret; | 
|  | } | 
|  | return &ret->elf; | 
|  | } | 
|  |  | 
|  | /* Destroy a RISC-V elf linker hash table.  */ | 
|  |  | 
|  | static void | 
|  | riscv_elf_link_hash_table_free (bfd *obfd) | 
|  | { | 
|  | struct riscv_elf_link_hash_table *ret | 
|  | = (struct riscv_elf_link_hash_table *) obfd->link.hash; | 
|  |  | 
|  | if (ret->loc_hash_table) | 
|  | htab_delete (ret->loc_hash_table); | 
|  | if (ret->loc_hash_memory) | 
|  | objalloc_free ((struct objalloc *) ret->loc_hash_memory); | 
|  |  | 
|  | _bfd_elf_link_hash_table_free (obfd); | 
|  | } | 
|  |  | 
|  | /* Create a RISC-V ELF linker hash table.  */ | 
|  |  | 
|  | static struct bfd_link_hash_table * | 
|  | riscv_elf_link_hash_table_create (bfd *abfd) | 
|  | { | 
|  | struct riscv_elf_link_hash_table *ret; | 
|  | size_t amt = sizeof (struct riscv_elf_link_hash_table); | 
|  |  | 
|  | ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt); | 
|  | if (ret == NULL) | 
|  | return NULL; | 
|  |  | 
|  | if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc, | 
|  | sizeof (struct riscv_elf_link_hash_entry), | 
|  | RISCV_ELF_DATA)) | 
|  | { | 
|  | free (ret); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ret->max_alignment = (bfd_vma) -1; | 
|  | ret->restart_relax = false; | 
|  |  | 
|  | /* Create hash table for local ifunc.  */ | 
|  | ret->loc_hash_table = htab_try_create (1024, | 
|  | riscv_elf_local_htab_hash, | 
|  | riscv_elf_local_htab_eq, | 
|  | NULL); | 
|  | ret->loc_hash_memory = objalloc_create (); | 
|  | if (!ret->loc_hash_table || !ret->loc_hash_memory) | 
|  | { | 
|  | riscv_elf_link_hash_table_free (abfd); | 
|  | return NULL; | 
|  | } | 
|  | ret->elf.root.hash_table_free = riscv_elf_link_hash_table_free; | 
|  |  | 
|  | return &ret->elf.root; | 
|  | } | 
|  |  | 
|  | /* Create the .got section.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) | 
|  | { | 
|  | flagword flags; | 
|  | asection *s, *s_got; | 
|  | struct elf_link_hash_entry *h; | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | struct elf_link_hash_table *htab = elf_hash_table (info); | 
|  |  | 
|  | /* This function may be called more than once.  */ | 
|  | if (htab->sgot != NULL) | 
|  | return true; | 
|  |  | 
|  | flags = bed->dynamic_sec_flags; | 
|  |  | 
|  | s = bfd_make_section_anyway_with_flags (abfd, | 
|  | (bed->rela_plts_and_copies_p | 
|  | ? ".rela.got" : ".rel.got"), | 
|  | (bed->dynamic_sec_flags | 
|  | | SEC_READONLY)); | 
|  | if (s == NULL | 
|  | || !bfd_set_section_alignment (s, bed->s->log_file_align)) | 
|  | return false; | 
|  | htab->srelgot = s; | 
|  |  | 
|  | s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags); | 
|  | if (s == NULL | 
|  | || !bfd_set_section_alignment (s, bed->s->log_file_align)) | 
|  | return false; | 
|  | htab->sgot = s; | 
|  |  | 
|  | /* The first bit of the global offset table is the header.  */ | 
|  | s->size += bed->got_header_size; | 
|  |  | 
|  | if (bed->want_got_plt) | 
|  | { | 
|  | s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); | 
|  | if (s == NULL | 
|  | || !bfd_set_section_alignment (s, bed->s->log_file_align)) | 
|  | return false; | 
|  | htab->sgotplt = s; | 
|  |  | 
|  | /* Reserve room for the header.  */ | 
|  | s->size += GOTPLT_HEADER_SIZE; | 
|  | } | 
|  |  | 
|  | if (bed->want_got_sym) | 
|  | { | 
|  | /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got | 
|  | section.  We don't do this in the linker script because we don't want | 
|  | to define the symbol if we are not creating a global offset | 
|  | table.  */ | 
|  | h = _bfd_elf_define_linkage_sym (abfd, info, s_got, | 
|  | "_GLOBAL_OFFSET_TABLE_"); | 
|  | elf_hash_table (info)->hgot = h; | 
|  | if (h == NULL) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and | 
|  | .rela.bss sections in DYNOBJ, and set up shortcuts to them in our | 
|  | hash table.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_elf_create_dynamic_sections (bfd *dynobj, | 
|  | struct bfd_link_info *info) | 
|  | { | 
|  | struct riscv_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = riscv_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | if (!riscv_elf_create_got_section (dynobj, info)) | 
|  | return false; | 
|  |  | 
|  | if (!_bfd_elf_create_dynamic_sections (dynobj, info)) | 
|  | return false; | 
|  |  | 
|  | if (!bfd_link_pic (info)) | 
|  | { | 
|  | /* Technically, this section doesn't have contents.  It is used as the | 
|  | target of TLS copy relocs, to copy TLS data from shared libraries into | 
|  | the executable.  However, if we don't mark it as loadable, then it | 
|  | matches the IS_TBSS test in ldlang.c, and there is no run-time address | 
|  | space allocated for it even though it has SEC_ALLOC.  That test is | 
|  | correct for .tbss, but not correct for this section.  There is also | 
|  | a second problem that having a section with no contents can only work | 
|  | if it comes after all sections with contents in the same segment, | 
|  | but the linker script does not guarantee that.  This is just mixed in | 
|  | with other .tdata.* sections.  We can fix both problems by lying and | 
|  | saying that there are contents.  This section is expected to be small | 
|  | so this should not cause a significant extra program startup cost.  */ | 
|  | htab->sdyntdata = | 
|  | bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn", | 
|  | (SEC_ALLOC | SEC_THREAD_LOCAL | 
|  | | SEC_LOAD | SEC_DATA | 
|  | | SEC_HAS_CONTENTS | 
|  | | SEC_LINKER_CREATED)); | 
|  | } | 
|  |  | 
|  | if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss | 
|  | || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata))) | 
|  | abort (); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Copy the extra info we tack onto an elf_link_hash_entry.  */ | 
|  |  | 
|  | static void | 
|  | riscv_elf_copy_indirect_symbol (struct bfd_link_info *info, | 
|  | struct elf_link_hash_entry *dir, | 
|  | struct elf_link_hash_entry *ind) | 
|  | { | 
|  | struct riscv_elf_link_hash_entry *edir, *eind; | 
|  |  | 
|  | edir = (struct riscv_elf_link_hash_entry *) dir; | 
|  | eind = (struct riscv_elf_link_hash_entry *) ind; | 
|  |  | 
|  | if (ind->root.type == bfd_link_hash_indirect | 
|  | && dir->got.refcount <= 0) | 
|  | { | 
|  | edir->tls_type = eind->tls_type; | 
|  | eind->tls_type = GOT_UNKNOWN; | 
|  | } | 
|  | _bfd_elf_link_hash_copy_indirect (info, dir, ind); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h, | 
|  | unsigned long symndx, char tls_type) | 
|  | { | 
|  | char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx); | 
|  |  | 
|  | *new_tls_type |= tls_type; | 
|  | if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL)) | 
|  | { | 
|  | (*_bfd_error_handler) | 
|  | (_("%pB: `%s' accessed both as normal and thread local symbol"), | 
|  | abfd, h ? h->root.root.string : "<local>"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info, | 
|  | struct elf_link_hash_entry *h, long symndx) | 
|  | { | 
|  | struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); | 
|  | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  |  | 
|  | if (htab->elf.sgot == NULL) | 
|  | { | 
|  | if (!riscv_elf_create_got_section (htab->elf.dynobj, info)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (h != NULL) | 
|  | { | 
|  | h->got.refcount += 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* This is a global offset table entry for a local symbol.  */ | 
|  | if (elf_local_got_refcounts (abfd) == NULL) | 
|  | { | 
|  | bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1); | 
|  | if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size))) | 
|  | return false; | 
|  | _bfd_riscv_elf_local_got_tls_type (abfd) | 
|  | = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info); | 
|  | } | 
|  | elf_local_got_refcounts (abfd) [symndx] += 1; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h) | 
|  | { | 
|  | reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type); | 
|  |  | 
|  | /* We propably can improve the information to tell users that they | 
|  | should be recompile the code with -fPIC or -fPIE, just like what | 
|  | x86 does.  */ | 
|  | (*_bfd_error_handler) | 
|  | (_("%pB: relocation %s against `%s' can not be used when making a shared " | 
|  | "object; recompile with -fPIC"), | 
|  | abfd, r ? r->name : _("<unknown>"), | 
|  | h != NULL ? h->root.root.string : "a local symbol"); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Look through the relocs for a section during the first phase, and | 
|  | allocate space in the global offset table or procedure linkage | 
|  | table.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, | 
|  | asection *sec, const Elf_Internal_Rela *relocs) | 
|  | { | 
|  | struct riscv_elf_link_hash_table *htab; | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | struct elf_link_hash_entry **sym_hashes; | 
|  | const Elf_Internal_Rela *rel; | 
|  | asection *sreloc = NULL; | 
|  |  | 
|  | if (bfd_link_relocatable (info)) | 
|  | return true; | 
|  |  | 
|  | htab = riscv_elf_hash_table (info); | 
|  | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  | sym_hashes = elf_sym_hashes (abfd); | 
|  |  | 
|  | if (htab->elf.dynobj == NULL) | 
|  | htab->elf.dynobj = abfd; | 
|  |  | 
|  | for (rel = relocs; rel < relocs + sec->reloc_count; rel++) | 
|  | { | 
|  | unsigned int r_type; | 
|  | unsigned int r_symndx; | 
|  | struct elf_link_hash_entry *h; | 
|  |  | 
|  | r_symndx = ELFNN_R_SYM (rel->r_info); | 
|  | r_type = ELFNN_R_TYPE (rel->r_info); | 
|  |  | 
|  | if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) | 
|  | { | 
|  | (*_bfd_error_handler) (_("%pB: bad symbol index: %d"), | 
|  | abfd, r_symndx); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (r_symndx < symtab_hdr->sh_info) | 
|  | { | 
|  | /* A local symbol.  */ | 
|  | Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, | 
|  | abfd, r_symndx); | 
|  | if (isym == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Check relocation against local STT_GNU_IFUNC symbol.  */ | 
|  | if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) | 
|  | { | 
|  | h = riscv_elf_get_local_sym_hash (htab, abfd, rel, true); | 
|  | if (h == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Fake STT_GNU_IFUNC global symbol.  */ | 
|  | h->root.root.string = bfd_elf_sym_name (abfd, symtab_hdr, | 
|  | isym, NULL); | 
|  | h->type = STT_GNU_IFUNC; | 
|  | h->def_regular = 1; | 
|  | h->ref_regular = 1; | 
|  | h->forced_local = 1; | 
|  | h->root.type = bfd_link_hash_defined; | 
|  | } | 
|  | else | 
|  | h = NULL; | 
|  | } | 
|  | else | 
|  | { | 
|  | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | 
|  | while (h->root.type == bfd_link_hash_indirect | 
|  | || h->root.type == bfd_link_hash_warning) | 
|  | h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
|  | } | 
|  |  | 
|  | if (h != NULL) | 
|  | { | 
|  | switch (r_type) | 
|  | { | 
|  | case R_RISCV_32: | 
|  | case R_RISCV_64: | 
|  | case R_RISCV_CALL: | 
|  | case R_RISCV_CALL_PLT: | 
|  | case R_RISCV_HI20: | 
|  | case R_RISCV_GOT_HI20: | 
|  | case R_RISCV_PCREL_HI20: | 
|  | /* Create the ifunc sections, iplt and ipltgot, for static | 
|  | executables.  */ | 
|  | if (h->type == STT_GNU_IFUNC | 
|  | && !_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* It is referenced by a non-shared object.  */ | 
|  | h->ref_regular = 1; | 
|  | } | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | case R_RISCV_TLS_GD_HI20: | 
|  | if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) | 
|  | || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case R_RISCV_TLS_GOT_HI20: | 
|  | if (bfd_link_pic (info)) | 
|  | info->flags |= DF_STATIC_TLS; | 
|  | if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) | 
|  | || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case R_RISCV_GOT_HI20: | 
|  | if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) | 
|  | || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case R_RISCV_CALL: | 
|  | case R_RISCV_CALL_PLT: | 
|  | /* These symbol requires a procedure linkage table entry. | 
|  | We actually build the entry in adjust_dynamic_symbol, | 
|  | because these might be a case of linking PIC code without | 
|  | linking in any dynamic objects, in which case we don't | 
|  | need to generate a procedure linkage table after all.  */ | 
|  |  | 
|  | /* If it is a local symbol, then we resolve it directly | 
|  | without creating a PLT entry.  */ | 
|  | if (h == NULL) | 
|  | continue; | 
|  |  | 
|  | h->needs_plt = 1; | 
|  | h->plt.refcount += 1; | 
|  | break; | 
|  |  | 
|  | case R_RISCV_PCREL_HI20: | 
|  | if (h != NULL | 
|  | && h->type == STT_GNU_IFUNC) | 
|  | { | 
|  | h->non_got_ref = 1; | 
|  | h->pointer_equality_needed = 1; | 
|  |  | 
|  | /* We don't use the PCREL_HI20 in the data section, | 
|  | so we always need the plt when it refers to | 
|  | ifunc symbol.  */ | 
|  | h->plt.refcount += 1; | 
|  | } | 
|  | /* Fall through.  */ | 
|  |  | 
|  | case R_RISCV_JAL: | 
|  | case R_RISCV_BRANCH: | 
|  | case R_RISCV_RVC_BRANCH: | 
|  | case R_RISCV_RVC_JUMP: | 
|  | /* In shared libraries and pie, these relocs are known | 
|  | to bind locally.  */ | 
|  | if (bfd_link_pic (info)) | 
|  | break; | 
|  | goto static_reloc; | 
|  |  | 
|  | case R_RISCV_TPREL_HI20: | 
|  | if (!bfd_link_executable (info)) | 
|  | return bad_static_reloc (abfd, r_type, h); | 
|  | if (h != NULL) | 
|  | riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE); | 
|  | goto static_reloc; | 
|  |  | 
|  | case R_RISCV_HI20: | 
|  | if (bfd_link_pic (info)) | 
|  | return bad_static_reloc (abfd, r_type, h); | 
|  | /* Fall through.  */ | 
|  |  | 
|  | case R_RISCV_COPY: | 
|  | case R_RISCV_JUMP_SLOT: | 
|  | case R_RISCV_RELATIVE: | 
|  | case R_RISCV_64: | 
|  | case R_RISCV_32: | 
|  | /* Fall through.  */ | 
|  |  | 
|  | static_reloc: | 
|  |  | 
|  | if (h != NULL | 
|  | && (!bfd_link_pic (info) | 
|  | || h->type == STT_GNU_IFUNC)) | 
|  | { | 
|  | /* This reloc might not bind locally.  */ | 
|  | h->non_got_ref = 1; | 
|  | h->pointer_equality_needed = 1; | 
|  |  | 
|  | if (!h->def_regular | 
|  | || (sec->flags & (SEC_CODE | SEC_READONLY)) != 0) | 
|  | { | 
|  | /* We may need a .plt entry if the symbol is a function | 
|  | defined in a shared lib or is a function referenced | 
|  | from the code or read-only section.  */ | 
|  | h->plt.refcount += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we are creating a shared library, and this is a reloc | 
|  | against a global symbol, or a non PC relative reloc | 
|  | against a local symbol, then we need to copy the reloc | 
|  | into the shared library.  However, if we are linking with | 
|  | -Bsymbolic, we do not need to copy a reloc against a | 
|  | global symbol which is defined in an object we are | 
|  | including in the link (i.e., DEF_REGULAR is set).  At | 
|  | this point we have not seen all the input files, so it is | 
|  | possible that DEF_REGULAR is not set now but will be set | 
|  | later (it is never cleared).  In case of a weak definition, | 
|  | DEF_REGULAR may be cleared later by a strong definition in | 
|  | a shared library.  We account for that possibility below by | 
|  | storing information in the relocs_copied field of the hash | 
|  | table entry.  A similar situation occurs when creating | 
|  | shared libraries and symbol visibility changes render the | 
|  | symbol local. | 
|  |  | 
|  | If on the other hand, we are creating an executable, we | 
|  | may need to keep relocations for symbols satisfied by a | 
|  | dynamic library if we manage to avoid copy relocs for the | 
|  | symbol. | 
|  |  | 
|  | Generate dynamic pointer relocation against STT_GNU_IFUNC | 
|  | symbol in the non-code section (R_RISCV_32/R_RISCV_64).  */ | 
|  | reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type); | 
|  |  | 
|  | if ((bfd_link_pic (info) | 
|  | && (sec->flags & SEC_ALLOC) != 0 | 
|  | && ((r != NULL && !r->pc_relative) | 
|  | || (h != NULL | 
|  | && (!info->symbolic | 
|  | || h->root.type == bfd_link_hash_defweak | 
|  | || !h->def_regular)))) | 
|  | || (!bfd_link_pic (info) | 
|  | && (sec->flags & SEC_ALLOC) != 0 | 
|  | && h != NULL | 
|  | && (h->root.type == bfd_link_hash_defweak | 
|  | || !h->def_regular)) | 
|  | || (!bfd_link_pic (info) | 
|  | && h != NULL | 
|  | && h->type == STT_GNU_IFUNC | 
|  | && (sec->flags & SEC_CODE) == 0)) | 
|  | { | 
|  | struct elf_dyn_relocs *p; | 
|  | struct elf_dyn_relocs **head; | 
|  |  | 
|  | /* When creating a shared object, we must copy these | 
|  | relocs into the output file.  We create a reloc | 
|  | section in dynobj and make room for the reloc.  */ | 
|  | if (sreloc == NULL) | 
|  | { | 
|  | sreloc = _bfd_elf_make_dynamic_reloc_section | 
|  | (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES, | 
|  | abfd, /*rela?*/ true); | 
|  |  | 
|  | if (sreloc == NULL) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* If this is a global symbol, we count the number of | 
|  | relocations we need for this symbol.  */ | 
|  | if (h != NULL) | 
|  | head = &h->dyn_relocs; | 
|  | else | 
|  | { | 
|  | /* Track dynamic relocs needed for local syms too. | 
|  | We really need local syms available to do this | 
|  | easily.  Oh well.  */ | 
|  |  | 
|  | asection *s; | 
|  | void *vpp; | 
|  | Elf_Internal_Sym *isym; | 
|  |  | 
|  | isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, | 
|  | abfd, r_symndx); | 
|  | if (isym == NULL) | 
|  | return false; | 
|  |  | 
|  | s = bfd_section_from_elf_index (abfd, isym->st_shndx); | 
|  | if (s == NULL) | 
|  | s = sec; | 
|  |  | 
|  | vpp = &elf_section_data (s)->local_dynrel; | 
|  | head = (struct elf_dyn_relocs **) vpp; | 
|  | } | 
|  |  | 
|  | p = *head; | 
|  | if (p == NULL || p->sec != sec) | 
|  | { | 
|  | size_t amt = sizeof *p; | 
|  | p = ((struct elf_dyn_relocs *) | 
|  | bfd_alloc (htab->elf.dynobj, amt)); | 
|  | if (p == NULL) | 
|  | return false; | 
|  | p->next = *head; | 
|  | *head = p; | 
|  | p->sec = sec; | 
|  | p->count = 0; | 
|  | p->pc_count = 0; | 
|  | } | 
|  |  | 
|  | p->count += 1; | 
|  | p->pc_count += r == NULL ? 0 : r->pc_relative; | 
|  | } | 
|  |  | 
|  | break; | 
|  |  | 
|  | case R_RISCV_GNU_VTINHERIT: | 
|  | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case R_RISCV_GNU_VTENTRY: | 
|  | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static asection * | 
|  | riscv_elf_gc_mark_hook (asection *sec, | 
|  | struct bfd_link_info *info, | 
|  | Elf_Internal_Rela *rel, | 
|  | struct elf_link_hash_entry *h, | 
|  | Elf_Internal_Sym *sym) | 
|  | { | 
|  | if (h != NULL) | 
|  | switch (ELFNN_R_TYPE (rel->r_info)) | 
|  | { | 
|  | case R_RISCV_GNU_VTINHERIT: | 
|  | case R_RISCV_GNU_VTENTRY: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); | 
|  | } | 
|  |  | 
|  | /* Adjust a symbol defined by a dynamic object and referenced by a | 
|  | regular object.  The current definition is in some section of the | 
|  | dynamic object, but we're not including those sections.  We have to | 
|  | change the definition to something the rest of the link can | 
|  | understand.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info, | 
|  | struct elf_link_hash_entry *h) | 
|  | { | 
|  | struct riscv_elf_link_hash_table *htab; | 
|  | struct riscv_elf_link_hash_entry * eh; | 
|  | bfd *dynobj; | 
|  | asection *s, *srel; | 
|  |  | 
|  | htab = riscv_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | dynobj = htab->elf.dynobj; | 
|  |  | 
|  | /* Make sure we know what is going on here.  */ | 
|  | BFD_ASSERT (dynobj != NULL | 
|  | && (h->needs_plt | 
|  | || h->type == STT_GNU_IFUNC | 
|  | || h->is_weakalias | 
|  | || (h->def_dynamic | 
|  | && h->ref_regular | 
|  | && !h->def_regular))); | 
|  |  | 
|  | /* If this is a function, put it in the procedure linkage table.  We | 
|  | will fill in the contents of the procedure linkage table later | 
|  | (although we could actually do it here).  */ | 
|  | if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt) | 
|  | { | 
|  | if (h->plt.refcount <= 0 | 
|  | || (h->type != STT_GNU_IFUNC | 
|  | && (SYMBOL_CALLS_LOCAL (info, h) | 
|  | || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | 
|  | && h->root.type == bfd_link_hash_undefweak)))) | 
|  | { | 
|  | /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an | 
|  | input file, but the symbol was never referred to by a dynamic | 
|  | object, or if all references were garbage collected.  In such | 
|  | a case, we don't actually need to build a PLT entry.  */ | 
|  | h->plt.offset = (bfd_vma) -1; | 
|  | h->needs_plt = 0; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | else | 
