|  | /* Target-dependent code for GDB, the GNU debugger. | 
|  |  | 
|  | Copyright (C) 1986-2024 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "extract-store-integer.h" | 
|  | #include "frame.h" | 
|  | #include "inferior.h" | 
|  | #include "symtab.h" | 
|  | #include "target.h" | 
|  | #include "gdbcore.h" | 
|  | #include "cli/cli-cmds.h" | 
|  | #include "symfile.h" | 
|  | #include "objfiles.h" | 
|  | #include "regcache.h" | 
|  | #include "value.h" | 
|  | #include "osabi.h" | 
|  | #include "regset.h" | 
|  | #include "solib-svr4.h" | 
|  | #include "solib.h" | 
|  | #include "solist.h" | 
|  | #include "ppc-tdep.h" | 
|  | #include "ppc64-tdep.h" | 
|  | #include "ppc-linux-tdep.h" | 
|  | #include "arch/ppc-linux-common.h" | 
|  | #include "arch/ppc-linux-tdesc.h" | 
|  | #include "glibc-tdep.h" | 
|  | #include "trad-frame.h" | 
|  | #include "frame-unwind.h" | 
|  | #include "tramp-frame.h" | 
|  | #include "observable.h" | 
|  | #include "auxv.h" | 
|  | #include "elf/common.h" | 
|  | #include "elf/ppc64.h" | 
|  | #include "arch-utils.h" | 
|  | #include "xml-syscall.h" | 
|  | #include "linux-tdep.h" | 
|  | #include "linux-record.h" | 
|  | #include "record-full.h" | 
|  | #include "infrun.h" | 
|  | #include "expop.h" | 
|  |  | 
|  | #include "stap-probe.h" | 
|  | #include "ax.h" | 
|  | #include "ax-gdb.h" | 
|  | #include "cli/cli-utils.h" | 
|  | #include "parser-defs.h" | 
|  | #include "user-regs.h" | 
|  | #include <ctype.h> | 
|  | #include "elf-bfd.h" | 
|  | #include "producer.h" | 
|  | #include "target-float.h" | 
|  |  | 
|  | #include "features/rs6000/powerpc-32l.c" | 
|  | #include "features/rs6000/powerpc-altivec32l.c" | 
|  | #include "features/rs6000/powerpc-vsx32l.c" | 
|  | #include "features/rs6000/powerpc-isa205-32l.c" | 
|  | #include "features/rs6000/powerpc-isa205-altivec32l.c" | 
|  | #include "features/rs6000/powerpc-isa205-vsx32l.c" | 
|  | #include "features/rs6000/powerpc-isa205-ppr-dscr-vsx32l.c" | 
|  | #include "features/rs6000/powerpc-isa207-vsx32l.c" | 
|  | #include "features/rs6000/powerpc-isa207-htm-vsx32l.c" | 
|  | #include "features/rs6000/powerpc-64l.c" | 
|  | #include "features/rs6000/powerpc-altivec64l.c" | 
|  | #include "features/rs6000/powerpc-vsx64l.c" | 
|  | #include "features/rs6000/powerpc-isa205-64l.c" | 
|  | #include "features/rs6000/powerpc-isa205-altivec64l.c" | 
|  | #include "features/rs6000/powerpc-isa205-vsx64l.c" | 
|  | #include "features/rs6000/powerpc-isa205-ppr-dscr-vsx64l.c" | 
|  | #include "features/rs6000/powerpc-isa207-vsx64l.c" | 
|  | #include "features/rs6000/powerpc-isa207-htm-vsx64l.c" | 
|  | #include "features/rs6000/powerpc-e500l.c" | 
|  | #include "dwarf2/frame.h" | 
|  |  | 
|  | /* Shared library operations for PowerPC-Linux.  */ | 
|  | static solib_ops powerpc_so_ops; | 
|  |  | 
|  | /* The syscall's XML filename for PPC and PPC64.  */ | 
|  | #define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml" | 
|  | #define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml" | 
|  |  | 
|  | /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint | 
|  | in much the same fashion as memory_remove_breakpoint in mem-break.c, | 
|  | but is careful not to write back the previous contents if the code | 
|  | in question has changed in between inserting the breakpoint and | 
|  | removing it. | 
|  |  | 
|  | Here is the problem that we're trying to solve... | 
|  |  | 
|  | Once upon a time, before introducing this function to remove | 
|  | breakpoints from the inferior, setting a breakpoint on a shared | 
|  | library function prior to running the program would not work | 
|  | properly.  In order to understand the problem, it is first | 
|  | necessary to understand a little bit about dynamic linking on | 
|  | this platform. | 
|  |  | 
|  | A call to a shared library function is accomplished via a bl | 
|  | (branch-and-link) instruction whose branch target is an entry | 
|  | in the procedure linkage table (PLT).  The PLT in the object | 
|  | file is uninitialized.  To gdb, prior to running the program, the | 
|  | entries in the PLT are all zeros. | 
|  |  | 
|  | Once the program starts running, the shared libraries are loaded | 
|  | and the procedure linkage table is initialized, but the entries in | 
|  | the table are not (necessarily) resolved.  Once a function is | 
|  | actually called, the code in the PLT is hit and the function is | 
|  | resolved.  In order to better illustrate this, an example is in | 
|  | order; the following example is from the gdb testsuite. | 
|  |  | 
|  | We start the program shmain. | 
|  |  | 
|  | [kev@arroyo testsuite]$ ../gdb gdb.base/shmain | 
|  | [...] | 
|  |  | 
|  | We place two breakpoints, one on shr1 and the other on main. | 
|  |  | 
|  | (gdb) b shr1 | 
|  | Breakpoint 1 at 0x100409d4 | 
|  | (gdb) b main | 
|  | Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44. | 
|  |  | 
|  | Examine the instruction (and the immediately following instruction) | 
|  | upon which the breakpoint was placed.  Note that the PLT entry | 
|  | for shr1 contains zeros. | 
|  |  | 
|  | (gdb) x/2i 0x100409d4 | 
|  | 0x100409d4 <shr1>:      .long 0x0 | 
|  | 0x100409d8 <shr1+4>:    .long 0x0 | 
|  |  | 
|  | Now run 'til main. | 
|  |  | 
|  | (gdb) r | 
|  | Starting program: gdb.base/shmain | 
|  | Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19. | 
|  |  | 
|  | Breakpoint 2, main () | 
|  | at gdb.base/shmain.c:44 | 
|  | 44        g = 1; | 
|  |  | 
|  | Examine the PLT again.  Note that the loading of the shared | 
|  | library has initialized the PLT to code which loads a constant | 
|  | (which I think is an index into the GOT) into r11 and then | 
|  | branches a short distance to the code which actually does the | 
|  | resolving. | 
|  |  | 
|  | (gdb) x/2i 0x100409d4 | 
|  | 0x100409d4 <shr1>:      li      r11,4 | 
|  | 0x100409d8 <shr1+4>:    b       0x10040984 <sg+4> | 
|  | (gdb) c | 
|  | Continuing. | 
|  |  | 
|  | Breakpoint 1, shr1 (x=1) | 
|  | at gdb.base/shr1.c:19 | 
|  | 19        l = 1; | 
|  |  | 
|  | Now we've hit the breakpoint at shr1.  (The breakpoint was | 
|  | reset from the PLT entry to the actual shr1 function after the | 
|  | shared library was loaded.) Note that the PLT entry has been | 
|  | resolved to contain a branch that takes us directly to shr1. | 
|  | (The real one, not the PLT entry.) | 
|  |  | 
|  | (gdb) x/2i 0x100409d4 | 
|  | 0x100409d4 <shr1>:      b       0xffaf76c <shr1> | 
|  | 0x100409d8 <shr1+4>:    b       0x10040984 <sg+4> | 
|  |  | 
|  | The thing to note here is that the PLT entry for shr1 has been | 
|  | changed twice. | 
|  |  | 
|  | Now the problem should be obvious.  GDB places a breakpoint (a | 
|  | trap instruction) on the zero value of the PLT entry for shr1. | 
|  | Later on, after the shared library had been loaded and the PLT | 
|  | initialized, GDB gets a signal indicating this fact and attempts | 
|  | (as it always does when it stops) to remove all the breakpoints. | 
|  |  | 
|  | The breakpoint removal was causing the former contents (a zero | 
|  | word) to be written back to the now initialized PLT entry thus | 
|  | destroying a portion of the initialization that had occurred only a | 
|  | short time ago.  When execution continued, the zero word would be | 
|  | executed as an instruction an illegal instruction trap was | 
|  | generated instead.  (0 is not a legal instruction.) | 
|  |  | 
|  | The fix for this problem was fairly straightforward.  The function | 
|  | memory_remove_breakpoint from mem-break.c was copied to this file, | 
|  | modified slightly, and renamed to ppc_linux_memory_remove_breakpoint. | 
|  | In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new | 
|  | function. | 
|  |  | 
|  | The differences between ppc_linux_memory_remove_breakpoint () and | 
|  | memory_remove_breakpoint () are minor.  All that the former does | 
|  | that the latter does not is check to make sure that the breakpoint | 
|  | location actually contains a breakpoint (trap instruction) prior | 
|  | to attempting to write back the old contents.  If it does contain | 
|  | a trap instruction, we allow the old contents to be written back. | 
|  | Otherwise, we silently do nothing. | 
|  |  | 
|  | The big question is whether memory_remove_breakpoint () should be | 
|  | changed to have the same functionality.  The downside is that more | 
|  | traffic is generated for remote targets since we'll have an extra | 
|  | fetch of a memory word each time a breakpoint is removed. | 
|  |  | 
|  | For the time being, we'll leave this self-modifying-code-friendly | 
|  | version in ppc-linux-tdep.c, but it ought to be migrated somewhere | 
|  | else in the event that some other platform has similar needs with | 
|  | regard to removing breakpoints in some potentially self modifying | 
|  | code.  */ | 
|  | static int | 
|  | ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch, | 
|  | struct bp_target_info *bp_tgt) | 
|  | { | 
|  | CORE_ADDR addr = bp_tgt->reqstd_address; | 
|  | const unsigned char *bp; | 
|  | int val; | 
|  | int bplen; | 
|  | gdb_byte old_contents[BREAKPOINT_MAX]; | 
|  |  | 
|  | /* Determine appropriate breakpoint contents and size for this address.  */ | 
|  | bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen); | 
|  |  | 
|  | /* Make sure we see the memory breakpoints.  */ | 
|  | scoped_restore restore_memory | 
|  | = make_scoped_restore_show_memory_breakpoints (1); | 
|  | val = target_read_memory (addr, old_contents, bplen); | 
|  |  | 
|  | /* If our breakpoint is no longer at the address, this means that the | 
|  | program modified the code on us, so it is wrong to put back the | 
|  | old value.  */ | 
|  | if (val == 0 && memcmp (bp, old_contents, bplen) == 0) | 
|  | val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather | 
|  | than the 32 bit SYSV R4 ABI structure return convention - all | 
|  | structures, no matter their size, are put in memory.  Vectors, | 
|  | which were added later, do get returned in a register though.  */ | 
|  |  | 
|  | static enum return_value_convention | 
|  | ppc_linux_return_value (struct gdbarch *gdbarch, struct value *function, | 
|  | struct type *valtype, struct regcache *regcache, | 
|  | struct value **read_value, const gdb_byte *writebuf) | 
|  | { | 
|  | gdb_byte *readbuf = nullptr; | 
|  | if (read_value != nullptr) | 
|  | { | 
|  | *read_value = value::allocate (valtype); | 
|  | readbuf = (*read_value)->contents_raw ().data (); | 
|  | } | 
|  |  | 
|  | if ((valtype->code () == TYPE_CODE_STRUCT | 
|  | || valtype->code () == TYPE_CODE_UNION) | 
|  | && !((valtype->length () == 16 || valtype->length () == 8) | 
|  | && valtype->is_vector ())) | 
