| /* MIPS-specific support for ELF |
| Copyright (C) 1993-2024 Free Software Foundation, Inc. |
| |
| Most of the information added by Ian Lance Taylor, Cygnus Support, |
| <ian@cygnus.com>. |
| N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. |
| <mark@codesourcery.com> |
| Traditional MIPS targets support added by Koundinya.K, Dansk Data |
| Elektronik & Operations Research Group. <kk@ddeorg.soft.net> |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| |
| /* This file handles functionality common to the different MIPS ABI's. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "libbfd.h" |
| #include "libiberty.h" |
| #include "elf-bfd.h" |
| #include "ecoff-bfd.h" |
| #include "elfxx-mips.h" |
| #include "elf/mips.h" |
| #include "elf-vxworks.h" |
| #include "dwarf2.h" |
| |
| /* Get the ECOFF swapping routines. */ |
| #include "coff/sym.h" |
| #include "coff/symconst.h" |
| #include "coff/ecoff.h" |
| #include "coff/mips.h" |
| |
| #include "hashtab.h" |
| |
| /* Types of TLS GOT entry. */ |
| enum mips_got_tls_type { |
| GOT_TLS_NONE, |
| GOT_TLS_GD, |
| GOT_TLS_LDM, |
| GOT_TLS_IE |
| }; |
| |
| /* This structure is used to hold information about one GOT entry. |
| There are four types of entry: |
| |
| (1) an absolute address |
| requires: abfd == NULL |
| fields: d.address |
| |
| (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd |
| requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM |
| fields: abfd, symndx, d.addend, tls_type |
| |
| (3) a SYMBOL address, where SYMBOL is not local to an input bfd |
| requires: abfd != NULL, symndx == -1 |
| fields: d.h, tls_type |
| |
| (4) a TLS LDM slot |
| requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM |
| fields: none; there's only one of these per GOT. */ |
| struct mips_got_entry |
| { |
| /* One input bfd that needs the GOT entry. */ |
| bfd *abfd; |
| /* The index of the symbol, as stored in the relocation r_info, if |
| we have a local symbol; -1 otherwise. */ |
| long symndx; |
| union |
| { |
| /* If abfd == NULL, an address that must be stored in the got. */ |
| bfd_vma address; |
| /* If abfd != NULL && symndx != -1, the addend of the relocation |
| that should be added to the symbol value. */ |
| bfd_vma addend; |
| /* If abfd != NULL && symndx == -1, the hash table entry |
| corresponding to a symbol in the GOT. The symbol's entry |
| is in the local area if h->global_got_area is GGA_NONE, |
| otherwise it is in the global area. */ |
| struct mips_elf_link_hash_entry *h; |
| } d; |
| |
| /* The TLS type of this GOT entry. An LDM GOT entry will be a local |
| symbol entry with r_symndx == 0. */ |
| unsigned char tls_type; |
| |
| /* True if we have filled in the GOT contents for a TLS entry, |
| and created the associated relocations. */ |
| unsigned char tls_initialized; |
| |
| /* The offset from the beginning of the .got section to the entry |
| corresponding to this symbol+addend. If it's a global symbol |
| whose offset is yet to be decided, it's going to be -1. */ |
| long gotidx; |
| }; |
| |
| /* This structure represents a GOT page reference from an input bfd. |
| Each instance represents a symbol + ADDEND, where the representation |
| of the symbol depends on whether it is local to the input bfd. |
| If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD. |
| Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry. |
| |
| Page references with SYMNDX >= 0 always become page references |
| in the output. Page references with SYMNDX < 0 only become page |
| references if the symbol binds locally; in other cases, the page |
| reference decays to a global GOT reference. */ |
| struct mips_got_page_ref |
| { |
| long symndx; |
| union |
| { |
| struct mips_elf_link_hash_entry *h; |
| bfd *abfd; |
| } u; |
| bfd_vma addend; |
| }; |
| |
| /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND]. |
| The structures form a non-overlapping list that is sorted by increasing |
| MIN_ADDEND. */ |
| struct mips_got_page_range |
| { |
| struct mips_got_page_range *next; |
| bfd_signed_vma min_addend; |
| bfd_signed_vma max_addend; |
| }; |
| |
| /* This structure describes the range of addends that are applied to page |
| relocations against a given section. */ |
| struct mips_got_page_entry |
| { |
| /* The section that these entries are based on. */ |
| asection *sec; |
| /* The ranges for this page entry. */ |
| struct mips_got_page_range *ranges; |