|  | h->plt.offset = (bfd_vma) -1; | 
|  |  | 
|  | /* If this is a weak symbol, and there is a real definition, the | 
|  | processor independent code will have arranged for us to see the | 
|  | real definition first, and we can just use the same value.  */ | 
|  | if (h->is_weakalias) | 
|  | { | 
|  | struct elf_link_hash_entry *def = weakdef (h); | 
|  | BFD_ASSERT (def->root.type == bfd_link_hash_defined); | 
|  | h->root.u.def.section = def->root.u.def.section; | 
|  | h->root.u.def.value = def->root.u.def.value; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* This is a reference to a symbol defined by a dynamic object which | 
|  | is not a function.  */ | 
|  |  | 
|  | /* If we are creating a shared library, we must presume that the | 
|  | only references to the symbol are via the global offset table. | 
|  | For such cases we need not do anything here; the relocations will | 
|  | be handled correctly by relocate_section.  */ | 
|  | if (bfd_link_pic (info)) | 
|  | return true; | 
|  |  | 
|  | /* If there are no references to this symbol that do not use the | 
|  | GOT, we don't need to generate a copy reloc.  */ | 
|  | if (!h->non_got_ref) | 
|  | return true; | 
|  |  | 
|  | /* If -z nocopyreloc was given, we won't generate them either.  */ | 
|  | if (info->nocopyreloc) | 
|  | { | 
|  | h->non_got_ref = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* If we don't find any dynamic relocs in read-only sections, then | 
|  | we'll be keeping the dynamic relocs and avoiding the copy reloc.  */ | 
|  | if (!_bfd_elf_readonly_dynrelocs (h)) | 
|  | { | 
|  | h->non_got_ref = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* We must allocate the symbol in our .dynbss section, which will | 
|  | become part of the .bss section of the executable.  There will be | 
|  | an entry for this symbol in the .dynsym section.  The dynamic | 
|  | object will contain position independent code, so all references | 
|  | from the dynamic object to this symbol will go through the global | 
|  | offset table.  The dynamic linker will use the .dynsym entry to | 
|  | determine the address it must put in the global offset table, so | 
|  | both the dynamic object and the regular object will refer to the | 
|  | same memory location for the variable.  */ | 
|  |  | 
|  | /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker | 
|  | to copy the initial value out of the dynamic object and into the | 
|  | runtime process image.  We need to remember the offset into the | 
|  | .rel.bss section we are going to use.  */ | 
|  | eh = (struct riscv_elf_link_hash_entry *) h; | 
|  | if (eh->tls_type & ~GOT_NORMAL) | 
|  | { | 
|  | s = htab->sdyntdata; | 
|  | srel = htab->elf.srelbss; | 
|  | } | 
|  | else if ((h->root.u.def.section->flags & SEC_READONLY) != 0) | 
|  | { | 
|  | s = htab->elf.sdynrelro; | 
|  | srel = htab->elf.sreldynrelro; | 
|  | } | 
|  | else | 
|  | { | 
|  | s = htab->elf.sdynbss; | 
|  | srel = htab->elf.srelbss; | 
|  | } | 
|  | if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) | 
|  | { | 
|  | srel->size += sizeof (ElfNN_External_Rela); | 
|  | h->needs_copy = 1; | 
|  | } | 
|  |  | 
|  | return _bfd_elf_adjust_dynamic_copy (info, h, s); | 
|  | } | 
|  |  | 
|  | /* Allocate space in .plt, .got and associated reloc sections for | 
|  | dynamic relocs.  */ | 
|  |  | 
|  | static bool | 
|  | allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) | 
|  | { | 
|  | struct bfd_link_info *info; | 
|  | struct riscv_elf_link_hash_table *htab; | 
|  | struct elf_dyn_relocs *p; | 
|  |  | 
|  | if (h->root.type == bfd_link_hash_indirect) | 
|  | return true; | 
|  |  | 
|  | info = (struct bfd_link_info *) inf; | 
|  | htab = riscv_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  |  | 
|  | /* When we are generating pde, make sure gp symbol is output as a | 
|  | dynamic symbol.  Then ld.so can set the gp register earlier, before | 
|  | resolving the ifunc.  */ | 
|  | if (!bfd_link_pic (info) | 
|  | && htab->elf.dynamic_sections_created | 
|  | && strcmp (h->root.root.string, RISCV_GP_SYMBOL) == 0 | 
|  | && !bfd_elf_link_record_dynamic_symbol (info, h)) | 
|  | return false; | 
|  |  | 
|  | /* Since STT_GNU_IFUNC symbols must go through PLT, we handle them | 
|  | in the allocate_ifunc_dynrelocs and allocate_local_ifunc_dynrelocs, | 
|  | if they are defined and referenced in a non-shared object.  */ | 
|  | if (h->type == STT_GNU_IFUNC | 
|  | && h->def_regular) | 
|  | return true; | 
|  | else if (htab->elf.dynamic_sections_created | 
|  | && h->plt.refcount > 0) | 
|  | { | 
|  | /* Make sure this symbol is output as a dynamic symbol. | 
|  | Undefined weak syms won't yet be marked as dynamic.  */ | 
|  | if (h->dynindx == -1 | 
|  | && !h->forced_local) | 
|  | { | 
|  | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h)) | 
|  | { | 
|  | asection *s = htab->elf.splt; | 
|  |  | 
|  | if (s->size == 0) | 
|  | s->size = PLT_HEADER_SIZE; | 
|  |  | 
|  | h->plt.offset = s->size; | 
|  |  | 
|  | /* Make room for this entry.  */ | 
|  | s->size += PLT_ENTRY_SIZE; | 
|  |  | 
|  | /* We also need to make an entry in the .got.plt section.  */ | 
|  | htab->elf.sgotplt->size += GOT_ENTRY_SIZE; | 
|  |  | 
|  | /* We also need to make an entry in the .rela.plt section.  */ | 
|  | htab->elf.srelplt->size += sizeof (ElfNN_External_Rela); | 
|  |  | 
|  | /* If this symbol is not defined in a regular file, and we are | 
|  | not generating a shared library, then set the symbol to this | 
|  | location in the .plt.  This is required to make function | 
|  | pointers compare as equal between the normal executable and | 
|  | the shared library.  */ | 
|  | if (! bfd_link_pic (info) | 
|  | && !h->def_regular) | 
|  | { | 
|  | h->root.u.def.section = s; | 
|  | h->root.u.def.value = h->plt.offset; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | h->plt.offset = (bfd_vma) -1; | 
|  | h->needs_plt = 0; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | h->plt.offset = (bfd_vma) -1; | 
|  | h->needs_plt = 0; | 
|  | } | 
|  |  | 
|  | if (h->got.refcount > 0) | 
|  | { | 
|  | asection *s; | 
|  | bool dyn; | 
|  | int tls_type = riscv_elf_hash_entry (h)->tls_type; | 
|  |  | 
|  | /* Make sure this symbol is output as a dynamic symbol. | 
|  | Undefined weak syms won't yet be marked as dynamic.  */ | 
|  | if (h->dynindx == -1 | 
|  | && !h->forced_local) | 
|  | { | 
|  | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | s = htab->elf.sgot; | 
|  | h->got.offset = s->size; | 
|  | dyn = htab->elf.dynamic_sections_created; | 
|  | if (tls_type & (GOT_TLS_GD | GOT_TLS_IE)) | 
|  | { | 
|  | /* TLS_GD needs two dynamic relocs and two GOT slots.  */ | 
|  | if (tls_type & GOT_TLS_GD) | 
|  | { | 
|  | s->size += 2 * RISCV_ELF_WORD_BYTES; | 
|  | htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela); | 
|  | } | 
|  |  | 
|  | /* TLS_IE needs one dynamic reloc and one GOT slot.  */ | 
|  | if (tls_type & GOT_TLS_IE) | 
|  | { | 
|  | s->size += RISCV_ELF_WORD_BYTES; | 
|  | htab->elf.srelgot->size += sizeof (ElfNN_External_Rela); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | s->size += RISCV_ELF_WORD_BYTES; | 
|  | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) | 
|  | && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) | 
|  | htab->elf.srelgot->size += sizeof (ElfNN_External_Rela); | 
|  | } | 
|  | } | 
|  | else | 
|  | h->got.offset = (bfd_vma) -1; | 
|  |  | 
|  | if (h->dyn_relocs == NULL) | 
|  | return true; | 
|  |  | 
|  | /* In the shared -Bsymbolic case, discard space allocated for | 
|  | dynamic pc-relative relocs against symbols which turn out to be | 
|  | defined in regular objects.  For the normal shared case, discard | 
|  | space for pc-relative relocs that have become local due to symbol | 
|  | visibility changes.  */ | 
|  |  | 
|  | if (bfd_link_pic (info)) | 
|  | { | 
|  | if (SYMBOL_CALLS_LOCAL (info, h)) | 
|  | { | 
|  | struct elf_dyn_relocs **pp; | 
|  |  | 
|  | for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) | 
|  | { | 
|  | p->count -= p->pc_count; | 
|  | p->pc_count = 0; | 
|  | if (p->count == 0) | 
|  | *pp = p->next; | 
|  | else | 
|  | pp = &p->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Also discard relocs on undefined weak syms with non-default | 
|  | visibility.  */ | 
|  | if (h->dyn_relocs != NULL | 
|  | && h->root.type == bfd_link_hash_undefweak) | 
|  | { | 
|  | if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | 
|  | || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) | 
|  | h->dyn_relocs = NULL; | 
|  |  | 
|  | /* Make sure undefined weak symbols are output as a dynamic | 
|  | symbol in PIEs.  */ | 
|  | else if (h->dynindx == -1 | 
|  | && !h->forced_local) | 
|  | { | 
|  | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* For the non-shared case, discard space for relocs against | 
|  | symbols which turn out to need copy relocs or are not | 
|  | dynamic.  */ | 
|  |  | 
|  | if (!h->non_got_ref | 
|  | && ((h->def_dynamic | 
|  | && !h->def_regular) | 
|  | || (htab->elf.dynamic_sections_created | 
|  | && (h->root.type == bfd_link_hash_undefweak | 
|  | || h->root.type == bfd_link_hash_undefined)))) | 
|  | { | 
|  | /* Make sure this symbol is output as a dynamic symbol. | 
|  | Undefined weak syms won't yet be marked as dynamic.  */ | 
|  | if (h->dynindx == -1 | 
|  | && !h->forced_local) | 
|  | { | 
|  | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* If that succeeded, we know we'll be keeping all the | 
|  | relocs.  */ | 
|  | if (h->dynindx != -1) | 
|  | goto keep; | 
|  | } | 
|  |  | 
|  | h->dyn_relocs = NULL; | 
|  |  | 
|  | keep: ; | 
|  | } | 
|  |  | 
|  | /* Finally, allocate space.  */ | 
|  | for (p = h->dyn_relocs; p != NULL; p = p->next) | 
|  | { | 
|  | asection *sreloc = elf_section_data (p->sec)->sreloc; | 
|  | sreloc->size += p->count * sizeof (ElfNN_External_Rela); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Allocate space in .plt, .got and associated reloc sections for | 
|  | ifunc dynamic relocs.  */ | 
|  |  | 
|  | static bool | 
|  | allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h, | 
|  | void *inf) | 
|  | { | 
|  | struct bfd_link_info *info; | 
|  |  | 
|  | if (h->root.type == bfd_link_hash_indirect) | 
|  | return true; | 
|  |  | 
|  | if (h->root.type == bfd_link_hash_warning) | 
|  | h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
|  |  | 
|  | info = (struct bfd_link_info *) inf; | 
|  |  | 
|  | /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it | 
|  | here if it is defined and referenced in a non-shared object.  */ | 
|  | if (h->type == STT_GNU_IFUNC | 
|  | && h->def_regular) | 
|  | return _bfd_elf_allocate_ifunc_dyn_relocs (info, h, | 
|  | &h->dyn_relocs, | 
|  | PLT_ENTRY_SIZE, | 
|  | PLT_HEADER_SIZE, | 
|  | GOT_ENTRY_SIZE, | 
|  | true); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Allocate space in .plt, .got and associated reloc sections for | 
|  | local ifunc dynamic relocs.  */ | 
|  |  | 
|  | static int | 
|  | allocate_local_ifunc_dynrelocs (void **slot, void *inf) | 
|  | { | 
|  | struct elf_link_hash_entry *h | 
|  | = (struct elf_link_hash_entry *) *slot; | 
|  |  | 
|  | if (h->type != STT_GNU_IFUNC | 
|  | || !h->def_regular | 
|  | || !h->ref_regular | 
|  | || !h->forced_local | 
|  | || h->root.type != bfd_link_hash_defined) | 
|  | abort (); | 
|  |  | 
|  | return allocate_ifunc_dynrelocs (h, inf); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) | 
|  | { | 
|  | struct riscv_elf_link_hash_table *htab; | 
|  | bfd *dynobj; | 
|  | asection *s; | 
|  | bfd *ibfd; | 
|  |  | 
|  | htab = riscv_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  | dynobj = htab->elf.dynobj; | 
|  | BFD_ASSERT (dynobj != NULL); | 
|  |  | 
|  | if (elf_hash_table (info)->dynamic_sections_created) | 
|  | { | 
|  | /* Set the contents of the .interp section to the interpreter.  */ | 
|  | if (bfd_link_executable (info) && !info->nointerp) | 
|  | { | 
|  | s = bfd_get_linker_section (dynobj, ".interp"); | 
|  | BFD_ASSERT (s != NULL); | 
|  | s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1; | 
|  | s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set up .got offsets for local syms, and space for local dynamic | 
|  | relocs.  */ | 
|  | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) | 
|  | { | 
|  | bfd_signed_vma *local_got; | 
|  | bfd_signed_vma *end_local_got; | 
|  | char *local_tls_type; | 
|  | bfd_size_type locsymcount; | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | asection *srel; | 
|  |  | 
|  | if (! is_riscv_elf (ibfd)) | 
|  | continue; | 
|  |  | 
|  | for (s = ibfd->sections; s != NULL; s = s->next) | 
|  | { | 
|  | struct elf_dyn_relocs *p; | 
|  |  | 
|  | for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next) | 
|  | { | 
|  | if (!bfd_is_abs_section (p->sec) | 
|  | && bfd_is_abs_section (p->sec->output_section)) | 
|  | { | 
|  | /* Input section has been discarded, either because | 
|  | it is a copy of a linkonce section or due to | 
|  | linker script /DISCARD/, so we'll be discarding | 
|  | the relocs too.  */ | 
|  | } | 
|  | else if (p->count != 0) | 
|  | { | 
|  | srel = elf_section_data (p->sec)->sreloc; | 
|  | srel->size += p->count * sizeof (ElfNN_External_Rela); | 
|  | if ((p->sec->output_section->flags & SEC_READONLY) != 0) | 
|  | info->flags |= DF_TEXTREL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | local_got = elf_local_got_refcounts (ibfd); | 
|  | if (!local_got) | 
|  | continue; | 
|  |  | 
|  | symtab_hdr = &elf_symtab_hdr (ibfd); | 
|  | locsymcount = symtab_hdr->sh_info; | 
|  | end_local_got = local_got + locsymcount; | 
|  | local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd); | 
|  | s = htab->elf.sgot; | 
|  | srel = htab->elf.srelgot; | 
|  | for (; local_got < end_local_got; ++local_got, ++local_tls_type) | 
|  | { | 
|  | if (*local_got > 0) | 
|  | { | 
|  | *local_got = s->size; | 
|  | s->size += RISCV_ELF_WORD_BYTES; | 
|  | if (*local_tls_type & GOT_TLS_GD) | 
|  | s->size += RISCV_ELF_WORD_BYTES; | 
|  | if (bfd_link_pic (info) | 
|  | || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE))) | 
|  | srel->size += sizeof (ElfNN_External_Rela); | 
|  | } | 
|  | else | 
|  | *local_got = (bfd_vma) -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allocate .plt and .got entries and space dynamic relocs for | 
|  | global symbols.  */ | 
|  | elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info); | 
|  |  | 
|  | /* Allocate .plt and .got entries and space dynamic relocs for | 
|  | global ifunc symbols.  */ | 
|  | elf_link_hash_traverse (&htab->elf, allocate_ifunc_dynrelocs, info); | 
|  |  | 
|  | /* Allocate .plt and .got entries and space dynamic relocs for | 
|  | local ifunc symbols.  */ | 
|  | htab_traverse (htab->loc_hash_table, allocate_local_ifunc_dynrelocs, info); | 
|  |  | 
|  | /* Used to resolve the dynamic relocs overwite problems when | 
|  | generating static executable.  */ | 
|  | if (htab->elf.irelplt) | 
|  | htab->last_iplt_index = htab->elf.irelplt->reloc_count - 1; | 
|  |  | 
|  | if (htab->elf.sgotplt) | 
|  | { | 
|  | struct elf_link_hash_entry *got; | 
|  | got = elf_link_hash_lookup (elf_hash_table (info), | 
|  | "_GLOBAL_OFFSET_TABLE_", | 
|  | false, false, false); | 
|  |  | 
|  | /* Don't allocate .got.plt section if there are no GOT nor PLT | 
|  | entries and there is no refeence to _GLOBAL_OFFSET_TABLE_.  */ | 
|  | if ((got == NULL | 
|  | || !got->ref_regular_nonweak) | 
|  | && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE) | 
|  | && (htab->elf.splt == NULL | 
|  | || htab->elf.splt->size == 0) | 
|  | && (htab->elf.sgot == NULL | 
|  | || (htab->elf.sgot->size | 
|  | == get_elf_backend_data (output_bfd)->got_header_size))) | 
|  | htab->elf.sgotplt->size = 0; | 
|  | } | 
|  |  | 
|  | /* The check_relocs and adjust_dynamic_symbol entry points have | 
|  | determined the sizes of the various dynamic sections.  Allocate | 
|  | memory for them.  */ | 
|  | for (s = dynobj->sections; s != NULL; s = s->next) | 
|  | { | 
|  | if ((s->flags & SEC_LINKER_CREATED) == 0) | 
|  | continue; | 
|  |  | 
|  | if (s == htab->elf.splt | 
|  | || s == htab->elf.sgot | 
|  | || s == htab->elf.sgotplt | 
|  | || s == htab->elf.iplt | 
|  | || s == htab->elf.igotplt | 
|  | || s == htab->elf.sdynbss | 
|  | || s == htab->elf.sdynrelro | 
|  | || s == htab->sdyntdata) | 
|  | { | 
|  | /* Strip this section if we don't need it; see the | 
|  | comment below.  */ | 
|  | } | 
|  | else if (startswith (s->name, ".rela")) | 
|  | { | 
|  | if (s->size != 0) | 
|  | { | 
|  | /* We use the reloc_count field as a counter if we need | 
|  | to copy relocs into the output file.  */ | 
|  | s->reloc_count = 0; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* It's not one of our sections.  */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (s->size == 0) | 
|  | { | 
|  | /* If we don't need this section, strip it from the | 
|  | output file.  This is mostly to handle .rela.bss and | 
|  | .rela.plt.  We must create both sections in | 
|  | create_dynamic_sections, because they must be created | 
|  | before the linker maps input sections to output | 
|  | sections.  The linker does that before | 
|  | adjust_dynamic_symbol is called, and it is that | 
|  | function which decides whether anything needs to go | 
|  | into these sections.  */ | 
|  | s->flags |= SEC_EXCLUDE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((s->flags & SEC_HAS_CONTENTS) == 0) | 
|  | continue; | 
|  |  | 
|  | /* Allocate memory for the section contents.  Zero the memory | 
|  | for the benefit of .rela.plt, which has 4 unused entries | 
|  | at the beginning, and we don't want garbage.  */ | 
|  | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); | 
|  | if (s->contents == NULL) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return _bfd_elf_add_dynamic_tags (output_bfd, info, true); | 
|  | } | 
|  |  | 
|  | #define TP_OFFSET 0 | 
|  | #define DTP_OFFSET 0x800 | 
|  |  | 
|  | /* Return the relocation value for a TLS dtp-relative reloc.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | dtpoff (struct bfd_link_info *info, bfd_vma address) | 
|  | { | 
|  | /* If tls_sec is NULL, we should have signalled an error already.  */ | 
|  | if (elf_hash_table (info)->tls_sec == NULL) | 
|  | return 0; | 
|  | return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET; | 
|  | } | 
|  |  | 
|  | /* Return the relocation value for a static TLS tp-relative relocation.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | tpoff (struct bfd_link_info *info, bfd_vma address) | 
|  | { | 
|  | /* If tls_sec is NULL, we should have signalled an error already.  */ | 
|  | if (elf_hash_table (info)->tls_sec == NULL) | 
|  | return 0; | 
|  | return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET; | 
|  | } | 
|  |  | 
|  | /* Return the global pointer's value, or 0 if it is not in use.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | riscv_global_pointer_value (struct bfd_link_info *info) | 
|  | { | 
|  | struct bfd_link_hash_entry *h; | 
|  |  | 
|  | h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, false, false, true); | 
|  | if (h == NULL || h->type != bfd_link_hash_defined) | 
|  | return 0; | 
|  |  | 
|  | return h->u.def.value + sec_addr (h->u.def.section); | 
|  | } | 
|  |  | 
|  | /* Emplace a static relocation.  */ | 
|  |  | 
|  | static bfd_reloc_status_type | 
|  | perform_relocation (const reloc_howto_type *howto, | 
|  | const Elf_Internal_Rela *rel, | 
|  | bfd_vma value, | 
|  | asection *input_section, | 
|  | bfd *input_bfd, | 
|  | bfd_byte *contents) | 
|  | { | 
|  | if (howto->pc_relative) | 
|  | value -= sec_addr (input_section) + rel->r_offset; | 
|  | value += rel->r_addend; | 
|  |  | 
|  | switch (ELFNN_R_TYPE (rel->r_info)) | 
|  | { | 
|  | case R_RISCV_HI20: | 
|  | case R_RISCV_TPREL_HI20: | 
|  | case R_RISCV_PCREL_HI20: | 
|  | case R_RISCV_GOT_HI20: | 
|  | case R_RISCV_TLS_GOT_HI20: | 
|  | case R_RISCV_TLS_GD_HI20: | 
|  | if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))) | 
|  | return bfd_reloc_overflow; | 
|  | value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)); | 
|  | break; | 
|  |  | 
|  | case R_RISCV_LO12_I: | 
|  | case R_RISCV_GPREL_I: | 
|  | case R_RISCV_TPREL_LO12_I: | 
|  | case R_RISCV_TPREL_I: | 
|  | case R_RISCV_PCREL_LO12_I: | 
|  | value = ENCODE_ITYPE_IMM (value); | 
|  | break; | 
|  |  | 
|  | case R_RISCV_LO12_S: | 
|  | case R_RISCV_GPREL_S: | 
|  | case R_RISCV_TPREL_LO12_S: | 
|  | case R_RISCV_TPREL_S: | 
|  | case R_RISCV_PCREL_LO12_S: | 
|  | value = ENCODE_STYPE_IMM (value); | 