|  | return RETURN_VALUE_STRUCT_CONVENTION; | 
|  | else | 
|  | return ppc_sysv_abi_return_value (gdbarch, function, valtype, regcache, | 
|  | readbuf, writebuf); | 
|  | } | 
|  |  | 
|  | /* PLT stub in an executable.  */ | 
|  | static const struct ppc_insn_pattern powerpc32_plt_stub[] = | 
|  | { | 
|  | { 0xffff0000, 0x3d600000, 0 },	/* lis   r11, xxxx	 */ | 
|  | { 0xffff0000, 0x816b0000, 0 },	/* lwz   r11, xxxx(r11)  */ | 
|  | { 0xffffffff, 0x7d6903a6, 0 },	/* mtctr r11		 */ | 
|  | { 0xffffffff, 0x4e800420, 0 },	/* bctr			 */ | 
|  | {          0,          0, 0 } | 
|  | }; | 
|  |  | 
|  | /* PLT stubs in a shared library or PIE. | 
|  | The first variant is used when the PLT entry is within +/-32k of | 
|  | the GOT pointer (r30).  */ | 
|  | static const struct ppc_insn_pattern powerpc32_plt_stub_so_1[] = | 
|  | { | 
|  | { 0xffff0000, 0x817e0000, 0 },	/* lwz   r11, xxxx(r30)  */ | 
|  | { 0xffffffff, 0x7d6903a6, 0 },	/* mtctr r11		 */ | 
|  | { 0xffffffff, 0x4e800420, 0 },	/* bctr			 */ | 
|  | {          0,          0, 0 } | 
|  | }; | 
|  |  | 
|  | /* The second variant is used when the PLT entry is more than +/-32k | 
|  | from the GOT pointer (r30).  */ | 
|  | static const struct ppc_insn_pattern powerpc32_plt_stub_so_2[] = | 
|  | { | 
|  | { 0xffff0000, 0x3d7e0000, 0 },	/* addis r11, r30, xxxx  */ | 
|  | { 0xffff0000, 0x816b0000, 0 },	/* lwz   r11, xxxx(r11)  */ | 
|  | { 0xffffffff, 0x7d6903a6, 0 },	/* mtctr r11		 */ | 
|  | { 0xffffffff, 0x4e800420, 0 },	/* bctr			 */ | 
|  | {          0,          0, 0 } | 
|  | }; | 
|  |  | 
|  | /* The max number of insns we check using ppc_insns_match_pattern.  */ | 
|  | #define POWERPC32_PLT_CHECK_LEN (ARRAY_SIZE (powerpc32_plt_stub) - 1) | 
|  |  | 
|  | /* Check if PC is in PLT stub.  For non-secure PLT, stub is in .plt | 
|  | section.  For secure PLT, stub is in .text and we need to check | 
|  | instruction patterns.  */ | 
|  |  | 
|  | static int | 
|  | powerpc_linux_in_dynsym_resolve_code (CORE_ADDR pc) | 
|  | { | 
|  | /* Check whether PC is in the dynamic linker.  This also checks | 
|  | whether it is in the .plt section, used by non-PIC executables.  */ | 
|  | if (svr4_in_dynsym_resolve_code (pc)) | 
|  | return 1; | 
|  |  | 
|  | /* Check if we are in the resolver.  */ | 
|  | bound_minimal_symbol sym = lookup_minimal_symbol_by_pc (pc); | 
|  | if (sym.minsym != NULL | 
|  | && (strcmp (sym.minsym->linkage_name (), "__glink") == 0 | 
|  | || strcmp (sym.minsym->linkage_name (), "__glink_PLTresolve") == 0)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Follow PLT stub to actual routine. | 
|  |  | 
|  | When the execution direction is EXEC_REVERSE, scan backward to | 
|  | check whether we are in the middle of a PLT stub.  Currently, | 
|  | we only look-behind at most 4 instructions (the max length of a PLT | 
|  | stub sequence.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | ppc_skip_trampoline_code (const frame_info_ptr &frame, CORE_ADDR pc) | 
|  | { | 
|  | unsigned int insnbuf[POWERPC32_PLT_CHECK_LEN]; | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR target = 0; | 
|  | int scan_limit, i; | 
|  |  | 
|  | scan_limit = 1; | 
|  | /* When reverse-debugging, scan backward to check whether we are | 
|  | in the middle of trampoline code.  */ | 
|  | if (execution_direction == EXEC_REVERSE) | 
|  | scan_limit = 4;	/* At most 4 instructions.  */ | 
|  |  | 
|  | for (i = 0; i < scan_limit; i++) | 
|  | { | 
|  | if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub, insnbuf)) | 
|  | { | 
|  | /* Calculate PLT entry address from | 
|  | lis   r11, xxxx | 
|  | lwz   r11, xxxx(r11).  */ | 
|  | target = ((ppc_insn_d_field (insnbuf[0]) << 16) | 
|  | + ppc_insn_d_field (insnbuf[1])); | 
|  | } | 
|  | else if (i < ARRAY_SIZE (powerpc32_plt_stub_so_1) - 1 | 
|  | && ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_1, | 
|  | insnbuf)) | 
|  | { | 
|  | /* Calculate PLT entry address from | 
|  | lwz   r11, xxxx(r30).  */ | 
|  | target = (ppc_insn_d_field (insnbuf[0]) | 
|  | + get_frame_register_unsigned (frame, | 
|  | tdep->ppc_gp0_regnum + 30)); | 
|  | } | 
|  | else if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_2, | 
|  | insnbuf)) | 
|  | { | 
|  | /* Calculate PLT entry address from | 
|  | addis r11, r30, xxxx | 
|  | lwz   r11, xxxx(r11).  */ | 
|  | target = ((ppc_insn_d_field (insnbuf[0]) << 16) | 
|  | + ppc_insn_d_field (insnbuf[1]) | 
|  | + get_frame_register_unsigned (frame, | 
|  | tdep->ppc_gp0_regnum + 30)); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Scan backward one more instruction if it doesn't match.  */ | 
|  | pc -= 4; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | target = read_memory_unsigned_integer (target, 4, byte_order); | 
|  | return target; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Wrappers to handle Linux-only registers.  */ | 
|  |  | 
|  | static void | 
|  | ppc_linux_supply_gregset (const struct regset *regset, | 
|  | struct regcache *regcache, | 
|  | int regnum, const void *gregs, size_t len) | 
|  | { | 
|  | const struct ppc_reg_offsets *offsets | 
|  | = (const struct ppc_reg_offsets *) regset->regmap; | 
|  |  | 
|  | ppc_supply_gregset (regset, regcache, regnum, gregs, len); | 
|  |  | 
|  | if (ppc_linux_trap_reg_p (regcache->arch ())) | 
|  | { | 
|  | /* "orig_r3" is stored 2 slots after "pc".  */ | 
|  | if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM) | 
|  | ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, (const gdb_byte *) gregs, | 
|  | offsets->pc_offset + 2 * offsets->gpr_size, | 
|  | offsets->gpr_size); | 
|  |  | 
|  | /* "trap" is stored 8 slots after "pc".  */ | 
|  | if (regnum == -1 || regnum == PPC_TRAP_REGNUM) | 
|  | ppc_supply_reg (regcache, PPC_TRAP_REGNUM, (const gdb_byte *) gregs, | 
|  | offsets->pc_offset + 8 * offsets->gpr_size, | 
|  | offsets->gpr_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | ppc_linux_collect_gregset (const struct regset *regset, | 
|  | const struct regcache *regcache, | 
|  | int regnum, void *gregs, size_t len) | 
|  | { | 
|  | const struct ppc_reg_offsets *offsets | 
|  | = (const struct ppc_reg_offsets *) regset->regmap; | 
|  |  | 
|  | /* Clear areas in the linux gregset not written elsewhere.  */ | 
|  | if (regnum == -1) | 
|  | memset (gregs, 0, len); | 
|  |  | 
|  | ppc_collect_gregset (regset, regcache, regnum, gregs, len); | 
|  |  | 
|  | if (ppc_linux_trap_reg_p (regcache->arch ())) | 
|  | { | 
|  | /* "orig_r3" is stored 2 slots after "pc".  */ | 
|  | if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM) | 
|  | ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, (gdb_byte *) gregs, | 
|  | offsets->pc_offset + 2 * offsets->gpr_size, | 
|  | offsets->gpr_size); | 
|  |  | 
|  | /* "trap" is stored 8 slots after "pc".  */ | 
|  | if (regnum == -1 || regnum == PPC_TRAP_REGNUM) | 
|  | ppc_collect_reg (regcache, PPC_TRAP_REGNUM, (gdb_byte *) gregs, | 
|  | offsets->pc_offset + 8 * offsets->gpr_size, | 
|  | offsets->gpr_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Regset descriptions.  */ | 
|  | static const struct ppc_reg_offsets ppc32_linux_reg_offsets = | 
|  | { | 
|  | /* General-purpose registers.  */ | 
|  | /* .r0_offset = */ 0, | 
|  | /* .gpr_size = */ 4, | 
|  | /* .xr_size = */ 4, | 
|  | /* .pc_offset = */ 128, | 
|  | /* .ps_offset = */ 132, | 
|  | /* .cr_offset = */ 152, | 
|  | /* .lr_offset = */ 144, | 
|  | /* .ctr_offset = */ 140, | 
|  | /* .xer_offset = */ 148, | 
|  | /* .mq_offset = */ 156, | 
|  |  | 
|  | /* Floating-point registers.  */ | 
|  | /* .f0_offset = */ 0, | 
|  | /* .fpscr_offset = */ 256, | 
|  | /* .fpscr_size = */ 8 | 
|  | }; | 
|  |  | 
|  | static const struct ppc_reg_offsets ppc64_linux_reg_offsets = | 
|  | { | 
|  | /* General-purpose registers.  */ | 
|  | /* .r0_offset = */ 0, | 
|  | /* .gpr_size = */ 8, | 
|  | /* .xr_size = */ 8, | 
|  | /* .pc_offset = */ 256, | 
|  | /* .ps_offset = */ 264, | 
|  | /* .cr_offset = */ 304, | 
|  | /* .lr_offset = */ 288, | 
|  | /* .ctr_offset = */ 280, | 
|  | /* .xer_offset = */ 296, | 
|  | /* .mq_offset = */ 312, | 
|  |  | 
|  | /* Floating-point registers.  */ | 
|  | /* .f0_offset = */ 0, | 
|  | /* .fpscr_offset = */ 256, | 
|  | /* .fpscr_size = */ 8 | 
|  | }; | 
|  |  | 
|  | static const struct regset ppc32_linux_gregset = { | 
|  | &ppc32_linux_reg_offsets, | 
|  | ppc_linux_supply_gregset, | 
|  | ppc_linux_collect_gregset | 
|  | }; | 
|  |  | 
|  | static const struct regset ppc64_linux_gregset = { | 
|  | &ppc64_linux_reg_offsets, | 
|  | ppc_linux_supply_gregset, | 
|  | ppc_linux_collect_gregset | 
|  | }; | 
|  |  | 
|  | static const struct regset ppc32_linux_fpregset = { | 
|  | &ppc32_linux_reg_offsets, | 
|  | ppc_supply_fpregset, | 
|  | ppc_collect_fpregset | 
|  | }; | 
|  |  | 
|  | static const struct regcache_map_entry ppc32_le_linux_vrregmap[] = | 
|  | { | 
|  | { 32, PPC_VR0_REGNUM, 16 }, | 
|  | { 1, PPC_VSCR_REGNUM, 4 }, | 
|  | { 1, REGCACHE_MAP_SKIP, 12 }, | 
|  | { 1, PPC_VRSAVE_REGNUM, 4 }, | 
|  | { 1, REGCACHE_MAP_SKIP, 12 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | static const struct regcache_map_entry ppc32_be_linux_vrregmap[] = | 
|  | { | 
|  | { 32, PPC_VR0_REGNUM, 16 }, | 
|  | { 1, REGCACHE_MAP_SKIP, 12}, | 
|  | { 1, PPC_VSCR_REGNUM, 4 }, | 
|  | { 1, PPC_VRSAVE_REGNUM, 4 }, | 
|  | { 1, REGCACHE_MAP_SKIP, 12 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | static const struct regset ppc32_le_linux_vrregset = { | 
|  | ppc32_le_linux_vrregmap, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | static const struct regset ppc32_be_linux_vrregset = { | 
|  | ppc32_be_linux_vrregmap, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | static const struct regcache_map_entry ppc32_linux_vsxregmap[] = | 
|  | { | 
|  | { 32, PPC_VSR0_UPPER_REGNUM, 8 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | static const struct regset ppc32_linux_vsxregset = { | 
|  | ppc32_linux_vsxregmap, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | /* Program Priorty Register regmap.  */ | 
|  |  | 
|  | static const struct regcache_map_entry ppc32_regmap_ppr[] = | 
|  | { | 
|  | { 1, PPC_PPR_REGNUM, 8 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | /* Program Priorty Register regset.  */ | 
|  |  | 
|  | const struct regset ppc32_linux_pprregset = { | 
|  | ppc32_regmap_ppr, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | /* Data Stream Control Register regmap.  */ | 
|  |  | 
|  | static const struct regcache_map_entry ppc32_regmap_dscr[] = | 
|  | { | 
|  | { 1, PPC_DSCR_REGNUM, 8 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | /* Data Stream Control Register regset.  */ | 
|  |  | 
|  | const struct regset ppc32_linux_dscrregset = { | 
