| // mips.cc -- mips target support for gold. |
| |
| // Copyright (C) 2011-2022 Free Software Foundation, Inc. |
| // Written by Sasa Stankovic <sasa.stankovic@imgtec.com> |
| // and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>. |
| // This file contains borrowed and adapted code from bfd/elfxx-mips.c. |
| |
| // This file is part of gold. |
| |
| // This program is free software; you can redistribute it and/or modify |
| // it under the terms of the GNU General Public License as published by |
| // the Free Software Foundation; either version 3 of the License, or |
| // (at your option) any later version. |
| |
| // This program is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // You should have received a copy of the GNU General Public License |
| // along with this program; if not, write to the Free Software |
| // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| // MA 02110-1301, USA. |
| |
| #include "gold.h" |
| |
| #include <algorithm> |
| #include <set> |
| #include <sstream> |
| #include "demangle.h" |
| |
| #include "elfcpp.h" |
| #include "parameters.h" |
| #include "reloc.h" |
| #include "mips.h" |
| #include "object.h" |
| #include "symtab.h" |
| #include "layout.h" |
| #include "output.h" |
| #include "copy-relocs.h" |
| #include "target.h" |
| #include "target-reloc.h" |
| #include "target-select.h" |
| #include "tls.h" |
| #include "errors.h" |
| #include "gc.h" |
| #include "attributes.h" |
| #include "nacl.h" |
| |
| namespace |
| { |
| using namespace gold; |
| |
| template<int size, bool big_endian> |
| class Mips_output_data_plt; |
| |
| template<int size, bool big_endian> |
| class Mips_output_data_got; |
| |
| template<int size, bool big_endian> |
| class Target_mips; |
| |
| template<int size, bool big_endian> |
| class Mips_output_section_reginfo; |
| |
| template<int size, bool big_endian> |
| class Mips_output_section_options; |
| |
| template<int size, bool big_endian> |
| class Mips_output_data_la25_stub; |
| |
| template<int size, bool big_endian> |
| class Mips_output_data_mips_stubs; |
| |
| template<int size> |
| class Mips_symbol; |
| |
| template<int size, bool big_endian> |
| class Mips_got_info; |
| |
| template<int size, bool big_endian> |
| class Mips_relobj; |
| |
| class Mips16_stub_section_base; |
| |
| template<int size, bool big_endian> |
| class Mips16_stub_section; |
| |
| // The ABI says that every symbol used by dynamic relocations must have |
| // a global GOT entry. Among other things, this provides the dynamic |
| // linker with a free, directly-indexed cache. The GOT can therefore |
| // contain symbols that are not referenced by GOT relocations themselves |
| // (in other words, it may have symbols that are not referenced by things |
| // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE). |
| |
| // GOT relocations are less likely to overflow if we put the associated |
| // GOT entries towards the beginning. We therefore divide the global |
| // GOT entries into two areas: "normal" and "reloc-only". Entries in |
| // the first area can be used for both dynamic relocations and GP-relative |
| // accesses, while those in the "reloc-only" area are for dynamic |
| // relocations only. |
| |
| // These GGA_* ("Global GOT Area") values are organised so that lower |
| // values are more general than higher values. Also, non-GGA_NONE |
| // values are ordered by the position of the area in the GOT. |
| |
| enum Global_got_area |
| { |
| GGA_NORMAL = 0, |
| GGA_RELOC_ONLY = 1, |
| GGA_NONE = 2 |
| }; |
| |
| // The types of GOT entries needed for this platform. |
| // These values are exposed to the ABI in an incremental link. |
| // Do not renumber existing values without changing the version |
| // number of the .gnu_incremental_inputs section. |
| enum Got_type |
| { |
| GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol |
| GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset |
| GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair |
| |
| // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links. |
| GOT_TYPE_STANDARD_MULTIGOT = 3, |
| GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024, |
| GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024 |
| }; |
| |
| // TLS type of GOT entry. |
| enum Got_tls_type |
| { |
| GOT_TLS_NONE = 0, |
| GOT_TLS_GD = 1, |
| GOT_TLS_LDM = 2, |
| GOT_TLS_IE = 4 |
| }; |
| |
| // Values found in the r_ssym field of a relocation entry. |
| enum Special_relocation_symbol |
| { |
| RSS_UNDEF = 0, // None - value is zero. |
| RSS_GP = 1, // Value of GP. |
| RSS_GP0 = 2, // Value of GP in object being relocated. |
| RSS_LOC = 3 // Address of location being relocated. |
| }; |
| |
| // Whether the section is readonly. |
| static inline bool |
| is_readonly_section(Output_section* output_section) |
| { |
| elfcpp::Elf_Xword section_flags = output_section->flags(); |
| elfcpp::Elf_Word section_type = output_section->type(); |
| |
| if (section_type == elfcpp::SHT_NOBITS) |
| return false; |
| |
| if (section_flags & elfcpp::SHF_WRITE) |
| return false; |
| |
| return true; |
| } |
| |
| // Return TRUE if a relocation of type R_TYPE from OBJECT might |
| // require an la25 stub. See also local_pic_function, which determines |
| // whether the destination function ever requires a stub. |
| template<int size, bool big_endian> |
| static inline bool |
| relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object, |
| unsigned int r_type, bool target_is_16_bit_code) |
| { |
| // We specifically ignore branches and jumps from EF_PIC objects, |
| // where the onus is on the compiler or programmer to perform any |
| // necessary initialization of $25. Sometimes such initialization |
| // is unnecessary; for example, -mno-shared functions do not use |
| // the incoming value of $25, and may therefore be called directly. |
| if (object->is_pic()) |
| return false; |
| |
| switch (r_type) |
| { |
| case elfcpp::R_MIPS_26: |
| case elfcpp::R_MIPS_PC16: |
| case elfcpp::R_MIPS_PC21_S2: |
| case elfcpp::R_MIPS_PC26_S2: |
| case elfcpp::R_MICROMIPS_26_S1: |
| case elfcpp::R_MICROMIPS_PC7_S1: |
| case elfcpp::R_MICROMIPS_PC10_S1: |
| case elfcpp::R_MICROMIPS_PC16_S1: |
| case elfcpp::R_MICROMIPS_PC23_S2: |
| return true; |
| |
| case elfcpp::R_MIPS16_26: |
| return !target_is_16_bit_code; |
| |
| default: |
| return false; |
| } |
| } |
| |
| // Return true if SYM is a locally-defined PIC function, in the sense |
| // that it or its fn_stub might need $25 to be valid on entry. |
| // Note that MIPS16 functions set up $gp using PC-relative instructions, |
| // so they themselves never need $25 to be valid. Only non-MIPS16 |
| // entry points are of interest here. |
| template<int size, bool big_endian> |
| static inline bool |
| local_pic_function(Mips_symbol<size>* sym) |
| { |
| bool def_regular = (sym->source() == Symbol::FROM_OBJECT |
| && !sym->object()->is_dynamic() |
| && !sym->is_undefined()); |
| |
| if (sym->is_defined() && def_regular) |
| { |
| Mips_relobj<size, big_endian>* object = |
| static_cast<Mips_relobj<size, big_endian>*>(sym->object()); |
| |
| if ((object->is_pic() || sym->is_pic()) |
| && (!sym->is_mips16() |
| || (sym->has_mips16_fn_stub() && sym->need_fn_stub()))) |
| return true; |
| } |
| return false; |
| } |
| |
| static inline bool |
| hi16_reloc(int r_type) |
| { |
| return (r_type == elfcpp::R_MIPS_HI16 |
| || r_type == elfcpp::R_MIPS16_HI16 |
| || r_type == elfcpp::R_MICROMIPS_HI16 |
| || r_type == elfcpp::R_MIPS_PCHI16); |
| } |
| |
| static inline bool |
| lo16_reloc(int r_type) |
| { |
| return (r_type == elfcpp::R_MIPS_LO16 |
| || r_type == elfcpp::R_MIPS16_LO16 |
| || r_type == elfcpp::R_MICROMIPS_LO16 |
| || r_type == elfcpp::R_MIPS_PCLO16); |
| } |
| |
| static inline bool |
| got16_reloc(unsigned int r_type) |
| { |
| return (r_type == elfcpp::R_MIPS_GOT16 |
| || r_type == elfcpp::R_MIPS16_GOT16 |
| || r_type == elfcpp::R_MICROMIPS_GOT16); |
| } |
| |
| static inline bool |
| call_lo16_reloc(unsigned int r_type) |
| { |
| return (r_type == elfcpp::R_MIPS_CALL_LO16 |
| || r_type == elfcpp::R_MICROMIPS_CALL_LO16); |
| } |
| |
| static inline bool |
| got_lo16_reloc(unsigned int r_type) |
| { |
| return (r_type == elfcpp::R_MIPS_GOT_LO16 |
| || r_type == elfcpp::R_MICROMIPS_GOT_LO16); |
| } |
| |
| static inline bool |
| eh_reloc(unsigned int r_type) |
| { |
| return (r_type == elfcpp::R_MIPS_EH); |
| } |
| |
| static inline bool |
| got_disp_reloc(unsigned int r_type) |
| { |
| return (r_type == elfcpp::R_MIPS_GOT_DISP |
| || r_type == elfcpp::R_MICROMIPS_GOT_DISP); |
| } |
| |
| static inline bool |
| got_page_reloc(unsigned int r_type) |
| { |
| return (r_type == elfcpp::R_MIPS_GOT_PAGE |
| || r_type == elfcpp::R_MICROMIPS_GOT_PAGE); |
| } |
| |
| static inline bool |
| tls_gd_reloc(unsigned int r_type) |
| { |
| return (r_type == elfcpp::R_MIPS_TLS_GD |
| || r_type == elfcpp::R_MIPS16_TLS_GD |
| || r_type == elfcpp::R_MICROMIPS_TLS_GD); |
| } |
| |
| static inline bool |
| tls_gottprel_reloc(unsigned int r_type) |
| { |
| return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL |
| || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL |
| || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL); |
| } |
| |
| static inline bool |
| tls_ldm_reloc(unsigned int r_type) |
| { |
| return (r_type == elfcpp::R_MIPS_TLS_LDM |
| || r_type == elfcpp::R_MIPS16_TLS_LDM |
| || r_type == elfcpp::R_MICROMIPS_TLS_LDM); |
| } |
| |
| static inline bool |
| mips16_call_reloc(unsigned int r_type) |
| { |
| return (r_type == elfcpp::R_MIPS16_26 |
| || r_type == elfcpp::R_MIPS16_CALL16); |
| } |
| |
| static inline bool |
| jal_reloc(unsigned int r_type) |
| { |
| return (r_type == elfcpp::R_MIPS_26 |
| || r_type == elfcpp::R_MIPS16_26 |
| || r_type == elfcpp::R_MICROMIPS_26_S1); |
| } |
| |
| static inline bool |
| micromips_branch_reloc(unsigned int r_type) |
| { |
| return (r_type == elfcpp::R_MICROMIPS_26_S1 |
| || r_type == elfcpp::R_MICROMIPS_PC16_S1 |
| || r_type == elfcpp::R_MICROMIPS_PC10_S1 |
| || r_type == elfcpp::R_MICROMIPS_PC7_S1); |
| } |
| |
| // Check if R_TYPE is a MIPS16 reloc. |
| static inline bool |
| mips16_reloc(unsigned int r_type) |
| { |
| switch (r_type) |
| { |
| case elfcpp::R_MIPS16_26: |
| case elfcpp::R_MIPS16_GPREL: |
| case elfcpp::R_MIPS16_GOT16: |
| case elfcpp::R_MIPS16_CALL16: |
| case elfcpp::R_MIPS16_HI16: |
| case elfcpp::R_MIPS16_LO16: |
| case elfcpp::R_MIPS16_TLS_GD: |
| case elfcpp::R_MIPS16_TLS_LDM: |
| case elfcpp::R_MIPS16_TLS_DTPREL_HI16: |
| case elfcpp::R_MIPS16_TLS_DTPREL_LO16: |
| case elfcpp::R_MIPS16_TLS_GOTTPREL: |
| case elfcpp::R_MIPS16_TLS_TPREL_HI16: |
| case elfcpp::R_MIPS16_TLS_TPREL_LO16: |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| // Check if R_TYPE is a microMIPS reloc. |
| static inline bool |
| micromips_reloc(unsigned int r_type) |
| { |
| switch (r_type) |
| { |
| case elfcpp::R_MICROMIPS_26_S1: |
| case elfcpp::R_MICROMIPS_HI16: |
| case elfcpp::R_MICROMIPS_LO16: |
| case elfcpp::R_MICROMIPS_GPREL16: |
| case elfcpp::R_MICROMIPS_LITERAL: |
| case elfcpp::R_MICROMIPS_GOT16: |
| case elfcpp::R_MICROMIPS_PC7_S1: |
| case elfcpp::R_MICROMIPS_PC10_S1: |
| case elfcpp::R_MICROMIPS_PC16_S1: |
| case elfcpp::R_MICROMIPS_CALL16: |
| case elfcpp::R_MICROMIPS_GOT_DISP: |
| case elfcpp::R_MICROMIPS_GOT_PAGE: |
| case elfcpp::R_MICROMIPS_GOT_OFST: |
| case elfcpp::R_MICROMIPS_GOT_HI16: |
| case elfcpp::R_MICROMIPS_GOT_LO16: |
| case elfcpp::R_MICROMIPS_SUB: |
| case elfcpp::R_MICROMIPS_HIGHER: |
| case elfcpp::R_MICROMIPS_HIGHEST: |
| case elfcpp::R_MICROMIPS_CALL_HI16: |
| case elfcpp::R_MICROMIPS_CALL_LO16: |
| case elfcpp::R_MICROMIPS_SCN_DISP: |
| case elfcpp::R_MICROMIPS_JALR: |
| case elfcpp::R_MICROMIPS_HI0_LO16: |
| case elfcpp::R_MICROMIPS_TLS_GD: |
| case elfcpp::R_MICROMIPS_TLS_LDM: |
| case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16: |
| case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16: |
| case elfcpp::R_MICROMIPS_TLS_GOTTPREL: |
| case elfcpp::R_MICROMIPS_TLS_TPREL_HI16: |
| case elfcpp::R_MICROMIPS_TLS_TPREL_LO16: |
| case elfcpp::R_MICROMIPS_GPREL7_S2: |
| case elfcpp::R_MICROMIPS_PC23_S2: |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| static inline bool |
| is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc) |
| { |
| switch (high_reloc) |
| { |
| case elfcpp::R_MIPS_HI16: |
| case elfcpp::R_MIPS_GOT16: |
| return lo16_reloc == elfcpp::R_MIPS_LO16; |
| case elfcpp::R_MIPS_PCHI16: |
| return lo16_reloc == elfcpp::R_MIPS_PCLO16; |
| case elfcpp::R_MIPS16_HI16: |
| case elfcpp::R_MIPS16_GOT16: |
| return lo16_reloc == elfcpp::R_MIPS16_LO16; |
| case elfcpp::R_MICROMIPS_HI16: |
| case elfcpp::R_MICROMIPS_GOT16: |
| return lo16_reloc == elfcpp::R_MICROMIPS_LO16; |
| default: |
| return false; |
| } |
| } |
| |
| // This class is used to hold information about one GOT entry. |
| // There are three types of entry: |
| // |
| // (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object |
| // (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM) |
| // (2) a SYMBOL address, where SYMBOL is not local to an input object |
| // (sym != NULL, symndx == -1) |
| // (3) a TLS LDM slot (there's only one of these per GOT.) |
| // (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM) |
| |
| template<int size, bool big_endian> |
| class Mips_got_entry |
| { |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address; |
| |
| public: |
| Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx, |
| Mips_address addend, unsigned char tls_type, |
| unsigned int shndx, bool is_section_symbol) |
| : addend_(addend), symndx_(symndx), tls_type_(tls_type), |
| is_section_symbol_(is_section_symbol), shndx_(shndx) |
| { this->d.object = object; } |
| |
| Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type) |
| : addend_(0), symndx_(-1U), tls_type_(tls_type), |
| is_section_symbol_(false), shndx_(-1U) |
| { this->d.sym = sym; } |
| |
| // Return whether this entry is for a local symbol. |
| bool |
| is_for_local_symbol() const |
| { return this->symndx_ != -1U; } |
| |
| // Return whether this entry is for a global symbol. |
| bool |
| is_for_global_symbol() const |
| { return this->symndx_ == -1U; } |
| |
| // Return the hash of this entry. |
| size_t |
| hash() const |
| { |
| if (this->tls_type_ == GOT_TLS_LDM) |
| return this->symndx_ + (1 << 18); |
| |
| size_t name_hash_value = gold::string_hash<char>( |
| (this->symndx_ != -1U) |
| ? this->d.object->name().c_str() |
| : this->d.sym->name()); |
| size_t addend = this->addend_; |
| return name_hash_value ^ this->symndx_ ^ (addend << 16); |
| } |
| |
| // Return whether this entry is equal to OTHER. |
| bool |
| equals(Mips_got_entry<size, big_endian>* other) const |
| { |
| if (this->symndx_ != other->symndx_ |
| || this->tls_type_ != other->tls_type_) |
| return false; |
| |
| if (this->tls_type_ == GOT_TLS_LDM) |
| return true; |
| |
| return (((this->symndx_ != -1U) |
| ? (this->d.object == other->d.object) |
| : (this->d.sym == other->d.sym)) |
| && (this->addend_ == other->addend_)); |
| } |
| |
| // Return input object that needs this GOT entry. |
| Mips_relobj<size, big_endian>* |
| object() const |
| { |
| gold_assert(this->symndx_ != -1U); |
| return this->d.object; |
| } |
| |
| // Return local symbol index for local GOT entries. |
| unsigned int |
| symndx() const |
| { |
| gold_assert(this->symndx_ != -1U); |
| return this->symndx_; |
| } |
| |
| // Return the relocation addend for local GOT entries. |
| Mips_address |
| addend() const |
| { return this->addend_; } |
| |
| // Return global symbol for global GOT entries. |
| Mips_symbol<size>* |
| sym() const |
| { |
| gold_assert(this->symndx_ == -1U); |
| return this->d.sym; |
| } |
| |
| // Return whether this is a TLS GOT entry. |
| bool |
| is_tls_entry() const |
| { return this->tls_type_ != GOT_TLS_NONE; } |
| |
| // Return TLS type of this GOT entry. |
| unsigned char |
| tls_type() const |
| { return this->tls_type_; } |
| |
| // Return section index of the local symbol for local GOT entries. |
| unsigned int |
| shndx() const |
| { return this->shndx_; } |
| |
| // Return whether this is a STT_SECTION symbol. |
| bool |
| is_section_symbol() const |
| { return this->is_section_symbol_; } |
| |
| private: |
| // The addend. |
| Mips_address addend_; |
| |
| // The index of the symbol if we have a local symbol; -1 otherwise. |
| unsigned int symndx_; |
| |
| union |
| { |
| // The input object for local symbols that needs the GOT entry. |
| Mips_relobj<size, big_endian>* object; |
| // If symndx == -1, the global symbol corresponding to this GOT entry. The |
| // symbol's entry is in the local area if mips_sym->global_got_area is |
| // GGA_NONE, otherwise it is in the global area. |
| Mips_symbol<size>* sym; |
| } d; |
| |
| // The TLS type of this GOT entry. An LDM GOT entry will be a local |
| // symbol entry with r_symndx == 0. |
| unsigned char tls_type_; |
| |
| // Whether this is a STT_SECTION symbol. |
| bool is_section_symbol_; |
| |
| // For local GOT entries, section index of the local symbol. |
| unsigned int shndx_; |
| }; |
| |
| // Hash for Mips_got_entry. |
| |
| template<int size, bool big_endian> |
| class Mips_got_entry_hash |
| { |
| public: |
| size_t |
| operator()(Mips_got_entry<size, big_endian>* entry) const |
| { return entry->hash(); } |
| }; |
| |
| // Equality for Mips_got_entry. |
| |
| template<int size, bool big_endian> |
| class Mips_got_entry_eq |
| { |
| public: |
| bool |
| operator()(Mips_got_entry<size, big_endian>* e1, |
| Mips_got_entry<size, big_endian>* e2) const |
| { return e1->equals(e2); } |
| }; |
| |
| // Hash for Mips_symbol. |
| |
| template<int size> |
| class Mips_symbol_hash |
| { |
| public: |
| size_t |
| operator()(Mips_symbol<size>* sym) const |
| { return sym->hash(); } |
| }; |
| |
| // Got_page_range. This class describes a range of addends: [MIN_ADDEND, |
| // MAX_ADDEND]. The instances form a non-overlapping list that is sorted by |
| // increasing MIN_ADDEND. |
| |
| struct Got_page_range |
| { |
| Got_page_range() |
| : next(NULL), min_addend(0), max_addend(0) |
| { } |
| |
| Got_page_range* next; |
| int min_addend; |
| int max_addend; |
| |
| // Return the maximum number of GOT page entries required. |
| int |
| get_max_pages() |
| { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; } |
| }; |
| |
| // Got_page_entry. This class describes the range of addends that are applied |
| // to page relocations against a given symbol. |
| |
| struct Got_page_entry |
| { |
| Got_page_entry() |
| : object(NULL), symndx(-1U), ranges(NULL) |
| { } |
| |
| Got_page_entry(Object* object_, unsigned int symndx_) |
| : object(object_), symndx(symndx_), ranges(NULL) |
| { } |
| |
| // The input object that needs the GOT page entry. |
| Object* object; |
| // The index of the symbol, as stored in the relocation r_info. |
| unsigned int symndx; |
| // The ranges for this page entry. |
| Got_page_range* ranges; |
| }; |
| |
| // Hash for Got_page_entry. |
| |
| struct Got_page_entry_hash |
| { |
| size_t |
| operator()(Got_page_entry* entry) const |
| { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; } |
| }; |
| |
| // Equality for Got_page_entry. |
| |
| struct Got_page_entry_eq |
| { |
| bool |
| operator()(Got_page_entry* entry1, Got_page_entry* entry2) const |
| { |
| return entry1->object == entry2->object && entry1->symndx == entry2->symndx; |
| } |
| }; |
| |
| // This class is used to hold .got information when linking. |
| |
| template<int size, bool big_endian> |
| class Mips_got_info |
| { |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address; |
| typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> |
| Reloc_section; |
| typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets; |
| |
| // Unordered set of GOT entries. |
| typedef Unordered_set<Mips_got_entry<size, big_endian>*, |
| Mips_got_entry_hash<size, big_endian>, |
| Mips_got_entry_eq<size, big_endian> > Got_entry_set; |
| |
| // Unordered set of GOT page entries. |
| typedef Unordered_set<Got_page_entry*, |
| Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set; |
| |
| // Unordered set of global GOT entries. |
| typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> > |
| Global_got_entry_set; |
| |
| public: |
| Mips_got_info() |
| : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0), |
| tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(), |
| got_entries_(), got_page_entries_(), got_page_offset_start_(0), |
| got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U), |
| offset_(0) |
| { } |
| |
| // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol |
| // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT. |
| void |
| record_local_got_symbol(Mips_relobj<size, big_endian>* object, |
| unsigned int symndx, Mips_address addend, |
| unsigned int r_type, unsigned int shndx, |
| bool is_section_symbol); |
| |
| // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM, |
| // in OBJECT. FOR_CALL is true if the caller is only interested in |
| // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic |
| // relocation. |
| void |
| record_global_got_symbol(Mips_symbol<size>* mips_sym, |
| Mips_relobj<size, big_endian>* object, |
| unsigned int r_type, bool dyn_reloc, bool for_call); |
| |
| // Add ENTRY to master GOT and to OBJECT's GOT. |
| void |
| record_got_entry(Mips_got_entry<size, big_endian>* entry, |
| Mips_relobj<size, big_endian>* object); |
| |
| // Record that OBJECT has a page relocation against symbol SYMNDX and |
| // that ADDEND is the addend for that relocation. |
| void |
| record_got_page_entry(Mips_relobj<size, big_endian>* object, |
| unsigned int symndx, int addend); |
| |
| // Create all entries that should be in the local part of the GOT. |
| void |
| add_local_entries(Target_mips<size, big_endian>* target, Layout* layout); |
| |
| // Create GOT page entries. |
| void |
| add_page_entries(Target_mips<size, big_endian>* target, Layout* layout); |
| |
| // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY. |
| void |
| add_global_entries(Target_mips<size, big_endian>* target, Layout* layout, |
| unsigned int non_reloc_only_global_gotno); |
| |
| // Create global GOT entries that should be in the GGA_RELOC_ONLY area. |
| void |
| add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got); |
| |
| // Create TLS GOT entries. |
| void |
| add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout); |
| |
| // Decide whether the symbol needs an entry in the global part of the primary |
| // GOT, setting global_got_area accordingly. Count the number of global |
| // symbols that are in the primary GOT only because they have dynamic |
| // relocations R_MIPS_REL32 against them (reloc_only_gotno). |
| void |
| count_got_symbols(Symbol_table* symtab); |
| |
| // Return the offset of GOT page entry for VALUE. |
| unsigned int |
| get_got_page_offset(Mips_address value, |
| Mips_output_data_got<size, big_endian>* got); |
| |
| // Count the number of GOT entries required. |
| void |
| count_got_entries(); |
| |
| // Count the number of GOT entries required by ENTRY. Accumulate the result. |
| void |
| count_got_entry(Mips_got_entry<size, big_endian>* entry); |
| |
| // Add FROM's GOT entries. |
| void |
| add_got_entries(Mips_got_info<size, big_endian>* from); |
| |
| // Add FROM's GOT page entries. |
| void |
| add_got_page_count(Mips_got_info<size, big_endian>* from); |
| |
| // Return GOT size. |
| unsigned int |
| got_size() const |
| { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_ |
| + this->tls_gotno_) * size/8); |
| } |
| |
| // Return the number of local GOT entries. |
| unsigned int |
| local_gotno() const |
| { return this->local_gotno_; } |
| |
| // Return the maximum number of page GOT entries needed. |
| unsigned int |
| page_gotno() const |
| { return this->page_gotno_; } |
| |
| // Return the number of global GOT entries. |
| unsigned int |
| global_gotno() const |
| { return this->global_gotno_; } |
| |
| // Set the number of global GOT entries. |
| void |
| set_global_gotno(unsigned int global_gotno) |
| { this->global_gotno_ = global_gotno; } |
| |
| // Return the number of GGA_RELOC_ONLY global GOT entries. |
| unsigned int |
| reloc_only_gotno() const |
| { return this->reloc_only_gotno_; } |
| |
| // Return the number of TLS GOT entries. |
| unsigned int |
| tls_gotno() const |
| { return this->tls_gotno_; } |
| |
| // Return the GOT type for this GOT. Used for multi-GOT links only. |
| unsigned int |
| multigot_got_type(unsigned int got_type) const |
| { |
| switch (got_type) |
| { |
| case GOT_TYPE_STANDARD: |
| return GOT_TYPE_STANDARD_MULTIGOT + this->index_; |
| case GOT_TYPE_TLS_OFFSET: |
| return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_; |
| case GOT_TYPE_TLS_PAIR: |
| return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_; |
| default: |
| gold_unreachable(); |
| } |
| } |
| |
| // Remove lazy-binding stubs for global symbols in this GOT. |
| void |
| remove_lazy_stubs(Target_mips<size, big_endian>* target); |
| |
| // Return offset of this GOT from the start of .got section. |
| unsigned int |
| offset() const |
| { return this->offset_; } |
| |
| // Set offset of this GOT from the start of .got section. |
| void |
| set_offset(unsigned int offset) |
| { this->offset_ = offset; } |
| |
| // Set index of this GOT in multi-GOT links. |
| void |
| set_index(unsigned int index) |
| { this->index_ = index; } |
| |
| // Return next GOT in multi-GOT links. |
| Mips_got_info<size, big_endian>* |
| next() const |
| { return this->next_; } |
| |
| // Set next GOT in multi-GOT links. |
| void |
| set_next(Mips_got_info<size, big_endian>* next) |
| { this->next_ = next; } |
| |
| // Return the offset of TLS LDM entry for this GOT. |
| unsigned int |
| tls_ldm_offset() const |
| { return this->tls_ldm_offset_; } |
| |
| // Set the offset of TLS LDM entry for this GOT. |
| void |
| set_tls_ldm_offset(unsigned int tls_ldm_offset) |
| { this->tls_ldm_offset_ = tls_ldm_offset; } |
| |
| Global_got_entry_set& |
| global_got_symbols() |
| { return this->global_got_symbols_; } |
| |
| // Return the GOT_TLS_* type required by relocation type R_TYPE. |
| static int |
| mips_elf_reloc_tls_type(unsigned int r_type) |
| { |
| if (tls_gd_reloc(r_type)) |
| return GOT_TLS_GD; |
| |
| if (tls_ldm_reloc(r_type)) |
| return GOT_TLS_LDM; |
| |
| if (tls_gottprel_reloc(r_type)) |
| return GOT_TLS_IE; |
| |
| return GOT_TLS_NONE; |
| } |
| |
| // Return the number of GOT slots needed for GOT TLS type TYPE. |
| static int |
| mips_tls_got_entries(unsigned int type) |
| { |
| switch (type) |
| { |
| case GOT_TLS_GD: |
| case GOT_TLS_LDM: |
| return 2; |
| |
| case GOT_TLS_IE: |
| return 1; |
| |
| case GOT_TLS_NONE: |
| return 0; |
| |
| default: |
| gold_unreachable(); |
| } |
| } |
| |
| private: |
| // The number of local GOT entries. |
| unsigned int local_gotno_; |
| // The maximum number of page GOT entries needed. |
| unsigned int page_gotno_; |
| // The number of global GOT entries. |
| unsigned int global_gotno_; |
| // The number of global GOT entries that are in the GGA_RELOC_ONLY area. |
| unsigned int reloc_only_gotno_; |
| // The number of TLS GOT entries. |
| unsigned int tls_gotno_; |
| // The offset of TLS LDM entry for this GOT. |
| unsigned int tls_ldm_offset_; |
| // All symbols that have global GOT entry. |
| Global_got_entry_set global_got_symbols_; |
| // A hash table holding GOT entries. |
| Got_entry_set got_entries_; |
| // A hash table of GOT page entries (only used in master GOT). |
| Got_page_entry_set got_page_entries_; |
| // The offset of first GOT page entry for this GOT. |
| unsigned int got_page_offset_start_; |
| // The offset of next available GOT page entry for this GOT. |
| unsigned int got_page_offset_next_; |
| // A hash table that maps GOT page entry value to the GOT offset where |
| // the entry is located. |
| Got_page_offsets got_page_offsets_; |
| // In multi-GOT links, a pointer to the next GOT. |
| Mips_got_info<size, big_endian>* next_; |
| // Index of this GOT in multi-GOT links. |
| unsigned int index_; |
| // The offset of this GOT in multi-GOT links. |
| unsigned int offset_; |
| }; |
| |
| // This is a helper class used during relocation scan. It records GOT16 addend. |
| |
| template<int size, bool big_endian> |
| struct got16_addend |
| { |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address; |
| |
| got16_addend(const Sized_relobj_file<size, big_endian>* _object, |
| unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym, |
| Mips_address _addend) |
| : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym), |
| addend(_addend) |
| { } |
| |
| const Sized_relobj_file<size, big_endian>* object; |
| unsigned int shndx; |
| unsigned int r_type; |
| unsigned int r_sym; |
| Mips_address addend; |
| }; |
| |
| // .MIPS.abiflags section content |
| |
| template<bool big_endian> |
| struct Mips_abiflags |
| { |
| typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8; |
| typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16; |
| typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32; |
| |
| Mips_abiflags() |
| : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0), |
| cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0) |
| { } |
| |
| // Version of flags structure. |
| Valtype16 version; |
| // The level of the ISA: 1-5, 32, 64. |
| Valtype8 isa_level; |
| // The revision of ISA: 0 for MIPS V and below, 1-n otherwise. |
| Valtype8 isa_rev; |
| // The size of general purpose registers. |
| Valtype8 gpr_size; |
| // The size of co-processor 1 registers. |
| Valtype8 cpr1_size; |
| // The size of co-processor 2 registers. |
| Valtype8 cpr2_size; |
| // The floating-point ABI. |
| Valtype8 fp_abi; |
| // Processor-specific extension. |
| Valtype32 isa_ext; |
| // Mask of ASEs used. |
| Valtype32 ases; |
| // Mask of general flags. |
| Valtype32 flags1; |
| Valtype32 flags2; |
| }; |
| |
| // Mips_symbol class. Holds additional symbol information needed for Mips. |
| |
| template<int size> |
| class Mips_symbol : public Sized_symbol<size> |
| { |
| public: |
| Mips_symbol() |
| : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U), |
| has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0), |
| pointer_equality_needed_(false), global_got_area_(GGA_NONE), |
| global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false), |
| needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U), |
| comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL), |
| mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false) |
| { } |
| |
| // Return whether this is a MIPS16 symbol. |
| bool |
| is_mips16() const |
| { |
| // (st_other & STO_MIPS16) == STO_MIPS16 |
| return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2)) |
| == elfcpp::STO_MIPS16 >> 2); |
| } |
| |
| // Return whether this is a microMIPS symbol. |
| bool |
| is_micromips() const |
| { |
| // (st_other & STO_MIPS_ISA) == STO_MICROMIPS |
| return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2)) |
| == elfcpp::STO_MICROMIPS >> 2); |
| } |
| |
| // Return whether the symbol needs MIPS16 fn_stub. |
| bool |
| need_fn_stub() const |
| { return this->need_fn_stub_; } |
| |
| // Set that the symbol needs MIPS16 fn_stub. |
| void |
| set_need_fn_stub() |
| { this->need_fn_stub_ = true; } |
| |
| // Return whether this symbol is referenced by branch relocations from |
| // any non-PIC input file. |
| bool |
| has_nonpic_branches() const |
| { return this->has_nonpic_branches_; } |
| |
| // Set that this symbol is referenced by branch relocations from |
| // any non-PIC input file. |
| void |
| set_has_nonpic_branches() |
| { this->has_nonpic_branches_ = true; } |
| |
| // Return the offset of the la25 stub for this symbol from the start of the |
| // la25 stub section. |
| unsigned int |
| la25_stub_offset() const |
| { return this->la25_stub_offset_; } |
| |
| // Set the offset of the la25 stub for this symbol from the start of the |
| // la25 stub section. |
| void |
| set_la25_stub_offset(unsigned int offset) |
| { this->la25_stub_offset_ = offset; } |
| |
| // Return whether the symbol has la25 stub. This is true if this symbol is |
| // for a PIC function, and there are non-PIC branches and jumps to it. |
| bool |
| has_la25_stub() const |
| { return this->la25_stub_offset_ != -1U; } |
| |
| // Return whether there is a relocation against this symbol that must be |
| // resolved by the static linker (that is, the relocation cannot possibly |
| // be made dynamic). |
| bool |
| has_static_relocs() const |
| { return this->has_static_relocs_; } |
| |
| // Set that there is a relocation against this symbol that must be resolved |
| // by the static linker (that is, the relocation cannot possibly be made |
| // dynamic). |
| void |
| set_has_static_relocs() |
| { this->has_static_relocs_ = true; } |
| |
| // Return whether we must not create a lazy-binding stub for this symbol. |
| bool |
| no_lazy_stub() const |
| { return this->no_lazy_stub_; } |
| |
| // Set that we must not create a lazy-binding stub for this symbol. |
| void |
| set_no_lazy_stub() |
| { this->no_lazy_stub_ = true; } |
| |
| // Return the offset of the lazy-binding stub for this symbol from the start |
| // of .MIPS.stubs section. |
| unsigned int |
| lazy_stub_offset() const |
| { return this->lazy_stub_offset_; } |
| |
| // Set the offset of the lazy-binding stub for this symbol from the start |
| // of .MIPS.stubs section. |
| void |
| set_lazy_stub_offset(unsigned int offset) |
| { this->lazy_stub_offset_ = offset; } |
| |
| // Return whether there are any relocations for this symbol where |
| // pointer equality matters. |
| bool |
| pointer_equality_needed() const |
| { return this->pointer_equality_needed_; } |
| |
| // Set that there are relocations for this symbol where pointer equality |
| // matters. |
| void |
| set_pointer_equality_needed() |
| { this->pointer_equality_needed_ = true; } |
| |
| // Return global GOT area where this symbol in located. |
| Global_got_area |
| global_got_area() const |
| { return this->global_got_area_; } |
| |
| // Set global GOT area where this symbol in located. |
| void |
| set_global_got_area(Global_got_area global_got_area) |
| { this->global_got_area_ = global_got_area; } |
| |
| // Return the global GOT offset for this symbol. For multi-GOT links, this |
| // returns the offset from the start of .got section to the first GOT entry |
| // for the symbol. Note that in multi-GOT links the symbol can have entry |
| // in more than one GOT. |
| unsigned int |
| global_gotoffset() const |
| { return this->global_gotoffset_; } |
| |
| // Set the global GOT offset for this symbol. Note that in multi-GOT links |
| // the symbol can have entry in more than one GOT. This method will set |
| // the offset only if it is less than current offset. |
| void |
| set_global_gotoffset(unsigned int offset) |
| { |
| if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_) |
| this->global_gotoffset_ = offset; |
| } |
| |
| // Return whether all GOT relocations for this symbol are for calls. |
| bool |
| got_only_for_calls() const |
| { return this->got_only_for_calls_; } |
| |
| // Set that there is a GOT relocation for this symbol that is not for call. |
| void |
| set_got_not_only_for_calls() |
| { this->got_only_for_calls_ = false; } |
| |
| // Return whether this is a PIC symbol. |
| bool |
| is_pic() const |
| { |
| // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC |
| return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2)) |
| == (elfcpp::STO_MIPS_PIC >> 2)); |
| } |
| |
| // Set the flag in st_other field that marks this symbol as PIC. |
| void |
| set_pic() |
| { |
| if (this->is_mips16()) |
| // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC |
| this->set_nonvis((this->nonvis() |
| & ~((elfcpp::STO_MIPS16 >> 2) |
| | (elfcpp::STO_MIPS_FLAGS >> 2))) |
| | (elfcpp::STO_MIPS_PIC >> 2)); |
| else |
| // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC |
| this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2)) |
| | (elfcpp::STO_MIPS_PIC >> 2)); |
| } |
| |
| // Set the flag in st_other field that marks this symbol as PLT. |
| void |
| set_mips_plt() |
| { |
| if (this->is_mips16()) |
| // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT |
| this->set_nonvis((this->nonvis() |
| & ((elfcpp::STO_MIPS16 >> 2) |
| | ~(elfcpp::STO_MIPS_FLAGS >> 2))) |
| | (elfcpp::STO_MIPS_PLT >> 2)); |
| |
| else |
| // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT |
| this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2)) |
| | (elfcpp::STO_MIPS_PLT >> 2)); |
| } |
| |
| // Downcast a base pointer to a Mips_symbol pointer. |
| static Mips_symbol<size>* |
| as_mips_sym(Symbol* sym) |
| { return static_cast<Mips_symbol<size>*>(sym); } |
| |
| // Downcast a base pointer to a Mips_symbol pointer. |
| static const Mips_symbol<size>* |
| as_mips_sym(const Symbol* sym) |
| { return static_cast<const Mips_symbol<size>*>(sym); } |
| |
| // Return whether the symbol has lazy-binding stub. |
| bool |
| has_lazy_stub() const |
| { return this->has_lazy_stub_; } |
| |
| // Set whether the symbol has lazy-binding stub. |
| void |
| set_has_lazy_stub(bool has_lazy_stub) |
| { this->has_lazy_stub_ = has_lazy_stub; } |
| |
| // Return whether the symbol needs a standard PLT entry. |
| bool |
| needs_mips_plt() const |
| { return this->needs_mips_plt_; } |
| |
| // Set whether the symbol needs a standard PLT entry. |
| void |
| set_needs_mips_plt(bool needs_mips_plt) |
| { this->needs_mips_plt_ = needs_mips_plt; } |
| |
| // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT |
| // entry. |
| bool |
| needs_comp_plt() const |
| { return this->needs_comp_plt_; } |
| |
| // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry. |
| void |
| set_needs_comp_plt(bool needs_comp_plt) |
| { this->needs_comp_plt_ = needs_comp_plt; } |
| |
| // Return standard PLT entry offset, or -1 if none. |
| unsigned int |
| mips_plt_offset() const |
| { return this->mips_plt_offset_; } |
| |
| // Set standard PLT entry offset. |
| void |
| set_mips_plt_offset(unsigned int mips_plt_offset) |
| { this->mips_plt_offset_ = mips_plt_offset; } |
| |
| // Return whether the symbol has standard PLT entry. |
| bool |
| has_mips_plt_offset() const |
| { return this->mips_plt_offset_ != -1U; } |
| |
| // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none. |
| unsigned int |
| comp_plt_offset() const |
| { return this->comp_plt_offset_; } |
| |
| // Set compressed (MIPS16 or microMIPS) PLT entry offset. |
| void |
| set_comp_plt_offset(unsigned int comp_plt_offset) |
| { this->comp_plt_offset_ = comp_plt_offset; } |
| |
| // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry. |
| bool |
| has_comp_plt_offset() const |
| { return this->comp_plt_offset_ != -1U; } |
| |
| // Return MIPS16 fn stub for a symbol. |
| template<bool big_endian> |
| Mips16_stub_section<size, big_endian>* |
| get_mips16_fn_stub() const |
| { |
| return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_); |
| } |
| |
| // Set MIPS16 fn stub for a symbol. |
| void |
| set_mips16_fn_stub(Mips16_stub_section_base* stub) |
| { this->mips16_fn_stub_ = stub; } |
| |
| // Return whether symbol has MIPS16 fn stub. |
| bool |
| has_mips16_fn_stub() const |
| { return this->mips16_fn_stub_ != NULL; } |
| |
| // Return MIPS16 call stub for a symbol. |
| template<bool big_endian> |
| Mips16_stub_section<size, big_endian>* |
| get_mips16_call_stub() const |
| { |
| return static_cast<Mips16_stub_section<size, big_endian>*>( |
| mips16_call_stub_); |
| } |
| |
| // Set MIPS16 call stub for a symbol. |
| void |
| set_mips16_call_stub(Mips16_stub_section_base* stub) |
| { this->mips16_call_stub_ = stub; } |
| |
| // Return whether symbol has MIPS16 call stub. |
| bool |
| has_mips16_call_stub() const |
| { return this->mips16_call_stub_ != NULL; } |
| |
| // Return MIPS16 call_fp stub for a symbol. |
| template<bool big_endian> |
| Mips16_stub_section<size, big_endian>* |
| get_mips16_call_fp_stub() const |
| { |
| return static_cast<Mips16_stub_section<size, big_endian>*>( |
| mips16_call_fp_stub_); |
| } |
| |
| // Set MIPS16 call_fp stub for a symbol. |
| void |
| set_mips16_call_fp_stub(Mips16_stub_section_base* stub) |
| { this->mips16_call_fp_stub_ = stub; } |
| |
| // Return whether symbol has MIPS16 call_fp stub. |
| bool |
| has_mips16_call_fp_stub() const |
| { return this->mips16_call_fp_stub_ != NULL; } |
| |
| bool |
| get_applied_secondary_got_fixup() const |
| { return applied_secondary_got_fixup_; } |
| |
| void |
| set_applied_secondary_got_fixup() |
| { this->applied_secondary_got_fixup_ = true; } |
| |
| // Return the hash of this symbol. |
| size_t |
| hash() const |
| { |
| return gold::string_hash<char>(this->name()); |
| } |
| |
| private: |
| // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol |
| // appears in any relocs other than a 16 bit call. |
| bool need_fn_stub_; |
| |
| // True if this symbol is referenced by branch relocations from |
| // any non-PIC input file. This is used to determine whether an |
| // la25 stub is required. |
| bool has_nonpic_branches_; |
| |
| // The offset of the la25 stub for this symbol from the start of the |
| // la25 stub section. |
| unsigned int la25_stub_offset_; |
| |
| // True if there is a relocation against this symbol that must be |
| // resolved by the static linker (that is, the relocation cannot |
| // possibly be made dynamic). |
| bool has_static_relocs_; |
| |
| // Whether we must not create a lazy-binding stub for this symbol. |
| // This is true if the symbol has relocations related to taking the |
| // function's address. |
| bool no_lazy_stub_; |
| |
| // The offset of the lazy-binding stub for this symbol from the start of |
| // .MIPS.stubs section. |
| unsigned int lazy_stub_offset_; |
| |
| // True if there are any relocations for this symbol where pointer equality |
| // matters. |
| bool pointer_equality_needed_; |
| |
| // Global GOT area where this symbol in located, or GGA_NONE if symbol is not |
| // in the global part of the GOT. |
| Global_got_area global_got_area_; |
| |
| // The global GOT offset for this symbol. For multi-GOT links, this is offset |
| // from the start of .got section to the first GOT entry for the symbol. |
| // Note that in multi-GOT links the symbol can have entry in more than one GOT. |
| unsigned int global_gotoffset_; |
| |
| // Whether all GOT relocations for this symbol are for calls. |
| bool got_only_for_calls_; |
| // Whether the symbol has lazy-binding stub. |
| bool has_lazy_stub_; |
| // Whether the symbol needs a standard PLT entry. |
| bool needs_mips_plt_; |
| // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry. |
| bool needs_comp_plt_; |
| // Standard PLT entry offset, or -1 if none. |
| unsigned int mips_plt_offset_; |
| // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none. |
| unsigned int comp_plt_offset_; |
| // MIPS16 fn stub for a symbol. |
| Mips16_stub_section_base* mips16_fn_stub_; |
| // MIPS16 call stub for a symbol. |
| Mips16_stub_section_base* mips16_call_stub_; |
| // MIPS16 call_fp stub for a symbol. |
| Mips16_stub_section_base* mips16_call_fp_stub_; |
| |
| bool applied_secondary_got_fixup_; |
| }; |
| |
| // Mips16_stub_section class. |
| |
| // The mips16 compiler uses a couple of special sections to handle |
| // floating point arguments. |
| |
| // Section names that look like .mips16.fn.FNNAME contain stubs that |
| // copy floating point arguments from the fp regs to the gp regs and |
| // then jump to FNNAME. If any 32 bit function calls FNNAME, the |
| // call should be redirected to the stub instead. If no 32 bit |
| // function calls FNNAME, the stub should be discarded. We need to |
| // consider any reference to the function, not just a call, because |
| // if the address of the function is taken we will need the stub, |
| // since the address might be passed to a 32 bit function. |
| |
| // Section names that look like .mips16.call.FNNAME contain stubs |
| // that copy floating point arguments from the gp regs to the fp |
| // regs and then jump to FNNAME. If FNNAME is a 32 bit function, |
| // then any 16 bit function that calls FNNAME should be redirected |
| // to the stub instead. If FNNAME is not a 32 bit function, the |
| // stub should be discarded. |
| |
| // .mips16.call.fp.FNNAME sections are similar, but contain stubs |
| // which call FNNAME and then copy the return value from the fp regs |
| // to the gp regs. These stubs store the return address in $18 while |
| // calling FNNAME; any function which might call one of these stubs |
| // must arrange to save $18 around the call. (This case is not |
| // needed for 32 bit functions that call 16 bit functions, because |
| // 16 bit functions always return floating point values in both |
| // $f0/$f1 and $2/$3.) |
| |
| // Note that in all cases FNNAME might be defined statically. |
| // Therefore, FNNAME is not used literally. Instead, the relocation |
| // information will indicate which symbol the section is for. |
| |
| // We record any stubs that we find in the symbol table. |
| |
| // TODO(sasa): All mips16 stub sections should be emitted in the .text section. |
| |
| class Mips16_stub_section_base { }; |
| |
| template<int size, bool big_endian> |
| class Mips16_stub_section : public Mips16_stub_section_base |
| { |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address; |
| |
| public: |
| Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx) |
| : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL), |
| found_r_mips_none_(false) |
| { |
| gold_assert(object->is_mips16_fn_stub_section(shndx) |
| || object->is_mips16_call_stub_section(shndx) |
| || object->is_mips16_call_fp_stub_section(shndx)); |
| } |
| |
| // Return the object of this stub section. |
| Mips_relobj<size, big_endian>* |
| object() const |
| { return this->object_; } |
| |
| // Return the size of a section. |
| uint64_t |
| section_size() const |
| { return this->object_->section_size(this->shndx_); } |
| |
| // Return section index of this stub section. |
| unsigned int |
| shndx() const |
| { return this->shndx_; } |
| |
| // Return symbol index, if stub is for a local function. |
| unsigned int |
| r_sym() const |
| { return this->r_sym_; } |
| |
| // Return symbol, if stub is for a global function. |
| Mips_symbol<size>* |
| gsym() const |
| { return this->gsym_; } |
| |
| // Return whether stub is for a local function. |
| bool |
| is_for_local_function() const |
| { return this->gsym_ == NULL; } |
| |
| // This method is called when a new relocation R_TYPE for local symbol R_SYM |
| // is found in the stub section. Try to find stub target. |
| void |
| new_local_reloc_found(unsigned int r_type, unsigned int r_sym) |
| { |
| // To find target symbol for this stub, trust the first R_MIPS_NONE |
| // relocation, if any. Otherwise trust the first relocation, whatever |
| // its kind. |
| if (this->found_r_mips_none_) |
| return; |
| if (r_type == elfcpp::R_MIPS_NONE) |
| { |
| this->r_sym_ = r_sym; |
| this->gsym_ = NULL; |
| this->found_r_mips_none_ = true; |
| } |
| else if (!is_target_found()) |
| this->r_sym_ = r_sym; |
| } |
| |
| // This method is called when a new relocation R_TYPE for global symbol GSYM |
| // is found in the stub section. Try to find stub target. |
| void |
| new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym) |
| { |
| // To find target symbol for this stub, trust the first R_MIPS_NONE |
| // relocation, if any. Otherwise trust the first relocation, whatever |
| // its kind. |
| if (this->found_r_mips_none_) |
| return; |
| if (r_type == elfcpp::R_MIPS_NONE) |
| { |
| this->gsym_ = gsym; |
| this->r_sym_ = 0; |
| this->found_r_mips_none_ = true; |
| } |
| else if (!is_target_found()) |
| this->gsym_ = gsym; |
| } |
| |
| // Return whether we found the stub target. |
| bool |
| is_target_found() const |
| { return this->r_sym_ != 0 || this->gsym_ != NULL; } |
| |
| // Return whether this is a fn stub. |
| bool |
| is_fn_stub() const |
| { return this->object_->is_mips16_fn_stub_section(this->shndx_); } |
| |
| // Return whether this is a call stub. |
| bool |
| is_call_stub() const |
| { return this->object_->is_mips16_call_stub_section(this->shndx_); } |
| |
| // Return whether this is a call_fp stub. |
| bool |
| is_call_fp_stub() const |
| { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); } |
| |
| // Return the output address. |
| Mips_address |
| output_address() const |
| { |
| return (this->object_->output_section(this->shndx_)->address() |
| + this->object_->output_section_offset(this->shndx_)); |
| } |
| |
| private: |
| // The object of this stub section. |
| Mips_relobj<size, big_endian>* object_; |
| // The section index of this stub section. |
| unsigned int shndx_; |
| // The symbol index, if stub is for a local function. |
| unsigned int r_sym_; |
| // The symbol, if stub is for a global function. |
| Mips_symbol<size>* gsym_; |
| // True if we found R_MIPS_NONE relocation in this stub. |
| bool found_r_mips_none_; |
| }; |
| |
| // Mips_relobj class. |
| |
| template<int size, bool big_endian> |
| class Mips_relobj : public Sized_relobj_file<size, big_endian> |
| { |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address; |
| typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*> |
| Mips16_stubs_int_map; |
| typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype; |
| |
| public: |
| Mips_relobj(const std::string& name, Input_file* input_file, off_t offset, |
| const typename elfcpp::Ehdr<size, big_endian>& ehdr) |
| : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr), |
| processor_specific_flags_(0), local_symbol_is_mips16_(), |
| local_symbol_is_micromips_(), mips16_stub_sections_(), |
| local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(), |
| local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false), |
| merge_processor_specific_data_(true), got_info_(NULL), |
| section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(), |