|  | break; | 
|  |  | 
|  | case R_RISCV_CALL: | 
|  | case R_RISCV_CALL_PLT: | 
|  | if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))) | 
|  | return bfd_reloc_overflow; | 
|  | value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)) | 
|  | | (ENCODE_ITYPE_IMM (value) << 32); | 
|  | break; | 
|  |  | 
|  | case R_RISCV_JAL: | 
|  | if (!VALID_JTYPE_IMM (value)) | 
|  | return bfd_reloc_overflow; | 
|  | value = ENCODE_JTYPE_IMM (value); | 
|  | break; | 
|  |  | 
|  | case R_RISCV_BRANCH: | 
|  | if (!VALID_BTYPE_IMM (value)) | 
|  | return bfd_reloc_overflow; | 
|  | value = ENCODE_BTYPE_IMM (value); | 
|  | break; | 
|  |  | 
|  | case R_RISCV_RVC_BRANCH: | 
|  | if (!VALID_CBTYPE_IMM (value)) | 
|  | return bfd_reloc_overflow; | 
|  | value = ENCODE_CBTYPE_IMM (value); | 
|  | break; | 
|  |  | 
|  | case R_RISCV_RVC_JUMP: | 
|  | if (!VALID_CJTYPE_IMM (value)) | 
|  | return bfd_reloc_overflow; | 
|  | value = ENCODE_CJTYPE_IMM (value); | 
|  | break; | 
|  |  | 
|  | case R_RISCV_RVC_LUI: | 
|  | if (RISCV_CONST_HIGH_PART (value) == 0) | 
|  | { | 
|  | /* Linker relaxation can convert an address equal to or greater than | 
|  | 0x800 to slightly below 0x800.  C.LUI does not accept zero as a | 
|  | valid immediate.  We can fix this by converting it to a C.LI.  */ | 
|  | bfd_vma insn = riscv_get_insn (howto->bitsize, | 
|  | contents + rel->r_offset); | 
|  | insn = (insn & ~MATCH_C_LUI) | MATCH_C_LI; | 
|  | riscv_put_insn (howto->bitsize, insn, contents + rel->r_offset); | 
|  | value = ENCODE_CITYPE_IMM (0); | 
|  | } | 
|  | else if (!VALID_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (value))) | 
|  | return bfd_reloc_overflow; | 
|  | else | 
|  | value = ENCODE_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (value)); | 
|  | break; | 
|  |  | 
|  | case R_RISCV_32: | 
|  | case R_RISCV_64: | 
|  | case R_RISCV_ADD8: | 
|  | case R_RISCV_ADD16: | 
|  | case R_RISCV_ADD32: | 
|  | case R_RISCV_ADD64: | 
|  | case R_RISCV_SUB6: | 
|  | case R_RISCV_SUB8: | 
|  | case R_RISCV_SUB16: | 
|  | case R_RISCV_SUB32: | 
|  | case R_RISCV_SUB64: | 
|  | case R_RISCV_SET6: | 
|  | case R_RISCV_SET8: | 
|  | case R_RISCV_SET16: | 
|  | case R_RISCV_SET32: | 
|  | case R_RISCV_32_PCREL: | 
|  | case R_RISCV_TLS_DTPREL32: | 
|  | case R_RISCV_TLS_DTPREL64: | 
|  | break; | 
|  |  | 
|  | case R_RISCV_DELETE: | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | default: | 
|  | return bfd_reloc_notsupported; | 
|  | } | 
|  |  | 
|  | bfd_vma word; | 
|  | if (riscv_is_insn_reloc (howto)) | 
|  | word = riscv_get_insn (howto->bitsize, contents + rel->r_offset); | 
|  | else | 
|  | word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset); | 
|  | word = (word & ~howto->dst_mask) | (value & howto->dst_mask); | 
|  | if (riscv_is_insn_reloc (howto)) | 
|  | riscv_put_insn (howto->bitsize, word, contents + rel->r_offset); | 
|  | else | 
|  | bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset); | 
|  |  | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | /* Remember all PC-relative high-part relocs we've encountered to help us | 
|  | later resolve the corresponding low-part relocs.  */ | 
|  |  | 
|  | typedef struct | 
|  | { | 
|  | /* PC value.  */ | 
|  | bfd_vma address; | 
|  | /* Relocation value with addend.  */ | 
|  | bfd_vma value; | 
|  | /* Original reloc type.  */ | 
|  | int type; | 
|  | } riscv_pcrel_hi_reloc; | 
|  |  | 
|  | typedef struct riscv_pcrel_lo_reloc | 
|  | { | 
|  | /* PC value of auipc.  */ | 
|  | bfd_vma address; | 
|  | /* Internal relocation.  */ | 
|  | const Elf_Internal_Rela *reloc; | 
|  | /* Record the following information helps to resolve the %pcrel | 
|  | which cross different input section.  For now we build a hash | 
|  | for pcrel at the start of riscv_elf_relocate_section, and then | 
|  | free the hash at the end.  But riscv_elf_relocate_section only | 
|  | handles an input section at a time, so that means we can only | 
|  | resolve the %pcrel_hi and %pcrel_lo which are in the same input | 
|  | section.  Otherwise, we will report dangerous relocation errors | 
|  | for those %pcrel which are not in the same input section.  */ | 
|  | asection *input_section; | 
|  | struct bfd_link_info *info; | 
|  | reloc_howto_type *howto; | 
|  | bfd_byte *contents; | 
|  | /* The next riscv_pcrel_lo_reloc.  */ | 
|  | struct riscv_pcrel_lo_reloc *next; | 
|  | } riscv_pcrel_lo_reloc; | 
|  |  | 
|  | typedef struct | 
|  | { | 
|  | /* Hash table for riscv_pcrel_hi_reloc.  */ | 
|  | htab_t hi_relocs; | 
|  | /* Linked list for riscv_pcrel_lo_reloc.  */ | 
|  | riscv_pcrel_lo_reloc *lo_relocs; | 
|  | } riscv_pcrel_relocs; | 
|  |  | 
|  | static hashval_t | 
|  | riscv_pcrel_reloc_hash (const void *entry) | 
|  | { | 
|  | const riscv_pcrel_hi_reloc *e = entry; | 
|  | return (hashval_t)(e->address >> 2); | 
|  | } | 
|  |  | 
|  | static int | 
|  | riscv_pcrel_reloc_eq (const void *entry1, const void *entry2) | 
|  | { | 
|  | const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2; | 
|  | return e1->address == e2->address; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | riscv_init_pcrel_relocs (riscv_pcrel_relocs *p) | 
|  | { | 
|  | p->lo_relocs = NULL; | 
|  | p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash, | 
|  | riscv_pcrel_reloc_eq, free); | 
|  | return p->hi_relocs != NULL; | 
|  | } | 
|  |  | 
|  | static void | 
|  | riscv_free_pcrel_relocs (riscv_pcrel_relocs *p) | 
|  | { | 
|  | riscv_pcrel_lo_reloc *cur = p->lo_relocs; | 
|  |  | 
|  | while (cur != NULL) | 
|  | { | 
|  | riscv_pcrel_lo_reloc *next = cur->next; | 
|  | free (cur); | 
|  | cur = next; | 
|  | } | 
|  |  | 
|  | htab_delete (p->hi_relocs); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel, | 
|  | struct bfd_link_info *info, | 
|  | bfd_vma pc, | 
|  | bfd_vma addr, | 
|  | bfd_byte *contents, | 
|  | const reloc_howto_type *howto) | 
|  | { | 
|  | /* We may need to reference low addreses in PC-relative modes even when the | 
|  | PC is far away from these addresses.  For example, undefweak references | 
|  | need to produce the address 0 when linked.  As 0 is far from the arbitrary | 
|  | addresses that we can link PC-relative programs at, the linker can't | 
|  | actually relocate references to those symbols.  In order to allow these | 
|  | programs to work we simply convert the PC-relative auipc sequences to | 
|  | 0-relative lui sequences.  */ | 
|  | if (bfd_link_pic (info)) | 
|  | return false; | 
|  |  | 
|  | /* If it's possible to reference the symbol using auipc we do so, as that's | 
|  | more in the spirit of the PC-relative relocations we're processing.  */ | 
|  | bfd_vma offset = addr - pc; | 
|  | if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset))) | 
|  | return false; | 
|  |  | 
|  | /* If it's impossible to reference this with a LUI-based offset then don't | 
|  | bother to convert it at all so users still see the PC-relative relocation | 
|  | in the truncation message.  */ | 
|  | if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr))) | 
|  | return false; | 
|  |  | 
|  | rel->r_info = ELFNN_R_INFO (addr, R_RISCV_HI20); | 
|  |  | 
|  | bfd_vma insn = riscv_get_insn (howto->bitsize, contents + rel->r_offset); | 
|  | insn = (insn & ~MASK_AUIPC) | MATCH_LUI; | 
|  | riscv_put_insn (howto->bitsize, insn, contents + rel->r_offset); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, | 
|  | bfd_vma addr, | 
|  | bfd_vma value, | 
|  | int type, | 
|  | bool absolute) | 
|  | { | 
|  | bfd_vma offset = absolute ? value : value - addr; | 
|  | riscv_pcrel_hi_reloc entry = {addr, offset, type}; | 
|  | riscv_pcrel_hi_reloc **slot = | 
|  | (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT); | 
|  |  | 
|  | BFD_ASSERT (*slot == NULL); | 
|  | *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc)); | 
|  | if (*slot == NULL) | 
|  | return false; | 
|  | **slot = entry; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p, | 
|  | bfd_vma addr, | 
|  | const Elf_Internal_Rela *reloc, | 
|  | asection *input_section, | 
|  | struct bfd_link_info *info, | 
|  | reloc_howto_type *howto, | 
|  | bfd_byte *contents) | 
|  | { | 
|  | riscv_pcrel_lo_reloc *entry; | 
|  | entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc)); | 
|  | if (entry == NULL) | 
|  | return false; | 
|  | *entry = (riscv_pcrel_lo_reloc) {addr, reloc, input_section, info, | 
|  | howto, contents, p->lo_relocs}; | 
|  | p->lo_relocs = entry; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p) | 
|  | { | 
|  | riscv_pcrel_lo_reloc *r; | 
|  |  | 
|  | for (r = p->lo_relocs; r != NULL; r = r->next) | 
|  | { | 
|  | bfd *input_bfd = r->input_section->owner; | 
|  |  | 
|  | riscv_pcrel_hi_reloc search = {r->address, 0, 0}; | 
|  | riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search); | 
|  | /* There may be a risk if the %pcrel_lo with addend refers to | 
|  | an IFUNC symbol.  The %pcrel_hi has been relocated to plt, | 
|  | so the corresponding %pcrel_lo with addend looks wrong.  */ | 
|  | char *string = NULL; | 
|  | if (entry == NULL) | 
|  | string = _("%pcrel_lo missing matching %pcrel_hi"); | 
|  | else if (entry->type == R_RISCV_GOT_HI20 | 
|  | && r->reloc->r_addend != 0) | 
|  | string = _("%pcrel_lo with addend isn't allowed for R_RISCV_GOT_HI20"); | 
|  | else if (RISCV_CONST_HIGH_PART (entry->value) | 
|  | != RISCV_CONST_HIGH_PART (entry->value + r->reloc->r_addend)) | 
|  | { | 
|  | /* Check the overflow when adding reloc addend.  */ | 
|  | if (asprintf (&string, | 
|  | _("%%pcrel_lo overflow with an addend, the " | 
|  | "value of %%pcrel_hi is 0x%" PRIx64 " without " | 
|  | "any addend, but may be 0x%" PRIx64 " after " | 
|  | "adding the %%pcrel_lo addend"), | 
|  | (int64_t) RISCV_CONST_HIGH_PART (entry->value), | 
|  | (int64_t) RISCV_CONST_HIGH_PART | 
|  | (entry->value + r->reloc->r_addend)) == -1) | 
|  | string = _("%pcrel_lo overflow with an addend"); | 
|  | } | 
|  |  | 
|  | if (string != NULL) | 
|  | { | 
|  | (*r->info->callbacks->reloc_dangerous) | 
|  | (r->info, string, input_bfd, r->input_section, r->reloc->r_offset); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | perform_relocation (r->howto, r->reloc, entry->value, r->input_section, | 
|  | input_bfd, r->contents); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Relocate a RISC-V ELF section. | 
|  |  | 
|  | The RELOCATE_SECTION function is called by the new ELF backend linker | 
|  | to handle the relocations for a section. | 
|  |  | 
|  | The relocs are always passed as Rela structures. | 
|  |  | 
|  | This function is responsible for adjusting the section contents as | 
|  | necessary, and (if generating a relocatable output file) adjusting | 
|  | the reloc addend as necessary. | 
|  |  | 
|  | This function does not have to worry about setting the reloc | 
|  | address or the reloc symbol index. | 
|  |  | 
|  | LOCAL_SYMS is a pointer to the swapped in local symbols. | 
|  |  | 
|  | LOCAL_SECTIONS is an array giving the section in the input file | 
|  | corresponding to the st_shndx field of each local symbol. | 
|  |  | 
|  | The global hash table entry for the global symbols can be found | 
|  | via elf_sym_hashes (input_bfd). | 
|  |  | 
|  | When generating relocatable output, this function must handle | 
|  | STB_LOCAL/STT_SECTION symbols specially.  The output symbol is | 
|  | going to be the section symbol corresponding to the output | 
|  | section, which means that the addend must be adjusted | 
|  | accordingly.  */ | 
|  |  | 
|  | static int | 
|  | riscv_elf_relocate_section (bfd *output_bfd, | 
|  | struct bfd_link_info *info, | 
|  | bfd *input_bfd, | 
|  | asection *input_section, | 
|  | bfd_byte *contents, | 
|  | Elf_Internal_Rela *relocs, | 
|  | Elf_Internal_Sym *local_syms, | 
|  | asection **local_sections) | 
|  | { | 
|  | Elf_Internal_Rela *rel; | 
|  | Elf_Internal_Rela *relend; | 
|  | riscv_pcrel_relocs pcrel_relocs; | 
|  | bool ret = false; | 
|  | struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); | 
|  | Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd); | 
|  | struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); | 
|  | bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd); | 
|  | bool absolute; | 
|  |  | 
|  | if (!riscv_init_pcrel_relocs (&pcrel_relocs)) | 
|  | return false; | 
|  |  | 
|  | relend = relocs + input_section->reloc_count; | 
|  | for (rel = relocs; rel < relend; rel++) | 
|  | { | 
|  | unsigned long r_symndx; | 
|  | struct elf_link_hash_entry *h; | 
|  | Elf_Internal_Sym *sym; | 
|  | asection *sec; | 
|  | bfd_vma relocation; | 
|  | bfd_reloc_status_type r = bfd_reloc_ok; | 
|  | const char *name = NULL; | 
|  | bfd_vma off, ie_off; | 
|  | bool unresolved_reloc, is_ie = false; | 
|  | bfd_vma pc = sec_addr (input_section) + rel->r_offset; | 
|  | int r_type = ELFNN_R_TYPE (rel->r_info), tls_type; | 
|  | reloc_howto_type *howto = riscv_elf_rtype_to_howto (input_bfd, r_type); | 
|  | const char *msg = NULL; | 
|  | char *msg_buf = NULL; | 
|  | bool resolved_to_zero; | 
|  |  | 
|  | if (howto == NULL | 
|  | || r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY) | 
|  | continue; | 
|  |  | 
|  | /* This is a final link.  */ | 
|  | r_symndx = ELFNN_R_SYM (rel->r_info); | 
|  | h = NULL; | 
|  | sym = NULL; | 
|  | sec = NULL; | 
|  | unresolved_reloc = false; | 
|  | if (r_symndx < symtab_hdr->sh_info) | 
|  | { | 
|  | sym = local_syms + r_symndx; | 
|  | sec = local_sections[r_symndx]; | 
|  | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); | 
|  |  | 
|  | /* Relocate against local STT_GNU_IFUNC symbol.  */ | 
|  | if (!bfd_link_relocatable (info) | 
|  | && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC) | 
|  | { | 
|  | h = riscv_elf_get_local_sym_hash (htab, input_bfd, rel, false); | 
|  | if (h == NULL) | 
|  | abort (); | 
|  |  | 
|  | /* Set STT_GNU_IFUNC symbol value.  */ | 
|  | h->root.u.def.value = sym->st_value; | 
|  | h->root.u.def.section = sec; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | bool warned, ignored; | 
|  |  | 
|  | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, | 
|  | r_symndx, symtab_hdr, sym_hashes, | 
|  | h, sec, relocation, | 
|  | unresolved_reloc, warned, ignored); | 
|  | if (warned) | 
|  | { | 
|  | /* To avoid generating warning messages about truncated | 
|  | relocations, set the relocation's address to be the same as | 
|  | the start of this section.  */ | 
|  | if (input_section->output_section != NULL) | 
|  | relocation = input_section->output_section->vma; | 
|  | else | 
|  | relocation = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sec != NULL && discarded_section (sec)) | 
|  | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, | 
|  | rel, 1, relend, howto, 0, contents); | 
|  |  | 
|  | if (bfd_link_relocatable (info)) | 
|  | continue; | 
|  |  | 
|  | /* Since STT_GNU_IFUNC symbol must go through PLT, we handle | 
|  | it here if it is defined in a non-shared object.  */ | 
|  | if (h != NULL | 
|  | && h->type == STT_GNU_IFUNC | 
|  | && h->def_regular) | 
|  | { | 
|  | asection *plt, *base_got; | 
|  |  | 
|  | if ((input_section->flags & SEC_ALLOC) == 0) | 
|  | { | 
|  | /* If this is a SHT_NOTE section without SHF_ALLOC, treat | 
|  | STT_GNU_IFUNC symbol as STT_FUNC.  */ | 
|  | if (elf_section_type (input_section) == SHT_NOTE) | 
|  | goto skip_ifunc; | 
|  |  | 
|  | /* Dynamic relocs are not propagated for SEC_DEBUGGING | 
|  | sections because such sections are not SEC_ALLOC and | 
|  | thus ld.so will not process them.  */ | 
|  | if ((input_section->flags & SEC_DEBUGGING) != 0) | 
|  | continue; | 
|  |  | 
|  | abort (); | 
|  | } | 
|  | else if (h->plt.offset == (bfd_vma) -1 | 
|  | /* The following relocation may not need the .plt entries | 
|  | when all references to a STT_GNU_IFUNC symbols are done | 
|  | via GOT or static function pointers.  */ | 
|  | && r_type != R_RISCV_32 | 
|  | && r_type != R_RISCV_64 | 
|  | && r_type != R_RISCV_HI20 | 
|  | && r_type != R_RISCV_GOT_HI20 | 
|  | && r_type != R_RISCV_LO12_I | 
|  | && r_type != R_RISCV_LO12_S) | 
|  | goto bad_ifunc_reloc; | 
|  |  | 
|  | /* STT_GNU_IFUNC symbol must go through PLT.  */ | 
|  | plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt; | 
|  | relocation = plt->output_section->vma | 
|  | + plt->output_offset | 
|  | + h->plt.offset; | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | case R_RISCV_32: | 
|  | case R_RISCV_64: | 
|  | if (rel->r_addend != 0) | 
|  | { | 
|  | if (h->root.root.string) | 
|  | name = h->root.root.string; | 
|  | else | 
|  | name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL); | 
|  |  | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: relocation %s against STT_GNU_IFUNC " | 
|  | "symbol `%s' has non-zero addend: %" PRId64), | 
|  | input_bfd, howto->name, name, (int64_t) rel->r_addend); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Generate dynamic relocation only when there is a non-GOT | 
|  | reference in a shared object or there is no PLT.  */ | 
|  | if ((bfd_link_pic (info) && h->non_got_ref) | 
|  | || h->plt.offset == (bfd_vma) -1) | 
|  | { | 
|  | Elf_Internal_Rela outrel; | 
|  | asection *sreloc; | 
|  |  | 
|  | /* Need a dynamic relocation to get the real function | 
|  | address.  */ | 
|  | outrel.r_offset = _bfd_elf_section_offset (output_bfd, | 
|  | info, | 
|  | input_section, | 
|  | rel->r_offset); | 
|  | if (outrel.r_offset == (bfd_vma) -1 | 
|  | || outrel.r_offset == (bfd_vma) -2) | 
|  | abort (); | 
|  |  | 
|  | outrel.r_offset += input_section->output_section->vma | 
|  | + input_section->output_offset; | 
|  |  | 
|  | if (h->dynindx == -1 | 
|  | || h->forced_local | 
|  | || bfd_link_executable (info)) | 
|  | { | 
|  | info->callbacks->minfo | 
|  | (_("Local IFUNC function `%s' in %pB\n"), | 
|  | h->root.root.string, | 
|  | h->root.u.def.section->owner); | 
|  |  | 
|  | /* This symbol is resolved locally.  */ | 
|  | outrel.r_info = ELFNN_R_INFO (0, R_RISCV_IRELATIVE); | 
|  | outrel.r_addend = h->root.u.def.value | 
|  | + h->root.u.def.section->output_section->vma | 
|  | + h->root.u.def.section->output_offset; | 
|  | } | 
|  | else | 
|  | { | 
|  | outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); | 
|  | outrel.r_addend = 0; | 
|  | } | 
|  |  | 
|  | /* Dynamic relocations are stored in | 
|  | 1. .rela.ifunc section in PIC object. | 
|  | 2. .rela.got section in dynamic executable. | 
|  | 3. .rela.iplt section in static executable.  */ | 
|  | if (bfd_link_pic (info)) | 
|  | sreloc = htab->elf.irelifunc; | 
|  | else if (htab->elf.splt != NULL) | 
|  | sreloc = htab->elf.srelgot; | 
|  | else | 
|  | sreloc = htab->elf.irelplt; | 
|  |  | 
|  | riscv_elf_append_rela (output_bfd, sreloc, &outrel); | 
|  |  | 
|  | /* If this reloc is against an external symbol, we | 
|  | do not want to fiddle with the addend.  Otherwise, | 
|  | we need to include the symbol value so that it | 
|  | becomes an addend for the dynamic reloc.  For an | 
|  | internal symbol, we have updated addend.  */ | 
|  | continue; | 
|  | } | 
|  | goto do_relocation; | 
|  |  | 
|  | case R_RISCV_GOT_HI20: | 
|  | base_got = htab->elf.sgot; | 
|  | off = h->got.offset; | 
|  |  | 
|  | if (base_got == NULL) | 
|  | abort (); | 
|  |  | 
|  | if (off == (bfd_vma) -1) | 
|  | { | 
|  | bfd_vma plt_idx; | 
|  |  | 
|  | /* We can't use h->got.offset here to save state, or | 
|  | even just remember the offset, as finish_dynamic_symbol | 
|  | would use that as offset into .got.  */ | 
|  |  | 
|  | if (htab->elf.splt != NULL) | 
|  | { | 
|  | plt_idx = (h->plt.offset - PLT_HEADER_SIZE) | 
|  | / PLT_ENTRY_SIZE; | 
|  | off = GOTPLT_HEADER_SIZE + (plt_idx * GOT_ENTRY_SIZE); | 
|  | base_got = htab->elf.sgotplt; | 
|  | } | 
|  | else | 
|  | { | 
|  | plt_idx = h->plt.offset / PLT_ENTRY_SIZE; | 
|  | off = plt_idx * GOT_ENTRY_SIZE; | 
|  | base_got = htab->elf.igotplt; | 
|  | } | 
|  |  | 
|  | if (h->dynindx == -1 | 
|  | || h->forced_local | 
|  | || info->symbolic) | 
|  | { | 
|  | /* This references the local definition.  We must | 
|  | initialize this entry in the global offset table. | 
|  | Since the offset must always be a multiple of 8, | 
|  | we use the least significant bit to record | 
|  | whether we have initialized it already. | 
|  |  | 
|  | When doing a dynamic link, we create a .rela.got | 
|  | relocation entry to initialize the value.  This | 
|  | is done in the finish_dynamic_symbol routine.   */ | 
|  | if ((off & 1) != 0) | 
|  | off &= ~1; | 
|  | else | 
|  | { | 
|  | bfd_put_NN (output_bfd, relocation, | 
|  | base_got->contents + off); | 
|  | /* Note that this is harmless for the case, | 