| /* The maximum number of page entries needed for RANGES. */ |
| bfd_vma num_pages; |
| }; |
| |
| /* This structure is used to hold .got information when linking. */ |
| |
| struct mips_got_info |
| { |
| /* The number of global .got entries. */ |
| unsigned int global_gotno; |
| /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */ |
| unsigned int reloc_only_gotno; |
| /* The number of .got slots used for TLS. */ |
| unsigned int tls_gotno; |
| /* The first unused TLS .got entry. Used only during |
| mips_elf_initialize_tls_index. */ |
| unsigned int tls_assigned_gotno; |
| /* The number of local .got entries, eventually including page entries. */ |
| unsigned int local_gotno; |
| /* The maximum number of page entries needed. */ |
| unsigned int page_gotno; |
| /* The number of relocations needed for the GOT entries. */ |
| unsigned int relocs; |
| /* The first unused local .got entry. */ |
| unsigned int assigned_low_gotno; |
| /* The last unused local .got entry. */ |
| unsigned int assigned_high_gotno; |
| /* A hash table holding members of the got. */ |
| struct htab *got_entries; |
| /* A hash table holding mips_got_page_ref structures. */ |
| struct htab *got_page_refs; |
| /* A hash table of mips_got_page_entry structures. */ |
| struct htab *got_page_entries; |
| /* In multi-got links, a pointer to the next got (err, rather, most |
| of the time, it points to the previous got). */ |
| struct mips_got_info *next; |
| }; |
| |
| /* Structure passed when merging bfds' gots. */ |
| |
| struct mips_elf_got_per_bfd_arg |
| { |
| /* The output bfd. */ |
| bfd *obfd; |
| /* The link information. */ |
| struct bfd_link_info *info; |
| /* A pointer to the primary got, i.e., the one that's going to get |
| the implicit relocations from DT_MIPS_LOCAL_GOTNO and |
| DT_MIPS_GOTSYM. */ |
| struct mips_got_info *primary; |
| /* A non-primary got we're trying to merge with other input bfd's |
| gots. */ |
| struct mips_got_info *current; |
| /* The maximum number of got entries that can be addressed with a |
| 16-bit offset. */ |
| unsigned int max_count; |
| /* The maximum number of page entries needed by each got. */ |
| unsigned int max_pages; |
| /* The total number of global entries which will live in the |
| primary got and be automatically relocated. This includes |
| those not referenced by the primary GOT but included in |
| the "master" GOT. */ |
| unsigned int global_count; |
| }; |
| |
| /* A structure used to pass information to htab_traverse callbacks |
| when laying out the GOT. */ |
| |
| struct mips_elf_traverse_got_arg |
| { |
| struct bfd_link_info *info; |
| struct mips_got_info *g; |
| int value; |
| }; |
| |
| struct _mips_elf_section_data |
| { |
| struct bfd_elf_section_data elf; |
| union |
| { |
| bfd_byte *tdata; |
| } u; |
| }; |
| |
| #define mips_elf_section_data(sec) \ |
| ((struct _mips_elf_section_data *) elf_section_data (sec)) |
| |
| #define is_mips_elf(bfd) \ |
| (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ |
| && elf_tdata (bfd) != NULL \ |
| && elf_object_id (bfd) == MIPS_ELF_DATA) |
| |
| /* The ABI says that every symbol used by dynamic relocations must have |
| a global GOT entry. Among other things, this provides the dynamic |
| linker with a free, directly-indexed cache. The GOT can therefore |
| contain symbols that are not referenced by GOT relocations themselves |
| (in other words, it may have symbols that are not referenced by things |
| like R_MIPS_GOT16 and R_MIPS_GOT_PAGE). |
| |
| GOT relocations are less likely to overflow if we put the associated |
| GOT entries towards the beginning. We therefore divide the global |
| GOT entries into two areas: "normal" and "reloc-only". Entries in |
| the first area can be used for both dynamic relocations and GP-relative |
| accesses, while those in the "reloc-only" area are for dynamic |
| relocations only. |
| |
| These GGA_* ("Global GOT Area") values are organised so that lower |
| values are more general than higher values. Also, non-GGA_NONE |
| values are ordered by the position of the area in the GOT. */ |
| #define GGA_NORMAL 0 |
| #define GGA_RELOC_ONLY 1 |
| #define GGA_NONE 2 |
| |
| /* Information about a non-PIC interface to a PIC function. There are |
| two ways of creating these interfaces. The first is to add: |
| |
| lui $25,%hi(func) |
| addiu $25,$25,%lo(func) |
| |
| immediately before a PIC function "func". The second is to add: |
| |
| lui $25,%hi(func) |
| j func |
| addiu $25,$25,%lo(func) |