|  | ppc32_regmap_dscr, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | /* Target Address Register regmap.  */ | 
|  |  | 
|  | static const struct regcache_map_entry ppc32_regmap_tar[] = | 
|  | { | 
|  | { 1, PPC_TAR_REGNUM, 8 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | /* Target Address Register regset.  */ | 
|  |  | 
|  | const struct regset ppc32_linux_tarregset = { | 
|  | ppc32_regmap_tar, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | /* Event-Based Branching regmap.  */ | 
|  |  | 
|  | static const struct regcache_map_entry ppc32_regmap_ebb[] = | 
|  | { | 
|  | { 1, PPC_EBBRR_REGNUM, 8 }, | 
|  | { 1, PPC_EBBHR_REGNUM, 8 }, | 
|  | { 1, PPC_BESCR_REGNUM, 8 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | /* Event-Based Branching regset.  */ | 
|  |  | 
|  | const struct regset ppc32_linux_ebbregset = { | 
|  | ppc32_regmap_ebb, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | /* Performance Monitoring Unit regmap.  */ | 
|  |  | 
|  | static const struct regcache_map_entry ppc32_regmap_pmu[] = | 
|  | { | 
|  | { 1, PPC_SIAR_REGNUM, 8 }, | 
|  | { 1, PPC_SDAR_REGNUM, 8 }, | 
|  | { 1, PPC_SIER_REGNUM, 8 }, | 
|  | { 1, PPC_MMCR2_REGNUM, 8 }, | 
|  | { 1, PPC_MMCR0_REGNUM, 8 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | /* Performance Monitoring Unit regset.  */ | 
|  |  | 
|  | const struct regset ppc32_linux_pmuregset = { | 
|  | ppc32_regmap_pmu, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | /* Hardware Transactional Memory special-purpose register regmap.  */ | 
|  |  | 
|  | static const struct regcache_map_entry ppc32_regmap_tm_spr[] = | 
|  | { | 
|  | { 1, PPC_TFHAR_REGNUM, 8 }, | 
|  | { 1, PPC_TEXASR_REGNUM, 8 }, | 
|  | { 1, PPC_TFIAR_REGNUM, 8 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | /* Hardware Transactional Memory special-purpose register regset.  */ | 
|  |  | 
|  | const struct regset ppc32_linux_tm_sprregset = { | 
|  | ppc32_regmap_tm_spr, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | /* Regmaps for the Hardware Transactional Memory checkpointed | 
|  | general-purpose regsets for 32-bit, 64-bit big-endian, and 64-bit | 
|  | little endian targets.  The ptrace and core file buffers for 64-bit | 
|  | targets use 8-byte fields for the 4-byte registers, and the | 
|  | position of the register in the fields depends on the endianness. | 
|  | The 32-bit regmap is the same for both endian types because the | 
|  | fields are all 4-byte long. | 
|  |  | 
|  | The layout of checkpointed GPR regset is the same as a regular | 
|  | struct pt_regs, but we skip all registers that are not actually | 
|  | checkpointed by the processor (e.g. msr, nip), except when | 
|  | generating a core file.  The 64-bit regset is 48 * 8 bytes long. | 
|  | In some 64-bit kernels, the regset for a 32-bit inferior has the | 
|  | same length, but all the registers are squeezed in the first half | 
|  | (48 * 4 bytes).  The pt_regs struct calls the regular cr ccr, but | 
|  | we use ccr for "checkpointed condition register".  Note that CR | 
|  | (condition register) field 0 is not checkpointed, but the kernel | 
|  | returns all 4 bytes.  The skipped registers should not be touched | 
|  | when writing the regset to the inferior (with | 
|  | PTRACE_SETREGSET).  */ | 
|  |  | 
|  | static const struct regcache_map_entry ppc32_regmap_cgpr[] = | 
|  | { | 
|  | { 32, PPC_CR0_REGNUM, 4 }, | 
|  | { 3, REGCACHE_MAP_SKIP, 4 }, /* nip, msr, orig_gpr3.  */ | 
|  | { 1, PPC_CCTR_REGNUM, 4 }, | 
|  | { 1, PPC_CLR_REGNUM, 4 }, | 
|  | { 1, PPC_CXER_REGNUM, 4 }, | 
|  | { 1, PPC_CCR_REGNUM, 4 }, | 
|  | { 9, REGCACHE_MAP_SKIP, 4 }, /* All the rest.  */ | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | static const struct regcache_map_entry ppc64_le_regmap_cgpr[] = | 
|  | { | 
|  | { 32, PPC_CR0_REGNUM, 8 }, | 
|  | { 3, REGCACHE_MAP_SKIP, 8 }, | 
|  | { 1, PPC_CCTR_REGNUM, 8 }, | 
|  | { 1, PPC_CLR_REGNUM, 8 }, | 
|  | { 1, PPC_CXER_REGNUM, 4 }, | 
|  | { 1, REGCACHE_MAP_SKIP, 4 }, /* CXER padding.  */ | 
|  | { 1, PPC_CCR_REGNUM, 4 }, | 
|  | { 1, REGCACHE_MAP_SKIP, 4}, /* CCR padding.  */ | 
|  | { 9, REGCACHE_MAP_SKIP, 8}, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | static const struct regcache_map_entry ppc64_be_regmap_cgpr[] = | 
|  | { | 
|  | { 32, PPC_CR0_REGNUM, 8 }, | 
|  | { 3, REGCACHE_MAP_SKIP, 8 }, | 
|  | { 1, PPC_CCTR_REGNUM, 8 }, | 
|  | { 1, PPC_CLR_REGNUM, 8 }, | 
|  | { 1, REGCACHE_MAP_SKIP, 4}, /* CXER padding.  */ | 
|  | { 1, PPC_CXER_REGNUM, 4 }, | 
|  | { 1, REGCACHE_MAP_SKIP, 4}, /* CCR padding.  */ | 
|  | { 1, PPC_CCR_REGNUM, 4 }, | 
|  | { 9, REGCACHE_MAP_SKIP, 8}, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | /* Regsets for the Hardware Transactional Memory checkpointed | 
|  | general-purpose registers for 32-bit, 64-bit big-endian, and 64-bit | 
|  | little endian targets. | 
|  |  | 
|  | Some 64-bit kernels generate a checkpointed gpr note section with | 
|  | 48*8 bytes for a 32-bit thread, of which only 48*4 are actually | 
|  | used, so we set the variable size flag in the corresponding regset | 
|  | to accept this case.  */ | 
|  |  | 
|  | static const struct regset ppc32_linux_cgprregset = { | 
|  | ppc32_regmap_cgpr, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset, | 
|  | REGSET_VARIABLE_SIZE | 
|  | }; | 
|  |  | 
|  | static const struct regset ppc64_be_linux_cgprregset = { | 
|  | ppc64_be_regmap_cgpr, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | static const struct regset ppc64_le_linux_cgprregset = { | 
|  | ppc64_le_regmap_cgpr, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | /* Hardware Transactional Memory checkpointed floating-point regmap.  */ | 
|  |  | 
|  | static const struct regcache_map_entry ppc32_regmap_cfpr[] = | 
|  | { | 
|  | { 32, PPC_CF0_REGNUM, 8 }, | 
|  | { 1, PPC_CFPSCR_REGNUM, 8 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | /* Hardware Transactional Memory checkpointed floating-point regset.  */ | 
|  |  | 
|  | const struct regset ppc32_linux_cfprregset = { | 
|  | ppc32_regmap_cfpr, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | /* Regmaps for the Hardware Transactional Memory checkpointed vector | 
|  | regsets, for big and little endian targets.  The position of the | 
|  | 4-byte VSCR in its 16-byte field depends on the endianness.  */ | 
|  |  | 
|  | static const struct regcache_map_entry ppc32_le_regmap_cvmx[] = | 
|  | { | 
|  | { 32, PPC_CVR0_REGNUM, 16 }, | 
|  | { 1, PPC_CVSCR_REGNUM, 4 }, | 
|  | { 1, REGCACHE_MAP_SKIP, 12 }, | 
|  | { 1, PPC_CVRSAVE_REGNUM, 4 }, | 
|  | { 1, REGCACHE_MAP_SKIP, 12 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | static const struct regcache_map_entry ppc32_be_regmap_cvmx[] = | 
|  | { | 
|  | { 32, PPC_CVR0_REGNUM, 16 }, | 
|  | { 1, REGCACHE_MAP_SKIP, 12 }, | 
|  | { 1, PPC_CVSCR_REGNUM, 4 }, | 
|  | { 1, PPC_CVRSAVE_REGNUM, 4 }, | 
|  | { 1, REGCACHE_MAP_SKIP, 12}, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | /* Hardware Transactional Memory checkpointed vector regsets, for little | 
|  | and big endian targets.  */ | 
|  |  | 
|  | static const struct regset ppc32_le_linux_cvmxregset = { | 
|  | ppc32_le_regmap_cvmx, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | static const struct regset ppc32_be_linux_cvmxregset = { | 
|  | ppc32_be_regmap_cvmx, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | /* Hardware Transactional Memory checkpointed vector-scalar regmap.  */ | 
|  |  | 
|  | static const struct regcache_map_entry ppc32_regmap_cvsx[] = | 
|  | { | 
|  | { 32, PPC_CVSR0_UPPER_REGNUM, 8 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | /* Hardware Transactional Memory checkpointed vector-scalar regset.  */ | 
|  |  | 
|  | const struct regset ppc32_linux_cvsxregset = { | 
|  | ppc32_regmap_cvsx, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | /* Hardware Transactional Memory checkpointed Program Priority Register | 
|  | regmap.  */ | 
|  |  | 
|  | static const struct regcache_map_entry ppc32_regmap_cppr[] = | 
|  | { | 
|  | { 1, PPC_CPPR_REGNUM, 8 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | /* Hardware Transactional Memory checkpointed Program Priority Register | 
|  | regset.  */ | 
|  |  | 
|  | const struct regset ppc32_linux_cpprregset = { | 
|  | ppc32_regmap_cppr, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | /* Hardware Transactional Memory checkpointed Data Stream Control | 
|  | Register regmap.  */ | 
|  |  | 
|  | static const struct regcache_map_entry ppc32_regmap_cdscr[] = | 
|  | { | 
|  | { 1, PPC_CDSCR_REGNUM, 8 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | /* Hardware Transactional Memory checkpointed Data Stream Control | 
|  | Register regset.  */ | 
|  |  | 
|  | const struct regset ppc32_linux_cdscrregset = { | 
|  | ppc32_regmap_cdscr, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | /* Hardware Transactional Memory checkpointed Target Address Register | 
|  | regmap.  */ | 
|  |  | 
|  | static const struct regcache_map_entry ppc32_regmap_ctar[] = | 
|  | { | 
|  | { 1, PPC_CTAR_REGNUM, 8 }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | /* Hardware Transactional Memory checkpointed Target Address Register | 
|  | regset.  */ | 
|  |  | 
|  | const struct regset ppc32_linux_ctarregset = { | 
|  | ppc32_regmap_ctar, | 
|  | regcache_supply_regset, | 
|  | regcache_collect_regset | 
|  | }; | 
|  |  | 
|  | const struct regset * | 
|  | ppc_linux_gregset (int wordsize) | 
|  | { | 
|  | return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset; | 
|  | } | 
|  |  | 
|  | const struct regset * | 
|  | ppc_linux_fpregset (void) | 
|  | { | 
|  | return &ppc32_linux_fpregset; | 
|  | } | 
|  |  | 
|  | const struct regset * | 
|  | ppc_linux_vrregset (struct gdbarch *gdbarch) | 
|  | { | 
|  | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | 
|  | return &ppc32_be_linux_vrregset; | 
|  | else | 
|  | return &ppc32_le_linux_vrregset; | 
|  | } | 
|  |  | 
|  | const struct regset * | 
|  | ppc_linux_vsxregset (void) | 
|  | { | 
|  | return &ppc32_linux_vsxregset; | 
|  | } | 
|  |  | 
|  | const struct regset * | 
|  | ppc_linux_cgprregset (struct gdbarch *gdbarch) | 
|  | { | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (tdep->wordsize == 4) | 
|  | { | 
|  | return &ppc32_linux_cgprregset; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | 
|  | return &ppc64_be_linux_cgprregset; | 
|  | else | 
|  | return &ppc64_le_linux_cgprregset; | 
|  | } | 
|  | } | 
|  |  | 
|  | const struct regset * | 
|  | ppc_linux_cvmxregset (struct gdbarch *gdbarch) | 
|  | { | 
|  | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | 
|  | return &ppc32_be_linux_cvmxregset; | 
|  | else | 
|  | return &ppc32_le_linux_cvmxregset; | 
|  | } | 
|  |  | 