|  | as -1 | 1 still is -1.  */ | 
|  | h->got.offset |= 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | relocation = base_got->output_section->vma | 
|  | + base_got->output_offset + off; | 
|  |  | 
|  | if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, | 
|  | relocation, r_type, | 
|  | false)) | 
|  | r = bfd_reloc_overflow; | 
|  | goto do_relocation; | 
|  |  | 
|  | case R_RISCV_CALL: | 
|  | case R_RISCV_CALL_PLT: | 
|  | case R_RISCV_HI20: | 
|  | case R_RISCV_LO12_I: | 
|  | case R_RISCV_LO12_S: | 
|  | goto do_relocation; | 
|  |  | 
|  | case R_RISCV_PCREL_HI20: | 
|  | if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, | 
|  | relocation, r_type, | 
|  | false)) | 
|  | r = bfd_reloc_overflow; | 
|  | goto do_relocation; | 
|  |  | 
|  | default: | 
|  | bad_ifunc_reloc: | 
|  | if (h->root.root.string) | 
|  | name = h->root.root.string; | 
|  | else | 
|  | /* The entry of local ifunc is fake in global hash table, | 
|  | we should find the name by the original local symbol.  */ | 
|  | name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL); | 
|  |  | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: relocation %s against STT_GNU_IFUNC " | 
|  | "symbol `%s' isn't supported"), input_bfd, | 
|  | howto->name, name); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | skip_ifunc: | 
|  | if (h != NULL) | 
|  | name = h->root.root.string; | 
|  | else | 
|  | { | 
|  | name = (bfd_elf_string_from_elf_section | 
|  | (input_bfd, symtab_hdr->sh_link, sym->st_name)); | 
|  | if (name == NULL || *name == '\0') | 
|  | name = bfd_section_name (sec); | 
|  | } | 
|  |  | 
|  | resolved_to_zero = (h != NULL | 
|  | && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)); | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | case R_RISCV_NONE: | 
|  | case R_RISCV_RELAX: | 
|  | case R_RISCV_TPREL_ADD: | 
|  | case R_RISCV_COPY: | 
|  | case R_RISCV_JUMP_SLOT: | 
|  | case R_RISCV_RELATIVE: | 
|  | /* These require nothing of us at all.  */ | 
|  | continue; | 
|  |  | 
|  | case R_RISCV_HI20: | 
|  | case R_RISCV_BRANCH: | 
|  | case R_RISCV_RVC_BRANCH: | 
|  | case R_RISCV_RVC_LUI: | 
|  | case R_RISCV_LO12_I: | 
|  | case R_RISCV_LO12_S: | 
|  | case R_RISCV_SET6: | 
|  | case R_RISCV_SET8: | 
|  | case R_RISCV_SET16: | 
|  | case R_RISCV_SET32: | 
|  | case R_RISCV_32_PCREL: | 
|  | case R_RISCV_DELETE: | 
|  | /* These require no special handling beyond perform_relocation.  */ | 
|  | break; | 
|  |  | 
|  | case R_RISCV_GOT_HI20: | 
|  | if (h != NULL) | 
|  | { | 
|  | bool dyn, pic; | 
|  |  | 
|  | off = h->got.offset; | 
|  | BFD_ASSERT (off != (bfd_vma) -1); | 
|  | dyn = elf_hash_table (info)->dynamic_sections_created; | 
|  | pic = bfd_link_pic (info); | 
|  |  | 
|  | if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h) | 
|  | || (pic && SYMBOL_REFERENCES_LOCAL (info, h))) | 
|  | { | 
|  | /* This is actually a static link, or it is a | 
|  | -Bsymbolic link and the symbol is defined | 
|  | locally, or the symbol was forced to be local | 
|  | because of a version file.  We must initialize | 
|  | this entry in the global offset table.  Since the | 
|  | offset must always be a multiple of the word size, | 
|  | we use the least significant bit to record whether | 
|  | we have initialized it already. | 
|  |  | 
|  | When doing a dynamic link, we create a .rela.got | 
|  | relocation entry to initialize the value.  This | 
|  | is done in the finish_dynamic_symbol routine.  */ | 
|  | if ((off & 1) != 0) | 
|  | off &= ~1; | 
|  | else | 
|  | { | 
|  | bfd_put_NN (output_bfd, relocation, | 
|  | htab->elf.sgot->contents + off); | 
|  | h->got.offset |= 1; | 
|  | } | 
|  | } | 
|  | else | 
|  | unresolved_reloc = false; | 
|  | } | 
|  | else | 
|  | { | 
|  | BFD_ASSERT (local_got_offsets != NULL | 
|  | && local_got_offsets[r_symndx] != (bfd_vma) -1); | 
|  |  | 
|  | off = local_got_offsets[r_symndx]; | 
|  |  | 
|  | /* The offset must always be a multiple of the word size. | 
|  | So, we can use the least significant bit to record | 
|  | whether we have already processed this entry.  */ | 
|  | if ((off & 1) != 0) | 
|  | off &= ~1; | 
|  | else | 
|  | { | 
|  | if (bfd_link_pic (info)) | 
|  | { | 
|  | asection *s; | 
|  | Elf_Internal_Rela outrel; | 
|  |  | 
|  | /* We need to generate a R_RISCV_RELATIVE reloc | 
|  | for the dynamic linker.  */ | 
|  | s = htab->elf.srelgot; | 
|  | BFD_ASSERT (s != NULL); | 
|  |  | 
|  | outrel.r_offset = sec_addr (htab->elf.sgot) + off; | 
|  | outrel.r_info = | 
|  | ELFNN_R_INFO (0, R_RISCV_RELATIVE); | 
|  | outrel.r_addend = relocation; | 
|  | relocation = 0; | 
|  | riscv_elf_append_rela (output_bfd, s, &outrel); | 
|  | } | 
|  |  | 
|  | bfd_put_NN (output_bfd, relocation, | 
|  | htab->elf.sgot->contents + off); | 
|  | local_got_offsets[r_symndx] |= 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rel->r_addend != 0) | 
|  | { | 
|  | msg = _("The addend isn't allowed for R_RISCV_GOT_HI20"); | 
|  | r = bfd_reloc_dangerous; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Address of got entry.  */ | 
|  | relocation = sec_addr (htab->elf.sgot) + off; | 
|  | absolute = riscv_zero_pcrel_hi_reloc (rel, info, pc, | 
|  | relocation, contents, | 
|  | howto); | 
|  | /* Update howto if relocation is changed.  */ | 
|  | howto = riscv_elf_rtype_to_howto (input_bfd, | 
|  | ELFNN_R_TYPE (rel->r_info)); | 
|  | if (howto == NULL) | 
|  | r = bfd_reloc_notsupported; | 
|  | else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, | 
|  | relocation, r_type, | 
|  | absolute)) | 
|  | r = bfd_reloc_overflow; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case R_RISCV_ADD8: | 
|  | case R_RISCV_ADD16: | 
|  | case R_RISCV_ADD32: | 
|  | case R_RISCV_ADD64: | 
|  | { | 
|  | bfd_vma old_value = bfd_get (howto->bitsize, input_bfd, | 
|  | contents + rel->r_offset); | 
|  | relocation = old_value + relocation; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case R_RISCV_SUB6: | 
|  | case R_RISCV_SUB8: | 
|  | case R_RISCV_SUB16: | 
|  | case R_RISCV_SUB32: | 
|  | case R_RISCV_SUB64: | 
|  | { | 
|  | bfd_vma old_value = bfd_get (howto->bitsize, input_bfd, | 
|  | contents + rel->r_offset); | 
|  | relocation = old_value - relocation; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case R_RISCV_CALL: | 
|  | case R_RISCV_CALL_PLT: | 
|  | /* Handle a call to an undefined weak function.  This won't be | 
|  | relaxed, so we have to handle it here.  */ | 
|  | if (h != NULL && h->root.type == bfd_link_hash_undefweak | 
|  | && (!bfd_link_pic (info) || h->plt.offset == MINUS_ONE)) | 
|  | { | 
|  | /* We can use x0 as the base register.  */ | 
|  | bfd_vma insn = bfd_getl32 (contents + rel->r_offset + 4); | 
|  | insn &= ~(OP_MASK_RS1 << OP_SH_RS1); | 
|  | bfd_putl32 (insn, contents + rel->r_offset + 4); | 
|  | /* Set the relocation value so that we get 0 after the pc | 
|  | relative adjustment.  */ | 
|  | relocation = sec_addr (input_section) + rel->r_offset; | 
|  | } | 
|  | /* Fall through.  */ | 
|  |  | 
|  | case R_RISCV_JAL: | 
|  | case R_RISCV_RVC_JUMP: | 
|  | /* This line has to match the check in _bfd_riscv_relax_section.  */ | 
|  | if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE) | 
|  | { | 
|  | /* Refer to the PLT entry.  */ | 
|  | relocation = sec_addr (htab->elf.splt) + h->plt.offset; | 
|  | unresolved_reloc = false; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case R_RISCV_TPREL_HI20: | 
|  | relocation = tpoff (info, relocation); | 
|  | break; | 
|  |  | 
|  | case R_RISCV_TPREL_LO12_I: | 
|  | case R_RISCV_TPREL_LO12_S: | 
|  | relocation = tpoff (info, relocation); | 
|  | break; | 
|  |  | 
|  | case R_RISCV_TPREL_I: | 
|  | case R_RISCV_TPREL_S: | 
|  | relocation = tpoff (info, relocation); | 
|  | if (VALID_ITYPE_IMM (relocation + rel->r_addend)) | 
|  | { | 
|  | /* We can use tp as the base register.  */ | 
|  | bfd_vma insn = bfd_getl32 (contents + rel->r_offset); | 
|  | insn &= ~(OP_MASK_RS1 << OP_SH_RS1); | 
|  | insn |= X_TP << OP_SH_RS1; | 
|  | bfd_putl32 (insn, contents + rel->r_offset); | 
|  | } | 
|  | else | 
|  | r = bfd_reloc_overflow; | 
|  | break; | 
|  |  | 
|  | case R_RISCV_GPREL_I: | 
|  | case R_RISCV_GPREL_S: | 
|  | { | 
|  | bfd_vma gp = riscv_global_pointer_value (info); | 
|  | bool x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend); | 
|  | if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp)) | 
|  | { | 
|  | /* We can use x0 or gp as the base register.  */ | 
|  | bfd_vma insn = bfd_getl32 (contents + rel->r_offset); | 
|  | insn &= ~(OP_MASK_RS1 << OP_SH_RS1); | 
|  | if (!x0_base) | 
|  | { | 
|  | rel->r_addend -= gp; | 
|  | insn |= X_GP << OP_SH_RS1; | 
|  | } | 
|  | bfd_putl32 (insn, contents + rel->r_offset); | 
|  | } | 
|  | else | 
|  | r = bfd_reloc_overflow; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case R_RISCV_PCREL_HI20: | 
|  | absolute = riscv_zero_pcrel_hi_reloc (rel, info, pc, relocation, | 
|  | contents, howto); | 
|  | /* Update howto if relocation is changed.  */ | 
|  | howto = riscv_elf_rtype_to_howto (input_bfd, | 
|  | ELFNN_R_TYPE (rel->r_info)); | 
|  | if (howto == NULL) | 
|  | r = bfd_reloc_notsupported; | 
|  | else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, | 
|  | relocation + rel->r_addend, | 
|  | r_type, absolute)) | 
|  | r = bfd_reloc_overflow; | 
|  | break; | 
|  |  | 
|  | case R_RISCV_PCREL_LO12_I: | 
|  | case R_RISCV_PCREL_LO12_S: | 
|  | /* We don't allow section symbols plus addends as the auipc address, | 
|  | because then riscv_relax_delete_bytes would have to search through | 
|  | all relocs to update these addends.  This is also ambiguous, as | 
|  | we do allow offsets to be added to the target address, which are | 
|  | not to be used to find the auipc address.  */ | 
|  | if (((sym != NULL && (ELF_ST_TYPE (sym->st_info) == STT_SECTION)) | 
|  | || (h != NULL && h->type == STT_SECTION)) | 
|  | && rel->r_addend) | 
|  | { | 
|  | msg = _("%pcrel_lo section symbol with an addend"); | 
|  | r = bfd_reloc_dangerous; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, relocation, rel, | 
|  | input_section, info, howto, | 
|  | contents)) | 
|  | continue; | 
|  | r = bfd_reloc_overflow; | 
|  | break; | 
|  |  | 
|  | case R_RISCV_TLS_DTPREL32: | 
|  | case R_RISCV_TLS_DTPREL64: | 
|  | relocation = dtpoff (info, relocation); | 
|  | break; | 
|  |  | 
|  | case R_RISCV_32: | 
|  | case R_RISCV_64: | 
|  | if ((input_section->flags & SEC_ALLOC) == 0) | 
|  | break; | 
|  |  | 
|  | if ((bfd_link_pic (info) | 
|  | && (h == NULL | 
|  | || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | 
|  | && !resolved_to_zero) | 
|  | || h->root.type != bfd_link_hash_undefweak) | 
|  | && (!howto->pc_relative | 
|  | || !SYMBOL_CALLS_LOCAL (info, h))) | 
|  | || (!bfd_link_pic (info) | 
|  | && h != NULL | 
|  | && h->dynindx != -1 | 
|  | && !h->non_got_ref | 
|  | && ((h->def_dynamic | 
|  | && !h->def_regular) | 
|  | || h->root.type == bfd_link_hash_undefweak | 
|  | || h->root.type == bfd_link_hash_undefined))) | 
|  | { | 
|  | Elf_Internal_Rela outrel; | 
|  | asection *sreloc; | 
|  | bool skip_static_relocation, skip_dynamic_relocation; | 
|  |  | 
|  | /* When generating a shared object, these relocations | 
|  | are copied into the output file to be resolved at run | 
|  | time.  */ | 
|  |  | 
|  | outrel.r_offset = | 
|  | _bfd_elf_section_offset (output_bfd, info, input_section, | 
|  | rel->r_offset); | 
|  | skip_static_relocation = outrel.r_offset != (bfd_vma) -2; | 
|  | skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2; | 
|  | outrel.r_offset += sec_addr (input_section); | 
|  |  | 
|  | if (skip_dynamic_relocation) | 
|  | memset (&outrel, 0, sizeof outrel); | 
|  | else if (h != NULL && h->dynindx != -1 | 
|  | && !(bfd_link_pic (info) | 
|  | && SYMBOLIC_BIND (info, h) | 
|  | && h->def_regular)) | 
|  | { | 
|  | outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); | 
|  | outrel.r_addend = rel->r_addend; | 
|  | } | 
|  | else | 
|  | { | 
|  | outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE); | 
|  | outrel.r_addend = relocation + rel->r_addend; | 
|  | } | 
|  |  | 
|  | sreloc = elf_section_data (input_section)->sreloc; | 
|  | riscv_elf_append_rela (output_bfd, sreloc, &outrel); | 
|  | if (skip_static_relocation) | 
|  | continue; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case R_RISCV_TLS_GOT_HI20: | 
|  | is_ie = true; | 
|  | /* Fall through.  */ | 
|  |  | 
|  | case R_RISCV_TLS_GD_HI20: | 
|  | if (h != NULL) | 
|  | { | 
|  | off = h->got.offset; | 
|  | h->got.offset |= 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | off = local_got_offsets[r_symndx]; | 
|  | local_got_offsets[r_symndx] |= 1; | 
|  | } | 
|  |  | 
|  | tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx); | 
|  | BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD)); | 
|  | /* If this symbol is referenced by both GD and IE TLS, the IE | 
|  | reference's GOT slot follows the GD reference's slots.  */ | 
|  | ie_off = 0; | 
|  | if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE)) | 
|  | ie_off = 2 * GOT_ENTRY_SIZE; | 
|  |  | 
|  | if ((off & 1) != 0) | 
|  | off &= ~1; | 
|  | else | 
|  | { | 
|  | Elf_Internal_Rela outrel; | 
|  | int indx = 0; | 
|  | bool need_relocs = false; | 
|  |  | 
|  | if (htab->elf.srelgot == NULL) | 
|  | abort (); | 
|  |  | 
|  | if (h != NULL) | 
|  | { | 
|  | bool dyn, pic; | 
|  | dyn = htab->elf.dynamic_sections_created; | 
|  | pic = bfd_link_pic (info); | 
|  |  | 
|  | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h) | 
|  | && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h))) | 
|  | indx = h->dynindx; | 
|  | } | 
|  |  | 
|  | /* The GOT entries have not been initialized yet.  Do it | 
|  | now, and emit any relocations.  */ | 
|  | if ((bfd_link_pic (info) || indx != 0) | 
|  | && (h == NULL | 
|  | || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | 
|  | || h->root.type != bfd_link_hash_undefweak)) | 
|  | need_relocs = true; | 
|  |  | 
|  | if (tls_type & GOT_TLS_GD) | 
|  | { | 
|  | if (need_relocs) | 
|  | { | 
|  | outrel.r_offset = sec_addr (htab->elf.sgot) + off; | 
|  | outrel.r_addend = 0; | 
|  | outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN); | 
|  | bfd_put_NN (output_bfd, 0, | 
|  | htab->elf.sgot->contents + off); | 
|  | riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); | 
|  | if (indx == 0) | 
|  | { | 
|  | BFD_ASSERT (! unresolved_reloc); | 
|  | bfd_put_NN (output_bfd, | 
|  | dtpoff (info, relocation), | 
|  | (htab->elf.sgot->contents | 
|  | + off + RISCV_ELF_WORD_BYTES)); | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_put_NN (output_bfd, 0, | 
|  | (htab->elf.sgot->contents | 
|  | + off + RISCV_ELF_WORD_BYTES)); | 
|  | outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN); | 
|  | outrel.r_offset += RISCV_ELF_WORD_BYTES; | 
|  | riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* If we are not emitting relocations for a | 
|  | general dynamic reference, then we must be in a | 
|  | static link or an executable link with the | 
|  | symbol binding locally.  Mark it as belonging | 
|  | to module 1, the executable.  */ | 
|  | bfd_put_NN (output_bfd, 1, | 
|  | htab->elf.sgot->contents + off); | 
|  | bfd_put_NN (output_bfd, | 
|  | dtpoff (info, relocation), | 
|  | (htab->elf.sgot->contents | 
|  | + off + RISCV_ELF_WORD_BYTES)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tls_type & GOT_TLS_IE) | 
|  | { | 
|  | if (need_relocs) | 
|  | { | 
|  | bfd_put_NN (output_bfd, 0, | 
|  | htab->elf.sgot->contents + off + ie_off); | 
|  | outrel.r_offset = sec_addr (htab->elf.sgot) | 
|  | + off + ie_off; | 
|  | outrel.r_addend = 0; | 
|  | if (indx == 0) | 
|  | outrel.r_addend = tpoff (info, relocation); | 
|  | outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN); | 
|  | riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_put_NN (output_bfd, tpoff (info, relocation), | 
|  | htab->elf.sgot->contents + off + ie_off); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | BFD_ASSERT (off < (bfd_vma) -2); | 
|  | relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0); | 
|  | if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, | 
|  | relocation, r_type, | 
|  | false)) | 
|  | r = bfd_reloc_overflow; | 
|  | unresolved_reloc = false; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | r = bfd_reloc_notsupported; | 
|  | } | 
|  |  | 
|  | /* Dynamic relocs are not propagated for SEC_DEBUGGING sections | 
|  | because such sections are not SEC_ALLOC and thus ld.so will | 
|  | not process them.  */ | 
|  | if (unresolved_reloc | 
|  | && !((input_section->flags & SEC_DEBUGGING) != 0 | 
|  | && h->def_dynamic) | 
|  | && _bfd_elf_section_offset (output_bfd, info, input_section, | 
|  | rel->r_offset) != (bfd_vma) -1) | 
|  | { | 
|  | switch (r_type) | 
|  | { | 
|  | case R_RISCV_JAL: | 
|  | case R_RISCV_RVC_JUMP: | 
|  | if (asprintf (&msg_buf, | 
|  | _("%%X%%P: relocation %s against `%s' can " | 
|  | "not be used when making a shared object; " | 
|  | "recompile with -fPIC\n"), | 
|  | howto->name, | 
|  | h->root.root.string) == -1) | 
|  | msg_buf = NULL; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | if (asprintf (&msg_buf, | 
|  | _("%%X%%P: unresolvable %s relocation against " | 
|  | "symbol `%s'\n"), | 
|  | howto->name, | 
|  | h->root.root.string) == -1) | 
|  | msg_buf = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | msg = msg_buf; | 
|  | r = bfd_reloc_notsupported; | 
|  | } | 
|  |  | 
|  | do_relocation: | 
|  | if (r == bfd_reloc_ok) | 
|  | r = perform_relocation (howto, rel, relocation, input_section, | 
|  | input_bfd, contents); | 
|  |  | 
|  | /* We should have already detected the error and set message before. | 
|  | If the error message isn't set since the linker runs out of memory | 
|  | or we don't set it before, then we should set the default message | 
|  | with the "internal error" string here.  */ | 
|  | switch (r) | 
|  | { | 
|  | case bfd_reloc_ok: | 
|  | continue; | 
|  |  | 
|  | case bfd_reloc_overflow: | 
|  | info->callbacks->reloc_overflow | 
|  | (info, (h ? &h->root : NULL), name, howto->name, | 
|  | (bfd_vma) 0, input_bfd, input_section, rel->r_offset); | 
|  | break; | 
|  |  | 
|  | case bfd_reloc_undefined: | 
|  | info->callbacks->undefined_symbol | 
|  | (info, name, input_bfd, input_section, rel->r_offset, | 
|  | true); | 
|  | break; | 
|  |  | 
|  | case bfd_reloc_outofrange: | 
|  | if (msg == NULL) | 
|  | msg = _("%X%P: internal error: out of range error\n"); | 
|  | break; | 
|  |  | 
|  | case bfd_reloc_notsupported: | 
|  | if (msg == NULL) | 
|  | msg = _("%X%P: internal error: unsupported relocation error\n"); | 
|  | break; | 
|  |  | 
|  | case bfd_reloc_dangerous: | 
|  | /* The error message should already be set.  */ | 
|  | if (msg == NULL) | 
|  | msg = _("dangerous relocation error"); | 
|  | info->callbacks->reloc_dangerous | 
|  | (info, msg, input_bfd, input_section, rel->r_offset); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | msg = _("%X%P: internal error: unknown error\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Do not report error message for the dangerous relocation again.  */ | 
|  | if (msg && r != bfd_reloc_dangerous) | 
|  | info->callbacks->einfo (msg); | 
|  |  | 
|  | /* Free the unused `msg_buf`.  */ | 
|  | free (msg_buf); | 
|  |  | 
|  | /* We already reported the error via a callback, so don't try to report | 
|  | it again by returning false.  That leads to spurious errors.  */ | 
|  | ret = true; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs); | 
|  | out: | 
|  | riscv_free_pcrel_relocs (&pcrel_relocs); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Finish up dynamic symbol handling.  We set the contents of various | 
|  | dynamic sections here.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_elf_finish_dynamic_symbol (bfd *output_bfd, | 
|  | struct bfd_link_info *info, | 
|  | struct elf_link_hash_entry *h, | 
|  | Elf_Internal_Sym *sym) | 
|  | { | 
|  | struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | 
|  |  | 
|  | if (h->plt.offset != (bfd_vma) -1) | 
|  | { | 
|  | /* We've decided to create a PLT entry for this symbol.  */ | 
|  | bfd_byte *loc; | 
|  | bfd_vma i, header_address, plt_idx, got_offset, got_address; | 
|  | uint32_t plt_entry[PLT_ENTRY_INSNS]; | 
|  | Elf_Internal_Rela rela; | 
|  | asection *plt, *gotplt, *relplt; | 
|  |  | 
|  | /* When building a static executable, use .iplt, .igot.plt and | 
|  | .rela.iplt sections for STT_GNU_IFUNC symbols.  */ | 
|  | if (htab->elf.splt != NULL) | 
|  | { | 
|  | plt = htab->elf.splt; | 