| |
| to a separate trampoline section. |
| |
| Stubs of the first kind go in a new section immediately before the |
| target function. Stubs of the second kind go in a single section |
| pointed to by the hash table's "strampoline" field. */ |
| struct mips_elf_la25_stub { |
| /* The generated section that contains this stub. */ |
| asection *stub_section; |
| |
| /* The offset of the stub from the start of STUB_SECTION. */ |
| bfd_vma offset; |
| |
| /* One symbol for the original function. Its location is available |
| in H->root.root.u.def. */ |
| struct mips_elf_link_hash_entry *h; |
| }; |
| |
| /* Macros for populating a mips_elf_la25_stub. */ |
| |
| #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */ |
| #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */ |
| #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */ |
| #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */ |
| #define LA25_LUI_MICROMIPS(VAL) \ |
| (0x41b90000 | (VAL)) /* lui t9,VAL */ |
| #define LA25_J_MICROMIPS(VAL) \ |
| (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */ |
| #define LA25_ADDIU_MICROMIPS(VAL) \ |
| (0x33390000 | (VAL)) /* addiu t9,t9,VAL */ |
| |
| /* This structure is passed to mips_elf_sort_hash_table_f when sorting |
| the dynamic symbols. */ |
| |
| struct mips_elf_hash_sort_data |
| { |
| /* The symbol in the global GOT with the lowest dynamic symbol table |
| index. */ |
| struct elf_link_hash_entry *low; |
| /* The least dynamic symbol table index corresponding to a non-TLS |
| symbol with a GOT entry. */ |
| bfd_size_type min_got_dynindx; |
| /* The greatest dynamic symbol table index corresponding to a symbol |
| with a GOT entry that is not referenced (e.g., a dynamic symbol |
| with dynamic relocations pointing to it from non-primary GOTs). */ |
| bfd_size_type max_unref_got_dynindx; |
| /* The greatest dynamic symbol table index corresponding to a local |
| symbol. */ |
| bfd_size_type max_local_dynindx; |
| /* The greatest dynamic symbol table index corresponding to an external |
| symbol without a GOT entry. */ |
| bfd_size_type max_non_got_dynindx; |
| /* If non-NULL, output BFD for .MIPS.xhash finalization. */ |
| bfd *output_bfd; |
| /* If non-NULL, pointer to contents of .MIPS.xhash for filling in |
| real final dynindx. */ |
| bfd_byte *mipsxhash; |
| }; |
| |
| /* We make up to two PLT entries if needed, one for standard MIPS code |
| and one for compressed code, either a MIPS16 or microMIPS one. We |
| keep a separate record of traditional lazy-binding stubs, for easier |
| processing. */ |
| |
| struct plt_entry |
| { |
| /* Traditional SVR4 stub offset, or -1 if none. */ |
| bfd_vma stub_offset; |
| |
| /* Standard PLT entry offset, or -1 if none. */ |
| bfd_vma mips_offset; |
| |
| /* Compressed PLT entry offset, or -1 if none. */ |
| bfd_vma comp_offset; |
| |
| /* The corresponding .got.plt index, or -1 if none. */ |
| bfd_vma gotplt_index; |
| |
| /* Whether we need a standard PLT entry. */ |
| unsigned int need_mips : 1; |
| |
| /* Whether we need a compressed PLT entry. */ |
| unsigned int need_comp : 1; |
| }; |
| |
| /* The MIPS ELF linker needs additional information for each symbol in |
| the global hash table. */ |
| |
| struct mips_elf_link_hash_entry |
| { |
| struct elf_link_hash_entry root; |
| |
| /* External symbol information. */ |
| EXTR esym; |
| |
| /* The la25 stub we have created for ths symbol, if any. */ |
| struct mips_elf_la25_stub *la25_stub; |
| |
| /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against |
| this symbol. */ |
| unsigned int possibly_dynamic_relocs; |
| |
| /* If there is a stub that 32 bit functions should use to call this |
| 16 bit function, this points to the section containing the stub. */ |
| asection *fn_stub; |
| |
| /* If there is a stub that 16 bit functions should use to call this |
| 32 bit function, this points to the section containing the stub. */ |
| asection *call_stub; |
| |
| /* This is like the call_stub field, but it is used if the function |
| being called returns a floating point value. */ |
| asection *call_fp_stub; |
| |
| /* If non-zero, location in .MIPS.xhash to write real final dynindx. */ |
| bfd_vma mipsxhash_loc; |
| |
| /* The highest GGA_* value that satisfies all references to this symbol. */ |
| unsigned int global_got_area : 2; |
| |
| /* True if all GOT relocations against this symbol are for calls. This is |