|  | /* Collect function used to generate the core note for the | 
|  | checkpointed GPR regset.  Here, we don't want to skip the | 
|  | "checkpointed" NIP and MSR, so that the note section we generate is | 
|  | similar to the one generated by the kernel.  To avoid having to | 
|  | define additional registers in GDB which are not actually | 
|  | checkpointed in the architecture, we copy TFHAR to the checkpointed | 
|  | NIP slot, which is what the kernel does, and copy the regular MSR | 
|  | to the checkpointed MSR slot, which will have a similar value in | 
|  | most cases.  */ | 
|  |  | 
|  | static void | 
|  | ppc_linux_collect_core_cpgrregset (const struct regset *regset, | 
|  | const struct regcache *regcache, | 
|  | int regnum, void *buf, size_t len) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch); | 
|  |  | 
|  | /* We collect the checkpointed GPRs already defined in the regular | 
|  | regmap, then overlay TFHAR/MSR on the checkpointed NIP/MSR | 
|  | slots.  */ | 
|  | cgprregset->collect_regset (cgprregset, regcache, regnum, buf, len); | 
|  |  | 
|  | /* Check that we are collecting all the registers, which should be | 
|  | the case when generating a core file.  */ | 
|  | if (regnum != -1) | 
|  | return; | 
|  |  | 
|  | /* PT_NIP and PT_MSR are 32 and 33 for powerpc.  Don't redefine | 
|  | these symbols since this file can run on clients in other | 
|  | architectures where they can already be defined to other | 
|  | values.  */ | 
|  | int pt_offset = 32; | 
|  |  | 
|  | /* Check that our buffer is long enough to hold two slots at | 
|  | pt_offset * wordsize, one for NIP and one for MSR.  */ | 
|  | gdb_assert ((pt_offset + 2) * tdep->wordsize <= len); | 
|  |  | 
|  | /* TFHAR is 8 bytes wide, but the NIP slot for a 32-bit thread is | 
|  | 4-bytes long.  We use raw_collect_integer which handles | 
|  | differences in the sizes for the source and destination buffers | 
|  | for both endian modes.  */ | 
|  | (regcache->raw_collect_integer | 
|  | (PPC_TFHAR_REGNUM, ((gdb_byte *) buf) + pt_offset * tdep->wordsize, | 
|  | tdep->wordsize, false)); | 
|  |  | 
|  | pt_offset = 33; | 
|  |  | 
|  | (regcache->raw_collect_integer | 
|  | (PPC_MSR_REGNUM, ((gdb_byte *) buf) + pt_offset * tdep->wordsize, | 
|  | tdep->wordsize, false)); | 
|  | } | 
|  |  | 
|  | /* Iterate over supported core file register note sections. */ | 
|  |  | 
|  | static void | 
|  | ppc_linux_iterate_over_regset_sections (struct gdbarch *gdbarch, | 
|  | iterate_over_regset_sections_cb *cb, | 
|  | void *cb_data, | 
|  | const struct regcache *regcache) | 
|  | { | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  | int have_altivec = tdep->ppc_vr0_regnum != -1; | 
|  | int have_vsx = tdep->ppc_vsr0_upper_regnum != -1; | 
|  | int have_ppr = tdep->ppc_ppr_regnum != -1; | 
|  | int have_dscr = tdep->ppc_dscr_regnum != -1; | 
|  | int have_tar = tdep->ppc_tar_regnum != -1; | 
|  |  | 
|  | if (tdep->wordsize == 4) | 
|  | cb (".reg", 48 * 4, 48 * 4, &ppc32_linux_gregset, NULL, cb_data); | 
|  | else | 
|  | cb (".reg", 48 * 8, 48 * 8, &ppc64_linux_gregset, NULL, cb_data); | 
|  |  | 
|  | cb (".reg2", 264, 264, &ppc32_linux_fpregset, NULL, cb_data); | 
|  |  | 
|  | if (have_altivec) | 
|  | { | 
|  | const struct regset *vrregset = ppc_linux_vrregset (gdbarch); | 
|  | cb (".reg-ppc-vmx", PPC_LINUX_SIZEOF_VRREGSET, PPC_LINUX_SIZEOF_VRREGSET, | 
|  | vrregset, "ppc Altivec", cb_data); | 
|  | } | 
|  |  | 
|  | if (have_vsx) | 
|  | cb (".reg-ppc-vsx", PPC_LINUX_SIZEOF_VSXREGSET, PPC_LINUX_SIZEOF_VSXREGSET, | 
|  | &ppc32_linux_vsxregset, "POWER7 VSX", cb_data); | 
|  |  | 
|  | if (have_ppr) | 
|  | cb (".reg-ppc-ppr", PPC_LINUX_SIZEOF_PPRREGSET, | 
|  | PPC_LINUX_SIZEOF_PPRREGSET, | 
|  | &ppc32_linux_pprregset, "Priority Program Register", cb_data); | 
|  |  | 
|  | if (have_dscr) | 
|  | cb (".reg-ppc-dscr", PPC_LINUX_SIZEOF_DSCRREGSET, | 
|  | PPC_LINUX_SIZEOF_DSCRREGSET, | 
|  | &ppc32_linux_dscrregset, "Data Stream Control Register", | 
|  | cb_data); | 
|  |  | 
|  | if (have_tar) | 
|  | cb (".reg-ppc-tar", PPC_LINUX_SIZEOF_TARREGSET, | 
|  | PPC_LINUX_SIZEOF_TARREGSET, | 
|  | &ppc32_linux_tarregset, "Target Address Register", cb_data); | 
|  |  | 
|  | /* EBB registers are unavailable when ptrace returns ENODATA.  Check | 
|  | availability when generating a core file (regcache != NULL).  */ | 
|  | if (tdep->have_ebb) | 
|  | if (regcache == NULL | 
|  | || REG_VALID == regcache->get_register_status (PPC_BESCR_REGNUM)) | 
|  | cb (".reg-ppc-ebb", PPC_LINUX_SIZEOF_EBBREGSET, | 
|  | PPC_LINUX_SIZEOF_EBBREGSET, | 
|  | &ppc32_linux_ebbregset, "Event-based Branching Registers", | 
|  | cb_data); | 
|  |  | 
|  | if (tdep->ppc_mmcr0_regnum != -1) | 
|  | cb (".reg-ppc-pmu", PPC_LINUX_SIZEOF_PMUREGSET, | 
|  | PPC_LINUX_SIZEOF_PMUREGSET, | 
|  | &ppc32_linux_pmuregset, "Performance Monitor Registers", | 
|  | cb_data); | 
|  |  | 
|  | if (tdep->have_htm_spr) | 
|  | cb (".reg-ppc-tm-spr", PPC_LINUX_SIZEOF_TM_SPRREGSET, | 
|  | PPC_LINUX_SIZEOF_TM_SPRREGSET, | 
|  | &ppc32_linux_tm_sprregset, | 
|  | "Hardware Transactional Memory Special Purpose Registers", | 
|  | cb_data); | 
|  |  | 
|  | /* Checkpointed registers can be unavailable, don't call back if | 
|  | we are generating a core file.  */ | 
|  |  | 
|  | if (tdep->have_htm_core) | 
|  | { | 
|  | /* Only generate the checkpointed GPR core note if we also have | 
|  | access to the HTM SPRs, because we need TFHAR to fill the | 
|  | "checkpointed" NIP slot.  We can read a core file without it | 
|  | since GDB is not aware of this NIP as a visible register.  */ | 
|  | if (regcache == NULL || | 
|  | (REG_VALID == regcache->get_register_status (PPC_CR0_REGNUM) | 
|  | && tdep->have_htm_spr)) | 
|  | { | 
|  | int cgpr_size = (tdep->wordsize == 4? | 
|  | PPC32_LINUX_SIZEOF_CGPRREGSET | 
|  | : PPC64_LINUX_SIZEOF_CGPRREGSET); | 
|  |  | 
|  | const struct regset *cgprregset = | 
|  | ppc_linux_cgprregset (gdbarch); | 
|  |  | 
|  | if (regcache != NULL) | 
|  | { | 
|  | struct regset core_cgprregset = *cgprregset; | 
|  |  | 
|  | core_cgprregset.collect_regset | 
|  | = ppc_linux_collect_core_cpgrregset; | 
|  |  | 
|  | cb (".reg-ppc-tm-cgpr", | 
|  | cgpr_size, cgpr_size, | 
|  | &core_cgprregset, | 
|  | "Checkpointed General Purpose Registers", cb_data); | 
|  | } | 
|  | else | 
|  | { | 
|  | cb (".reg-ppc-tm-cgpr", | 
|  | cgpr_size, cgpr_size, | 
|  | cgprregset, | 
|  | "Checkpointed General Purpose Registers", cb_data); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tdep->have_htm_fpu) | 
|  | { | 
|  | if (regcache == NULL || | 
|  | REG_VALID == regcache->get_register_status (PPC_CF0_REGNUM)) | 
|  | cb (".reg-ppc-tm-cfpr", PPC_LINUX_SIZEOF_CFPRREGSET, | 
|  | PPC_LINUX_SIZEOF_CFPRREGSET, | 
|  | &ppc32_linux_cfprregset, | 
|  | "Checkpointed Floating Point Registers", cb_data); | 
|  | } | 
|  |  | 
|  | if (tdep->have_htm_altivec) | 
|  | { | 
|  | if (regcache == NULL || | 
|  | REG_VALID == regcache->get_register_status (PPC_CVR0_REGNUM)) | 
|  | { | 
|  | const struct regset *cvmxregset = | 
|  | ppc_linux_cvmxregset (gdbarch); | 
|  |  | 
|  | cb (".reg-ppc-tm-cvmx", PPC_LINUX_SIZEOF_CVMXREGSET, | 
|  | PPC_LINUX_SIZEOF_CVMXREGSET, | 
|  | cvmxregset, | 
|  | "Checkpointed Altivec (VMX) Registers", cb_data); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tdep->have_htm_vsx) | 
|  | { | 
|  | if (regcache == NULL || | 
|  | (REG_VALID | 
|  | == regcache->get_register_status (PPC_CVSR0_UPPER_REGNUM))) | 
|  | cb (".reg-ppc-tm-cvsx", PPC_LINUX_SIZEOF_CVSXREGSET, | 
|  | PPC_LINUX_SIZEOF_CVSXREGSET, | 
|  | &ppc32_linux_cvsxregset, | 
|  | "Checkpointed VSX Registers", cb_data); | 
|  | } | 
|  |  | 
|  | if (tdep->ppc_cppr_regnum != -1) | 
|  | { | 
|  | if (regcache == NULL || | 
|  | REG_VALID == regcache->get_register_status (PPC_CPPR_REGNUM)) | 
|  | cb (".reg-ppc-tm-cppr", PPC_LINUX_SIZEOF_CPPRREGSET, | 
|  | PPC_LINUX_SIZEOF_CPPRREGSET, | 
|  | &ppc32_linux_cpprregset, | 
|  | "Checkpointed Priority Program Register", cb_data); | 
|  | } | 
|  |  | 
|  | if (tdep->ppc_cdscr_regnum != -1) | 
|  | { | 
|  | if (regcache == NULL || | 
|  | REG_VALID == regcache->get_register_status (PPC_CDSCR_REGNUM)) | 
|  | cb (".reg-ppc-tm-cdscr", PPC_LINUX_SIZEOF_CDSCRREGSET, | 
|  | PPC_LINUX_SIZEOF_CDSCRREGSET, | 
|  | &ppc32_linux_cdscrregset, | 
|  | "Checkpointed Data Stream Control Register", cb_data); | 
|  | } | 
|  |  | 
|  | if (tdep->ppc_ctar_regnum) | 
|  | { | 
|  | if ( regcache == NULL || | 
|  | REG_VALID == regcache->get_register_status (PPC_CTAR_REGNUM)) | 
|  | cb (".reg-ppc-tm-ctar", PPC_LINUX_SIZEOF_CTARREGSET, | 
|  | PPC_LINUX_SIZEOF_CTARREGSET, | 
|  | &ppc32_linux_ctarregset, | 
|  | "Checkpointed Target Address Register", cb_data); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | ppc_linux_sigtramp_cache (const frame_info_ptr &this_frame, | 
|  | struct trad_frame_cache *this_cache, | 
|  | CORE_ADDR func, LONGEST offset, | 
|  | int bias) | 
|  | { | 
|  | CORE_ADDR base; | 
|  | CORE_ADDR regs; | 
|  | CORE_ADDR gpregs; | 
|  | CORE_ADDR fpregs; | 
|  | int i; | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | base = get_frame_register_unsigned (this_frame, | 
|  | gdbarch_sp_regnum (gdbarch)); | 
|  | if (bias > 0 && get_frame_pc (this_frame) != func) | 
|  | /* See below, some signal trampolines increment the stack as their | 
|  | first instruction, need to compensate for that.  */ | 
|  | base -= bias; | 
|  |  | 
|  | /* Find the address of the register buffer pointer.  */ | 
|  | regs = base + offset; | 
|  | /* Use that to find the address of the corresponding register | 
|  | buffers.  */ | 
|  | gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order); | 
|  | fpregs = gpregs + 48 * tdep->wordsize; | 
|  |  | 
|  | /* General purpose.  */ | 
|  | for (i = 0; i < 32; i++) | 
|  | { | 
|  | int regnum = i + tdep->ppc_gp0_regnum; | 
|  | trad_frame_set_reg_addr (this_cache, | 
|  | regnum, gpregs + i * tdep->wordsize); | 
|  | } | 
|  | trad_frame_set_reg_addr (this_cache, | 
|  | gdbarch_pc_regnum (gdbarch), | 
|  | gpregs + 32 * tdep->wordsize); | 
|  | trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum, | 
|  | gpregs + 35 * tdep->wordsize); | 
|  | trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum, | 
|  | gpregs + 36 * tdep->wordsize); | 
|  | trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum, | 
|  | gpregs + 37 * tdep->wordsize); | 
|  | trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum, | 
|  | gpregs + 38 * tdep->wordsize); | 
|  |  | 
|  | if (ppc_linux_trap_reg_p (gdbarch)) | 
|  | { | 
|  | trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM, | 
|  | gpregs + 34 * tdep->wordsize); | 
|  | trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM, | 