|  | gotplt = htab->elf.sgotplt; | 
|  | relplt = htab->elf.srelplt; | 
|  | } | 
|  | else | 
|  | { | 
|  | plt = htab->elf.iplt; | 
|  | gotplt = htab->elf.igotplt; | 
|  | relplt = htab->elf.irelplt; | 
|  | } | 
|  |  | 
|  | /* This symbol has an entry in the procedure linkage table.  Set | 
|  | it up.  */ | 
|  | if ((h->dynindx == -1 | 
|  | && !((h->forced_local || bfd_link_executable (info)) | 
|  | && h->def_regular | 
|  | && h->type == STT_GNU_IFUNC)) | 
|  | || plt == NULL | 
|  | || gotplt == NULL | 
|  | || relplt == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Calculate the address of the PLT header.  */ | 
|  | header_address = sec_addr (plt); | 
|  |  | 
|  | /* Calculate the index of the entry and the offset of .got.plt entry. | 
|  | For static executables, we don't reserve anything.  */ | 
|  | if (plt == htab->elf.splt) | 
|  | { | 
|  | plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE; | 
|  | got_offset = GOTPLT_HEADER_SIZE + (plt_idx * GOT_ENTRY_SIZE); | 
|  | } | 
|  | else | 
|  | { | 
|  | plt_idx = h->plt.offset / PLT_ENTRY_SIZE; | 
|  | got_offset = plt_idx * GOT_ENTRY_SIZE; | 
|  | } | 
|  |  | 
|  | /* Calculate the address of the .got.plt entry.  */ | 
|  | got_address = sec_addr (gotplt) + got_offset; | 
|  |  | 
|  | /* Find out where the .plt entry should go.  */ | 
|  | loc = plt->contents + h->plt.offset; | 
|  |  | 
|  | /* Fill in the PLT entry itself.  */ | 
|  | if (! riscv_make_plt_entry (output_bfd, got_address, | 
|  | header_address + h->plt.offset, | 
|  | plt_entry)) | 
|  | return false; | 
|  |  | 
|  | for (i = 0; i < PLT_ENTRY_INSNS; i++) | 
|  | bfd_putl32 (plt_entry[i], loc + 4*i); | 
|  |  | 
|  | /* Fill in the initial value of the .got.plt entry.  */ | 
|  | loc = gotplt->contents + (got_address - sec_addr (gotplt)); | 
|  | bfd_put_NN (output_bfd, sec_addr (plt), loc); | 
|  |  | 
|  | rela.r_offset = got_address; | 
|  |  | 
|  | if (h->dynindx == -1 | 
|  | || ((bfd_link_executable (info) | 
|  | || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) | 
|  | && h->def_regular | 
|  | && h->type == STT_GNU_IFUNC)) | 
|  | { | 
|  | info->callbacks->minfo (_("Local IFUNC function `%s' in %pB\n"), | 
|  | h->root.root.string, | 
|  | h->root.u.def.section->owner); | 
|  |  | 
|  | /* If an STT_GNU_IFUNC symbol is locally defined, generate | 
|  | R_RISCV_IRELATIVE instead of R_RISCV_JUMP_SLOT.  */ | 
|  | asection *sec = h->root.u.def.section; | 
|  | rela.r_info = ELFNN_R_INFO (0, R_RISCV_IRELATIVE); | 
|  | rela.r_addend = h->root.u.def.value | 
|  | + sec->output_section->vma | 
|  | + sec->output_offset; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Fill in the entry in the .rela.plt section.  */ | 
|  | rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT); | 
|  | rela.r_addend = 0; | 
|  | } | 
|  |  | 
|  | loc = relplt->contents + plt_idx * sizeof (ElfNN_External_Rela); | 
|  | bed->s->swap_reloca_out (output_bfd, &rela, loc); | 
|  |  | 
|  | if (!h->def_regular) | 
|  | { | 
|  | /* Mark the symbol as undefined, rather than as defined in | 
|  | the .plt section.  Leave the value alone.  */ | 
|  | sym->st_shndx = SHN_UNDEF; | 
|  | /* If the symbol is weak, we do need to clear the value. | 
|  | Otherwise, the PLT entry would provide a definition for | 
|  | the symbol even if the symbol wasn't defined anywhere, | 
|  | and so the symbol would never be NULL.  */ | 
|  | if (!h->ref_regular_nonweak) | 
|  | sym->st_value = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (h->got.offset != (bfd_vma) -1 | 
|  | && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) | 
|  | && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) | 
|  | { | 
|  | asection *sgot; | 
|  | asection *srela; | 
|  | Elf_Internal_Rela rela; | 
|  | bool use_elf_append_rela = true; | 
|  |  | 
|  | /* This symbol has an entry in the GOT.  Set it up.  */ | 
|  |  | 
|  | sgot = htab->elf.sgot; | 
|  | srela = htab->elf.srelgot; | 
|  | BFD_ASSERT (sgot != NULL && srela != NULL); | 
|  |  | 
|  | rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1); | 
|  |  | 
|  | /* Handle the ifunc symbol in GOT entry.  */ | 
|  | if (h->def_regular | 
|  | && h->type == STT_GNU_IFUNC) | 
|  | { | 
|  | if (h->plt.offset == (bfd_vma) -1) | 
|  | { | 
|  | /* STT_GNU_IFUNC is referenced without PLT.  */ | 
|  |  | 
|  | if (htab->elf.splt == NULL) | 
|  | { | 
|  | /* Use .rela.iplt section to store .got relocations | 
|  | in static executable.  */ | 
|  | srela = htab->elf.irelplt; | 
|  |  | 
|  | /* Do not use riscv_elf_append_rela to add dynamic | 
|  | relocs.  */ | 
|  | use_elf_append_rela = false; | 
|  | } | 
|  |  | 
|  | if (SYMBOL_REFERENCES_LOCAL (info, h)) | 
|  | { | 
|  | info->callbacks->minfo (_("Local IFUNC function `%s' in %pB\n"), | 
|  | h->root.root.string, | 
|  | h->root.u.def.section->owner); | 
|  |  | 
|  | rela.r_info = ELFNN_R_INFO (0, R_RISCV_IRELATIVE); | 
|  | rela.r_addend = (h->root.u.def.value | 
|  | + h->root.u.def.section->output_section->vma | 
|  | + h->root.u.def.section->output_offset); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Generate R_RISCV_NN.  */ | 
|  | BFD_ASSERT ((h->got.offset & 1) == 0); | 
|  | BFD_ASSERT (h->dynindx != -1); | 
|  | rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN); | 
|  | rela.r_addend = 0; | 
|  | } | 
|  | } | 
|  | else if (bfd_link_pic (info)) | 
|  | { | 
|  | /* Generate R_RISCV_NN.  */ | 
|  | BFD_ASSERT ((h->got.offset & 1) == 0); | 
|  | BFD_ASSERT (h->dynindx != -1); | 
|  | rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN); | 
|  | rela.r_addend = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | asection *plt; | 
|  |  | 
|  | if (!h->pointer_equality_needed) | 
|  | abort (); | 
|  |  | 
|  | /* For non-shared object, we can't use .got.plt, which | 
|  | contains the real function address if we need pointer | 
|  | equality.  We load the GOT entry with the PLT entry.  */ | 
|  | plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt; | 
|  | bfd_put_NN (output_bfd, (plt->output_section->vma | 
|  | + plt->output_offset | 
|  | + h->plt.offset), | 
|  | htab->elf.sgot->contents | 
|  | + (h->got.offset & ~(bfd_vma) 1)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | else if (bfd_link_pic (info) | 
|  | && SYMBOL_REFERENCES_LOCAL (info, h)) | 
|  | { | 
|  | /* If this is a local symbol reference, we just want to emit | 
|  | a RELATIVE reloc.  This can happen if it is a -Bsymbolic link, | 
|  | or a pie link, or the symbol was forced to be local because | 
|  | of a version file.  The entry in the global offset table will | 
|  | already have been initialized in the relocate_section function.  */ | 
|  | BFD_ASSERT ((h->got.offset & 1) != 0); | 
|  | asection *sec = h->root.u.def.section; | 
|  | rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE); | 
|  | rela.r_addend = (h->root.u.def.value | 
|  | + sec->output_section->vma | 
|  | + sec->output_offset); | 
|  | } | 
|  | else | 
|  | { | 
|  | BFD_ASSERT ((h->got.offset & 1) == 0); | 
|  | BFD_ASSERT (h->dynindx != -1); | 
|  | rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN); | 
|  | rela.r_addend = 0; | 
|  | } | 
|  |  | 
|  | bfd_put_NN (output_bfd, 0, | 
|  | sgot->contents + (h->got.offset & ~(bfd_vma) 1)); | 
|  |  | 
|  | if (use_elf_append_rela) | 
|  | riscv_elf_append_rela (output_bfd, srela, &rela); | 
|  | else | 
|  | { | 
|  | /* Use riscv_elf_append_rela to add the dynamic relocs into | 
|  | .rela.iplt may cause the overwrite problems.  Since we insert | 
|  | the relocs for PLT didn't handle the reloc_index of .rela.iplt, | 
|  | but the riscv_elf_append_rela adds the relocs to the place | 
|  | that are calculated from the reloc_index (in seqential). | 
|  |  | 
|  | One solution is that add these dynamic relocs (GOT IFUNC) | 
|  | from the last of .rela.iplt section.  */ | 
|  | bfd_vma iplt_idx = htab->last_iplt_index--; | 
|  | bfd_byte *loc = srela->contents | 
|  | + iplt_idx * sizeof (ElfNN_External_Rela); | 
|  | bed->s->swap_reloca_out (output_bfd, &rela, loc); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (h->needs_copy) | 
|  | { | 
|  | Elf_Internal_Rela rela; | 
|  | asection *s; | 
|  |  | 
|  | /* This symbols needs a copy reloc.  Set it up.  */ | 
|  | BFD_ASSERT (h->dynindx != -1); | 
|  |  | 
|  | rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value; | 
|  | rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY); | 
|  | rela.r_addend = 0; | 
|  | if (h->root.u.def.section == htab->elf.sdynrelro) | 
|  | s = htab->elf.sreldynrelro; | 
|  | else | 
|  | s = htab->elf.srelbss; | 
|  | riscv_elf_append_rela (output_bfd, s, &rela); | 
|  | } | 
|  |  | 
|  | /* Mark some specially defined symbols as absolute.  */ | 
|  | if (h == htab->elf.hdynamic | 
|  | || (h == htab->elf.hgot || h == htab->elf.hplt)) | 
|  | sym->st_shndx = SHN_ABS; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Finish up local dynamic symbol handling.  We set the contents of | 
|  | various dynamic sections here.  */ | 
|  |  | 
|  | static int | 
|  | riscv_elf_finish_local_dynamic_symbol (void **slot, void *inf) | 
|  | { | 
|  | struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) *slot; | 
|  | struct bfd_link_info *info = (struct bfd_link_info *) inf; | 
|  |  | 
|  | return riscv_elf_finish_dynamic_symbol (info->output_bfd, info, h, NULL); | 
|  | } | 
|  |  | 
|  | /* Finish up the dynamic sections.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info, | 
|  | bfd *dynobj, asection *sdyn) | 
|  | { | 
|  | struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | 
|  | size_t dynsize = bed->s->sizeof_dyn; | 
|  | bfd_byte *dyncon, *dynconend; | 
|  |  | 
|  | dynconend = sdyn->contents + sdyn->size; | 
|  | for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize) | 
|  | { | 
|  | Elf_Internal_Dyn dyn; | 
|  | asection *s; | 
|  |  | 
|  | bed->s->swap_dyn_in (dynobj, dyncon, &dyn); | 
|  |  | 
|  | switch (dyn.d_tag) | 
|  | { | 
|  | case DT_PLTGOT: | 
|  | s = htab->elf.sgotplt; | 
|  | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | 
|  | break; | 
|  | case DT_JMPREL: | 
|  | s = htab->elf.srelplt; | 
|  | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | 
|  | break; | 
|  | case DT_PLTRELSZ: | 
|  | s = htab->elf.srelplt; | 
|  | dyn.d_un.d_val = s->size; | 
|  | break; | 
|  | default: | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bed->s->swap_dyn_out (output_bfd, &dyn, dyncon); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | riscv_elf_finish_dynamic_sections (bfd *output_bfd, | 
|  | struct bfd_link_info *info) | 
|  | { | 
|  | bfd *dynobj; | 
|  | asection *sdyn; | 
|  | struct riscv_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = riscv_elf_hash_table (info); | 
|  | BFD_ASSERT (htab != NULL); | 
|  | dynobj = htab->elf.dynobj; | 
|  |  | 
|  | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); | 
|  |  | 
|  | if (elf_hash_table (info)->dynamic_sections_created) | 
|  | { | 
|  | asection *splt; | 
|  | bool ret; | 
|  |  | 
|  | splt = htab->elf.splt; | 
|  | BFD_ASSERT (splt != NULL && sdyn != NULL); | 
|  |  | 
|  | ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn); | 
|  |  | 
|  | if (!ret) | 
|  | return ret; | 
|  |  | 
|  | /* Fill in the head and tail entries in the procedure linkage table.  */ | 
|  | if (splt->size > 0) | 
|  | { | 
|  | int i; | 
|  | uint32_t plt_header[PLT_HEADER_INSNS]; | 
|  | ret = riscv_make_plt_header (output_bfd, | 
|  | sec_addr (htab->elf.sgotplt), | 
|  | sec_addr (splt), plt_header); | 
|  | if (!ret) | 
|  | return ret; | 
|  |  | 
|  | for (i = 0; i < PLT_HEADER_INSNS; i++) | 
|  | bfd_putl32 (plt_header[i], splt->contents + 4*i); | 
|  |  | 
|  | elf_section_data (splt->output_section)->this_hdr.sh_entsize | 
|  | = PLT_ENTRY_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (htab->elf.sgotplt) | 
|  | { | 
|  | asection *output_section = htab->elf.sgotplt->output_section; | 
|  |  | 
|  | if (bfd_is_abs_section (output_section)) | 
|  | { | 
|  | (*_bfd_error_handler) | 
|  | (_("discarded output section: `%pA'"), htab->elf.sgotplt); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (htab->elf.sgotplt->size > 0) | 
|  | { | 
|  | /* Write the first two entries in .got.plt, needed for the dynamic | 
|  | linker.  */ | 
|  | bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents); | 
|  | bfd_put_NN (output_bfd, (bfd_vma) 0, | 
|  | htab->elf.sgotplt->contents + GOT_ENTRY_SIZE); | 
|  | } | 
|  |  | 
|  | elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE; | 
|  | } | 
|  |  | 
|  | if (htab->elf.sgot) | 
|  | { | 
|  | asection *output_section = htab->elf.sgot->output_section; | 
|  |  | 
|  | if (htab->elf.sgot->size > 0) | 
|  | { | 
|  | /* Set the first entry in the global offset table to the address of | 
|  | the dynamic section.  */ | 
|  | bfd_vma val = sdyn ? sec_addr (sdyn) : 0; | 
|  | bfd_put_NN (output_bfd, val, htab->elf.sgot->contents); | 
|  | } | 
|  |  | 
|  | elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE; | 
|  | } | 
|  |  | 
|  | /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols.  */ | 
|  | htab_traverse (htab->loc_hash_table, | 
|  | riscv_elf_finish_local_dynamic_symbol, | 
|  | info); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return address for Ith PLT stub in section PLT, for relocation REL | 
|  | or (bfd_vma) -1 if it should not be included.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | riscv_elf_plt_sym_val (bfd_vma i, const asection *plt, | 
|  | const arelent *rel ATTRIBUTE_UNUSED) | 
|  | { | 
|  | return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE; | 
|  | } | 
|  |  | 
|  | static enum elf_reloc_type_class | 
|  | riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
|  | const asection *rel_sec ATTRIBUTE_UNUSED, | 
|  | const Elf_Internal_Rela *rela) | 
|  | { | 
|  | switch (ELFNN_R_TYPE (rela->r_info)) | 
|  | { | 
|  | case R_RISCV_RELATIVE: | 
|  | return reloc_class_relative; | 
|  | case R_RISCV_JUMP_SLOT: | 
|  | return reloc_class_plt; | 
|  | case R_RISCV_COPY: | 
|  | return reloc_class_copy; | 
|  | default: | 
|  | return reloc_class_normal; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Given the ELF header flags in FLAGS, it returns a string that describes the | 
|  | float ABI.  */ | 
|  |  | 
|  | static const char * | 
|  | riscv_float_abi_string (flagword flags) | 
|  | { | 
|  | switch (flags & EF_RISCV_FLOAT_ABI) | 
|  | { | 
|  | case EF_RISCV_FLOAT_ABI_SOFT: | 
|  | return "soft-float"; | 
|  | break; | 
|  | case EF_RISCV_FLOAT_ABI_SINGLE: | 
|  | return "single-float"; | 
|  | break; | 
|  | case EF_RISCV_FLOAT_ABI_DOUBLE: | 
|  | return "double-float"; | 
|  | break; | 
|  | case EF_RISCV_FLOAT_ABI_QUAD: | 
|  | return "quad-float"; | 
|  | break; | 
|  | default: | 
|  | abort (); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The information of architecture elf attributes.  */ | 
|  | static riscv_subset_list_t in_subsets; | 
|  | static riscv_subset_list_t out_subsets; | 
|  | static riscv_subset_list_t merged_subsets; | 
|  |  | 
|  | /* Predicator for standard extension.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_std_ext_p (const char *name) | 
|  | { | 
|  | return (strlen (name) == 1) && (name[0] != 'x') && (name[0] != 's'); | 
|  | } | 
|  |  | 
|  | /* Check if the versions are compatible.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_version_mismatch (bfd *ibfd, | 
|  | struct riscv_subset_t *in, | 
|  | struct riscv_subset_t *out) | 
|  | { | 
|  | if (in == NULL || out == NULL) | 
|  | return true; | 
|  |  | 
|  | /* Since there are no version conflicts for now, we just report | 
|  | warning when the versions are mis-matched.  */ | 
|  | if (in->major_version != out->major_version | 
|  | || in->minor_version != out->minor_version) | 
|  | { | 
|  | if ((in->major_version == RISCV_UNKNOWN_VERSION | 
|  | && in->minor_version == RISCV_UNKNOWN_VERSION) | 
|  | || (out->major_version == RISCV_UNKNOWN_VERSION | 
|  | && out->minor_version == RISCV_UNKNOWN_VERSION)) | 
|  | { | 
|  | /* Do not report the warning when the version of input | 
|  | or output is RISCV_UNKNOWN_VERSION, since the extension | 
|  | is added implicitly.  */ | 
|  | } | 
|  | else | 
|  | _bfd_error_handler | 
|  | (_("warning: %pB: mis-matched ISA version %d.%d for '%s' " | 
|  | "extension, the output version is %d.%d"), | 
|  | ibfd, | 
|  | in->major_version, | 
|  | in->minor_version, | 
|  | in->name, | 
|  | out->major_version, | 
|  | out->minor_version); | 
|  |  | 
|  | /* Update the output ISA versions to the newest ones.  */ | 
|  | if ((in->major_version > out->major_version) | 
|  | || (in->major_version == out->major_version | 
|  | && in->minor_version > out->minor_version)) | 
|  | { | 
|  | out->major_version = in->major_version; | 
|  | out->minor_version = in->minor_version; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return true if subset is 'i' or 'e'.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_i_or_e_p (bfd *ibfd, | 
|  | const char *arch, | 
|  | struct riscv_subset_t *subset) | 
|  | { | 
|  | if ((strcasecmp (subset->name, "e") != 0) | 
|  | && (strcasecmp (subset->name, "i") != 0)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("error: %pB: corrupted ISA string '%s'.  " | 
|  | "First letter should be 'i' or 'e' but got '%s'"), | 
|  | ibfd, arch, subset->name); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Merge standard extensions. | 
|  |  | 
|  | Return Value: | 
|  | Return FALSE if failed to merge. | 
|  |  | 
|  | Arguments: | 
|  | `bfd`: bfd handler. | 
|  | `in_arch`: Raw ISA string for input object. | 
|  | `out_arch`: Raw ISA string for output object. | 
|  | `pin`: Subset list for input object. | 
|  | `pout`: Subset list for output object.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_merge_std_ext (bfd *ibfd, | 
|  | const char *in_arch, | 
|  | const char *out_arch, | 
|  | struct riscv_subset_t **pin, | 
|  | struct riscv_subset_t **pout) | 
|  | { | 
|  | const char *standard_exts = "mafdqlcbjtpvn"; | 
|  | const char *p; | 
|  | struct riscv_subset_t *in = *pin; | 
|  | struct riscv_subset_t *out = *pout; | 
|  |  | 
|  | /* First letter should be 'i' or 'e'.  */ | 
|  | if (!riscv_i_or_e_p (ibfd, in_arch, in)) | 
|  | return false; | 
|  |  | 
|  | if (!riscv_i_or_e_p (ibfd, out_arch, out)) | 
|  | return false; | 
|  |  | 
|  | if (strcasecmp (in->name, out->name) != 0) | 
|  | { | 
|  | /* TODO: We might allow merge 'i' with 'e'.  */ | 
|  | _bfd_error_handler | 
|  | (_("error: %pB: mis-matched ISA string to merge '%s' and '%s'"), | 
|  | ibfd, in->name, out->name); | 
|  | return false; | 
|  | } | 
|  | else if (!riscv_version_mismatch (ibfd, in, out)) | 
|  | return false; | 
|  | else | 
|  | riscv_add_subset (&merged_subsets, | 
|  | out->name, out->major_version, out->minor_version); | 
|  |  | 
|  | in = in->next; | 
|  | out = out->next; | 
|  |  | 
|  | /* Handle standard extension first.  */ | 
|  | for (p = standard_exts; *p; ++p) | 
|  | { | 
|  | struct riscv_subset_t *ext_in, *ext_out, *ext_merged; | 
|  | char find_ext[2] = {*p, '\0'}; | 
|  | bool find_in, find_out; | 
|  |  | 
|  | find_in = riscv_lookup_subset (&in_subsets, find_ext, &ext_in); | 
|  | find_out = riscv_lookup_subset (&out_subsets, find_ext, &ext_out); | 
|  |  | 
|  | if (!find_in && !find_out) | 
|  | continue; | 
|  |  | 
|  | if (find_in | 
|  | && find_out | 
|  | && !riscv_version_mismatch (ibfd, ext_in, ext_out)) | 
|  | return false; | 
|  |  | 
|  | ext_merged = find_out ? ext_out : ext_in; | 
|  | riscv_add_subset (&merged_subsets, ext_merged->name, | 
|  | ext_merged->major_version, ext_merged->minor_version); | 
|  | } | 
|  |  | 
|  | /* Skip all standard extensions.  */ | 
|  | while ((in != NULL) && riscv_std_ext_p (in->name)) in = in->next; | 
|  | while ((out != NULL) && riscv_std_ext_p (out->name)) out = out->next; | 
|  |  | 
|  | *pin = in; | 
|  | *pout = out; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Merge multi letter extensions.  PIN is a pointer to the head of the input | 
|  | object subset list.  Likewise for POUT and the output object.  Return TRUE | 
|  | on success and FALSE when a conflict is found.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_merge_multi_letter_ext (bfd *ibfd, | 
|  | riscv_subset_t **pin, | 
|  | riscv_subset_t **pout) | 
|  | { | 
|  | riscv_subset_t *in = *pin; | 
|  | riscv_subset_t *out = *pout; | 
|  | riscv_subset_t *tail; | 
|  |  | 
|  | int cmp; | 
|  |  | 
|  | while (in && out) | 
|  | { | 
|  | cmp = riscv_compare_subsets (in->name, out->name); | 
|  |  | 
|  | if (cmp < 0) | 
|  | { | 
|  | /* `in' comes before `out', append `in' and increment.  */ | 