| a looser condition than no_fn_stub below, because there may be other |
| non-call non-GOT relocations against the symbol. */ |
| unsigned int got_only_for_calls : 1; |
| |
| /* True if one of the relocations described by possibly_dynamic_relocs |
| is against a readonly section. */ |
| unsigned int readonly_reloc : 1; |
| |
| /* True if there is a relocation against this symbol that must be |
| resolved by the static linker (in other words, if the relocation |
| cannot possibly be made dynamic). */ |
| unsigned int has_static_relocs : 1; |
| |
| /* True if we must not create a .MIPS.stubs entry for this symbol. |
| This is set, for example, if there are relocations related to |
| taking the function's address, i.e. any but R_MIPS_CALL*16 ones. |
| See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */ |
| unsigned int no_fn_stub : 1; |
| |
| /* Whether we need the fn_stub; this is true if this symbol appears |
| in any relocs other than a 16 bit call. */ |
| unsigned int need_fn_stub : 1; |
| |
| /* True if this symbol is referenced by branch relocations from |
| any non-PIC input file. This is used to determine whether an |
| la25 stub is required. */ |
| unsigned int has_nonpic_branches : 1; |
| |
| /* Does this symbol need a traditional MIPS lazy-binding stub |
| (as opposed to a PLT entry)? */ |
| unsigned int needs_lazy_stub : 1; |
| |
| /* Does this symbol resolve to a PLT entry? */ |
| unsigned int use_plt_entry : 1; |
| }; |
| |
| /* MIPS ELF linker hash table. */ |
| |
| struct mips_elf_link_hash_table |
| { |
| struct elf_link_hash_table root; |
| |
| /* The number of .rtproc entries. */ |
| bfd_size_type procedure_count; |
| |
| /* The size of the .compact_rel section (if SGI_COMPAT). */ |
| bfd_size_type compact_rel_size; |
| |
| /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry |
| is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */ |
| bool use_rld_obj_head; |
| |
| /* The __rld_map or __rld_obj_head symbol. */ |
| struct elf_link_hash_entry *rld_symbol; |
| |
| /* This is set if we see any mips16 stub sections. */ |
| bool mips16_stubs_seen; |
| |
| /* True if we can generate copy relocs and PLTs. */ |
| bool use_plts_and_copy_relocs; |
| |
| /* True if we can only use 32-bit microMIPS instructions. */ |
| bool insn32; |
| |
| /* True if we suppress checks for invalid branches between ISA modes. */ |
| bool ignore_branch_isa; |
| |
| /* True if we are targetting R6 compact branches. */ |
| bool compact_branches; |
| |
| /* True if we already reported the small-data section overflow. */ |
| bool small_data_overflow_reported; |
| |
| /* True if we use the special `__gnu_absolute_zero' symbol. */ |
| bool use_absolute_zero; |
| |
| /* True if we have been configured for a GNU target. */ |
| bool gnu_target; |
| |
| /* Shortcuts to some dynamic sections, or NULL if they are not |
| being used. */ |
| asection *srelplt2; |
| asection *sstubs; |
| |
| /* The master GOT information. */ |
| struct mips_got_info *got_info; |
| |
| /* The global symbol in the GOT with the lowest index in the dynamic |
| symbol table. */ |
| struct elf_link_hash_entry *global_gotsym; |
| |
| /* The size of the PLT header in bytes. */ |
| bfd_vma plt_header_size; |
| |
| /* The size of a standard PLT entry in bytes. */ |
| bfd_vma plt_mips_entry_size; |
| |
| /* The size of a compressed PLT entry in bytes. */ |
| bfd_vma plt_comp_entry_size; |
| |
| /* The offset of the next standard PLT entry to create. */ |
| bfd_vma plt_mips_offset; |
| |
| /* The offset of the next compressed PLT entry to create. */ |
| bfd_vma plt_comp_offset; |
| |
| /* The index of the next .got.plt entry to create. */ |
| bfd_vma plt_got_index; |
| |
| /* The number of functions that need a lazy-binding stub. */ |
| bfd_vma lazy_stub_count; |
| |
| /* The size of a function stub entry in bytes. */ |
| bfd_vma function_stub_size; |
| |
| /* The number of reserved entries at the beginning of the GOT. */ |
| unsigned int reserved_gotno; |
| |
| /* The section used for mips_elf_la25_stub trampolines. |
| See the comment above that structure for details. */ |
| asection *strampoline; |
| |
| /* A table of mips_elf_la25_stubs, indexed by (input_section, offset) |
| pairs. */ |
| htab_t la25_stubs; |
| |
| /* A function FN (NAME, IS, OS) that creates a new input section |
| called NAME and links it to output section OS. If IS is nonnull, |
| the new section should go immediately before it, otherwise it |
| should go at the (current) beginning of OS. |