|  | gpregs + 40 * tdep->wordsize); | 
|  | } | 
|  |  | 
|  | if (ppc_floating_point_unit_p (gdbarch)) | 
|  | { | 
|  | /* Floating point registers.  */ | 
|  | for (i = 0; i < 32; i++) | 
|  | { | 
|  | int regnum = i + gdbarch_fp0_regnum (gdbarch); | 
|  | trad_frame_set_reg_addr (this_cache, regnum, | 
|  | fpregs + i * tdep->wordsize); | 
|  | } | 
|  | trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum, | 
|  | fpregs + 32 * tdep->wordsize); | 
|  | } | 
|  | trad_frame_set_id (this_cache, frame_id_build (base, func)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | ppc32_linux_sigaction_cache_init (const struct tramp_frame *self, | 
|  | const frame_info_ptr &this_frame, | 
|  | struct trad_frame_cache *this_cache, | 
|  | CORE_ADDR func) | 
|  | { | 
|  | ppc_linux_sigtramp_cache (this_frame, this_cache, func, | 
|  | 0xd0 /* Offset to ucontext_t.  */ | 
|  | + 0x30 /* Offset to .reg.  */, | 
|  | 0); | 
|  | } | 
|  |  | 
|  | static void | 
|  | ppc64_linux_sigaction_cache_init (const struct tramp_frame *self, | 
|  | const frame_info_ptr &this_frame, | 
|  | struct trad_frame_cache *this_cache, | 
|  | CORE_ADDR func) | 
|  | { | 
|  | ppc_linux_sigtramp_cache (this_frame, this_cache, func, | 
|  | 0x80 /* Offset to ucontext_t.  */ | 
|  | + 0xe0 /* Offset to .reg.  */, | 
|  | 128); | 
|  | } | 
|  |  | 
|  | static void | 
|  | ppc32_linux_sighandler_cache_init (const struct tramp_frame *self, | 
|  | const frame_info_ptr &this_frame, | 
|  | struct trad_frame_cache *this_cache, | 
|  | CORE_ADDR func) | 
|  | { | 
|  | ppc_linux_sigtramp_cache (this_frame, this_cache, func, | 
|  | 0x40 /* Offset to ucontext_t.  */ | 
|  | + 0x1c /* Offset to .reg.  */, | 
|  | 0); | 
|  | } | 
|  |  | 
|  | static void | 
|  | ppc64_linux_sighandler_cache_init (const struct tramp_frame *self, | 
|  | const frame_info_ptr &this_frame, | 
|  | struct trad_frame_cache *this_cache, | 
|  | CORE_ADDR func) | 
|  | { | 
|  | ppc_linux_sigtramp_cache (this_frame, this_cache, func, | 
|  | 0x80 /* Offset to struct sigcontext.  */ | 
|  | + 0x38 /* Offset to .reg.  */, | 
|  | 128); | 
|  | } | 
|  |  | 
|  | static struct tramp_frame ppc32_linux_sigaction_tramp_frame = { | 
|  | SIGTRAMP_FRAME, | 
|  | 4, | 
|  | { | 
|  | { 0x380000ac, ULONGEST_MAX }, /* li r0, 172 */ | 
|  | { 0x44000002, ULONGEST_MAX }, /* sc */ | 
|  | { TRAMP_SENTINEL_INSN }, | 
|  | }, | 
|  | ppc32_linux_sigaction_cache_init | 
|  | }; | 
|  | static struct tramp_frame ppc64_linux_sigaction_tramp_frame = { | 
|  | SIGTRAMP_FRAME, | 
|  | 4, | 
|  | { | 
|  | { 0x38210080, ULONGEST_MAX }, /* addi r1,r1,128 */ | 
|  | { 0x380000ac, ULONGEST_MAX }, /* li r0, 172 */ | 
|  | { 0x44000002, ULONGEST_MAX }, /* sc */ | 
|  | { TRAMP_SENTINEL_INSN }, | 
|  | }, | 
|  | ppc64_linux_sigaction_cache_init | 
|  | }; | 
|  | static struct tramp_frame ppc32_linux_sighandler_tramp_frame = { | 
|  | SIGTRAMP_FRAME, | 
|  | 4, | 
|  | { | 
|  | { 0x38000077, ULONGEST_MAX }, /* li r0,119 */ | 
|  | { 0x44000002, ULONGEST_MAX }, /* sc */ | 
|  | { TRAMP_SENTINEL_INSN }, | 
|  | }, | 
|  | ppc32_linux_sighandler_cache_init | 
|  | }; | 
|  | static struct tramp_frame ppc64_linux_sighandler_tramp_frame = { | 
|  | SIGTRAMP_FRAME, | 
|  | 4, | 
|  | { | 
|  | { 0x38210080, ULONGEST_MAX }, /* addi r1,r1,128 */ | 
|  | { 0x38000077, ULONGEST_MAX }, /* li r0,119 */ | 
|  | { 0x44000002, ULONGEST_MAX }, /* sc */ | 
|  | { TRAMP_SENTINEL_INSN }, | 
|  | }, | 
|  | ppc64_linux_sighandler_cache_init | 
|  | }; | 
|  |  | 
|  | /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable.  */ | 
|  | int | 
|  | ppc_linux_trap_reg_p (struct gdbarch *gdbarch) | 
|  | { | 
|  | /* If we do not have a target description with registers, then | 
|  | the special registers will not be included in the register set.  */ | 
|  | if (!tdesc_has_registers (gdbarch_target_desc (gdbarch))) | 
|  | return 0; | 
|  |  | 
|  | /* If we do, then it is safe to check the size.  */ | 
|  | return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0 | 
|  | && register_size (gdbarch, PPC_TRAP_REGNUM) > 0; | 
|  | } | 
|  |  | 
|  | /* Return the current system call's number present in the | 
|  | r0 register.  When the function fails, it returns -1.  */ | 
|  | static LONGEST | 
|  | ppc_linux_get_syscall_number (struct gdbarch *gdbarch, | 
|  | thread_info *thread) | 
|  | { | 
|  | struct regcache *regcache = get_thread_regcache (thread); | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | /* Make sure we're in a 32- or 64-bit machine */ | 
|  | gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8); | 
|  |  | 
|  | /* The content of a register */ | 
|  | gdb::byte_vector buf (tdep->wordsize); | 
|  |  | 
|  | /* Getting the system call number from the register. | 
|  | When dealing with PowerPC architecture, this information | 
|  | is stored at 0th register.  */ | 
|  | regcache->cooked_read (tdep->ppc_gp0_regnum, buf.data ()); | 
|  |  | 
|  | return extract_signed_integer (buf.data (), tdep->wordsize, byte_order); | 
|  | } | 
|  |  | 
|  | /* PPC process record-replay */ | 
|  |  | 
|  | static struct linux_record_tdep ppc_linux_record_tdep; | 
|  | static struct linux_record_tdep ppc64_linux_record_tdep; | 
|  |  | 
|  | /* ppc_canonicalize_syscall maps from the native PowerPC Linux set of | 
|  | syscall ids into a canonical set of syscall ids used by process | 
|  | record.  (See arch/powerpc/include/uapi/asm/unistd.h in kernel tree.) | 
|  | Return -1 if this system call is not supported by process record. | 
|  | Otherwise, return the syscall number for process record of given | 
|  | SYSCALL.  */ | 
|  |  | 
|  | static enum gdb_syscall | 
|  | ppc_canonicalize_syscall (int syscall, int wordsize) | 
|  | { | 
|  | int result = -1; | 
|  |  | 
|  | if (syscall <= 165) | 
|  | result = syscall; | 
|  | else if (syscall >= 167 && syscall <= 190)	/* Skip query_module 166 */ | 
|  | result = syscall + 1; | 
|  | else if (syscall >= 192 && syscall <= 197)	/* mmap2 */ | 
|  | result = syscall; | 
|  | else if (syscall == 208)			/* tkill */ | 
|  | result = gdb_sys_tkill; | 
|  | else if (syscall >= 207 && syscall <= 220)	/* gettid */ | 
|  | result = syscall + 224 - 207; | 
|  | else if (syscall >= 234 && syscall <= 239)	/* exit_group */ | 
|  | result = syscall + 252 - 234; | 
|  | else if (syscall >= 240 && syscall <= 248)	/* timer_create */ | 
|  | result = syscall += 259 - 240; | 
|  | else if (syscall >= 250 && syscall <= 251)	/* tgkill */ | 
|  | result = syscall + 270 - 250; | 
|  | else if (syscall == 286) | 
|  | result = gdb_sys_openat; | 
|  | else if (syscall == 291) | 
|  | { | 
|  | if (wordsize == 64) | 
|  | result = gdb_sys_newfstatat; | 
|  | else | 
|  | result = gdb_sys_fstatat64; | 
|  | } | 
|  | else if (syscall == 317) | 
|  | result = gdb_sys_pipe2; | 
|  | else if (syscall == 336) | 
|  | result = gdb_sys_recv; | 
|  | else if (syscall == 337) | 
|  | result = gdb_sys_recvfrom; | 
|  | else if (syscall == 342) | 
|  | result = gdb_sys_recvmsg; | 
|  | else if (syscall == 359) | 
|  | result = gdb_sys_getrandom; | 
|  |  | 
|  | return (enum gdb_syscall) result; | 
|  | } | 
|  |  | 
|  | /* Record registers which might be clobbered during system call. | 
|  | Return 0 if successful.  */ | 
|  |  | 
|  | static int | 
|  | ppc_linux_syscall_record (struct regcache *regcache) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  | ULONGEST scnum; | 
|  | enum gdb_syscall syscall_gdb; | 
|  | int ret; | 
|  |  | 
|  | regcache_raw_read_unsigned (regcache, tdep->ppc_gp0_regnum, &scnum); | 
|  | syscall_gdb = ppc_canonicalize_syscall (scnum, tdep->wordsize); | 
|  |  | 
|  | if (syscall_gdb < 0) | 
|  | { | 
|  | gdb_printf (gdb_stderr, | 
|  | _("Process record and replay target doesn't " | 
|  | "support syscall number %d\n"), (int) scnum); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (syscall_gdb == gdb_sys_sigreturn | 
|  | || syscall_gdb == gdb_sys_rt_sigreturn) | 
|  | { | 
|  | int i, j; | 
|  | int regsets[] = { tdep->ppc_gp0_regnum, | 
|  | tdep->ppc_fp0_regnum, | 
|  | tdep->ppc_vr0_regnum, | 
|  | tdep->ppc_vsr0_upper_regnum }; | 
|  |  | 
|  | for (j = 0; j < 4; j++) | 
|  | { | 
|  | if (regsets[j] == -1) | 
|  | continue; | 
|  | for (i = 0; i < 32; i++) | 
|  | { | 
|  | if (record_full_arch_list_add_reg (regcache, regsets[j] + i)) | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum)) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum)) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum)) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum)) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (tdep->wordsize == 8) | 
|  | ret = record_linux_system_call (syscall_gdb, regcache, | 
|  | &ppc64_linux_record_tdep); | 
|  | else | 
|  | ret = record_linux_system_call (syscall_gdb, regcache, | 
|  | &ppc_linux_record_tdep); | 
|  |  | 
|  | if (ret != 0) | 
|  | return ret; | 
|  |  | 
|  | /* Record registers clobbered during syscall.  */ | 
|  | for (int i = 3; i <= 12; i++) | 
|  | { | 
|  | if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i)) | 
|  | return -1; | 
|  | } | 
|  | if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + 0)) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum)) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum)) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum)) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Record registers which might be clobbered during signal handling. | 
|  | Return 0 if successful.  */ | 
|  |  | 
|  | static int | 
|  | ppc_linux_record_signal (struct gdbarch *gdbarch, struct regcache *regcache, | 
|  | enum gdb_signal signal) | 
|  | { | 
|  | /* See handle_rt_signal64 in arch/powerpc/kernel/signal_64.c | 
|  | handle_rt_signal32 in arch/powerpc/kernel/signal_32.c | 
|  | arch/powerpc/include/asm/ptrace.h | 
|  | for details.  */ | 
|  | const int SIGNAL_FRAMESIZE = 128; | 
|  | const int sizeof_rt_sigframe = 1440 * 2 + 8 * 2 + 4 * 6 + 8 + 8 + 128 + 512; | 
|  | ULONGEST sp; | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  | int i; | 
|  |  | 
|  | for (i = 3; i <= 12; i++) | 
|  | { | 
|  | if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i)) | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum)) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum)) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum)) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, gdbarch_pc_regnum (gdbarch))) | 
|  | return -1; | 
|  | if (record_full_arch_list_add_reg (regcache, gdbarch_sp_regnum (gdbarch))) | 
|  | return -1; | 
|  |  | 
|  | /* Record the change in the stack. | 
|  | frame-size = sizeof (struct rt_sigframe) + SIGNAL_FRAMESIZE  */ | 
|  | regcache_raw_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch), &sp); | 