|  | riscv_add_subset (&merged_subsets, in->name, in->major_version, | 
|  | in->minor_version); | 
|  | in = in->next; | 
|  | } | 
|  | else if (cmp > 0) | 
|  | { | 
|  | /* `out' comes before `in', append `out' and increment.  */ | 
|  | riscv_add_subset (&merged_subsets, out->name, out->major_version, | 
|  | out->minor_version); | 
|  | out = out->next; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Both present, check version and increment both.  */ | 
|  | if (!riscv_version_mismatch (ibfd, in, out)) | 
|  | return false; | 
|  |  | 
|  | riscv_add_subset (&merged_subsets, out->name, out->major_version, | 
|  | out->minor_version); | 
|  | out = out->next; | 
|  | in = in->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (in || out) | 
|  | { | 
|  | /* If we're here, either `in' or `out' is running longer than | 
|  | the other. So, we need to append the corresponding tail.  */ | 
|  | tail = in ? in : out; | 
|  | while (tail) | 
|  | { | 
|  | riscv_add_subset (&merged_subsets, tail->name, tail->major_version, | 
|  | tail->minor_version); | 
|  | tail = tail->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Merge Tag_RISCV_arch attribute.  */ | 
|  |  | 
|  | static char * | 
|  | riscv_merge_arch_attr_info (bfd *ibfd, char *in_arch, char *out_arch) | 
|  | { | 
|  | riscv_subset_t *in, *out; | 
|  | char *merged_arch_str; | 
|  |  | 
|  | unsigned xlen_in, xlen_out; | 
|  | merged_subsets.head = NULL; | 
|  | merged_subsets.tail = NULL; | 
|  |  | 
|  | riscv_parse_subset_t rpe_in; | 
|  | riscv_parse_subset_t rpe_out; | 
|  |  | 
|  | /* Only assembler needs to check the default version of ISA, so just set | 
|  | the rpe_in.get_default_version and rpe_out.get_default_version to NULL.  */ | 
|  | rpe_in.subset_list = &in_subsets; | 
|  | rpe_in.error_handler = _bfd_error_handler; | 
|  | rpe_in.xlen = &xlen_in; | 
|  | rpe_in.isa_spec = ISA_SPEC_CLASS_NONE; | 
|  | rpe_in.check_unknown_prefixed_ext = false; | 
|  |  | 
|  | rpe_out.subset_list = &out_subsets; | 
|  | rpe_out.error_handler = _bfd_error_handler; | 
|  | rpe_out.xlen = &xlen_out; | 
|  | rpe_out.isa_spec = ISA_SPEC_CLASS_NONE; | 
|  | rpe_out.check_unknown_prefixed_ext = false; | 
|  |  | 
|  | if (in_arch == NULL && out_arch == NULL) | 
|  | return NULL; | 
|  |  | 
|  | if (in_arch == NULL && out_arch != NULL) | 
|  | return out_arch; | 
|  |  | 
|  | if (in_arch != NULL && out_arch == NULL) | 
|  | return in_arch; | 
|  |  | 
|  | /* Parse subset from ISA string.  */ | 
|  | if (!riscv_parse_subset (&rpe_in, in_arch)) | 
|  | return NULL; | 
|  |  | 
|  | if (!riscv_parse_subset (&rpe_out, out_arch)) | 
|  | return NULL; | 
|  |  | 
|  | /* Checking XLEN.  */ | 
|  | if (xlen_out != xlen_in) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("error: %pB: ISA string of input (%s) doesn't match " | 
|  | "output (%s)"), ibfd, in_arch, out_arch); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Merge subset list.  */ | 
|  | in = in_subsets.head; | 
|  | out = out_subsets.head; | 
|  |  | 
|  | /* Merge standard extension.  */ | 
|  | if (!riscv_merge_std_ext (ibfd, in_arch, out_arch, &in, &out)) | 
|  | return NULL; | 
|  |  | 
|  | /* Merge all non-single letter extensions with single call.  */ | 
|  | if (!riscv_merge_multi_letter_ext (ibfd, &in, &out)) | 
|  | return NULL; | 
|  |  | 
|  | if (xlen_in != xlen_out) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("error: %pB: XLEN of input (%u) doesn't match " | 
|  | "output (%u)"), ibfd, xlen_in, xlen_out); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (xlen_in != ARCH_SIZE) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("error: %pB: unsupported XLEN (%u), you might be " | 
|  | "using wrong emulation"), ibfd, xlen_in); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | merged_arch_str = riscv_arch_str (ARCH_SIZE, &merged_subsets); | 
|  |  | 
|  | /* Release the subset lists.  */ | 
|  | riscv_release_subset_list (&in_subsets); | 
|  | riscv_release_subset_list (&out_subsets); | 
|  | riscv_release_subset_list (&merged_subsets); | 
|  |  | 
|  | return merged_arch_str; | 
|  | } | 
|  |  | 
|  | /* Merge object attributes from IBFD into output_bfd of INFO. | 
|  | Raise an error if there are conflicting attributes.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_merge_attributes (bfd *ibfd, struct bfd_link_info *info) | 
|  | { | 
|  | bfd *obfd = info->output_bfd; | 
|  | obj_attribute *in_attr; | 
|  | obj_attribute *out_attr; | 
|  | bool result = true; | 
|  | bool priv_attrs_merged = false; | 
|  | const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section; | 
|  | unsigned int i; | 
|  |  | 
|  | /* Skip linker created files.  */ | 
|  | if (ibfd->flags & BFD_LINKER_CREATED) | 
|  | return true; | 
|  |  | 
|  | /* Skip any input that doesn't have an attribute section. | 
|  | This enables to link object files without attribute section with | 
|  | any others.  */ | 
|  | if (bfd_get_section_by_name (ibfd, sec_name) == NULL) | 
|  | return true; | 
|  |  | 
|  | if (!elf_known_obj_attributes_proc (obfd)[0].i) | 
|  | { | 
|  | /* This is the first object.  Copy the attributes.  */ | 
|  | _bfd_elf_copy_obj_attributes (ibfd, obfd); | 
|  |  | 
|  | out_attr = elf_known_obj_attributes_proc (obfd); | 
|  |  | 
|  | /* Use the Tag_null value to indicate the attributes have been | 
|  | initialized.  */ | 
|  | out_attr[0].i = 1; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | in_attr = elf_known_obj_attributes_proc (ibfd); | 
|  | out_attr = elf_known_obj_attributes_proc (obfd); | 
|  |  | 
|  | for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++) | 
|  | { | 
|  | switch (i) | 
|  | { | 
|  | case Tag_RISCV_arch: | 
|  | if (!out_attr[Tag_RISCV_arch].s) | 
|  | out_attr[Tag_RISCV_arch].s = in_attr[Tag_RISCV_arch].s; | 
|  | else if (in_attr[Tag_RISCV_arch].s | 
|  | && out_attr[Tag_RISCV_arch].s) | 
|  | { | 
|  | /* Check compatible.  */ | 
|  | char *merged_arch = | 
|  | riscv_merge_arch_attr_info (ibfd, | 
|  | in_attr[Tag_RISCV_arch].s, | 
|  | out_attr[Tag_RISCV_arch].s); | 
|  | if (merged_arch == NULL) | 
|  | { | 
|  | result = false; | 
|  | out_attr[Tag_RISCV_arch].s = ""; | 
|  | } | 
|  | else | 
|  | out_attr[Tag_RISCV_arch].s = merged_arch; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Tag_RISCV_priv_spec: | 
|  | case Tag_RISCV_priv_spec_minor: | 
|  | case Tag_RISCV_priv_spec_revision: | 
|  | /* If we have handled the privileged elf attributes, then skip it.  */ | 
|  | if (!priv_attrs_merged) | 
|  | { | 
|  | unsigned int Tag_a = Tag_RISCV_priv_spec; | 
|  | unsigned int Tag_b = Tag_RISCV_priv_spec_minor; | 
|  | unsigned int Tag_c = Tag_RISCV_priv_spec_revision; | 
|  | enum riscv_spec_class in_priv_spec = PRIV_SPEC_CLASS_NONE; | 
|  | enum riscv_spec_class out_priv_spec = PRIV_SPEC_CLASS_NONE; | 
|  |  | 
|  | /* Get the privileged spec class from elf attributes.  */ | 
|  | riscv_get_priv_spec_class_from_numbers (in_attr[Tag_a].i, | 
|  | in_attr[Tag_b].i, | 
|  | in_attr[Tag_c].i, | 
|  | &in_priv_spec); | 
|  | riscv_get_priv_spec_class_from_numbers (out_attr[Tag_a].i, | 
|  | out_attr[Tag_b].i, | 
|  | out_attr[Tag_c].i, | 
|  | &out_priv_spec); | 
|  |  | 
|  | /* Allow to link the object without the privileged specs.  */ | 
|  | if (out_priv_spec == PRIV_SPEC_CLASS_NONE) | 
|  | { | 
|  | out_attr[Tag_a].i = in_attr[Tag_a].i; | 
|  | out_attr[Tag_b].i = in_attr[Tag_b].i; | 
|  | out_attr[Tag_c].i = in_attr[Tag_c].i; | 
|  | } | 
|  | else if (in_priv_spec != PRIV_SPEC_CLASS_NONE | 
|  | && in_priv_spec != out_priv_spec) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("warning: %pB use privileged spec version %u.%u.%u but " | 
|  | "the output use version %u.%u.%u"), | 
|  | ibfd, | 
|  | in_attr[Tag_a].i, | 
|  | in_attr[Tag_b].i, | 
|  | in_attr[Tag_c].i, | 
|  | out_attr[Tag_a].i, | 
|  | out_attr[Tag_b].i, | 
|  | out_attr[Tag_c].i); | 
|  |  | 
|  | /* The privileged spec v1.9.1 can not be linked with others | 
|  | since the conflicts, so we plan to drop it in a year or | 
|  | two.  */ | 
|  | if (in_priv_spec == PRIV_SPEC_CLASS_1P9P1 | 
|  | || out_priv_spec == PRIV_SPEC_CLASS_1P9P1) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("warning: privileged spec version 1.9.1 can not be " | 
|  | "linked with other spec versions")); | 
|  | } | 
|  |  | 
|  | /* Update the output privileged spec to the newest one.  */ | 
|  | if (in_priv_spec > out_priv_spec) | 
|  | { | 
|  | out_attr[Tag_a].i = in_attr[Tag_a].i; | 
|  | out_attr[Tag_b].i = in_attr[Tag_b].i; | 
|  | out_attr[Tag_c].i = in_attr[Tag_c].i; | 
|  | } | 
|  | } | 
|  | priv_attrs_merged = true; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Tag_RISCV_unaligned_access: | 
|  | out_attr[i].i |= in_attr[i].i; | 
|  | break; | 
|  |  | 
|  | case Tag_RISCV_stack_align: | 
|  | if (out_attr[i].i == 0) | 
|  | out_attr[i].i = in_attr[i].i; | 
|  | else if (in_attr[i].i != 0 | 
|  | && out_attr[i].i != 0 | 
|  | && out_attr[i].i != in_attr[i].i) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("error: %pB use %u-byte stack aligned but the output " | 
|  | "use %u-byte stack aligned"), | 
|  | ibfd, in_attr[i].i, out_attr[i].i); | 
|  | result = false; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | result &= _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i); | 
|  | } | 
|  |  | 
|  | /* If out_attr was copied from in_attr then it won't have a type yet.  */ | 
|  | if (in_attr[i].type && !out_attr[i].type) | 
|  | out_attr[i].type = in_attr[i].type; | 
|  | } | 
|  |  | 
|  | /* Merge Tag_compatibility attributes and any common GNU ones.  */ | 
|  | if (!_bfd_elf_merge_object_attributes (ibfd, info)) | 
|  | return false; | 
|  |  | 
|  | /* Check for any attributes not known on RISC-V.  */ | 
|  | result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Merge backend specific data from an object file to the output | 
|  | object file when linking.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) | 
|  | { | 
|  | bfd *obfd = info->output_bfd; | 
|  | flagword new_flags, old_flags; | 
|  |  | 
|  | if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd)) | 
|  | return true; | 
|  |  | 
|  | if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) | 
|  | { | 
|  | (*_bfd_error_handler) | 
|  | (_("%pB: ABI is incompatible with that of the selected emulation:\n" | 
|  | "  target emulation `%s' does not match `%s'"), | 
|  | ibfd, bfd_get_target (ibfd), bfd_get_target (obfd)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!_bfd_elf_merge_object_attributes (ibfd, info)) | 
|  | return false; | 
|  |  | 
|  | if (!riscv_merge_attributes (ibfd, info)) | 
|  | return false; | 
|  |  | 
|  | /* Check to see if the input BFD actually contains any sections.  If not, | 
|  | its flags may not have been initialized either, but it cannot actually | 
|  | cause any incompatibility.  Do not short-circuit dynamic objects; their | 
|  | section list may be emptied by elf_link_add_object_symbols. | 
|  |  | 
|  | Also check to see if there are no code sections in the input.  In this | 
|  | case, there is no need to check for code specific flags.  */ | 
|  | if (!(ibfd->flags & DYNAMIC)) | 
|  | { | 
|  | bool null_input_bfd = true; | 
|  | bool only_data_sections = true; | 
|  | asection *sec; | 
|  |  | 
|  | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | 
|  | { | 
|  | null_input_bfd = false; | 
|  |  | 
|  | if ((bfd_section_flags (sec) | 
|  | & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) | 
|  | == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) | 
|  | { | 
|  | only_data_sections = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (null_input_bfd || only_data_sections) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | new_flags = elf_elfheader (ibfd)->e_flags; | 
|  | old_flags = elf_elfheader (obfd)->e_flags; | 
|  |  | 
|  | if (!elf_flags_init (obfd)) | 
|  | { | 
|  | elf_flags_init (obfd) = true; | 
|  | elf_elfheader (obfd)->e_flags = new_flags; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Disallow linking different float ABIs.  */ | 
|  | if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI) | 
|  | { | 
|  | (*_bfd_error_handler) | 
|  | (_("%pB: can't link %s modules with %s modules"), ibfd, | 
|  | riscv_float_abi_string (new_flags), | 
|  | riscv_float_abi_string (old_flags)); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* Disallow linking RVE and non-RVE.  */ | 
|  | if ((old_flags ^ new_flags) & EF_RISCV_RVE) | 
|  | { | 
|  | (*_bfd_error_handler) | 
|  | (_("%pB: can't link RVE with other target"), ibfd); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* Allow linking RVC and non-RVC, and keep the RVC flag.  */ | 
|  | elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC; | 
|  |  | 
|  | return true; | 
|  |  | 
|  | fail: | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Delete some bytes from a section while relaxing.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count, | 
|  | struct bfd_link_info *link_info) | 
|  | { | 
|  | unsigned int i, symcount; | 
|  | bfd_vma toaddr = sec->size; | 
|  | struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd); | 
|  | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  | unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | 
|  | struct bfd_elf_section_data *data = elf_section_data (sec); | 
|  | bfd_byte *contents = data->this_hdr.contents; | 
|  |  | 
|  | /* Actually delete the bytes.  */ | 
|  | sec->size -= count; | 
|  | memmove (contents + addr, contents + addr + count, toaddr - addr - count); | 
|  |  | 
|  | /* Adjust the location of all of the relocs.  Note that we need not | 
|  | adjust the addends, since all PC-relative references must be against | 
|  | symbols, which we will adjust below.  */ | 
|  | for (i = 0; i < sec->reloc_count; i++) | 
|  | if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr) | 
|  | data->relocs[i].r_offset -= count; | 
|  |  | 
|  | /* Adjust the local symbols defined in this section.  */ | 
|  | for (i = 0; i < symtab_hdr->sh_info; i++) | 
|  | { | 
|  | Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i; | 
|  | if (sym->st_shndx == sec_shndx) | 
|  | { | 
|  | /* If the symbol is in the range of memory we just moved, we | 
|  | have to adjust its value.  */ | 
|  | if (sym->st_value > addr && sym->st_value <= toaddr) | 
|  | sym->st_value -= count; | 
|  |  | 
|  | /* If the symbol *spans* the bytes we just deleted (i.e. its | 
|  | *end* is in the moved bytes but its *start* isn't), then we | 
|  | must adjust its size. | 
|  |  | 
|  | This test needs to use the original value of st_value, otherwise | 
|  | we might accidentally decrease size when deleting bytes right | 
|  | before the symbol.  But since deleted relocs can't span across | 
|  | symbols, we can't have both a st_value and a st_size decrease, | 
|  | so it is simpler to just use an else.  */ | 
|  | else if (sym->st_value <= addr | 
|  | && sym->st_value + sym->st_size > addr | 
|  | && sym->st_value + sym->st_size <= toaddr) | 
|  | sym->st_size -= count; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now adjust the global symbols defined in this section.  */ | 
|  | symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym)) | 
|  | - symtab_hdr->sh_info); | 
|  |  | 
|  | for (i = 0; i < symcount; i++) | 
|  | { | 
|  | struct elf_link_hash_entry *sym_hash = sym_hashes[i]; | 
|  |  | 
|  | /* The '--wrap SYMBOL' option is causing a pain when the object file, | 
|  | containing the definition of __wrap_SYMBOL, includes a direct | 
|  | call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference | 
|  | the same symbol (which is __wrap_SYMBOL), but still exist as two | 
|  | different symbols in 'sym_hashes', we don't want to adjust | 
|  | the global symbol __wrap_SYMBOL twice. | 
|  |  | 
|  | The same problem occurs with symbols that are versioned_hidden, as | 
|  | foo becomes an alias for foo@BAR, and hence they need the same | 
|  | treatment.  */ | 
|  | if (link_info->wrap_hash != NULL | 
|  | || sym_hash->versioned != unversioned) | 
|  | { | 
|  | struct elf_link_hash_entry **cur_sym_hashes; | 
|  |  | 
|  | /* Loop only over the symbols which have already been checked.  */ | 
|  | for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i]; | 
|  | cur_sym_hashes++) | 
|  | { | 
|  | /* If the current symbol is identical to 'sym_hash', that means | 
|  | the symbol was already adjusted (or at least checked).  */ | 
|  | if (*cur_sym_hashes == sym_hash) | 
|  | break; | 
|  | } | 
|  | /* Don't adjust the symbol again.  */ | 
|  | if (cur_sym_hashes < &sym_hashes[i]) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((sym_hash->root.type == bfd_link_hash_defined | 
|  | || sym_hash->root.type == bfd_link_hash_defweak) | 
|  | && sym_hash->root.u.def.section == sec) | 
|  | { | 
|  | /* As above, adjust the value if needed.  */ | 
|  | if (sym_hash->root.u.def.value > addr | 
|  | && sym_hash->root.u.def.value <= toaddr) | 
|  | sym_hash->root.u.def.value -= count; | 
|  |  | 
|  | /* As above, adjust the size if needed.  */ | 
|  | else if (sym_hash->root.u.def.value <= addr | 
|  | && sym_hash->root.u.def.value + sym_hash->size > addr | 
|  | && sym_hash->root.u.def.value + sym_hash->size <= toaddr) | 
|  | sym_hash->size -= count; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* A second format for recording PC-relative hi relocations.  This stores the | 
|  | information required to relax them to GP-relative addresses.  */ | 
|  |  | 
|  | typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc; | 
|  | struct riscv_pcgp_hi_reloc | 
|  | { | 
|  | bfd_vma hi_sec_off; | 
|  | bfd_vma hi_addend; | 
|  | bfd_vma hi_addr; | 
|  | unsigned hi_sym; | 
|  | asection *sym_sec; | 
|  | bool undefined_weak; | 
|  | riscv_pcgp_hi_reloc *next; | 
|  | }; | 
|  |  | 
|  | typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc; | 
|  | struct riscv_pcgp_lo_reloc | 
|  | { | 
|  | bfd_vma hi_sec_off; | 
|  | riscv_pcgp_lo_reloc *next; | 
|  | }; | 
|  |  | 
|  | typedef struct | 
|  | { | 
|  | riscv_pcgp_hi_reloc *hi; | 
|  | riscv_pcgp_lo_reloc *lo; | 
|  | } riscv_pcgp_relocs; | 
|  |  | 
|  | /* Initialize the pcgp reloc info in P.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_init_pcgp_relocs (riscv_pcgp_relocs *p) | 
|  | { | 
|  | p->hi = NULL; | 
|  | p->lo = NULL; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Free the pcgp reloc info in P.  */ | 
|  |  | 
|  | static void | 
|  | riscv_free_pcgp_relocs (riscv_pcgp_relocs *p, | 
|  | bfd *abfd ATTRIBUTE_UNUSED, | 
|  | asection *sec ATTRIBUTE_UNUSED) | 
|  | { | 
|  | riscv_pcgp_hi_reloc *c; | 
|  | riscv_pcgp_lo_reloc *l; | 
|  |  | 
|  | for (c = p->hi; c != NULL; ) | 
|  | { | 
|  | riscv_pcgp_hi_reloc *next = c->next; | 
|  | free (c); | 
|  | c = next; | 
|  | } | 
|  |  | 
|  | for (l = p->lo; l != NULL; ) | 
|  | { | 
|  | riscv_pcgp_lo_reloc *next = l->next; | 
|  | free (l); | 
|  | l = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Record pcgp hi part reloc info in P, using HI_SEC_OFF as the lookup index. | 
|  | The HI_ADDEND, HI_ADDR, HI_SYM, and SYM_SEC args contain info required to | 
|  | relax the corresponding lo part reloc.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off, | 
|  | bfd_vma hi_addend, bfd_vma hi_addr, | 
|  | unsigned hi_sym, asection *sym_sec, | 
|  | bool undefined_weak) | 
|  | { | 
|  | riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof (*new)); | 
|  | if (!new) | 
|  | return false; | 
|  | new->hi_sec_off = hi_sec_off; | 
|  | new->hi_addend = hi_addend; | 
|  | new->hi_addr = hi_addr; | 
|  | new->hi_sym = hi_sym; | 
|  | new->sym_sec = sym_sec; | 
|  | new->undefined_weak = undefined_weak; | 
|  | new->next = p->hi; | 
|  | p->hi = new; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Look up hi part pcgp reloc info in P, using HI_SEC_OFF as the lookup index. | 
|  | This is used by a lo part reloc to find the corresponding hi part reloc.  */ | 
|  |  | 
|  | static riscv_pcgp_hi_reloc * | 
|  | riscv_find_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off) | 
|  | { | 
|  | riscv_pcgp_hi_reloc *c; | 
|  |  | 
|  | for (c = p->hi; c != NULL; c = c->next) | 
|  | if (c->hi_sec_off == hi_sec_off) | 
|  | return c; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Record pcgp lo part reloc info in P, using HI_SEC_OFF as the lookup info. | 
|  | This is used to record relocs that can't be relaxed.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off) | 
|  | { | 
|  | riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof (*new)); | 
|  | if (!new) | 
|  | return false; | 
|  | new->hi_sec_off = hi_sec_off; | 
|  | new->next = p->lo; | 