| |
| The function returns the new section on success, otherwise it |
| returns null. */ |
| asection *(*add_stub_section) (const char *, asection *, asection *); |
| |
| /* Is the PLT header compressed? */ |
| unsigned int plt_header_is_comp : 1; |
| }; |
| |
| /* Get the MIPS ELF linker hash table from a link_info structure. */ |
| |
| #define mips_elf_hash_table(p) \ |
| ((is_elf_hash_table ((p)->hash) \ |
| && elf_hash_table_id (elf_hash_table (p)) == MIPS_ELF_DATA) \ |
| ? (struct mips_elf_link_hash_table *) (p)->hash : NULL) |
| |
| /* A structure used to communicate with htab_traverse callbacks. */ |
| struct mips_htab_traverse_info |
| { |
| /* The usual link-wide information. */ |
| struct bfd_link_info *info; |
| bfd *output_bfd; |
| |
| /* Starts off FALSE and is set to TRUE if the link should be aborted. */ |
| bool error; |
| }; |
| |
| /* Used to store a REL high-part relocation such as R_MIPS_HI16 or |
| R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section |
| that contains the relocation field and DATA points to the start of |
| INPUT_SECTION. */ |
| |
| struct mips_hi16 |
| { |
| struct mips_hi16 *next; |
| bfd_byte *data; |
| asection *input_section; |
| arelent rel; |
| }; |
| |
| /* MIPS ELF private object data. */ |
| |
| struct mips_elf_obj_tdata |
| { |
| /* Generic ELF private object data. */ |
| struct elf_obj_tdata root; |
| |
| /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */ |
| bfd *abi_fp_bfd; |
| |
| /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */ |
| bfd *abi_msa_bfd; |
| |
| /* The abiflags for this object. */ |
| Elf_Internal_ABIFlags_v0 abiflags; |
| bool abiflags_valid; |
| |
| /* The GOT requirements of input bfds. */ |
| struct mips_got_info *got; |
| |
| /* Used by _bfd_mips_elf_find_nearest_line. The structure could be |
| included directly in this one, but there's no point to wasting |
| the memory just for the infrequently called find_nearest_line. */ |
| struct mips_elf_find_line *find_line_info; |
| |
| /* An array of stub sections indexed by symbol number. */ |
| asection **local_stubs; |
| asection **local_call_stubs; |
| |
| /* The Irix 5 support uses two virtual sections, which represent |
| text/data symbols defined in dynamic objects. */ |
| asymbol *elf_data_symbol; |
| asymbol *elf_text_symbol; |
| asection *elf_data_section; |
| asection *elf_text_section; |
| |
| struct mips_hi16 *mips_hi16_list; |
| }; |
| |
| /* Get MIPS ELF private object data from BFD's tdata. */ |
| |
| #define mips_elf_tdata(bfd) \ |
| ((struct mips_elf_obj_tdata *) (bfd)->tdata.any) |
| |
| #define TLS_RELOC_P(r_type) \ |
| (r_type == R_MIPS_TLS_DTPMOD32 \ |
| || r_type == R_MIPS_TLS_DTPMOD64 \ |
| || r_type == R_MIPS_TLS_DTPREL32 \ |
| || r_type == R_MIPS_TLS_DTPREL64 \ |
| || r_type == R_MIPS_TLS_GD \ |
| || r_type == R_MIPS_TLS_LDM \ |
| || r_type == R_MIPS_TLS_DTPREL_HI16 \ |
| || r_type == R_MIPS_TLS_DTPREL_LO16 \ |
| || r_type == R_MIPS_TLS_GOTTPREL \ |
| || r_type == R_MIPS_TLS_TPREL32 \ |
| || r_type == R_MIPS_TLS_TPREL64 \ |
| || r_type == R_MIPS_TLS_TPREL_HI16 \ |
| || r_type == R_MIPS_TLS_TPREL_LO16 \ |
| || r_type == R_MIPS16_TLS_GD \ |
| || r_type == R_MIPS16_TLS_LDM \ |
| || r_type == R_MIPS16_TLS_DTPREL_HI16 \ |
| || r_type == R_MIPS16_TLS_DTPREL_LO16 \ |
| || r_type == R_MIPS16_TLS_GOTTPREL \ |
| || r_type == R_MIPS16_TLS_TPREL_HI16 \ |
| || r_type == R_MIPS16_TLS_TPREL_LO16 \ |
| || r_type == R_MICROMIPS_TLS_GD \ |
| || r_type == R_MICROMIPS_TLS_LDM \ |
| || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \ |
| || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \ |
| || r_type == R_MICROMIPS_TLS_GOTTPREL \ |
| || r_type == R_MICROMIPS_TLS_TPREL_HI16 \ |
| || r_type == R_MICROMIPS_TLS_TPREL_LO16) |
| |
| /* Structure used to pass information to mips_elf_output_extsym. */ |
| |
| struct extsym_info |
| { |
| bfd *abfd; |
| struct bfd_link_info *info; |
| struct ecoff_debug_info *debug; |
| const struct ecoff_debug_swap *swap; |
| bool failed; |
| }; |
| |
| /* The names of the runtime procedure table symbols used on IRIX5. */ |
| |
| static const char * const mips_elf_dynsym_rtproc_names[] = |
| { |
| "_procedure_table", |
| "_procedure_string_table", |
| "_procedure_table_size", |
| NULL |
| }; |
| |
| /* These structures are used to generate the .compact_rel section on |
| IRIX5. */ |
| |
| typedef struct |
| { |
| unsigned long id1; /* Always one? */ |