| section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U), |
| attributes_section_data_(NULL), abiflags_(NULL), gprmask_(0), |
| cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0) |
| { |
| this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0; |
| this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags()); |
| } |
| |
| ~Mips_relobj() |
| { delete this->attributes_section_data_; } |
| |
| // Downcast a base pointer to a Mips_relobj pointer. This is |
| // not type-safe but we only use Mips_relobj not the base class. |
| static Mips_relobj<size, big_endian>* |
| as_mips_relobj(Relobj* relobj) |
| { return static_cast<Mips_relobj<size, big_endian>*>(relobj); } |
| |
| // Downcast a base pointer to a Mips_relobj pointer. This is |
| // not type-safe but we only use Mips_relobj not the base class. |
| static const Mips_relobj<size, big_endian>* |
| as_mips_relobj(const Relobj* relobj) |
| { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); } |
| |
| // Processor-specific flags in ELF file header. This is valid only after |
| // reading symbols. |
| elfcpp::Elf_Word |
| processor_specific_flags() const |
| { return this->processor_specific_flags_; } |
| |
| // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table |
| // index. This is only valid after do_count_local_symbol is called. |
| bool |
| local_symbol_is_mips16(unsigned int r_sym) const |
| { |
| gold_assert(r_sym < this->local_symbol_is_mips16_.size()); |
| return this->local_symbol_is_mips16_[r_sym]; |
| } |
| |
| // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table |
| // index. This is only valid after do_count_local_symbol is called. |
| bool |
| local_symbol_is_micromips(unsigned int r_sym) const |
| { |
| gold_assert(r_sym < this->local_symbol_is_micromips_.size()); |
| return this->local_symbol_is_micromips_[r_sym]; |
| } |
| |
| // Get or create MIPS16 stub section. |
| Mips16_stub_section<size, big_endian>* |
| get_mips16_stub_section(unsigned int shndx) |
| { |
| typename Mips16_stubs_int_map::const_iterator it = |
| this->mips16_stub_sections_.find(shndx); |
| if (it != this->mips16_stub_sections_.end()) |
| return (*it).second; |
| |
| Mips16_stub_section<size, big_endian>* stub_section = |
| new Mips16_stub_section<size, big_endian>(this, shndx); |
| this->mips16_stub_sections_.insert( |
| std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>( |
| stub_section->shndx(), stub_section)); |
| return stub_section; |
| } |
| |
| // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this |
| // object doesn't have fn stub for R_SYM. |
| Mips16_stub_section<size, big_endian>* |
| get_local_mips16_fn_stub(unsigned int r_sym) const |
| { |
| typename Mips16_stubs_int_map::const_iterator it = |
| this->local_mips16_fn_stubs_.find(r_sym); |
| if (it != this->local_mips16_fn_stubs_.end()) |
| return (*it).second; |
| return NULL; |
| } |
| |
| // Record that this object has MIPS16 fn stub for local symbol. This method |
| // is only called if we decided not to discard the stub. |
| void |
| add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub) |
| { |
| gold_assert(stub->is_for_local_function()); |
| unsigned int r_sym = stub->r_sym(); |
| this->local_mips16_fn_stubs_.insert( |
| std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>( |
| r_sym, stub)); |
| } |
| |
| // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this |
| // object doesn't have call stub for R_SYM. |
| Mips16_stub_section<size, big_endian>* |
| get_local_mips16_call_stub(unsigned int r_sym) const |
| { |
| typename Mips16_stubs_int_map::const_iterator it = |
| this->local_mips16_call_stubs_.find(r_sym); |
| if (it != this->local_mips16_call_stubs_.end()) |
| return (*it).second; |
| return NULL; |
| } |
| |
| // Record that this object has MIPS16 call stub for local symbol. This method |
| // is only called if we decided not to discard the stub. |
| void |
| add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub) |
| { |
| gold_assert(stub->is_for_local_function()); |
| unsigned int r_sym = stub->r_sym(); |
| this->local_mips16_call_stubs_.insert( |
| std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>( |
| r_sym, stub)); |
| } |
| |
| // Record that we found "non 16-bit" call relocation against local symbol |
| // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there |
| // is one. |
| void |
| add_local_non_16bit_call(unsigned int symndx) |
| { this->local_non_16bit_calls_.insert(symndx); } |
| |
| // Return true if there is any "non 16-bit" call relocation against local |
| // symbol SYMNDX in this object. |
| bool |
| has_local_non_16bit_call_relocs(unsigned int symndx) |
| { |
| return (this->local_non_16bit_calls_.find(symndx) |
| != this->local_non_16bit_calls_.end()); |
| } |
| |
| // Record that we found 16-bit call relocation R_MIPS16_26 against local |
| // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed |
| // if there is some R_MIPS16_26 relocation that refers to the stub symbol. |
| void |
| add_local_16bit_call(unsigned int symndx) |
| { this->local_16bit_calls_.insert(symndx); } |
| |
| // Return true if there is any 16-bit call relocation R_MIPS16_26 against local |
| // symbol SYMNDX in this object. |
| bool |
| has_local_16bit_call_relocs(unsigned int symndx) |
| { |
| return (this->local_16bit_calls_.find(symndx) |
| != this->local_16bit_calls_.end()); |
| } |
| |
| // Get gp value that was used to create this object. |
| Mips_address |
| gp_value() const |
| { return this->gp_; } |
| |
| // Return whether the object is a PIC object. |
| bool |
| is_pic() const |
| { return this->is_pic_; } |
| |
| // Return whether the object uses N32 ABI. |
| bool |
| is_n32() const |
| { return this->is_n32_; } |
| |
| // Return whether the object uses N64 ABI. |
| bool |
| is_n64() const |
| { return size == 64; } |
| |
| // Return whether the object uses NewABI conventions. |
| bool |
| is_newabi() const |
| { return this->is_n32() || this->is_n64(); } |
| |
| // Return Mips_got_info for this object. |
| Mips_got_info<size, big_endian>* |
| get_got_info() const |
| { return this->got_info_; } |
| |
| // Return Mips_got_info for this object. Create new info if it doesn't exist. |
| Mips_got_info<size, big_endian>* |
| get_or_create_got_info() |
| { |
| if (!this->got_info_) |
| this->got_info_ = new Mips_got_info<size, big_endian>(); |
| return this->got_info_; |
| } |
| |
| // Set Mips_got_info for this object. |
| void |
| set_got_info(Mips_got_info<size, big_endian>* got_info) |
| { this->got_info_ = got_info; } |
| |
| // Whether a section SHDNX is a MIPS16 stub section. This is only valid |
| // after do_read_symbols is called. |
| bool |
| is_mips16_stub_section(unsigned int shndx) |
| { |
| return (is_mips16_fn_stub_section(shndx) |
| || is_mips16_call_stub_section(shndx) |
| || is_mips16_call_fp_stub_section(shndx)); |
| } |
| |
| // Return TRUE if relocations in section SHNDX can refer directly to a |
| // MIPS16 function rather than to a hard-float stub. This is only valid |
| // after do_read_symbols is called. |
| bool |
| section_allows_mips16_refs(unsigned int shndx) |
| { |
| return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_); |
| } |
| |
| // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid |
| // after do_read_symbols is called. |
| bool |
| is_mips16_fn_stub_section(unsigned int shndx) |
| { |
| gold_assert(shndx < this->section_is_mips16_fn_stub_.size()); |
| return this->section_is_mips16_fn_stub_[shndx]; |
| } |
| |
| // Whether a section SHDNX is a MIPS16 call stub section. This is only valid |
| // after do_read_symbols is called. |
| bool |
| is_mips16_call_stub_section(unsigned int shndx) |
| { |
| gold_assert(shndx < this->section_is_mips16_call_stub_.size()); |
| return this->section_is_mips16_call_stub_[shndx]; |
| } |
| |
| // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only |
| // valid after do_read_symbols is called. |
| bool |
| is_mips16_call_fp_stub_section(unsigned int shndx) |
| { |
| gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size()); |
| return this->section_is_mips16_call_fp_stub_[shndx]; |
| } |
| |
| // Discard MIPS16 stub secions that are not needed. |
| void |
| discard_mips16_stub_sections(Symbol_table* symtab); |
| |
| // Return whether there is a .reginfo section. |
| bool |
| has_reginfo_section() const |
| { return this->has_reginfo_section_; } |
| |
| // Return whether we want to merge processor-specific data. |
| bool |
| merge_processor_specific_data() const |
| { return this->merge_processor_specific_data_; } |
| |
| // Return gprmask from the .reginfo section of this object. |
| Valtype |
| gprmask() const |
| { return this->gprmask_; } |
| |
| // Return cprmask1 from the .reginfo section of this object. |
| Valtype |
| cprmask1() const |
| { return this->cprmask1_; } |
| |
| // Return cprmask2 from the .reginfo section of this object. |
| Valtype |
| cprmask2() const |
| { return this->cprmask2_; } |
| |
| // Return cprmask3 from the .reginfo section of this object. |
| Valtype |
| cprmask3() const |
| { return this->cprmask3_; } |
| |
| // Return cprmask4 from the .reginfo section of this object. |
| Valtype |
| cprmask4() const |
| { return this->cprmask4_; } |
| |
| // This is the contents of the .MIPS.abiflags section if there is one. |
| Mips_abiflags<big_endian>* |
| abiflags() |
| { return this->abiflags_; } |
| |
| // This is the contents of the .gnu.attribute section if there is one. |
| const Attributes_section_data* |
| attributes_section_data() const |
| { return this->attributes_section_data_; } |
| |
| protected: |
| // Count the local symbols. |
| void |
| do_count_local_symbols(Stringpool_template<char>*, |
| Stringpool_template<char>*); |
| |
| // Read the symbol information. |
| void |
| do_read_symbols(Read_symbols_data* sd); |
| |
| private: |
| // The name of the options section. |
| const char* mips_elf_options_section_name() |
| { return this->is_newabi() ? ".MIPS.options" : ".options"; } |
| |
| // processor-specific flags in ELF file header. |
| elfcpp::Elf_Word processor_specific_flags_; |
| |
| // Bit vector to tell if a local symbol is a MIPS16 symbol or not. |
| // This is only valid after do_count_local_symbol is called. |
| std::vector<bool> local_symbol_is_mips16_; |
| |
| // Bit vector to tell if a local symbol is a microMIPS symbol or not. |
| // This is only valid after do_count_local_symbol is called. |
| std::vector<bool> local_symbol_is_micromips_; |
| |
| // Map from section index to the MIPS16 stub for that section. This contains |
| // all stubs found in this object. |
| Mips16_stubs_int_map mips16_stub_sections_; |
| |
| // Local symbols that have "non 16-bit" call relocation. This relocation |
| // would need to refer to a MIPS16 fn stub, if there is one. |
| std::set<unsigned int> local_non_16bit_calls_; |
| |
| // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16 |
| // call or call_fp stubs will only be needed if there is some R_MIPS16_26 |
| // relocation that refers to the stub symbol. |
| std::set<unsigned int> local_16bit_calls_; |
| |
| // Map from local symbol index to the MIPS16 fn stub for that symbol. |
| // This contains only the stubs that we decided not to discard. |
| Mips16_stubs_int_map local_mips16_fn_stubs_; |
| |
| // Map from local symbol index to the MIPS16 call stub for that symbol. |
| // This contains only the stubs that we decided not to discard. |
| Mips16_stubs_int_map local_mips16_call_stubs_; |
| |
| // gp value that was used to create this object. |
| Mips_address gp_; |
| // Whether the object is a PIC object. |
| bool is_pic_ : 1; |
| // Whether the object uses N32 ABI. |
| bool is_n32_ : 1; |
| // Whether the object contains a .reginfo section. |
| bool has_reginfo_section_ : 1; |
| // Whether we merge processor-specific data of this object to output. |
| bool merge_processor_specific_data_ : 1; |
| // The Mips_got_info for this object. |
| Mips_got_info<size, big_endian>* got_info_; |
| |
| // Bit vector to tell if a section is a MIPS16 fn stub section or not. |
| // This is only valid after do_read_symbols is called. |
| std::vector<bool> section_is_mips16_fn_stub_; |
| |
| // Bit vector to tell if a section is a MIPS16 call stub section or not. |
| // This is only valid after do_read_symbols is called. |
| std::vector<bool> section_is_mips16_call_stub_; |
| |
| // Bit vector to tell if a section is a MIPS16 call_fp stub section or not. |
| // This is only valid after do_read_symbols is called. |
| std::vector<bool> section_is_mips16_call_fp_stub_; |
| |
| // .pdr section index. |
| unsigned int pdr_shndx_; |
| |
| // Object attributes if there is a .gnu.attributes section or NULL. |
| Attributes_section_data* attributes_section_data_; |
| |
| // Object abiflags if there is a .MIPS.abiflags section or NULL. |
| Mips_abiflags<big_endian>* abiflags_; |
| |
| // gprmask from the .reginfo section of this object. |
| Valtype gprmask_; |
| // cprmask1 from the .reginfo section of this object. |
| Valtype cprmask1_; |
| // cprmask2 from the .reginfo section of this object. |
| Valtype cprmask2_; |
| // cprmask3 from the .reginfo section of this object. |
| Valtype cprmask3_; |
| // cprmask4 from the .reginfo section of this object. |
| Valtype cprmask4_; |
| }; |
| |
| // Mips_output_data_got class. |
| |
| template<int size, bool big_endian> |
| class Mips_output_data_got : public Output_data_got<size, big_endian> |
| { |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address; |
| typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> |
| Reloc_section; |
| typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype; |
| |
| public: |
| Mips_output_data_got(Target_mips<size, big_endian>* target, |
| Symbol_table* symtab, Layout* layout) |
| : Output_data_got<size, big_endian>(), target_(target), |
| symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL), |
| first_global_got_dynsym_index_(-1U), primary_got_(NULL), |
| secondary_got_relocs_() |
| { |
| this->master_got_info_ = new Mips_got_info<size, big_endian>(); |
| this->set_addralign(16); |
| } |
| |
| // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol |
| // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT. |
| void |
| record_local_got_symbol(Mips_relobj<size, big_endian>* object, |
| unsigned int symndx, Mips_address addend, |
| unsigned int r_type, unsigned int shndx, |
| bool is_section_symbol) |
| { |
| this->master_got_info_->record_local_got_symbol(object, symndx, addend, |
| r_type, shndx, |
| is_section_symbol); |
| } |
| |
| // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM, |
| // in OBJECT. FOR_CALL is true if the caller is only interested in |
| // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic |
| // relocation. |
| void |
| record_global_got_symbol(Mips_symbol<size>* mips_sym, |
| Mips_relobj<size, big_endian>* object, |
| unsigned int r_type, bool dyn_reloc, bool for_call) |
| { |
| this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type, |
| dyn_reloc, for_call); |
| } |
| |
| // Record that OBJECT has a page relocation against symbol SYMNDX and |
| // that ADDEND is the addend for that relocation. |
| void |
| record_got_page_entry(Mips_relobj<size, big_endian>* object, |
| unsigned int symndx, int addend) |
| { this->master_got_info_->record_got_page_entry(object, symndx, addend); } |
| |
| // Add a static entry for the GOT entry at OFFSET. GSYM is a global |
| // symbol and R_TYPE is the code of a dynamic relocation that needs to be |
| // applied in a static link. |
| void |
| add_static_reloc(unsigned int got_offset, unsigned int r_type, |
| Mips_symbol<size>* gsym) |
| { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); } |
| |
| // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object |
| // defining a local symbol with INDEX. R_TYPE is the code of a dynamic |
| // relocation that needs to be applied in a static link. |
| void |
| add_static_reloc(unsigned int got_offset, unsigned int r_type, |
| Sized_relobj_file<size, big_endian>* relobj, |
| unsigned int index) |
| { |
| this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj, |
| index)); |
| } |
| |
| // Record that global symbol GSYM has R_TYPE dynamic relocation in the |
| // secondary GOT at OFFSET. |
| void |
| add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type, |
| Mips_symbol<size>* gsym) |
| { |
| this->secondary_got_relocs_.push_back(Static_reloc(got_offset, |
| r_type, gsym)); |
| } |
| |
| // Update GOT entry at OFFSET with VALUE. |
| void |
| update_got_entry(unsigned int offset, Mips_address value) |
| { |
| elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value); |
| } |
| |
| // Return the number of entries in local part of the GOT. This includes |
| // local entries, page entries and 2 reserved entries. |
| unsigned int |
| get_local_gotno() const |
| { |
| if (!this->multi_got()) |
| { |
| return (2 + this->master_got_info_->local_gotno() |
| + this->master_got_info_->page_gotno()); |
| } |
| else |
| return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno(); |
| } |
| |
| // Return dynamic symbol table index of the first symbol with global GOT |
| // entry. |
| unsigned int |
| first_global_got_dynsym_index() const |
| { return this->first_global_got_dynsym_index_; } |
| |
| // Set dynamic symbol table index of the first symbol with global GOT entry. |
| void |
| set_first_global_got_dynsym_index(unsigned int index) |
| { this->first_global_got_dynsym_index_ = index; } |
| |
| // Lay out the GOT. Add local, global and TLS entries. If GOT is |
| // larger than 64K, create multi-GOT. |
| void |
| lay_out_got(Layout* layout, Symbol_table* symtab, |
| const Input_objects* input_objects); |
| |
| // Create multi-GOT. For every GOT, add local, global and TLS entries. |
| void |
| lay_out_multi_got(Layout* layout, const Input_objects* input_objects); |
| |
| // Attempt to merge GOTs of different input objects. |
| void |
| merge_gots(const Input_objects* input_objects); |
| |
| // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if |
| // this would lead to overflow, true if they were merged successfully. |
| bool |
| merge_got_with(Mips_got_info<size, big_endian>* from, |
| Mips_relobj<size, big_endian>* object, |
| Mips_got_info<size, big_endian>* to); |
| |
| // Return the offset of GOT page entry for VALUE. For multi-GOT links, |
| // use OBJECT's GOT. |
| unsigned int |
| get_got_page_offset(Mips_address value, |
| const Mips_relobj<size, big_endian>* object) |
| { |
| Mips_got_info<size, big_endian>* g = (!this->multi_got() |
| ? this->master_got_info_ |
| : object->get_got_info()); |
| gold_assert(g != NULL); |
| return g->get_got_page_offset(value, this); |
| } |
| |
| // Return the GOT offset of type GOT_TYPE of the global symbol |
| // GSYM. For multi-GOT links, use OBJECT's GOT. |
| unsigned int got_offset(const Symbol* gsym, unsigned int got_type, |
| Mips_relobj<size, big_endian>* object) const |
| { |
| if (!this->multi_got()) |
| return gsym->got_offset(got_type); |
| else |
| { |
| Mips_got_info<size, big_endian>* g = object->get_got_info(); |
| gold_assert(g != NULL); |
| return gsym->got_offset(g->multigot_got_type(got_type)); |
| } |
| } |
| |
| // Return the GOT offset of type GOT_TYPE of the local symbol |
| // SYMNDX. |
| unsigned int |
| got_offset(unsigned int symndx, unsigned int got_type, |
| Sized_relobj_file<size, big_endian>* object, |
| uint64_t addend) const |
| { return object->local_got_offset(symndx, got_type, addend); } |
| |
| // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT. |
| unsigned int |
| tls_ldm_offset(Mips_relobj<size, big_endian>* object) const |
| { |
| Mips_got_info<size, big_endian>* g = (!this->multi_got() |
| ? this->master_got_info_ |
| : object->get_got_info()); |
| gold_assert(g != NULL); |
| return g->tls_ldm_offset(); |
| } |
| |
| // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT. |
| void |
| set_tls_ldm_offset(unsigned int tls_ldm_offset, |
| Mips_relobj<size, big_endian>* object) |
| { |
| Mips_got_info<size, big_endian>* g = (!this->multi_got() |
| ? this->master_got_info_ |
| : object->get_got_info()); |
| gold_assert(g != NULL); |
| g->set_tls_ldm_offset(tls_ldm_offset); |
| } |
| |
| // Return true for multi-GOT links. |
| bool |
| multi_got() const |
| { return this->primary_got_ != NULL; } |
| |
| // Return the offset of OBJECT's GOT from the start of .got section. |
| unsigned int |
| get_got_offset(const Mips_relobj<size, big_endian>* object) |
| { |
| if (!this->multi_got()) |
| return 0; |
| else |
| { |
| Mips_got_info<size, big_endian>* g = object->get_got_info(); |
| return g != NULL ? g->offset() : 0; |
| } |
| } |
| |
| // Create global GOT entries that should be in the GGA_RELOC_ONLY area. |
| void |
| add_reloc_only_entries() |
| { this->master_got_info_->add_reloc_only_entries(this); } |
| |
| // Return offset of the primary GOT's entry for global symbol. |
| unsigned int |
| get_primary_got_offset(const Mips_symbol<size>* sym) const |
| { |
| gold_assert(sym->global_got_area() != GGA_NONE); |
| return (this->get_local_gotno() + sym->dynsym_index() |
| - this->first_global_got_dynsym_index()) * size/8; |
| } |
| |
| // For the entry at offset GOT_OFFSET, return its offset from the gp. |
| // Input argument GOT_OFFSET is always global offset from the start of |
| // .got section, for both single and multi-GOT links. |
| // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT |
| // links, the return value is object_got_offset - 0x7FF0, where |
| // object_got_offset is offset in the OBJECT's GOT. |
| int |
| gp_offset(unsigned int got_offset, |
| const Mips_relobj<size, big_endian>* object) const |
| { |
| return (this->address() + got_offset |
| - this->target_->adjusted_gp_value(object)); |
| } |
| |
| protected: |
| // Write out the GOT table. |
| void |
| do_write(Output_file*); |
| |
| private: |
| |
| // This class represent dynamic relocations that need to be applied by |
| // gold because we are using TLS relocations in a static link. |
| class Static_reloc |
| { |
| public: |
| Static_reloc(unsigned int got_offset, unsigned int r_type, |
| Mips_symbol<size>* gsym) |
| : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true) |
| { this->u_.global.symbol = gsym; } |
| |
| Static_reloc(unsigned int got_offset, unsigned int r_type, |
| Sized_relobj_file<size, big_endian>* relobj, unsigned int index) |
| : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false) |
| { |
| this->u_.local.relobj = relobj; |
| this->u_.local.index = index; |
| } |
| |
| // Return the GOT offset. |
| unsigned int |
| got_offset() const |
| { return this->got_offset_; } |
| |
| // Relocation type. |
| unsigned int |
| r_type() const |
| { return this->r_type_; } |
| |
| // Whether the symbol is global or not. |
| bool |
| symbol_is_global() const |
| { return this->symbol_is_global_; } |
| |
| // For a relocation against a global symbol, the global symbol. |
| Mips_symbol<size>* |
| symbol() const |
| { |
| gold_assert(this->symbol_is_global_); |
| return this->u_.global.symbol; |
| } |
| |
| // For a relocation against a local symbol, the defining object. |
| Sized_relobj_file<size, big_endian>* |
| relobj() const |
| { |
| gold_assert(!this->symbol_is_global_); |
| return this->u_.local.relobj; |
| } |
| |
| // For a relocation against a local symbol, the local symbol index. |
| unsigned int |
| index() const |
| { |
| gold_assert(!this->symbol_is_global_); |
| return this->u_.local.index; |
| } |
| |
| private: |
| // GOT offset of the entry to which this relocation is applied. |
| unsigned int got_offset_; |
| // Type of relocation. |
| unsigned int r_type_; |
| // Whether this relocation is against a global symbol. |
| bool symbol_is_global_; |
| // A global or local symbol. |
| union |
| { |
| struct |
| { |
| // For a global symbol, the symbol itself. |
| Mips_symbol<size>* symbol; |
| } global; |
| struct |
| { |
| // For a local symbol, the object defining object. |
| Sized_relobj_file<size, big_endian>* relobj; |
| // For a local symbol, the symbol index. |
| unsigned int index; |
| } local; |
| } u_; |
| }; |
| |
| // The target. |
| Target_mips<size, big_endian>* target_; |
| // The symbol table. |
| Symbol_table* symbol_table_; |
| // The layout. |
| Layout* layout_; |
| // Static relocs to be applied to the GOT. |
| std::vector<Static_reloc> static_relocs_; |
| // .got section view. |
| unsigned char* got_view_; |
| // The dynamic symbol table index of the first symbol with global GOT entry. |
| unsigned int first_global_got_dynsym_index_; |
| // The master GOT information. |
| Mips_got_info<size, big_endian>* master_got_info_; |
| // The primary GOT information. |
| Mips_got_info<size, big_endian>* primary_got_; |
| // Secondary GOT fixups. |
| std::vector<Static_reloc> secondary_got_relocs_; |
| }; |
| |
| // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are |
| // two ways of creating these interfaces. The first is to add: |
| // |
| // lui $25,%hi(func) |
| // j func |
| // addiu $25,$25,%lo(func) |
| // |
| // to a separate trampoline section. The second is to add: |
| // |
| // lui $25,%hi(func) |
| // addiu $25,$25,%lo(func) |
| // |
| // immediately before a PIC function "func", but only if a function is at the |
| // beginning of the section, and the section is not too heavily aligned (i.e we |
| // would need to add no more than 2 nops before the stub.) |
| // |
| // We only create stubs of the first type. |
| |
| template<int size, bool big_endian> |
| class Mips_output_data_la25_stub : public Output_section_data |
| { |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address; |
| |
| public: |
| Mips_output_data_la25_stub() |
| : Output_section_data(size == 32 ? 4 : 8), symbols_() |
| { } |
| |
| // Create LA25 stub for a symbol. |
| void |
| create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target, |
| Mips_symbol<size>* gsym); |
| |
| // Return output address of a stub. |
| Mips_address |
| stub_address(const Mips_symbol<size>* sym) const |
| { |
| gold_assert(sym->has_la25_stub()); |
| return this->address() + sym->la25_stub_offset(); |
| } |
| |
| protected: |
| void |
| do_adjust_output_section(Output_section* os) |
| { os->set_entsize(0); } |
| |
| private: |
| // Template for standard LA25 stub. |
| static const uint32_t la25_stub_entry[]; |
| // Template for microMIPS LA25 stub. |
| static const uint32_t la25_stub_micromips_entry[]; |
| |
| // Set the final size. |
| void |
| set_final_data_size() |
| { this->set_data_size(this->symbols_.size() * 16); } |
| |
| // Create a symbol for SYM stub's value and size, to help make the |
| // disassembly easier to read. |
| void |
| create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab, |
| Target_mips<size, big_endian>* target, uint64_t symsize); |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _(".LA25.stubs")); } |
| |
| // Write out the LA25 stub section. |
| void |
| do_write(Output_file*); |
| |
| // Symbols that have LA25 stubs. |
| std::vector<Mips_symbol<size>*> symbols_; |
| }; |
| |
| // MIPS-specific relocation writer. |
| |
| template<int sh_type, bool dynamic, int size, bool big_endian> |
| struct Mips_output_reloc_writer; |
| |
| template<int sh_type, bool dynamic, bool big_endian> |
| struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian> |
| { |
| typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type; |
| typedef std::vector<Output_reloc_type> Relocs; |
| |
| static void |
| write(typename Relocs::const_iterator p, unsigned char* pov) |
| { p->write(pov); } |
| }; |
| |
| template<int sh_type, bool dynamic, bool big_endian> |
| struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian> |
| { |
| typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type; |
| typedef std::vector<Output_reloc_type> Relocs; |
| |
| static void |
| write(typename Relocs::const_iterator p, unsigned char* pov) |
| { |
| elfcpp::Mips64_rel_write<big_endian> orel(pov); |
| orel.put_r_offset(p->get_address()); |
| orel.put_r_sym(p->get_symbol_index()); |
| orel.put_r_ssym(RSS_UNDEF); |
| orel.put_r_type(p->type()); |
| if (p->type() == elfcpp::R_MIPS_REL32) |
| orel.put_r_type2(elfcpp::R_MIPS_64); |
| else |
| orel.put_r_type2(elfcpp::R_MIPS_NONE); |
| orel.put_r_type3(elfcpp::R_MIPS_NONE); |
| } |
| }; |
| |
| template<int sh_type, bool dynamic, int size, bool big_endian> |
| class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic, |
| size, big_endian> |
| { |
| public: |
| Mips_output_data_reloc(bool sort_relocs) |
| : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs) |
| { } |
| |
| protected: |
| // Write out the data. |
| void |
| do_write(Output_file* of) |
| { |
| typedef Mips_output_reloc_writer<sh_type, dynamic, size, |
| big_endian> Writer; |
| this->template do_write_generic<Writer>(of); |
| } |
| }; |
| |
| |
| // A class to handle the PLT data. |
| |
| template<int size, bool big_endian> |
| class Mips_output_data_plt : public Output_section_data |
| { |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address; |
| typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, |
| size, big_endian> Reloc_section; |
| |
| public: |
| // Create the PLT section. The ordinary .got section is an argument, |
| // since we need to refer to the start. |
| Mips_output_data_plt(Layout* layout, Output_data_space* got_plt, |
| Target_mips<size, big_endian>* target) |
| : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(), |
| plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0), |
| target_(target) |
| { |
| this->rel_ = new Reloc_section(false); |
| layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL, |
| elfcpp::SHF_ALLOC, this->rel_, |
| ORDER_DYNAMIC_PLT_RELOCS, false); |
| } |
| |
| // Add an entry to the PLT for a symbol referenced by r_type relocation. |
| void |
| add_entry(Mips_symbol<size>* gsym, unsigned int r_type); |
| |
| // Return the .rel.plt section data. |
| Reloc_section* |
| rel_plt() const |
| { return this->rel_; } |
| |
| // Return the number of PLT entries. |
| unsigned int |
| entry_count() const |
| { return this->symbols_.size(); } |
| |
| // Return the offset of the first non-reserved PLT entry. |
| unsigned int |
| first_plt_entry_offset() const |
| { return sizeof(plt0_entry_o32); } |
| |
| // Return the size of a PLT entry. |
| unsigned int |
| plt_entry_size() const |
| { return sizeof(plt_entry); } |
| |
| // Set final PLT offsets. For each symbol, determine whether standard or |
| // compressed (MIPS16 or microMIPS) PLT entry is used. |
| void |
| set_plt_offsets(); |
| |
| // Return the offset of the first standard PLT entry. |
| unsigned int |
| first_mips_plt_offset() const |
| { return this->plt_header_size_; } |
| |
| // Return the offset of the first compressed PLT entry. |
| unsigned int |
| first_comp_plt_offset() const |
| { return this->plt_header_size_ + this->plt_mips_offset_; } |
| |
| // Return whether there are any standard PLT entries. |
| bool |
| has_standard_entries() const |
| { return this->plt_mips_offset_ > 0; } |
| |
| // Return the output address of standard PLT entry. |
| Mips_address |
| mips_entry_address(const Mips_symbol<size>* sym) const |
| { |
| gold_assert (sym->has_mips_plt_offset()); |
| return (this->address() + this->first_mips_plt_offset() |
| + sym->mips_plt_offset()); |
| } |
| |
| // Return the output address of compressed (MIPS16 or microMIPS) PLT entry. |
| Mips_address |
| comp_entry_address(const Mips_symbol<size>* sym) const |
| { |
| gold_assert (sym->has_comp_plt_offset()); |
| return (this->address() + this->first_comp_plt_offset() |
| + sym->comp_plt_offset()); |
| } |
| |
| protected: |
| void |
| do_adjust_output_section(Output_section* os) |
| { os->set_entsize(0); } |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _(".plt")); } |
| |
| private: |
| // Template for the first PLT entry. |
| static const uint32_t plt0_entry_o32[]; |
| static const uint32_t plt0_entry_n32[]; |
| static const uint32_t plt0_entry_n64[]; |
| static const uint32_t plt0_entry_micromips_o32[]; |
| static const uint32_t plt0_entry_micromips32_o32[]; |
| |
| // Template for subsequent PLT entries. |
| static const uint32_t plt_entry[]; |
| static const uint32_t plt_entry_r6[]; |
| static const uint32_t plt_entry_mips16_o32[]; |
| static const uint32_t plt_entry_micromips_o32[]; |
| static const uint32_t plt_entry_micromips32_o32[]; |
| |
| // Set the final size. |
| void |
| set_final_data_size() |
| { |
| this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_ |
| + this->plt_comp_offset_); |
| } |
| |
| // Write out the PLT data. |
| void |
| do_write(Output_file*); |
| |
| // Return whether the plt header contains microMIPS code. For the sake of |
| // cache alignment always use a standard header whenever any standard entries |
| // are present even if microMIPS entries are present as well. This also lets |
| // the microMIPS header rely on the value of $v0 only set by microMIPS |
| // entries, for a small size reduction. |
| bool |
| is_plt_header_compressed() const |
| { |
| gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0); |
| return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0; |
| } |
| |
| // Return the size of the PLT header. |
| unsigned int |
| get_plt_header_size() const |
| { |
| if (this->target_->is_output_n64()) |
| return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]); |
| else if (this->target_->is_output_n32()) |
| return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]); |
| else if (!this->is_plt_header_compressed()) |
| return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]); |
| else if (this->target_->use_32bit_micromips_instructions()) |
| return (2 * sizeof(plt0_entry_micromips32_o32) |
| / sizeof(plt0_entry_micromips32_o32[0])); |
| else |
| return (2 * sizeof(plt0_entry_micromips_o32) |
| / sizeof(plt0_entry_micromips_o32[0])); |
| } |
| |
| // Return the PLT header entry. |
| const uint32_t* |
| get_plt_header_entry() const |
| { |
| if (this->target_->is_output_n64()) |
| return plt0_entry_n64; |
| else if (this->target_->is_output_n32()) |
| return plt0_entry_n32; |
| else if (!this->is_plt_header_compressed()) |
| return plt0_entry_o32; |
| else if (this->target_->use_32bit_micromips_instructions()) |
| return plt0_entry_micromips32_o32; |
| else |
| return plt0_entry_micromips_o32; |
| } |
| |
| // Return the size of the standard PLT entry. |
| unsigned int |
| standard_plt_entry_size() const |
| { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); } |
| |
| // Return the size of the compressed PLT entry. |
| unsigned int |
| compressed_plt_entry_size() const |
| { |
| gold_assert(!this->target_->is_output_newabi()); |
| |
| if (!this->target_->is_output_micromips()) |
| return (2 * sizeof(plt_entry_mips16_o32) |
| / sizeof(plt_entry_mips16_o32[0])); |
| else if (this->target_->use_32bit_micromips_instructions()) |
| return (2 * sizeof(plt_entry_micromips32_o32) |
| / sizeof(plt_entry_micromips32_o32[0])); |
| else |
| return (2 * sizeof(plt_entry_micromips_o32) |
| / sizeof(plt_entry_micromips_o32[0])); |
| } |
| |
| // The reloc section. |
| Reloc_section* rel_; |
| // The .got.plt section. |
| Output_data_space* got_plt_; |
| // Symbols that have PLT entry. |
| std::vector<Mips_symbol<size>*> symbols_; |
| // The offset of the next standard PLT entry to create. |
| unsigned int plt_mips_offset_; |
| // The offset of the next compressed PLT entry to create. |
| unsigned int plt_comp_offset_; |
| // The size of the PLT header in bytes. |
| unsigned int plt_header_size_; |
| // The target. |
| Target_mips<size, big_endian>* target_; |
| }; |
| |
| // A class to handle the .MIPS.stubs data. |
| |
| template<int size, bool big_endian> |
| class Mips_output_data_mips_stubs : public Output_section_data |
| { |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address; |
| |
| // Unordered set of .MIPS.stubs entries. |
| typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> > |
| Mips_stubs_entry_set; |
| |
| public: |
| Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target) |
| : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U), |
| stub_offsets_are_set_(false), target_(target) |
| { } |
| |
| // Create entry for a symbol. |
| void |
| make_entry(Mips_symbol<size>*); |
| |
| // Remove entry for a symbol. |
| void |
| remove_entry(Mips_symbol<size>* gsym); |
| |
| // Set stub offsets for symbols. This method expects that the number of |
| // entries in dynamic symbol table is set. |
| void |
| set_lazy_stub_offsets(); |
| |
| void |
| set_needs_dynsym_value(); |
| |
| // Set the number of entries in dynamic symbol table. |
| void |
| set_dynsym_count(unsigned int dynsym_count) |
| { this->dynsym_count_ = dynsym_count; } |
| |
| // Return maximum size of the stub, ie. the stub size if the dynamic symbol |
| // count is greater than 0x10000. If the dynamic symbol count is less than |
| // 0x10000, the stub will be 4 bytes smaller. |
| // There's no disadvantage from using microMIPS code here, so for the sake of |
| // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in |
| // output produced at all. This has a benefit of stubs being shorter by |
| // 4 bytes each too, unless in the insn32 mode. |
| unsigned int |
| stub_max_size() const |
| { |
| if (!this->target_->is_output_micromips() |
| || this->target_->use_32bit_micromips_instructions()) |
| return 20; |
| else |
| return 16; |
| } |
| |
| // Return the size of the stub. This method expects that the final dynsym |
| // count is set. |
| unsigned int |
| stub_size() const |
| { |
| gold_assert(this->dynsym_count_ != -1U); |
| if (this->dynsym_count_ > 0x10000) |
| return this->stub_max_size(); |
| else |
| return this->stub_max_size() - 4; |
| } |
| |
| // Return output address of a stub. |
| Mips_address |
| stub_address(const Mips_symbol<size>* sym) const |
| { |
| gold_assert(sym->has_lazy_stub()); |
| return this->address() + sym->lazy_stub_offset(); |
| } |
| |
| protected: |
| void |
| do_adjust_output_section(Output_section* os) |
| { os->set_entsize(0); } |
| |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _(".MIPS.stubs")); } |
| |
| private: |
| static const uint32_t lazy_stub_normal_1[]; |
| static const uint32_t lazy_stub_normal_1_n64[]; |
| static const uint32_t lazy_stub_normal_2[]; |
| static const uint32_t lazy_stub_normal_2_n64[]; |
| static const uint32_t lazy_stub_big[]; |
| static const uint32_t lazy_stub_big_n64[]; |
| |
| static const uint32_t lazy_stub_micromips_normal_1[]; |
| static const uint32_t lazy_stub_micromips_normal_1_n64[]; |
| static const uint32_t lazy_stub_micromips_normal_2[]; |
| static const uint32_t lazy_stub_micromips_normal_2_n64[]; |
| static const uint32_t lazy_stub_micromips_big[]; |
| static const uint32_t lazy_stub_micromips_big_n64[]; |
| |
| static const uint32_t lazy_stub_micromips32_normal_1[]; |
| static const uint32_t lazy_stub_micromips32_normal_1_n64[]; |
| static const uint32_t lazy_stub_micromips32_normal_2[]; |
| static const uint32_t lazy_stub_micromips32_normal_2_n64[]; |
| static const uint32_t lazy_stub_micromips32_big[]; |
| static const uint32_t lazy_stub_micromips32_big_n64[]; |
| |
| // Set the final size. |
| void |
| set_final_data_size() |
| { this->set_data_size(this->symbols_.size() * this->stub_max_size()); } |
| |
| // Write out the .MIPS.stubs data. |
| void |
| do_write(Output_file*); |
| |
| // .MIPS.stubs symbols |
| Mips_stubs_entry_set symbols_; |
| // Number of entries in dynamic symbol table. |
| unsigned int dynsym_count_; |
| // Whether the stub offsets are set. |
| bool stub_offsets_are_set_; |
| // The target. |
| Target_mips<size, big_endian>* target_; |
| }; |
| |
| // This class handles Mips .reginfo output section. |
| |
| template<int size, bool big_endian> |
| class Mips_output_section_reginfo : public Output_section_data |
| { |
| typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype; |
| |
| public: |
| Mips_output_section_reginfo(Target_mips<size, big_endian>* target, |
| Valtype gprmask, Valtype cprmask1, |
| Valtype cprmask2, Valtype cprmask3, |
| Valtype cprmask4) |
| : Output_section_data(24, 4, true), target_(target), |
| gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2), |
| cprmask3_(cprmask3), cprmask4_(cprmask4) |
| { } |
| |
| protected: |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _(".reginfo")); } |
| |
| // Write out reginfo section. |
| void |
| do_write(Output_file* of); |
| |
| private: |
| Target_mips<size, big_endian>* target_; |
| |
| // gprmask of the output .reginfo section. |
| Valtype gprmask_; |
| // cprmask1 of the output .reginfo section. |
| Valtype cprmask1_; |
| // cprmask2 of the output .reginfo section. |
| Valtype cprmask2_; |
| // cprmask3 of the output .reginfo section. |
| Valtype cprmask3_; |
| // cprmask4 of the output .reginfo section. |
| Valtype cprmask4_; |
| }; |
| |
| // This class handles .MIPS.options output section. |
| |
| template<int size, bool big_endian> |
| class Mips_output_section_options : public Output_section |
| { |
| public: |
| Mips_output_section_options(const char* name, elfcpp::Elf_Word type, |
| elfcpp::Elf_Xword flags, |
| Target_mips<size, big_endian>* target) |
| : Output_section(name, type, flags), target_(target) |
| { |
| // After the input sections are written, we only need to update |
| // ri_gp_value field of ODK_REGINFO entries. |
| this->set_after_input_sections(); |
| } |
| |
| protected: |
| // Write out option section. |
| void |
| do_write(Output_file* of); |
| |
| private: |
| Target_mips<size, big_endian>* target_; |
| }; |
| |
| // This class handles .MIPS.abiflags output section. |
| |
| template<int size, bool big_endian> |
| class Mips_output_section_abiflags : public Output_section_data |
| { |
| public: |
| Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags) |
| : Output_section_data(24, 8, true), abiflags_(abiflags) |
| { } |
| |
| protected: |
| // Write to a map file. |
| void |
| do_print_to_mapfile(Mapfile* mapfile) const |
| { mapfile->print_output_data(this, _(".MIPS.abiflags")); } |
| |
| void |
| do_write(Output_file* of); |
| |
| private: |
| const Mips_abiflags<big_endian>& abiflags_; |
| }; |
| |
| // The MIPS target has relocation types which default handling of relocatable |
| // relocation cannot process. So we have to extend the default code. |
| |
| template<bool big_endian, typename Classify_reloc> |
| class Mips_scan_relocatable_relocs : |
| public Default_scan_relocatable_relocs<Classify_reloc> |
| { |
| public: |
| // Return the strategy to use for a local symbol which is a section |
| // symbol, given the relocation type. |
| inline Relocatable_relocs::Reloc_strategy |
| local_section_strategy(unsigned int r_type, Relobj* object) |
| { |
| if (Classify_reloc::sh_type == elfcpp::SHT_RELA) |
| return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA; |
| else |
| { |
| switch (r_type) |
| { |
| case elfcpp::R_MIPS_26: |
| return Relocatable_relocs::RELOC_SPECIAL; |
| |
| default: |
| return Default_scan_relocatable_relocs<Classify_reloc>:: |
| local_section_strategy(r_type, object); |
| } |
| } |
| } |
| }; |
| |
| // Mips_copy_relocs class. The only difference from the base class is the |
| // method emit_mips, which should be called instead of Copy_reloc_entry::emit. |
| // Mips cannot convert all relocation types to dynamic relocs. If a reloc |
| // cannot be made dynamic, a COPY reloc is emitted. |
| |
| template<int sh_type, int size, bool big_endian> |
| class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian> |
| { |
| public: |
| Mips_copy_relocs() |
| : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY) |
| { } |
| |
| // Emit any saved relocations which turn out to be needed. This is |
| // called after all the relocs have been scanned. |
| void |
| emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*, |
| Symbol_table*, Layout*, Target_mips<size, big_endian>*); |
| |
| private: |
| typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry |
| Copy_reloc_entry; |
| |
| // Emit this reloc if appropriate. This is called after we have |
| // scanned all the relocations, so we know whether we emitted a |
| // COPY relocation for SYM_. |
| void |
| emit_entry(Copy_reloc_entry& entry, |
| Output_data_reloc<sh_type, true, size, big_endian>* reloc_section, |
| Symbol_table* symtab, Layout* layout, |
| Target_mips<size, big_endian>* target); |
| }; |
| |
| |
| // Return true if the symbol SYM should be considered to resolve local |
| // to the current module, and false otherwise. The logic is taken from |
| // GNU ld's method _bfd_elf_symbol_refs_local_p. |
| static bool |
| symbol_refs_local(const Symbol* sym, bool has_dynsym_entry, |
| bool local_protected) |
| { |
| // If it's a local sym, of course we resolve locally. |
| if (sym == NULL) |
| return true; |
| |
| // STV_HIDDEN or STV_INTERNAL ones must be local. |
| if (sym->visibility() == elfcpp::STV_HIDDEN |
| || sym->visibility() == elfcpp::STV_INTERNAL) |
| return true; |
| |
| // If we don't have a definition in a regular file, then we can't |
| // resolve locally. The sym is either undefined or dynamic. |
| if (sym->is_from_dynobj() || sym->is_undefined()) |
| return false; |
| |
| // Forced local symbols resolve locally. |
| if (sym->is_forced_local()) |
| return true; |
| |
| // As do non-dynamic symbols. |
| if (!has_dynsym_entry) |
| return true; |
| |
| // At this point, we know the symbol is defined and dynamic. In an |
| // executable it must resolve locally, likewise when building symbolic |
| // shared libraries. |
| if (parameters->options().output_is_executable() |
| || parameters->options().Bsymbolic()) |
| return true; |
| |
| // Now deal with defined dynamic symbols in shared libraries. Ones |
| // with default visibility might not resolve locally. |
| if (sym->visibility() == elfcpp::STV_DEFAULT) |
| return false; |
| |
| // STV_PROTECTED non-function symbols are local. |
| if (sym->type() != elfcpp::STT_FUNC) |
| return true; |
| |
| // Function pointer equality tests may require that STV_PROTECTED |
| // symbols be treated as dynamic symbols. If the address of a |
| // function not defined in an executable is set to that function's |
| // plt entry in the executable, then the address of the function in |
| // a shared library must also be the plt entry in the executable. |
| return local_protected; |
| } |
| |
| // Return TRUE if references to this symbol always reference the symbol in this |
| // object. |
| static bool |
| symbol_references_local(const Symbol* sym, bool has_dynsym_entry) |
| { |
| return symbol_refs_local(sym, has_dynsym_entry, false); |
| } |
| |
| // Return TRUE if calls to this symbol always call the version in this object. |
| static bool |
| symbol_calls_local(const Symbol* sym, bool has_dynsym_entry) |
| { |
| return symbol_refs_local(sym, has_dynsym_entry, true); |
| } |
| |
| // Compare GOT offsets of two symbols. |
| |
| template<int size, bool big_endian> |
| static bool |
| got_offset_compare(Symbol* sym1, Symbol* sym2) |
| { |
| Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1); |
| Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2); |
| unsigned int area1 = mips_sym1->global_got_area(); |
| unsigned int area2 = mips_sym2->global_got_area(); |
| gold_assert(area1 != GGA_NONE && area1 != GGA_NONE); |
| |
| // GGA_NORMAL entries always come before GGA_RELOC_ONLY. |
| if (area1 != area2) |
| return area1 < area2; |
| |
| return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset(); |
| } |
| |
| // This method divides dynamic symbols into symbols that have GOT entry, and |
| // symbols that don't have GOT entry. It also sorts symbols with the GOT entry. |
| // Mips ABI requires that symbols with the GOT entry must be at the end of |
| // dynamic symbol table, and the order in dynamic symbol table must match the |
| // order in GOT. |
| |
| template<int size, bool big_endian> |
| static void |
| reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols, |
| std::vector<Symbol*>* non_got_symbols, |
| std::vector<Symbol*>* got_symbols) |
| { |
| for (std::vector<Symbol*>::iterator p = dyn_symbols->begin(); |
| p != dyn_symbols->end(); |
| ++p) |
| { |
| Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p); |
| if (mips_sym->global_got_area() == GGA_NORMAL |
| || mips_sym->global_got_area() == GGA_RELOC_ONLY) |
| got_symbols->push_back(mips_sym); |
| else |
| non_got_symbols->push_back(mips_sym); |
| } |
| |
| std::sort(got_symbols->begin(), got_symbols->end(), |
| got_offset_compare<size, big_endian>); |
| } |
| |
| // Functor class for processing the global symbol table. |
| |
| template<int size, bool big_endian> |
| class Symbol_visitor_check_symbols |
| { |
| public: |
| Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target, |
| Layout* layout, Symbol_table* symtab) |
| : target_(target), layout_(layout), symtab_(symtab) |
| { } |
| |
| void |
| operator()(Sized_symbol<size>* sym) |
| { |
| Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym); |
| if (local_pic_function<size, big_endian>(mips_sym)) |
| { |
| // SYM is a function that might need $25 to be valid on entry. |
| // If we're creating a non-PIC relocatable object, mark SYM as |
| // being PIC. If we're creating a non-relocatable object with |
| // non-PIC branches and jumps to SYM, make sure that SYM has an la25 |
| // stub. |
| if (parameters->options().relocatable()) |
| { |
| if (!parameters->options().output_is_position_independent()) |
| mips_sym->set_pic(); |
| } |
| else if (mips_sym->has_nonpic_branches()) |
| { |
| this->target_->la25_stub_section(layout_) |
| ->create_la25_stub(this->symtab_, this->target_, mips_sym); |
| } |
| } |
| } |
| |
| private: |
| Target_mips<size, big_endian>* target_; |
| Layout* layout_; |
| Symbol_table* symtab_; |
| }; |
| |
| // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size, |
| // and endianness. The relocation format for MIPS-64 is non-standard. |
| |
| template<int sh_type, int size, bool big_endian> |
| struct Mips_reloc_types; |
| |