|  | sp -= SIGNAL_FRAMESIZE; | 
|  | sp -= sizeof_rt_sigframe; | 
|  |  | 
|  | if (record_full_arch_list_add_mem (sp, SIGNAL_FRAMESIZE + sizeof_rt_sigframe)) | 
|  | return -1; | 
|  |  | 
|  | if (record_full_arch_list_add_end ()) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  |  | 
|  | regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc); | 
|  |  | 
|  | /* Set special TRAP register to -1 to prevent the kernel from | 
|  | messing with the PC we just installed, if we happen to be | 
|  | within an interrupted system call that the kernel wants to | 
|  | restart. | 
|  |  | 
|  | Note that after we return from the dummy call, the TRAP and | 
|  | ORIG_R3 registers will be automatically restored, and the | 
|  | kernel continues to restart the system call at this point.  */ | 
|  | if (ppc_linux_trap_reg_p (gdbarch)) | 
|  | regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1); | 
|  | } | 
|  |  | 
|  | static const struct target_desc * | 
|  | ppc_linux_core_read_description (struct gdbarch *gdbarch, | 
|  | struct target_ops *target, | 
|  | bfd *abfd) | 
|  | { | 
|  | struct ppc_linux_features features = ppc_linux_no_features; | 
|  | asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx"); | 
|  | asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx"); | 
|  | asection *section = bfd_get_section_by_name (abfd, ".reg"); | 
|  | asection *ppr = bfd_get_section_by_name (abfd, ".reg-ppc-ppr"); | 
|  | asection *dscr = bfd_get_section_by_name (abfd, ".reg-ppc-dscr"); | 
|  | asection *tar = bfd_get_section_by_name (abfd, ".reg-ppc-tar"); | 
|  | asection *pmu = bfd_get_section_by_name (abfd, ".reg-ppc-pmu"); | 
|  | asection *htmspr = bfd_get_section_by_name (abfd, ".reg-ppc-tm-spr"); | 
|  |  | 
|  | if (! section) | 
|  | return NULL; | 
|  |  | 
|  | switch (bfd_section_size (section)) | 
|  | { | 
|  | case 48 * 4: | 
|  | features.wordsize = 4; | 
|  | break; | 
|  | case 48 * 8: | 
|  | features.wordsize = 8; | 
|  | break; | 
|  | default: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (altivec) | 
|  | features.altivec = true; | 
|  |  | 
|  | if (vsx) | 
|  | features.vsx = true; | 
|  |  | 
|  | std::optional<gdb::byte_vector> auxv = target_read_auxv_raw (target); | 
|  | CORE_ADDR hwcap = linux_get_hwcap (auxv, target, gdbarch); | 
|  |  | 
|  | features.isa205 = ppc_linux_has_isa205 (hwcap); | 
|  |  | 
|  | if (ppr && dscr) | 
|  | { | 
|  | features.ppr_dscr = true; | 
|  |  | 
|  | /* We don't require the EBB note section to be present in the | 
|  | core file to select isa207 because these registers could have | 
|  | been unavailable when the core file was created.  They will | 
|  | be in the tdep but will show as unavailable.  */ | 
|  | if (tar && pmu) | 
|  | { | 
|  | features.isa207 = true; | 
|  | if (htmspr) | 
|  | features.htm = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ppc_linux_match_description (features); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Implementation of `gdbarch_elf_make_msymbol_special', as defined in | 
|  | gdbarch.h.  This implementation is used for the ELFv2 ABI only.  */ | 
|  |  | 
|  | static void | 
|  | ppc_elfv2_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym) | 
|  | { | 
|  | if ((sym->flags & BSF_SYNTHETIC) != 0) | 
|  | /* ELFv2 synthetic symbols (the PLT stubs and the __glink_PLTresolve | 
|  | trampoline) do not have a local entry point.  */ | 
|  | return; | 
|  |  | 
|  | elf_symbol_type *elf_sym = (elf_symbol_type *)sym; | 
|  |  | 
|  | /* If the symbol is marked as having a local entry point, set a target | 
|  | flag in the msymbol.  We currently only support local entry point | 
|  | offsets of 8 bytes, which is the only entry point offset ever used | 
|  | by current compilers.  If/when other offsets are ever used, we will | 
|  | have to use additional target flag bits to store them.  */ | 
|  | switch (PPC64_LOCAL_ENTRY_OFFSET (elf_sym->internal_elf_sym.st_other)) | 
|  | { | 
|  | default: | 
|  | break; | 
|  | case 8: | 
|  | msym->set_target_flag_1 (true); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Implementation of `gdbarch_skip_entrypoint', as defined in | 
|  | gdbarch.h.  This implementation is used for the ELFv2 ABI only.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | ppc_elfv2_skip_entrypoint (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | int local_entry_offset = 0; | 
|  |  | 
|  | bound_minimal_symbol fun = lookup_minimal_symbol_by_pc (pc); | 
|  | if (fun.minsym == NULL) | 
|  | return pc; | 
|  |  | 
|  | /* See ppc_elfv2_elf_make_msymbol_special for how local entry point | 
|  | offset values are encoded.  */ | 
|  | if (fun.minsym->target_flag_1 ()) | 
|  | local_entry_offset = 8; | 
|  |  | 
|  | if (fun.value_address () <= pc | 
|  | && pc < fun.value_address () + local_entry_offset) | 
|  | return fun.value_address () + local_entry_offset; | 
|  |  | 
|  | return pc; | 
|  | } | 
|  |  | 
|  | /* Implementation of `gdbarch_stap_is_single_operand', as defined in | 
|  | gdbarch.h.  */ | 
|  |  | 
|  | static int | 
|  | ppc_stap_is_single_operand (struct gdbarch *gdbarch, const char *s) | 
|  | { | 
|  | return (*s == 'i' /* Literal number.  */ | 
|  | || (isdigit (*s) && s[1] == '(' | 
|  | && isdigit (s[2])) /* Displacement.  */ | 
|  | || (*s == '(' && isdigit (s[1])) /* Register indirection.  */ | 
|  | || isdigit (*s)); /* Register value.  */ | 
|  | } | 
|  |  | 
|  | /* Implementation of `gdbarch_stap_parse_special_token', as defined in | 
|  | gdbarch.h.  */ | 
|  |  | 
|  | static expr::operation_up | 
|  | ppc_stap_parse_special_token (struct gdbarch *gdbarch, | 
|  | struct stap_parse_info *p) | 
|  | { | 
|  | if (isdigit (*p->arg)) | 
|  | { | 
|  | /* This temporary pointer is needed because we have to do a lookahead. | 
|  | We could be dealing with a register displacement, and in such case | 
|  | we would not need to do anything.  */ | 
|  | const char *s = p->arg; | 
|  | char *regname; | 
|  | int len; | 
|  |  | 
|  | while (isdigit (*s)) | 
|  | ++s; | 
|  |  | 
|  | if (*s == '(') | 
|  | { | 
|  | /* It is a register displacement indeed.  Returning 0 means we are | 
|  | deferring the treatment of this case to the generic parser.  */ | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | len = s - p->arg; | 
|  | regname = (char *) alloca (len + 2); | 
|  | regname[0] = 'r'; | 
|  |  | 
|  | strncpy (regname + 1, p->arg, len); | 
|  | ++len; | 
|  | regname[len] = '\0'; | 
|  |  | 
|  | if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1) | 
|  | error (_("Invalid register name `%s' on expression `%s'."), | 
|  | regname, p->saved_arg); | 
|  |  | 
|  | p->arg = s; | 
|  |  | 
|  | return expr::make_operation<expr::register_operation> (regname); | 
|  | } | 
|  |  | 
|  | /* All the other tokens should be handled correctly by the generic | 
|  | parser.  */ | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | /* Initialize linux_record_tdep if not initialized yet. | 
|  | WORDSIZE is 4 or 8 for 32- or 64-bit PowerPC Linux respectively. | 
|  | Sizes of data structures are initialized accordingly.  */ | 
|  |  | 
|  | static void | 
|  | ppc_init_linux_record_tdep (struct linux_record_tdep *record_tdep, | 
|  | int wordsize) | 
|  | { | 
|  | /* The values for TCGETS, TCSETS, TCSETSW, TCSETSF are based on the | 
|  | size of struct termios in the kernel source. | 
|  | include/uapi/asm-generic/termbits.h  */ | 
|  | #define SIZE_OF_STRUCT_TERMIOS  0x2c | 
|  |  | 
|  | /* Simply return if it had been initialized.  */ | 
|  | if (record_tdep->size_pointer != 0) | 
|  | return; | 
|  |  | 
|  | /* These values are the size of the type that will be used in a system | 
|  | call.  They are obtained from Linux Kernel source.  */ | 
|  |  | 
|  | if (wordsize == 8) | 
|  | { | 
|  | record_tdep->size_pointer = 8; | 
|  | record_tdep->size__old_kernel_stat = 32; | 
|  | record_tdep->size_tms = 32; | 
|  | record_tdep->size_loff_t = 8; | 
|  | record_tdep->size_flock = 32; | 
|  | record_tdep->size_oldold_utsname = 45; | 
|  | record_tdep->size_ustat = 32; | 
|  | record_tdep->size_old_sigaction = 32; | 
|  | record_tdep->size_old_sigset_t = 8; | 
|  | record_tdep->size_rlimit = 16; | 
|  | record_tdep->size_rusage = 144; | 
|  | record_tdep->size_timeval = 16; | 
|  | record_tdep->size_timezone = 8; | 
|  | record_tdep->size_old_gid_t = 4; | 
|  | record_tdep->size_old_uid_t = 4; | 
|  | record_tdep->size_fd_set = 128; | 
|  | record_tdep->size_old_dirent = 280; | 
|  | record_tdep->size_statfs = 120; | 
|  | record_tdep->size_statfs64 = 120; | 
|  | record_tdep->size_sockaddr = 16; | 
|  | record_tdep->size_int = 4; | 
|  | record_tdep->size_long = 8; | 
|  | record_tdep->size_ulong = 8; | 
|  | record_tdep->size_msghdr = 56; | 
|  | record_tdep->size_itimerval = 32; | 
|  | record_tdep->size_stat = 144; | 
|  | record_tdep->size_old_utsname = 325; | 
|  | record_tdep->size_sysinfo = 112; | 
|  | record_tdep->size_msqid_ds = 120; | 
|  | record_tdep->size_shmid_ds = 112; | 
|  | record_tdep->size_new_utsname = 390; | 
|  | record_tdep->size_timex = 208; | 
|  | record_tdep->size_mem_dqinfo = 24; | 
|  | record_tdep->size_if_dqblk = 72; | 
|  | record_tdep->size_fs_quota_stat = 80; | 
|  | record_tdep->size_timespec = 16; | 
|  | record_tdep->size_pollfd = 8; | 
|  | record_tdep->size_NFS_FHSIZE = 32; | 
|  | record_tdep->size_knfsd_fh = 132; | 
|  | record_tdep->size_TASK_COMM_LEN = 16; | 
|  | record_tdep->size_sigaction = 32; | 
|  | record_tdep->size_sigset_t = 8; | 
|  | record_tdep->size_siginfo_t = 128; | 
|  | record_tdep->size_cap_user_data_t = 8; | 
|  | record_tdep->size_stack_t = 24; | 
|  | record_tdep->size_off_t = 8; | 
|  | record_tdep->size_stat64 = 104; | 
|  | record_tdep->size_gid_t = 4; | 
|  | record_tdep->size_uid_t = 4; | 
|  | record_tdep->size_PAGE_SIZE = 0x10000;	/* 64KB */ | 
|  | record_tdep->size_flock64 = 32; | 
|  | record_tdep->size_io_event = 32; | 
|  | record_tdep->size_iocb = 64; | 
|  | record_tdep->size_epoll_event = 16; | 
|  | record_tdep->size_itimerspec = 32; | 
|  | record_tdep->size_mq_attr = 64; | 
|  | record_tdep->size_termios = 44; | 
|  | record_tdep->size_pid_t = 4; | 
|  | record_tdep->size_winsize = 8; | 
|  | record_tdep->size_serial_struct = 72; | 
|  | record_tdep->size_serial_icounter_struct = 80; | 
|  | record_tdep->size_size_t = 8; | 
|  | record_tdep->size_iovec = 16; | 
|  | record_tdep->size_time_t = 8; | 
|  | } | 
|  | else if (wordsize == 4) | 
|  | { | 
|  | record_tdep->size_pointer = 4; | 
|  | record_tdep->size__old_kernel_stat = 32; | 
|  | record_tdep->size_tms = 16; | 
|  | record_tdep->size_loff_t = 8; | 
|  | record_tdep->size_flock = 16; | 
|  | record_tdep->size_oldold_utsname = 45; | 
|  | record_tdep->size_ustat = 20; | 