| unsigned long num; /* Number of compact relocation entries. */ |
| unsigned long id2; /* Always two? */ |
| unsigned long offset; /* The file offset of the first relocation. */ |
| unsigned long reserved0; /* Zero? */ |
| unsigned long reserved1; /* Zero? */ |
| } Elf32_compact_rel; |
| |
| typedef struct |
| { |
| bfd_byte id1[4]; |
| bfd_byte num[4]; |
| bfd_byte id2[4]; |
| bfd_byte offset[4]; |
| bfd_byte reserved0[4]; |
| bfd_byte reserved1[4]; |
| } Elf32_External_compact_rel; |
| |
| typedef struct |
| { |
| unsigned int ctype : 1; /* 1: long 0: short format. See below. */ |
| unsigned int rtype : 4; /* Relocation types. See below. */ |
| unsigned int dist2to : 8; |
| unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ |
| unsigned long konst; /* KONST field. See below. */ |
| unsigned long vaddr; /* VADDR to be relocated. */ |
| } Elf32_crinfo; |
| |
| typedef struct |
| { |
| unsigned int ctype : 1; /* 1: long 0: short format. See below. */ |
| unsigned int rtype : 4; /* Relocation types. See below. */ |
| unsigned int dist2to : 8; |
| unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ |
| unsigned long konst; /* KONST field. See below. */ |
| } Elf32_crinfo2; |
| |
| typedef struct |
| { |
| bfd_byte info[4]; |
| bfd_byte konst[4]; |
| bfd_byte vaddr[4]; |
| } Elf32_External_crinfo; |
| |
| typedef struct |
| { |
| bfd_byte info[4]; |
| bfd_byte konst[4]; |
| } Elf32_External_crinfo2; |
| |
| /* These are the constants used to swap the bitfields in a crinfo. */ |
| |
| #define CRINFO_CTYPE (0x1U) |
| #define CRINFO_CTYPE_SH (31) |
| #define CRINFO_RTYPE (0xfU) |
| #define CRINFO_RTYPE_SH (27) |
| #define CRINFO_DIST2TO (0xffU) |
| #define CRINFO_DIST2TO_SH (19) |
| #define CRINFO_RELVADDR (0x7ffffU) |
| #define CRINFO_RELVADDR_SH (0) |
| |
| /* A compact relocation info has long (3 words) or short (2 words) |
| formats. A short format doesn't have VADDR field and relvaddr |
| fields contains ((VADDR - vaddr of the previous entry) >> 2). */ |
| #define CRF_MIPS_LONG 1 |
| #define CRF_MIPS_SHORT 0 |
| |
| /* There are 4 types of compact relocation at least. The value KONST |
| has different meaning for each type: |
| |
| (type) (konst) |
| CT_MIPS_REL32 Address in data |
| CT_MIPS_WORD Address in word (XXX) |
| CT_MIPS_GPHI_LO GP - vaddr |
| CT_MIPS_JMPAD Address to jump |
| */ |
| |
| #define CRT_MIPS_REL32 0xa |
| #define CRT_MIPS_WORD 0xb |
| #define CRT_MIPS_GPHI_LO 0xc |
| #define CRT_MIPS_JMPAD 0xd |
| |
| #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) |
| #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) |
| #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) |
| #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) |
| |
| /* The structure of the runtime procedure descriptor created by the |
| loader for use by the static exception system. */ |
| |
| typedef struct runtime_pdr { |
| bfd_vma adr; /* Memory address of start of procedure. */ |
| long regmask; /* Save register mask. */ |
| long regoffset; /* Save register offset. */ |
| long fregmask; /* Save floating point register mask. */ |
| long fregoffset; /* Save floating point register offset. */ |
| long frameoffset; /* Frame size. */ |
| short framereg; /* Frame pointer register. */ |
| short pcreg; /* Offset or reg of return pc. */ |
| long irpss; /* Index into the runtime string table. */ |
| long reserved; |
| struct exception_info *exception_info;/* Pointer to exception array. */ |
| } RPDR, *pRPDR; |
| #define cbRPDR sizeof (RPDR) |
| #define rpdNil ((pRPDR) 0) |
| |
| static struct mips_got_entry *mips_elf_create_local_got_entry |
| (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long, |
| struct mips_elf_link_hash_entry *, int); |
| static bool mips_elf_sort_hash_table_f |
| (struct mips_elf_link_hash_entry *, void *); |
| static bfd_vma mips_elf_high |
| (bfd_vma); |
| static bool mips_elf_create_dynamic_relocation |
| (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, |
| struct mips_elf_link_hash_entry *, asection *, bfd_vma, |
| bfd_vma *, asection *); |
| static bfd_vma mips_elf_adjust_gp |
| (bfd *, struct mips_got_info *, bfd *); |
| |
| /* This will be used when we sort the dynamic relocation records. */ |
| static bfd *reldyn_sorting_bfd; |
| |
| /* True if ABFD is for CPUs with load interlocking that include |
| non-MIPS1 CPUs and R3900. */ |
| #define LOAD_INTERLOCKS_P(abfd) \ |
| ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != EF_MIPS_ARCH_1) \ |
| || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == EF_MIPS_MACH_3900)) |
| |
| /* True if ABFD is for CPUs that are faster if JAL is converted to BAL. |
| This should be safe for all architectures. We enable this predicate |
| for RM9000 for now. */ |
| #define JAL_TO_BAL_P(abfd) \ |
| ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == EF_MIPS_MACH_9000) |
| |
| /* True if ABFD is for CPUs that are faster if JALR is converted to BAL. |
| This should be safe for all architectures. We enable this predicate for |
| all CPUs. */ |
| #define JALR_TO_BAL_P(abfd) 1 |
| |
| /* True if ABFD is for CPUs that are faster if JR is converted to B. |
| This should be safe for all architectures. We enable this predicate for |
| all CPUs. */ |
| #define JR_TO_B_P(abfd) 1 |
| |
| /* True if ABFD is a PIC object. */ |
| #define PIC_OBJECT_P(abfd) \ |
| ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0) |
| |
| /* Nonzero if ABFD is using the O32 ABI. */ |
| #define ABI_O32_P(abfd) \ |
| ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == EF_MIPS_ABI_O32) |
| |
| /* Nonzero if ABFD is using the N32 ABI. */ |
| #define ABI_N32_P(abfd) \ |
| ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) |
| |
| /* Nonzero if ABFD is using the N64 ABI. */ |
| #define ABI_64_P(abfd) \ |
| (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) |
| |
| /* Nonzero if ABFD is using NewABI conventions. */ |
| #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) |
| |
| /* Nonzero if ABFD has microMIPS code. */ |
| #define MICROMIPS_P(abfd) \ |
| ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0) |
| |
| /* Nonzero if ABFD is MIPS R6. */ |
| #define MIPSR6_P(abfd) \ |
| ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_32R6 \ |
| || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_64R6) |
| |
| /* The IRIX compatibility level we are striving for. */ |
| #define IRIX_COMPAT(abfd) \ |
| (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) |
| |
| /* Whether we are trying to be compatible with IRIX at all. */ |
| #define SGI_COMPAT(abfd) \ |
| (IRIX_COMPAT (abfd) != ict_none) |
| |
| /* The name of the options section. */ |
| #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ |
| (NEWABI_P (abfd) ? ".MIPS.options" : ".options") |
| |
| /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. |
| Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ |
| #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ |
| (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) |
| |
| /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */ |
| #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \ |
| (strcmp (NAME, ".MIPS.abiflags") == 0) |
| |
| /* Whether the section is readonly. */ |
| #define MIPS_ELF_READONLY_SECTION(sec) \ |
| ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \ |
| == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
| |
| /* The name of the stub section. */ |
| #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" |
| |
| /* The size of an external REL relocation. */ |
| #define MIPS_ELF_REL_SIZE(abfd) \ |
| (get_elf_backend_data (abfd)->s->sizeof_rel) |
| |
| /* The size of an external RELA relocation. */ |
| #define MIPS_ELF_RELA_SIZE(abfd) \ |
| (get_elf_backend_data (abfd)->s->sizeof_rela) |
| |
| /* The size of an external dynamic table entry. */ |
| #define MIPS_ELF_DYN_SIZE(abfd) \ |
| (get_elf_backend_data (abfd)->s->sizeof_dyn) |
| |
| /* The size of a GOT entry. */ |
| #define MIPS_ELF_GOT_SIZE(abfd) \ |
| (get_elf_backend_data (abfd)->s->arch_size / 8) |
| |
| /* The size of the .rld_map section. */ |
| #define MIPS_ELF_RLD_MAP_SIZE(abfd) \ |
| (get_elf_backend_data (abfd)->s->arch_size / 8) |
| |
| /* The size of a symbol-table entry. */ |
| #define MIPS_ELF_SYM_SIZE(abfd) \ |
| (get_elf_backend_data (abfd)->s->sizeof_sym) |
| |
| /* The default alignment for sections, as a power of two. */ |
| #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ |
| (get_elf_backend_data (abfd)->s->log_file_align) |
| |
| /* Get word-sized data. */ |
| #define MIPS_ELF_GET_WORD(abfd, ptr) \ |
| (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) |
| |
| /* Put out word-sized data. */ |
| #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ |
| (ABI_64_P (abfd) \ |
| ? bfd_put_64 (abfd, val, ptr) \ |
| : bfd_put_32 (abfd, val, ptr)) |
| |
| /* The opcode for word-sized loads (LW or LD). */ |
| #define MIPS_ELF_LOAD_WORD(abfd) \ |
| (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000) |