| template<bool big_endian> |
| struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian> |
| { |
| typedef typename elfcpp::Rel<32, big_endian> Reloc; |
| typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write; |
| |
| static typename elfcpp::Elf_types<32>::Elf_Swxword |
| get_r_addend(const Reloc*) |
| { return 0; } |
| |
| static inline void |
| set_reloc_addend(Reloc_write*, |
| typename elfcpp::Elf_types<32>::Elf_Swxword) |
| { gold_unreachable(); } |
| }; |
| |
| template<bool big_endian> |
| struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian> |
| { |
| typedef typename elfcpp::Rela<32, big_endian> Reloc; |
| typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write; |
| |
| static typename elfcpp::Elf_types<32>::Elf_Swxword |
| get_r_addend(const Reloc* reloc) |
| { return reloc->get_r_addend(); } |
| |
| static inline void |
| set_reloc_addend(Reloc_write* p, |
| typename elfcpp::Elf_types<32>::Elf_Swxword val) |
| { p->put_r_addend(val); } |
| }; |
| |
| template<bool big_endian> |
| struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian> |
| { |
| typedef typename elfcpp::Mips64_rel<big_endian> Reloc; |
| typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write; |
| |
| static typename elfcpp::Elf_types<64>::Elf_Swxword |
| get_r_addend(const Reloc*) |
| { return 0; } |
| |
| static inline void |
| set_reloc_addend(Reloc_write*, |
| typename elfcpp::Elf_types<64>::Elf_Swxword) |
| { gold_unreachable(); } |
| }; |
| |
| template<bool big_endian> |
| struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian> |
| { |
| typedef typename elfcpp::Mips64_rela<big_endian> Reloc; |
| typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write; |
| |
| static typename elfcpp::Elf_types<64>::Elf_Swxword |
| get_r_addend(const Reloc* reloc) |
| { return reloc->get_r_addend(); } |
| |
| static inline void |
| set_reloc_addend(Reloc_write* p, |
| typename elfcpp::Elf_types<64>::Elf_Swxword val) |
| { p->put_r_addend(val); } |
| }; |
| |
| // Forward declaration. |
| static unsigned int |
| mips_get_size_for_reloc(unsigned int, Relobj*); |
| |
| // A class for inquiring about properties of a relocation, |
| // used while scanning relocs during a relocatable link and |
| // garbage collection. |
| |
| template<int sh_type_, int size, bool big_endian> |
| class Mips_classify_reloc; |
| |
| template<int sh_type_, bool big_endian> |
| class Mips_classify_reloc<sh_type_, 32, big_endian> : |
| public gold::Default_classify_reloc<sh_type_, 32, big_endian> |
| { |
| public: |
| typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc |
| Reltype; |
| typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write |
| Reltype_write; |
| |
| // Return the symbol referred to by the relocation. |
| static inline unsigned int |
| get_r_sym(const Reltype* reloc) |
| { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); } |
| |
| // Return the type of the relocation. |
| static inline unsigned int |
| get_r_type(const Reltype* reloc) |
| { return elfcpp::elf_r_type<32>(reloc->get_r_info()); } |
| |
| static inline unsigned int |
| get_r_type2(const Reltype*) |
| { return 0; } |
| |
| static inline unsigned int |
| get_r_type3(const Reltype*) |
| { return 0; } |
| |
| static inline unsigned int |
| get_r_ssym(const Reltype*) |
| { return 0; } |
| |
| // Return the explicit addend of the relocation (return 0 for SHT_REL). |
| static inline unsigned int |
| get_r_addend(const Reltype* reloc) |
| { |
| if (sh_type_ == elfcpp::SHT_REL) |
| return 0; |
| return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc); |
| } |
| |
| // Write the r_info field to a new reloc, using the r_info field from |
| // the original reloc, replacing the r_sym field with R_SYM. |
| static inline void |
| put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym) |
| { |
| unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info()); |
| new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type)); |
| } |
| |
| // Write the r_addend field to a new reloc. |
| static inline void |
| put_r_addend(Reltype_write* to, |
| typename elfcpp::Elf_types<32>::Elf_Swxword addend) |
| { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); } |
| |
| // Return the size of the addend of the relocation (only used for SHT_REL). |
| static unsigned int |
| get_size_for_reloc(unsigned int r_type, Relobj* obj) |
| { return mips_get_size_for_reloc(r_type, obj); } |
| }; |
| |
| template<int sh_type_, bool big_endian> |
| class Mips_classify_reloc<sh_type_, 64, big_endian> : |
| public gold::Default_classify_reloc<sh_type_, 64, big_endian> |
| { |
| public: |
| typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc |
| Reltype; |
| typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write |
| Reltype_write; |
| |
| // Return the symbol referred to by the relocation. |
| static inline unsigned int |
| get_r_sym(const Reltype* reloc) |
| { return reloc->get_r_sym(); } |
| |
| // Return the r_type of the relocation. |
| static inline unsigned int |
| get_r_type(const Reltype* reloc) |
| { return reloc->get_r_type(); } |
| |
| // Return the r_type2 of the relocation. |
| static inline unsigned int |
| get_r_type2(const Reltype* reloc) |
| { return reloc->get_r_type2(); } |
| |
| // Return the r_type3 of the relocation. |
| static inline unsigned int |
| get_r_type3(const Reltype* reloc) |
| { return reloc->get_r_type3(); } |
| |
| // Return the special symbol of the relocation. |
| static inline unsigned int |
| get_r_ssym(const Reltype* reloc) |
| { return reloc->get_r_ssym(); } |
| |
| // Return the explicit addend of the relocation (return 0 for SHT_REL). |
| static inline typename elfcpp::Elf_types<64>::Elf_Swxword |
| get_r_addend(const Reltype* reloc) |
| { |
| if (sh_type_ == elfcpp::SHT_REL) |
| return 0; |
| return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc); |
| } |
| |
| // Write the r_info field to a new reloc, using the r_info field from |
| // the original reloc, replacing the r_sym field with R_SYM. |
| static inline void |
| put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym) |
| { |
| new_reloc->put_r_sym(r_sym); |
| new_reloc->put_r_ssym(reloc->get_r_ssym()); |
| new_reloc->put_r_type3(reloc->get_r_type3()); |
| new_reloc->put_r_type2(reloc->get_r_type2()); |
| new_reloc->put_r_type(reloc->get_r_type()); |
| } |
| |
| // Write the r_addend field to a new reloc. |
| static inline void |
| put_r_addend(Reltype_write* to, |
| typename elfcpp::Elf_types<64>::Elf_Swxword addend) |
| { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); } |
| |
| // Return the size of the addend of the relocation (only used for SHT_REL). |
| static unsigned int |
| get_size_for_reloc(unsigned int r_type, Relobj* obj) |
| { return mips_get_size_for_reloc(r_type, obj); } |
| }; |
| |
| template<int size, bool big_endian> |
| class Target_mips : public Sized_target<size, big_endian> |
| { |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address; |
| typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> |
| Reloc_section; |
| typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32; |
| typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype; |
| typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc |
| Reltype; |
| typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc |
| Relatype; |
| |
| public: |
| Target_mips(const Target::Target_info* info = &mips_info) |
| : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL), |
| got_plt_(NULL), rel_dyn_(NULL), rld_map_(NULL), copy_relocs_(), |
| dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(), |
| mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL), |
| mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false), |
| entry_symbol_is_compressed_(false), insn32_(false) |
| { |
| this->add_machine_extensions(); |
| } |
| |
| // The offset of $gp from the beginning of the .got section. |
| static const unsigned int MIPS_GP_OFFSET = 0x7ff0; |
| |
| // The maximum size of the GOT for it to be addressable using 16-bit |
| // offsets from $gp. |
| static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff; |
| |
| // Make a new symbol table entry for the Mips target. |
| Sized_symbol<size>* |
| make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t) |
| { return new Mips_symbol<size>(); } |
| |
| // Process the relocations to determine unreferenced sections for |
| // garbage collection. |
| void |
| gc_process_relocs(Symbol_table* symtab, |
| Layout* layout, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| bool needs_special_offset_handling, |
| size_t local_symbol_count, |
| const unsigned char* plocal_symbols); |
| |
| // Scan the relocations to look for symbol adjustments. |
| void |
| scan_relocs(Symbol_table* symtab, |
| Layout* layout, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| bool needs_special_offset_handling, |
| size_t local_symbol_count, |
| const unsigned char* plocal_symbols); |
| |
| // Finalize the sections. |
| void |
| do_finalize_sections(Layout*, const Input_objects*, Symbol_table*); |
| |
| // Relocate a section. |
| void |
| relocate_section(const Relocate_info<size, big_endian>*, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| bool needs_special_offset_handling, |
| unsigned char* view, |
| Mips_address view_address, |
| section_size_type view_size, |
| const Reloc_symbol_changes*); |
| |
| // Scan the relocs during a relocatable link. |
| void |
| scan_relocatable_relocs(Symbol_table* symtab, |
| Layout* layout, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| bool needs_special_offset_handling, |
| size_t local_symbol_count, |
| const unsigned char* plocal_symbols, |
| Relocatable_relocs*); |
| |
| // Scan the relocs for --emit-relocs. |
| void |
| emit_relocs_scan(Symbol_table* symtab, |
| Layout* layout, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| bool needs_special_offset_handling, |
| size_t local_symbol_count, |
| const unsigned char* plocal_syms, |
| Relocatable_relocs* rr); |
| |
| // Emit relocations for a section. |
| void |
| relocate_relocs(const Relocate_info<size, big_endian>*, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| typename elfcpp::Elf_types<size>::Elf_Off |
| offset_in_output_section, |
| unsigned char* view, |
| Mips_address view_address, |
| section_size_type view_size, |
| unsigned char* reloc_view, |
| section_size_type reloc_view_size); |
| |
| // Perform target-specific processing in a relocatable link. This is |
| // only used if we use the relocation strategy RELOC_SPECIAL. |
| void |
| relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo, |
| unsigned int sh_type, |
| const unsigned char* preloc_in, |
| size_t relnum, |
| Output_section* output_section, |
| typename elfcpp::Elf_types<size>::Elf_Off |
| offset_in_output_section, |
| unsigned char* view, |
| Mips_address view_address, |
| section_size_type view_size, |
| unsigned char* preloc_out); |
| |
| // Return whether SYM is defined by the ABI. |
| bool |
| do_is_defined_by_abi(const Symbol* sym) const |
| { |
| return ((strcmp(sym->name(), "__gnu_local_gp") == 0) |
| || (strcmp(sym->name(), "_gp_disp") == 0) |
| || (strcmp(sym->name(), "___tls_get_addr") == 0)); |
| } |
| |
| // Return the number of entries in the GOT. |
| unsigned int |
| got_entry_count() const |
| { |
| if (!this->has_got_section()) |
| return 0; |
| return this->got_size() / (size/8); |
| } |
| |
| // Return the number of entries in the PLT. |
| unsigned int |
| plt_entry_count() const |
| { |
| if (this->plt_ == NULL) |
| return 0; |
| return this->plt_->entry_count(); |
| } |
| |
| // Return the offset of the first non-reserved PLT entry. |
| unsigned int |
| first_plt_entry_offset() const |
| { return this->plt_->first_plt_entry_offset(); } |
| |
| // Return the size of each PLT entry. |
| unsigned int |
| plt_entry_size() const |
| { return this->plt_->plt_entry_size(); } |
| |
| // Get the GOT section, creating it if necessary. |
| Mips_output_data_got<size, big_endian>* |
| got_section(Symbol_table*, Layout*); |
| |
| // Get the GOT section. |
| Mips_output_data_got<size, big_endian>* |
| got_section() const |
| { |
| gold_assert(this->got_ != NULL); |
| return this->got_; |
| } |
| |
| // Get the .MIPS.stubs section, creating it if necessary. |
| Mips_output_data_mips_stubs<size, big_endian>* |
| mips_stubs_section(Layout* layout); |
| |
| // Get the .MIPS.stubs section. |
| Mips_output_data_mips_stubs<size, big_endian>* |
| mips_stubs_section() const |
| { |
| gold_assert(this->mips_stubs_ != NULL); |
| return this->mips_stubs_; |
| } |
| |
| // Get the LA25 stub section, creating it if necessary. |
| Mips_output_data_la25_stub<size, big_endian>* |
| la25_stub_section(Layout*); |
| |
| // Get the LA25 stub section. |
| Mips_output_data_la25_stub<size, big_endian>* |
| la25_stub_section() |
| { |
| gold_assert(this->la25_stub_ != NULL); |
| return this->la25_stub_; |
| } |
| |
| // Get gp value. It has the value of .got + 0x7FF0. |
| Mips_address |
| gp_value() const |
| { |
| if (this->gp_ != NULL) |
| return this->gp_->value(); |
| return 0; |
| } |
| |
| // Get gp value. It has the value of .got + 0x7FF0. Adjust it for |
| // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned. |
| Mips_address |
| adjusted_gp_value(const Mips_relobj<size, big_endian>* object) |
| { |
| if (this->gp_ == NULL) |
| return 0; |
| |
| bool multi_got = false; |
| if (this->has_got_section()) |
| multi_got = this->got_section()->multi_got(); |
| if (!multi_got) |
| return this->gp_->value(); |
| else |
| return this->gp_->value() + this->got_section()->get_got_offset(object); |
| } |
| |
| // Get the dynamic reloc section, creating it if necessary. |
| Reloc_section* |
| rel_dyn_section(Layout*); |
| |
| bool |
| do_has_custom_set_dynsym_indexes() const |
| { return true; } |
| |
| // Don't emit input .reginfo/.MIPS.abiflags sections to |
| // output .reginfo/.MIPS.abiflags. |
| bool |
| do_should_include_section(elfcpp::Elf_Word sh_type) const |
| { |
| return ((sh_type != elfcpp::SHT_MIPS_REGINFO) |
| && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS)); |
| } |
| |
| // Set the dynamic symbol indexes. INDEX is the index of the first |
| // global dynamic symbol. Pointers to the symbols are stored into the |
| // vector SYMS. The names are added to DYNPOOL. This returns an |
| // updated dynamic symbol index. |
| unsigned int |
| do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index, |
| std::vector<Symbol*>* syms, Stringpool* dynpool, |
| Versions* versions, Symbol_table* symtab) const; |
| |
| // Remove .MIPS.stubs entry for a symbol. |
| void |
| remove_lazy_stub_entry(Mips_symbol<size>* sym) |
| { |
| if (this->mips_stubs_ != NULL) |
| this->mips_stubs_->remove_entry(sym); |
| } |
| |
| // The value to write into got[1] for SVR4 targets, to identify it is |
| // a GNU object. The dynamic linker can then use got[1] to store the |
| // module pointer. |
| uint64_t |
| mips_elf_gnu_got1_mask() |
| { |
| if (this->is_output_n64()) |
| return (uint64_t)1 << 63; |
| else |
| return 1 << 31; |
| } |
| |
| // Whether the output has microMIPS code. This is valid only after |
| // merge_obj_e_flags() is called. |
| bool |
| is_output_micromips() const |
| { |
| gold_assert(this->are_processor_specific_flags_set()); |
| return elfcpp::is_micromips(this->processor_specific_flags()); |
| } |
| |
| // Whether the output uses N32 ABI. This is valid only after |
| // merge_obj_e_flags() is called. |
| bool |
| is_output_n32() const |
| { |
| gold_assert(this->are_processor_specific_flags_set()); |
| return elfcpp::abi_n32(this->processor_specific_flags()); |
| } |
| |
| // Whether the output uses R6 ISA. This is valid only after |
| // merge_obj_e_flags() is called. |
| bool |
| is_output_r6() const |
| { |
| gold_assert(this->are_processor_specific_flags_set()); |
| return elfcpp::r6_isa(this->processor_specific_flags()); |
| } |
| |
| // Whether the output uses N64 ABI. |
| bool |
| is_output_n64() const |
| { return size == 64; } |
| |
| // Whether the output uses NEWABI. This is valid only after |
| // merge_obj_e_flags() is called. |
| bool |
| is_output_newabi() const |
| { return this->is_output_n32() || this->is_output_n64(); } |
| |
| // Whether we can only use 32-bit microMIPS instructions. |
| bool |
| use_32bit_micromips_instructions() const |
| { return this->insn32_; } |
| |
| // Return the r_sym field from a relocation. |
| unsigned int |
| get_r_sym(const unsigned char* preloc) const |
| { |
| // Since REL and RELA relocs share the same structure through |
| // the r_info field, we can just use REL here. |
| Reltype rel(preloc); |
| return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>:: |
| get_r_sym(&rel); |
| } |
| |
| protected: |
| // Return the value to use for a dynamic symbol which requires special |
| // treatment. This is how we support equality comparisons of function |
| // pointers across shared library boundaries, as described in the |
| // processor specific ABI supplement. |
| uint64_t |
| do_dynsym_value(const Symbol* gsym) const; |
| |
| // Make an ELF object. |
| Object* |
| do_make_elf_object(const std::string&, Input_file*, off_t, |
| const elfcpp::Ehdr<size, big_endian>& ehdr); |
| |
| Object* |
| do_make_elf_object(const std::string&, Input_file*, off_t, |
| const elfcpp::Ehdr<size, !big_endian>&) |
| { gold_unreachable(); } |
| |
| // Make an output section. |
| Output_section* |
| do_make_output_section(const char* name, elfcpp::Elf_Word type, |
| elfcpp::Elf_Xword flags) |
| { |
| if (type == elfcpp::SHT_MIPS_OPTIONS) |
| return new Mips_output_section_options<size, big_endian>(name, type, |
| flags, this); |
| else |
| return new Output_section(name, type, flags); |
| } |
| |
| // Adjust ELF file header. |
| void |
| do_adjust_elf_header(unsigned char* view, int len); |
| |
| // Get the custom dynamic tag value. |
| unsigned int |
| do_dynamic_tag_custom_value(elfcpp::DT) const; |
| |
| // Adjust the value written to the dynamic symbol table. |
| virtual void |
| do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const |
| { |
| elfcpp::Sym<size, big_endian> isym(view); |
| elfcpp::Sym_write<size, big_endian> osym(view); |
| const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym); |
| |
| // Keep dynamic compressed symbols odd. This allows the dynamic linker |
| // to treat compressed symbols like any other. |
| Mips_address value = isym.get_st_value(); |
| if (mips_sym->is_mips16() && value != 0) |
| { |
| if (!mips_sym->has_mips16_fn_stub()) |
| value |= 1; |
| else |
| { |
| // If we have a MIPS16 function with a stub, the dynamic symbol |
| // must refer to the stub, since only the stub uses the standard |
| // calling conventions. Stub contains MIPS32 code, so don't add +1 |
| // in this case. |
| |
| // There is a code which does this in the method |
| // Target_mips::do_dynsym_value, but that code will only be |
| // executed if the symbol is from dynobj. |
| // TODO(sasa): GNU ld also changes the value in non-dynamic symbol |
| // table. |
| |
| Mips16_stub_section<size, big_endian>* fn_stub = |
| mips_sym->template get_mips16_fn_stub<big_endian>(); |
| value = fn_stub->output_address(); |
| osym.put_st_size(fn_stub->section_size()); |
| } |
| |
| osym.put_st_value(value); |
| osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), |
| mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2))); |
| } |
| else if ((mips_sym->is_micromips() |
| // Stubs are always microMIPS if there is any microMIPS code in |
| // the output. |
| || (this->is_output_micromips() && mips_sym->has_lazy_stub())) |
| && value != 0) |
| { |
| osym.put_st_value(value | 1); |
| osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), |
| mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2))); |
| } |
| } |
| |
| private: |
| // The class which scans relocations. |
| class Scan |
| { |
| public: |
| Scan() |
| { } |
| |
| static inline int |
| get_reference_flags(unsigned int r_type); |
| |
| inline void |
| local(Symbol_table* symtab, Layout* layout, Target_mips* target, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| Output_section* output_section, |
| const Reltype& reloc, unsigned int r_type, |
| const elfcpp::Sym<size, big_endian>& lsym, |
| bool is_discarded); |
| |
| inline void |
| local(Symbol_table* symtab, Layout* layout, Target_mips* target, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| Output_section* output_section, |
| const Relatype& reloc, unsigned int r_type, |
| const elfcpp::Sym<size, big_endian>& lsym, |
| bool is_discarded); |
| |
| inline void |
| local(Symbol_table* symtab, Layout* layout, Target_mips* target, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| Output_section* output_section, |
| const Relatype* rela, |
| const Reltype* rel, |
| unsigned int rel_type, |
| unsigned int r_type, |
| const elfcpp::Sym<size, big_endian>& lsym, |
| bool is_discarded); |
| |
| inline void |
| global(Symbol_table* symtab, Layout* layout, Target_mips* target, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| Output_section* output_section, |
| const Reltype& reloc, unsigned int r_type, |
| Symbol* gsym); |
| |
| inline void |
| global(Symbol_table* symtab, Layout* layout, Target_mips* target, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| Output_section* output_section, |
| const Relatype& reloc, unsigned int r_type, |
| Symbol* gsym); |
| |
| inline void |
| global(Symbol_table* symtab, Layout* layout, Target_mips* target, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| Output_section* output_section, |
| const Relatype* rela, |
| const Reltype* rel, |
| unsigned int rel_type, |
| unsigned int r_type, |
| Symbol* gsym); |
| |
| inline bool |
| local_reloc_may_be_function_pointer(Symbol_table* , Layout*, |
| Target_mips*, |
| Sized_relobj_file<size, big_endian>*, |
| unsigned int, |
| Output_section*, |
| const Reltype&, |
| unsigned int, |
| const elfcpp::Sym<size, big_endian>&) |
| { return false; } |
| |
| inline bool |
| global_reloc_may_be_function_pointer(Symbol_table*, Layout*, |
| Target_mips*, |
| Sized_relobj_file<size, big_endian>*, |
| unsigned int, |
| Output_section*, |
| const Reltype&, |
| unsigned int, Symbol*) |
| { return false; } |
| |
| inline bool |
| local_reloc_may_be_function_pointer(Symbol_table*, Layout*, |
| Target_mips*, |
| Sized_relobj_file<size, big_endian>*, |
| unsigned int, |
| Output_section*, |
| const Relatype&, |
| unsigned int, |
| const elfcpp::Sym<size, big_endian>&) |
| { return false; } |
| |
| inline bool |
| global_reloc_may_be_function_pointer(Symbol_table*, Layout*, |
| Target_mips*, |
| Sized_relobj_file<size, big_endian>*, |
| unsigned int, |
| Output_section*, |
| const Relatype&, |
| unsigned int, Symbol*) |
| { return false; } |
| private: |
| static void |
| unsupported_reloc_local(Sized_relobj_file<size, big_endian>*, |
| unsigned int r_type); |
| |
| static void |
| unsupported_reloc_global(Sized_relobj_file<size, big_endian>*, |
| unsigned int r_type, Symbol*); |
| }; |
| |
| // The class which implements relocation. |
| class Relocate |
| { |
| public: |
| Relocate() |
| : calculated_value_(0), calculate_only_(false) |
| { } |
| |
| ~Relocate() |
| { } |
| |
| // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied. |
| inline bool |
| should_apply_static_reloc(const Mips_symbol<size>* gsym, |
| unsigned int r_type, |
| Output_section* output_section, |
| Target_mips* target); |
| |
| // Do a relocation. Return false if the caller should not issue |
| // any warnings about this relocation. |
| inline bool |
| relocate(const Relocate_info<size, big_endian>*, unsigned int, |
| Target_mips*, Output_section*, size_t, const unsigned char*, |
| const Sized_symbol<size>*, const Symbol_value<size>*, |
| unsigned char*, Mips_address, section_size_type); |
| |
| private: |
| // Result of the relocation. |
| Valtype calculated_value_; |
| // Whether we have to calculate relocation instead of applying it. |
| bool calculate_only_; |
| }; |
| |
| // This POD class holds the dynamic relocations that should be emitted instead |
| // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these |
| // relocations if it turns out that the symbol does not have static |
| // relocations. |
| class Dyn_reloc |
| { |
| public: |
| Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type, |
| Mips_relobj<size, big_endian>* relobj, unsigned int shndx, |
| Output_section* output_section, Mips_address r_offset) |
| : sym_(sym), r_type_(r_type), relobj_(relobj), |
| shndx_(shndx), output_section_(output_section), |
| r_offset_(r_offset) |
| { } |
| |
| // Emit this reloc if appropriate. This is called after we have |
| // scanned all the relocations, so we know whether the symbol has |
| // static relocations. |
| void |
| emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got, |
| Symbol_table* symtab) |
| { |
| if (!this->sym_->has_static_relocs()) |
| { |
| got->record_global_got_symbol(this->sym_, this->relobj_, |
| this->r_type_, true, false); |
| if (!symbol_references_local(this->sym_, |
| this->sym_->should_add_dynsym_entry(symtab))) |
| rel_dyn->add_global(this->sym_, this->r_type_, |
| this->output_section_, this->relobj_, |
| this->shndx_, this->r_offset_); |
| else |
| rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_, |
| this->output_section_, this->relobj_, |
| this->shndx_, this->r_offset_); |
| } |
| } |
| |
| private: |
| Mips_symbol<size>* sym_; |
| unsigned int r_type_; |
| Mips_relobj<size, big_endian>* relobj_; |
| unsigned int shndx_; |
| Output_section* output_section_; |
| Mips_address r_offset_; |
| }; |
| |
| // Adjust TLS relocation type based on the options and whether this |
| // is a local symbol. |
| static tls::Tls_optimization |
| optimize_tls_reloc(bool is_final, int r_type); |
| |
| // Return whether there is a GOT section. |
| bool |
| has_got_section() const |
| { return this->got_ != NULL; } |
| |
| // Check whether the given ELF header flags describe a 32-bit binary. |
| bool |
| mips_32bit_flags(elfcpp::Elf_Word); |
| |
| enum Mips_mach { |
| mach_mips3000 = 3000, |
| mach_mips3900 = 3900, |
| mach_mips4000 = 4000, |
| mach_mips4010 = 4010, |
| mach_mips4100 = 4100, |
| mach_mips4111 = 4111, |
| mach_mips4120 = 4120, |
| mach_mips4300 = 4300, |
| mach_mips4400 = 4400, |
| mach_mips4600 = 4600, |
| mach_mips4650 = 4650, |
| mach_mips5000 = 5000, |
| mach_mips5400 = 5400, |
| mach_mips5500 = 5500, |
| mach_mips5900 = 5900, |
| mach_mips6000 = 6000, |
| mach_mips7000 = 7000, |
| mach_mips8000 = 8000, |
| mach_mips9000 = 9000, |
| mach_mips10000 = 10000, |
| mach_mips12000 = 12000, |
| mach_mips14000 = 14000, |
| mach_mips16000 = 16000, |
| mach_mips16 = 16, |
| mach_mips5 = 5, |
| mach_mips_loongson_2e = 3001, |
| mach_mips_loongson_2f = 3002, |
| mach_mips_gs464 = 3003, |
| mach_mips_gs464e = 3004, |
| mach_mips_gs264e = 3005, |
| mach_mips_sb1 = 12310201, // octal 'SB', 01 |
| mach_mips_octeon = 6501, |
| mach_mips_octeonp = 6601, |
| mach_mips_octeon2 = 6502, |
| mach_mips_octeon3 = 6503, |
| mach_mips_xlr = 887682, // decimal 'XLR' |
| mach_mipsisa32 = 32, |
| mach_mipsisa32r2 = 33, |
| mach_mipsisa32r3 = 34, |
| mach_mipsisa32r5 = 36, |
| mach_mipsisa32r6 = 37, |
| mach_mipsisa64 = 64, |
| mach_mipsisa64r2 = 65, |
| mach_mipsisa64r3 = 66, |
| mach_mipsisa64r5 = 68, |
| mach_mipsisa64r6 = 69, |
| mach_mips_micromips = 96 |
| }; |
| |
| // Return the MACH for a MIPS e_flags value. |
| unsigned int |
| elf_mips_mach(elfcpp::Elf_Word); |
| |
| // Return the MACH for each .MIPS.abiflags ISA Extension. |
| unsigned int |
| mips_isa_ext_mach(unsigned int); |
| |
| // Return the .MIPS.abiflags value representing each ISA Extension. |
| unsigned int |
| mips_isa_ext(unsigned int); |
| |
| // Update the isa_level, isa_rev, isa_ext fields of abiflags. |
| void |
| update_abiflags_isa(const std::string&, elfcpp::Elf_Word, |
| Mips_abiflags<big_endian>*); |
| |
| // Infer the content of the ABI flags based on the elf header. |
| void |
| infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*); |
| |
| // Create abiflags from elf header or from .MIPS.abiflags section. |
| void |
| create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*); |
| |
| // Return the meaning of fp_abi, or "unknown" if not known. |
| const char* |
| fp_abi_string(int); |
| |
| // Select fp_abi. |
| int |
| select_fp_abi(const std::string&, int, int); |
| |
| // Merge attributes from input object. |
| void |
| merge_obj_attributes(const std::string&, const Attributes_section_data*); |
| |
| // Merge abiflags from input object. |
| void |
| merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*); |
| |
| // Check whether machine EXTENSION is an extension of machine BASE. |
| bool |
| mips_mach_extends(unsigned int, unsigned int); |
| |
| // Merge file header flags from input object. |
| void |
| merge_obj_e_flags(const std::string&, elfcpp::Elf_Word); |
| |
| // Encode ISA level and revision as a single value. |
| int |
| level_rev(unsigned char isa_level, unsigned char isa_rev) const |
| { return (isa_level << 3) | isa_rev; } |
| |
| // True if we are linking for CPUs that are faster if JAL is converted to BAL. |
| static inline bool |
| jal_to_bal() |
| { return false; } |
| |
| // True if we are linking for CPUs that are faster if JALR is converted to |
| // BAL. This should be safe for all architectures. We enable this predicate |
| // for all CPUs. |
| static inline bool |
| jalr_to_bal() |
| { return true; } |
| |
| // True if we are linking for CPUs that are faster if JR is converted to B. |
| // This should be safe for all architectures. We enable this predicate for |
| // all CPUs. |
| static inline bool |
| jr_to_b() |
| { return true; } |
| |
| // Return the size of the GOT section. |
| section_size_type |
| got_size() const |
| { |
| gold_assert(this->got_ != NULL); |
| return this->got_->data_size(); |
| } |
| |
| // Create a PLT entry for a global symbol referenced by r_type relocation. |
| void |
| make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*, |
| unsigned int r_type); |
| |
| // Get the PLT section. |
| Mips_output_data_plt<size, big_endian>* |
| plt_section() const |
| { |
| gold_assert(this->plt_ != NULL); |
| return this->plt_; |
| } |
| |
| // Get the GOT PLT section. |
| const Mips_output_data_plt<size, big_endian>* |
| got_plt_section() const |
| { |
| gold_assert(this->got_plt_ != NULL); |
| return this->got_plt_; |
| } |
| |
| // Copy a relocation against a global symbol. |
| void |
| copy_reloc(Symbol_table* symtab, Layout* layout, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int shndx, Output_section* output_section, |
| Symbol* sym, unsigned int r_type, Mips_address r_offset) |
| { |
| this->copy_relocs_.copy_reloc(symtab, layout, |
| symtab->get_sized_symbol<size>(sym), |
| object, shndx, output_section, |
| r_type, r_offset, 0, |
| this->rel_dyn_section(layout)); |
| } |
| |
| void |
| dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type, |
| Mips_relobj<size, big_endian>* relobj, |
| unsigned int shndx, Output_section* output_section, |
| Mips_address r_offset) |
| { |
| this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx, |
| output_section, r_offset)); |
| } |
| |
| // Calculate value of _gp symbol. |
| void |
| set_gp(Layout*, Symbol_table*); |
| |
| const char* |
| elf_mips_abi_name(elfcpp::Elf_Word e_flags); |
| const char* |
| elf_mips_mach_name(elfcpp::Elf_Word e_flags); |
| |
| // Adds entries that describe how machines relate to one another. The entries |
| // are ordered topologically with MIPS I extensions listed last. First |
| // element is extension, second element is base. |
| void |
| add_machine_extensions() |
| { |
| // MIPS64r2 extensions. |
| this->add_extension(mach_mips_octeon3, mach_mips_octeon2); |
| this->add_extension(mach_mips_octeon2, mach_mips_octeonp); |
| this->add_extension(mach_mips_octeonp, mach_mips_octeon); |
| this->add_extension(mach_mips_octeon, mach_mipsisa64r2); |
| this->add_extension(mach_mips_gs264e, mach_mips_gs464e); |
| this->add_extension(mach_mips_gs464e, mach_mips_gs464); |
| this->add_extension(mach_mips_gs464, mach_mipsisa64r2); |
| |
| // MIPS64 extensions. |
| this->add_extension(mach_mipsisa64r2, mach_mipsisa64); |
| this->add_extension(mach_mips_sb1, mach_mipsisa64); |
| this->add_extension(mach_mips_xlr, mach_mipsisa64); |
| |
| // MIPS V extensions. |
| this->add_extension(mach_mipsisa64, mach_mips5); |
| |
| // R10000 extensions. |
| this->add_extension(mach_mips12000, mach_mips10000); |
| this->add_extension(mach_mips14000, mach_mips10000); |
| this->add_extension(mach_mips16000, mach_mips10000); |
| |
| // R5000 extensions. Note: the vr5500 ISA is an extension of the core |
| // vr5400 ISA, but doesn't include the multimedia stuff. It seems |
| // better to allow vr5400 and vr5500 code to be merged anyway, since |
| // many libraries will just use the core ISA. Perhaps we could add |
| // some sort of ASE flag if this ever proves a problem. |
| this->add_extension(mach_mips5500, mach_mips5400); |
| this->add_extension(mach_mips5400, mach_mips5000); |
| |
| // MIPS IV extensions. |
| this->add_extension(mach_mips5, mach_mips8000); |
| this->add_extension(mach_mips10000, mach_mips8000); |
| this->add_extension(mach_mips5000, mach_mips8000); |
| this->add_extension(mach_mips7000, mach_mips8000); |
| this->add_extension(mach_mips9000, mach_mips8000); |
| |
| // VR4100 extensions. |
| this->add_extension(mach_mips4120, mach_mips4100); |
| this->add_extension(mach_mips4111, mach_mips4100); |
| |
| // MIPS III extensions. |
| this->add_extension(mach_mips_loongson_2e, mach_mips4000); |
| this->add_extension(mach_mips_loongson_2f, mach_mips4000); |
| this->add_extension(mach_mips8000, mach_mips4000); |
| this->add_extension(mach_mips4650, mach_mips4000); |
| this->add_extension(mach_mips4600, mach_mips4000); |
| this->add_extension(mach_mips4400, mach_mips4000); |
| this->add_extension(mach_mips4300, mach_mips4000); |
| this->add_extension(mach_mips4100, mach_mips4000); |
| this->add_extension(mach_mips4010, mach_mips4000); |
| this->add_extension(mach_mips5900, mach_mips4000); |
| |
| // MIPS32 extensions. |
| this->add_extension(mach_mipsisa32r2, mach_mipsisa32); |
| |
| // MIPS II extensions. |
| this->add_extension(mach_mips4000, mach_mips6000); |
| this->add_extension(mach_mipsisa32, mach_mips6000); |
| |
| // MIPS I extensions. |
| this->add_extension(mach_mips6000, mach_mips3000); |
| this->add_extension(mach_mips3900, mach_mips3000); |
| } |
| |
| // Add value to MIPS extenstions. |
| void |
| add_extension(unsigned int base, unsigned int extension) |
| { |
| std::pair<unsigned int, unsigned int> ext(base, extension); |
| this->mips_mach_extensions_.push_back(ext); |
| } |
| |
| // Return the number of entries in the .dynsym section. |
| unsigned int get_dt_mips_symtabno() const |
| { |
| return ((unsigned int)(this->layout_->dynsym_section()->data_size() |
| / elfcpp::Elf_sizes<size>::sym_size)); |
| // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE. |
| } |
| |
| // Information about this specific target which we pass to the |
| // general Target structure. |
| static const Target::Target_info mips_info; |
| // The GOT section. |
| Mips_output_data_got<size, big_endian>* got_; |
| // gp symbol. It has the value of .got + 0x7FF0. |
| Sized_symbol<size>* gp_; |
| // The PLT section. |
| Mips_output_data_plt<size, big_endian>* plt_; |
| // The GOT PLT section. |
| Output_data_space* got_plt_; |
| // The dynamic reloc section. |
| Reloc_section* rel_dyn_; |
| // The .rld_map section. |
| Output_data_zero_fill* rld_map_; |
| // Relocs saved to avoid a COPY reloc. |
| Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_; |
| |
| // A list of dyn relocs to be saved. |
| std::vector<Dyn_reloc> dyn_relocs_; |
| |
| // The LA25 stub section. |
| Mips_output_data_la25_stub<size, big_endian>* la25_stub_; |
| // Architecture extensions. |
| std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_; |
| // .MIPS.stubs |
| Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_; |
| |
| // Attributes section data in output. |
| Attributes_section_data* attributes_section_data_; |
| // .MIPS.abiflags section data in output. |
| Mips_abiflags<big_endian>* abiflags_; |
| |
| unsigned int mach_; |
| Layout* layout_; |
| |
| typename std::list<got16_addend<size, big_endian> > got16_addends_; |
| |
| // Whether there is an input .MIPS.abiflags section. |
| bool has_abiflags_section_; |
| |
| // Whether the entry symbol is mips16 or micromips. |
| bool entry_symbol_is_compressed_; |
| |
| // Whether we can use only 32-bit microMIPS instructions. |
| // TODO(sasa): This should be a linker option. |
| bool insn32_; |
| }; |
| |
| // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations. |
| // It records high part of the relocation pair. |
| |
| template<int size, bool big_endian> |
| struct reloc_high |
| { |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address; |
| |
| reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object, |
| const Symbol_value<size>* _psymval, Mips_address _addend, |
| unsigned int _r_type, unsigned int _r_sym, bool _extract_addend, |
| Mips_address _address = 0, bool _gp_disp = false) |
| : view(_view), object(_object), psymval(_psymval), addend(_addend), |
| r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend), |
| address(_address), gp_disp(_gp_disp) |
| { } |
| |
| unsigned char* view; |
| const Mips_relobj<size, big_endian>* object; |
| const Symbol_value<size>* psymval; |
| Mips_address addend; |
| unsigned int r_type; |
| unsigned int r_sym; |
| bool extract_addend; |
| Mips_address address; |
| bool gp_disp; |
| }; |
| |
| template<int size, bool big_endian> |
| class Mips_relocate_functions : public Relocate_functions<size, big_endian> |
| { |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address; |
| typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype; |
| typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16; |
| typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32; |
| typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64; |
| |
| public: |
| typedef enum |
| { |
| STATUS_OKAY, // No error during relocation. |
| STATUS_OVERFLOW, // Relocation overflow. |
| STATUS_BAD_RELOC, // Relocation cannot be applied. |
| STATUS_PCREL_UNALIGNED // Unaligned PC-relative relocation. |
| } Status; |
| |
| private: |
| typedef Relocate_functions<size, big_endian> Base; |
| typedef Mips_relocate_functions<size, big_endian> This; |
| |
| static typename std::list<reloc_high<size, big_endian> > hi16_relocs; |
| static typename std::list<reloc_high<size, big_endian> > got16_relocs; |
| static typename std::list<reloc_high<size, big_endian> > pchi16_relocs; |
| |
| template<int valsize> |
| static inline typename This::Status |
| check_overflow(Valtype value) |
| { |
| if (size == 32) |
| return (Bits<valsize>::has_overflow32(value) |
| ? This::STATUS_OVERFLOW |
| : This::STATUS_OKAY); |
| |
| return (Bits<valsize>::has_overflow(value) |
| ? This::STATUS_OVERFLOW |
| : This::STATUS_OKAY); |
| } |
| |
| static inline bool |
| should_shuffle_micromips_reloc(unsigned int r_type) |
| { |
| return (micromips_reloc(r_type) |
| && r_type != elfcpp::R_MICROMIPS_PC7_S1 |
| && r_type != elfcpp::R_MICROMIPS_PC10_S1); |
| } |
| |
| public: |
| // R_MIPS16_26 is used for the mips16 jal and jalx instructions. |
| // Most mips16 instructions are 16 bits, but these instructions |
| // are 32 bits. |
| // |
| // The format of these instructions is: |
| // |
| // +--------------+--------------------------------+ |
| // | JALX | X| Imm 20:16 | Imm 25:21 | |
| // +--------------+--------------------------------+ |
| // | Immediate 15:0 | |
| // +-----------------------------------------------+ |
| // |
| // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. |
| // Note that the immediate value in the first word is swapped. |
| // |
| // When producing a relocatable object file, R_MIPS16_26 is |
| // handled mostly like R_MIPS_26. In particular, the addend is |
| // stored as a straight 26-bit value in a 32-bit instruction. |
| // (gas makes life simpler for itself by never adjusting a |
| // R_MIPS16_26 reloc to be against a section, so the addend is |
| // always zero). However, the 32 bit instruction is stored as 2 |
| // 16-bit values, rather than a single 32-bit value. In a |
| // big-endian file, the result is the same; in a little-endian |
| // file, the two 16-bit halves of the 32 bit value are swapped. |
| // This is so that a disassembler can recognize the jal |
| // instruction. |
| // |
| // When doing a final link, R_MIPS16_26 is treated as a 32 bit |
| // instruction stored as two 16-bit values. The addend A is the |
| // contents of the targ26 field. The calculation is the same as |
| // R_MIPS_26. When storing the calculated value, reorder the |
| // immediate value as shown above, and don't forget to store the |
| // value as two 16-bit values. |
| // |
| // To put it in MIPS ABI terms, the relocation field is T-targ26-16, |
| // defined as |
| // |
| // big-endian: |
| // +--------+----------------------+ |
| // | | | |
| // | | targ26-16 | |
| // |31 26|25 0| |
| // +--------+----------------------+ |
| // |
| // little-endian: |
| // +----------+------+-------------+ |
| // | | | | |
| // | sub1 | | sub2 | |
| // |0 9|10 15|16 31| |
| // +----------+--------------------+ |
| // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is |
| // ((sub1 << 16) | sub2)). |
| // |
| // When producing a relocatable object file, the calculation is |
| // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) |
| // When producing a fully linked file, the calculation is |
| // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) |
| // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) |
| // |
| // The table below lists the other MIPS16 instruction relocations. |
| // Each one is calculated in the same way as the non-MIPS16 relocation |
| // given on the right, but using the extended MIPS16 layout of 16-bit |
| // immediate fields: |
| // |
| // R_MIPS16_GPREL R_MIPS_GPREL16 |
| // R_MIPS16_GOT16 R_MIPS_GOT16 |
| // R_MIPS16_CALL16 R_MIPS_CALL16 |
| // R_MIPS16_HI16 R_MIPS_HI16 |
| // R_MIPS16_LO16 R_MIPS_LO16 |
| // |
| // A typical instruction will have a format like this: |
| // |
| // +--------------+--------------------------------+ |
| // | EXTEND | Imm 10:5 | Imm 15:11 | |
| // +--------------+--------------------------------+ |
| // | Major | rx | ry | Imm 4:0 | |
| // +--------------+--------------------------------+ |
| // |
| // EXTEND is the five bit value 11110. Major is the instruction |
| // opcode. |
| // |
| // All we need to do here is shuffle the bits appropriately. |
| // As above, the two 16-bit halves must be swapped on a |
| // little-endian system. |
| |
| // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped |
| // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1 |
| // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. |
| |
| static void |
| mips_reloc_unshuffle(unsigned char* view, unsigned int r_type, |
| bool jal_shuffle) |
| { |
| if (!mips16_reloc(r_type) |
| && !should_shuffle_micromips_reloc(r_type)) |
| return; |
| |
| // Pick up the first and second halfwords of the instruction. |
| Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view); |
| Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2); |
| Valtype32 val; |
| |
| if (micromips_reloc(r_type) |
| || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle)) |
| val = first << 16 | second; |
| else if (r_type != elfcpp::R_MIPS16_26) |
| val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11) |
| | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f)); |
| else |
| val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11) |
| | ((first & 0x1f) << 21) | second); |
| |
| elfcpp::Swap<32, big_endian>::writeval(view, val); |
| } |
| |
| static void |
| mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle) |
| { |
| if (!mips16_reloc(r_type) |
| && !should_shuffle_micromips_reloc(r_type)) |
| return; |
| |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view); |
| Valtype16 first, second; |
| |
| if (micromips_reloc(r_type) |
| || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle)) |
| { |
| second = val & 0xffff; |
| first = val >> 16; |
| } |
| else if (r_type != elfcpp::R_MIPS16_26) |
| { |
| second = ((val >> 11) & 0xffe0) | (val & 0x1f); |
| first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); |
| } |
| else |
| { |
| second = val & 0xffff; |
| first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) |
| | ((val >> 21) & 0x1f); |
| } |
| |
| elfcpp::Swap<16, big_endian>::writeval(view + 2, second); |
| elfcpp::Swap<16, big_endian>::writeval(view, first); |
| } |
| |
| // R_MIPS_16: S + sign-extend(A) |
| static inline typename This::Status |
| rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address addend_a, |
| bool extract_addend, bool calculate_only, Valtype* calculated_value) |
| { |
| Valtype16* wv = reinterpret_cast<Valtype16*>(view); |
| Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv); |
| |
| Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val) |
| : addend_a); |
| |
| Valtype x = psymval->value(object, addend); |
| val = Bits<16>::bit_select32(val, x, 0xffffU); |
| |
| if (calculate_only) |
| { |
| *calculated_value = x; |
| return This::STATUS_OKAY; |
| } |
| else |
| elfcpp::Swap<16, big_endian>::writeval(wv, val); |
| |
| return check_overflow<16>(x); |
| } |
| |
| // R_MIPS_32: S + A |
| static inline typename This::Status |
| rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address addend_a, |
| bool extract_addend, bool calculate_only, Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype addend = (extract_addend |
| ? elfcpp::Swap<32, big_endian>::readval(wv) |
| : addend_a); |
| Valtype x = psymval->value(object, addend); |
| |
| if (calculate_only) |
| *calculated_value = x; |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, x); |
| |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_JALR, R_MICROMIPS_JALR |
| static inline typename This::Status |
| reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address address, |
| Mips_address addend_a, bool extract_addend, bool cross_mode_jump, |
| unsigned int r_type, bool jalr_to_bal, bool jr_to_b, |
| bool calculate_only, Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype addend = extract_addend ? 0 : addend_a; |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| |
| // Try converting J(AL)R to B(AL), if the target is in range. |
| if (r_type == elfcpp::R_MIPS_JALR |
| && !cross_mode_jump |
| && ((jalr_to_bal && val == 0x0320f809) // jalr t9 |
| || (jr_to_b && val == 0x03200008))) // jr t9 |
| { |
| int offset = psymval->value(object, addend) - (address + 4); |
| if (!Bits<18>::has_overflow32(offset)) |
| { |
| if (val == 0x03200008) // jr t9 |
| val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr |
| else |
| val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr |
| } |
| } |
| |
| if (calculate_only) |
| *calculated_value = val; |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_PC32: S + A - P |
| static inline typename This::Status |
| relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address address, |
| Mips_address addend_a, bool extract_addend, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype addend = (extract_addend |
| ? elfcpp::Swap<32, big_endian>::readval(wv) |
| : addend_a); |
| Valtype x = psymval->value(object, addend) - address; |
| |
| if (calculate_only) |
| *calculated_value = x; |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, x); |
| |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1 |
| static inline typename This::Status |
| rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address address, |
| bool local, Mips_address addend_a, bool extract_addend, |
| const Symbol* gsym, bool cross_mode_jump, unsigned int r_type, |
| bool jal_to_bal, bool calculate_only, Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| |
| Valtype addend; |
| if (extract_addend) |
| { |
| if (r_type == elfcpp::R_MICROMIPS_26_S1) |
| addend = (val & 0x03ffffff) << 1; |
| else |
| addend = (val & 0x03ffffff) << 2; |
| } |
| else |
| addend = addend_a; |
| |
| // Make sure the target of JALX is word-aligned. Bit 0 must be |
| // the correct ISA mode selector and bit 1 must be 0. |
| if (!calculate_only && cross_mode_jump |
| && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26)) |
| { |
| gold_warning(_("JALX to a non-word-aligned address")); |
| return This::STATUS_BAD_RELOC; |
| } |
| |
| // Shift is 2, unusually, for microMIPS JALX. |
| unsigned int shift = |
| (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2; |
| |
| Valtype x; |
| if (local) |
| x = addend | ((address + 4) & (0xfc000000 << shift)); |
| else |
| { |
| if (shift == 1) |
| x = Bits<27>::sign_extend32(addend); |
| else |
| x = Bits<28>::sign_extend32(addend); |
| } |
| x = psymval->value(object, x) >> shift; |
| |
| if (!calculate_only && !local && !gsym->is_weak_undefined() |
| && ((x >> 26) != ((address + 4) >> (26 + shift)))) |
| return This::STATUS_OVERFLOW; |
| |
| val = Bits<32>::bit_select32(val, x, 0x03ffffff); |
| |
| // If required, turn JAL into JALX. |
| if (cross_mode_jump) |
| { |
| bool ok; |
| Valtype32 opcode = val >> 26; |
| Valtype32 jalx_opcode; |
| |
| // Check to see if the opcode is already JAL or JALX. |
| if (r_type == elfcpp::R_MIPS16_26) |
| { |
| ok = (opcode == 0x6) || (opcode == 0x7); |
| jalx_opcode = 0x7; |
| } |
| else if (r_type == elfcpp::R_MICROMIPS_26_S1) |
| { |
| ok = (opcode == 0x3d) || (opcode == 0x3c); |
| jalx_opcode = 0x3c; |
| } |
| else |
| { |
| ok = (opcode == 0x3) || (opcode == 0x1d); |
| jalx_opcode = 0x1d; |
| } |
| |
| // If the opcode is not JAL or JALX, there's a problem. We cannot |
| // convert J or JALS to JALX. |
| if (!calculate_only && !ok) |
| { |
| gold_error(_("Unsupported jump between ISA modes; consider " |
| "recompiling with interlinking enabled.")); |