|  | record_tdep->size_old_sigaction = 16; | 
|  | record_tdep->size_old_sigset_t = 4; | 
|  | record_tdep->size_rlimit = 8; | 
|  | record_tdep->size_rusage = 72; | 
|  | record_tdep->size_timeval = 8; | 
|  | record_tdep->size_timezone = 8; | 
|  | record_tdep->size_old_gid_t = 4; | 
|  | record_tdep->size_old_uid_t = 4; | 
|  | record_tdep->size_fd_set = 128; | 
|  | record_tdep->size_old_dirent = 268; | 
|  | record_tdep->size_statfs = 64; | 
|  | record_tdep->size_statfs64 = 88; | 
|  | record_tdep->size_sockaddr = 16; | 
|  | record_tdep->size_int = 4; | 
|  | record_tdep->size_long = 4; | 
|  | record_tdep->size_ulong = 4; | 
|  | record_tdep->size_msghdr = 28; | 
|  | record_tdep->size_itimerval = 16; | 
|  | record_tdep->size_stat = 88; | 
|  | record_tdep->size_old_utsname = 325; | 
|  | record_tdep->size_sysinfo = 64; | 
|  | record_tdep->size_msqid_ds = 68; | 
|  | record_tdep->size_shmid_ds = 60; | 
|  | record_tdep->size_new_utsname = 390; | 
|  | record_tdep->size_timex = 128; | 
|  | record_tdep->size_mem_dqinfo = 24; | 
|  | record_tdep->size_if_dqblk = 72; | 
|  | record_tdep->size_fs_quota_stat = 80; | 
|  | record_tdep->size_timespec = 8; | 
|  | record_tdep->size_pollfd = 8; | 
|  | record_tdep->size_NFS_FHSIZE = 32; | 
|  | record_tdep->size_knfsd_fh = 132; | 
|  | record_tdep->size_TASK_COMM_LEN = 16; | 
|  | record_tdep->size_sigaction = 20; | 
|  | record_tdep->size_sigset_t = 8; | 
|  | record_tdep->size_siginfo_t = 128; | 
|  | record_tdep->size_cap_user_data_t = 4; | 
|  | record_tdep->size_stack_t = 12; | 
|  | record_tdep->size_off_t = 4; | 
|  | record_tdep->size_stat64 = 104; | 
|  | record_tdep->size_gid_t = 4; | 
|  | record_tdep->size_uid_t = 4; | 
|  | record_tdep->size_PAGE_SIZE = 0x10000;	/* 64KB */ | 
|  | record_tdep->size_flock64 = 32; | 
|  | record_tdep->size_io_event = 32; | 
|  | record_tdep->size_iocb = 64; | 
|  | record_tdep->size_epoll_event = 16; | 
|  | record_tdep->size_itimerspec = 16; | 
|  | record_tdep->size_mq_attr = 32; | 
|  | record_tdep->size_termios = 44; | 
|  | record_tdep->size_pid_t = 4; | 
|  | record_tdep->size_winsize = 8; | 
|  | record_tdep->size_serial_struct = 60; | 
|  | record_tdep->size_serial_icounter_struct = 80; | 
|  | record_tdep->size_size_t = 4; | 
|  | record_tdep->size_iovec = 8; | 
|  | record_tdep->size_time_t = 4; | 
|  | } | 
|  | else | 
|  | internal_error (_("unexpected wordsize")); | 
|  |  | 
|  | /* These values are the second argument of system call "sys_fcntl" | 
|  | and "sys_fcntl64".  They are obtained from Linux Kernel source.  */ | 
|  | record_tdep->fcntl_F_GETLK = 5; | 
|  | record_tdep->fcntl_F_GETLK64 = 12; | 
|  | record_tdep->fcntl_F_SETLK64 = 13; | 
|  | record_tdep->fcntl_F_SETLKW64 = 14; | 
|  |  | 
|  | record_tdep->arg1 = PPC_R0_REGNUM + 3; | 
|  | record_tdep->arg2 = PPC_R0_REGNUM + 4; | 
|  | record_tdep->arg3 = PPC_R0_REGNUM + 5; | 
|  | record_tdep->arg4 = PPC_R0_REGNUM + 6; | 
|  | record_tdep->arg5 = PPC_R0_REGNUM + 7; | 
|  | record_tdep->arg6 = PPC_R0_REGNUM + 8; | 
|  |  | 
|  | /* These values are the second argument of system call "sys_ioctl". | 
|  | They are obtained from Linux Kernel source. | 
|  | See arch/powerpc/include/uapi/asm/ioctls.h.  */ | 
|  | record_tdep->ioctl_TCGETA = 0x40147417; | 
|  | record_tdep->ioctl_TCSETA = 0x80147418; | 
|  | record_tdep->ioctl_TCSETAW = 0x80147419; | 
|  | record_tdep->ioctl_TCSETAF = 0x8014741c; | 
|  | record_tdep->ioctl_TCGETS = 0x40007413 | (SIZE_OF_STRUCT_TERMIOS << 16); | 
|  | record_tdep->ioctl_TCSETS = 0x80007414 | (SIZE_OF_STRUCT_TERMIOS << 16); | 
|  | record_tdep->ioctl_TCSETSW = 0x80007415 | (SIZE_OF_STRUCT_TERMIOS << 16); | 
|  | record_tdep->ioctl_TCSETSF = 0x80007416 | (SIZE_OF_STRUCT_TERMIOS << 16); | 
|  |  | 
|  | record_tdep->ioctl_TCSBRK = 0x2000741d; | 
|  | record_tdep->ioctl_TCXONC = 0x2000741e; | 
|  | record_tdep->ioctl_TCFLSH = 0x2000741f; | 
|  | record_tdep->ioctl_TIOCEXCL = 0x540c; | 
|  | record_tdep->ioctl_TIOCNXCL = 0x540d; | 
|  | record_tdep->ioctl_TIOCSCTTY = 0x540e; | 
|  | record_tdep->ioctl_TIOCGPGRP = 0x40047477; | 
|  | record_tdep->ioctl_TIOCSPGRP = 0x80047476; | 
|  | record_tdep->ioctl_TIOCOUTQ = 0x40047473; | 
|  | record_tdep->ioctl_TIOCSTI = 0x5412; | 
|  | record_tdep->ioctl_TIOCGWINSZ = 0x40087468; | 
|  | record_tdep->ioctl_TIOCSWINSZ = 0x80087467; | 
|  | record_tdep->ioctl_TIOCMGET = 0x5415; | 
|  | record_tdep->ioctl_TIOCMBIS = 0x5416; | 
|  | record_tdep->ioctl_TIOCMBIC = 0x5417; | 
|  | record_tdep->ioctl_TIOCMSET = 0x5418; | 
|  | record_tdep->ioctl_TIOCGSOFTCAR = 0x5419; | 
|  | record_tdep->ioctl_TIOCSSOFTCAR = 0x541a; | 
|  | record_tdep->ioctl_FIONREAD = 0x4004667f; | 
|  | record_tdep->ioctl_TIOCINQ = 0x4004667f; | 
|  | record_tdep->ioctl_TIOCLINUX = 0x541c; | 
|  | record_tdep->ioctl_TIOCCONS = 0x541d; | 
|  | record_tdep->ioctl_TIOCGSERIAL = 0x541e; | 
|  | record_tdep->ioctl_TIOCSSERIAL = 0x541f; | 
|  | record_tdep->ioctl_TIOCPKT = 0x5420; | 
|  | record_tdep->ioctl_FIONBIO = 0x8004667e; | 
|  | record_tdep->ioctl_TIOCNOTTY = 0x5422; | 
|  | record_tdep->ioctl_TIOCSETD = 0x5423; | 
|  | record_tdep->ioctl_TIOCGETD = 0x5424; | 
|  | record_tdep->ioctl_TCSBRKP = 0x5425; | 
|  | record_tdep->ioctl_TIOCSBRK = 0x5427; | 
|  | record_tdep->ioctl_TIOCCBRK = 0x5428; | 
|  | record_tdep->ioctl_TIOCGSID = 0x5429; | 
|  | record_tdep->ioctl_TIOCGPTN = 0x40045430; | 
|  | record_tdep->ioctl_TIOCSPTLCK = 0x80045431; | 
|  | record_tdep->ioctl_FIONCLEX = 0x20006602; | 
|  | record_tdep->ioctl_FIOCLEX = 0x20006601; | 
|  | record_tdep->ioctl_FIOASYNC = 0x8004667d; | 
|  | record_tdep->ioctl_TIOCSERCONFIG = 0x5453; | 
|  | record_tdep->ioctl_TIOCSERGWILD = 0x5454; | 
|  | record_tdep->ioctl_TIOCSERSWILD = 0x5455; | 
|  | record_tdep->ioctl_TIOCGLCKTRMIOS = 0x5456; | 
|  | record_tdep->ioctl_TIOCSLCKTRMIOS = 0x5457; | 
|  | record_tdep->ioctl_TIOCSERGSTRUCT = 0x5458; | 
|  | record_tdep->ioctl_TIOCSERGETLSR = 0x5459; | 
|  | record_tdep->ioctl_TIOCSERGETMULTI = 0x545a; | 
|  | record_tdep->ioctl_TIOCSERSETMULTI = 0x545b; | 
|  | record_tdep->ioctl_TIOCMIWAIT = 0x545c; | 
|  | record_tdep->ioctl_TIOCGICOUNT = 0x545d; | 
|  | record_tdep->ioctl_FIOQSIZE = 0x40086680; | 
|  | } | 
|  |  | 
|  | /* Return a floating-point format for a floating-point variable of | 
|  | length LEN in bits.  If non-NULL, NAME is the name of its type. | 
|  | If no suitable type is found, return NULL.  */ | 
|  |  | 
|  | static const struct floatformat ** | 
|  | ppc_floatformat_for_type (struct gdbarch *gdbarch, | 
|  | const char *name, int len) | 
|  | { | 
|  | if (len == 128 && name) | 
|  | { | 
|  | if (strcmp (name, "__float128") == 0 | 
|  | || strcmp (name, "_Float128") == 0 | 
|  | || strcmp (name, "_Float64x") == 0 | 
|  | || strcmp (name, "complex _Float128") == 0 | 
|  | || strcmp (name, "complex _Float64x") == 0) | 
|  | return floatformats_ieee_quad; | 
|  |  | 
|  | if (strcmp (name, "__ibm128") == 0) | 
|  | return floatformats_ibm_long_double; | 
|  | } | 
|  |  | 
|  | return default_floatformat_for_type (gdbarch, name, len); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | linux_dwarf2_omit_typedef_p (struct type *target_type, | 
|  | const char *producer, const char *name) | 
|  | { | 
|  | int gcc_major, gcc_minor; | 
|  |  | 
|  | if (producer_is_gcc (producer, &gcc_major, &gcc_minor)) | 
|  | { | 
|  | if ((target_type->code () == TYPE_CODE_FLT | 
|  | || target_type->code () == TYPE_CODE_COMPLEX) | 
|  | && (strcmp (name, "long double") == 0 | 
|  | || strcmp (name, "complex long double") == 0)) | 
|  | { | 
|  | /* IEEE 128-bit floating point and IBM long double are two | 
|  | encodings for 128-bit values.  The DWARF debug data can't | 
|  | distinguish between them.  See bugzilla: | 
|  | https://gcc.gnu.org/bugzilla/show_bug.cgi?id=104194 | 
|  |  | 
|  | A GCC hack was introduced to still allow the debugger to identify | 
|  | the case where "long double" uses the IEEE 128-bit floating point | 
|  | format: GCC will emit a bogus DWARF type record pretending that | 
|  | "long double" is a typedef alias for the _Float128 type. | 
|  |  | 
|  | This hack should not be visible to the GDB user, so we replace | 
|  | this bogus typedef by a normal floating-point type, copying the | 
|  | format information from the target type of the bogus typedef.  */ | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Specify the powerpc64le target triplet. | 
|  | This can be variations of | 
|  | ppc64le-{distro}-linux-gcc | 
|  | and | 
|  | powerpc64le-{distro}-linux-gcc.  */ | 
|  |  | 
|  | static const char * | 
|  | ppc64le_gnu_triplet_regexp (struct gdbarch *gdbarch) | 
|  | { | 
|  | return "p(ower)?pc64le"; | 
|  | } | 
|  |  | 
|  | /* Specify the powerpc64 target triplet. | 
|  | This can be variations of | 
|  | ppc64-{distro}-linux-gcc | 
|  | and | 
|  | powerpc64-{distro}-linux-gcc.  */ | 
|  |  | 
|  | static const char * | 
|  | ppc64_gnu_triplet_regexp (struct gdbarch *gdbarch) | 
|  | { | 
|  | return "p(ower)?pc64"; | 
|  | } | 
|  |  | 
|  | /* Implement the linux_gcc_target_options method.  */ | 
|  |  | 
|  | static std::string | 
|  | ppc64_linux_gcc_target_options (struct gdbarch *gdbarch) | 
|  | { | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | static displaced_step_prepare_status | 
|  | ppc_linux_displaced_step_prepare  (gdbarch *arch, thread_info *thread, | 
|  | CORE_ADDR &displaced_pc) | 
|  | { | 
|  | ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf); | 
|  | if (!per_inferior->disp_step_buf.has_value ()) | 
|  | { | 
|  | /* Figure out where the displaced step buffer is.  */ | 
|  | CORE_ADDR disp_step_buf_addr | 
|  | = linux_displaced_step_location (thread->inf->arch ()); | 
|  |  | 
|  | per_inferior->disp_step_buf.emplace (disp_step_buf_addr); | 
|  | } | 
|  |  | 
|  | return per_inferior->disp_step_buf->prepare (thread, displaced_pc); | 
|  | } | 
|  |  | 
|  | /* Convert a Dwarf 2 register number to a GDB register number for Linux.  */ | 
|  |  | 
|  | static int | 
|  | rs6000_linux_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num) | 
|  | { | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep>(gdbarch); | 
|  |  | 
|  | if (0 <= num && num <= 31) | 
|  | return tdep->ppc_gp0_regnum + num; | 
|  | else if (32 <= num && num <= 63) | 
|  | /* Map dwarf register numbers for floating point, double, IBM double and | 
|  | IEEE 128-bit floating point to the fpr range.  Will have to fix the | 
|  | mapping for the IEEE 128-bit register numbers later.  */ | 
|  | return tdep->ppc_fp0_regnum + (num - 32); | 
|  | else if (77 <= num && num < 77 + 32) | 
|  | return tdep->ppc_vr0_regnum + (num - 77); | 
|  | else | 
|  | switch (num) | 
|  | { | 
|  | case 65: | 
|  | return tdep->ppc_lr_regnum; | 
|  | case 66: | 