|  | p->lo = new; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Look up lo part pcgp reloc info in P, using HI_SEC_OFF as the lookup index. | 
|  | This is used by a hi part reloc to find the corresponding lo part reloc.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off) | 
|  | { | 
|  | riscv_pcgp_lo_reloc *c; | 
|  |  | 
|  | for (c = p->lo; c != NULL; c = c->next) | 
|  | if (c->hi_sec_off == hi_sec_off) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | typedef bool (*relax_func_t) (bfd *, asection *, asection *, | 
|  | struct bfd_link_info *, | 
|  | Elf_Internal_Rela *, | 
|  | bfd_vma, bfd_vma, bfd_vma, bool *, | 
|  | riscv_pcgp_relocs *, | 
|  | bool undefined_weak); | 
|  |  | 
|  | /* Relax AUIPC + JALR into JAL.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec, | 
|  | struct bfd_link_info *link_info, | 
|  | Elf_Internal_Rela *rel, | 
|  | bfd_vma symval, | 
|  | bfd_vma max_alignment, | 
|  | bfd_vma reserve_size ATTRIBUTE_UNUSED, | 
|  | bool *again, | 
|  | riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED, | 
|  | bool undefined_weak ATTRIBUTE_UNUSED) | 
|  | { | 
|  | bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; | 
|  | bfd_vma foff = symval - (sec_addr (sec) + rel->r_offset); | 
|  | bool near_zero = (symval + RISCV_IMM_REACH / 2) < RISCV_IMM_REACH; | 
|  | bfd_vma auipc, jalr; | 
|  | int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC; | 
|  |  | 
|  | /* If the call crosses section boundaries, an alignment directive could | 
|  | cause the PC-relative offset to later increase, so we need to add in the | 
|  | max alignment of any section inclusive from the call to the target. | 
|  | Otherwise, we only need to use the alignment of the current section.  */ | 
|  | if (VALID_JTYPE_IMM (foff)) | 
|  | { | 
|  | if (sym_sec->output_section == sec->output_section | 
|  | && sym_sec->output_section != bfd_abs_section_ptr) | 
|  | max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power; | 
|  | foff += ((bfd_signed_vma) foff < 0 ? -max_alignment : max_alignment); | 
|  | } | 
|  |  | 
|  | /* See if this function call can be shortened.  */ | 
|  | if (!VALID_JTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero)) | 
|  | return true; | 
|  |  | 
|  | /* Shorten the function call.  */ | 
|  | BFD_ASSERT (rel->r_offset + 8 <= sec->size); | 
|  |  | 
|  | auipc = bfd_getl32 (contents + rel->r_offset); | 
|  | jalr = bfd_getl32 (contents + rel->r_offset + 4); | 
|  | rd = (jalr >> OP_SH_RD) & OP_MASK_RD; | 
|  | rvc = rvc && VALID_CJTYPE_IMM (foff); | 
|  |  | 
|  | /* C.J exists on RV32 and RV64, but C.JAL is RV32-only.  */ | 
|  | rvc = rvc && (rd == 0 || (rd == X_RA && ARCH_SIZE == 32)); | 
|  |  | 
|  | if (rvc) | 
|  | { | 
|  | /* Relax to C.J[AL] rd, addr.  */ | 
|  | r_type = R_RISCV_RVC_JUMP; | 
|  | auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL; | 
|  | len = 2; | 
|  | } | 
|  | else if (VALID_JTYPE_IMM (foff)) | 
|  | { | 
|  | /* Relax to JAL rd, addr.  */ | 
|  | r_type = R_RISCV_JAL; | 
|  | auipc = MATCH_JAL | (rd << OP_SH_RD); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Near zero, relax to JALR rd, x0, addr.  */ | 
|  | r_type = R_RISCV_LO12_I; | 
|  | auipc = MATCH_JALR | (rd << OP_SH_RD); | 
|  | } | 
|  |  | 
|  | /* Replace the R_RISCV_CALL reloc.  */ | 
|  | rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type); | 
|  | /* Replace the AUIPC.  */ | 
|  | riscv_put_insn (8 * len, auipc, contents + rel->r_offset); | 
|  |  | 
|  | /* Delete unnecessary JALR.  */ | 
|  | *again = true; | 
|  | return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len, | 
|  | link_info); | 
|  | } | 
|  |  | 
|  | /* Traverse all output sections and return the max alignment.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | _bfd_riscv_get_max_alignment (asection *sec) | 
|  | { | 
|  | unsigned int max_alignment_power = 0; | 
|  | asection *o; | 
|  |  | 
|  | for (o = sec->output_section->owner->sections; o != NULL; o = o->next) | 
|  | { | 
|  | if (o->alignment_power > max_alignment_power) | 
|  | max_alignment_power = o->alignment_power; | 
|  | } | 
|  |  | 
|  | return (bfd_vma) 1 << max_alignment_power; | 
|  | } | 
|  |  | 
|  | /* Relax non-PIC global variable references to GP-relative references.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_riscv_relax_lui (bfd *abfd, | 
|  | asection *sec, | 
|  | asection *sym_sec, | 
|  | struct bfd_link_info *link_info, | 
|  | Elf_Internal_Rela *rel, | 
|  | bfd_vma symval, | 
|  | bfd_vma max_alignment, | 
|  | bfd_vma reserve_size, | 
|  | bool *again, | 
|  | riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED, | 
|  | bool undefined_weak) | 
|  | { | 
|  | bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; | 
|  | bfd_vma gp = riscv_global_pointer_value (link_info); | 
|  | int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC; | 
|  |  | 
|  | BFD_ASSERT (rel->r_offset + 4 <= sec->size); | 
|  |  | 
|  | if (gp) | 
|  | { | 
|  | /* If gp and the symbol are in the same output section, which is not the | 
|  | abs section, then consider only that output section's alignment.  */ | 
|  | struct bfd_link_hash_entry *h = | 
|  | bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, false, false, | 
|  | true); | 
|  | if (h->u.def.section->output_section == sym_sec->output_section | 
|  | && sym_sec->output_section != bfd_abs_section_ptr) | 
|  | max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power; | 
|  | } | 
|  |  | 
|  | /* Is the reference in range of x0 or gp? | 
|  | Valid gp range conservatively because of alignment issue.  */ | 
|  | if (undefined_weak | 
|  | || (VALID_ITYPE_IMM (symval) | 
|  | || (symval >= gp | 
|  | && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size)) | 
|  | || (symval < gp | 
|  | && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))) | 
|  | { | 
|  | unsigned sym = ELFNN_R_SYM (rel->r_info); | 
|  | switch (ELFNN_R_TYPE (rel->r_info)) | 
|  | { | 
|  | case R_RISCV_LO12_I: | 
|  | if (undefined_weak) | 
|  | { | 
|  | /* Change the RS1 to zero.  */ | 
|  | bfd_vma insn = bfd_getl32 (contents + rel->r_offset); | 
|  | insn &= ~(OP_MASK_RS1 << OP_SH_RS1); | 
|  | bfd_putl32 (insn, contents + rel->r_offset); | 
|  | } | 
|  | else | 
|  | rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I); | 
|  | return true; | 
|  |  | 
|  | case R_RISCV_LO12_S: | 
|  | if (undefined_weak) | 
|  | { | 
|  | /* Change the RS1 to zero.  */ | 
|  | bfd_vma insn = bfd_getl32 (contents + rel->r_offset); | 
|  | insn &= ~(OP_MASK_RS1 << OP_SH_RS1); | 
|  | bfd_putl32 (insn, contents + rel->r_offset); | 
|  | } | 
|  | else | 
|  | rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S); | 
|  | return true; | 
|  |  | 
|  | case R_RISCV_HI20: | 
|  | /* We can delete the unnecessary LUI and reloc.  */ | 
|  | rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE); | 
|  | *again = true; | 
|  | return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, | 
|  | link_info); | 
|  |  | 
|  | default: | 
|  | abort (); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Can we relax LUI to C.LUI?  Alignment might move the section forward; | 
|  | account for this assuming page alignment at worst. In the presence of | 
|  | RELRO segment the linker aligns it by one page size, therefore sections | 
|  | after the segment can be moved more than one page. */ | 
|  |  | 
|  | if (use_rvc | 
|  | && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20 | 
|  | && VALID_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (symval)) | 
|  | && VALID_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (symval) | 
|  | + (link_info->relro ? 2 * ELF_MAXPAGESIZE | 
|  | : ELF_MAXPAGESIZE))) | 
|  | { | 
|  | /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp).  */ | 
|  | bfd_vma lui = bfd_getl32 (contents + rel->r_offset); | 
|  | unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD; | 
|  | if (rd == 0 || rd == X_SP) | 
|  | return true; | 
|  |  | 
|  | lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI; | 
|  | bfd_putl32 (lui, contents + rel->r_offset); | 
|  |  | 
|  | /* Replace the R_RISCV_HI20 reloc.  */ | 
|  | rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI); | 
|  |  | 
|  | *again = true; | 
|  | return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2, | 
|  | link_info); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Relax non-PIC TLS references to TP-relative references.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_riscv_relax_tls_le (bfd *abfd, | 
|  | asection *sec, | 
|  | asection *sym_sec ATTRIBUTE_UNUSED, | 
|  | struct bfd_link_info *link_info, | 
|  | Elf_Internal_Rela *rel, | 
|  | bfd_vma symval, | 
|  | bfd_vma max_alignment ATTRIBUTE_UNUSED, | 
|  | bfd_vma reserve_size ATTRIBUTE_UNUSED, | 
|  | bool *again, | 
|  | riscv_pcgp_relocs *prcel_relocs ATTRIBUTE_UNUSED, | 
|  | bool undefined_weak ATTRIBUTE_UNUSED) | 
|  | { | 
|  | /* See if this symbol is in range of tp.  */ | 
|  | if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0) | 
|  | return true; | 
|  |  | 
|  | BFD_ASSERT (rel->r_offset + 4 <= sec->size); | 
|  | switch (ELFNN_R_TYPE (rel->r_info)) | 
|  | { | 
|  | case R_RISCV_TPREL_LO12_I: | 
|  | rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I); | 
|  | return true; | 
|  |  | 
|  | case R_RISCV_TPREL_LO12_S: | 
|  | rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S); | 
|  | return true; | 
|  |  | 
|  | case R_RISCV_TPREL_HI20: | 
|  | case R_RISCV_TPREL_ADD: | 
|  | /* We can delete the unnecessary instruction and reloc.  */ | 
|  | rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE); | 
|  | *again = true; | 
|  | return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info); | 
|  |  | 
|  | default: | 
|  | abort (); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. | 
|  | Once we've handled an R_RISCV_ALIGN, we can't relax anything else.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_riscv_relax_align (bfd *abfd, asection *sec, | 
|  | asection *sym_sec, | 
|  | struct bfd_link_info *link_info, | 
|  | Elf_Internal_Rela *rel, | 
|  | bfd_vma symval, | 
|  | bfd_vma max_alignment ATTRIBUTE_UNUSED, | 
|  | bfd_vma reserve_size ATTRIBUTE_UNUSED, | 
|  | bool *again ATTRIBUTE_UNUSED, | 
|  | riscv_pcgp_relocs *pcrel_relocs ATTRIBUTE_UNUSED, | 
|  | bool undefined_weak ATTRIBUTE_UNUSED) | 
|  | { | 
|  | bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; | 
|  | bfd_vma alignment = 1, pos; | 
|  | while (alignment <= rel->r_addend) | 
|  | alignment *= 2; | 
|  |  | 
|  | symval -= rel->r_addend; | 
|  | bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment; | 
|  | bfd_vma nop_bytes = aligned_addr - symval; | 
|  |  | 
|  | /* Make sure there are enough NOPs to actually achieve the alignment.  */ | 
|  | if (rel->r_addend < nop_bytes) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("%pB(%pA+%#" PRIx64 "): %" PRId64 " bytes required for alignment " | 
|  | "to %" PRId64 "-byte boundary, but only %" PRId64 " present"), | 
|  | abfd, sym_sec, (uint64_t) rel->r_offset, | 
|  | (int64_t) nop_bytes, (int64_t) alignment, (int64_t) rel->r_addend); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Delete the reloc.  */ | 
|  | rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE); | 
|  |  | 
|  | /* If the number of NOPs is already correct, there's nothing to do.  */ | 
|  | if (nop_bytes == rel->r_addend) | 
|  | return true; | 
|  |  | 
|  | /* Write as many RISC-V NOPs as we need.  */ | 
|  | for (pos = 0; pos < (nop_bytes & -4); pos += 4) | 
|  | bfd_putl32 (RISCV_NOP, contents + rel->r_offset + pos); | 
|  |  | 
|  | /* Write a final RVC NOP if need be.  */ | 
|  | if (nop_bytes % 4 != 0) | 
|  | bfd_putl16 (RVC_NOP, contents + rel->r_offset + pos); | 
|  |  | 
|  | /* Delete the excess bytes.  */ | 
|  | return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes, | 
|  | rel->r_addend - nop_bytes, link_info); | 
|  | } | 
|  |  | 
|  | /* Relax PC-relative references to GP-relative references.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_riscv_relax_pc (bfd *abfd ATTRIBUTE_UNUSED, | 
|  | asection *sec, | 
|  | asection *sym_sec, | 
|  | struct bfd_link_info *link_info, | 
|  | Elf_Internal_Rela *rel, | 
|  | bfd_vma symval, | 
|  | bfd_vma max_alignment, | 
|  | bfd_vma reserve_size, | 
|  | bool *again ATTRIBUTE_UNUSED, | 
|  | riscv_pcgp_relocs *pcgp_relocs, | 
|  | bool undefined_weak) | 
|  | { | 
|  | bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; | 
|  | bfd_vma gp = riscv_global_pointer_value (link_info); | 
|  |  | 
|  | BFD_ASSERT (rel->r_offset + 4 <= sec->size); | 
|  |  | 
|  | /* Chain the _LO relocs to their cooresponding _HI reloc to compute the | 
|  | actual target address.  */ | 
|  | riscv_pcgp_hi_reloc hi_reloc; | 
|  | memset (&hi_reloc, 0, sizeof (hi_reloc)); | 
|  | switch (ELFNN_R_TYPE (rel->r_info)) | 
|  | { | 
|  | case R_RISCV_PCREL_LO12_I: | 
|  | case R_RISCV_PCREL_LO12_S: | 
|  | { | 
|  | /* If the %lo has an addend, it isn't for the label pointing at the | 
|  | hi part instruction, but rather for the symbol pointed at by the | 
|  | hi part instruction.  So we must subtract it here for the lookup. | 
|  | It is still used below in the final symbol address.  */ | 
|  | bfd_vma hi_sec_off = symval - sec_addr (sym_sec) - rel->r_addend; | 
|  | riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs, | 
|  | hi_sec_off); | 
|  | if (hi == NULL) | 
|  | { | 
|  | riscv_record_pcgp_lo_reloc (pcgp_relocs, hi_sec_off); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | hi_reloc = *hi; | 
|  | symval = hi_reloc.hi_addr; | 
|  | sym_sec = hi_reloc.sym_sec; | 
|  |  | 
|  | /* We can not know whether the undefined weak symbol is referenced | 
|  | according to the information of R_RISCV_PCREL_LO12_I/S.  Therefore, | 
|  | we have to record the 'undefined_weak' flag when handling the | 
|  | corresponding R_RISCV_HI20 reloc in riscv_record_pcgp_hi_reloc.  */ | 
|  | undefined_weak = hi_reloc.undefined_weak; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case R_RISCV_PCREL_HI20: | 
|  | /* Mergeable symbols and code might later move out of range.  */ | 
|  | if (! undefined_weak | 
|  | && sym_sec->flags & (SEC_MERGE | SEC_CODE)) | 
|  | return true; | 
|  |  | 
|  | /* If the cooresponding lo relocation has already been seen then it's not | 
|  | safe to relax this relocation.  */ | 
|  | if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset)) | 
|  | return true; | 
|  |  | 
|  | break; | 
|  |  | 
|  | default: | 
|  | abort (); | 
|  | } | 
|  |  | 
|  | if (gp) | 
|  | { | 
|  | /* If gp and the symbol are in the same output section, which is not the | 
|  | abs section, then consider only that output section's alignment.  */ | 
|  | struct bfd_link_hash_entry *h = | 
|  | bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, false, false, | 
|  | true); | 
|  | if (h->u.def.section->output_section == sym_sec->output_section | 
|  | && sym_sec->output_section != bfd_abs_section_ptr) | 
|  | max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power; | 
|  | } | 
|  |  | 
|  | /* Is the reference in range of x0 or gp? | 
|  | Valid gp range conservatively because of alignment issue.  */ | 
|  | if (undefined_weak | 
|  | || (VALID_ITYPE_IMM (symval) | 
|  | || (symval >= gp | 
|  | && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size)) | 
|  | || (symval < gp | 
|  | && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))) | 
|  | { | 
|  | unsigned sym = hi_reloc.hi_sym; | 
|  | switch (ELFNN_R_TYPE (rel->r_info)) | 
|  | { | 
|  | case R_RISCV_PCREL_LO12_I: | 
|  | if (undefined_weak) | 
|  | { | 
|  | /* Change the RS1 to zero, and then modify the relocation | 
|  | type to R_RISCV_LO12_I.  */ | 
|  | bfd_vma insn = bfd_getl32 (contents + rel->r_offset); | 
|  | insn &= ~(OP_MASK_RS1 << OP_SH_RS1); | 
|  | bfd_putl32 (insn, contents + rel->r_offset); | 
|  | rel->r_info = ELFNN_R_INFO (sym, R_RISCV_LO12_I); | 
|  | rel->r_addend = hi_reloc.hi_addend; | 
|  | } | 
|  | else | 
|  | { | 
|  | rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I); | 
|  | rel->r_addend += hi_reloc.hi_addend; | 
|  | } | 
|  | return true; | 
|  |  | 
|  | case R_RISCV_PCREL_LO12_S: | 
|  | if (undefined_weak) | 
|  | { | 
|  | /* Change the RS1 to zero, and then modify the relocation | 
|  | type to R_RISCV_LO12_S.  */ | 
|  | bfd_vma insn = bfd_getl32 (contents + rel->r_offset); | 
|  | insn &= ~(OP_MASK_RS1 << OP_SH_RS1); | 
|  | bfd_putl32 (insn, contents + rel->r_offset); | 
|  | rel->r_info = ELFNN_R_INFO (sym, R_RISCV_LO12_S); | 
|  | rel->r_addend = hi_reloc.hi_addend; | 
|  | } | 
|  | else | 
|  | { | 
|  | rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S); | 
|  | rel->r_addend += hi_reloc.hi_addend; | 
|  | } | 
|  | return true; | 
|  |  | 
|  | case R_RISCV_PCREL_HI20: | 
|  | riscv_record_pcgp_hi_reloc (pcgp_relocs, | 
|  | rel->r_offset, | 
|  | rel->r_addend, | 
|  | symval, | 
|  | ELFNN_R_SYM(rel->r_info), | 
|  | sym_sec, | 
|  | undefined_weak); | 
|  | /* We can delete the unnecessary AUIPC and reloc.  */ | 
|  | rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE); | 
|  | rel->r_addend = 4; | 
|  | return true; | 
|  |  | 
|  | default: | 
|  | abort (); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Delete the bytes for R_RISCV_DELETE.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_riscv_relax_delete (bfd *abfd, | 
|  | asection *sec, | 
|  | asection *sym_sec ATTRIBUTE_UNUSED, | 
|  | struct bfd_link_info *link_info, | 
|  | Elf_Internal_Rela *rel, | 
|  | bfd_vma symval ATTRIBUTE_UNUSED, | 
|  | bfd_vma max_alignment ATTRIBUTE_UNUSED, | 
|  | bfd_vma reserve_size ATTRIBUTE_UNUSED, | 
|  | bool *again, | 
|  | riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED, | 
|  | bool undefined_weak ATTRIBUTE_UNUSED) | 
|  | { | 
|  | if (!riscv_relax_delete_bytes (abfd, sec, rel->r_offset, rel->r_addend, | 
|  | link_info)) | 
|  | return false; | 
|  | rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE); | 
|  | *again = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Called by after_allocation to set the information of data segment | 
|  | before relaxing.  */ | 
|  |  | 
|  | void | 
|  | bfd_elfNN_riscv_set_data_segment_info (struct bfd_link_info *info, | 
|  | int *data_segment_phase) | 
|  | { | 
|  | struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); | 
|  | htab->data_segment_phase = data_segment_phase; | 
|  | } | 
|  |  | 
|  | /* Called by after_allocation to check if we need to run the whole | 
|  | relaxations again.  */ | 
|  |  | 
|  | bool | 
|  | bfd_elfNN_riscv_restart_relax_sections (struct bfd_link_info *info) | 
|  | { | 
|  | struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); | 
|  | bool restart = htab->restart_relax; | 
|  | /* Reset the flag.  */ | 
|  | htab->restart_relax = false; | 
|  | return restart; | 
|  | } | 
|  |  | 
|  | /* Relax a section. | 
|  |  | 
|  | Pass 0: Shortens code sequences for LUI/CALL/TPREL relocs. | 
|  | Pass 1: Shortens code sequences for PCREL relocs. | 
|  | Pass 2: Deletes the bytes that pass 1 made obsolete. | 
|  | Pass 3: Which cannot be disabled, handles code alignment directives. | 
|  |  | 
|  | The `again` is used to determine whether the relax pass itself needs to | 
|  | run again.  And the `restart_relax` is used to determine if we need to | 
|  | run the whole relax passes again from 0 to 2.  Once we have deleted the | 
|  | code between relax pass 0 to 2, the restart_relax will be set to TRUE, | 
|  | and we should run the whole relaxations again to give them more chances | 
|  | to shorten the code. | 
|  |  | 
|  | Since we can't relax anything else once we start to handle the alignments, | 
|  | we will only enter into the relax pass 3 when the restart_relax is FALSE.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_riscv_relax_section (bfd *abfd, asection *sec, | 
|  | struct bfd_link_info *info, | 
|  | bool *again) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd); | 
|  | struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); | 
|  | struct bfd_elf_section_data *data = elf_section_data (sec); | 
|  | Elf_Internal_Rela *relocs; | 
|  | bool ret = false; | 
|  | unsigned int i; | 
|  | bfd_vma max_alignment, reserve_size = 0; | 
|  | riscv_pcgp_relocs pcgp_relocs; | 
|  |  | 
|  | *again = false; | 
|  |  | 
|  | if (bfd_link_relocatable (info) | 
|  | || (sec->flags & SEC_RELOC) == 0 | 
|  | || sec->reloc_count == 0 | 
|  | || (info->disable_target_specific_optimizations | 
|  | && info->relax_pass < 2) | 
|  | || (htab->restart_relax | 
|  | && info->relax_pass == 3) | 
|  | /* The exp_seg_relro_adjust is enum phase_enum (0x4), | 
|  | and defined in ld/ldexp.h.  */ | 
|  | || *(htab->data_segment_phase) == 4) | 