| return This::STATUS_BAD_RELOC; |
| } |
| |
| // Make this the JALX opcode. |
| val = (val & ~(0x3f << 26)) | (jalx_opcode << 26); |
| } |
| |
| // Try converting JAL to BAL, if the target is in range. |
| if (!parameters->options().relocatable() |
| && !cross_mode_jump |
| && ((jal_to_bal |
| && r_type == elfcpp::R_MIPS_26 |
| && (val >> 26) == 0x3))) // jal addr |
| { |
| Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28); |
| int offset = dest - (address + 4); |
| if (!Bits<18>::has_overflow32(offset)) |
| { |
| if (val == 0x03200008) // jr t9 |
| val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr |
| else |
| val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr |
| } |
| } |
| |
| if (calculate_only) |
| *calculated_value = val; |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_PC16 |
| static inline typename This::Status |
| relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address address, |
| Mips_address addend_a, bool extract_addend, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| |
| Valtype addend = (extract_addend |
| ? Bits<18>::sign_extend32((val & 0xffff) << 2) |
| : addend_a); |
| |
| Valtype x = psymval->value(object, addend) - address; |
| val = Bits<16>::bit_select32(val, x >> 2, 0xffff); |
| |
| if (calculate_only) |
| { |
| *calculated_value = x >> 2; |
| return This::STATUS_OKAY; |
| } |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| if (psymval->value(object, addend) & 3) |
| return This::STATUS_PCREL_UNALIGNED; |
| |
| return check_overflow<18>(x); |
| } |
| |
| // R_MIPS_PC21_S2 |
| static inline typename This::Status |
| relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address address, |
| Mips_address addend_a, bool extract_addend, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| |
| Valtype addend = (extract_addend |
| ? Bits<23>::sign_extend32((val & 0x1fffff) << 2) |
| : addend_a); |
| |
| Valtype x = psymval->value(object, addend) - address; |
| val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff); |
| |
| if (calculate_only) |
| { |
| *calculated_value = x >> 2; |
| return This::STATUS_OKAY; |
| } |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| if (psymval->value(object, addend) & 3) |
| return This::STATUS_PCREL_UNALIGNED; |
| |
| return check_overflow<23>(x); |
| } |
| |
| // R_MIPS_PC26_S2 |
| static inline typename This::Status |
| relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address address, |
| Mips_address addend_a, bool extract_addend, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| |
| Valtype addend = (extract_addend |
| ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2) |
| : addend_a); |
| |
| Valtype x = psymval->value(object, addend) - address; |
| val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff); |
| |
| if (calculate_only) |
| { |
| *calculated_value = x >> 2; |
| return This::STATUS_OKAY; |
| } |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| if (psymval->value(object, addend) & 3) |
| return This::STATUS_PCREL_UNALIGNED; |
| |
| return check_overflow<28>(x); |
| } |
| |
| // R_MIPS_PC18_S3 |
| static inline typename This::Status |
| relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address address, |
| Mips_address addend_a, bool extract_addend, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| |
| Valtype addend = (extract_addend |
| ? Bits<21>::sign_extend32((val & 0x3ffff) << 3) |
| : addend_a); |
| |
| Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7); |
| val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff); |
| |
| if (calculate_only) |
| { |
| *calculated_value = x >> 3; |
| return This::STATUS_OKAY; |
| } |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| if (psymval->value(object, addend) & 7) |
| return This::STATUS_PCREL_UNALIGNED; |
| |
| return check_overflow<21>(x); |
| } |
| |
| // R_MIPS_PC19_S2 |
| static inline typename This::Status |
| relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address address, |
| Mips_address addend_a, bool extract_addend, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| |
| Valtype addend = (extract_addend |
| ? Bits<21>::sign_extend32((val & 0x7ffff) << 2) |
| : addend_a); |
| |
| Valtype x = psymval->value(object, addend) - address; |
| val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff); |
| |
| if (calculate_only) |
| { |
| *calculated_value = x >> 2; |
| return This::STATUS_OKAY; |
| } |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| if (psymval->value(object, addend) & 3) |
| return This::STATUS_PCREL_UNALIGNED; |
| |
| return check_overflow<21>(x); |
| } |
| |
| // R_MIPS_PCHI16 |
| static inline typename This::Status |
| relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address addend, |
| Mips_address address, unsigned int r_sym, bool extract_addend) |
| { |
| // Record the relocation. It will be resolved when we find pclo16 part. |
| pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval, |
| addend, 0, r_sym, extract_addend, address)); |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_PCHI16 |
| static inline typename This::Status |
| do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address addend_hi, |
| Mips_address address, bool extract_addend, Valtype32 addend_lo, |
| bool calculate_only, Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| |
| Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo |
| : addend_hi); |
| |
| Valtype value = psymval->value(object, addend) - address; |
| Valtype x = ((value + 0x8000) >> 16) & 0xffff; |
| val = Bits<32>::bit_select32(val, x, 0xffff); |
| |
| if (calculate_only) |
| *calculated_value = x; |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_PCLO16 |
| static inline typename This::Status |
| relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address addend_a, |
| bool extract_addend, Mips_address address, unsigned int r_sym, |
| unsigned int rel_type, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| |
| Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff) |
| : addend_a); |
| |
| if (rel_type == elfcpp::SHT_REL) |
| { |
| // Resolve pending R_MIPS_PCHI16 relocations. |
| typename std::list<reloc_high<size, big_endian> >::iterator it = |
| pchi16_relocs.begin(); |
| while (it != pchi16_relocs.end()) |
| { |
| reloc_high<size, big_endian> pchi16 = *it; |
| if (pchi16.r_sym == r_sym) |
| { |
| do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval, |
| pchi16.addend, pchi16.address, |
| pchi16.extract_addend, addend, calculate_only, |
| calculated_value); |
| it = pchi16_relocs.erase(it); |
| } |
| else |
| ++it; |
| } |
| } |
| |
| // Resolve R_MIPS_PCLO16 relocation. |
| Valtype x = psymval->value(object, addend) - address; |
| val = Bits<32>::bit_select32(val, x, 0xffff); |
| |
| if (calculate_only) |
| *calculated_value = x; |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MICROMIPS_PC7_S1 |
| static inline typename This::Status |
| relmicromips_pc7_s1(unsigned char* view, |
| const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address address, |
| Mips_address addend_a, bool extract_addend, |
| bool calculate_only, Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| |
| Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1) |
| : addend_a; |
| |
| Valtype x = psymval->value(object, addend) - address; |
| val = Bits<16>::bit_select32(val, x >> 1, 0x7f); |
| |
| if (calculate_only) |
| { |
| *calculated_value = x >> 1; |
| return This::STATUS_OKAY; |
| } |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return check_overflow<8>(x); |
| } |
| |
| // R_MICROMIPS_PC10_S1 |
| static inline typename This::Status |
| relmicromips_pc10_s1(unsigned char* view, |
| const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address address, |
| Mips_address addend_a, bool extract_addend, |
| bool calculate_only, Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| |
| Valtype addend = (extract_addend |
| ? Bits<11>::sign_extend32((val & 0x3ff) << 1) |
| : addend_a); |
| |
| Valtype x = psymval->value(object, addend) - address; |
| val = Bits<16>::bit_select32(val, x >> 1, 0x3ff); |
| |
| if (calculate_only) |
| { |
| *calculated_value = x >> 1; |
| return This::STATUS_OKAY; |
| } |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return check_overflow<11>(x); |
| } |
| |
| // R_MICROMIPS_PC16_S1 |
| static inline typename This::Status |
| relmicromips_pc16_s1(unsigned char* view, |
| const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address address, |
| Mips_address addend_a, bool extract_addend, |
| bool calculate_only, Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| |
| Valtype addend = (extract_addend |
| ? Bits<17>::sign_extend32((val & 0xffff) << 1) |
| : addend_a); |
| |
| Valtype x = psymval->value(object, addend) - address; |
| val = Bits<16>::bit_select32(val, x >> 1, 0xffff); |
| |
| if (calculate_only) |
| { |
| *calculated_value = x >> 1; |
| return This::STATUS_OKAY; |
| } |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return check_overflow<17>(x); |
| } |
| |
| // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16, |
| static inline typename This::Status |
| relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address addend, |
| Mips_address address, bool gp_disp, unsigned int r_type, |
| unsigned int r_sym, bool extract_addend) |
| { |
| // Record the relocation. It will be resolved when we find lo16 part. |
| hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval, |
| addend, r_type, r_sym, extract_addend, address, |
| gp_disp)); |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16, |
| static inline typename This::Status |
| do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address addend_hi, |
| Mips_address address, bool is_gp_disp, unsigned int r_type, |
| bool extract_addend, Valtype32 addend_lo, |
| Target_mips<size, big_endian>* target, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| |
| Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo |
| : addend_hi); |
| |
| Valtype32 value; |
| if (!is_gp_disp) |
| value = psymval->value(object, addend); |
| else |
| { |
| // For MIPS16 ABI code we generate this sequence |
| // 0: li $v0,%hi(_gp_disp) |
| // 4: addiupc $v1,%lo(_gp_disp) |
| // 8: sll $v0,16 |
| // 12: addu $v0,$v1 |
| // 14: move $gp,$v0 |
| // So the offsets of hi and lo relocs are the same, but the |
| // base $pc is that used by the ADDIUPC instruction at $t9 + 4. |
| // ADDIUPC clears the low two bits of the instruction address, |
| // so the base is ($t9 + 4) & ~3. |
| Valtype32 gp_disp; |
| if (r_type == elfcpp::R_MIPS16_HI16) |
| gp_disp = (target->adjusted_gp_value(object) |
| - ((address + 4) & ~0x3)); |
| // The microMIPS .cpload sequence uses the same assembly |
| // instructions as the traditional psABI version, but the |
| // incoming $t9 has the low bit set. |
| else if (r_type == elfcpp::R_MICROMIPS_HI16) |
| gp_disp = target->adjusted_gp_value(object) - address - 1; |
| else |
| gp_disp = target->adjusted_gp_value(object) - address; |
| value = gp_disp + addend; |
| } |
| Valtype x = ((value + 0x8000) >> 16) & 0xffff; |
| val = Bits<32>::bit_select32(val, x, 0xffff); |
| |
| if (calculate_only) |
| { |
| *calculated_value = x; |
| return This::STATUS_OKAY; |
| } |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return (is_gp_disp ? check_overflow<16>(x) |
| : This::STATUS_OKAY); |
| } |
| |
| // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16 |
| static inline typename This::Status |
| relgot16_local(unsigned char* view, |
| const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address addend_a, |
| bool extract_addend, unsigned int r_type, unsigned int r_sym) |
| { |
| // Record the relocation. It will be resolved when we find lo16 part. |
| got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval, |
| addend_a, r_type, r_sym, extract_addend)); |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16 |
| static inline typename This::Status |
| do_relgot16_local(unsigned char* view, |
| const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address addend_hi, |
| bool extract_addend, Valtype32 addend_lo, |
| Target_mips<size, big_endian>* target, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| |
| Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo |
| : addend_hi); |
| |
| // Find GOT page entry. |
| Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16) |
| & 0xffff; |
| value <<= 16; |
| unsigned int got_offset = |
| target->got_section()->get_got_page_offset(value, object); |
| |
| // Resolve the relocation. |
| Valtype x = target->got_section()->gp_offset(got_offset, object); |
| val = Bits<32>::bit_select32(val, x, 0xffff); |
| |
| if (calculate_only) |
| { |
| *calculated_value = x; |
| return This::STATUS_OKAY; |
| } |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return check_overflow<16>(x); |
| } |
| |
| // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16 |
| static inline typename This::Status |
| rello16(Target_mips<size, big_endian>* target, unsigned char* view, |
| const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address addend_a, |
| bool extract_addend, Mips_address address, bool is_gp_disp, |
| unsigned int r_type, unsigned int r_sym, unsigned int rel_type, |
| bool calculate_only, Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| |
| Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff) |
| : addend_a); |
| |
| if (rel_type == elfcpp::SHT_REL) |
| { |
| typename This::Status reloc_status = This::STATUS_OKAY; |
| // Resolve pending R_MIPS_HI16 relocations. |
| typename std::list<reloc_high<size, big_endian> >::iterator it = |
| hi16_relocs.begin(); |
| while (it != hi16_relocs.end()) |
| { |
| reloc_high<size, big_endian> hi16 = *it; |
| if (hi16.r_sym == r_sym |
| && is_matching_lo16_reloc(hi16.r_type, r_type)) |
| { |
| mips_reloc_unshuffle(hi16.view, hi16.r_type, false); |
| reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval, |
| hi16.addend, hi16.address, hi16.gp_disp, |
| hi16.r_type, hi16.extract_addend, addend, |
| target, calculate_only, calculated_value); |
| mips_reloc_shuffle(hi16.view, hi16.r_type, false); |
| if (reloc_status == This::STATUS_OVERFLOW) |
| return This::STATUS_OVERFLOW; |
| it = hi16_relocs.erase(it); |
| } |
| else |
| ++it; |
| } |
| |
| // Resolve pending local R_MIPS_GOT16 relocations. |
| typename std::list<reloc_high<size, big_endian> >::iterator it2 = |
| got16_relocs.begin(); |
| while (it2 != got16_relocs.end()) |
| { |
| reloc_high<size, big_endian> got16 = *it2; |
| if (got16.r_sym == r_sym |
| && is_matching_lo16_reloc(got16.r_type, r_type)) |
| { |
| mips_reloc_unshuffle(got16.view, got16.r_type, false); |
| |
| reloc_status = do_relgot16_local(got16.view, got16.object, |
| got16.psymval, got16.addend, |
| got16.extract_addend, addend, target, |
| calculate_only, calculated_value); |
| |
| mips_reloc_shuffle(got16.view, got16.r_type, false); |
| if (reloc_status == This::STATUS_OVERFLOW) |
| return This::STATUS_OVERFLOW; |
| it2 = got16_relocs.erase(it2); |
| } |
| else |
| ++it2; |
| } |
| } |
| |
| // Resolve R_MIPS_LO16 relocation. |
| Valtype x; |
| if (!is_gp_disp) |
| x = psymval->value(object, addend); |
| else |
| { |
| // See the comment for R_MIPS16_HI16 above for the reason |
| // for this conditional. |
| Valtype32 gp_disp; |
| if (r_type == elfcpp::R_MIPS16_LO16) |
| gp_disp = target->adjusted_gp_value(object) - (address & ~0x3); |
| else if (r_type == elfcpp::R_MICROMIPS_LO16 |
| || r_type == elfcpp::R_MICROMIPS_HI0_LO16) |
| gp_disp = target->adjusted_gp_value(object) - address + 3; |
| else |
| gp_disp = target->adjusted_gp_value(object) - address + 4; |
| // The MIPS ABI requires checking the R_MIPS_LO16 relocation |
| // for overflow. Relocations against _gp_disp are normally |
| // generated from the .cpload pseudo-op. It generates code |
| // that normally looks like this: |
| |
| // lui $gp,%hi(_gp_disp) |
| // addiu $gp,$gp,%lo(_gp_disp) |
| // addu $gp,$gp,$t9 |
| |
| // Here $t9 holds the address of the function being called, |
| // as required by the MIPS ELF ABI. The R_MIPS_LO16 |
| // relocation can easily overflow in this situation, but the |
| // R_MIPS_HI16 relocation will handle the overflow. |
| // Therefore, we consider this a bug in the MIPS ABI, and do |
| // not check for overflow here. |
| x = gp_disp + addend; |
| } |
| val = Bits<32>::bit_select32(val, x, 0xffff); |
| |
| if (calculate_only) |
| *calculated_value = x; |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16 |
| // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16 |
| // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD |
| // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL |
| // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM |
| // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP |
| static inline typename This::Status |
| relgot(unsigned char* view, int gp_offset, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| Valtype x = gp_offset; |
| val = Bits<32>::bit_select32(val, x, 0xffff); |
| |
| if (calculate_only) |
| { |
| *calculated_value = x; |
| return This::STATUS_OKAY; |
| } |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return check_overflow<16>(x); |
| } |
| |
| // R_MIPS_EH |
| static inline typename This::Status |
| releh(unsigned char* view, int gp_offset, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype x = gp_offset; |
| |
| if (calculate_only) |
| { |
| *calculated_value = x; |
| return This::STATUS_OKAY; |
| } |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, x); |
| |
| return check_overflow<32>(x); |
| } |
| |
| // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE |
| static inline typename This::Status |
| relgotpage(Target_mips<size, big_endian>* target, unsigned char* view, |
| const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address addend_a, |
| bool extract_addend, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view); |
| Valtype addend = extract_addend ? val & 0xffff : addend_a; |
| |
| // Find a GOT page entry that points to within 32KB of symbol + addend. |
| Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff; |
| unsigned int got_offset = |
| target->got_section()->get_got_page_offset(value, object); |
| |
| Valtype x = target->got_section()->gp_offset(got_offset, object); |
| val = Bits<32>::bit_select32(val, x, 0xffff); |
| |
| if (calculate_only) |
| { |
| *calculated_value = x; |
| return This::STATUS_OKAY; |
| } |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return check_overflow<16>(x); |
| } |
| |
| // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST |
| static inline typename This::Status |
| relgotofst(Target_mips<size, big_endian>* target, unsigned char* view, |
| const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address addend_a, |
| bool extract_addend, bool local, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view); |
| Valtype addend = extract_addend ? val & 0xffff : addend_a; |
| |
| // For a local symbol, find a GOT page entry that points to within 32KB of |
| // symbol + addend. Relocation value is the offset of the GOT page entry's |
| // value from symbol + addend. |
| // For a global symbol, relocation value is addend. |
| Valtype x; |
| if (local) |
| { |
| // Find GOT page entry. |
| Mips_address value = ((psymval->value(object, addend) + 0x8000) |
| & ~0xffff); |
| target->got_section()->get_got_page_offset(value, object); |
| |
| x = psymval->value(object, addend) - value; |
| } |
| else |
| x = addend; |
| val = Bits<32>::bit_select32(val, x, 0xffff); |
| |
| if (calculate_only) |
| { |
| *calculated_value = x; |
| return This::STATUS_OKAY; |
| } |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return check_overflow<16>(x); |
| } |
| |
| // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16, |
| // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16 |
| static inline typename This::Status |
| relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| Valtype x = gp_offset; |
| x = ((x + 0x8000) >> 16) & 0xffff; |
| val = Bits<32>::bit_select32(val, x, 0xffff); |
| |
| if (calculate_only) |
| *calculated_value = x; |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16, |
| // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16 |
| static inline typename This::Status |
| relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| Valtype x = gp_offset; |
| val = Bits<32>::bit_select32(val, x, 0xffff); |
| |
| if (calculate_only) |
| *calculated_value = x; |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL |
| // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16 |
| static inline typename This::Status |
| relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address gp, |
| Mips_address addend_a, bool extract_addend, bool local, |
| unsigned int r_type, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| |
| Valtype addend; |
| if (extract_addend) |
| { |
| if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2) |
| addend = (val & 0x7f) << 2; |
| else |
| addend = val & 0xffff; |
| // Only sign-extend the addend if it was extracted from the |
| // instruction. If the addend was separate, leave it alone, |
| // otherwise we may lose significant bits. |
| addend = Bits<16>::sign_extend32(addend); |
| } |
| else |
| addend = addend_a; |
| |
| Valtype x = psymval->value(object, addend) - gp; |
| |
| // If the symbol was local, any earlier relocatable links will |
| // have adjusted its addend with the gp offset, so compensate |
| // for that now. Don't do it for symbols forced local in this |
| // link, though, since they won't have had the gp offset applied |
| // to them before. |
| if (local) |
| x += object->gp_value(); |
| |
| if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2) |
| val = Bits<32>::bit_select32(val, x, 0x7f); |
| else |
| val = Bits<32>::bit_select32(val, x, 0xffff); |
| |
| if (calculate_only) |
| { |
| *calculated_value = x; |
| return This::STATUS_OKAY; |
| } |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| if (check_overflow<16>(x) == This::STATUS_OVERFLOW) |
| { |
| gold_error(_("small-data section exceeds 64KB; lower small-data size " |
| "limit (see option -G)")); |
| return This::STATUS_OVERFLOW; |
| } |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_GPREL32 |
| static inline typename This::Status |
| relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address gp, |
| Mips_address addend_a, bool extract_addend, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| Valtype addend = extract_addend ? val : addend_a; |
| |
| // R_MIPS_GPREL32 relocations are defined for local symbols only. |
| Valtype x = psymval->value(object, addend) + object->gp_value() - gp; |
| |
| if (calculate_only) |
| *calculated_value = x; |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, x); |
| |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16 |
| // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16, |
| // R_MICROMIPS_TLS_DTPREL_HI16 |
| static inline typename This::Status |
| tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Valtype32 tp_offset, |
| Mips_address addend_a, bool extract_addend, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| Valtype addend = extract_addend ? val & 0xffff : addend_a; |
| |
| // tls symbol values are relative to tls_segment()->vaddr() |
| Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16; |
| val = Bits<32>::bit_select32(val, x, 0xffff); |
| |
| if (calculate_only) |
| *calculated_value = x; |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16, |
| // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16, |
| // R_MICROMIPS_TLS_DTPREL_LO16, |
| static inline typename This::Status |
| tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Valtype32 tp_offset, |
| Mips_address addend_a, bool extract_addend, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| Valtype addend = extract_addend ? val & 0xffff : addend_a; |
| |
| // tls symbol values are relative to tls_segment()->vaddr() |
| Valtype x = psymval->value(object, addend) - tp_offset; |
| val = Bits<32>::bit_select32(val, x, 0xffff); |
| |
| if (calculate_only) |
| *calculated_value = x; |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64, |
| // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64 |
| static inline typename This::Status |
| tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Valtype32 tp_offset, |
| Mips_address addend_a, bool extract_addend, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| Valtype addend = extract_addend ? val : addend_a; |
| |
| // tls symbol values are relative to tls_segment()->vaddr() |
| Valtype x = psymval->value(object, addend) - tp_offset; |
| |
| if (calculate_only) |
| *calculated_value = x; |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, x); |
| |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_SUB, R_MICROMIPS_SUB |
| static inline typename This::Status |
| relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address addend_a, |
| bool extract_addend, bool calculate_only, Valtype* calculated_value) |
| { |
| Valtype64* wv = reinterpret_cast<Valtype64*>(view); |
| Valtype64 addend = (extract_addend |
| ? elfcpp::Swap<64, big_endian>::readval(wv) |
| : addend_a); |
| |
| Valtype64 x = psymval->value(object, -addend); |
| if (calculate_only) |
| *calculated_value = x; |
| else |
| elfcpp::Swap<64, big_endian>::writeval(wv, x); |
| |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_64: S + A |
| static inline typename This::Status |
| rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address addend_a, |
| bool extract_addend, bool calculate_only, Valtype* calculated_value, |
| bool apply_addend_only) |
| { |
| Valtype64* wv = reinterpret_cast<Valtype64*>(view); |
| Valtype64 addend = (extract_addend |
| ? elfcpp::Swap<64, big_endian>::readval(wv) |
| : addend_a); |
| |
| Valtype64 x = psymval->value(object, addend); |
| if (calculate_only) |
| *calculated_value = x; |
| else |
| { |
| if (apply_addend_only) |
| x = addend; |
| elfcpp::Swap<64, big_endian>::writeval(wv, x); |
| } |
| |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_HIGHER, R_MICROMIPS_HIGHER |
| static inline typename This::Status |
| relhigher(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address addend_a, |
| bool extract_addend, bool calculate_only, Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff) |
| : addend_a); |
| |
| Valtype x = psymval->value(object, addend); |
| x = ((x + (uint64_t) 0x80008000) >> 32) & 0xffff; |
| val = Bits<32>::bit_select32(val, x, 0xffff); |
| |
| if (calculate_only) |
| *calculated_value = x; |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return This::STATUS_OKAY; |
| } |
| |
| // R_MIPS_HIGHEST, R_MICROMIPS_HIGHEST |
| static inline typename This::Status |
| relhighest(unsigned char* view, const Mips_relobj<size, big_endian>* object, |
| const Symbol_value<size>* psymval, Mips_address addend_a, |
| bool extract_addend, bool calculate_only, |
| Valtype* calculated_value) |
| { |
| Valtype32* wv = reinterpret_cast<Valtype32*>(view); |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv); |
| Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff) |
| : addend_a); |
| |
| Valtype x = psymval->value(object, addend); |
| x = ((x + (uint64_t) 0x800080008000llu) >> 48) & 0xffff; |
| val = Bits<32>::bit_select32(val, x, 0xffff); |
| |
| if (calculate_only) |
| *calculated_value = x; |
| else |
| elfcpp::Swap<32, big_endian>::writeval(wv, val); |
| |
| return This::STATUS_OKAY; |
| } |
| }; |
| |
| template<int size, bool big_endian> |
| typename std::list<reloc_high<size, big_endian> > |
| Mips_relocate_functions<size, big_endian>::hi16_relocs; |
| |
| template<int size, bool big_endian> |
| typename std::list<reloc_high<size, big_endian> > |
| Mips_relocate_functions<size, big_endian>::got16_relocs; |
| |
| template<int size, bool big_endian> |
| typename std::list<reloc_high<size, big_endian> > |
| Mips_relocate_functions<size, big_endian>::pchi16_relocs; |
| |
| // Mips_got_info methods. |
| |
| // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol |
| // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_got_info<size, big_endian>::record_local_got_symbol( |
| Mips_relobj<size, big_endian>* object, unsigned int symndx, |
| Mips_address addend, unsigned int r_type, unsigned int shndx, |
| bool is_section_symbol) |
| { |
| Mips_got_entry<size, big_endian>* entry = |
| new Mips_got_entry<size, big_endian>(object, symndx, addend, |
| mips_elf_reloc_tls_type(r_type), |
| shndx, is_section_symbol); |
| this->record_got_entry(entry, object); |
| } |
| |
| // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM, |
| // in OBJECT. FOR_CALL is true if the caller is only interested in |
| // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic |
| // relocation. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_got_info<size, big_endian>::record_global_got_symbol( |
| Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object, |
| unsigned int r_type, bool dyn_reloc, bool for_call) |
| { |
| if (!for_call) |
| mips_sym->set_got_not_only_for_calls(); |
| |
| // A global symbol in the GOT must also be in the dynamic symbol table. |
| if (!mips_sym->needs_dynsym_entry() && !mips_sym->is_forced_local()) |
| { |
| switch (mips_sym->visibility()) |
| { |
| case elfcpp::STV_INTERNAL: |
| case elfcpp::STV_HIDDEN: |
| mips_sym->set_is_forced_local(); |
| break; |
| default: |
| mips_sym->set_needs_dynsym_entry(); |
| break; |
| } |
| } |
| |
| unsigned char tls_type = mips_elf_reloc_tls_type(r_type); |
| if (tls_type == GOT_TLS_NONE) |
| this->global_got_symbols_.insert(mips_sym); |
| |
| if (dyn_reloc) |
| { |
| if (mips_sym->global_got_area() == GGA_NONE) |
| mips_sym->set_global_got_area(GGA_RELOC_ONLY); |
| return; |
| } |
| |
| Mips_got_entry<size, big_endian>* entry = |
| new Mips_got_entry<size, big_endian>(mips_sym, tls_type); |
| |
| this->record_got_entry(entry, object); |
| } |
| |
| // Add ENTRY to master GOT and to OBJECT's GOT. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_got_info<size, big_endian>::record_got_entry( |
| Mips_got_entry<size, big_endian>* entry, |
| Mips_relobj<size, big_endian>* object) |
| { |
| this->got_entries_.insert(entry); |
| |
| // Create the GOT entry for the OBJECT's GOT. |
| Mips_got_info<size, big_endian>* g = object->get_or_create_got_info(); |
| Mips_got_entry<size, big_endian>* entry2 = |
| new Mips_got_entry<size, big_endian>(*entry); |
| |
| g->got_entries_.insert(entry2); |
| } |
| |
| // Record that OBJECT has a page relocation against symbol SYMNDX and |
| // that ADDEND is the addend for that relocation. |
| // This function creates an upper bound on the number of GOT slots |
| // required; no attempt is made to combine references to non-overridable |
| // global symbols across multiple input files. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_got_info<size, big_endian>::record_got_page_entry( |
| Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend) |
| { |
| struct Got_page_range **range_ptr, *range; |
| int old_pages, new_pages; |
| |
| // Find the Got_page_entry for this symbol. |
| Got_page_entry* entry = new Got_page_entry(object, symndx); |
| typename Got_page_entry_set::iterator it = |
| this->got_page_entries_.find(entry); |
| if (it != this->got_page_entries_.end()) |
| entry = *it; |
| else |
| this->got_page_entries_.insert(entry); |
| |
| // Get the object's GOT, but we don't need to insert an entry here. |
| Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info(); |
| |
| // Skip over ranges whose maximum extent cannot share a page entry |
| // with ADDEND. |
| range_ptr = &entry->ranges; |
| while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff) |
| range_ptr = &(*range_ptr)->next; |
| |
| // If we scanned to the end of the list, or found a range whose |
| // minimum extent cannot share a page entry with ADDEND, create |
| // a new singleton range. |
| range = *range_ptr; |
| if (!range || addend < range->min_addend - 0xffff) |
| { |
| range = new Got_page_range(); |
| range->next = *range_ptr; |
| range->min_addend = addend; |
| range->max_addend = addend; |
| |
| *range_ptr = range; |
| ++this->page_gotno_; |
| ++g2->page_gotno_; |
| return; |
| } |
| |
| // Remember how many pages the old range contributed. |
| old_pages = range->get_max_pages(); |
| |
| // Update the ranges. |
| if (addend < range->min_addend) |
| range->min_addend = addend; |
| else if (addend > range->max_addend) |
| { |
| if (range->next && addend >= range->next->min_addend - 0xffff) |
| { |
| old_pages += range->next->get_max_pages(); |
| range->max_addend = range->next->max_addend; |
| range->next = range->next->next; |
| } |
| else |
| range->max_addend = addend; |
| } |
| |
| // Record any change in the total estimate. |
| new_pages = range->get_max_pages(); |
| if (old_pages != new_pages) |
| { |
| this->page_gotno_ += new_pages - old_pages; |
| g2->page_gotno_ += new_pages - old_pages; |
| } |
| } |
| |
| // Create all entries that should be in the local part of the GOT. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_got_info<size, big_endian>::add_local_entries( |
| Target_mips<size, big_endian>* target, Layout* layout) |
| { |
| Mips_output_data_got<size, big_endian>* got = target->got_section(); |
| // First two GOT entries are reserved. The first entry will be filled at |
| // runtime. The second entry will be used by some runtime loaders. |
| got->add_constant(0); |
| got->add_constant(target->mips_elf_gnu_got1_mask()); |
| |
| for (typename Got_entry_set::iterator |
| p = this->got_entries_.begin(); |
| p != this->got_entries_.end(); |
| ++p) |
| { |
| Mips_got_entry<size, big_endian>* entry = *p; |
| if (entry->is_for_local_symbol() && !entry->is_tls_entry()) |
| { |
| got->add_local(entry->object(), entry->symndx(), |
| GOT_TYPE_STANDARD, entry->addend()); |
| unsigned int got_offset = entry->object()->local_got_offset( |
| entry->symndx(), GOT_TYPE_STANDARD, entry->addend()); |
| if (got->multi_got() && this->index_ > 0 |
| && parameters->options().output_is_position_independent()) |
| { |
| if (!entry->is_section_symbol()) |
| target->rel_dyn_section(layout)->add_local(entry->object(), |
| entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset); |
| else |
| target->rel_dyn_section(layout)->add_symbolless_local_addend( |
| entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32, |
| got, got_offset); |
| } |
| } |
| } |
| |
| this->add_page_entries(target, layout); |
| |
| // Add global entries that should be in the local area. |
| for (typename Got_entry_set::iterator |
| p = this->got_entries_.begin(); |
| p != this->got_entries_.end(); |
| ++p) |
| { |
| Mips_got_entry<size, big_endian>* entry = *p; |
| if (!entry->is_for_global_symbol()) |
| continue; |
| |
| Mips_symbol<size>* mips_sym = entry->sym(); |
| if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry()) |
| { |
| unsigned int got_type; |
| if (!got->multi_got()) |
| got_type = GOT_TYPE_STANDARD; |
| else |
| got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_; |
| if (got->add_global(mips_sym, got_type)) |
| { |
| mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type)); |
| if (got->multi_got() && this->index_ > 0 |
| && parameters->options().output_is_position_independent()) |
| target->rel_dyn_section(layout)->add_symbolless_global_addend( |
| mips_sym, elfcpp::R_MIPS_REL32, got, |
| mips_sym->got_offset(got_type)); |
| } |
| } |
| } |
| } |
| |
| // Create GOT page entries. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_got_info<size, big_endian>::add_page_entries( |
| Target_mips<size, big_endian>* target, Layout* layout) |
| { |
| if (this->page_gotno_ == 0) |
| return; |
| |
| Mips_output_data_got<size, big_endian>* got = target->got_section(); |
| this->got_page_offset_start_ = got->add_constant(0); |
| if (got->multi_got() && this->index_ > 0 |
| && parameters->options().output_is_position_independent()) |
| target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got, |
| this->got_page_offset_start_); |
| int num_entries = this->page_gotno_; |
| unsigned int prev_offset = this->got_page_offset_start_; |
| while (--num_entries > 0) |
| { |
| unsigned int next_offset = got->add_constant(0); |
| if (got->multi_got() && this->index_ > 0 |
| && parameters->options().output_is_position_independent()) |
| target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got, |
| next_offset); |
| gold_assert(next_offset == prev_offset + size/8); |
| prev_offset = next_offset; |
| } |
| this->got_page_offset_next_ = this->got_page_offset_start_; |
| } |
| |
| // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_got_info<size, big_endian>::add_global_entries( |
| Target_mips<size, big_endian>* target, Layout* layout, |
| unsigned int non_reloc_only_global_gotno) |
| { |
| Mips_output_data_got<size, big_endian>* got = target->got_section(); |
| // Add GGA_NORMAL entries. |
| unsigned int count = 0; |
| for (typename Got_entry_set::iterator |
| p = this->got_entries_.begin(); |
| p != this->got_entries_.end(); |
| ++p) |
| { |
| Mips_got_entry<size, big_endian>* entry = *p; |
| if (!entry->is_for_global_symbol()) |
| continue; |
| |
| Mips_symbol<size>* mips_sym = entry->sym(); |
| if (mips_sym->global_got_area() != GGA_NORMAL) |
| continue; |
| |
| unsigned int got_type; |
| if (!got->multi_got()) |
| got_type = GOT_TYPE_STANDARD; |
| else |
| // In multi-GOT links, global symbol can be in both primary and |
| // secondary GOT(s). By creating custom GOT type |
| // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol |
| // is added to secondary GOT(s). |
| got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_; |
| if (!got->add_global(mips_sym, got_type)) |
| continue; |
| |
| mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type)); |
| if (got->multi_got() && this->index_ == 0) |
| count++; |
| if (got->multi_got() && this->index_ > 0) |
| { |
| if (parameters->options().output_is_position_independent() |
| || (!parameters->doing_static_link() |
| && mips_sym->is_from_dynobj() && !mips_sym->is_undefined())) |
| { |
| target->rel_dyn_section(layout)->add_global( |
| mips_sym, elfcpp::R_MIPS_REL32, got, |
| mips_sym->got_offset(got_type)); |
| got->add_secondary_got_reloc(mips_sym->got_offset(got_type), |
| elfcpp::R_MIPS_REL32, mips_sym); |
| } |
| } |
| } |
| |
| if (!got->multi_got() || this->index_ == 0) |
| { |
| if (got->multi_got()) |
| { |
| // We need to allocate space in the primary GOT for GGA_NORMAL entries |
| // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY |
| // entries correspond to dynamic symbol indexes. |
| while (count < non_reloc_only_global_gotno) |
| { |
| got->add_constant(0); |
| ++count; |
| } |
| } |
| |
| // Add GGA_RELOC_ONLY entries. |
| got->add_reloc_only_entries(); |
| } |
| } |
| |
| // Create global GOT entries that should be in the GGA_RELOC_ONLY area. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_got_info<size, big_endian>::add_reloc_only_entries( |
| Mips_output_data_got<size, big_endian>* got) |
| { |
| for (typename Global_got_entry_set::iterator |
| p = this->global_got_symbols_.begin(); |
| p != this->global_got_symbols_.end(); |
| ++p) |
| { |
| Mips_symbol<size>* mips_sym = *p; |
| if (mips_sym->global_got_area() == GGA_RELOC_ONLY) |
| { |
| unsigned int got_type; |
| if (!got->multi_got()) |
| got_type = GOT_TYPE_STANDARD; |
| else |
| got_type = GOT_TYPE_STANDARD_MULTIGOT; |
| if (got->add_global(mips_sym, got_type)) |
| mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type)); |
| } |
| } |
| } |
| |
| // Create TLS GOT entries. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_got_info<size, big_endian>::add_tls_entries( |
| Target_mips<size, big_endian>* target, Layout* layout) |
| { |
| Mips_output_data_got<size, big_endian>* got = target->got_section(); |
| // Add local tls entries. |
| for (typename Got_entry_set::iterator |
| p = this->got_entries_.begin(); |
| p != this->got_entries_.end(); |
| ++p) |
| { |
| Mips_got_entry<size, big_endian>* entry = *p; |
| if (!entry->is_tls_entry() || !entry->is_for_local_symbol()) |
| continue; |
| |
| if (entry->tls_type() == GOT_TLS_GD) |
| { |
| unsigned int got_type = GOT_TYPE_TLS_PAIR; |
| unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32 |
| : elfcpp::R_MIPS_TLS_DTPMOD64); |
| unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32 |
| : elfcpp::R_MIPS_TLS_DTPREL64); |
| |
| if (!parameters->doing_static_link()) |
| { |
| got->add_local_pair_with_rel(entry->object(), entry->symndx(), |
| entry->shndx(), got_type, |
| target->rel_dyn_section(layout), |
| r_type1, entry->addend()); |
| unsigned int got_offset = |
| entry->object()->local_got_offset(entry->symndx(), got_type, |
| entry->addend()); |
| got->add_static_reloc(got_offset + size/8, r_type2, |
| entry->object(), entry->symndx()); |
| } |
| else |
| { |
| // We are doing a static link. Mark it as belong to module 1, |
| // the executable. |
| unsigned int got_offset = got->add_constant(1); |
| entry->object()->set_local_got_offset(entry->symndx(), got_type, |
| got_offset, |
| entry->addend()); |
| got->add_constant(0); |
| got->add_static_reloc(got_offset + size/8, r_type2, |
| entry->object(), entry->symndx()); |
| } |
| } |
| else if (entry->tls_type() == GOT_TLS_IE) |
| { |
| unsigned int got_type = GOT_TYPE_TLS_OFFSET; |
| unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32 |
| : elfcpp::R_MIPS_TLS_TPREL64); |
| if (!parameters->doing_static_link()) |
| got->add_local_with_rel(entry->object(), entry->symndx(), got_type, |
| target->rel_dyn_section(layout), r_type, |
| entry->addend()); |
| else |
| { |
| got->add_local(entry->object(), entry->symndx(), got_type, |
| entry->addend()); |
| unsigned int got_offset = |
| entry->object()->local_got_offset(entry->symndx(), got_type, |
| entry->addend()); |
| got->add_static_reloc(got_offset, r_type, entry->object(), |
| entry->symndx()); |
| } |
| } |
| else if (entry->tls_type() == GOT_TLS_LDM) |
| { |
| unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32 |
| : elfcpp::R_MIPS_TLS_DTPMOD64); |
| unsigned int got_offset; |
| if (!parameters->doing_static_link()) |
| { |
| got_offset = got->add_constant(0); |
| target->rel_dyn_section(layout)->add_local( |
| entry->object(), 0, r_type, got, got_offset); |
| } |
| else |
| // We are doing a static link. Just mark it as belong to module 1, |
| // the executable. |
| got_offset = got->add_constant(1); |
| |
| got->add_constant(0); |
| got->set_tls_ldm_offset(got_offset, entry->object()); |
| } |
| else |
| gold_unreachable(); |
| } |
| |
| // Add global tls entries. |
| for (typename Got_entry_set::iterator |
| p = this->got_entries_.begin(); |
| p != this->got_entries_.end(); |
| ++p) |
| { |
| Mips_got_entry<size, big_endian>* entry = *p; |
| if (!entry->is_tls_entry() || !entry->is_for_global_symbol()) |
| continue; |
| |
| Mips_symbol<size>* mips_sym = entry->sym(); |
| if (entry->tls_type() == GOT_TLS_GD) |
| { |
| unsigned int got_type; |
| if (!got->multi_got()) |
| got_type = GOT_TYPE_TLS_PAIR; |
| else |
| got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_; |
| unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32 |
| : elfcpp::R_MIPS_TLS_DTPMOD64); |
| unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32 |
| : elfcpp::R_MIPS_TLS_DTPREL64); |
| if (!parameters->doing_static_link()) |
| got->add_global_pair_with_rel(mips_sym, got_type, |
| target->rel_dyn_section(layout), r_type1, r_type2); |
| else |
| { |
| // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of |
| // GOT entries. The first one is initialized to be 1, which is the |
| // module index for the main executable and the second one 0. A |
| // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for |
| // the second GOT entry and will be applied by gold. |
| unsigned int got_offset = got->add_constant(1); |
| mips_sym->set_got_offset(got_type, got_offset); |
| got->add_constant(0); |
| got->add_static_reloc(got_offset + size/8, r_type2, mips_sym); |
| } |
| } |
| else if (entry->tls_type() == GOT_TLS_IE) |
| { |
| unsigned int got_type; |
| if (!got->multi_got()) |
| got_type = GOT_TYPE_TLS_OFFSET; |
| else |
| got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_; |
| unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32 |
| : elfcpp::R_MIPS_TLS_TPREL64); |
| if (!parameters->doing_static_link()) |
| got->add_global_with_rel(mips_sym, got_type, |
| target->rel_dyn_section(layout), r_type); |
| else |
| { |
| got->add_global(mips_sym, got_type); |
| unsigned int got_offset = mips_sym->got_offset(got_type); |
| got->add_static_reloc(got_offset, r_type, mips_sym); |
| } |
| } |
| else |
| gold_unreachable(); |
| } |
| } |
| |
| // Decide whether the symbol needs an entry in the global part of the primary |
| // GOT, setting global_got_area accordingly. Count the number of global |
| // symbols that are in the primary GOT only because they have dynamic |
| // relocations R_MIPS_REL32 against them (reloc_only_gotno). |
| |
| template<int size, bool big_endian> |
| void |
| Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab) |
| { |
| for (typename Global_got_entry_set::iterator |
| p = this->global_got_symbols_.begin(); |
| p != this->global_got_symbols_.end(); |
| ++p) |
| { |
| Mips_symbol<size>* sym = *p; |
| // Make a final decision about whether the symbol belongs in the |
| // local or global GOT. Symbols that bind locally can (and in the |
| // case of forced-local symbols, must) live in the local GOT. |
| // Those that are aren't in the dynamic symbol table must also |
| // live in the local GOT. |
| |
| if (!sym->should_add_dynsym_entry(symtab) |
| || (sym->got_only_for_calls() |
| ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab)) |
| : symbol_references_local(sym, |
| sym->should_add_dynsym_entry(symtab)))) |
| // The symbol belongs in the local GOT. We no longer need this |
| // entry if it was only used for relocations; those relocations |
| // will be against the null or section symbol instead. |
| sym->set_global_got_area(GGA_NONE); |
| else if (sym->global_got_area() == GGA_RELOC_ONLY) |
| { |
| ++this->reloc_only_gotno_; |
| ++this->global_gotno_ ; |
| } |
| } |
| } |
| |
| // Return the offset of GOT page entry for VALUE. Initialize the entry with |
| // VALUE if it is not initialized. |
| |
| template<int size, bool big_endian> |
| unsigned int |
| Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value, |
| Mips_output_data_got<size, big_endian>* got) |
| { |
| typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value); |
| if (it != this->got_page_offsets_.end()) |
| return it->second; |
| |
| gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_ |
| + (size/8) * this->page_gotno_); |
| |
| unsigned int got_offset = this->got_page_offset_next_; |
| this->got_page_offsets_[value] = got_offset; |
| this->got_page_offset_next_ += size/8; |
| got->update_got_entry(got_offset, value); |
| return got_offset; |
| } |
| |
| // Remove lazy-binding stubs for global symbols in this GOT. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_got_info<size, big_endian>::remove_lazy_stubs( |
| Target_mips<size, big_endian>* target) |
| { |
| for (typename Got_entry_set::iterator |
| p = this->got_entries_.begin(); |
| p != this->got_entries_.end(); |
| ++p) |
| { |
| Mips_got_entry<size, big_endian>* entry = *p; |
| if (entry->is_for_global_symbol()) |
| target->remove_lazy_stub_entry(entry->sym()); |
| } |
| } |
| |
| // Count the number of GOT entries required. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_got_info<size, big_endian>::count_got_entries() |
| { |
| for (typename Got_entry_set::iterator |
| p = this->got_entries_.begin(); |
| p != this->got_entries_.end(); |
| ++p) |
| { |
| this->count_got_entry(*p); |
| } |
| } |
| |
| // Count the number of GOT entries required by ENTRY. Accumulate the result. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_got_info<size, big_endian>::count_got_entry( |
| Mips_got_entry<size, big_endian>* entry) |
| { |
| if (entry->is_tls_entry()) |
| this->tls_gotno_ += mips_tls_got_entries(entry->tls_type()); |
| else if (entry->is_for_local_symbol() |
| || entry->sym()->global_got_area() == GGA_NONE) |
| ++this->local_gotno_; |
| else |
| ++this->global_gotno_; |
| } |
| |
| // Add FROM's GOT entries. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_got_info<size, big_endian>::add_got_entries( |
| Mips_got_info<size, big_endian>* from) |
| { |
| for (typename Got_entry_set::iterator |
| p = from->got_entries_.begin(); |
| p != from->got_entries_.end(); |
| ++p) |
| { |
| Mips_got_entry<size, big_endian>* entry = *p; |
| if (this->got_entries_.find(entry) == this->got_entries_.end()) |
| { |
| Mips_got_entry<size, big_endian>* entry2 = |
| new Mips_got_entry<size, big_endian>(*entry); |
| this->got_entries_.insert(entry2); |
| this->count_got_entry(entry); |
| } |
| } |
| } |
| |
| // Add FROM's GOT page entries. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_got_info<size, big_endian>::add_got_page_count( |
| Mips_got_info<size, big_endian>* from) |
| { |
| this->page_gotno_ += from->page_gotno_; |
| } |
| |
| // Mips_output_data_got methods. |
| |
| // Lay out the GOT. Add local, global and TLS entries. If GOT is |
| // larger than 64K, create multi-GOT. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout, |
| Symbol_table* symtab, const Input_objects* input_objects) |
| { |
| // Decide which symbols need to go in the global part of the GOT and |
| // count the number of reloc-only GOT symbols. |
| this->master_got_info_->count_got_symbols(symtab); |
| |
| // Count the number of GOT entries. |
| this->master_got_info_->count_got_entries(); |
| |
| unsigned int got_size = this->master_got_info_->got_size(); |
| if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE) |
| this->lay_out_multi_got(layout, input_objects); |
| else |
| { |
| // Record that all objects use single GOT. |
| for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); |
| p != input_objects->relobj_end(); |
| ++p) |
| { |
| Mips_relobj<size, big_endian>* object = |