|  | return tdep->ppc_ctr_regnum; | 
|  | case 76: | 
|  | return tdep->ppc_xer_regnum; | 
|  | case 109: | 
|  | return tdep->ppc_vrsave_regnum; | 
|  | case 110: | 
|  | return tdep->ppc_vrsave_regnum - 1; /* vscr */ | 
|  | } | 
|  |  | 
|  | /* Unknown DWARF register number.  */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Translate a .eh_frame register to DWARF register, or adjust a | 
|  | .debug_frame register.  */ | 
|  |  | 
|  | static int | 
|  | rs6000_linux_adjust_frame_regnum (struct gdbarch *gdbarch, int num, | 
|  | int eh_frame_p) | 
|  | { | 
|  | /* Linux uses the same numbering for .debug_frame numbering as .eh_frame.  */ | 
|  | return num; | 
|  | } | 
|  |  | 
|  | static void | 
|  | ppc_linux_init_abi (struct gdbarch_info info, | 
|  | struct gdbarch *gdbarch) | 
|  | { | 
|  | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | 
|  | struct tdesc_arch_data *tdesc_data = info.tdesc_data; | 
|  | static const char *const stap_integer_prefixes[] = { "i", NULL }; | 
|  | static const char *const stap_register_indirection_prefixes[] = { "(", | 
|  | NULL }; | 
|  | static const char *const stap_register_indirection_suffixes[] = { ")", | 
|  | NULL }; | 
|  |  | 
|  | linux_init_abi (info, gdbarch, 0); | 
|  |  | 
|  | /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where | 
|  | 128-bit, they can be either IBM long double or IEEE quad long double. | 
|  | The 64-bit long double case will be detected automatically using | 
|  | the size specified in debug info.  We use a .gnu.attribute flag | 
|  | to distinguish between the IBM long double and IEEE quad cases.  */ | 
|  | set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); | 
|  | if (tdep->long_double_abi == POWERPC_LONG_DOUBLE_IEEE128) | 
|  | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_quad); | 
|  | else | 
|  | set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double); | 
|  |  | 
|  | /* Support for floating-point data type variants.  */ | 
|  | set_gdbarch_floatformat_for_type (gdbarch, ppc_floatformat_for_type); | 
|  |  | 
|  | /* Support for replacing typedef record.  */ | 
|  | set_gdbarch_dwarf2_omit_typedef_p (gdbarch, linux_dwarf2_omit_typedef_p); | 
|  |  | 
|  | /* Handle inferior calls during interrupted system calls.  */ | 
|  | set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc); | 
|  |  | 
|  | /* Get the syscall number from the arch's register.  */ | 
|  | set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number); | 
|  |  | 
|  | /* SystemTap functions.  */ | 
|  | set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes); | 
|  | set_gdbarch_stap_register_indirection_prefixes (gdbarch, | 
|  | stap_register_indirection_prefixes); | 
|  | set_gdbarch_stap_register_indirection_suffixes (gdbarch, | 
|  | stap_register_indirection_suffixes); | 
|  | set_gdbarch_stap_gdb_register_prefix (gdbarch, "r"); | 
|  | set_gdbarch_stap_is_single_operand (gdbarch, ppc_stap_is_single_operand); | 
|  | set_gdbarch_stap_parse_special_token (gdbarch, | 
|  | ppc_stap_parse_special_token); | 
|  | /* Linux DWARF register mapping is different from the other OSes.  */ | 
|  | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, | 
|  | rs6000_linux_dwarf2_reg_to_regnum); | 
|  | /* Note on Linux the mapping for the DWARF registers and the stab registers | 
|  | use the same numbers.  Install rs6000_linux_dwarf2_reg_to_regnum for the | 
|  | stab register mappings as well.  */ | 
|  | set_gdbarch_stab_reg_to_regnum (gdbarch, | 
|  | rs6000_linux_dwarf2_reg_to_regnum); | 
|  | dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_linux_adjust_frame_regnum); | 
|  |  | 
|  | if (tdep->wordsize == 4) | 
|  | { | 
|  | /* Until November 2001, gcc did not comply with the 32 bit SysV | 
|  | R4 ABI requirement that structures less than or equal to 8 | 
|  | bytes should be returned in registers.  Instead GCC was using | 
|  | the AIX/PowerOpen ABI - everything returned in memory | 
|  | (well ignoring vectors that is).  When this was corrected, it | 
|  | wasn't fixed for GNU/Linux native platform.  Use the | 
|  | PowerOpen struct convention.  */ | 
|  | set_gdbarch_return_value_as_value (gdbarch, ppc_linux_return_value); | 
|  | set_gdbarch_return_value (gdbarch, nullptr); | 
|  |  | 
|  | set_gdbarch_memory_remove_breakpoint (gdbarch, | 
|  | ppc_linux_memory_remove_breakpoint); | 
|  |  | 
|  | /* Shared library handling.  */ | 
|  | set_gdbarch_skip_trampoline_code (gdbarch, ppc_skip_trampoline_code); | 
|  | set_solib_svr4_fetch_link_map_offsets | 
|  | (gdbarch, linux_ilp32_fetch_link_map_offsets); | 
|  |  | 
|  | /* Setting the correct XML syscall filename.  */ | 
|  | set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC); | 
|  |  | 
|  | /* Trampolines.  */ | 
|  | tramp_frame_prepend_unwinder (gdbarch, | 
|  | &ppc32_linux_sigaction_tramp_frame); | 
|  | tramp_frame_prepend_unwinder (gdbarch, | 
|  | &ppc32_linux_sighandler_tramp_frame); | 
|  |  | 
|  | /* BFD target for core files.  */ | 
|  | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) | 
|  | set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle"); | 
|  | else | 
|  | set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc"); | 
|  |  | 
|  | if (powerpc_so_ops.in_dynsym_resolve_code == NULL) | 
|  | { | 
|  | powerpc_so_ops = svr4_so_ops; | 
|  | /* Override dynamic resolve function.  */ | 
|  | powerpc_so_ops.in_dynsym_resolve_code = | 
|  | powerpc_linux_in_dynsym_resolve_code; | 
|  | } | 
|  | set_gdbarch_so_ops (gdbarch, &powerpc_so_ops); | 
|  |  | 
|  | set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver); | 
|  | } | 
|  |  | 
|  | if (tdep->wordsize == 8) | 
|  | { | 
|  | if (tdep->elf_abi == POWERPC_ELF_V1) | 
|  | { | 
|  | /* Handle PPC GNU/Linux 64-bit function pointers (which are really | 
|  | function descriptors).  */ | 
|  | set_gdbarch_convert_from_func_ptr_addr | 
|  | (gdbarch, ppc64_convert_from_func_ptr_addr); | 
|  |  | 
|  | set_gdbarch_elf_make_msymbol_special | 
|  | (gdbarch, ppc64_elf_make_msymbol_special); | 
|  | } | 
|  | else | 
|  | { | 
|  | set_gdbarch_elf_make_msymbol_special | 
|  | (gdbarch, ppc_elfv2_elf_make_msymbol_special); | 
|  |  | 
|  | set_gdbarch_skip_entrypoint (gdbarch, ppc_elfv2_skip_entrypoint); | 
|  | } | 
|  |  | 
|  | /* Shared library handling.  */ | 
|  | set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code); | 
|  | set_solib_svr4_fetch_link_map_offsets | 
|  | (gdbarch, linux_lp64_fetch_link_map_offsets); | 
|  |  | 
|  | /* Setting the correct XML syscall filename.  */ | 
|  | set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC64); | 
|  |  | 
|  | /* Trampolines.  */ | 
|  | tramp_frame_prepend_unwinder (gdbarch, | 
|  | &ppc64_linux_sigaction_tramp_frame); | 
|  | tramp_frame_prepend_unwinder (gdbarch, | 
|  | &ppc64_linux_sighandler_tramp_frame); | 
|  |  | 
|  | /* BFD target for core files.  */ | 
|  | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) | 
|  | set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle"); | 
|  | else | 
|  | set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc"); | 
|  | /* Set compiler triplet.  */ | 
|  | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) | 
|  | set_gdbarch_gnu_triplet_regexp (gdbarch, ppc64le_gnu_triplet_regexp); | 
|  | else | 
|  | set_gdbarch_gnu_triplet_regexp (gdbarch, ppc64_gnu_triplet_regexp); | 
|  | /* Set GCC target options.  */ | 
|  | set_gdbarch_gcc_target_options (gdbarch, ppc64_linux_gcc_target_options); | 
|  | } | 
|  |  | 
|  | set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description); | 
|  | set_gdbarch_iterate_over_regset_sections (gdbarch, | 
|  | ppc_linux_iterate_over_regset_sections); | 
|  |  | 
|  | /* Enable TLS support.  */ | 
|  | set_gdbarch_fetch_tls_load_module_address (gdbarch, | 
|  | svr4_fetch_objfile_link_map); | 
|  |  | 
|  | if (tdesc_data) | 
|  | { | 
|  | const struct tdesc_feature *feature; | 
|  |  | 
|  | /* If we have target-described registers, then we can safely | 
|  | reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM | 
|  | (whether they are described or not).  */ | 
|  | gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM); | 
|  | set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1); | 
|  |  | 
|  | /* If they are present, then assign them to the reserved number.  */ | 
|  | feature = tdesc_find_feature (info.target_desc, | 
|  | "org.gnu.gdb.power.linux"); | 
|  | if (feature != NULL) | 
|  | { | 
|  | tdesc_numbered_register (feature, tdesc_data, | 
|  | PPC_ORIG_R3_REGNUM, "orig_r3"); | 
|  | tdesc_numbered_register (feature, tdesc_data, | 
|  | PPC_TRAP_REGNUM, "trap"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Support reverse debugging.  */ | 
|  | set_gdbarch_process_record (gdbarch, ppc_process_record); | 
|  | set_gdbarch_process_record_signal (gdbarch, ppc_linux_record_signal); | 
|  | tdep->ppc_syscall_record = ppc_linux_syscall_record; | 
|  |  | 
|  | ppc_init_linux_record_tdep (&ppc_linux_record_tdep, 4); | 
|  | ppc_init_linux_record_tdep (&ppc64_linux_record_tdep, 8); | 
|  |  | 
|  | /* Setup displaced stepping.  */ | 
|  | set_gdbarch_displaced_step_prepare (gdbarch, | 
|  | ppc_linux_displaced_step_prepare); | 
|  |  | 
|  | } | 
|  |  | 
|  | void _initialize_ppc_linux_tdep (); | 
|  | void | 
|  | _initialize_ppc_linux_tdep () | 
|  | { | 
|  | /* Register for all sub-families of the POWER/PowerPC: 32-bit and | 
|  | 64-bit PowerPC, and the older rs6k.  */ | 
|  | gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX, | 
|  | ppc_linux_init_abi); | 
|  | gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX, | 
|  | ppc_linux_init_abi); | 
|  | gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX, | 
|  | ppc_linux_init_abi); | 
|  |  | 
|  | /* Initialize the Linux target descriptions.  */ | 
|  | initialize_tdesc_powerpc_32l (); | 
|  | initialize_tdesc_powerpc_altivec32l (); | 
|  | initialize_tdesc_powerpc_vsx32l (); | 
|  | initialize_tdesc_powerpc_isa205_32l (); | 
|  | initialize_tdesc_powerpc_isa205_altivec32l (); | 
|  | initialize_tdesc_powerpc_isa205_vsx32l (); | 
|  | initialize_tdesc_powerpc_isa205_ppr_dscr_vsx32l (); | 
|  | initialize_tdesc_powerpc_isa207_vsx32l (); | 
|  | initialize_tdesc_powerpc_isa207_htm_vsx32l (); | 
|  | initialize_tdesc_powerpc_64l (); | 
|  | initialize_tdesc_powerpc_altivec64l (); | 
|  | initialize_tdesc_powerpc_vsx64l (); | 
|  | initialize_tdesc_powerpc_isa205_64l (); | 
|  | initialize_tdesc_powerpc_isa205_altivec64l (); | 
|  | initialize_tdesc_powerpc_isa205_vsx64l (); | 
|  | initialize_tdesc_powerpc_isa205_ppr_dscr_vsx64l (); | 
|  | initialize_tdesc_powerpc_isa207_vsx64l (); | 
|  | initialize_tdesc_powerpc_isa207_htm_vsx64l (); | 
|  | initialize_tdesc_powerpc_e500l (); | 
|  | } |