|  | return true; | 
|  |  | 
|  | riscv_init_pcgp_relocs (&pcgp_relocs); | 
|  |  | 
|  | /* Read this BFD's relocs if we haven't done so already.  */ | 
|  | if (data->relocs) | 
|  | relocs = data->relocs; | 
|  | else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, | 
|  | info->keep_memory))) | 
|  | goto fail; | 
|  |  | 
|  | if (htab) | 
|  | { | 
|  | max_alignment = htab->max_alignment; | 
|  | if (max_alignment == (bfd_vma) -1) | 
|  | { | 
|  | max_alignment = _bfd_riscv_get_max_alignment (sec); | 
|  | htab->max_alignment = max_alignment; | 
|  | } | 
|  | } | 
|  | else | 
|  | max_alignment = _bfd_riscv_get_max_alignment (sec); | 
|  |  | 
|  | /* Examine and consider relaxing each reloc.  */ | 
|  | for (i = 0; i < sec->reloc_count; i++) | 
|  | { | 
|  | asection *sym_sec; | 
|  | Elf_Internal_Rela *rel = relocs + i; | 
|  | relax_func_t relax_func; | 
|  | int type = ELFNN_R_TYPE (rel->r_info); | 
|  | bfd_vma symval; | 
|  | char symtype; | 
|  | bool undefined_weak = false; | 
|  |  | 
|  | relax_func = NULL; | 
|  | if (info->relax_pass == 0) | 
|  | { | 
|  | if (type == R_RISCV_CALL | 
|  | || type == R_RISCV_CALL_PLT) | 
|  | relax_func = _bfd_riscv_relax_call; | 
|  | else if (type == R_RISCV_HI20 | 
|  | || type == R_RISCV_LO12_I | 
|  | || type == R_RISCV_LO12_S) | 
|  | relax_func = _bfd_riscv_relax_lui; | 
|  | else if (type == R_RISCV_TPREL_HI20 | 
|  | || type == R_RISCV_TPREL_ADD | 
|  | || type == R_RISCV_TPREL_LO12_I | 
|  | || type == R_RISCV_TPREL_LO12_S) | 
|  | relax_func = _bfd_riscv_relax_tls_le; | 
|  | else | 
|  | continue; | 
|  | } | 
|  | else if (info->relax_pass == 1 | 
|  | && !bfd_link_pic (info) | 
|  | && (type == R_RISCV_PCREL_HI20 | 
|  | || type == R_RISCV_PCREL_LO12_I | 
|  | || type == R_RISCV_PCREL_LO12_S)) | 
|  | relax_func = _bfd_riscv_relax_pc; | 
|  | else if (info->relax_pass == 2 && type == R_RISCV_DELETE) | 
|  | relax_func = _bfd_riscv_relax_delete; | 
|  | else if (info->relax_pass == 3 && type == R_RISCV_ALIGN) | 
|  | relax_func = _bfd_riscv_relax_align; | 
|  | else | 
|  | continue; | 
|  |  | 
|  | if (info->relax_pass < 2) | 
|  | { | 
|  | /* Only relax this reloc if it is paired with R_RISCV_RELAX.  */ | 
|  | if (i == sec->reloc_count - 1 | 
|  | || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX | 
|  | || rel->r_offset != (rel + 1)->r_offset) | 
|  | continue; | 
|  |  | 
|  | /* Skip over the R_RISCV_RELAX.  */ | 
|  | i++; | 
|  | } | 
|  |  | 
|  | data->relocs = relocs; | 
|  |  | 
|  | /* Read this BFD's contents if we haven't done so already.  */ | 
|  | if (!data->this_hdr.contents | 
|  | && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents)) | 
|  | goto fail; | 
|  |  | 
|  | /* Read this BFD's symbols if we haven't done so already.  */ | 
|  | if (symtab_hdr->sh_info != 0 | 
|  | && !symtab_hdr->contents | 
|  | && !(symtab_hdr->contents = | 
|  | (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr, | 
|  | symtab_hdr->sh_info, | 
|  | 0, NULL, NULL, NULL))) | 
|  | goto fail; | 
|  |  | 
|  | /* Get the value of the symbol referred to by the reloc.  */ | 
|  | if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info) | 
|  | { | 
|  | /* A local symbol.  */ | 
|  | Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents | 
|  | + ELFNN_R_SYM (rel->r_info)); | 
|  | reserve_size = (isym->st_size - rel->r_addend) > isym->st_size | 
|  | ? 0 : isym->st_size - rel->r_addend; | 
|  |  | 
|  | /* Relocate against local STT_GNU_IFUNC symbol.  we have created | 
|  | a fake global symbol entry for this, so deal with the local ifunc | 
|  | as a global.  */ | 
|  | if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) | 
|  | continue; | 
|  |  | 
|  | if (isym->st_shndx == SHN_UNDEF) | 
|  | sym_sec = sec, symval = rel->r_offset; | 
|  | else | 
|  | { | 
|  | BFD_ASSERT (isym->st_shndx < elf_numsections (abfd)); | 
|  | sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section; | 
|  | #if 0 | 
|  | /* The purpose of this code is unknown.  It breaks linker scripts | 
|  | for embedded development that place sections at address zero. | 
|  | This code is believed to be unnecessary.  Disabling it but not | 
|  | yet removing it, in case something breaks.  */ | 
|  | if (sec_addr (sym_sec) == 0) | 
|  | continue; | 
|  | #endif | 
|  | symval = isym->st_value; | 
|  | } | 
|  | symtype = ELF_ST_TYPE (isym->st_info); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned long indx; | 
|  | struct elf_link_hash_entry *h; | 
|  |  | 
|  | indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info; | 
|  | h = elf_sym_hashes (abfd)[indx]; | 
|  |  | 
|  | while (h->root.type == bfd_link_hash_indirect | 
|  | || h->root.type == bfd_link_hash_warning) | 
|  | h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
|  |  | 
|  | /* Disable the relaxation for ifunc.  */ | 
|  | if (h != NULL && h->type == STT_GNU_IFUNC) | 
|  | continue; | 
|  |  | 
|  | if (h->root.type == bfd_link_hash_undefweak | 
|  | && (relax_func == _bfd_riscv_relax_lui | 
|  | || relax_func == _bfd_riscv_relax_pc)) | 
|  | { | 
|  | /* For the lui and auipc relaxations, since the symbol | 
|  | value of an undefined weak symbol is always be zero, | 
|  | we can optimize the patterns into a single LI/MV/ADDI | 
|  | instruction. | 
|  |  | 
|  | Note that, creating shared libraries and pie output may | 
|  | break the rule above.  Fortunately, since we do not relax | 
|  | pc relocs when creating shared libraries and pie output, | 
|  | and the absolute address access for R_RISCV_HI20 isn't | 
|  | allowed when "-fPIC" is set, the problem of creating shared | 
|  | libraries can not happen currently.  Once we support the | 
|  | auipc relaxations when creating shared libraries, then we will | 
|  | need the more rigorous checking for this optimization.  */ | 
|  | undefined_weak = true; | 
|  | } | 
|  |  | 
|  | /* This line has to match the check in riscv_elf_relocate_section | 
|  | in the R_RISCV_CALL[_PLT] case.  */ | 
|  | if (bfd_link_pic (info) && h->plt.offset != MINUS_ONE) | 
|  | { | 
|  | sym_sec = htab->elf.splt; | 
|  | symval = h->plt.offset; | 
|  | } | 
|  | else if (undefined_weak) | 
|  | { | 
|  | symval = 0; | 
|  | sym_sec = bfd_und_section_ptr; | 
|  | } | 
|  | else if ((h->root.type == bfd_link_hash_defined | 
|  | || h->root.type == bfd_link_hash_defweak) | 
|  | && h->root.u.def.section != NULL | 
|  | && h->root.u.def.section->output_section != NULL) | 
|  | { | 
|  | symval = h->root.u.def.value; | 
|  | sym_sec = h->root.u.def.section; | 
|  | } | 
|  | else | 
|  | continue; | 
|  |  | 
|  | if (h->type != STT_FUNC) | 
|  | reserve_size = | 
|  | (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend; | 
|  | symtype = h->type; | 
|  | } | 
|  |  | 
|  | if (sym_sec->sec_info_type == SEC_INFO_TYPE_MERGE | 
|  | && (sym_sec->flags & SEC_MERGE)) | 
|  | { | 
|  | /* At this stage in linking, no SEC_MERGE symbol has been | 
|  | adjusted, so all references to such symbols need to be | 
|  | passed through _bfd_merged_section_offset.  (Later, in | 
|  | relocate_section, all SEC_MERGE symbols *except* for | 
|  | section symbols have been adjusted.) | 
|  |  | 
|  | gas may reduce relocations against symbols in SEC_MERGE | 
|  | sections to a relocation against the section symbol when | 
|  | the original addend was zero.  When the reloc is against | 
|  | a section symbol we should include the addend in the | 
|  | offset passed to _bfd_merged_section_offset, since the | 
|  | location of interest is the original symbol.  On the | 
|  | other hand, an access to "sym+addend" where "sym" is not | 
|  | a section symbol should not include the addend;  Such an | 
|  | access is presumed to be an offset from "sym";  The | 
|  | location of interest is just "sym".  */ | 
|  | if (symtype == STT_SECTION) | 
|  | symval += rel->r_addend; | 
|  |  | 
|  | symval = _bfd_merged_section_offset (abfd, &sym_sec, | 
|  | elf_section_data (sym_sec)->sec_info, | 
|  | symval); | 
|  |  | 
|  | if (symtype != STT_SECTION) | 
|  | symval += rel->r_addend; | 
|  | } | 
|  | else | 
|  | symval += rel->r_addend; | 
|  |  | 
|  | symval += sec_addr (sym_sec); | 
|  |  | 
|  | if (!relax_func (abfd, sec, sym_sec, info, rel, symval, | 
|  | max_alignment, reserve_size, again, | 
|  | &pcgp_relocs, undefined_weak)) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ret = true; | 
|  |  | 
|  | fail: | 
|  | if (relocs != data->relocs) | 
|  | free (relocs); | 
|  | riscv_free_pcgp_relocs (&pcgp_relocs, abfd, sec); | 
|  |  | 
|  | if (*again) | 
|  | htab->restart_relax = true; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if ARCH_SIZE == 32 | 
|  | # define PRSTATUS_SIZE			204 | 
|  | # define PRSTATUS_OFFSET_PR_CURSIG	12 | 
|  | # define PRSTATUS_OFFSET_PR_PID		24 | 
|  | # define PRSTATUS_OFFSET_PR_REG		72 | 
|  | # define ELF_GREGSET_T_SIZE		128 | 
|  | # define PRPSINFO_SIZE			128 | 
|  | # define PRPSINFO_OFFSET_PR_PID		16 | 
|  | # define PRPSINFO_OFFSET_PR_FNAME	32 | 
|  | # define PRPSINFO_OFFSET_PR_PSARGS	48 | 
|  | # define PRPSINFO_PR_FNAME_LENGTH	16 | 
|  | # define PRPSINFO_PR_PSARGS_LENGTH	80 | 
|  | #else | 
|  | # define PRSTATUS_SIZE			376 | 
|  | # define PRSTATUS_OFFSET_PR_CURSIG	12 | 
|  | # define PRSTATUS_OFFSET_PR_PID		32 | 
|  | # define PRSTATUS_OFFSET_PR_REG		112 | 
|  | # define ELF_GREGSET_T_SIZE		256 | 
|  | # define PRPSINFO_SIZE			136 | 
|  | # define PRPSINFO_OFFSET_PR_PID		24 | 
|  | # define PRPSINFO_OFFSET_PR_FNAME	40 | 
|  | # define PRPSINFO_OFFSET_PR_PSARGS	56 | 
|  | # define PRPSINFO_PR_FNAME_LENGTH	16 | 
|  | # define PRPSINFO_PR_PSARGS_LENGTH	80 | 
|  | #endif | 
|  |  | 
|  | /* Write PRSTATUS and PRPSINFO note into core file.  This will be called | 
|  | before the generic code in elf.c.  By checking the compiler defines we | 
|  | only perform any action here if the generic code would otherwise not be | 
|  | able to help us.  The intention is that bare metal core dumps (where the | 
|  | prstatus_t and/or prpsinfo_t might not be available) will use this code, | 
|  | while non bare metal tools will use the generic elf code.  */ | 
|  |  | 
|  | static char * | 
|  | riscv_write_core_note (bfd *abfd ATTRIBUTE_UNUSED, | 
|  | char *buf ATTRIBUTE_UNUSED, | 
|  | int *bufsiz ATTRIBUTE_UNUSED, | 
|  | int note_type ATTRIBUTE_UNUSED, ...) | 
|  | { | 
|  | switch (note_type) | 
|  | { | 
|  | default: | 
|  | return NULL; | 
|  |  | 
|  | #if !defined (HAVE_PRPSINFO_T) | 
|  | case NT_PRPSINFO: | 
|  | { | 
|  | char data[PRPSINFO_SIZE] ATTRIBUTE_NONSTRING; | 
|  | va_list ap; | 
|  |  | 
|  | va_start (ap, note_type); | 
|  | memset (data, 0, sizeof (data)); | 
|  | strncpy (data + PRPSINFO_OFFSET_PR_FNAME, va_arg (ap, const char *), | 
|  | PRPSINFO_PR_FNAME_LENGTH); | 
|  | #if GCC_VERSION == 8000 || GCC_VERSION == 8001 | 
|  | DIAGNOSTIC_PUSH; | 
|  | /* GCC 8.0 and 8.1 warn about 80 equals destination size with | 
|  | -Wstringop-truncation: | 
|  | https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643 | 
|  | */ | 
|  | DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION; | 
|  | #endif | 
|  | strncpy (data + PRPSINFO_OFFSET_PR_PSARGS, va_arg (ap, const char *), | 
|  | PRPSINFO_PR_PSARGS_LENGTH); | 
|  | #if GCC_VERSION == 8000 || GCC_VERSION == 8001 | 
|  | DIAGNOSTIC_POP; | 
|  | #endif | 
|  | va_end (ap); | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | "CORE", note_type, data, sizeof (data)); | 
|  | } | 
|  | #endif /* !HAVE_PRPSINFO_T */ | 
|  |  | 
|  | #if !defined (HAVE_PRSTATUS_T) | 
|  | case NT_PRSTATUS: | 
|  | { | 
|  | char data[PRSTATUS_SIZE]; | 
|  | va_list ap; | 
|  | long pid; | 
|  | int cursig; | 
|  | const void *greg; | 
|  |  | 
|  | va_start (ap, note_type); | 
|  | memset (data, 0, sizeof(data)); | 
|  | pid = va_arg (ap, long); | 
|  | bfd_put_32 (abfd, pid, data + PRSTATUS_OFFSET_PR_PID); | 
|  | cursig = va_arg (ap, int); | 
|  | bfd_put_16 (abfd, cursig, data + PRSTATUS_OFFSET_PR_CURSIG); | 
|  | greg = va_arg (ap, const void *); | 
|  | memcpy (data + PRSTATUS_OFFSET_PR_REG, greg, | 
|  | PRSTATUS_SIZE - PRSTATUS_OFFSET_PR_REG - ARCH_SIZE / 8); | 
|  | va_end (ap); | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | "CORE", note_type, data, sizeof (data)); | 
|  | } | 
|  | #endif /* !HAVE_PRSTATUS_T */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Support for core dump NOTE sections.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | switch (note->descsz) | 
|  | { | 
|  | default: | 
|  | return false; | 
|  |  | 
|  | case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V.  */ | 
|  | /* pr_cursig */ | 
|  | elf_tdata (abfd)->core->signal | 
|  | = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG); | 
|  |  | 
|  | /* pr_pid */ | 
|  | elf_tdata (abfd)->core->lwpid | 
|  | = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Make a ".reg/999" section.  */ | 
|  | return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE, | 
|  | note->descpos + PRSTATUS_OFFSET_PR_REG); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | switch (note->descsz) | 
|  | { | 
|  | default: | 
|  | return false; | 
|  |  | 
|  | case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V.  */ | 
|  | /* pr_pid */ | 
|  | elf_tdata (abfd)->core->pid | 
|  | = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID); | 
|  |  | 
|  | /* pr_fname */ | 
|  | elf_tdata (abfd)->core->program = _bfd_elfcore_strndup | 
|  | (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, | 
|  | PRPSINFO_PR_FNAME_LENGTH); | 
|  |  | 
|  | /* pr_psargs */ | 
|  | elf_tdata (abfd)->core->command = _bfd_elfcore_strndup | 
|  | (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, | 
|  | PRPSINFO_PR_PSARGS_LENGTH); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Note that for some reason, a spurious space is tacked | 
|  | onto the end of the args in some (at least one anyway) | 
|  | implementations, so strip it off if it exists.  */ | 
|  |  | 
|  | { | 
|  | char *command = elf_tdata (abfd)->core->command; | 
|  | int n = strlen (command); | 
|  |  | 
|  | if (0 < n && command[n - 1] == ' ') | 
|  | command[n - 1] = '\0'; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Set the right mach type.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_elf_object_p (bfd *abfd) | 
|  | { | 
|  | /* There are only two mach types in RISCV currently.  */ | 
|  | if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0 | 
|  | || strcmp (abfd->xvec->name, "elf32-bigriscv") == 0) | 
|  | bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32); | 
|  | else | 
|  | bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Determine whether an object attribute tag takes an integer, a | 
|  | string or both.  */ | 
|  |  | 
|  | static int | 
|  | riscv_elf_obj_attrs_arg_type (int tag) | 
|  | { | 
|  | return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL; | 
|  | } | 
|  |  | 
|  | /* Do not choose mapping symbols as a function name.  */ | 
|  |  | 
|  | static bfd_size_type | 
|  | riscv_maybe_function_sym (const asymbol *sym, | 
|  | asection *sec, | 
|  | bfd_vma *code_off) | 
|  | { | 
|  | if (sym->flags & BSF_LOCAL | 
|  | && riscv_elf_is_mapping_symbols (sym->name)) | 
|  | return 0; | 
|  |  | 
|  | return _bfd_elf_maybe_function_sym (sym, sec, code_off); | 
|  | } | 
|  |  | 
|  | /* Treat the following cases as target special symbols, they are | 
|  | usually omitted.  */ | 
|  |  | 
|  | static bool | 
|  | riscv_elf_is_target_special_symbol (bfd *abfd, asymbol *sym) | 
|  | { | 
|  | /* PR27584, local and empty symbols.  Since they are usually | 
|  | generated for pcrel relocations.  */ | 
|  | return (!strcmp (sym->name, "") | 
|  | || _bfd_elf_is_local_label_name (abfd, sym->name) | 
|  | /* PR27916, mapping symbols.  */ | 
|  | || riscv_elf_is_mapping_symbols (sym->name)); | 
|  | } | 
|  |  | 
|  | static int | 
|  | riscv_elf_additional_program_headers (bfd *abfd, | 
|  | struct bfd_link_info *info ATTRIBUTE_UNUSED) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* See if we need a PT_RISCV_ATTRIBUTES segment.  */ | 
|  | if (bfd_get_section_by_name (abfd, RISCV_ATTRIBUTES_SECTION_NAME)) | 
|  | ++ret; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | riscv_elf_modify_segment_map (bfd *abfd, | 
|  | struct bfd_link_info *info ATTRIBUTE_UNUSED) | 
|  | { | 
|  | asection *s; | 
|  | struct elf_segment_map *m, **pm; | 
|  | size_t amt; | 
|  |  | 
|  | /* If there is a .riscv.attributes section, we need a PT_RISCV_ATTRIBUTES | 
|  | segment.  */ | 
|  | s = bfd_get_section_by_name (abfd, RISCV_ATTRIBUTES_SECTION_NAME); | 
|  | if (s != NULL) | 
|  | { | 
|  | for (m = elf_seg_map (abfd); m != NULL; m = m->next) | 
|  | if (m->p_type == PT_RISCV_ATTRIBUTES) | 
|  | break; | 
|  | /* If there is already a PT_RISCV_ATTRIBUTES header, avoid adding | 
|  | another.  */ | 
|  | if (m == NULL) | 
|  | { | 
|  | amt = sizeof (*m); | 
|  | m = bfd_zalloc (abfd, amt); | 
|  | if (m == NULL) | 
|  | return false; | 
|  |  | 
|  | m->p_type = PT_RISCV_ATTRIBUTES; | 
|  | m->count = 1; | 
|  | m->sections[0] = s; | 
|  |  | 
|  | /* We want to put it after the PHDR and INTERP segments.  */ | 
|  | pm = &elf_seg_map (abfd); | 
|  | while (*pm != NULL | 
|  | && ((*pm)->p_type == PT_PHDR | 
|  | || (*pm)->p_type == PT_INTERP)) | 
|  | pm = &(*pm)->next; | 
|  |  | 
|  | m->next = *pm; | 
|  | *pm = m; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #define TARGET_LITTLE_SYM			riscv_elfNN_vec | 
|  | #define TARGET_LITTLE_NAME			"elfNN-littleriscv" | 
|  | #define TARGET_BIG_SYM				riscv_elfNN_be_vec | 
|  | #define TARGET_BIG_NAME				"elfNN-bigriscv" | 
|  |  | 
|  | #define elf_backend_reloc_type_class		riscv_reloc_type_class | 
|  |  | 
|  | #define bfd_elfNN_bfd_reloc_name_lookup		riscv_reloc_name_lookup | 
|  | #define bfd_elfNN_bfd_link_hash_table_create	riscv_elf_link_hash_table_create | 
|  | #define bfd_elfNN_bfd_reloc_type_lookup		riscv_reloc_type_lookup | 
|  | #define bfd_elfNN_bfd_merge_private_bfd_data \ | 
|  | _bfd_riscv_elf_merge_private_bfd_data | 
|  | #define bfd_elfNN_bfd_is_target_special_symbol	riscv_elf_is_target_special_symbol | 
|  |  | 
|  | #define elf_backend_copy_indirect_symbol	riscv_elf_copy_indirect_symbol | 
|  | #define elf_backend_create_dynamic_sections	riscv_elf_create_dynamic_sections | 
|  | #define elf_backend_check_relocs		riscv_elf_check_relocs | 
|  | #define elf_backend_adjust_dynamic_symbol	riscv_elf_adjust_dynamic_symbol | 
|  | #define elf_backend_size_dynamic_sections	riscv_elf_size_dynamic_sections | 
|  | #define elf_backend_relocate_section		riscv_elf_relocate_section | 
|  | #define elf_backend_finish_dynamic_symbol	riscv_elf_finish_dynamic_symbol | 
|  | #define elf_backend_finish_dynamic_sections	riscv_elf_finish_dynamic_sections | 
|  | #define elf_backend_gc_mark_hook		riscv_elf_gc_mark_hook | 
|  | #define elf_backend_plt_sym_val			riscv_elf_plt_sym_val | 
|  | #define elf_backend_grok_prstatus		riscv_elf_grok_prstatus | 
|  | #define elf_backend_grok_psinfo			riscv_elf_grok_psinfo | 
|  | #define elf_backend_object_p			riscv_elf_object_p | 
|  | #define elf_backend_write_core_note		riscv_write_core_note | 
|  | #define elf_backend_maybe_function_sym		riscv_maybe_function_sym | 
|  | #define elf_info_to_howto_rel			NULL | 
|  | #define elf_info_to_howto			riscv_info_to_howto_rela | 
|  | #define bfd_elfNN_bfd_relax_section		_bfd_riscv_relax_section | 
|  | #define bfd_elfNN_mkobject			elfNN_riscv_mkobject | 
|  | #define elf_backend_additional_program_headers \ | 
|  | riscv_elf_additional_program_headers | 
|  | #define elf_backend_modify_segment_map		riscv_elf_modify_segment_map | 
|  |  | 
|  | #define elf_backend_init_index_section		_bfd_elf_init_1_index_section | 
|  |  | 
|  | #define elf_backend_can_gc_sections		1 | 
|  | #define elf_backend_can_refcount		1 | 
|  | #define elf_backend_want_got_plt		1 | 
|  | #define elf_backend_plt_readonly		1 | 
|  | #define elf_backend_plt_alignment		4 | 
|  | #define elf_backend_want_plt_sym		1 | 
|  | #define elf_backend_got_header_size		(ARCH_SIZE / 8) | 
|  | #define elf_backend_want_dynrelro		1 | 
|  | #define elf_backend_rela_normal			1 | 
|  | #define elf_backend_default_execstack		0 | 
|  |  | 
|  | #undef  elf_backend_obj_attrs_vendor | 
|  | #define elf_backend_obj_attrs_vendor		"riscv" | 
|  | #undef  elf_backend_obj_attrs_arg_type | 
|  | #define elf_backend_obj_attrs_arg_type		riscv_elf_obj_attrs_arg_type | 
|  | #undef  elf_backend_obj_attrs_section_type | 
|  | #define elf_backend_obj_attrs_section_type	SHT_RISCV_ATTRIBUTES | 
|  | #undef  elf_backend_obj_attrs_section | 
|  | #define elf_backend_obj_attrs_section		RISCV_ATTRIBUTES_SECTION_NAME | 
|  |  | 
|  | #include "elfNN-target.h" |