| Mips_relobj<size, big_endian>::as_mips_relobj(*p); |
| if (object->get_got_info() != NULL) |
| object->set_got_info(this->master_got_info_); |
| } |
| |
| this->master_got_info_->add_local_entries(this->target_, layout); |
| this->master_got_info_->add_global_entries(this->target_, layout, |
| /*not used*/-1U); |
| this->master_got_info_->add_tls_entries(this->target_, layout); |
| } |
| } |
| |
| // Create multi-GOT. For every GOT, add local, global and TLS entries. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout, |
| const Input_objects* input_objects) |
| { |
| // Try to merge the GOTs of input objects together, as long as they |
| // don't seem to exceed the maximum GOT size, choosing one of them |
| // to be the primary GOT. |
| this->merge_gots(input_objects); |
| |
| // Every symbol that is referenced in a dynamic relocation must be |
| // present in the primary GOT. |
| this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno()); |
| |
| // Add GOT entries. |
| unsigned int i = 0; |
| unsigned int offset = 0; |
| Mips_got_info<size, big_endian>* g = this->primary_got_; |
| do |
| { |
| g->set_index(i); |
| g->set_offset(offset); |
| |
| g->add_local_entries(this->target_, layout); |
| if (i == 0) |
| g->add_global_entries(this->target_, layout, |
| (this->master_got_info_->global_gotno() |
| - this->master_got_info_->reloc_only_gotno())); |
| else |
| g->add_global_entries(this->target_, layout, /*not used*/-1U); |
| g->add_tls_entries(this->target_, layout); |
| |
| // Forbid global symbols in every non-primary GOT from having |
| // lazy-binding stubs. |
| if (i > 0) |
| g->remove_lazy_stubs(this->target_); |
| |
| ++i; |
| offset += g->got_size(); |
| g = g->next(); |
| } |
| while (g); |
| } |
| |
| // Attempt to merge GOTs of different input objects. Try to use as much as |
| // possible of the primary GOT, since it doesn't require explicit dynamic |
| // relocations, but don't use objects that would reference global symbols |
| // out of the addressable range. Failing the primary GOT, attempt to merge |
| // with the current GOT, or finish the current GOT and then make make the new |
| // GOT current. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_data_got<size, big_endian>::merge_gots( |
| const Input_objects* input_objects) |
| { |
| gold_assert(this->primary_got_ == NULL); |
| Mips_got_info<size, big_endian>* current = NULL; |
| |
| for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); |
| p != input_objects->relobj_end(); |
| ++p) |
| { |
| Mips_relobj<size, big_endian>* object = |
| Mips_relobj<size, big_endian>::as_mips_relobj(*p); |
| |
| Mips_got_info<size, big_endian>* g = object->get_got_info(); |
| if (g == NULL) |
| continue; |
| |
| g->count_got_entries(); |
| |
| // Work out the number of page, local and TLS entries. |
| unsigned int estimate = this->master_got_info_->page_gotno(); |
| if (estimate > g->page_gotno()) |
| estimate = g->page_gotno(); |
| estimate += g->local_gotno() + g->tls_gotno(); |
| |
| // We place TLS GOT entries after both locals and globals. The globals |
| // for the primary GOT may overflow the normal GOT size limit, so be |
| // sure not to merge a GOT which requires TLS with the primary GOT in that |
| // case. This doesn't affect non-primary GOTs. |
| estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno() |
| : g->global_gotno()); |
| |
| unsigned int max_count = |
| Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2; |
| if (estimate <= max_count) |
| { |
| // If we don't have a primary GOT, use it as |
| // a starting point for the primary GOT. |
| if (!this->primary_got_) |
| { |
| this->primary_got_ = g; |
| continue; |
| } |
| |
| // Try merging with the primary GOT. |
| if (this->merge_got_with(g, object, this->primary_got_)) |
| continue; |
| } |
| |
| // If we can merge with the last-created GOT, do it. |
| if (current && this->merge_got_with(g, object, current)) |
| continue; |
| |
| // Well, we couldn't merge, so create a new GOT. Don't check if it |
| // fits; if it turns out that it doesn't, we'll get relocation |
| // overflows anyway. |
| g->set_next(current); |
| current = g; |
| } |
| |
| // If we do not find any suitable primary GOT, create an empty one. |
| if (this->primary_got_ == NULL) |
| this->primary_got_ = new Mips_got_info<size, big_endian>(); |
| |
| // Link primary GOT with secondary GOTs. |
| this->primary_got_->set_next(current); |
| } |
| |
| // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if |
| // this would lead to overflow, true if they were merged successfully. |
| |
| template<int size, bool big_endian> |
| bool |
| Mips_output_data_got<size, big_endian>::merge_got_with( |
| Mips_got_info<size, big_endian>* from, |
| Mips_relobj<size, big_endian>* object, |
| Mips_got_info<size, big_endian>* to) |
| { |
| // Work out how many page entries we would need for the combined GOT. |
| unsigned int estimate = this->master_got_info_->page_gotno(); |
| if (estimate >= from->page_gotno() + to->page_gotno()) |
| estimate = from->page_gotno() + to->page_gotno(); |
| |
| // Conservatively estimate how many local and TLS entries would be needed. |
| estimate += from->local_gotno() + to->local_gotno(); |
| estimate += from->tls_gotno() + to->tls_gotno(); |
| |
| // If we're merging with the primary got, any TLS relocations will |
| // come after the full set of global entries. Otherwise estimate those |
| // conservatively as well. |
| if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0) |
| estimate += this->master_got_info_->global_gotno(); |
| else |
| estimate += from->global_gotno() + to->global_gotno(); |
| |
| // Bail out if the combined GOT might be too big. |
| unsigned int max_count = |
| Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2; |
| if (estimate > max_count) |
| return false; |
| |
| // Transfer the object's GOT information from FROM to TO. |
| to->add_got_entries(from); |
| to->add_got_page_count(from); |
| |
| // Record that OBJECT should use output GOT TO. |
| object->set_got_info(to); |
| |
| return true; |
| } |
| |
| // Write out the GOT. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_data_got<size, big_endian>::do_write(Output_file* of) |
| { |
| typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> > |
| Mips_stubs_entry_set; |
| |
| // Call parent to write out GOT. |
| Output_data_got<size, big_endian>::do_write(of); |
| |
| const off_t offset = this->offset(); |
| const section_size_type oview_size = |
| convert_to_section_size_type(this->data_size()); |
| unsigned char* const oview = of->get_output_view(offset, oview_size); |
| |
| // Needed for fixing values of .got section. |
| this->got_view_ = oview; |
| |
| // Write lazy stub addresses. |
| for (typename Mips_stubs_entry_set::iterator |
| p = this->master_got_info_->global_got_symbols().begin(); |
| p != this->master_got_info_->global_got_symbols().end(); |
| ++p) |
| { |
| Mips_symbol<size>* mips_sym = *p; |
| if (mips_sym->has_lazy_stub()) |
| { |
| Valtype* wv = reinterpret_cast<Valtype*>( |
| oview + this->get_primary_got_offset(mips_sym)); |
| Valtype value = |
| this->target_->mips_stubs_section()->stub_address(mips_sym); |
| elfcpp::Swap<size, big_endian>::writeval(wv, value); |
| } |
| } |
| |
| // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries. |
| for (typename Mips_stubs_entry_set::iterator |
| p = this->master_got_info_->global_got_symbols().begin(); |
| p != this->master_got_info_->global_got_symbols().end(); |
| ++p) |
| { |
| Mips_symbol<size>* mips_sym = *p; |
| if (!this->multi_got() |
| && (mips_sym->is_mips16() || mips_sym->is_micromips()) |
| && mips_sym->global_got_area() == GGA_NONE |
| && mips_sym->has_got_offset(GOT_TYPE_STANDARD)) |
| { |
| Valtype* wv = reinterpret_cast<Valtype*>( |
| oview + mips_sym->got_offset(GOT_TYPE_STANDARD)); |
| Valtype value = elfcpp::Swap<size, big_endian>::readval(wv); |
| if (value != 0) |
| { |
| value |= 1; |
| elfcpp::Swap<size, big_endian>::writeval(wv, value); |
| } |
| } |
| } |
| |
| if (!this->secondary_got_relocs_.empty()) |
| { |
| // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global |
| // secondary GOT entries with non-zero initial value copy the value |
| // to the corresponding primary GOT entry, and set the secondary GOT |
| // entry to zero. |
| // TODO(sasa): This is workaround. It needs to be investigated further. |
| |
| for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i) |
| { |
| Static_reloc& reloc(this->secondary_got_relocs_[i]); |
| if (reloc.symbol_is_global()) |
| { |
| Mips_symbol<size>* gsym = reloc.symbol(); |
| gold_assert(gsym != NULL); |
| |
| unsigned got_offset = reloc.got_offset(); |
| gold_assert(got_offset < oview_size); |
| |
| // Find primary GOT entry. |
| Valtype* wv_prim = reinterpret_cast<Valtype*>( |
| oview + this->get_primary_got_offset(gsym)); |
| |
| // Find secondary GOT entry. |
| Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset); |
| |
| Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec); |
| if (value != 0) |
| { |
| elfcpp::Swap<size, big_endian>::writeval(wv_prim, value); |
| elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0); |
| gsym->set_applied_secondary_got_fixup(); |
| } |
| } |
| } |
| |
| of->write_output_view(offset, oview_size, oview); |
| } |
| |
| // We are done if there is no fix up. |
| if (this->static_relocs_.empty()) |
| return; |
| |
| Output_segment* tls_segment = this->layout_->tls_segment(); |
| gold_assert(tls_segment != NULL); |
| |
| for (size_t i = 0; i < this->static_relocs_.size(); ++i) |
| { |
| Static_reloc& reloc(this->static_relocs_[i]); |
| |
| Mips_address value; |
| if (!reloc.symbol_is_global()) |
| { |
| Sized_relobj_file<size, big_endian>* object = reloc.relobj(); |
| const Symbol_value<size>* psymval = |
| object->local_symbol(reloc.index()); |
| |
| // We are doing static linking. Issue an error and skip this |
| // relocation if the symbol is undefined or in a discarded_section. |
| bool is_ordinary; |
| unsigned int shndx = psymval->input_shndx(&is_ordinary); |
| if ((shndx == elfcpp::SHN_UNDEF) |
| || (is_ordinary |
| && shndx != elfcpp::SHN_UNDEF |
| && !object->is_section_included(shndx) |
| && !this->symbol_table_->is_section_folded(object, shndx))) |
| { |
| gold_error(_("undefined or discarded local symbol %u from " |
| " object %s in GOT"), |
| reloc.index(), reloc.relobj()->name().c_str()); |
| continue; |
| } |
| |
| value = psymval->value(object, 0); |
| } |
| else |
| { |
| const Mips_symbol<size>* gsym = reloc.symbol(); |
| gold_assert(gsym != NULL); |
| |
| // We are doing static linking. Issue an error and skip this |
| // relocation if the symbol is undefined or in a discarded_section |
| // unless it is a weakly_undefined symbol. |
| if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined()) |
| && !gsym->is_weak_undefined()) |
| { |
| gold_error(_("undefined or discarded symbol %s in GOT"), |
| gsym->name()); |
| continue; |
| } |
| |
| if (!gsym->is_weak_undefined()) |
| value = gsym->value(); |
| else |
| value = 0; |
| } |
| |
| unsigned got_offset = reloc.got_offset(); |
| gold_assert(got_offset < oview_size); |
| |
| Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset); |
| Valtype x; |
| |
| switch (reloc.r_type()) |
| { |
| case elfcpp::R_MIPS_TLS_DTPMOD32: |
| case elfcpp::R_MIPS_TLS_DTPMOD64: |
| x = value; |
| break; |
| case elfcpp::R_MIPS_TLS_DTPREL32: |
| case elfcpp::R_MIPS_TLS_DTPREL64: |
| x = value - elfcpp::DTP_OFFSET; |
| break; |
| case elfcpp::R_MIPS_TLS_TPREL32: |
| case elfcpp::R_MIPS_TLS_TPREL64: |
| x = value - elfcpp::TP_OFFSET; |
| break; |
| default: |
| gold_unreachable(); |
| break; |
| } |
| |
| elfcpp::Swap<size, big_endian>::writeval(wv, x); |
| } |
| |
| of->write_output_view(offset, oview_size, oview); |
| } |
| |
| // Mips_relobj methods. |
| |
| // Count the local symbols. The Mips backend needs to know if a symbol |
| // is a MIPS16 or microMIPS function or not. For global symbols, it is easy |
| // because the Symbol object keeps the ELF symbol type and st_other field. |
| // For local symbol it is harder because we cannot access this information. |
| // So we override the do_count_local_symbol in parent and scan local symbols to |
| // mark MIPS16 and microMIPS functions. This is not the most efficient way but |
| // I do not want to slow down other ports by calling a per symbol target hook |
| // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_relobj<size, big_endian>::do_count_local_symbols( |
| Stringpool_template<char>* pool, |
| Stringpool_template<char>* dynpool) |
| { |
| // Ask parent to count the local symbols. |
| Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool); |
| const unsigned int loccount = this->local_symbol_count(); |
| if (loccount == 0) |
| return; |
| |
| // Initialize the mips16 and micromips function bit-vector. |
| this->local_symbol_is_mips16_.resize(loccount, false); |
| this->local_symbol_is_micromips_.resize(loccount, false); |
| |
| // Read the symbol table section header. |
| const unsigned int symtab_shndx = this->symtab_shndx(); |
| elfcpp::Shdr<size, big_endian> |
| symtabshdr(this, this->elf_file()->section_header(symtab_shndx)); |
| gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); |
| |
| // Read the local symbols. |
| const int sym_size = elfcpp::Elf_sizes<size>::sym_size; |
| gold_assert(loccount == symtabshdr.get_sh_info()); |
| off_t locsize = loccount * sym_size; |
| const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), |
| locsize, true, true); |
| |
| // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols. |
| |
| // Skip the first dummy symbol. |
| psyms += sym_size; |
| for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) |
| { |
| elfcpp::Sym<size, big_endian> sym(psyms); |
| unsigned char st_other = sym.get_st_other(); |
| this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other); |
| this->local_symbol_is_micromips_[i] = |
| elfcpp::elf_st_is_micromips(st_other); |
| } |
| } |
| |
| // Read the symbol information. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd) |
| { |
| // Call parent class to read symbol information. |
| this->base_read_symbols(sd); |
| |
| // If this input file is a binary file, it has no processor |
| // specific data. |
| Input_file::Format format = this->input_file()->format(); |
| if (format != Input_file::FORMAT_ELF) |
| { |
| gold_assert(format == Input_file::FORMAT_BINARY); |
| this->merge_processor_specific_data_ = false; |
| return; |
| } |
| |
| // Read processor-specific flags in ELF file header. |
| const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset, |
| elfcpp::Elf_sizes<size>::ehdr_size, |
| true, false); |
| elfcpp::Ehdr<size, big_endian> ehdr(pehdr); |
| this->processor_specific_flags_ = ehdr.get_e_flags(); |
| |
| // Get the section names. |
| const unsigned char* pnamesu = sd->section_names->data(); |
| const char* pnames = reinterpret_cast<const char*>(pnamesu); |
| |
| // Initialize the mips16 stub section bit-vectors. |
| this->section_is_mips16_fn_stub_.resize(this->shnum(), false); |
| this->section_is_mips16_call_stub_.resize(this->shnum(), false); |
| this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false); |
| |
| const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size; |
| const unsigned char* pshdrs = sd->section_headers->data(); |
| const unsigned char* ps = pshdrs + shdr_size; |
| bool must_merge_processor_specific_data = false; |
| for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size) |
| { |
| elfcpp::Shdr<size, big_endian> shdr(ps); |
| |
| // Sometimes an object has no contents except the section name string |
| // table and an empty symbol table with the undefined symbol. We |
| // don't want to merge processor-specific data from such an object. |
| if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB) |
| { |
| // Symbol table is not empty. |
| const typename elfcpp::Elf_types<size>::Elf_WXword sym_size = |
| elfcpp::Elf_sizes<size>::sym_size; |
| if (shdr.get_sh_size() > sym_size) |
| must_merge_processor_specific_data = true; |
| } |
| else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB) |
| // If this is neither an empty symbol table nor a string table, |
| // be conservative. |
| must_merge_processor_specific_data = true; |
| |
| if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO) |
| { |
| this->has_reginfo_section_ = true; |
| // Read the gp value that was used to create this object. We need the |
| // gp value while processing relocs. The .reginfo section is not used |
| // in the 64-bit MIPS ELF ABI. |
| section_offset_type section_offset = shdr.get_sh_offset(); |
| section_size_type section_size = |
| convert_to_section_size_type(shdr.get_sh_size()); |
| const unsigned char* view = |
| this->get_view(section_offset, section_size, true, false); |
| |
| this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20); |
| |
| // Read the rest of .reginfo. |
| this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view); |
| this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4); |
| this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8); |
| this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12); |
| this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16); |
| } |
| |
| if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES) |
| { |
| gold_assert(this->attributes_section_data_ == NULL); |
| section_offset_type section_offset = shdr.get_sh_offset(); |
| section_size_type section_size = |
| convert_to_section_size_type(shdr.get_sh_size()); |
| const unsigned char* view = |
| this->get_view(section_offset, section_size, true, false); |
| this->attributes_section_data_ = |
| new Attributes_section_data(view, section_size); |
| } |
| |
| if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS) |
| { |
| gold_assert(this->abiflags_ == NULL); |
| section_offset_type section_offset = shdr.get_sh_offset(); |
| section_size_type section_size = |
| convert_to_section_size_type(shdr.get_sh_size()); |
| const unsigned char* view = |
| this->get_view(section_offset, section_size, true, false); |
| this->abiflags_ = new Mips_abiflags<big_endian>(); |
| |
| this->abiflags_->version = |
| elfcpp::Swap<16, big_endian>::readval(view); |
| if (this->abiflags_->version != 0) |
| { |
| gold_error(_("%s: .MIPS.abiflags section has " |
| "unsupported version %u"), |
| this->name().c_str(), |
| this->abiflags_->version); |
| break; |
| } |
| this->abiflags_->isa_level = |
| elfcpp::Swap<8, big_endian>::readval(view + 2); |
| this->abiflags_->isa_rev = |
| elfcpp::Swap<8, big_endian>::readval(view + 3); |
| this->abiflags_->gpr_size = |
| elfcpp::Swap<8, big_endian>::readval(view + 4); |
| this->abiflags_->cpr1_size = |
| elfcpp::Swap<8, big_endian>::readval(view + 5); |
| this->abiflags_->cpr2_size = |
| elfcpp::Swap<8, big_endian>::readval(view + 6); |
| this->abiflags_->fp_abi = |
| elfcpp::Swap<8, big_endian>::readval(view + 7); |
| this->abiflags_->isa_ext = |
| elfcpp::Swap<32, big_endian>::readval(view + 8); |
| this->abiflags_->ases = |
| elfcpp::Swap<32, big_endian>::readval(view + 12); |
| this->abiflags_->flags1 = |
| elfcpp::Swap<32, big_endian>::readval(view + 16); |
| this->abiflags_->flags2 = |
| elfcpp::Swap<32, big_endian>::readval(view + 20); |
| } |
| |
| // In the 64-bit ABI, .MIPS.options section holds register information. |
| // A SHT_MIPS_OPTIONS section contains a series of options, each of which |
| // starts with this header: |
| // |
| // typedef struct |
| // { |
| // // Type of option. |
| // unsigned char kind[1]; |
| // // Size of option descriptor, including header. |
| // unsigned char size[1]; |
| // // Section index of affected section, or 0 for global option. |
| // unsigned char section[2]; |
| // // Information specific to this kind of option. |
| // unsigned char info[4]; |
| // }; |
| // |
| // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set |
| // the gp value based on what we find. We may see both SHT_MIPS_REGINFO |
| // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree. |
| |
| if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS) |
| { |
| section_offset_type section_offset = shdr.get_sh_offset(); |
| section_size_type section_size = |
| convert_to_section_size_type(shdr.get_sh_size()); |
| const unsigned char* view = |
| this->get_view(section_offset, section_size, true, false); |
| const unsigned char* end = view + section_size; |
| |
| while (view + 8 <= end) |
| { |
| unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view); |
| unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1); |
| if (sz < 8) |
| { |
| gold_error(_("%s: Warning: bad `%s' option size %u smaller " |
| "than its header"), |
| this->name().c_str(), |
| this->mips_elf_options_section_name(), sz); |
| break; |
| } |
| |
| if (this->is_n64() && kind == elfcpp::ODK_REGINFO) |
| { |
| // In the 64 bit ABI, an ODK_REGINFO option is the following |
| // structure. The info field of the options header is not |
| // used. |
| // |
| // typedef struct |
| // { |
| // // Mask of general purpose registers used. |
| // unsigned char ri_gprmask[4]; |
| // // Padding. |
| // unsigned char ri_pad[4]; |
| // // Mask of co-processor registers used. |
| // unsigned char ri_cprmask[4][4]; |
| // // GP register value for this object file. |
| // unsigned char ri_gp_value[8]; |
| // }; |
| |
| this->gp_ = elfcpp::Swap<size, big_endian>::readval(view |
| + 32); |
| } |
| else if (kind == elfcpp::ODK_REGINFO) |
| { |
| // In the 32 bit ABI, an ODK_REGINFO option is the following |
| // structure. The info field of the options header is not |
| // used. The same structure is used in .reginfo section. |
| // |
| // typedef struct |
| // { |
| // unsigned char ri_gprmask[4]; |
| // unsigned char ri_cprmask[4][4]; |
| // unsigned char ri_gp_value[4]; |
| // }; |
| |
| this->gp_ = elfcpp::Swap<size, big_endian>::readval(view |
| + 28); |
| } |
| view += sz; |
| } |
| } |
| |
| const char* name = pnames + shdr.get_sh_name(); |
| this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name); |
| this->section_is_mips16_call_stub_[i] = |
| is_prefix_of(".mips16.call.", name); |
| this->section_is_mips16_call_fp_stub_[i] = |
| is_prefix_of(".mips16.call.fp.", name); |
| |
| if (strcmp(name, ".pdr") == 0) |
| { |
| gold_assert(this->pdr_shndx_ == -1U); |
| this->pdr_shndx_ = i; |
| } |
| } |
| |
| // This is rare. |
| if (!must_merge_processor_specific_data) |
| this->merge_processor_specific_data_ = false; |
| } |
| |
| // Discard MIPS16 stub secions that are not needed. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab) |
| { |
| for (typename Mips16_stubs_int_map::const_iterator |
| it = this->mips16_stub_sections_.begin(); |
| it != this->mips16_stub_sections_.end(); ++it) |
| { |
| Mips16_stub_section<size, big_endian>* stub_section = it->second; |
| if (!stub_section->is_target_found()) |
| { |
| gold_error(_("no relocation found in mips16 stub section '%s'"), |
| stub_section->object() |
| ->section_name(stub_section->shndx()).c_str()); |
| } |
| |
| bool discard = false; |
| if (stub_section->is_for_local_function()) |
| { |
| if (stub_section->is_fn_stub()) |
| { |
| // This stub is for a local symbol. This stub will only |
| // be needed if there is some relocation in this object, |
| // other than a 16 bit function call, which refers to this |
| // symbol. |
| if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym())) |
| discard = true; |
| else |
| this->add_local_mips16_fn_stub(stub_section); |
| } |
| else |
| { |
| // This stub is for a local symbol. This stub will only |
| // be needed if there is some relocation (R_MIPS16_26) in |
| // this object that refers to this symbol. |
| gold_assert(stub_section->is_call_stub() |
| || stub_section->is_call_fp_stub()); |
| if (!this->has_local_16bit_call_relocs(stub_section->r_sym())) |
| discard = true; |
| else |
| this->add_local_mips16_call_stub(stub_section); |
| } |
| } |
| else |
| { |
| Mips_symbol<size>* gsym = stub_section->gsym(); |
| if (stub_section->is_fn_stub()) |
| { |
| if (gsym->has_mips16_fn_stub()) |
| // We already have a stub for this function. |
| discard = true; |
| else |
| { |
| gsym->set_mips16_fn_stub(stub_section); |
| if (gsym->should_add_dynsym_entry(symtab)) |
| { |
| // If we have a MIPS16 function with a stub, the |
| // dynamic symbol must refer to the stub, since only |
| // the stub uses the standard calling conventions. |
| gsym->set_need_fn_stub(); |
| if (gsym->is_from_dynobj()) |
| gsym->set_needs_dynsym_value(); |
| } |
| } |
| if (!gsym->need_fn_stub()) |
| discard = true; |
| } |
| else if (stub_section->is_call_stub()) |
| { |
| if (gsym->is_mips16()) |
| // We don't need the call_stub; this is a 16 bit |
| // function, so calls from other 16 bit functions are |
| // OK. |
| discard = true; |
| else if (gsym->has_mips16_call_stub()) |
| // We already have a stub for this function. |
| discard = true; |
| else |
| gsym->set_mips16_call_stub(stub_section); |
| } |
| else |
| { |
| gold_assert(stub_section->is_call_fp_stub()); |
| if (gsym->is_mips16()) |
| // We don't need the call_stub; this is a 16 bit |
| // function, so calls from other 16 bit functions are |
| // OK. |
| discard = true; |
| else if (gsym->has_mips16_call_fp_stub()) |
| // We already have a stub for this function. |
| discard = true; |
| else |
| gsym->set_mips16_call_fp_stub(stub_section); |
| } |
| } |
| if (discard) |
| this->set_output_section(stub_section->shndx(), NULL); |
| } |
| } |
| |
| // Mips_output_data_la25_stub methods. |
| |
| // Template for standard LA25 stub. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] = |
| { |
| 0x3c190000, // lui $25,%hi(func) |
| 0x08000000, // j func |
| 0x27390000, // add $25,$25,%lo(func) |
| 0x00000000 // nop |
| }; |
| |
| // Template for microMIPS LA25 stub. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] = |
| { |
| 0x41b9, 0x0000, // lui t9,%hi(func) |
| 0xd400, 0x0000, // j func |
| 0x3339, 0x0000, // addiu t9,t9,%lo(func) |
| 0x0000, 0x0000 // nop |
| }; |
| |
| // Create la25 stub for a symbol. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_data_la25_stub<size, big_endian>::create_la25_stub( |
| Symbol_table* symtab, Target_mips<size, big_endian>* target, |
| Mips_symbol<size>* gsym) |
| { |
| if (!gsym->has_la25_stub()) |
| { |
| gsym->set_la25_stub_offset(this->symbols_.size() * 16); |
| this->symbols_.push_back(gsym); |
| this->create_stub_symbol(gsym, symtab, target, 16); |
| } |
| } |
| |
| // Create a symbol for SYM stub's value and size, to help make the disassembly |
| // easier to read. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol( |
| Mips_symbol<size>* sym, Symbol_table* symtab, |
| Target_mips<size, big_endian>* target, uint64_t symsize) |
| { |
| std::string name(".pic."); |
| name += sym->name(); |
| |
| unsigned int offset = sym->la25_stub_offset(); |
| if (sym->is_micromips()) |
| offset |= 1; |
| |
| // Make it a local function. |
| Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL, |
| Symbol_table::PREDEFINED, |
| target->la25_stub_section(), |
| offset, symsize, elfcpp::STT_FUNC, |
| elfcpp::STB_LOCAL, |
| elfcpp::STV_DEFAULT, 0, |
| false, false); |
| new_sym->set_is_forced_local(); |
| } |
| |
| // Write out la25 stubs. This uses the hand-coded instructions above, |
| // and adjusts them as needed. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of) |
| { |
| const off_t offset = this->offset(); |
| const section_size_type oview_size = |
| convert_to_section_size_type(this->data_size()); |
| unsigned char* const oview = of->get_output_view(offset, oview_size); |
| |
| for (typename std::vector<Mips_symbol<size>*>::iterator |
| p = this->symbols_.begin(); |
| p != this->symbols_.end(); |
| ++p) |
| { |
| Mips_symbol<size>* sym = *p; |
| unsigned char* pov = oview + sym->la25_stub_offset(); |
| |
| Mips_address target = sym->value(); |
| if (!sym->is_micromips()) |
| { |
| elfcpp::Swap<32, big_endian>::writeval(pov, |
| la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff)); |
| elfcpp::Swap<32, big_endian>::writeval(pov + 4, |
| la25_stub_entry[1] | ((target >> 2) & 0x3ffffff)); |
| elfcpp::Swap<32, big_endian>::writeval(pov + 8, |
| la25_stub_entry[2] | (target & 0xffff)); |
| elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]); |
| } |
| else |
| { |
| target |= 1; |
| // First stub instruction. Paste high 16-bits of the target. |
| elfcpp::Swap<16, big_endian>::writeval(pov, |
| la25_stub_micromips_entry[0]); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 2, |
| ((target + 0x8000) >> 16) & 0xffff); |
| // Second stub instruction. Paste low 26-bits of the target, shifted |
| // right by 1. |
| elfcpp::Swap<16, big_endian>::writeval(pov + 4, |
| la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff)); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 6, |
| la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff)); |
| // Third stub instruction. Paste low 16-bits of the target. |
| elfcpp::Swap<16, big_endian>::writeval(pov + 8, |
| la25_stub_micromips_entry[4]); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff); |
| // Fourth stub instruction. |
| elfcpp::Swap<16, big_endian>::writeval(pov + 12, |
| la25_stub_micromips_entry[6]); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 14, |
| la25_stub_micromips_entry[7]); |
| } |
| } |
| |
| of->write_output_view(offset, oview_size, oview); |
| } |
| |
| // Mips_output_data_plt methods. |
| |
| // The format of the first PLT entry in an O32 executable. |
| template<int size, bool big_endian> |
| const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] = |
| { |
| 0x3c1c0000, // lui $28, %hi(&GOTPLT[0]) |
| 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28) |
| 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0]) |
| 0x031cc023, // subu $24, $24, $28 |
| 0x03e07825, // or $15, $31, zero |
| 0x0018c082, // srl $24, $24, 2 |
| 0x0320f809, // jalr $25 |
| 0x2718fffe // subu $24, $24, 2 |
| }; |
| |
| // The format of the first PLT entry in an N32 executable. Different |
| // because gp ($28) is not available; we use t2 ($14) instead. |
| template<int size, bool big_endian> |
| const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] = |
| { |
| 0x3c0e0000, // lui $14, %hi(&GOTPLT[0]) |
| 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14) |
| 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0]) |
| 0x030ec023, // subu $24, $24, $14 |
| 0x03e07825, // or $15, $31, zero |
| 0x0018c082, // srl $24, $24, 2 |
| 0x0320f809, // jalr $25 |
| 0x2718fffe // subu $24, $24, 2 |
| }; |
| |
| // The format of the first PLT entry in an N64 executable. Different |
| // from N32 because of the increased size of GOT entries. |
| template<int size, bool big_endian> |
| const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] = |
| { |
| 0x3c0e0000, // lui $14, %hi(&GOTPLT[0]) |
| 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14) |
| 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0]) |
| 0x030ec023, // subu $24, $24, $14 |
| 0x03e07825, // or $15, $31, zero |
| 0x0018c0c2, // srl $24, $24, 3 |
| 0x0320f809, // jalr $25 |
| 0x2718fffe // subu $24, $24, 2 |
| }; |
| |
| // The format of the microMIPS first PLT entry in an O32 executable. |
| // We rely on v0 ($2) rather than t8 ($24) to contain the address |
| // of the GOTPLT entry handled, so this stub may only be used when |
| // all the subsequent PLT entries are microMIPS code too. |
| // |
| // The trailing NOP is for alignment and correct disassembly only. |
| template<int size, bool big_endian> |
| const uint32_t Mips_output_data_plt<size, big_endian>:: |
| plt0_entry_micromips_o32[] = |
| { |
| 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - . |
| 0xff23, 0x0000, // lw $25, 0($3) |
| 0x0535, // subu $2, $2, $3 |
| 0x2525, // srl $2, $2, 2 |
| 0x3302, 0xfffe, // subu $24, $2, 2 |
| 0x0dff, // move $15, $31 |
| 0x45f9, // jalrs $25 |
| 0x0f83, // move $28, $3 |
| 0x0c00 // nop |
| }; |
| |
| // The format of the microMIPS first PLT entry in an O32 executable |
| // in the insn32 mode. |
| template<int size, bool big_endian> |
| const uint32_t Mips_output_data_plt<size, big_endian>:: |
| plt0_entry_micromips32_o32[] = |
| { |
| 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0]) |
| 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28) |
| 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0]) |
| 0x0398, 0xc1d0, // subu $24, $24, $28 |
| 0x001f, 0x7a90, // or $15, $31, zero |
| 0x0318, 0x1040, // srl $24, $24, 2 |
| 0x03f9, 0x0f3c, // jalr $25 |
| 0x3318, 0xfffe // subu $24, $24, 2 |
| }; |
| |
| // The format of subsequent standard entries in the PLT. |
| template<int size, bool big_endian> |
| const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] = |
| { |
| 0x3c0f0000, // lui $15, %hi(.got.plt entry) |
| 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15) |
| 0x03200008, // jr $25 |
| 0x25f80000 // addiu $24, $15, %lo(.got.plt entry) |
| }; |
| |
| // The format of subsequent R6 PLT entries. |
| template<int size, bool big_endian> |
| const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] = |
| { |
| 0x3c0f0000, // lui $15, %hi(.got.plt entry) |
| 0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15) |
| 0x03200009, // jr $25 |
| 0x25f80000 // addiu $24, $15, %lo(.got.plt entry) |
| }; |
| |
| // The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a |
| // temporary because t8 ($24) and t9 ($25) are not directly addressable. |
| // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3). |
| // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect |
| // target function address in register v0. |
| template<int size, bool big_endian> |
| const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] = |
| { |
| 0xb303, // lw $3, 12($pc) |
| 0x651b, // move $24, $3 |
| 0x9b60, // lw $3, 0($3) |
| 0xeb00, // jr $3 |
| 0x653b, // move $25, $3 |
| 0x6500, // nop |
| 0x0000, 0x0000 // .word (.got.plt entry) |
| }; |
| |
| // The format of subsequent microMIPS o32 PLT entries. We use v0 ($2) |
| // as a temporary because t8 ($24) is not addressable with ADDIUPC. |
| template<int size, bool big_endian> |
| const uint32_t Mips_output_data_plt<size, big_endian>:: |
| plt_entry_micromips_o32[] = |
| { |
| 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - . |
| 0xff22, 0x0000, // lw $25, 0($2) |
| 0x4599, // jr $25 |
| 0x0f02 // move $24, $2 |
| }; |
| |
| // The format of subsequent microMIPS o32 PLT entries in the insn32 mode. |
| template<int size, bool big_endian> |
| const uint32_t Mips_output_data_plt<size, big_endian>:: |
| plt_entry_micromips32_o32[] = |
| { |
| 0x41af, 0x0000, // lui $15, %hi(.got.plt entry) |
| 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15) |
| 0x0019, 0x0f3c, // jr $25 |
| 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry) |
| }; |
| |
| // Add an entry to the PLT for a symbol referenced by r_type relocation. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym, |
| unsigned int r_type) |
| { |
| gold_assert(!gsym->has_plt_offset()); |
| |
| // Final PLT offset for a symbol will be set in method set_plt_offsets(). |
| gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry) |
| + sizeof(plt0_entry_o32)); |
| this->symbols_.push_back(gsym); |
| |
| // Record whether the relocation requires a standard MIPS |
| // or a compressed code entry. |
| if (jal_reloc(r_type)) |
| { |
| if (r_type == elfcpp::R_MIPS_26) |
| gsym->set_needs_mips_plt(true); |
| else |
| gsym->set_needs_comp_plt(true); |
| } |
| |
| section_offset_type got_offset = this->got_plt_->current_data_size(); |
| |
| // Every PLT entry needs a GOT entry which points back to the PLT |
| // entry (this will be changed by the dynamic linker, normally |
| // lazily when the function is called). |
| this->got_plt_->set_current_data_size(got_offset + size/8); |
| |
| gsym->set_needs_dynsym_entry(); |
| this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_, |
| got_offset); |
| } |
| |
| // Set final PLT offsets. For each symbol, determine whether standard or |
| // compressed (MIPS16 or microMIPS) PLT entry is used. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_data_plt<size, big_endian>::set_plt_offsets() |
| { |
| // The sizes of individual PLT entries. |
| unsigned int plt_mips_entry_size = this->standard_plt_entry_size(); |
| unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi() |
| ? this->compressed_plt_entry_size() : 0); |
| |
| for (typename std::vector<Mips_symbol<size>*>::const_iterator |
| p = this->symbols_.begin(); p != this->symbols_.end(); ++p) |
| { |
| Mips_symbol<size>* mips_sym = *p; |
| |
| // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64, |
| // so always use a standard entry there. |
| // |
| // If the symbol has a MIPS16 call stub and gets a PLT entry, then |
| // all MIPS16 calls will go via that stub, and there is no benefit |
| // to having a MIPS16 entry. And in the case of call_stub a |
| // standard entry actually has to be used as the stub ends with a J |
| // instruction. |
| if (this->target_->is_output_newabi() |
| || mips_sym->has_mips16_call_stub() |
| || mips_sym->has_mips16_call_fp_stub()) |
| { |
| mips_sym->set_needs_mips_plt(true); |
| mips_sym->set_needs_comp_plt(false); |
| } |
| |
| // Otherwise, if there are no direct calls to the function, we |
| // have a free choice of whether to use standard or compressed |
| // entries. Prefer microMIPS entries if the object is known to |
| // contain microMIPS code, so that it becomes possible to create |
| // pure microMIPS binaries. Prefer standard entries otherwise, |
| // because MIPS16 ones are no smaller and are usually slower. |
| if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt()) |
| { |
| if (this->target_->is_output_micromips()) |
| mips_sym->set_needs_comp_plt(true); |
| else |
| mips_sym->set_needs_mips_plt(true); |
| } |
| |
| if (mips_sym->needs_mips_plt()) |
| { |
| mips_sym->set_mips_plt_offset(this->plt_mips_offset_); |
| this->plt_mips_offset_ += plt_mips_entry_size; |
| } |
| if (mips_sym->needs_comp_plt()) |
| { |
| mips_sym->set_comp_plt_offset(this->plt_comp_offset_); |
| this->plt_comp_offset_ += plt_comp_entry_size; |
| } |
| } |
| |
| // Figure out the size of the PLT header if we know that we are using it. |
| if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0) |
| this->plt_header_size_ = this->get_plt_header_size(); |
| } |
| |
| // Write out the PLT. This uses the hand-coded instructions above, |
| // and adjusts them as needed. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_data_plt<size, big_endian>::do_write(Output_file* of) |
| { |
| const off_t offset = this->offset(); |
| const section_size_type oview_size = |
| convert_to_section_size_type(this->data_size()); |
| unsigned char* const oview = of->get_output_view(offset, oview_size); |
| |
| const off_t gotplt_file_offset = this->got_plt_->offset(); |
| const section_size_type gotplt_size = |
| convert_to_section_size_type(this->got_plt_->data_size()); |
| unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset, |
| gotplt_size); |
| unsigned char* pov = oview; |
| |
| Mips_address plt_address = this->address(); |
| |
| // Calculate the address of .got.plt. |
| Mips_address gotplt_addr = this->got_plt_->address(); |
| Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff; |
| Mips_address gotplt_addr_low = gotplt_addr & 0xffff; |
| |
| // The PLT sequence is not safe for N64 if .got.plt's address can |
| // not be loaded in two instructions. |
| gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0 |
| || ~(gotplt_addr | 0x7fffffff) == 0); |
| |
| // Write the PLT header. |
| const uint32_t* plt0_entry = this->get_plt_header_entry(); |
| if (plt0_entry == plt0_entry_micromips_o32) |
| { |
| // Write microMIPS PLT header. |
| gold_assert(gotplt_addr % 4 == 0); |
| |
| Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3); |
| |
| // ADDIUPC has a span of +/-16MB, check we're in range. |
| if (gotpc_offset + 0x1000000 >= 0x2000000) |
| { |
| gold_error(_(".got.plt offset of %ld from .plt beyond the range of " |
| "ADDIUPC"), (long)gotpc_offset); |
| return; |
| } |
| |
| elfcpp::Swap<16, big_endian>::writeval(pov, |
| plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f)); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 2, |
| (gotpc_offset >> 2) & 0xffff); |
| pov += 4; |
| for (unsigned int i = 2; |
| i < (sizeof(plt0_entry_micromips_o32) |
| / sizeof(plt0_entry_micromips_o32[0])); |
| i++) |
| { |
| elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]); |
| pov += 2; |
| } |
| } |
| else if (plt0_entry == plt0_entry_micromips32_o32) |
| { |
| // Write microMIPS PLT header in insn32 mode. |
| elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low); |
| pov += 12; |
| for (unsigned int i = 6; |
| i < (sizeof(plt0_entry_micromips32_o32) |
| / sizeof(plt0_entry_micromips32_o32[0])); |
| i++) |
| { |
| elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]); |
| pov += 2; |
| } |
| } |
| else |
| { |
| // Write standard PLT header. |
| elfcpp::Swap<32, big_endian>::writeval(pov, |
| plt0_entry[0] | gotplt_addr_high); |
| elfcpp::Swap<32, big_endian>::writeval(pov + 4, |
| plt0_entry[1] | gotplt_addr_low); |
| elfcpp::Swap<32, big_endian>::writeval(pov + 8, |
| plt0_entry[2] | gotplt_addr_low); |
| pov += 12; |
| for (int i = 3; i < 8; i++) |
| { |
| elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]); |
| pov += 4; |
| } |
| } |
| |
| |
| unsigned char* gotplt_pov = gotplt_view; |
| unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE |
| |
| // The first two entries in .got.plt are reserved. |
| elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0); |
| elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0); |
| |
| unsigned int gotplt_offset = 2 * got_entry_size; |
| gotplt_pov += 2 * got_entry_size; |
| |
| // Calculate the address of the PLT header. |
| Mips_address header_address = (plt_address |
| + (this->is_plt_header_compressed() ? 1 : 0)); |
| |
| // Initialize compressed PLT area view. |
| unsigned char* pov2 = pov + this->plt_mips_offset_; |
| |
| // Write the PLT entries. |
| for (typename std::vector<Mips_symbol<size>*>::const_iterator |
| p = this->symbols_.begin(); |
| p != this->symbols_.end(); |
| ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size) |
| { |
| Mips_symbol<size>* mips_sym = *p; |
| |
| // Calculate the address of the .got.plt entry. |
| uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset); |
| uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16) |
| & 0xffff); |
| uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff; |
| |
| // Initially point the .got.plt entry at the PLT header. |
| if (this->target_->is_output_n64()) |
| elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address); |
| else |
| elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address); |
| |
| // Now handle the PLT itself. First the standard entry. |
| if (mips_sym->has_mips_plt_offset()) |
| { |
| // Pick the load opcode (LW or LD). |
| uint64_t load = this->target_->is_output_n64() ? 0xdc000000 |
| : 0x8c000000; |
| |
| const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6 |
| : plt_entry; |
| |
| // Fill in the PLT entry itself. |
| elfcpp::Swap<32, big_endian>::writeval(pov, |
| entry[0] | gotplt_entry_addr_hi); |
| elfcpp::Swap<32, big_endian>::writeval(pov + 4, |
| entry[1] | gotplt_entry_addr_lo | load); |
| elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]); |
| elfcpp::Swap<32, big_endian>::writeval(pov + 12, |
| entry[3] | gotplt_entry_addr_lo); |
| pov += 16; |
| } |
| |
| // Now the compressed entry. They come after any standard ones. |
| if (mips_sym->has_comp_plt_offset()) |
| { |
| if (!this->target_->is_output_micromips()) |
| { |
| // Write MIPS16 PLT entry. |
| const uint32_t* plt_entry = plt_entry_mips16_o32; |
| |
| elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]); |
| elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]); |
| elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]); |
| elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]); |
| elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]); |
| elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]); |
| elfcpp::Swap<32, big_endian>::writeval(pov2 + 12, |
| gotplt_entry_addr); |
| pov2 += 16; |
| } |
| else if (this->target_->use_32bit_micromips_instructions()) |
| { |
| // Write microMIPS PLT entry in insn32 mode. |
| const uint32_t* plt_entry = plt_entry_micromips32_o32; |
| |
| elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]); |
| elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, |
| gotplt_entry_addr_hi); |
| elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]); |
| elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, |
| gotplt_entry_addr_lo); |
| elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]); |
| elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]); |
| elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]); |
| elfcpp::Swap<16, big_endian>::writeval(pov2 + 14, |
| gotplt_entry_addr_lo); |
| pov2 += 16; |
| } |
| else |
| { |
| // Write microMIPS PLT entry. |
| const uint32_t* plt_entry = plt_entry_micromips_o32; |
| |
| gold_assert(gotplt_entry_addr % 4 == 0); |
| |
| Mips_address loc_address = plt_address + pov2 - oview; |
| int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3); |
| |
| // ADDIUPC has a span of +/-16MB, check we're in range. |
| if (gotpc_offset + 0x1000000 >= 0x2000000) |
| { |
| gold_error(_(".got.plt offset of %ld from .plt beyond the " |
| "range of ADDIUPC"), (long)gotpc_offset); |
| return; |
| } |
| |
| elfcpp::Swap<16, big_endian>::writeval(pov2, |
| plt_entry[0] | ((gotpc_offset >> 18) & 0x7f)); |
| elfcpp::Swap<16, big_endian>::writeval( |
| pov2 + 2, (gotpc_offset >> 2) & 0xffff); |
| elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]); |
| elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]); |
| elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]); |
| elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]); |
| pov2 += 12; |
| } |
| } |
| } |
| |
| // Check the number of bytes written for standard entries. |
| gold_assert(static_cast<section_size_type>( |
| pov - oview - this->plt_header_size_) == this->plt_mips_offset_); |
| // Check the number of bytes written for compressed entries. |
| gold_assert((static_cast<section_size_type>(pov2 - pov) |
| == this->plt_comp_offset_)); |
| // Check the total number of bytes written. |
| gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size); |
| |
| gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view) |
| == gotplt_size); |
| |
| of->write_output_view(offset, oview_size, oview); |
| of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view); |
| } |
| |
| // Mips_output_data_mips_stubs methods. |
| |
| // The format of the lazy binding stub when dynamic symbol count is less than |
| // 64K, dynamic symbol index is less than 32K, and ABI is not N64. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] = |
| { |
| 0x8f998010, // lw t9,0x8010(gp) |
| 0x03e07825, // or t7,ra,zero |
| 0x0320f809, // jalr t9,ra |
| 0x24180000 // addiu t8,zero,DYN_INDEX sign extended |
| }; |
| |
| // The format of the lazy binding stub when dynamic symbol count is less than |
| // 64K, dynamic symbol index is less than 32K, and ABI is N64. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] = |
| { |
| 0xdf998010, // ld t9,0x8010(gp) |
| 0x03e07825, // or t7,ra,zero |
| 0x0320f809, // jalr t9,ra |
| 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended |
| }; |
| |
| // The format of the lazy binding stub when dynamic symbol count is less than |
| // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] = |
| { |
| 0x8f998010, // lw t9,0x8010(gp) |
| 0x03e07825, // or t7,ra,zero |
| 0x0320f809, // jalr t9,ra |
| 0x34180000 // ori t8,zero,DYN_INDEX unsigned |
| }; |
| |
| // The format of the lazy binding stub when dynamic symbol count is less than |
| // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] = |
| { |
| 0xdf998010, // ld t9,0x8010(gp) |
| 0x03e07825, // or t7,ra,zero |
| 0x0320f809, // jalr t9,ra |
| 0x34180000 // ori t8,zero,DYN_INDEX unsigned |
| }; |
| |
| // The format of the lazy binding stub when dynamic symbol count is greater than |
| // 64K, and ABI is not N64. |
| template<int size, bool big_endian> |
| const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] = |
| { |
| 0x8f998010, // lw t9,0x8010(gp) |
| 0x03e07825, // or t7,ra,zero |
| 0x3c180000, // lui t8,DYN_INDEX |
| 0x0320f809, // jalr t9,ra |
| 0x37180000 // ori t8,t8,DYN_INDEX |
| }; |
| |
| // The format of the lazy binding stub when dynamic symbol count is greater than |
| // 64K, and ABI is N64. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] = |
| { |
| 0xdf998010, // ld t9,0x8010(gp) |
| 0x03e07825, // or t7,ra,zero |
| 0x3c180000, // lui t8,DYN_INDEX |
| 0x0320f809, // jalr t9,ra |
| 0x37180000 // ori t8,t8,DYN_INDEX |
| }; |
| |
| // microMIPS stubs. |
| |
| // The format of the microMIPS lazy binding stub when dynamic symbol count is |
| // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] = |
| { |
| 0xff3c, 0x8010, // lw t9,0x8010(gp) |
| 0x0dff, // move t7,ra |
| 0x45d9, // jalr t9 |
| 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended |
| }; |
| |
| // The format of the microMIPS lazy binding stub when dynamic symbol count is |
| // less than 64K, dynamic symbol index is less than 32K, and ABI is N64. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_mips_stubs<size, big_endian>:: |
| lazy_stub_micromips_normal_1_n64[] = |
| { |
| 0xdf3c, 0x8010, // ld t9,0x8010(gp) |
| 0x0dff, // move t7,ra |
| 0x45d9, // jalr t9 |
| 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended |
| }; |
| |
| // The format of the microMIPS lazy binding stub when dynamic symbol |
| // count is less than 64K, dynamic symbol index is between 32K and 64K, |
| // and ABI is not N64. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] = |
| { |
| 0xff3c, 0x8010, // lw t9,0x8010(gp) |
| 0x0dff, // move t7,ra |
| 0x45d9, // jalr t9 |
| 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned |
| }; |
| |
| // The format of the microMIPS lazy binding stub when dynamic symbol |
| // count is less than 64K, dynamic symbol index is between 32K and 64K, |
| // and ABI is N64. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_mips_stubs<size, big_endian>:: |
| lazy_stub_micromips_normal_2_n64[] = |
| { |
| 0xdf3c, 0x8010, // ld t9,0x8010(gp) |
| 0x0dff, // move t7,ra |
| 0x45d9, // jalr t9 |
| 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned |
| }; |
| |
| // The format of the microMIPS lazy binding stub when dynamic symbol count is |
| // greater than 64K, and ABI is not N64. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] = |
| { |
| 0xff3c, 0x8010, // lw t9,0x8010(gp) |
| 0x0dff, // move t7,ra |
| 0x41b8, 0x0000, // lui t8,DYN_INDEX |
| 0x45d9, // jalr t9 |
| 0x5318, 0x0000 // ori t8,t8,DYN_INDEX |
| }; |
| |
| // The format of the microMIPS lazy binding stub when dynamic symbol count is |
| // greater than 64K, and ABI is N64. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] = |
| { |
| 0xdf3c, 0x8010, // ld t9,0x8010(gp) |
| 0x0dff, // move t7,ra |
| 0x41b8, 0x0000, // lui t8,DYN_INDEX |
| 0x45d9, // jalr t9 |
| 0x5318, 0x0000 // ori t8,t8,DYN_INDEX |
| }; |
| |
| // 32-bit microMIPS stubs. |
| |
| // The format of the microMIPS lazy binding stub when dynamic symbol count is |
| // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we |
| // can use only 32-bit instructions. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_mips_stubs<size, big_endian>:: |
| lazy_stub_micromips32_normal_1[] = |
| { |
| 0xff3c, 0x8010, // lw t9,0x8010(gp) |
| 0x001f, 0x7a90, // or t7,ra,zero |
| 0x03f9, 0x0f3c, // jalr ra,t9 |
| 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended |
| }; |
| |
| // The format of the microMIPS lazy binding stub when dynamic symbol count is |
| // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can |
| // use only 32-bit instructions. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_mips_stubs<size, big_endian>:: |
| lazy_stub_micromips32_normal_1_n64[] = |
| { |
| 0xdf3c, 0x8010, // ld t9,0x8010(gp) |
| 0x001f, 0x7a90, // or t7,ra,zero |
| 0x03f9, 0x0f3c, // jalr ra,t9 |
| 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended |
| }; |
| |
| // The format of the microMIPS lazy binding stub when dynamic symbol |
| // count is less than 64K, dynamic symbol index is between 32K and 64K, |
| // ABI is not N64, and we can use only 32-bit instructions. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_mips_stubs<size, big_endian>:: |
| lazy_stub_micromips32_normal_2[] = |
| { |
| 0xff3c, 0x8010, // lw t9,0x8010(gp) |
| 0x001f, 0x7a90, // or t7,ra,zero |
| 0x03f9, 0x0f3c, // jalr ra,t9 |
| 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned |
| }; |
| |
| // The format of the microMIPS lazy binding stub when dynamic symbol |
| // count is less than 64K, dynamic symbol index is between 32K and 64K, |
| // ABI is N64, and we can use only 32-bit instructions. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_mips_stubs<size, big_endian>:: |
| lazy_stub_micromips32_normal_2_n64[] = |
| { |
| 0xdf3c, 0x8010, // ld t9,0x8010(gp) |
| 0x001f, 0x7a90, // or t7,ra,zero |
| 0x03f9, 0x0f3c, // jalr ra,t9 |
| 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned |
| }; |
| |
| // The format of the microMIPS lazy binding stub when dynamic symbol count is |
| // greater than 64K, ABI is not N64, and we can use only 32-bit instructions. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] = |
| { |
| 0xff3c, 0x8010, // lw t9,0x8010(gp) |
| 0x001f, 0x7a90, // or t7,ra,zero |
| 0x41b8, 0x0000, // lui t8,DYN_INDEX |
| 0x03f9, 0x0f3c, // jalr ra,t9 |
| 0x5318, 0x0000 // ori t8,t8,DYN_INDEX |
| }; |
| |
| // The format of the microMIPS lazy binding stub when dynamic symbol count is |
| // greater than 64K, ABI is N64, and we can use only 32-bit instructions. |
| template<int size, bool big_endian> |
| const uint32_t |
| Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] = |
| { |
| 0xdf3c, 0x8010, // ld t9,0x8010(gp) |
| 0x001f, 0x7a90, // or t7,ra,zero |
| 0x41b8, 0x0000, // lui t8,DYN_INDEX |
| 0x03f9, 0x0f3c, // jalr ra,t9 |
| 0x5318, 0x0000 // ori t8,t8,DYN_INDEX |
| }; |
| |
| // Create entry for a symbol. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_data_mips_stubs<size, big_endian>::make_entry( |
| Mips_symbol<size>* gsym) |
| { |
| if (!gsym->has_lazy_stub() && !gsym->has_plt_offset()) |
| { |
| this->symbols_.insert(gsym); |
| gsym->set_has_lazy_stub(true); |
| } |
| } |
| |
| // Remove entry for a symbol. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_data_mips_stubs<size, big_endian>::remove_entry( |
| Mips_symbol<size>* gsym) |
| { |
| if (gsym->has_lazy_stub()) |
| { |
| this->symbols_.erase(gsym); |
| gsym->set_has_lazy_stub(false); |
| } |
| } |
| |
| // Set stub offsets for symbols. This method expects that the number of |
| // entries in dynamic symbol table is set. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets() |
| { |
| gold_assert(this->dynsym_count_ != -1U); |
| |
| if (this->stub_offsets_are_set_) |
| return; |
| |
| unsigned int stub_size = this->stub_size(); |
| unsigned int offset = 0; |
| for (typename Mips_stubs_entry_set::const_iterator |
| p = this->symbols_.begin(); |
| p != this->symbols_.end(); |
| ++p, offset += stub_size) |
| { |
| Mips_symbol<size>* mips_sym = *p; |
| mips_sym->set_lazy_stub_offset(offset); |
| } |
| this->stub_offsets_are_set_ = true; |
| } |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value() |
| { |
| for (typename Mips_stubs_entry_set::const_iterator |
| p = this->symbols_.begin(); p != this->symbols_.end(); ++p) |
| { |
| Mips_symbol<size>* sym = *p; |
| if (sym->is_from_dynobj()) |
| sym->set_needs_dynsym_value(); |
| } |
| } |
| |
| // Write out the .MIPS.stubs. This uses the hand-coded instructions and |
| // adjusts them as needed. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of) |
| { |
| const off_t offset = this->offset(); |
| const section_size_type oview_size = |
| convert_to_section_size_type(this->data_size()); |
| unsigned char* const oview = of->get_output_view(offset, oview_size); |
| |
| bool big_stub = this->dynsym_count_ > 0x10000; |
| |
| unsigned char* pov = oview; |
| for (typename Mips_stubs_entry_set::const_iterator |
| p = this->symbols_.begin(); p != this->symbols_.end(); ++p) |
| { |
| Mips_symbol<size>* sym = *p; |
| const uint32_t* lazy_stub; |
| bool n64 = this->target_->is_output_n64(); |
| |
| if (!this->target_->is_output_micromips()) |
| { |
| // Write standard (non-microMIPS) stub. |
| if (!big_stub) |
| { |
| if (sym->dynsym_index() & ~0x7fff) |
| // Dynsym index is between 32K and 64K. |
| lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2; |
| else |
| // Dynsym index is less than 32K. |
| lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1; |
| } |
| else |
| lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big; |
| |
| unsigned int i = 0; |
| elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]); |
| elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]); |
| pov += 8; |
| |
| i += 2; |
| if (big_stub) |
| { |
| // LUI instruction of the big stub. Paste high 16 bits of the |
| // dynsym index. |
| elfcpp::Swap<32, big_endian>::writeval(pov, |
| lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff)); |
| pov += 4; |
| i += 1; |
| } |
| elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]); |
| // Last stub instruction. Paste low 16 bits of the dynsym index. |
| elfcpp::Swap<32, big_endian>::writeval(pov + 4, |
| lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff)); |
| pov += 8; |
| } |
| else if (this->target_->use_32bit_micromips_instructions()) |
| { |
| // Write microMIPS stub in insn32 mode. |
| if (!big_stub) |
| { |
| if (sym->dynsym_index() & ~0x7fff) |
| // Dynsym index is between 32K and 64K. |
| lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64 |
| : lazy_stub_micromips32_normal_2; |
| else |
| // Dynsym index is less than 32K. |
| lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64 |
| : lazy_stub_micromips32_normal_1; |
| } |
| else |
| lazy_stub = n64 ? lazy_stub_micromips32_big_n64 |
| : lazy_stub_micromips32_big; |
| |
| unsigned int i = 0; |
| // First stub instruction. We emit 32-bit microMIPS instructions by |
| // emitting two 16-bit parts because on microMIPS the 16-bit part of |
| // the instruction where the opcode is must always come first, for |
| // both little and big endian. |
| elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]); |
| // Second stub instruction. |
| elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]); |
| pov += 8; |
| i += 4; |
| if (big_stub) |
| { |
| // LUI instruction of the big stub. Paste high 16 bits of the |
| // dynsym index. |
| elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 2, |
| (sym->dynsym_index() >> 16) & 0x7fff); |
| pov += 4; |
| i += 2; |
| } |
| elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]); |
| // Last stub instruction. Paste low 16 bits of the dynsym index. |
| elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 6, |
| sym->dynsym_index() & 0xffff); |
| pov += 8; |
| } |
| else |
| { |
| // Write microMIPS stub. |
| if (!big_stub) |
| { |
| if (sym->dynsym_index() & ~0x7fff) |
| // Dynsym index is between 32K and 64K. |
| lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64 |
| : lazy_stub_micromips_normal_2; |
| else |
| // Dynsym index is less than 32K. |
| lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64 |
| : lazy_stub_micromips_normal_1; |
| } |
| else |
| lazy_stub = n64 ? lazy_stub_micromips_big_n64 |
| : lazy_stub_micromips_big; |
| |
| unsigned int i = 0; |
| // First stub instruction. We emit 32-bit microMIPS instructions by |
| // emitting two 16-bit parts because on microMIPS the 16-bit part of |
| // the instruction where the opcode is must always come first, for |
| // both little and big endian. |
| elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]); |
| // Second stub instruction. |
| elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]); |
| pov += 6; |
| i += 3; |
| if (big_stub) |
| { |
| // LUI instruction of the big stub. Paste high 16 bits of the |
| // dynsym index. |
| elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 2, |
| (sym->dynsym_index() >> 16) & 0x7fff); |
| pov += 4; |
| i += 2; |
| } |
| elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]); |
| // Last stub instruction. Paste low 16 bits of the dynsym index. |
| elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]); |
| elfcpp::Swap<16, big_endian>::writeval(pov + 4, |
| sym->dynsym_index() & 0xffff); |
| pov += 6; |
| } |
| } |
| |
| // We always allocate 20 bytes for every stub, because final dynsym count is |
| // not known in method do_finalize_sections. There are 4 unused bytes per |
| // stub if final dynsym count is less than 0x10000. |
| unsigned int used = pov - oview; |
| unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4; |
| gold_assert(static_cast<section_size_type>(used + unused) == oview_size); |
| |
| // Fill the unused space with zeroes. |
| // TODO(sasa): Can we strip unused bytes during the relaxation? |
| if (unused > 0) |
| memset(pov, 0, unused); |
| |
| of->write_output_view(offset, oview_size, oview); |
| } |
| |
| // Mips_output_section_reginfo methods. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of) |
| { |
| off_t offset = this->offset(); |
| off_t data_size = this->data_size(); |
| |
| unsigned char* view = of->get_output_view(offset, data_size); |
| elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_); |
| elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_); |
| elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_); |
| elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_); |
| elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_); |
| // Write the gp value. |
| elfcpp::Swap<size, big_endian>::writeval(view + 20, |
| this->target_->gp_value()); |
| |
| of->write_output_view(offset, data_size, view); |
| } |
| |
| // Mips_output_section_options methods. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_section_options<size, big_endian>::do_write(Output_file* of) |
| { |
| off_t offset = this->offset(); |
| const section_size_type oview_size = |
| convert_to_section_size_type(this->data_size()); |
| unsigned char* view = of->get_output_view(offset, oview_size); |
| const unsigned char* end = view + oview_size; |
| |
| while (view + 8 <= end) |
| { |
| unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view); |
| unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1); |
| if (sz < 8) |
| { |
| gold_error(_("Warning: bad `%s' option size %u smaller " |
| "than its header in output section"), |
| this->name(), sz); |
| break; |
| } |
| |
| // Only update ri_gp_value (GP register value) field of ODK_REGINFO entry. |
| if (this->target_->is_output_n64() && kind == elfcpp::ODK_REGINFO) |
| elfcpp::Swap<size, big_endian>::writeval(view + 32, |
| this->target_->gp_value()); |
| else if (kind == elfcpp::ODK_REGINFO) |
| elfcpp::Swap<size, big_endian>::writeval(view + 28, |
| this->target_->gp_value()); |
| |
| view += sz; |
| } |
| |
| of->write_output_view(offset, oview_size, view); |
| } |
| |
| // Mips_output_section_abiflags methods. |
| |
| template<int size, bool big_endian> |
| void |
| Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of) |
| { |
| off_t offset = this->offset(); |
| off_t data_size = this->data_size(); |
| |
| unsigned char* view = of->get_output_view(offset, data_size); |
| elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version); |
| elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level); |
| elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev); |
| elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size); |
| elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size); |
| elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size); |
| elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi); |
| elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext); |
| elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases); |
| elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1); |
| elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2); |
| |
| of->write_output_view(offset, data_size, view); |
| } |
| |
| // Mips_copy_relocs methods. |
| |
| // Emit any saved relocs. |
| |
| template<int sh_type, int size, bool big_endian> |
| void |
| Mips_copy_relocs<sh_type, size, big_endian>::emit_mips( |
| Output_data_reloc<sh_type, true, size, big_endian>* reloc_section, |
| Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target) |
| { |
| for (typename Copy_relocs<sh_type, size, big_endian>:: |
| Copy_reloc_entries::iterator p = this->entries_.begin(); |
| p != this->entries_.end(); |
| ++p) |
| emit_entry(*p, reloc_section, symtab, layout, target); |
| |
| // We no longer need the saved information. |
| this->entries_.clear(); |
| } |
| |
| // Emit the reloc if appropriate. |
| |
| template<int sh_type, int size, bool big_endian> |
| void |
| Mips_copy_relocs<sh_type, size, big_endian>::emit_entry( |
| Copy_reloc_entry& entry, |
| Output_data_reloc<sh_type, true, size, big_endian>* reloc_section, |
| Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target) |
| { |
| // If the symbol is no longer defined in a dynamic object, then we |
| // emitted a COPY relocation, and we do not want to emit this |
| // dynamic relocation. |
| if (!entry.sym_->is_from_dynobj()) |
| return; |
| |
| bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32 |
| || entry.reloc_type_ == elfcpp::R_MIPS_REL32 |
| || entry.reloc_type_ == elfcpp::R_MIPS_64); |
| |
| Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_); |
| if (can_make_dynamic && !sym->has_static_relocs()) |
| { |
| Mips_relobj<size, big_endian>* object = |
| Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_); |
| target->got_section(symtab, layout)->record_global_got_symbol( |
| sym, object, entry.reloc_type_, true, false); |
| if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab))) |
| target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32, |
| entry.output_section_, entry.relobj_, entry.shndx_, entry.address_); |
| else |
| target->rel_dyn_section(layout)->add_symbolless_global_addend( |
| sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_, |
| entry.shndx_, entry.address_); |
| } |
| else |
| this->make_copy_reloc(symtab, layout, |
| static_cast<Sized_symbol<size>*>(entry.sym_), |
| entry.relobj_, |
| reloc_section); |
| } |
| |
| // Target_mips methods. |
| |
| // Return the value to use for a dynamic symbol which requires special |
| // treatment. This is how we support equality comparisons of function |
| // pointers across shared library boundaries, as described in the |
| // processor specific ABI supplement. |
| |
| template<int size, bool big_endian> |
| uint64_t |
| Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const |
| { |
| uint64_t value = 0; |
| const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym); |
| |
| if (!mips_sym->has_lazy_stub()) |
| { |
| if (mips_sym->has_plt_offset()) |
| { |
| // We distinguish between PLT entries and lazy-binding stubs by |
| // giving the former an st_other value of STO_MIPS_PLT. Set the |
| // value to the stub address if there are any relocations in the |
| // binary where pointer equality matters. |
| if (mips_sym->pointer_equality_needed()) |
| { |
| // Prefer a standard MIPS PLT entry. |
| if (mips_sym->has_mips_plt_offset()) |
| value = this->plt_section()->mips_entry_address(mips_sym); |
| else |
| value = this->plt_section()->comp_entry_address(mips_sym) + 1; |
| } |
| else |
| value = 0; |
| } |
| } |
| else |
| { |
| // First, set stub offsets for symbols. This method expects that the |
| // number of entries in dynamic symbol table is set. |
| this->mips_stubs_section()->set_lazy_stub_offsets(); |
| |
| // The run-time linker uses the st_value field of the symbol |
| // to reset the global offset table entry for this external |
| // to its stub address when unlinking a shared object. |
| value = this->mips_stubs_section()->stub_address(mips_sym); |
| } |
| |
| if (mips_sym->has_mips16_fn_stub()) |
| { |
| // If we have a MIPS16 function with a stub, the dynamic symbol must |
| // refer to the stub, since only the stub uses the standard calling |
| // conventions. |
| value = mips_sym->template |
| get_mips16_fn_stub<big_endian>()->output_address(); |
| } |
| |
| return value; |
| } |
| |
| // Get the dynamic reloc section, creating it if necessary. It's always |
| // .rel.dyn, even for MIPS64. |
| |
| template<int size, bool big_endian> |
| typename Target_mips<size, big_endian>::Reloc_section* |
| Target_mips<size, big_endian>::rel_dyn_section(Layout* layout) |
| { |
| if (this->rel_dyn_ == NULL) |
| { |
| gold_assert(layout != NULL); |
| this->rel_dyn_ = new Reloc_section(parameters->options().combreloc()); |
| layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL, |
| elfcpp::SHF_ALLOC, this->rel_dyn_, |
| ORDER_DYNAMIC_RELOCS, false); |
| |
| // First entry in .rel.dyn has to be null. |
| // This is hack - we define dummy output data and set its address to 0, |
| // and define absolute R_MIPS_NONE relocation with offset 0 against it. |
| // This ensures that the entry is null. |
| Output_data* od = new Output_data_zero_fill(0, 0); |
| od->set_address(0); |
| this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0); |
| } |
| return this->rel_dyn_; |
| } |
| |
| // Get the GOT section, creating it if necessary. |
| |
| template<int size, bool big_endian> |
| Mips_output_data_got<size, big_endian>* |
| Target_mips<size, big_endian>::got_section(Symbol_table* symtab, |
| Layout* layout) |
| { |
| if (this->got_ == NULL) |
| { |
| gold_assert(symtab != NULL && layout != NULL); |
| |
| this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab, |
| layout); |
| layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, |
| (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE | |
| elfcpp::SHF_MIPS_GPREL), |
| this->got_, ORDER_DATA, false); |
| |
| // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section. |
| symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, |
| Symbol_table::PREDEFINED, |
| this->got_, |
| 0, 0, elfcpp::STT_OBJECT, |
| elfcpp::STB_GLOBAL, |
| elfcpp::STV_HIDDEN, 0, |
| false, false); |
| } |
| |
| return this->got_; |
| } |
| |
| // Calculate value of _gp symbol. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab) |
| { |
| gold_assert(this->gp_ == NULL); |
| |
| Sized_symbol<size>* gp = |
| static_cast<Sized_symbol<size>*>(symtab->lookup("_gp")); |
| |
| // Set _gp symbol if the linker script hasn't created it. |
| if (gp == NULL || gp->source() != Symbol::IS_CONSTANT) |
| { |
| // If there is no .got section, gp should be based on .sdata. |
| Output_data* gp_section = (this->got_ != NULL |
| ? this->got_->output_section() |
| : layout->find_output_section(".sdata")); |
| |
| if (gp_section != NULL) |
| gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data( |
| "_gp", NULL, Symbol_table::PREDEFINED, |
| gp_section, MIPS_GP_OFFSET, 0, |
| elfcpp::STT_NOTYPE, |
| elfcpp::STB_LOCAL, |
| elfcpp::STV_DEFAULT, |
| 0, false, false)); |
| } |
| |
| this->gp_ = gp; |
| } |
| |
| // Set the dynamic symbol indexes. INDEX is the index of the first |
| // global dynamic symbol. Pointers to the symbols are stored into the |
| // vector SYMS. The names are added to DYNPOOL. This returns an |
| // updated dynamic symbol index. |
| |
| template<int size, bool big_endian> |
| unsigned int |
| Target_mips<size, big_endian>::do_set_dynsym_indexes( |
| std::vector<Symbol*>* dyn_symbols, unsigned int index, |
| std::vector<Symbol*>* syms, Stringpool* dynpool, |
| Versions* versions, Symbol_table* symtab) const |
| { |
| std::vector<Symbol*> non_got_symbols; |
| std::vector<Symbol*> got_symbols; |
| |
| reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols, |
| &got_symbols); |
| |
| for (std::vector<Symbol*>::iterator p = non_got_symbols.begin(); |
| p != non_got_symbols.end(); |
| ++p) |
| { |
| Symbol* sym = *p; |
| |
| // Note that SYM may already have a dynamic symbol index, since |
| // some symbols appear more than once in the symbol table, with |
| // and without a version. |
| |
| if (!sym->has_dynsym_index()) |
| { |
| sym->set_dynsym_index(index); |
| ++index; |
| syms->push_back(sym); |
| dynpool->add(sym->name(), false, NULL); |
| |
| // Record any version information. |
| if (sym->version() != NULL) |
| versions->record_version(symtab, dynpool, sym); |
| |
| // If the symbol is defined in a dynamic object and is |
| // referenced in a regular object, then mark the dynamic |
| // object as needed. This is used to implement --as-needed. |
| if (sym->is_from_dynobj() && sym->in_reg()) |
| sym->object()->set_is_needed(); |
| } |
| } |
| |
| for (std::vector<Symbol*>::iterator p = got_symbols.begin(); |
| p != got_symbols.end(); |
| ++p) |
| { |
| Symbol* sym = *p; |
| if (!sym->has_dynsym_index()) |
| { |
| // Record any version information. |
| if (sym->version() != NULL) |
| versions->record_version(symtab, dynpool, sym); |
| } |
| } |
| |
| index = versions->finalize(symtab, index, syms); |
| |
| int got_sym_count = 0; |
| for (std::vector<Symbol*>::iterator p = got_symbols.begin(); |
| p != got_symbols.end(); |
| ++p) |
| { |
| Symbol* sym = *p; |
| |
| if (!sym->has_dynsym_index()) |
| { |
| ++got_sym_count; |
| sym->set_dynsym_index(index); |
| ++index; |
| syms->push_back(sym); |
| dynpool->add(sym->name(), false, NULL); |
| |
| // If the symbol is defined in a dynamic object and is |
| // referenced in a regular object, then mark the dynamic |
| // object as needed. This is used to implement --as-needed. |
| if (sym->is_from_dynobj() && sym->in_reg()) |
| sym->object()->set_is_needed(); |
| } |
| } |
| |
| // Set index of the first symbol that has .got entry. |
| this->got_->set_first_global_got_dynsym_index( |
| got_sym_count > 0 ? index - got_sym_count : -1U); |
| |
| if (this->mips_stubs_ != NULL) |
| this->mips_stubs_->set_dynsym_count(index); |
| |
| return index; |
| } |
| |
| // Create a PLT entry for a global symbol referenced by r_type relocation. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab, |
| Layout* layout, |
| Mips_symbol<size>* gsym, |
| unsigned int r_type) |
| { |
| if (gsym->has_lazy_stub() || gsym->has_plt_offset()) |
| return; |
| |
| if (this->plt_ == NULL) |
| { |
| // Create the GOT section first. |
| this->got_section(symtab, layout); |
| |
| this->got_plt_ = new Output_data_space(4, "** GOT PLT"); |
| layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS, |
| (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), |
| this->got_plt_, ORDER_DATA, false); |
| |
| // The first two entries are reserved. |
| this->got_plt_->set_current_data_size(2 * size/8); |
| |
| this->plt_ = new Mips_output_data_plt<size, big_endian>(layout, |
| this->got_plt_, |
| this); |
| layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS, |
| (elfcpp::SHF_ALLOC |
| | elfcpp::SHF_EXECINSTR), |
| this->plt_, ORDER_PLT, false); |
| |
| // Make the sh_info field of .rel.plt point to .plt. |
| Output_section* rel_plt_os = this->plt_->rel_plt()->output_section(); |
| rel_plt_os->set_info_section(this->plt_->output_section()); |
| } |
| |
| this->plt_->add_entry(gsym, r_type); |
| } |
| |
| |
| // Get the .MIPS.stubs section, creating it if necessary. |
| |
| template<int size, bool big_endian> |
| Mips_output_data_mips_stubs<size, big_endian>* |
| Target_mips<size, big_endian>::mips_stubs_section(Layout* layout) |
| { |
| if (this->mips_stubs_ == NULL) |
| { |
| this->mips_stubs_ = |
| new Mips_output_data_mips_stubs<size, big_endian>(this); |
| layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS, |
| (elfcpp::SHF_ALLOC |
| | elfcpp::SHF_EXECINSTR), |
| this->mips_stubs_, ORDER_PLT, false); |
| } |
| return this->mips_stubs_; |
| } |
| |
| // Get the LA25 stub section, creating it if necessary. |
| |
| template<int size, bool big_endian> |
| Mips_output_data_la25_stub<size, big_endian>* |
| Target_mips<size, big_endian>::la25_stub_section(Layout* layout) |
| { |
| if (this->la25_stub_ == NULL) |
| { |
| this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>(); |
| layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS, |
| (elfcpp::SHF_ALLOC |
| | elfcpp::SHF_EXECINSTR), |
| this->la25_stub_, ORDER_TEXT, false); |
| } |
| return this->la25_stub_; |
| } |
| |
| // Process the relocations to determine unreferenced sections for |
| // garbage collection. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::gc_process_relocs( |
| Symbol_table* symtab, |
| Layout* layout, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| bool needs_special_offset_handling, |
| size_t local_symbol_count, |
| const unsigned char* plocal_symbols) |
| { |
| typedef Target_mips<size, big_endian> Mips; |
| |
| if (sh_type == elfcpp::SHT_REL) |
| { |
| typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian> |
| Classify_reloc; |
| |
| gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>( |
| symtab, |
| layout, |
| this, |
| object, |
| data_shndx, |
| prelocs, |
| reloc_count, |
| output_section, |
| needs_special_offset_handling, |
| local_symbol_count, |
| plocal_symbols); |
| } |
| else if (sh_type == elfcpp::SHT_RELA) |
| { |
| typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian> |
| Classify_reloc; |
| |
| gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>( |
| symtab, |
| layout, |
| this, |
| object, |
| data_shndx, |
| prelocs, |
| reloc_count, |
| output_section, |
| needs_special_offset_handling, |
| local_symbol_count, |
| plocal_symbols); |
| } |
| else |
| gold_unreachable(); |
| } |
| |
| // Scan relocations for a section. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::scan_relocs( |
| Symbol_table* symtab, |
| Layout* layout, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| bool needs_special_offset_handling, |
| size_t local_symbol_count, |
| const unsigned char* plocal_symbols) |
| { |
| typedef Target_mips<size, big_endian> Mips; |
| |
| if (sh_type == elfcpp::SHT_REL) |
| { |
| typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian> |
| Classify_reloc; |
| |
| gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>( |
| symtab, |
| layout, |
| this, |
| object, |
| data_shndx, |
| prelocs, |
| reloc_count, |
| output_section, |
| needs_special_offset_handling, |
| local_symbol_count, |
| plocal_symbols); |
| } |
| else if (sh_type == elfcpp::SHT_RELA) |
| { |
| typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian> |
| Classify_reloc; |
| |
| gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>( |
| symtab, |
| layout, |
| this, |
| object, |
| data_shndx, |
| prelocs, |
| reloc_count, |
| output_section, |
| needs_special_offset_handling, |
| local_symbol_count, |
| plocal_symbols); |
| } |
| } |
| |
| template<int size, bool big_endian> |
| bool |
| Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags) |
| { |
| return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0 |
| || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32 |
| || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32 |
| || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1 |
| || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2 |
| || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32 |
| || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2 |
| || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6); |
| } |
| |
| // Return the MACH for a MIPS e_flags value. |
| template<int size, bool big_endian> |
| unsigned int |
| Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags) |
| { |
| switch (flags & elfcpp::EF_MIPS_MACH) |
| { |
| case elfcpp::E_MIPS_MACH_3900: |
| return mach_mips3900; |
| |
| case elfcpp::E_MIPS_MACH_4010: |
| return mach_mips4010; |
| |
| case elfcpp::E_MIPS_MACH_4100: |
| return mach_mips4100; |
| |
| case elfcpp::E_MIPS_MACH_4111: |
| return mach_mips4111; |
| |
| case elfcpp::E_MIPS_MACH_4120: |
| return mach_mips4120; |
| |
| case elfcpp::E_MIPS_MACH_4650: |
| return mach_mips4650; |
| |
| case elfcpp::E_MIPS_MACH_5400: |
| return mach_mips5400; |
| |
| case elfcpp::E_MIPS_MACH_5500: |
| return mach_mips5500; |
| |
| case elfcpp::E_MIPS_MACH_5900: |
| return mach_mips5900; |
| |
| case elfcpp::E_MIPS_MACH_9000: |
| return mach_mips9000; |
| |
| case elfcpp::E_MIPS_MACH_SB1: |
| return mach_mips_sb1; |
| |
| case elfcpp::E_MIPS_MACH_LS2E: |
| return mach_mips_loongson_2e; |
| |
| case elfcpp::E_MIPS_MACH_LS2F: |
| return mach_mips_loongson_2f; |
| |
| case elfcpp::E_MIPS_MACH_GS464: |
| return mach_mips_gs464; |
| |
| case elfcpp::E_MIPS_MACH_GS464E: |
| return mach_mips_gs464e; |
| |
| case elfcpp::E_MIPS_MACH_GS264E: |
| return mach_mips_gs264e; |
| |
| case elfcpp::E_MIPS_MACH_OCTEON3: |
| return mach_mips_octeon3; |
| |
| case elfcpp::E_MIPS_MACH_OCTEON2: |
| return mach_mips_octeon2; |
| |
| case elfcpp::E_MIPS_MACH_OCTEON: |
| return mach_mips_octeon; |
| |
| case elfcpp::E_MIPS_MACH_XLR: |
| return mach_mips_xlr; |
| |
| default: |
| switch (flags & elfcpp::EF_MIPS_ARCH) |
| { |
| default: |
| case elfcpp::E_MIPS_ARCH_1: |
| return mach_mips3000; |
| |
| case elfcpp::E_MIPS_ARCH_2: |
| return mach_mips6000; |
| |
| case elfcpp::E_MIPS_ARCH_3: |
| return mach_mips4000; |
| |
| case elfcpp::E_MIPS_ARCH_4: |
| return mach_mips8000; |
| |
| case elfcpp::E_MIPS_ARCH_5: |
| return mach_mips5; |
| |
| case elfcpp::E_MIPS_ARCH_32: |
| return mach_mipsisa32; |
| |
| case elfcpp::E_MIPS_ARCH_64: |
| return mach_mipsisa64; |
| |
| case elfcpp::E_MIPS_ARCH_32R2: |
| return mach_mipsisa32r2; |
| |
| case elfcpp::E_MIPS_ARCH_32R6: |
| return mach_mipsisa32r6; |
| |
| case elfcpp::E_MIPS_ARCH_64R2: |
| return mach_mipsisa64r2; |
| |
| case elfcpp::E_MIPS_ARCH_64R6: |
| return mach_mipsisa64r6; |
| } |
| } |
| |
| return 0; |
| } |
| |
| // Return the MACH for each .MIPS.abiflags ISA Extension. |
| |
| template<int size, bool big_endian> |
| unsigned int |
| Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext) |
| { |
| switch (isa_ext) |
| { |
| case elfcpp::AFL_EXT_3900: |
| return mach_mips3900; |
| |
| case elfcpp::AFL_EXT_4010: |
| return mach_mips4010; |
| |
| case elfcpp::AFL_EXT_4100: |
| return mach_mips4100; |
| |
| case elfcpp::AFL_EXT_4111: |
| return mach_mips4111; |
| |
| case elfcpp::AFL_EXT_4120: |
| return mach_mips4120; |
| |
| case elfcpp::AFL_EXT_4650: |
| return mach_mips4650; |
| |
| case elfcpp::AFL_EXT_5400: |
| return mach_mips5400; |
| |
| case elfcpp::AFL_EXT_5500: |
| return mach_mips5500; |
| |
| case elfcpp::AFL_EXT_5900: |
| return mach_mips5900; |
| |
| case elfcpp::AFL_EXT_10000: |
| return mach_mips10000; |
| |
| case elfcpp::AFL_EXT_LOONGSON_2E: |
| return mach_mips_loongson_2e; |
| |
| case elfcpp::AFL_EXT_LOONGSON_2F: |
| return mach_mips_loongson_2f; |
| |
| case elfcpp::AFL_EXT_SB1: |
| return mach_mips_sb1; |
| |
| case elfcpp::AFL_EXT_OCTEON: |
| return mach_mips_octeon; |
| |
| case elfcpp::AFL_EXT_OCTEONP: |
| return mach_mips_octeonp; |
| |
| case elfcpp::AFL_EXT_OCTEON2: |
| return mach_mips_octeon2; |
| |
| case elfcpp::AFL_EXT_XLR: |
| return mach_mips_xlr; |
| |
| default: |
| return mach_mips3000; |
| } |
| } |
| |
| // Return the .MIPS.abiflags value representing each ISA Extension. |
| |
| template<int size, bool big_endian> |
| unsigned int |
| Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach) |
| { |
| switch (mips_mach) |
| { |
| case mach_mips3900: |
| return elfcpp::AFL_EXT_3900; |
| |
| case mach_mips4010: |
| return elfcpp::AFL_EXT_4010; |
| |
| case mach_mips4100: |
| return elfcpp::AFL_EXT_4100; |
| |
| case mach_mips4111: |
| return elfcpp::AFL_EXT_4111; |
| |
| case mach_mips4120: |
| return elfcpp::AFL_EXT_4120; |
| |
| case mach_mips4650: |
| return elfcpp::AFL_EXT_4650; |
| |
| case mach_mips5400: |
| return elfcpp::AFL_EXT_5400; |
| |
| case mach_mips5500: |
| return elfcpp::AFL_EXT_5500; |
| |
| case mach_mips5900: |
| return elfcpp::AFL_EXT_5900; |
| |
| case mach_mips10000: |
| return elfcpp::AFL_EXT_10000; |
| |
| case mach_mips_loongson_2e: |
| return elfcpp::AFL_EXT_LOONGSON_2E; |
| |
| case mach_mips_loongson_2f: |
| return elfcpp::AFL_EXT_LOONGSON_2F; |
| |
| case mach_mips_sb1: |
| return elfcpp::AFL_EXT_SB1; |
| |
| case mach_mips_octeon: |
| return elfcpp::AFL_EXT_OCTEON; |
| |
| case mach_mips_octeonp: |
| return elfcpp::AFL_EXT_OCTEONP; |
| |
| case mach_mips_octeon3: |
| return elfcpp::AFL_EXT_OCTEON3; |
| |
| case mach_mips_octeon2: |
| return elfcpp::AFL_EXT_OCTEON2; |
| |
| case mach_mips_xlr: |
| return elfcpp::AFL_EXT_XLR; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| // Update the isa_level, isa_rev, isa_ext fields of abiflags. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name, |
| elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags) |
| { |
| int new_isa = 0; |
| switch (e_flags & elfcpp::EF_MIPS_ARCH) |
| { |
| case elfcpp::E_MIPS_ARCH_1: |
| new_isa = this->level_rev(1, 0); |
| break; |
| case elfcpp::E_MIPS_ARCH_2: |
| new_isa = this->level_rev(2, 0); |
| break; |
| case elfcpp::E_MIPS_ARCH_3: |
| new_isa = this->level_rev(3, 0); |
| break; |
| case elfcpp::E_MIPS_ARCH_4: |
| new_isa = this->level_rev(4, 0); |
| break; |
| case elfcpp::E_MIPS_ARCH_5: |
| new_isa = this->level_rev(5, 0); |
| break; |
| case elfcpp::E_MIPS_ARCH_32: |
| new_isa = this->level_rev(32, 1); |
| break; |
| case elfcpp::E_MIPS_ARCH_32R2: |
| new_isa = this->level_rev(32, 2); |
| break; |
| case elfcpp::E_MIPS_ARCH_32R6: |
| new_isa = this->level_rev(32, 6); |
| break; |
| case elfcpp::E_MIPS_ARCH_64: |
| new_isa = this->level_rev(64, 1); |
| break; |
| case elfcpp::E_MIPS_ARCH_64R2: |
| new_isa = this->level_rev(64, 2); |
| break; |
| case elfcpp::E_MIPS_ARCH_64R6: |
| new_isa = this->level_rev(64, 6); |
| break; |
| default: |
| gold_error(_("%s: Unknown architecture %s"), name.c_str(), |
| this->elf_mips_mach_name(e_flags)); |
| } |
| |
| if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev)) |
| { |
| // Decode a single value into level and revision. |
| abiflags->isa_level = new_isa >> 3; |
| abiflags->isa_rev = new_isa & 0x7; |
| } |
| |
| // Update the isa_ext if needed. |
| if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext), |
| this->elf_mips_mach(e_flags))) |
| abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags)); |
| } |
| |
| // Infer the content of the ABI flags based on the elf header. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::infer_abiflags( |
| Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags) |
| { |
| const Attributes_section_data* pasd = relobj->attributes_section_data(); |
| int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY; |
| elfcpp::Elf_Word e_flags = relobj->processor_specific_flags(); |
| |
| this->update_abiflags_isa(relobj->name(), e_flags, abiflags); |
| if (pasd != NULL) |
| { |
| // Read fp_abi from the .gnu.attribute section. |
| const Object_attribute* attr = |
| pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU); |
| attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value(); |
| } |
| |
| abiflags->fp_abi = attr_fp_abi; |
| abiflags->cpr1_size = elfcpp::AFL_REG_NONE; |
| abiflags->cpr2_size = elfcpp::AFL_REG_NONE; |
| abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32 |
| : elfcpp::AFL_REG_64; |
| |
| if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE |
| || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX |
| || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE |
| && abiflags->gpr_size == elfcpp::AFL_REG_32)) |
| abiflags->cpr1_size = elfcpp::AFL_REG_32; |
| else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE |
| || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64 |
| || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A) |
| abiflags->cpr1_size = elfcpp::AFL_REG_64; |
| |
| if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX) |
| abiflags->ases |= elfcpp::AFL_ASE_MDMX; |
| if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16) |
| abiflags->ases |= elfcpp::AFL_ASE_MIPS16; |
| if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS) |
| abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS; |
| |
| if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY |
| && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT |
| && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A |
| && abiflags->isa_level >= 32 |
| && abiflags->ases != elfcpp::AFL_ASE_LOONGSON_EXT) |
| abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG; |
| } |
| |
| // Create abiflags from elf header or from .MIPS.abiflags section. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::create_abiflags( |
| Mips_relobj<size, big_endian>* relobj, |
| Mips_abiflags<big_endian>* abiflags) |
| { |
| Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags(); |
| Mips_abiflags<big_endian> header_abiflags; |
| |
| this->infer_abiflags(relobj, &header_abiflags); |
| |
| if (sec_abiflags == NULL) |
| { |
| // If there is no input .MIPS.abiflags section, use abiflags created |
| // from elf header. |
| *abiflags = header_abiflags; |
| return; |
| } |
| |
| this->has_abiflags_section_ = true; |
| |
| // It is not possible to infer the correct ISA revision for R3 or R5 |
| // so drop down to R2 for the checks. |
| unsigned char isa_rev = sec_abiflags->isa_rev; |
| if (isa_rev == 3 || isa_rev == 5) |
| isa_rev = 2; |
| |
| // Check compatibility between abiflags created from elf header |
| // and abiflags from .MIPS.abiflags section in this object file. |
| if (this->level_rev(sec_abiflags->isa_level, isa_rev) |
| < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev)) |
| gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"), |
| relobj->name().c_str()); |
| if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY |
| && sec_abiflags->fp_abi != header_abiflags.fp_abi) |
| gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and " |
| ".MIPS.abiflags"), relobj->name().c_str()); |
| if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases) |
| gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"), |
| relobj->name().c_str()); |
| // The isa_ext is allowed to be an extension of what can be inferred |
| // from e_flags. |
| if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext), |
| this->mips_isa_ext_mach(sec_abiflags->isa_ext))) |
| gold_warning(_("%s: Inconsistent ISA extensions between e_flags and " |
| ".MIPS.abiflags"), relobj->name().c_str()); |
| if (sec_abiflags->flags2 != 0) |
| gold_warning(_("%s: Unexpected flag in the flags2 field of " |
| ".MIPS.abiflags (0x%x)"), relobj->name().c_str(), |
| sec_abiflags->flags2); |
| // Use abiflags from .MIPS.abiflags section. |
| *abiflags = *sec_abiflags; |
| } |
| |
| // Return the meaning of fp_abi, or "unknown" if not known. |
| |
| template<int size, bool big_endian> |
| const char* |
| Target_mips<size, big_endian>::fp_abi_string(int fp) |
| { |
| switch (fp) |
| { |
| case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE: |
| return "-mdouble-float"; |
| case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE: |
| return "-msingle-float"; |
| case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT: |
| return "-msoft-float"; |
| case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64: |
| return _("-mips32r2 -mfp64 (12 callee-saved)"); |
| case elfcpp::Val_GNU_MIPS_ABI_FP_XX: |
| return "-mfpxx"; |
| case elfcpp::Val_GNU_MIPS_ABI_FP_64: |
| return "-mgp32 -mfp64"; |
| case elfcpp::Val_GNU_MIPS_ABI_FP_64A: |
| return "-mgp32 -mfp64 -mno-odd-spreg"; |
| default: |
| return "unknown"; |
| } |
| } |
| |
| // Select fp_abi. |
| |
| template<int size, bool big_endian> |
| int |
| Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp, |
| int out_fp) |
| { |
| if (in_fp == out_fp) |
| return out_fp; |
| |
| if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY) |
| return in_fp; |
| else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX |
| && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE |
| || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64 |
| || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A)) |
| return in_fp; |
| else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX |
| && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE |
| || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64 |
| || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A)) |
| return out_fp; // Keep the current setting. |
| else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A |
| && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64) |
| return in_fp; |
| else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A |
| && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64) |
| return out_fp; // Keep the current setting. |
| else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY) |
| gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(), |
| fp_abi_string(in_fp), fp_abi_string(out_fp)); |
| return out_fp; |
| } |
| |
| // Merge attributes from input object. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name, |
| const Attributes_section_data* pasd) |
| { |
| // Return if there is no attributes section data. |
| if (pasd == NULL) |
| return; |
| |
| // If output has no object attributes, just copy. |
| if (this->attributes_section_data_ == NULL) |
| { |
| this->attributes_section_data_ = new Attributes_section_data(*pasd); |
| return; |
| } |
| |
| Object_attribute* out_attr = this->attributes_section_data_->known_attributes( |
| Object_attribute::OBJ_ATTR_GNU); |
| |
| out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1); |
| out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi); |
| |
| // Merge Tag_compatibility attributes and any common GNU ones. |
| this->attributes_section_data_->merge(name.c_str(), pasd); |
| } |
| |
| // Merge abiflags from input object. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name, |
| Mips_abiflags<big_endian>* in_abiflags) |
| { |
| // If output has no abiflags, just copy. |
| if (this->abiflags_ == NULL) |
| { |
| this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags); |
| return; |
| } |
| |
| this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi, |
| this->abiflags_->fp_abi); |
| |
| // Merge abiflags. |
| this->abiflags_->isa_level = std::max(this->abiflags_->isa_level, |
| in_abiflags->isa_level); |
| this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev, |
| in_abiflags->isa_rev); |
| this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size, |
| in_abiflags->gpr_size); |
| this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size, |
| in_abiflags->cpr1_size); |
| this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size, |
| in_abiflags->cpr2_size); |
| this->abiflags_->ases |= in_abiflags->ases; |
| this->abiflags_->flags1 |= in_abiflags->flags1; |
| } |
| |
| // Check whether machine EXTENSION is an extension of machine BASE. |
| template<int size, bool big_endian> |
| bool |
| Target_mips<size, big_endian>::mips_mach_extends(unsigned int base, |
| unsigned int extension) |
| { |
| if (extension == base) |
| return true; |
| |
| if ((base == mach_mipsisa32) |
| && this->mips_mach_extends(mach_mipsisa64, extension)) |
| return true; |
| |
| if ((base == mach_mipsisa32r2) |
| && this->mips_mach_extends(mach_mipsisa64r2, extension)) |
| return true; |
| |
| for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i) |
| if (extension == this->mips_mach_extensions_[i].first) |
| { |
| extension = this->mips_mach_extensions_[i].second; |
| if (extension == base) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Merge file header flags from input object. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name, |
| elfcpp::Elf_Word in_flags) |
| { |
| // If flags are not set yet, just copy them. |
| if (!this->are_processor_specific_flags_set()) |
| { |
| this->set_processor_specific_flags(in_flags); |
| this->mach_ = this->elf_mips_mach(in_flags); |
| return; |
| } |
| |
| elfcpp::Elf_Word new_flags = in_flags; |
| elfcpp::Elf_Word old_flags = this->processor_specific_flags(); |
| elfcpp::Elf_Word merged_flags = this->processor_specific_flags(); |
| merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER; |
| |
| // Check flag compatibility. |
| new_flags &= ~elfcpp::EF_MIPS_NOREORDER; |
| old_flags &= ~elfcpp::EF_MIPS_NOREORDER; |
| |
| // Some IRIX 6 BSD-compatibility objects have this bit set. It |
| // doesn't seem to matter. |
| new_flags &= ~elfcpp::EF_MIPS_XGOT; |
| old_flags &= ~elfcpp::EF_MIPS_XGOT; |
| |
| // MIPSpro generates ucode info in n64 objects. Again, we should |
| // just be able to ignore this. |
| new_flags &= ~elfcpp::EF_MIPS_UCODE; |
| old_flags &= ~elfcpp::EF_MIPS_UCODE; |
| |
| if (new_flags == old_flags) |
| { |
| this->set_processor_specific_flags(merged_flags); |
| return; |
| } |
| |
| if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0) |
| != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)) |
| gold_warning(_("%s: linking abicalls files with non-abicalls files"), |
| name.c_str()); |
| |
| if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) |
| merged_flags |= elfcpp::EF_MIPS_CPIC; |
| if (!(new_flags & elfcpp::EF_MIPS_PIC)) |
| merged_flags &= ~elfcpp::EF_MIPS_PIC; |
| |
| new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC); |
| old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC); |
| |
| // Compare the ISAs. |
| if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags)) |
| gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str()); |
| else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_)) |
| { |
| // Output ISA isn't the same as, or an extension of, input ISA. |
| if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags))) |
| { |
| // Copy the architecture info from input object to output. Also copy |
| // the 32-bit flag (if set) so that we continue to recognise |
| // output as a 32-bit binary. |
| this->mach_ = this->elf_mips_mach(in_flags); |
| merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH); |
| merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH |
| | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE)); |
| |
| // Update the ABI flags isa_level, isa_rev, isa_ext fields. |
| this->update_abiflags_isa(name, merged_flags, this->abiflags_); |
| |
| // Copy across the ABI flags if output doesn't use them |
| // and if that was what caused us to treat input object as 32-bit. |
| if ((old_flags & elfcpp::EF_MIPS_ABI) == 0 |
| && this->mips_32bit_flags(new_flags) |
| && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI)) |
| merged_flags |= new_flags & elfcpp::EF_MIPS_ABI; |
| } |
| else |
| // The ISAs aren't compatible. |
| gold_error(_("%s: linking %s module with previous %s modules"), |
| name.c_str(), this->elf_mips_mach_name(in_flags), |
| this->elf_mips_mach_name(merged_flags)); |
| } |
| |
| new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH |
| | elfcpp::EF_MIPS_32BITMODE)); |
| old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH |
| | elfcpp::EF_MIPS_32BITMODE)); |
| |
| // Compare ABIs. |
| if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI)) |
| { |
| // Only error if both are set (to different values). |
| if ((new_flags & elfcpp::EF_MIPS_ABI) |
| && (old_flags & elfcpp::EF_MIPS_ABI)) |
| gold_error(_("%s: ABI mismatch: linking %s module with " |
| "previous %s modules"), name.c_str(), |
| this->elf_mips_abi_name(in_flags), |
| this->elf_mips_abi_name(merged_flags)); |
| |
| new_flags &= ~elfcpp::EF_MIPS_ABI; |
| old_flags &= ~elfcpp::EF_MIPS_ABI; |
| } |
| |
| // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together |
| // and allow arbitrary mixing of the remaining ASEs (retain the union). |
| if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE) |
| != (old_flags & elfcpp::EF_MIPS_ARCH_ASE)) |
| { |
| int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS; |
| int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS; |
| int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16; |
| int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16; |
| int micro_mis = old_m16 && new_micro; |
| int m16_mis = old_micro && new_m16; |
| |
| if (m16_mis || micro_mis) |
| gold_error(_("%s: ASE mismatch: linking %s module with " |
| "previous %s modules"), name.c_str(), |
| m16_mis ? "MIPS16" : "microMIPS", |
| m16_mis ? "microMIPS" : "MIPS16"); |
| |
| merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE; |
| |
| new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE; |
| old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE; |
| } |
| |
| // Compare NaN encodings. |
| if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008)) |
| { |
| gold_error(_("%s: linking %s module with previous %s modules"), |
| name.c_str(), |
| (new_flags & elfcpp::EF_MIPS_NAN2008 |
| ? "-mnan=2008" : "-mnan=legacy"), |
| (old_flags & elfcpp::EF_MIPS_NAN2008 |
| ? "-mnan=2008" : "-mnan=legacy")); |
| |
| new_flags &= ~elfcpp::EF_MIPS_NAN2008; |
| old_flags &= ~elfcpp::EF_MIPS_NAN2008; |
| } |
| |
| // Compare FP64 state. |
| if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64)) |
| { |
| gold_error(_("%s: linking %s module with previous %s modules"), |
| name.c_str(), |
| (new_flags & elfcpp::EF_MIPS_FP64 |
| ? "-mfp64" : "-mfp32"), |
| (old_flags & elfcpp::EF_MIPS_FP64 |
| ? "-mfp64" : "-mfp32")); |
| |
| new_flags &= ~elfcpp::EF_MIPS_FP64; |
| old_flags &= ~elfcpp::EF_MIPS_FP64; |
| } |
| |
| // Warn about any other mismatches. |
| if (new_flags != old_flags) |
| gold_error(_("%s: uses different e_flags (0x%x) fields than previous " |
| "modules (0x%x)"), name.c_str(), new_flags, old_flags); |
| |
| this->set_processor_specific_flags(merged_flags); |
| } |
| |
| // Adjust ELF file header. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::do_adjust_elf_header( |
| unsigned char* view, |
| int len) |
| { |
| gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size); |
| |
| elfcpp::Ehdr<size, big_endian> ehdr(view); |
| unsigned char e_ident[elfcpp::EI_NIDENT]; |
| elfcpp::Elf_Word flags = this->processor_specific_flags(); |
| memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT); |
| |
| unsigned char ei_abiversion = 0; |
| elfcpp::Elf_Half type = ehdr.get_e_type(); |
| if (type == elfcpp::ET_EXEC |
| && parameters->options().copyreloc() |
| && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) |
| == elfcpp::EF_MIPS_CPIC) |
| ei_abiversion = 1; |
| |
| if (this->abiflags_ != NULL |
| && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64 |
| || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)) |
| ei_abiversion = 3; |
| |
| e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion; |
| elfcpp::Ehdr_write<size, big_endian> oehdr(view); |
| oehdr.put_e_ident(e_ident); |
| |
| if (this->entry_symbol_is_compressed_) |
| oehdr.put_e_entry(ehdr.get_e_entry() + 1); |
| } |
| |
| // do_make_elf_object to override the same function in the base class. |
| // We need to use a target-specific sub-class of |
| // Sized_relobj_file<size, big_endian> to store Mips specific information. |
| // Hence we need to have our own ELF object creation. |
| |
| template<int size, bool big_endian> |
| Object* |
| Target_mips<size, big_endian>::do_make_elf_object( |
| const std::string& name, |
| Input_file* input_file, |
| off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr) |
| { |
| int et = ehdr.get_e_type(); |
| // ET_EXEC files are valid input for --just-symbols/-R, |
| // and we treat them as relocatable objects. |
| if (et == elfcpp::ET_REL |
| || (et == elfcpp::ET_EXEC && input_file->just_symbols())) |
| { |
| Mips_relobj<size, big_endian>* obj = |
| new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr); |
| obj->setup(); |
| return obj; |
| } |
| else if (et == elfcpp::ET_DYN) |
| { |
| // TODO(sasa): Should we create Mips_dynobj? |
| return Target::do_make_elf_object(name, input_file, offset, ehdr); |
| } |
| else |
| { |
| gold_error(_("%s: unsupported ELF file type %d"), |
| name.c_str(), et); |
| return NULL; |
| } |
| } |
| |
| // Finalize the sections. |
| |
| template <int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::do_finalize_sections(Layout* layout, |
| const Input_objects* input_objects, |
| Symbol_table* symtab) |
| { |
| const bool relocatable = parameters->options().relocatable(); |
| |
| // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and |
| // DT_FINI have correct values. |
| Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>( |
| symtab->lookup(parameters->options().init())); |
| if (init != NULL && (init->is_mips16() || init->is_micromips())) |
| init->set_value(init->value() | 1); |
| Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>( |
| symtab->lookup(parameters->options().fini())); |
| if (fini != NULL && (fini->is_mips16() || fini->is_micromips())) |
| fini->set_value(fini->value() | 1); |
| |
| // Check whether the entry symbol is mips16 or micromips. This is needed to |
| // adjust entry address in ELF header. |
| Mips_symbol<size>* entry = |
| static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name())); |
| this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16() |
| || entry->is_micromips())); |
| |
| if (!parameters->doing_static_link() |
| && (strcmp(parameters->options().hash_style(), "gnu") == 0 |
| || strcmp(parameters->options().hash_style(), "both") == 0)) |
| { |
| // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different |
| // ways. .gnu.hash needs symbols to be grouped by hash code whereas the |
| // MIPS ABI requires a mapping between the GOT and the symbol table. |
| gold_error(".gnu.hash is incompatible with the MIPS ABI"); |
| } |
| |
| // Check whether the final section that was scanned has HI16 or GOT16 |
| // relocations without the corresponding LO16 part. |
| if (this->got16_addends_.size() > 0) |
| gold_error("Can't find matching LO16 reloc"); |
| |
| Valtype gprmask = 0; |
| Valtype cprmask1 = 0; |
| Valtype cprmask2 = 0; |
| Valtype cprmask3 = 0; |
| Valtype cprmask4 = 0; |
| bool has_reginfo_section = false; |
| |
| for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); |
| p != input_objects->relobj_end(); |
| ++p) |
| { |
| Mips_relobj<size, big_endian>* relobj = |
| Mips_relobj<size, big_endian>::as_mips_relobj(*p); |
| |
| // Check for any mips16 stub sections that we can discard. |
| if (!relocatable) |
| relobj->discard_mips16_stub_sections(symtab); |
| |
| if (!relobj->merge_processor_specific_data()) |
| continue; |
| |
| // Merge .reginfo contents of input objects. |
| if (relobj->has_reginfo_section()) |
| { |
| has_reginfo_section = true; |
| gprmask |= relobj->gprmask(); |
| cprmask1 |= relobj->cprmask1(); |
| cprmask2 |= relobj->cprmask2(); |
| cprmask3 |= relobj->cprmask3(); |
| cprmask4 |= relobj->cprmask4(); |
| } |
| |
| // Merge processor specific flags. |
| Mips_abiflags<big_endian> in_abiflags; |
| |
| this->create_abiflags(relobj, &in_abiflags); |
| this->merge_obj_e_flags(relobj->name(), |
| relobj->processor_specific_flags()); |
| this->merge_obj_abiflags(relobj->name(), &in_abiflags); |
| this->merge_obj_attributes(relobj->name(), |
| relobj->attributes_section_data()); |
| } |
| |
| // Create a .gnu.attributes section if we have merged any attributes |
| // from inputs. |
| if (this->attributes_section_data_ != NULL) |
| { |
| Output_attributes_section_data* attributes_section = |
| new Output_attributes_section_data(*this->attributes_section_data_); |
| layout->add_output_section_data(".gnu.attributes", |
| elfcpp::SHT_GNU_ATTRIBUTES, 0, |
| attributes_section, ORDER_INVALID, false); |
| } |
| |
| // Create .MIPS.abiflags output section if there is an input section. |
| if (this->has_abiflags_section_) |
| { |
| Mips_output_section_abiflags<size, big_endian>* abiflags_section = |
| new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_); |
| |
| Output_section* os = |
| layout->add_output_section_data(".MIPS.abiflags", |
| elfcpp::SHT_MIPS_ABIFLAGS, |
| elfcpp::SHF_ALLOC, |
| abiflags_section, ORDER_INVALID, false); |
| |
| if (!relocatable && os != NULL) |
| { |
| Output_segment* abiflags_segment = |
| layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R); |
| abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R); |
| } |
| } |
| |
| if (has_reginfo_section && !parameters->options().gc_sections()) |
| { |
| // Create .reginfo output section. |
| Mips_output_section_reginfo<size, big_endian>* reginfo_section = |
| new Mips_output_section_reginfo<size, big_endian>(this, gprmask, |
| cprmask1, cprmask2, |
| cprmask3, cprmask4); |
| |
| Output_section* os = |
| layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO, |
| elfcpp::SHF_ALLOC, reginfo_section, |
| ORDER_INVALID, false); |
| |
| if (!relocatable && os != NULL) |
| { |
| Output_segment* reginfo_segment = |
| layout->make_output_segment(elfcpp::PT_MIPS_REGINFO, |
| elfcpp::PF_R); |
| reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R); |
| } |
| } |
| |
| if (this->plt_ != NULL) |
| { |
| // Set final PLT offsets for symbols. |
| this->plt_section()->set_plt_offsets(); |
| |
| // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section. |
| // Set STO_MICROMIPS flag if the output has microMIPS code, but only if |
| // there are no standard PLT entries present. |
| unsigned char nonvis = 0; |
| if (this->is_output_micromips() |
| && !this->plt_section()->has_standard_entries()) |
| nonvis = elfcpp::STO_MICROMIPS >> 2; |
| symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL, |
| Symbol_table::PREDEFINED, |
| this->plt_, |
| 0, 0, elfcpp::STT_FUNC, |
| elfcpp::STB_LOCAL, |
| elfcpp::STV_DEFAULT, nonvis, |
| false, false); |
| } |
| |
| if (this->mips_stubs_ != NULL) |
| { |
| // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section. |
| unsigned char nonvis = 0; |
| if (this->is_output_micromips()) |
| nonvis = elfcpp::STO_MICROMIPS >> 2; |
| symtab->define_in_output_data("_MIPS_STUBS_", NULL, |
| Symbol_table::PREDEFINED, |
| this->mips_stubs_, |
| 0, 0, elfcpp::STT_FUNC, |
| elfcpp::STB_LOCAL, |
| elfcpp::STV_DEFAULT, nonvis, |
| false, false); |
| } |
| |
| if (!relocatable && !parameters->doing_static_link()) |
| // In case there is no .got section, create one. |
| this->got_section(symtab, layout); |
| |
| // Emit any relocs we saved in an attempt to avoid generating COPY |
| // relocs. |
| if (this->copy_relocs_.any_saved_relocs()) |
| this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout, |
| this); |
| |
| // Set _gp value. |
| this->set_gp(layout, symtab); |
| |
| // Emit dynamic relocs. |
| for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin(); |
| p != this->dyn_relocs_.end(); |
| ++p) |
| p->emit(this->rel_dyn_section(layout), this->got_section(), symtab); |
| |
| if (this->has_got_section()) |
| this->got_section()->lay_out_got(layout, symtab, input_objects); |
| |
| if (this->mips_stubs_ != NULL) |
| this->mips_stubs_->set_needs_dynsym_value(); |
| |
| // Check for functions that might need $25 to be valid on entry. |
| // TODO(sasa): Can we do this without iterating over all symbols? |
| typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor; |
| symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout, |
| symtab)); |
| |
| // Add NULL segment. |
| if (!relocatable) |
| layout->make_output_segment(elfcpp::PT_NULL, 0); |
| |
| // Fill in some more dynamic tags. |
| // TODO(sasa): Add more dynamic tags. |
| const Reloc_section* rel_plt = (this->plt_ == NULL |
| ? NULL : this->plt_->rel_plt()); |
| layout->add_target_dynamic_tags(true, this->got_, rel_plt, |
| this->rel_dyn_, true, false); |
| |
| Output_data_dynamic* const odyn = layout->dynamic_data(); |
| if (odyn != NULL |
| && !relocatable |
| && !parameters->doing_static_link()) |
| { |
| unsigned int d_val; |
| // This element holds a 32-bit version id for the Runtime |
| // Linker Interface. This will start at integer value 1. |
| d_val = 0x01; |
| odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val); |
| |
| // Dynamic flags |
| d_val = elfcpp::RHF_NOTPOT; |
| odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val); |
| |
| // Save layout for using when emitting custom dynamic tags. |
| this->layout_ = layout; |
| |
| // This member holds the base address of the segment. |
| odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS); |
| |
| // This member holds the number of entries in the .dynsym section. |
| odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO); |
| |
| // This member holds the index of the first dynamic symbol |
| // table entry that corresponds to an entry in the global offset table. |
| odyn->add_custom(elfcpp::DT_MIPS_GOTSYM); |
| |
| // This member holds the number of local GOT entries. |
| odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO, |
| this->got_->get_local_gotno()); |
| |
| if (this->plt_ != NULL) |
| // DT_MIPS_PLTGOT dynamic tag |
| odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_); |
| |
| if (!parameters->options().shared()) |
| { |
| this->rld_map_ = new Output_data_zero_fill(size / 8, size / 8); |
| |
| layout->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS, |
| (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), |
| this->rld_map_, ORDER_INVALID, false); |
| |
| // __RLD_MAP will be filled in by the runtime loader to contain |
| // a pointer to the _r_debug structure. |
| Symbol* rld_map = symtab->define_in_output_data("__RLD_MAP", NULL, |
| Symbol_table::PREDEFINED, |
| this->rld_map_, |
| 0, 0, elfcpp::STT_OBJECT, |
| elfcpp::STB_GLOBAL, |
| elfcpp::STV_DEFAULT, 0, |
| false, false); |
| |
| if (!rld_map->is_forced_local()) |
| rld_map->set_needs_dynsym_entry(); |
| |
| if (!parameters->options().pie()) |
| // This member holds the absolute address of the debug pointer. |
| odyn->add_section_address(elfcpp::DT_MIPS_RLD_MAP, this->rld_map_); |
| else |
| // This member holds the offset to the debug pointer, |
| // relative to the address of the tag. |
| odyn->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL); |
| } |
| } |
| } |
| |
| // Get the custom dynamic tag value. |
| template<int size, bool big_endian> |
| unsigned int |
| Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const |
| { |
| switch (tag) |
| { |
| case elfcpp::DT_MIPS_BASE_ADDRESS: |
| { |
| // The base address of the segment. |
| // At this point, the segment list has been sorted into final order, |
| // so just return vaddr of the first readable PT_LOAD segment. |
| Output_segment* seg = |
| this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0); |
| gold_assert(seg != NULL); |
| return seg->vaddr(); |
| } |
| |
| case elfcpp::DT_MIPS_SYMTABNO: |
| // The number of entries in the .dynsym section. |
| return this->get_dt_mips_symtabno(); |
| |
| case elfcpp::DT_MIPS_GOTSYM: |
| { |
| // The index of the first dynamic symbol table entry that corresponds |
| // to an entry in the GOT. |
| if (this->got_->first_global_got_dynsym_index() != -1U) |
| return this->got_->first_global_got_dynsym_index(); |
| else |
| // In case if we don't have global GOT symbols we default to setting |
| // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO. |
| return this->get_dt_mips_symtabno(); |
| } |
| |
| case elfcpp::DT_MIPS_RLD_MAP_REL: |
| { |
| // The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, |
| // relative to the address of the tag. |
| Output_data_dynamic* const odyn = this->layout_->dynamic_data(); |
| unsigned int entry_offset = |
| odyn->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL); |
| gold_assert(entry_offset != -1U); |
| return this->rld_map_->address() - (odyn->address() + entry_offset); |
| } |
| default: |
| gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag); |
| } |
| |
| return (unsigned int)-1; |
| } |
| |
| // Relocate section data. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::relocate_section( |
| const Relocate_info<size, big_endian>* relinfo, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| bool needs_special_offset_handling, |
| unsigned char* view, |
| Mips_address address, |
| section_size_type view_size, |
| const Reloc_symbol_changes* reloc_symbol_changes) |
| { |
| typedef Target_mips<size, big_endian> Mips; |
| typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate; |
| |
| if (sh_type == elfcpp::SHT_REL) |
| { |
| typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian> |
| Classify_reloc; |
| |
| gold::relocate_section<size, big_endian, Mips, Mips_relocate, |
| gold::Default_comdat_behavior, Classify_reloc>( |
| relinfo, |
| this, |
| prelocs, |
| reloc_count, |
| output_section, |
| needs_special_offset_handling, |
| view, |
| address, |
| view_size, |
| reloc_symbol_changes); |
| } |
| else if (sh_type == elfcpp::SHT_RELA) |
| { |
| typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian> |
| Classify_reloc; |
| |
| gold::relocate_section<size, big_endian, Mips, Mips_relocate, |
| gold::Default_comdat_behavior, Classify_reloc>( |
| relinfo, |
| this, |
| prelocs, |
| reloc_count, |
| output_section, |
| needs_special_offset_handling, |
| view, |
| address, |
| view_size, |
| reloc_symbol_changes); |
| } |
| } |
| |
| // Return the size of a relocation while scanning during a relocatable |
| // link. |
| |
| unsigned int |
| mips_get_size_for_reloc(unsigned int r_type, Relobj* object) |
| { |
| switch (r_type) |
| { |
| case elfcpp::R_MIPS_NONE: |
| case elfcpp::R_MIPS_TLS_DTPMOD64: |
| case elfcpp::R_MIPS_TLS_DTPREL64: |
| case elfcpp::R_MIPS_TLS_TPREL64: |
| return 0; |
| |
| case elfcpp::R_MIPS_32: |
| case elfcpp::R_MIPS_TLS_DTPMOD32: |
| case elfcpp::R_MIPS_TLS_DTPREL32: |
| case elfcpp::R_MIPS_TLS_TPREL32: |
| case elfcpp::R_MIPS_REL32: |
| case elfcpp::R_MIPS_PC32: |
| case elfcpp::R_MIPS_GPREL32: |
| case elfcpp::R_MIPS_JALR: |
| case elfcpp::R_MIPS_EH: |
| return 4; |
| |
| case elfcpp::R_MIPS_16: |
| case elfcpp::R_MIPS_HI16: |
| case elfcpp::R_MIPS_LO16: |
| case elfcpp::R_MIPS_HIGHER: |
| case elfcpp::R_MIPS_HIGHEST: |
| case elfcpp::R_MIPS_GPREL16: |
| case elfcpp::R_MIPS16_HI16: |
| case elfcpp::R_MIPS16_LO16: |
| case elfcpp::R_MIPS_PC16: |
| case elfcpp::R_MIPS_PCHI16: |
| case elfcpp::R_MIPS_PCLO16: |
| case elfcpp::R_MIPS_GOT16: |
| case elfcpp::R_MIPS16_GOT16: |
| case elfcpp::R_MIPS_CALL16: |
| case elfcpp::R_MIPS16_CALL16: |
| case elfcpp::R_MIPS_GOT_HI16: |
| case elfcpp::R_MIPS_CALL_HI16: |
| case elfcpp::R_MIPS_GOT_LO16: |
| case elfcpp::R_MIPS_CALL_LO16: |
| case elfcpp::R_MIPS_TLS_DTPREL_HI16: |
| case elfcpp::R_MIPS_TLS_DTPREL_LO16: |
| case elfcpp::R_MIPS_TLS_TPREL_HI16: |
| case elfcpp::R_MIPS_TLS_TPREL_LO16: |
| case elfcpp::R_MIPS16_GPREL: |
| case elfcpp::R_MIPS_GOT_DISP: |
| case elfcpp::R_MIPS_LITERAL: |
| case elfcpp::R_MIPS_GOT_PAGE: |
| case elfcpp::R_MIPS_GOT_OFST: |
| case elfcpp::R_MIPS_TLS_GD: |
| case elfcpp::R_MIPS_TLS_LDM: |
| case elfcpp::R_MIPS_TLS_GOTTPREL: |
| return 2; |
| |
| // These relocations are not byte sized |
| case elfcpp::R_MIPS_26: |
| case elfcpp::R_MIPS16_26: |
| case elfcpp::R_MIPS_PC21_S2: |
| case elfcpp::R_MIPS_PC26_S2: |
| case elfcpp::R_MIPS_PC18_S3: |
| case elfcpp::R_MIPS_PC19_S2: |
| return 4; |
| |
| case elfcpp::R_MIPS_COPY: |
| case elfcpp::R_MIPS_JUMP_SLOT: |
| object->error(_("unexpected reloc %u in object file"), r_type); |
| return 0; |
| |
| default: |
| object->error(_("unsupported reloc %u in object file"), r_type); |
| return 0; |
| } |
| } |
| |
| // Scan the relocs during a relocatable link. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::scan_relocatable_relocs( |
| Symbol_table* symtab, |
| Layout* layout, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| bool needs_special_offset_handling, |
| size_t local_symbol_count, |
| const unsigned char* plocal_symbols, |
| Relocatable_relocs* rr) |
| { |
| if (sh_type == elfcpp::SHT_REL) |
| { |
| typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian> |
| Classify_reloc; |
| typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc> |
| Scan_relocatable_relocs; |
| |
| gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>( |
| symtab, |
| layout, |
| object, |
| data_shndx, |
| prelocs, |
| reloc_count, |
| output_section, |
| needs_special_offset_handling, |
| local_symbol_count, |
| plocal_symbols, |
| rr); |
| } |
| else if (sh_type == elfcpp::SHT_RELA) |
| { |
| typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian> |
| Classify_reloc; |
| typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc> |
| Scan_relocatable_relocs; |
| |
| gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>( |
| symtab, |
| layout, |
| object, |
| data_shndx, |
| prelocs, |
| reloc_count, |
| output_section, |
| needs_special_offset_handling, |
| local_symbol_count, |
| plocal_symbols, |
| rr); |
| } |
| else |
| gold_unreachable(); |
| } |
| |
| // Scan the relocs for --emit-relocs. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::emit_relocs_scan( |
| Symbol_table* symtab, |
| Layout* layout, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| bool needs_special_offset_handling, |
| size_t local_symbol_count, |
| const unsigned char* plocal_syms, |
| Relocatable_relocs* rr) |
| { |
| if (sh_type == elfcpp::SHT_REL) |
| { |
| typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian> |
| Classify_reloc; |
| typedef gold::Default_emit_relocs_strategy<Classify_reloc> |
| Emit_relocs_strategy; |
| |
| gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>( |
| symtab, |
| layout, |
| object, |
| data_shndx, |
| prelocs, |
| reloc_count, |
| output_section, |
| needs_special_offset_handling, |
| local_symbol_count, |
| plocal_syms, |
| rr); |
| } |
| else if (sh_type == elfcpp::SHT_RELA) |
| { |
| typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian> |
| Classify_reloc; |
| typedef gold::Default_emit_relocs_strategy<Classify_reloc> |
| Emit_relocs_strategy; |
| |
| gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>( |
| symtab, |
| layout, |
| object, |
| data_shndx, |
| prelocs, |
| reloc_count, |
| output_section, |
| needs_special_offset_handling, |
| local_symbol_count, |
| plocal_syms, |
| rr); |
| } |
| else |
| gold_unreachable(); |
| } |
| |
| // Emit relocations for a section. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::relocate_relocs( |
| const Relocate_info<size, big_endian>* relinfo, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| typename elfcpp::Elf_types<size>::Elf_Off |
| offset_in_output_section, |
| unsigned char* view, |
| Mips_address view_address, |
| section_size_type view_size, |
| unsigned char* reloc_view, |
| section_size_type reloc_view_size) |
| { |
| if (sh_type == elfcpp::SHT_REL) |
| { |
| typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian> |
| Classify_reloc; |
| |
| gold::relocate_relocs<size, big_endian, Classify_reloc>( |
| relinfo, |
| prelocs, |
| reloc_count, |
| output_section, |
| offset_in_output_section, |
| view, |
| view_address, |
| view_size, |
| reloc_view, |
| reloc_view_size); |
| } |
| else if (sh_type == elfcpp::SHT_RELA) |
| { |
| typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian> |
| Classify_reloc; |
| |
| gold::relocate_relocs<size, big_endian, Classify_reloc>( |
| relinfo, |
| prelocs, |
| reloc_count, |
| output_section, |
| offset_in_output_section, |
| view, |
| view_address, |
| view_size, |
| reloc_view, |
| reloc_view_size); |
| } |
| else |
| gold_unreachable(); |
| } |
| |
| // Perform target-specific processing in a relocatable link. This is |
| // only used if we use the relocation strategy RELOC_SPECIAL. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::relocate_special_relocatable( |
| const Relocate_info<size, big_endian>* relinfo, |
| unsigned int sh_type, |
| const unsigned char* preloc_in, |
| size_t relnum, |
| Output_section* output_section, |
| typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section, |
| unsigned char* view, |
| Mips_address view_address, |
| section_size_type, |
| unsigned char* preloc_out) |
| { |
| // We can only handle REL type relocation sections. |
| gold_assert(sh_type == elfcpp::SHT_REL); |
| |
| typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc |
| Reltype; |
| typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write |
| Reltype_write; |
| |
| typedef Mips_relocate_functions<size, big_endian> Reloc_funcs; |
| |
| const Mips_address invalid_address = static_cast<Mips_address>(0) - 1; |
| |
| Mips_relobj<size, big_endian>* object = |
| Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object); |
| const unsigned int local_count = object->local_symbol_count(); |
| |
| Reltype reloc(preloc_in); |
| Reltype_write reloc_write(preloc_out); |
| |
| elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info(); |
| const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info); |
| const unsigned int r_type = elfcpp::elf_r_type<size>(r_info); |
| |
| // Get the new symbol index. |
| // We only use RELOC_SPECIAL strategy in local relocations. |
| gold_assert(r_sym < local_count); |
| |
| // We are adjusting a section symbol. We need to find |
| // the symbol table index of the section symbol for |
| // the output section corresponding to input section |
| // in which this symbol is defined. |
| bool is_ordinary; |
| unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary); |
| gold_assert(is_ordinary); |
| Output_section* os = object->output_section(shndx); |
| gold_assert(os != NULL); |
| gold_assert(os->needs_symtab_index()); |
| unsigned int new_symndx = os->symtab_index(); |
| |
| // Get the new offset--the location in the output section where |
| // this relocation should be applied. |
| |
| Mips_address offset = reloc.get_r_offset(); |
| Mips_address new_offset; |
| if (offset_in_output_section != invalid_address) |
| new_offset = offset + offset_in_output_section; |
| else |
| { |
| section_offset_type sot_offset = |
| convert_types<section_offset_type, Mips_address>(offset); |
| section_offset_type new_sot_offset = |
| output_section->output_offset(object, relinfo->data_shndx, |
| sot_offset); |
| gold_assert(new_sot_offset != -1); |
| new_offset = new_sot_offset; |
| } |
| |
| // In an object file, r_offset is an offset within the section. |
| // In an executable or dynamic object, generated by |
| // --emit-relocs, r_offset is an absolute address. |
| if (!parameters->options().relocatable()) |
| { |
| new_offset += view_address; |
| if (offset_in_output_section != invalid_address) |
| new_offset -= offset_in_output_section; |
| } |
| |
| reloc_write.put_r_offset(new_offset); |
| reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type)); |
| |
| // Handle the reloc addend. |
| // The relocation uses a section symbol in the input file. |
| // We are adjusting it to use a section symbol in the output |
| // file. The input section symbol refers to some address in |
| // the input section. We need the relocation in the output |
| // file to refer to that same address. This adjustment to |
| // the addend is the same calculation we use for a simple |
| // absolute relocation for the input section symbol. |
| Valtype calculated_value = 0; |
| const Symbol_value<size>* psymval = object->local_symbol(r_sym); |
| |
| unsigned char* paddend = view + offset; |
| typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY; |
| switch (r_type) |
| { |
| case elfcpp::R_MIPS_26: |
| reloc_status = Reloc_funcs::rel26(paddend, object, psymval, |
| offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL, |
| false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(), |
| false, &calculated_value); |
| break; |
| |
| default: |
| gold_unreachable(); |
| } |
| |
| // Report any errors. |
| switch (reloc_status) |
| { |
| case Reloc_funcs::STATUS_OKAY: |
| break; |
| case Reloc_funcs::STATUS_OVERFLOW: |
| gold_error_at_location(relinfo, relnum, reloc.get_r_offset(), |
| _("relocation overflow: " |
| "%u against local symbol %u in %s"), |
| r_type, r_sym, object->name().c_str()); |
| break; |
| case Reloc_funcs::STATUS_BAD_RELOC: |
| gold_error_at_location(relinfo, relnum, reloc.get_r_offset(), |
| _("unexpected opcode while processing relocation")); |
| break; |
| default: |
| gold_unreachable(); |
| } |
| } |
| |
| // Optimize the TLS relocation type based on what we know about the |
| // symbol. IS_FINAL is true if the final address of this symbol is |
| // known at link time. |
| |
| template<int size, bool big_endian> |
| tls::Tls_optimization |
| Target_mips<size, big_endian>::optimize_tls_reloc(bool, int) |
| { |
| // FIXME: Currently we do not do any TLS optimization. |
| return tls::TLSOPT_NONE; |
| } |
| |
| // Scan a relocation for a local symbol. |
| |
| template<int size, bool big_endian> |
| inline void |
| Target_mips<size, big_endian>::Scan::local( |
| Symbol_table* symtab, |
| Layout* layout, |
| Target_mips<size, big_endian>* target, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| Output_section* output_section, |
| const Relatype* rela, |
| const Reltype* rel, |
| unsigned int rel_type, |
| unsigned int r_type, |
| const elfcpp::Sym<size, big_endian>& lsym, |
| bool is_discarded) |
| { |
| if (is_discarded) |
| return; |
| |
| Mips_address r_offset; |
| unsigned int r_sym; |
| typename elfcpp::Elf_types<size>::Elf_Swxword r_addend; |
| |
| if (rel_type == elfcpp::SHT_RELA) |
| { |
| r_offset = rela->get_r_offset(); |
| r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>:: |
| get_r_sym(rela); |
| r_addend = rela->get_r_addend(); |
| } |
| else |
| { |
| r_offset = rel->get_r_offset(); |
| r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>:: |
| get_r_sym(rel); |
| r_addend = 0; |
| } |
| |
| Mips_relobj<size, big_endian>* mips_obj = |
| Mips_relobj<size, big_endian>::as_mips_relobj(object); |
| |
| if (mips_obj->is_mips16_stub_section(data_shndx)) |
| { |
| mips_obj->get_mips16_stub_section(data_shndx) |
| ->new_local_reloc_found(r_type, r_sym); |
| } |
| |
| if (r_type == elfcpp::R_MIPS_NONE) |
| // R_MIPS_NONE is used in mips16 stub sections, to define the target of the |
| // mips16 stub. |
| return; |
| |
| if (!mips16_call_reloc(r_type) |
| && !mips_obj->section_allows_mips16_refs(data_shndx)) |
| // This reloc would need to refer to a MIPS16 hard-float stub, if |
| // there is one. We ignore MIPS16 stub sections and .pdr section when |
| // looking for relocs that would need to refer to MIPS16 stubs. |
| mips_obj->add_local_non_16bit_call(r_sym); |
| |
| if (r_type == elfcpp::R_MIPS16_26 |
| && !mips_obj->section_allows_mips16_refs(data_shndx)) |
| mips_obj->add_local_16bit_call(r_sym); |
| |
| switch (r_type) |
| { |
| case elfcpp::R_MIPS_GOT16: |
| case elfcpp::R_MIPS_CALL16: |
| case elfcpp::R_MIPS_CALL_HI16: |
| case elfcpp::R_MIPS_CALL_LO16: |
| case elfcpp::R_MIPS_GOT_HI16: |
| case elfcpp::R_MIPS_GOT_LO16: |
| case elfcpp::R_MIPS_GOT_PAGE: |
| case elfcpp::R_MIPS_GOT_OFST: |
| case elfcpp::R_MIPS_GOT_DISP: |
| case elfcpp::R_MIPS_TLS_GOTTPREL: |
| case elfcpp::R_MIPS_TLS_GD: |
| case elfcpp::R_MIPS_TLS_LDM: |
| case elfcpp::R_MIPS16_GOT16: |
| case elfcpp::R_MIPS16_CALL16: |
| case elfcpp::R_MIPS16_TLS_GOTTPREL: |
| case elfcpp::R_MIPS16_TLS_GD: |
| case elfcpp::R_MIPS16_TLS_LDM: |
| case elfcpp::R_MICROMIPS_GOT16: |
| case elfcpp::R_MICROMIPS_CALL16: |
| case elfcpp::R_MICROMIPS_CALL_HI16: |
| case elfcpp::R_MICROMIPS_CALL_LO16: |
| case elfcpp::R_MICROMIPS_GOT_HI16: |
| case elfcpp::R_MICROMIPS_GOT_LO16: |
| case elfcpp::R_MICROMIPS_GOT_PAGE: |
| case elfcpp::R_MICROMIPS_GOT_OFST: |
| case elfcpp::R_MICROMIPS_GOT_DISP: |
| case elfcpp::R_MICROMIPS_TLS_GOTTPREL: |
| case elfcpp::R_MICROMIPS_TLS_GD: |
| case elfcpp::R_MICROMIPS_TLS_LDM: |
| case elfcpp::R_MIPS_EH: |
| // We need a GOT section. |
| target->got_section(symtab, layout); |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (call_lo16_reloc(r_type) |
| || got_lo16_reloc(r_type) |
| || got_disp_reloc(r_type) |
| || eh_reloc(r_type)) |
| { |
| // We may need a local GOT entry for this relocation. We |
| // don't count R_MIPS_GOT_PAGE because we can estimate the |
| // maximum number of pages needed by looking at the size of |
| // the segment. Similar comments apply to R_MIPS*_GOT16 and |
| // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or |
| // R_MIPS_CALL_HI16 because these are always followed by an |
| // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. |
| Mips_output_data_got<size, big_endian>* got = |
| target->got_section(symtab, layout); |
| bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION; |
| got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U, |
| is_section_symbol); |
| } |
| |
| switch (r_type) |
| { |
| case elfcpp::R_MIPS_CALL16: |
| case elfcpp::R_MIPS16_CALL16: |
| case elfcpp::R_MICROMIPS_CALL16: |
| gold_error(_("CALL16 reloc at 0x%lx not against global symbol "), |
| (unsigned long)r_offset); |
| return; |
| |
| case elfcpp::R_MIPS_GOT_PAGE: |
| case elfcpp::R_MICROMIPS_GOT_PAGE: |
| case elfcpp::R_MIPS16_GOT16: |
| case elfcpp::R_MIPS_GOT16: |
| case elfcpp::R_MIPS_GOT_HI16: |
| case elfcpp::R_MIPS_GOT_LO16: |
| case elfcpp::R_MICROMIPS_GOT16: |
| case elfcpp::R_MICROMIPS_GOT_HI16: |
| case elfcpp::R_MICROMIPS_GOT_LO16: |
| { |
| // This relocation needs a page entry in the GOT. |
| // Get the section contents. |
| section_size_type view_size = 0; |
| const unsigned char* view = object->section_contents(data_shndx, |
| &view_size, false); |
| view += r_offset; |
| |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view); |
| Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff |
| : r_addend); |
| |
| if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type)) |
| target->got16_addends_.push_back(got16_addend<size, big_endian>( |
| object, data_shndx, r_type, r_sym, addend)); |
| else |
| target->got_section()->record_got_page_entry(mips_obj, r_sym, addend); |
| break; |
| } |
| |
| case elfcpp::R_MIPS_HI16: |
| case elfcpp::R_MIPS_PCHI16: |
| case elfcpp::R_MIPS16_HI16: |
| case elfcpp::R_MICROMIPS_HI16: |
| // Record the reloc so that we can check whether the corresponding LO16 |
| // part exists. |
| if (rel_type == elfcpp::SHT_REL) |
| target->got16_addends_.push_back(got16_addend<size, big_endian>( |
| object, data_shndx, r_type, r_sym, 0)); |
| break; |
| |
| case elfcpp::R_MIPS_LO16: |
| case elfcpp::R_MIPS_PCLO16: |
| case elfcpp::R_MIPS16_LO16: |
| case elfcpp::R_MICROMIPS_LO16: |
| { |
| if (rel_type != elfcpp::SHT_REL) |
| break; |
| |
| // Find corresponding GOT16/HI16 relocation. |
| |
| // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must |
| // be immediately following. However, for the IRIX6 ABI, the next |
| // relocation may be a composed relocation consisting of several |
| // relocations for the same address. In that case, the R_MIPS_LO16 |
| // relocation may occur as one of these. We permit a similar |
| // extension in general, as that is useful for GCC. |
| |
| // In some cases GCC dead code elimination removes the LO16 but |
| // keeps the corresponding HI16. This is strictly speaking a |
| // violation of the ABI but not immediately harmful. |
| |
| typename std::list<got16_addend<size, big_endian> >::iterator it = |
| target->got16_addends_.begin(); |
| while (it != target->got16_addends_.end()) |
| { |
| got16_addend<size, big_endian> _got16_addend = *it; |
| |
| // TODO(sasa): Split got16_addends_ list into two lists - one for |
| // GOT16 relocs and the other for HI16 relocs. |
| |
| // Report an error if we find HI16 or GOT16 reloc from the |
| // previous section without the matching LO16 part. |
| if (_got16_addend.object != object |
| || _got16_addend.shndx != data_shndx) |
| { |
| gold_error("Can't find matching LO16 reloc"); |
| break; |
| } |
| |
| if (_got16_addend.r_sym != r_sym |
| || !is_matching_lo16_reloc(_got16_addend.r_type, r_type)) |
| { |
| ++it; |
| continue; |
| } |
| |
| // We found a matching HI16 or GOT16 reloc for this LO16 reloc. |
| // For GOT16, we need to calculate combined addend and record GOT page |
| // entry. |
| if (got16_reloc(_got16_addend.r_type)) |
| { |
| |
| section_size_type view_size = 0; |
| const unsigned char* view = object->section_contents(data_shndx, |
| &view_size, |
| false); |
| view += r_offset; |
| |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view); |
| int32_t addend = Bits<16>::sign_extend32(val & 0xffff); |
| |
| addend = (_got16_addend.addend << 16) + addend; |
| target->got_section()->record_got_page_entry(mips_obj, r_sym, |
| addend); |
| } |
| |
| it = target->got16_addends_.erase(it); |
| } |
| break; |
| } |
| } |
| |
| switch (r_type) |
| { |
| case elfcpp::R_MIPS_32: |
| case elfcpp::R_MIPS_REL32: |
| case elfcpp::R_MIPS_64: |
| { |
| if (parameters->options().output_is_position_independent()) |
| { |
| // If building a shared library (or a position-independent |
| // executable), we need to create a dynamic relocation for |
| // this location. |
| if (is_readonly_section(output_section)) |
| break; |
| Reloc_section* rel_dyn = target->rel_dyn_section(layout); |
| rel_dyn->add_symbolless_local_addend(object, r_sym, |
| elfcpp::R_MIPS_REL32, |
| output_section, data_shndx, |
| r_offset); |
| } |
| break; |
| } |
| |
| case elfcpp::R_MIPS_TLS_GOTTPREL: |
| case elfcpp::R_MIPS16_TLS_GOTTPREL: |
| case elfcpp::R_MICROMIPS_TLS_GOTTPREL: |
| case elfcpp::R_MIPS_TLS_LDM: |
| case elfcpp::R_MIPS16_TLS_LDM: |
| case elfcpp::R_MICROMIPS_TLS_LDM: |
| case elfcpp::R_MIPS_TLS_GD: |
| case elfcpp::R_MIPS16_TLS_GD: |
| case elfcpp::R_MICROMIPS_TLS_GD: |
| { |
| bool output_is_shared = parameters->options().shared(); |
| const tls::Tls_optimization optimized_type |
| = Target_mips<size, big_endian>::optimize_tls_reloc( |
| !output_is_shared, r_type); |
| switch (r_type) |
| { |
| case elfcpp::R_MIPS_TLS_GD: |
| case elfcpp::R_MIPS16_TLS_GD: |
| case elfcpp::R_MICROMIPS_TLS_GD: |
| if (optimized_type == tls::TLSOPT_NONE) |
| { |
| // Create a pair of GOT entries for the module index and |
| // dtv-relative offset. |
| Mips_output_data_got<size, big_endian>* got = |
| target->got_section(symtab, layout); |
| unsigned int shndx = lsym.get_st_shndx(); |
| bool is_ordinary; |
| shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary); |
| if (!is_ordinary) |
| { |
| object->error(_("local symbol %u has bad shndx %u"), |
| r_sym, shndx); |
| break; |
| } |
| got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, |
| shndx, false); |
| } |
| else |
| { |
| // FIXME: TLS optimization not supported yet. |
| gold_unreachable(); |
| } |
| break; |
| |
| case elfcpp::R_MIPS_TLS_LDM: |
| case elfcpp::R_MIPS16_TLS_LDM: |
| case elfcpp::R_MICROMIPS_TLS_LDM: |
| if (optimized_type == tls::TLSOPT_NONE) |
| { |
| // We always record LDM symbols as local with index 0. |
| target->got_section()->record_local_got_symbol(mips_obj, 0, |
| r_addend, r_type, |
| -1U, false); |
| } |
| else |
| { |
| // FIXME: TLS optimization not supported yet. |
| gold_unreachable(); |
| } |
| break; |
| case elfcpp::R_MIPS_TLS_GOTTPREL: |
| case elfcpp::R_MIPS16_TLS_GOTTPREL: |
| case elfcpp::R_MICROMIPS_TLS_GOTTPREL: |
| layout->set_has_static_tls(); |
| if (optimized_type == tls::TLSOPT_NONE) |
| { |
| // Create a GOT entry for the tp-relative offset. |
| Mips_output_data_got<size, big_endian>* got = |
| target->got_section(symtab, layout); |
| got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, |
| -1U, false); |
| } |
| else |
| { |
| // FIXME: TLS optimization not supported yet. |
| gold_unreachable(); |
| } |
| break; |
| |
| default: |
| gold_unreachable(); |
| } |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| // Refuse some position-dependent relocations when creating a |
| // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're |
| // not PIC, but we can create dynamic relocations and the result |
| // will be fine. Also do not refuse R_MIPS_LO16, which can be |
| // combined with R_MIPS_GOT16. |
| if (parameters->options().shared()) |
| { |
| switch (r_type) |
| { |
| case elfcpp::R_MIPS16_HI16: |
| case elfcpp::R_MIPS_HI16: |
| case elfcpp::R_MIPS_HIGHER: |
| case elfcpp::R_MIPS_HIGHEST: |
| case elfcpp::R_MICROMIPS_HI16: |
| case elfcpp::R_MICROMIPS_HIGHER: |
| case elfcpp::R_MICROMIPS_HIGHEST: |
| // Don't refuse a high part relocation if it's against |
| // no symbol (e.g. part of a compound relocation). |
| if (r_sym == 0) |
| break; |
| // Fall through. |
| |
| case elfcpp::R_MIPS16_26: |
| case elfcpp::R_MIPS_26: |
| case elfcpp::R_MICROMIPS_26_S1: |
| gold_error(_("%s: relocation %u against `%s' can not be used when " |
| "making a shared object; recompile with -fPIC"), |
| object->name().c_str(), r_type, "a local symbol"); |
| default: |
| break; |
| } |
| } |
| } |
| |
| template<int size, bool big_endian> |
| inline void |
| Target_mips<size, big_endian>::Scan::local( |
| Symbol_table* symtab, |
| Layout* layout, |
| Target_mips<size, big_endian>* target, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| Output_section* output_section, |
| const Reltype& reloc, |
| unsigned int r_type, |
| const elfcpp::Sym<size, big_endian>& lsym, |
| bool is_discarded) |
| { |
| if (is_discarded) |
| return; |
| |
| local( |
| symtab, |
| layout, |
| target, |
| object, |
| data_shndx, |
| output_section, |
| (const Relatype*) NULL, |
| &reloc, |
| elfcpp::SHT_REL, |
| r_type, |
| lsym, is_discarded); |
| } |
| |
| |
| template<int size, bool big_endian> |
| inline void |
| Target_mips<size, big_endian>::Scan::local( |
| Symbol_table* symtab, |
| Layout* layout, |
| Target_mips<size, big_endian>* target, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| Output_section* output_section, |
| const Relatype& reloc, |
| unsigned int r_type, |
| const elfcpp::Sym<size, big_endian>& lsym, |
| bool is_discarded) |
| { |
| if (is_discarded) |
| return; |
| |
| local( |
| symtab, |
| layout, |
| target, |
| object, |
| data_shndx, |
| output_section, |
| &reloc, |
| (const Reltype*) NULL, |
| elfcpp::SHT_RELA, |
| r_type, |
| lsym, is_discarded); |
| } |
| |
| // Scan a relocation for a global symbol. |
| |
| template<int size, bool big_endian> |
| inline void |
| Target_mips<size, big_endian>::Scan::global( |
| Symbol_table* symtab, |
| Layout* layout, |
| Target_mips<size, big_endian>* target, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| Output_section* output_section, |
| const Relatype* rela, |
| const Reltype* rel, |
| unsigned int rel_type, |
| unsigned int r_type, |
| Symbol* gsym) |
| { |
| Mips_address r_offset; |
| unsigned int r_sym; |
| typename elfcpp::Elf_types<size>::Elf_Swxword r_addend; |
| |
| if (rel_type == elfcpp::SHT_RELA) |
| { |
| r_offset = rela->get_r_offset(); |
| r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>:: |
| get_r_sym(rela); |
| r_addend = rela->get_r_addend(); |
| } |
| else |
| { |
| r_offset = rel->get_r_offset(); |
| r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>:: |
| get_r_sym(rel); |
| r_addend = 0; |
| } |
| |
| Mips_relobj<size, big_endian>* mips_obj = |
| Mips_relobj<size, big_endian>::as_mips_relobj(object); |
| Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym); |
| |
| if (mips_obj->is_mips16_stub_section(data_shndx)) |
| { |
| mips_obj->get_mips16_stub_section(data_shndx) |
| ->new_global_reloc_found(r_type, mips_sym); |
| } |
| |
| if (r_type == elfcpp::R_MIPS_NONE) |
| // R_MIPS_NONE is used in mips16 stub sections, to define the target of the |
| // mips16 stub. |
| return; |
| |
| if (!mips16_call_reloc(r_type) |
| && !mips_obj->section_allows_mips16_refs(data_shndx)) |
| // This reloc would need to refer to a MIPS16 hard-float stub, if |
| // there is one. We ignore MIPS16 stub sections and .pdr section when |
| // looking for relocs that would need to refer to MIPS16 stubs. |
| mips_sym->set_need_fn_stub(); |
| |
| // We need PLT entries if there are static-only relocations against |
| // an externally-defined function. This can technically occur for |
| // shared libraries if there are branches to the symbol, although it |
| // is unlikely that this will be used in practice due to the short |
| // ranges involved. It can occur for any relative or absolute relocation |
| // in executables; in that case, the PLT entry becomes the function's |
| // canonical address. |
| bool static_reloc = false; |
| |
| // Set CAN_MAKE_DYNAMIC to true if we can convert this |
| // relocation into a dynamic one. |
| bool can_make_dynamic = false; |
| switch (r_type) |
| { |
| case elfcpp::R_MIPS_GOT16: |
| case elfcpp::R_MIPS_CALL16: |
| case elfcpp::R_MIPS_CALL_HI16: |
| case elfcpp::R_MIPS_CALL_LO16: |
| case elfcpp::R_MIPS_GOT_HI16: |
| case elfcpp::R_MIPS_GOT_LO16: |
| case elfcpp::R_MIPS_GOT_PAGE: |
| case elfcpp::R_MIPS_GOT_OFST: |
| case elfcpp::R_MIPS_GOT_DISP: |
| case elfcpp::R_MIPS_TLS_GOTTPREL: |
| case elfcpp::R_MIPS_TLS_GD: |
| case elfcpp::R_MIPS_TLS_LDM: |
| case elfcpp::R_MIPS16_GOT16: |
| case elfcpp::R_MIPS16_CALL16: |
| case elfcpp::R_MIPS16_TLS_GOTTPREL: |
| case elfcpp::R_MIPS16_TLS_GD: |
| case elfcpp::R_MIPS16_TLS_LDM: |
| case elfcpp::R_MICROMIPS_GOT16: |
| case elfcpp::R_MICROMIPS_CALL16: |
| case elfcpp::R_MICROMIPS_CALL_HI16: |
| case elfcpp::R_MICROMIPS_CALL_LO16: |
| case elfcpp::R_MICROMIPS_GOT_HI16: |
| case elfcpp::R_MICROMIPS_GOT_LO16: |
| case elfcpp::R_MICROMIPS_GOT_PAGE: |
| case elfcpp::R_MICROMIPS_GOT_OFST: |
| case elfcpp::R_MICROMIPS_GOT_DISP: |
| case elfcpp::R_MICROMIPS_TLS_GOTTPREL: |
| case elfcpp::R_MICROMIPS_TLS_GD: |
| case elfcpp::R_MICROMIPS_TLS_LDM: |
| case elfcpp::R_MIPS_EH: |
| // We need a GOT section. |
| target->got_section(symtab, layout); |
| break; |
| |
| // This is just a hint; it can safely be ignored. Don't set |
| // has_static_relocs for the corresponding symbol. |
| case elfcpp::R_MIPS_JALR: |
| case elfcpp::R_MICROMIPS_JALR: |
| break; |
| |
| case elfcpp::R_MIPS_GPREL16: |
| case elfcpp::R_MIPS_GPREL32: |
| case elfcpp::R_MIPS16_GPREL: |
| case elfcpp::R_MICROMIPS_GPREL16: |
| // TODO(sasa) |
| // GP-relative relocations always resolve to a definition in a |
| // regular input file, ignoring the one-definition rule. This is |
| // important for the GP setup sequence in NewABI code, which |
| // always resolves to a local function even if other relocations |
| // against the symbol wouldn't. |
| //constrain_symbol_p = FALSE; |
| break; |
| |
| case elfcpp::R_MIPS_32: |
| case elfcpp::R_MIPS_REL32: |
| case elfcpp::R_MIPS_64: |
| if ((parameters->options().shared() |
| || (strcmp(gsym->name(), "__gnu_local_gp") != 0 |
| && (!is_readonly_section(output_section) |
| || mips_obj->is_pic()))) |
| && (output_section->flags() & elfcpp::SHF_ALLOC) != 0) |
| { |
| if (r_type != elfcpp::R_MIPS_REL32) |
| mips_sym->set_pointer_equality_needed(); |
| can_make_dynamic = true; |
| break; |
| } |
| // Fall through. |
| |
| default: |
| // Most static relocations require pointer equality, except |
| // for branches. |
| mips_sym->set_pointer_equality_needed(); |
| // Fall through. |
| |
| case elfcpp::R_MIPS_26: |
| case elfcpp::R_MIPS_PC16: |
| case elfcpp::R_MIPS_PC21_S2: |
| case elfcpp::R_MIPS_PC26_S2: |
| case elfcpp::R_MIPS16_26: |
| case elfcpp::R_MICROMIPS_26_S1: |
| case elfcpp::R_MICROMIPS_PC7_S1: |
| case elfcpp::R_MICROMIPS_PC10_S1: |
| case elfcpp::R_MICROMIPS_PC16_S1: |
| case elfcpp::R_MICROMIPS_PC23_S2: |
| static_reloc = true; |
| mips_sym->set_has_static_relocs(); |
| break; |
| } |
| |
| // If there are call relocations against an externally-defined symbol, |
| // see whether we can create a MIPS lazy-binding stub for it. We can |
| // only do this if all references to the function are through call |
| // relocations, and in that case, the traditional lazy-binding stubs |
| // are much more efficient than PLT entries. |
| switch (r_type) |
| { |
| case elfcpp::R_MIPS16_CALL16: |
| case elfcpp::R_MIPS_CALL16: |
| case elfcpp::R_MIPS_CALL_HI16: |
| case elfcpp::R_MIPS_CALL_LO16: |
| case elfcpp::R_MIPS_JALR: |
| case elfcpp::R_MICROMIPS_CALL16: |
| case elfcpp::R_MICROMIPS_CALL_HI16: |
| case elfcpp::R_MICROMIPS_CALL_LO16: |
| case elfcpp::R_MICROMIPS_JALR: |
| if (!mips_sym->no_lazy_stub()) |
| { |
| if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj()) |
| // Calls from shared objects to undefined symbols of type |
| // STT_NOTYPE need lazy-binding stub. |
| || (mips_sym->is_undefined() && parameters->options().shared())) |
| target->mips_stubs_section(layout)->make_entry(mips_sym); |
| } |
| break; |
| default: |
| { |
| // We must not create a stub for a symbol that has relocations |
| // related to taking the function's address. |
| mips_sym->set_no_lazy_stub(); |
| target->remove_lazy_stub_entry(mips_sym); |
| break; |
| } |
| } |
| |
| if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type, |
| mips_sym->is_mips16())) |
| mips_sym->set_has_nonpic_branches(); |
| |
| // R_MIPS_HI16 against _gp_disp is used for $gp setup, |
| // and has a special meaning. |
| bool gp_disp_against_hi16 = (!mips_obj->is_newabi() |
| && strcmp(gsym->name(), "_gp_disp") == 0 |
| && (hi16_reloc(r_type) || lo16_reloc(r_type))); |
| if (static_reloc && gsym->needs_plt_entry()) |
| { |
| target->make_plt_entry(symtab, layout, mips_sym, r_type); |
| |
| // Since this is not a PC-relative relocation, we may be |
| // taking the address of a function. In that case we need to |
| // set the entry in the dynamic symbol table to the address of |
| // the PLT entry. |
| if (gsym->is_from_dynobj() && !parameters->options().shared()) |
| { |
| gsym->set_needs_dynsym_value(); |
| // We distinguish between PLT entries and lazy-binding stubs by |
| // giving the former an st_other value of STO_MIPS_PLT. Set the |
| // flag if there are any relocations in the binary where pointer |
| // equality matters. |
| if (mips_sym->pointer_equality_needed()) |
| mips_sym->set_mips_plt(); |
| } |
| } |
| if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16) |
| { |
| // Absolute addressing relocations. |
| // Make a dynamic relocation if necessary. |
| if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))) |
| { |
| if (gsym->may_need_copy_reloc()) |
| { |
| target->copy_reloc(symtab, layout, object, data_shndx, |
| output_section, gsym, r_type, r_offset); |
| } |
| else if (can_make_dynamic) |
| { |
| // Create .rel.dyn section. |
| target->rel_dyn_section(layout); |
| target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj, |
| data_shndx, output_section, r_offset); |
| } |
| else |
| gold_error(_("non-dynamic relocations refer to dynamic symbol %s"), |
| gsym->name()); |
| } |
| } |
| |
| bool for_call = false; |
| switch (r_type) |
| { |
| case elfcpp::R_MIPS_CALL16: |
| case elfcpp::R_MIPS16_CALL16: |
| case elfcpp::R_MICROMIPS_CALL16: |
| case elfcpp::R_MIPS_CALL_HI16: |
| case elfcpp::R_MIPS_CALL_LO16: |
| case elfcpp::R_MICROMIPS_CALL_HI16: |
| case elfcpp::R_MICROMIPS_CALL_LO16: |
| for_call = true; |
| // Fall through. |
| |
| case elfcpp::R_MIPS16_GOT16: |
| case elfcpp::R_MIPS_GOT16: |
| case elfcpp::R_MIPS_GOT_HI16: |
| case elfcpp::R_MIPS_GOT_LO16: |
| case elfcpp::R_MICROMIPS_GOT16: |
| case elfcpp::R_MICROMIPS_GOT_HI16: |
| case elfcpp::R_MICROMIPS_GOT_LO16: |
| case elfcpp::R_MIPS_GOT_DISP: |
| case elfcpp::R_MICROMIPS_GOT_DISP: |
| case elfcpp::R_MIPS_EH: |
| { |
| // The symbol requires a GOT entry. |
| Mips_output_data_got<size, big_endian>* got = |
| target->got_section(symtab, layout); |
| got->record_global_got_symbol(mips_sym, mips_obj, r_type, false, |
| for_call); |
| mips_sym->set_global_got_area(GGA_NORMAL); |
| } |
| break; |
| |
| case elfcpp::R_MIPS_GOT_PAGE: |
| case elfcpp::R_MICROMIPS_GOT_PAGE: |
| { |
| // This relocation needs a page entry in the GOT. |
| // Get the section contents. |
| section_size_type view_size = 0; |
| const unsigned char* view = |
| object->section_contents(data_shndx, &view_size, false); |
| view += r_offset; |
| |
| Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view); |
| Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff |
| : r_addend); |
| Mips_output_data_got<size, big_endian>* got = |
| target->got_section(symtab, layout); |
| got->record_got_page_entry(mips_obj, r_sym, addend); |
| |
| // If this is a global, overridable symbol, GOT_PAGE will |
| // decay to GOT_DISP, so we'll need a GOT entry for it. |
| bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT |
| && !mips_sym->object()->is_dynamic() |
| && !mips_sym->is_undefined()); |
| if (!def_regular |
| || (parameters->options().output_is_position_independent() |
| && !parameters->options().Bsymbolic() |
| && !mips_sym->is_forced_local())) |
| { |
| got->record_global_got_symbol(mips_sym, mips_obj, r_type, false, |
| for_call); |
| mips_sym->set_global_got_area(GGA_NORMAL); |
| } |
| } |
| break; |
| |
| case elfcpp::R_MIPS_TLS_GOTTPREL: |
| case elfcpp::R_MIPS16_TLS_GOTTPREL: |
| case elfcpp::R_MICROMIPS_TLS_GOTTPREL: |
| case elfcpp::R_MIPS_TLS_LDM: |
| case elfcpp::R_MIPS16_TLS_LDM: |
| case elfcpp::R_MICROMIPS_TLS_LDM: |
| case elfcpp::R_MIPS_TLS_GD: |
| case elfcpp::R_MIPS16_TLS_GD: |
| case elfcpp::R_MICROMIPS_TLS_GD: |
| { |
| const bool is_final = gsym->final_value_is_known(); |
| const tls::Tls_optimization optimized_type = |
| Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type); |
| |
| switch (r_type) |
| { |
| case elfcpp::R_MIPS_TLS_GD: |
| case elfcpp::R_MIPS16_TLS_GD: |
| case elfcpp::R_MICROMIPS_TLS_GD: |
| if (optimized_type == tls::TLSOPT_NONE) |
| { |
| // Create a pair of GOT entries for the module index and |
| // dtv-relative offset. |
| Mips_output_data_got<size, big_endian>* got = |
| target->got_section(symtab, layout); |
| got->record_global_got_symbol(mips_sym, mips_obj, r_type, false, |
| false); |
| } |
| else |
| { |
| // FIXME: TLS optimization not supported yet. |
| gold_unreachable(); |
| } |
| break; |
| |
| case elfcpp::R_MIPS_TLS_LDM: |
| case elfcpp::R_MIPS16_TLS_LDM: |
| case elfcpp::R_MICROMIPS_TLS_LDM: |
| if (optimized_type == tls::TLSOPT_NONE) |
| { |
| // We always record LDM symbols as local with index 0. |
| target->got_section()->record_local_got_symbol(mips_obj, 0, |
| r_addend, r_type, |
| -1U, false); |
| } |
| else |
| { |
| // FIXME: TLS optimization not supported yet. |
| gold_unreachable(); |
| } |
| break; |
| case elfcpp::R_MIPS_TLS_GOTTPREL: |
| case elfcpp::R_MIPS16_TLS_GOTTPREL: |
| case elfcpp::R_MICROMIPS_TLS_GOTTPREL: |
| layout->set_has_static_tls(); |
| if (optimized_type == tls::TLSOPT_NONE) |
| { |
| // Create a GOT entry for the tp-relative offset. |
| Mips_output_data_got<size, big_endian>* got = |
| target->got_section(symtab, layout); |
| got->record_global_got_symbol(mips_sym, mips_obj, r_type, false, |
| false); |
| } |
| else |
| { |
| // FIXME: TLS optimization not supported yet. |
| gold_unreachable(); |
| } |
| break; |
| |
| default: |
| gold_unreachable(); |
| } |
| } |
| break; |
| case elfcpp::R_MIPS_COPY: |
| case elfcpp::R_MIPS_JUMP_SLOT: |
| // These are relocations which should only be seen by the |
| // dynamic linker, and should never be seen here. |
| gold_error(_("%s: unexpected reloc %u in object file"), |
| object->name().c_str(), r_type); |
| break; |
| |
| default: |
| break; |
| } |
| |
| // Refuse some position-dependent relocations when creating a |
| // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're |
| // not PIC, but we can create dynamic relocations and the result |
| // will be fine. Also do not refuse R_MIPS_LO16, which can be |
| // combined with R_MIPS_GOT16. |
| if (parameters->options().shared()) |
| { |
| switch (r_type) |
| { |
| case elfcpp::R_MIPS16_HI16: |
| case elfcpp::R_MIPS_HI16: |
| case elfcpp::R_MIPS_HIGHER: |
| case elfcpp::R_MIPS_HIGHEST: |
| case elfcpp::R_MICROMIPS_HI16: |
| case elfcpp::R_MICROMIPS_HIGHER: |
| case elfcpp::R_MICROMIPS_HIGHEST: |
| // Don't refuse a high part relocation if it's against |
| // no symbol (e.g. part of a compound relocation). |
| if (r_sym == 0) |
| break; |
| |
| // R_MIPS_HI16 against _gp_disp is used for $gp setup, |
| // and has a special meaning. |
| if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0) |
| break; |
| // Fall through. |
| |
| case elfcpp::R_MIPS16_26: |
| case elfcpp::R_MIPS_26: |
| case elfcpp::R_MICROMIPS_26_S1: |
| gold_error(_("%s: relocation %u against `%s' can not be used when " |
| "making a shared object; recompile with -fPIC"), |
| object->name().c_str(), r_type, gsym->name()); |
| default: |
| break; |
| } |
| } |
| } |
| |
| template<int size, bool big_endian> |
| inline void |
| Target_mips<size, big_endian>::Scan::global( |
| Symbol_table* symtab, |
| Layout* layout, |
| Target_mips<size, big_endian>* target, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| Output_section* output_section, |
| const Relatype& reloc, |
| unsigned int r_type, |
| Symbol* gsym) |
| { |
| global( |
| symtab, |
| layout, |
| target, |
| object, |
| data_shndx, |
| output_section, |
| &reloc, |
| (const Reltype*) NULL, |
| elfcpp::SHT_RELA, |
| r_type, |
| gsym); |
| } |
| |
| template<int size, bool big_endian> |
| inline void |
| Target_mips<size, big_endian>::Scan::global( |
| Symbol_table* symtab, |
| Layout* layout, |
| Target_mips<size, big_endian>* target, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| Output_section* output_section, |
| const Reltype& reloc, |
| unsigned int r_type, |
| Symbol* gsym) |
| { |
| global( |
| symtab, |
| layout, |
| target, |
| object, |
| data_shndx, |
| output_section, |
| (const Relatype*) NULL, |
| &reloc, |
| elfcpp::SHT_REL, |
| r_type, |
| gsym); |
| } |
| |
| // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied. |
| // In cases where Scan::local() or Scan::global() has created |
| // a dynamic relocation, the addend of the relocation is carried |
| // in the data, and we must not apply the static relocation. |
| |
| template<int size, bool big_endian> |
| inline bool |
| Target_mips<size, big_endian>::Relocate::should_apply_static_reloc( |
| const Mips_symbol<size>* gsym, |
| unsigned int r_type, |
| Output_section* output_section, |
| Target_mips* target) |
| { |
| // If the output section is not allocated, then we didn't call |
| // scan_relocs, we didn't create a dynamic reloc, and we must apply |
| // the reloc here. |
| if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0) |
| return true; |
| |
| if (gsym == NULL) |
| return true; |
| else |
| { |
| // For global symbols, we use the same helper routines used in the |
| // scan pass. |
| if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)) |
| && !gsym->may_need_copy_reloc()) |
| { |
| // We have generated dynamic reloc (R_MIPS_REL32). |
| |
| bool multi_got = false; |
| if (target->has_got_section()) |
| multi_got = target->got_section()->multi_got(); |
| bool has_got_offset; |
| if (!multi_got) |
| has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD); |
| else |
| has_got_offset = gsym->global_gotoffset() != -1U; |
| if (!has_got_offset) |
| return true; |
| else |
| // Apply the relocation only if the symbol is in the local got. |
| // Do not apply the relocation if the symbol is in the global |
| // got. |
| return symbol_references_local(gsym, gsym->has_dynsym_index()); |
| } |
| else |
| // We have not generated dynamic reloc. |
| return true; |
| } |
| } |
| |
| // Perform a relocation. |
| |
| template<int size, bool big_endian> |
| inline bool |
| Target_mips<size, big_endian>::Relocate::relocate( |
| const Relocate_info<size, big_endian>* relinfo, |
| unsigned int rel_type, |
| Target_mips* target, |
| Output_section* output_section, |
| size_t relnum, |
| const unsigned char* preloc, |
| const Sized_symbol<size>* gsym, |
| const Symbol_value<size>* psymval, |
| unsigned char* view, |
| Mips_address address, |
| section_size_type) |
| { |
| Mips_address r_offset; |
| unsigned int r_sym; |
| unsigned int r_type; |
| unsigned int r_type2; |
| unsigned int r_type3; |
| unsigned char r_ssym; |
| typename elfcpp::Elf_types<size>::Elf_Swxword r_addend; |
| // r_offset and r_type of the next relocation is needed for resolving multiple |
| // consecutive relocations with the same offset. |
| Mips_address next_r_offset = static_cast<Mips_address>(0) - 1; |
| unsigned int next_r_type = elfcpp::R_MIPS_NONE; |
| |
| elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr); |
| size_t reloc_count = shdr.get_sh_size() / shdr.get_sh_entsize(); |
| |
| if (rel_type == elfcpp::SHT_RELA) |
| { |
| const Relatype rela(preloc); |
| r_offset = rela.get_r_offset(); |
| r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>:: |
| get_r_sym(&rela); |
| r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>:: |
| get_r_type(&rela); |
| r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>:: |
| get_r_type2(&rela); |
| r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>:: |
| get_r_type3(&rela); |
| r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>:: |
| get_r_ssym(&rela); |
| r_addend = rela.get_r_addend(); |
| // If this is not last relocation, get r_offset and r_type of the next |
| // relocation. |
| if (relnum + 1 < reloc_count) |
| { |
| const int reloc_size = elfcpp::Elf_sizes<size>::rela_size; |
| const Relatype next_rela(preloc + reloc_size); |
| next_r_offset = next_rela.get_r_offset(); |
| next_r_type = |
| Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>:: |
| get_r_type(&next_rela); |
| } |
| } |
| else |
| { |
| const Reltype rel(preloc); |
| r_offset = rel.get_r_offset(); |
| r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>:: |
| get_r_sym(&rel); |
| r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>:: |
| get_r_type(&rel); |
| r_ssym = 0; |
| r_type2 = elfcpp::R_MIPS_NONE; |
| r_type3 = elfcpp::R_MIPS_NONE; |
| r_addend = 0; |
| // If this is not last relocation, get r_offset and r_type of the next |
| // relocation. |
| if (relnum + 1 < reloc_count) |
| { |
| const int reloc_size = elfcpp::Elf_sizes<size>::rel_size; |
| const Reltype next_rel(preloc + reloc_size); |
| next_r_offset = next_rel.get_r_offset(); |
| next_r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>:: |
| get_r_type(&next_rel); |
| } |
| } |
| |
| typedef Mips_relocate_functions<size, big_endian> Reloc_funcs; |
| typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY; |
| |
| Mips_relobj<size, big_endian>* object = |
| Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object); |
| |
| bool target_is_16_bit_code = false; |
| bool target_is_micromips_code = false; |
| bool cross_mode_jump; |
| |
| Symbol_value<size> symval; |
| |
| const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym); |
| |
| bool changed_symbol_value = false; |
| if (gsym == NULL) |
| { |
| target_is_16_bit_code = object->local_symbol_is_mips16(r_sym); |
| target_is_micromips_code = object->local_symbol_is_micromips(r_sym); |
| if (target_is_16_bit_code || target_is_micromips_code) |
| { |
| // MIPS16/microMIPS text labels should be treated as odd. |
| symval.set_output_value(psymval->value(object, 1)); |
| psymval = &symval; |
| changed_symbol_value = true; |
| } |
| } |
| else |
| { |
| target_is_16_bit_code = mips_sym->is_mips16(); |
| target_is_micromips_code = mips_sym->is_micromips(); |
| |
| // If this is a mips16/microMIPS text symbol, add 1 to the value to make |
| // it odd. This will cause something like .word SYM to come up with |
| // the right value when it is loaded into the PC. |
| |
| if ((mips_sym->is_mips16() || mips_sym->is_micromips()) |
| && psymval->value(object, 0) != 0) |
| { |
| symval.set_output_value(psymval->value(object, 0) | 1); |
| psymval = &symval; |
| changed_symbol_value = true; |
| } |
| |
| // Pick the value to use for symbols defined in shared objects. |
| if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type)) |
| || mips_sym->has_lazy_stub()) |
| { |
| Mips_address value; |
| if (!mips_sym->has_lazy_stub()) |
| { |
| // Prefer a standard MIPS PLT entry. |
| if (mips_sym->has_mips_plt_offset()) |
| { |
| value = target->plt_section()->mips_entry_address(mips_sym); |
| target_is_micromips_code = false; |
| target_is_16_bit_code = false; |
| } |
| else |
| { |
| value = (target->plt_section()->comp_entry_address(mips_sym) |
| + 1); |
| if (target->is_output_micromips()) |
| target_is_micromips_code = true; |
| else |
| target_is_16_bit_code = true; |
| } |
| } |
| else |
| value = target->mips_stubs_section()->stub_address(mips_sym); |
| |
| symval.set_output_value(value); |
| psymval = &symval; |
| } |
| } |
| |
| // TRUE if the symbol referred to by this relocation is "_gp_disp". |
| // Note that such a symbol must always be a global symbol. |
| bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0) |
| && !object->is_newabi()); |
| |
| // TRUE if the symbol referred to by this relocation is "__gnu_local_gp". |
| // Note that such a symbol must always be a global symbol. |
| bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0); |
| |
| |
| if (gp_disp) |
| { |
| if (!hi16_reloc(r_type) && !lo16_reloc(r_type)) |
| gold_error_at_location(relinfo, relnum, r_offset, |
| _("relocations against _gp_disp are permitted only" |
| " with R_MIPS_HI16 and R_MIPS_LO16 relocations.")); |
| } |
| else if (gnu_local_gp) |
| { |
| // __gnu_local_gp is _gp symbol. |
| symval.set_output_value(target->adjusted_gp_value(object)); |
| psymval = &symval; |
| } |
| |
| // If this is a reference to a 16-bit function with a stub, we need |
| // to redirect the relocation to the stub unless: |
| // |
| // (a) the relocation is for a MIPS16 JAL; |
| // |
| // (b) the relocation is for a MIPS16 PIC call, and there are no |
| // non-MIPS16 uses of the GOT slot; or |
| // |
| // (c) the section allows direct references to MIPS16 functions. |
| if (r_type != elfcpp::R_MIPS16_26 |
| && ((mips_sym != NULL |
| && mips_sym->has_mips16_fn_stub() |
| && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub())) |
| || (mips_sym == NULL |
| && object->get_local_mips16_fn_stub(r_sym) != NULL)) |
| && !object->section_allows_mips16_refs(relinfo->data_shndx)) |
| { |
| // This is a 32- or 64-bit call to a 16-bit function. We should |
| // have already noticed that we were going to need the |
| // stub. |
| Mips_address value; |
| if (mips_sym == NULL) |
| value = object->get_local_mips16_fn_stub(r_sym)->output_address(); |
| else |
| { |
| gold_assert(mips_sym->need_fn_stub()); |
| if (mips_sym->has_la25_stub()) |
| value = target->la25_stub_section()->stub_address(mips_sym); |
| else |
| { |
| value = mips_sym->template |
| get_mips16_fn_stub<big_endian>()->output_address(); |
| } |
| } |
| symval.set_output_value(value); |
| psymval = &symval; |
| changed_symbol_value = true; |
| |
| // The target is 16-bit, but the stub isn't. |
| target_is_16_bit_code = false; |
| } |
| // If this is a MIPS16 call with a stub, that is made through the PLT or |
| // to a standard MIPS function, we need to redirect the call to the stub. |
| // Note that we specifically exclude R_MIPS16_CALL16 from this behavior; |
| // indirect calls should use an indirect stub instead. |
| else if (r_type == elfcpp::R_MIPS16_26 |
| && ((mips_sym != NULL |
| && (mips_sym->has_mips16_call_stub() |
| || mips_sym->has_mips16_call_fp_stub())) |
| || (mips_sym == NULL |
| && object->get_local_mips16_call_stub(r_sym) != NULL)) |
| && ((mips_sym != NULL && mips_sym->has_plt_offset()) |
| || !target_is_16_bit_code)) |
| { |
| Mips16_stub_section<size, big_endian>* call_stub; |
| if (mips_sym == NULL) |
| call_stub = object->get_local_mips16_call_stub(r_sym); |
| else |
| { |
| // If both call_stub and call_fp_stub are defined, we can figure |
| // out which one to use by checking which one appears in the input |
| // file. |
| if (mips_sym->has_mips16_call_stub() |
| && mips_sym->has_mips16_call_fp_stub()) |
| { |
| call_stub = NULL; |
| for (unsigned int i = 1; i < object->shnum(); ++i) |
| { |
| if (object->is_mips16_call_fp_stub_section(i)) |
| { |
| call_stub = mips_sym->template |
| get_mips16_call_fp_stub<big_endian>(); |
| break; |
| } |
| |
| } |
| if (call_stub == NULL) |
| call_stub = |
| mips_sym->template get_mips16_call_stub<big_endian>(); |
| } |
| else if (mips_sym->has_mips16_call_stub()) |
| call_stub = mips_sym->template get_mips16_call_stub<big_endian>(); |
| else |
| call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>(); |
| } |
| |
| symval.set_output_value(call_stub->output_address()); |
| psymval = &symval; |
| changed_symbol_value = true; |
| } |
| // If this is a direct call to a PIC function, redirect to the |
| // non-PIC stub. |
| else if (mips_sym != NULL |
| && mips_sym->has_la25_stub() |
| && relocation_needs_la25_stub<size, big_endian>( |
| object, r_type, target_is_16_bit_code)) |
| { |
| Mips_address value = target->la25_stub_section()->stub_address(mips_sym); |
| if (mips_sym->is_micromips()) |
| value += 1; |
| symval.set_output_value(value); |
| psymval = &symval; |
| } |
| // For direct MIPS16 and microMIPS calls make sure the compressed PLT |
| // entry is used if a standard PLT entry has also been made. |
| else if ((r_type == elfcpp::R_MIPS16_26 |
| || r_type == elfcpp::R_MICROMIPS_26_S1) |
| && mips_sym != NULL |
| && mips_sym->has_plt_offset() |
| && mips_sym->has_comp_plt_offset() |
| && mips_sym->has_mips_plt_offset()) |
| { |
| Mips_address value = (target->plt_section()->comp_entry_address(mips_sym) |
| + 1); |
| symval.set_output_value(value); |
| psymval = &symval; |
| |
| target_is_16_bit_code = !target->is_output_micromips(); |
| target_is_micromips_code = target->is_output_micromips(); |
| } |
| |
| // Make sure MIPS16 and microMIPS are not used together. |
| if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code) |
| || (micromips_branch_reloc(r_type) && target_is_16_bit_code)) |
| { |
| gold_error(_("MIPS16 and microMIPS functions cannot call each other")); |
| } |
| |
| // Calls from 16-bit code to 32-bit code and vice versa require the |
| // mode change. However, we can ignore calls to undefined weak symbols, |
| // which should never be executed at runtime. This exception is important |
| // because the assembly writer may have "known" that any definition of the |
| // symbol would be 16-bit code, and that direct jumps were therefore |
| // acceptable. |
| cross_mode_jump = |
| (!(gsym != NULL && gsym->is_weak_undefined()) |
| && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code) |
| || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code) |
| || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR) |
| && (target_is_16_bit_code || target_is_micromips_code)))); |
| |
| bool local = (mips_sym == NULL |
| || (mips_sym->got_only_for_calls() |
| ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index()) |
| : symbol_references_local(mips_sym, |
| mips_sym->has_dynsym_index()))); |
| |
| // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent |
| // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the |
| // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. |
| if (got_page_reloc(r_type) && !local) |
| r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP |
| : elfcpp::R_MIPS_GOT_DISP); |
| |
| unsigned int got_offset = 0; |
| int gp_offset = 0; |
| |
| // Whether we have to extract addend from instruction. |
| bool extract_addend = rel_type == elfcpp::SHT_REL; |
| unsigned int r_types[3] = { r_type, r_type2, r_type3 }; |
| |
| Reloc_funcs::mips_reloc_unshuffle(view, r_type, false); |
| |
| // For Mips64 N64 ABI, there may be up to three operations specified per |
| // record, by the fields r_type, r_type2, and r_type3. The first operation |
| // takes its addend from the relocation record. Each subsequent operation |
| // takes as its addend the result of the previous operation. |
| // The first operation in a record which references a symbol uses the symbol |
| // implied by r_sym. The next operation in a record which references a symbol |
| // uses the special symbol value given by the r_ssym field. A third operation |
| // in a record which references a symbol will assume a NULL symbol, |
| // i.e. value zero. |
| |
| // TODO(Vladimir) |
| // Check if a record references to a symbol. |
| for (unsigned int i = 0; i < 3; ++i) |
| { |
| if (r_types[i] == elfcpp::R_MIPS_NONE) |
| break; |
| |
| // If we didn't apply previous relocation, use its result as addend |
| // for current. |
| if (this->calculate_only_) |
| { |
| r_addend = this->calculated_value_; |
| extract_addend = false; |
| } |
| |
| // In the N32 and 64-bit ABIs there may be multiple consecutive |
| // relocations for the same offset. In that case we are |
| // supposed to treat the output of each relocation as the addend |
| // for the next. For N64 ABI, we are checking offsets only in a |
| // third operation in a record (r_type3). |
| this->calculate_only_ = |
| (object->is_n64() && i < 2 |
| ? r_types[i+1] != elfcpp::R_MIPS_NONE |
| : (r_offset == next_r_offset) && (next_r_type != elfcpp::R_MIPS_NONE)); |
| |
| if (object->is_n64()) |
| { |
| if (i == 1) |
| { |
| // Handle special symbol for r_type2 relocation type. |
| switch (r_ssym) |
| { |
| case RSS_UNDEF: |
| symval.set_output_value(0); |
| break; |
| case RSS_GP: |
| symval.set_output_value(target->gp_value()); |
| break; |
| case RSS_GP0: |
| symval.set_output_value(object->gp_value()); |
| break; |
| case RSS_LOC: |
| symval.set_output_value(address); |
| break; |
| default: |
| gold_unreachable(); |
| } |
| psymval = &symval; |
| } |
| else if (i == 2) |
| { |
| // For r_type3 symbol value is 0. |
| symval.set_output_value(0); |
| } |
| } |
| |
| bool update_got_entry = false; |
| switch (r_types[i]) |
| { |
| case elfcpp::R_MIPS_NONE: |
| break; |
| case elfcpp::R_MIPS_16: |
| reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend, |
| extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| |
| case elfcpp::R_MIPS_32: |
| if (should_apply_static_reloc(mips_sym, r_types[i], output_section, |
| target)) |
| reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend, |
| extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| if (mips_sym != NULL |
| && (mips_sym->is_mips16() || mips_sym->is_micromips()) |
| && mips_sym->global_got_area() == GGA_RELOC_ONLY) |
| { |
| // If mips_sym->has_mips16_fn_stub() is false, symbol value is |
| // already updated by adding +1. |
| if (mips_sym->has_mips16_fn_stub()) |
| { |
| gold_assert(mips_sym->need_fn_stub()); |
| Mips16_stub_section<size, big_endian>* fn_stub = |
| mips_sym->template get_mips16_fn_stub<big_endian>(); |
| |
| symval.set_output_value(fn_stub->output_address()); |
| psymval = &symval; |
| } |
| got_offset = mips_sym->global_gotoffset(); |
| update_got_entry = true; |
| } |
| break; |
| |
| case elfcpp::R_MIPS_64: |
| if (should_apply_static_reloc(mips_sym, r_types[i], output_section, |
| target)) |
| reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend, |
| extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_, false); |
| else if (target->is_output_n64() && r_addend != 0) |
| // Only apply the addend. The static relocation was RELA, but the |
| // dynamic relocation is REL, so we need to apply the addend. |
| reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend, |
| extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_, true); |
| break; |
| case elfcpp::R_MIPS_REL32: |
| gold_unreachable(); |
| |
| case elfcpp::R_MIPS_PC32: |
| reloc_status = Reloc_funcs::relpc32(view, object, psymval, address, |
| r_addend, extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| |
| case elfcpp::R_MIPS16_26: |
| // The calculation for R_MIPS16_26 is just the same as for an |
| // R_MIPS_26. It's only the storage of the relocated field into |
| // the output file that's different. So, we just fall through to the |
| // R_MIPS_26 case here. |
| case elfcpp::R_MIPS_26: |
| case elfcpp::R_MICROMIPS_26_S1: |
| reloc_status = Reloc_funcs::rel26(view, object, psymval, address, |
| gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump, |
| r_types[i], target->jal_to_bal(), this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| |
| case elfcpp::R_MIPS_HI16: |
| case elfcpp::R_MIPS16_HI16: |
| case elfcpp::R_MICROMIPS_HI16: |
| if (rel_type == elfcpp::SHT_RELA) |
| reloc_status = Reloc_funcs::do_relhi16(view, object, psymval, |
| r_addend, address, |
| gp_disp, r_types[i], |
| extract_addend, 0, |
| target, |
| this->calculate_only_, |
| &this->calculated_value_); |
| else if (rel_type == elfcpp::SHT_REL) |
| reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend, |
| address, gp_disp, r_types[i], |
| r_sym, extract_addend); |
| else |
| gold_unreachable(); |
| break; |
| |
| case elfcpp::R_MIPS_LO16: |
| case elfcpp::R_MIPS16_LO16: |
| case elfcpp::R_MICROMIPS_LO16: |
| case elfcpp::R_MICROMIPS_HI0_LO16: |
| reloc_status = Reloc_funcs::rello16(target, view, object, psymval, |
| r_addend, extract_addend, address, |
| gp_disp, r_types[i], r_sym, |
| rel_type, this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| |
| case elfcpp::R_MIPS_LITERAL: |
| case elfcpp::R_MICROMIPS_LITERAL: |
| // Because we don't merge literal sections, we can handle this |
| // just like R_MIPS_GPREL16. In the long run, we should merge |
| // shared literals, and then we will need to additional work |
| // here. |
| |
| // Fall through. |
| |
| case elfcpp::R_MIPS_GPREL16: |
| case elfcpp::R_MIPS16_GPREL: |
| case elfcpp::R_MICROMIPS_GPREL7_S2: |
| case elfcpp::R_MICROMIPS_GPREL16: |
| reloc_status = Reloc_funcs::relgprel(view, object, psymval, |
| target->adjusted_gp_value(object), |
| r_addend, extract_addend, |
| gsym == NULL, r_types[i], |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| |
| case elfcpp::R_MIPS_PC16: |
| reloc_status = Reloc_funcs::relpc16(view, object, psymval, address, |
| r_addend, extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| |
| case elfcpp::R_MIPS_PC21_S2: |
| reloc_status = Reloc_funcs::relpc21(view, object, psymval, address, |
| r_addend, extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| |
| case elfcpp::R_MIPS_PC26_S2: |
| reloc_status = Reloc_funcs::relpc26(view, object, psymval, address, |
| r_addend, extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| |
| case elfcpp::R_MIPS_PC18_S3: |
| reloc_status = Reloc_funcs::relpc18(view, object, psymval, address, |
| r_addend, extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| |
| case elfcpp::R_MIPS_PC19_S2: |
| reloc_status = Reloc_funcs::relpc19(view, object, psymval, address, |
| r_addend, extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| |
| case elfcpp::R_MIPS_PCHI16: |
| if (rel_type == elfcpp::SHT_RELA) |
| reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval, |
| r_addend, address, |
| extract_addend, 0, |
| this->calculate_only_, |
| &this->calculated_value_); |
| else if (rel_type == elfcpp::SHT_REL) |
| reloc_status = Reloc_funcs::relpchi16(view, object, psymval, |
| r_addend, address, r_sym, |
| extract_addend); |
| else |
| gold_unreachable(); |
| break; |
| |
| case elfcpp::R_MIPS_PCLO16: |
| reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend, |
| extract_addend, address, r_sym, |
| rel_type, this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| case elfcpp::R_MICROMIPS_PC7_S1: |
| reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval, |
| address, r_addend, |
| extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| case elfcpp::R_MICROMIPS_PC10_S1: |
| reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object, |
| psymval, address, |
| r_addend, extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| case elfcpp::R_MICROMIPS_PC16_S1: |
| reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object, |
| psymval, address, |
| r_addend, extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| case elfcpp::R_MIPS_GPREL32: |
| reloc_status = Reloc_funcs::relgprel32(view, object, psymval, |
| target->adjusted_gp_value(object), |
| r_addend, extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| case elfcpp::R_MIPS_GOT_HI16: |
| case elfcpp::R_MIPS_CALL_HI16: |
| case elfcpp::R_MICROMIPS_GOT_HI16: |
| case elfcpp::R_MICROMIPS_CALL_HI16: |
| if (gsym != NULL) |
| got_offset = target->got_section()->got_offset(gsym, |
| GOT_TYPE_STANDARD, |
| object); |
| else |
| got_offset = target->got_section()->got_offset(r_sym, |
| GOT_TYPE_STANDARD, |
| object, r_addend); |
| gp_offset = target->got_section()->gp_offset(got_offset, object); |
| reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset, |
| this->calculate_only_, |
| &this->calculated_value_); |
| update_got_entry = changed_symbol_value; |
| break; |
| |
| case elfcpp::R_MIPS_GOT_LO16: |
| case elfcpp::R_MIPS_CALL_LO16: |
| case elfcpp::R_MICROMIPS_GOT_LO16: |
| case elfcpp::R_MICROMIPS_CALL_LO16: |
| if (gsym != NULL) |
| got_offset = target->got_section()->got_offset(gsym, |
| GOT_TYPE_STANDARD, |
| object); |
| else |
| got_offset = target->got_section()->got_offset(r_sym, |
| GOT_TYPE_STANDARD, |
| object, r_addend); |
| gp_offset = target->got_section()->gp_offset(got_offset, object); |
| reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset, |
| this->calculate_only_, |
| &this->calculated_value_); |
| update_got_entry = changed_symbol_value; |
| break; |
| |
| case elfcpp::R_MIPS_GOT_DISP: |
| case elfcpp::R_MICROMIPS_GOT_DISP: |
| case elfcpp::R_MIPS_EH: |
| if (gsym != NULL) |
| got_offset = target->got_section()->got_offset(gsym, |
| GOT_TYPE_STANDARD, |
| object); |
| else |
| got_offset = target->got_section()->got_offset(r_sym, |
| GOT_TYPE_STANDARD, |
| object, r_addend); |
| gp_offset = target->got_section()->gp_offset(got_offset, object); |
| if (eh_reloc(r_types[i])) |
| reloc_status = Reloc_funcs::releh(view, gp_offset, |
| this->calculate_only_, |
| &this->calculated_value_); |
| else |
| reloc_status = Reloc_funcs::relgot(view, gp_offset, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| case elfcpp::R_MIPS_CALL16: |
| case elfcpp::R_MIPS16_CALL16: |
| case elfcpp::R_MICROMIPS_CALL16: |
| gold_assert(gsym != NULL); |
| got_offset = target->got_section()->got_offset(gsym, |
| GOT_TYPE_STANDARD, |
| object); |
| gp_offset = target->got_section()->gp_offset(got_offset, object); |
| reloc_status = Reloc_funcs::relgot(view, gp_offset, |
| this->calculate_only_, |
| &this->calculated_value_); |
| // TODO(sasa): We should also initialize update_got_entry |
| // in other place swhere relgot is called. |
| update_got_entry = changed_symbol_value; |
| break; |
| |
| case elfcpp::R_MIPS_GOT16: |
| case elfcpp::R_MIPS16_GOT16: |
| case elfcpp::R_MICROMIPS_GOT16: |
| if (gsym != NULL) |
| { |
| got_offset = target->got_section()->got_offset(gsym, |
| GOT_TYPE_STANDARD, |
| object); |
| gp_offset = target->got_section()->gp_offset(got_offset, object); |
| reloc_status = Reloc_funcs::relgot(view, gp_offset, |
| this->calculate_only_, |
| &this->calculated_value_); |
| } |
| else |
| { |
| if (rel_type == elfcpp::SHT_RELA) |
| reloc_status = Reloc_funcs::do_relgot16_local(view, object, |
| psymval, r_addend, |
| extract_addend, 0, |
| target, |
| this->calculate_only_, |
| &this->calculated_value_); |
| else if (rel_type == elfcpp::SHT_REL) |
| reloc_status = Reloc_funcs::relgot16_local(view, object, |
| psymval, r_addend, |
| extract_addend, |
| r_types[i], r_sym); |
| else |
| gold_unreachable(); |
| } |
| update_got_entry = changed_symbol_value; |
| break; |
| |
| case elfcpp::R_MIPS_TLS_GD: |
| case elfcpp::R_MIPS16_TLS_GD: |
| case elfcpp::R_MICROMIPS_TLS_GD: |
| if (gsym != NULL) |
| got_offset = target->got_section()->got_offset(gsym, |
| GOT_TYPE_TLS_PAIR, |
| object); |
| else |
| got_offset = target->got_section()->got_offset(r_sym, |
| GOT_TYPE_TLS_PAIR, |
| object, r_addend); |
| gp_offset = target->got_section()->gp_offset(got_offset, object); |
| reloc_status = Reloc_funcs::relgot(view, gp_offset, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| |
| case elfcpp::R_MIPS_TLS_GOTTPREL: |
| case elfcpp::R_MIPS16_TLS_GOTTPREL: |
| case elfcpp::R_MICROMIPS_TLS_GOTTPREL: |
| if (gsym != NULL) |
| got_offset = target->got_section()->got_offset(gsym, |
| GOT_TYPE_TLS_OFFSET, |
| object); |
| else |
| got_offset = target->got_section()->got_offset(r_sym, |
| GOT_TYPE_TLS_OFFSET, |
| object, r_addend); |
| gp_offset = target->got_section()->gp_offset(got_offset, object); |
| reloc_status = Reloc_funcs::relgot(view, gp_offset, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| |
| case elfcpp::R_MIPS_TLS_LDM: |
| case elfcpp::R_MIPS16_TLS_LDM: |
| case elfcpp::R_MICROMIPS_TLS_LDM: |
| // Relocate the field with the offset of the GOT entry for |
| // the module index. |
| got_offset = target->got_section()->tls_ldm_offset(object); |
| gp_offset = target->got_section()->gp_offset(got_offset, object); |
| reloc_status = Reloc_funcs::relgot(view, gp_offset, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| |
| case elfcpp::R_MIPS_GOT_PAGE: |
| case elfcpp::R_MICROMIPS_GOT_PAGE: |
| reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval, |
| r_addend, extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| |
| case elfcpp::R_MIPS_GOT_OFST: |
| case elfcpp::R_MICROMIPS_GOT_OFST: |
| reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval, |
| r_addend, extract_addend, |
| local, this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| |
| case elfcpp::R_MIPS_JALR: |
| case elfcpp::R_MICROMIPS_JALR: |
| // This relocation is only a hint. In some cases, we optimize |
| // it into a bal instruction. But we don't try to optimize |
| // when the symbol does not resolve locally. |
| if (gsym == NULL |
| || symbol_calls_local(gsym, gsym->has_dynsym_index())) |
| reloc_status = Reloc_funcs::reljalr(view, object, psymval, address, |
| r_addend, extract_addend, |
| cross_mode_jump, r_types[i], |
| target->jalr_to_bal(), |
| target->jr_to_b(), |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| |
| case elfcpp::R_MIPS_TLS_DTPREL_HI16: |
| case elfcpp::R_MIPS16_TLS_DTPREL_HI16: |
| case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16: |
| reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval, |
| elfcpp::DTP_OFFSET, r_addend, |
| extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| case elfcpp::R_MIPS_TLS_DTPREL_LO16: |
| case elfcpp::R_MIPS16_TLS_DTPREL_LO16: |
| case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16: |
| reloc_status = Reloc_funcs::tlsrello16(view, object, psymval, |
| elfcpp::DTP_OFFSET, r_addend, |
| extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| case elfcpp::R_MIPS_TLS_DTPREL32: |
| case elfcpp::R_MIPS_TLS_DTPREL64: |
| reloc_status = Reloc_funcs::tlsrel32(view, object, psymval, |
| elfcpp::DTP_OFFSET, r_addend, |
| extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| case elfcpp::R_MIPS_TLS_TPREL_HI16: |
| case elfcpp::R_MIPS16_TLS_TPREL_HI16: |
| case elfcpp::R_MICROMIPS_TLS_TPREL_HI16: |
| reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval, |
| elfcpp::TP_OFFSET, r_addend, |
| extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| case elfcpp::R_MIPS_TLS_TPREL_LO16: |
| case elfcpp::R_MIPS16_TLS_TPREL_LO16: |
| case elfcpp::R_MICROMIPS_TLS_TPREL_LO16: |
| reloc_status = Reloc_funcs::tlsrello16(view, object, psymval, |
| elfcpp::TP_OFFSET, r_addend, |
| extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| case elfcpp::R_MIPS_TLS_TPREL32: |
| case elfcpp::R_MIPS_TLS_TPREL64: |
| reloc_status = Reloc_funcs::tlsrel32(view, object, psymval, |
| elfcpp::TP_OFFSET, r_addend, |
| extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| case elfcpp::R_MIPS_SUB: |
| case elfcpp::R_MICROMIPS_SUB: |
| reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend, |
| extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| case elfcpp::R_MIPS_HIGHER: |
| case elfcpp::R_MICROMIPS_HIGHER: |
| reloc_status = Reloc_funcs::relhigher(view, object, psymval, r_addend, |
| extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| case elfcpp::R_MIPS_HIGHEST: |
| case elfcpp::R_MICROMIPS_HIGHEST: |
| reloc_status = Reloc_funcs::relhighest(view, object, psymval, |
| r_addend, extract_addend, |
| this->calculate_only_, |
| &this->calculated_value_); |
| break; |
| default: |
| gold_error_at_location(relinfo, relnum, r_offset, |
| _("unsupported reloc %u"), r_types[i]); |
| break; |
| } |
| |
| if (update_got_entry) |
| { |
| Mips_output_data_got<size, big_endian>* got = target->got_section(); |
| if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup()) |
| got->update_got_entry(got->get_primary_got_offset(mips_sym), |
| psymval->value(object, 0)); |
| else |
| got->update_got_entry(got_offset, psymval->value(object, 0)); |
| } |
| } |
| |
| bool jal_shuffle = jal_reloc(r_type); |
| Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle); |
| |
| // Report any errors. |
| switch (reloc_status) |
| { |
| case Reloc_funcs::STATUS_OKAY: |
| break; |
| case Reloc_funcs::STATUS_OVERFLOW: |
| if (gsym == NULL) |
| gold_error_at_location(relinfo, relnum, r_offset, |
| _("relocation overflow: " |
| "%u against local symbol %u in %s"), |
| r_type, r_sym, object->name().c_str()); |
| else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT) |
| gold_error_at_location(relinfo, relnum, r_offset, |
| _("relocation overflow: " |
| "%u against '%s' defined in %s"), |
| r_type, gsym->demangled_name().c_str(), |
| gsym->object()->name().c_str()); |
| else |
| gold_error_at_location(relinfo, relnum, r_offset, |
| _("relocation overflow: %u against '%s'"), |
| r_type, gsym->demangled_name().c_str()); |
| break; |
| case Reloc_funcs::STATUS_BAD_RELOC: |
| gold_error_at_location(relinfo, relnum, r_offset, |
| _("unexpected opcode while processing relocation")); |
| break; |
| case Reloc_funcs::STATUS_PCREL_UNALIGNED: |
| gold_error_at_location(relinfo, relnum, r_offset, |
| _("unaligned PC-relative relocation")); |
| break; |
| default: |
| gold_unreachable(); |
| } |
| |
| return true; |
| } |
| |
| // Get the Reference_flags for a particular relocation. |
| |
| template<int size, bool big_endian> |
| int |
| Target_mips<size, big_endian>::Scan::get_reference_flags( |
| unsigned int r_type) |
| { |
| switch (r_type) |
| { |
| case elfcpp::R_MIPS_NONE: |
| // No symbol reference. |
| return 0; |
| |
| case elfcpp::R_MIPS_16: |
| case elfcpp::R_MIPS_32: |
| case elfcpp::R_MIPS_64: |
| case elfcpp::R_MIPS_HI16: |
| case elfcpp::R_MIPS_LO16: |
| case elfcpp::R_MIPS_HIGHER: |
| case elfcpp::R_MIPS_HIGHEST: |
| case elfcpp::R_MIPS16_HI16: |
| case elfcpp::R_MIPS16_LO16: |
| case elfcpp::R_MICROMIPS_HI16: |
| case elfcpp::R_MICROMIPS_LO16: |
| case elfcpp::R_MICROMIPS_HIGHER: |
| case elfcpp::R_MICROMIPS_HIGHEST: |
| return Symbol::ABSOLUTE_REF; |
| |
| case elfcpp::R_MIPS_26: |
| case elfcpp::R_MIPS16_26: |
| case elfcpp::R_MICROMIPS_26_S1: |
| return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF; |
| |
| case elfcpp::R_MIPS_PC18_S3: |
| case elfcpp::R_MIPS_PC19_S2: |
| case elfcpp::R_MIPS_PCHI16: |
| case elfcpp::R_MIPS_PCLO16: |
| case elfcpp::R_MIPS_GPREL32: |
| case elfcpp::R_MIPS_GPREL16: |
| case elfcpp::R_MIPS_REL32: |
| case elfcpp::R_MIPS16_GPREL: |
| return Symbol::RELATIVE_REF; |
| |
| case elfcpp::R_MIPS_PC16: |
| case elfcpp::R_MIPS_PC32: |
| case elfcpp::R_MIPS_PC21_S2: |
| case elfcpp::R_MIPS_PC26_S2: |
| case elfcpp::R_MIPS_JALR: |
| case elfcpp::R_MICROMIPS_JALR: |
| return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF; |
| |
| case elfcpp::R_MIPS_GOT16: |
| case elfcpp::R_MIPS_CALL16: |
| case elfcpp::R_MIPS_GOT_DISP: |
| case elfcpp::R_MIPS_GOT_HI16: |
| case elfcpp::R_MIPS_GOT_LO16: |
| case elfcpp::R_MIPS_CALL_HI16: |
| case elfcpp::R_MIPS_CALL_LO16: |
| case elfcpp::R_MIPS_LITERAL: |
| case elfcpp::R_MIPS_GOT_PAGE: |
| case elfcpp::R_MIPS_GOT_OFST: |
| case elfcpp::R_MIPS16_GOT16: |
| case elfcpp::R_MIPS16_CALL16: |
| case elfcpp::R_MICROMIPS_GOT16: |
| case elfcpp::R_MICROMIPS_CALL16: |
| case elfcpp::R_MICROMIPS_GOT_HI16: |
| case elfcpp::R_MICROMIPS_GOT_LO16: |
| case elfcpp::R_MICROMIPS_CALL_HI16: |
| case elfcpp::R_MICROMIPS_CALL_LO16: |
| case elfcpp::R_MIPS_EH: |
| // Absolute in GOT. |
| return Symbol::RELATIVE_REF; |
| |
| case elfcpp::R_MIPS_TLS_DTPMOD32: |
| case elfcpp::R_MIPS_TLS_DTPREL32: |
| case elfcpp::R_MIPS_TLS_DTPMOD64: |
| case elfcpp::R_MIPS_TLS_DTPREL64: |
| case elfcpp::R_MIPS_TLS_GD: |
| case elfcpp::R_MIPS_TLS_LDM: |
| case elfcpp::R_MIPS_TLS_DTPREL_HI16: |
| case elfcpp::R_MIPS_TLS_DTPREL_LO16: |
| case elfcpp::R_MIPS_TLS_GOTTPREL: |
| case elfcpp::R_MIPS_TLS_TPREL32: |
| case elfcpp::R_MIPS_TLS_TPREL64: |
| case elfcpp::R_MIPS_TLS_TPREL_HI16: |
| case elfcpp::R_MIPS_TLS_TPREL_LO16: |
| case elfcpp::R_MIPS16_TLS_GD: |
| case elfcpp::R_MIPS16_TLS_GOTTPREL: |
| case elfcpp::R_MICROMIPS_TLS_GD: |
| case elfcpp::R_MICROMIPS_TLS_GOTTPREL: |
| case elfcpp::R_MICROMIPS_TLS_TPREL_HI16: |
| case elfcpp::R_MICROMIPS_TLS_TPREL_LO16: |
| return Symbol::TLS_REF; |
| |
| case elfcpp::R_MIPS_COPY: |
| case elfcpp::R_MIPS_JUMP_SLOT: |
| default: |
| // Not expected. We will give an error later. |
| return 0; |
| } |
| } |
| |
| // Report an unsupported relocation against a local symbol. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::Scan::unsupported_reloc_local( |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int r_type) |
| { |
| gold_error(_("%s: unsupported reloc %u against local symbol"), |
| object->name().c_str(), r_type); |
| } |
| |
| // Report an unsupported relocation against a global symbol. |
| |
| template<int size, bool big_endian> |
| void |
| Target_mips<size, big_endian>::Scan::unsupported_reloc_global( |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int r_type, |
| Symbol* gsym) |
| { |
| gold_error(_("%s: unsupported reloc %u against global symbol %s"), |
| object->name().c_str(), r_type, gsym->demangled_name().c_str()); |
| } |
| |
| // Return printable name for ABI. |
| template<int size, bool big_endian> |
| const char* |
| Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags) |
| { |
| switch (e_flags & elfcpp::EF_MIPS_ABI) |
| { |
| case 0: |
| if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0) |
| return "N32"; |
| else if (size == 64) |
| return "64"; |
| else |
| return "none"; |
| case elfcpp::E_MIPS_ABI_O32: |
| return "O32"; |
| case elfcpp::E_MIPS_ABI_O64: |
| return "O64"; |
| case elfcpp::E_MIPS_ABI_EABI32: |
| return "EABI32"; |
| case elfcpp::E_MIPS_ABI_EABI64: |
| return "EABI64"; |
| default: |
| return "unknown abi"; |
| } |
| } |
| |
| template<int size, bool big_endian> |
| const char* |
| Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags) |
| { |
| switch (e_flags & elfcpp::EF_MIPS_MACH) |
| { |
| case elfcpp::E_MIPS_MACH_3900: |
| return "mips:3900"; |
| case elfcpp::E_MIPS_MACH_4010: |
| return "mips:4010"; |
| case elfcpp::E_MIPS_MACH_4100: |
| return "mips:4100"; |
| case elfcpp::E_MIPS_MACH_4111: |
| return "mips:4111"; |
| case elfcpp::E_MIPS_MACH_4120: |
| return "mips:4120"; |
| case elfcpp::E_MIPS_MACH_4650: |
| return "mips:4650"; |
| case elfcpp::E_MIPS_MACH_5400: |
| return "mips:5400"; |
| case elfcpp::E_MIPS_MACH_5500: |
| return "mips:5500"; |
| case elfcpp::E_MIPS_MACH_5900: |
| return "mips:5900"; |
| case elfcpp::E_MIPS_MACH_SB1: |
| return "mips:sb1"; |
| case elfcpp::E_MIPS_MACH_9000: |
| return "mips:9000"; |
| case elfcpp::E_MIPS_MACH_LS2E: |
| return "mips:loongson_2e"; |
| case elfcpp::E_MIPS_MACH_LS2F: |
| return "mips:loongson_2f"; |
| case elfcpp::E_MIPS_MACH_GS464: |
| return "mips:gs464"; |
| case elfcpp::E_MIPS_MACH_GS464E: |
| return "mips:gs464e"; |
| case elfcpp::E_MIPS_MACH_GS264E: |
| return "mips:gs264e"; |
| case elfcpp::E_MIPS_MACH_OCTEON: |
| return "mips:octeon"; |
| case elfcpp::E_MIPS_MACH_OCTEON2: |
| return "mips:octeon2"; |
| case elfcpp::E_MIPS_MACH_OCTEON3: |
| return "mips:octeon3"; |
| case elfcpp::E_MIPS_MACH_XLR: |
| return "mips:xlr"; |
| default: |
| switch (e_flags & elfcpp::EF_MIPS_ARCH) |
| { |
| default: |
| case elfcpp::E_MIPS_ARCH_1: |
| return "mips:3000"; |
| |
| case elfcpp::E_MIPS_ARCH_2: |
| return "mips:6000"; |
| |
| case elfcpp::E_MIPS_ARCH_3: |
| return "mips:4000"; |
| |
| case elfcpp::E_MIPS_ARCH_4: |
| return "mips:8000"; |
| |
| case elfcpp::E_MIPS_ARCH_5: |
| return "mips:mips5"; |
| |
| case elfcpp::E_MIPS_ARCH_32: |
| return "mips:isa32"; |
| |
| case elfcpp::E_MIPS_ARCH_64: |
| return "mips:isa64"; |
| |
| case elfcpp::E_MIPS_ARCH_32R2: |
| return "mips:isa32r2"; |
| |
| case elfcpp::E_MIPS_ARCH_32R6: |
| return "mips:isa32r6"; |
| |
| case elfcpp::E_MIPS_ARCH_64R2: |
| return "mips:isa64r2"; |
| |
| case elfcpp::E_MIPS_ARCH_64R6: |
| return "mips:isa64r6"; |
| } |
| } |
| return "unknown CPU"; |
| } |
| |
| template<int size, bool big_endian> |
| const Target::Target_info Target_mips<size, big_endian>::mips_info = |
| { |
| size, // size |
| big_endian, // is_big_endian |
| elfcpp::EM_MIPS, // machine_code |
| true, // has_make_symbol |
| false, // has_resolve |
| false, // has_code_fill |
| true, // is_default_stack_executable |
| false, // can_icf_inline_merge_sections |
| '\0', // wrap_char |
| size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1", // dynamic_linker |
| 0x400000, // default_text_segment_address |
| 64 * 1024, // abi_pagesize (overridable by -z max-page-size) |
| 4 * 1024, // common_pagesize (overridable by -z common-page-size) |
| false, // isolate_execinstr |
| 0, // rosegment_gap |
| elfcpp::SHN_UNDEF, // small_common_shndx |
| elfcpp::SHN_UNDEF, // large_common_shndx |
| 0, // small_common_section_flags |
| 0, // large_common_section_flags |
| NULL, // attributes_section |
| NULL, // attributes_vendor |
| "__start", // entry_symbol_name |
| 32, // hash_entry_size |
| elfcpp::SHT_PROGBITS, // unwind_section_type |
| }; |
| |
| template<int size, bool big_endian> |
| class Target_mips_nacl : public Target_mips<size, big_endian> |
| { |
| public: |
| Target_mips_nacl() |
| : Target_mips<size, big_endian>(&mips_nacl_info) |
| { } |
| |
| private: |
| static const Target::Target_info mips_nacl_info; |
| }; |
| |
| template<int size, bool big_endian> |
| const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info = |
| { |
| size, // size |
| big_endian, // is_big_endian |
| elfcpp::EM_MIPS, // machine_code |
| true, // has_make_symbol |
| false, // has_resolve |
| false, // has_code_fill |
| true, // is_default_stack_executable |
| false, // can_icf_inline_merge_sections |
| '\0', // wrap_char |
| "/lib/ld.so.1", // dynamic_linker |
| 0x20000, // default_text_segment_address |
| 0x10000, // abi_pagesize (overridable by -z max-page-size) |
| 0x10000, // common_pagesize (overridable by -z common-page-size) |
| true, // isolate_execinstr |
| 0x10000000, // rosegment_gap |
| elfcpp::SHN_UNDEF, // small_common_shndx |
| elfcpp::SHN_UNDEF, // large_common_shndx |
| 0, // small_common_section_flags |
| 0, // large_common_section_flags |
| NULL, // attributes_section |
| NULL, // attributes_vendor |
| "_start", // entry_symbol_name |
| 32, // hash_entry_size |
| elfcpp::SHT_PROGBITS, // unwind_section_type |
| }; |
| |
| // Target selector for Mips. Note this is never instantiated directly. |
| // It's only used in Target_selector_mips_nacl, below. |
| |
| template<int size, bool big_endian> |
| class Target_selector_mips : public Target_selector |
| { |
| public: |
| Target_selector_mips() |
| : Target_selector(elfcpp::EM_MIPS, size, big_endian, |
| (size == 64 ? |
| (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") : |
| (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")), |
| (size == 64 ? |
| (big_endian ? "elf64btsmip" : "elf64ltsmip") : |
| (big_endian ? "elf32btsmip" : "elf32ltsmip"))) |
| { } |
| |
| Target* do_instantiate_target() |
| { return new Target_mips<size, big_endian>(); } |
| }; |
| |
| template<int size, bool big_endian> |
| class Target_selector_mips_nacl |
| : public Target_selector_nacl<Target_selector_mips<size, big_endian>, |
| Target_mips_nacl<size, big_endian> > |
| { |
| public: |
| Target_selector_mips_nacl() |
| : Target_selector_nacl<Target_selector_mips<size, big_endian>, |
| Target_mips_nacl<size, big_endian> >( |
| // NaCl currently supports only MIPS32 little-endian. |
| "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl") |
| { } |
| }; |
| |
| Target_selector_mips_nacl<32, true> target_selector_mips32; |
| Target_selector_mips_nacl<32, false> target_selector_mips32el; |
| Target_selector_mips_nacl<64, true> target_selector_mips64; |
| Target_selector_mips_nacl<64, false> target_selector_mips64el; |
| |
| } // End anonymous namespace. |