| |
| /* Add a dynamic symbol table-entry. */ |
| #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ |
| _bfd_elf_add_dynamic_entry (info, tag, val) |
| |
| #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ |
| (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela)) |
| |
| /* The name of the dynamic relocation section. */ |
| #define MIPS_ELF_REL_DYN_NAME(INFO) \ |
| (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \ |
| ? ".rela.dyn" : ".rel.dyn") |
| |
| /* In case we're on a 32-bit machine, construct a 64-bit "-1" value |
| from smaller values. Start with zero, widen, *then* decrement. */ |
| #define MINUS_ONE (((bfd_vma)0) - 1) |
| #define MINUS_TWO (((bfd_vma)0) - 2) |
| |
| /* The value to write into got[1] for SVR4 targets, to identify it is |
| a GNU object. The dynamic linker can then use got[1] to store the |
| module pointer. */ |
| #define MIPS_ELF_GNU_GOT1_MASK(abfd) \ |
| ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31)) |
| |
| /* The offset of $gp from the beginning of the .got section. */ |
| #define ELF_MIPS_GP_OFFSET(INFO) \ |
| (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \ |
| ? 0x0 : 0x7ff0) |
| |
| /* The maximum size of the GOT for it to be addressable using 16-bit |
| offsets from $gp. */ |
| #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) |
| |
| /* Instructions which appear in a stub. */ |
| #define STUB_LW(abfd) \ |
| ((ABI_64_P (abfd) \ |
| ? 0xdf998010 /* ld t9,0x8010(gp) */ \ |
| : 0x8f998010)) /* lw t9,0x8010(gp) */ |
| #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */ |
| #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */ |
| #define STUB_JALR 0x0320f809 /* jalr ra,t9 */ |
| #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */ |
| #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */ |
| #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */ |
| #define STUB_LI16S(abfd, VAL) \ |
| ((ABI_64_P (abfd) \ |
| ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \ |
| : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */ |
| |
| /* Likewise for the microMIPS ASE. */ |
| #define STUB_LW_MICROMIPS(abfd) \ |
| (ABI_64_P (abfd) \ |
| ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \ |
| : 0xff3c8010) /* lw t9,0x8010(gp) */ |
| #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */ |
| #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */ |
| #define STUB_LUI_MICROMIPS(VAL) \ |
| (0x41b80000 + (VAL)) /* lui t8,VAL */ |
| #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */ |
| #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */ |
| #define STUB_ORI_MICROMIPS(VAL) \ |
| (0x53180000 + (VAL)) /* ori t8,t8,VAL */ |
| #define STUB_LI16U_MICROMIPS(VAL) \ |
| (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */ |
| #define STUB_LI16S_MICROMIPS(abfd, VAL) \ |
| (ABI_64_P (abfd) \ |
| ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \ |
| : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */ |
| |
| #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16 |
| #define MIPS_FUNCTION_STUB_BIG_SIZE 20 |
| #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12 |
| #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16 |
| #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16 |
| #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20 |
| |
| /* The name of the dynamic interpreter. This is put in the .interp |
| section. */ |
| |
| #define ELF_DYNAMIC_INTERPRETER(abfd) \ |
| (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ |
| : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ |
| : "/usr/lib/libc.so.1") |
| |
| #ifdef BFD64 |
| #define MNAME(bfd,pre,pos) \ |
| (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) |
| #define ELF_R_SYM(bfd, i) \ |
| (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) |
| #define ELF_R_TYPE(bfd, i) \ |
| (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) |
| #define ELF_R_INFO(bfd, s, t) \ |
| (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) |
| #else |
| #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) |
| #define ELF_R_SYM(bfd, i) \ |
| (ELF32_R_SYM (i)) |
| #define ELF_R_TYPE(bfd, i) \ |
| (ELF32_R_TYPE (i)) |
| #define ELF_R_INFO(bfd, s, t) \ |
| (ELF32_R_INFO (s, t)) |
| #endif |
| |
| /* The mips16 compiler uses a couple of special sections to handle |
| floating point arguments. |
| |
| Section names that look like .mips16.fn.FNNAME contain stubs that |
| copy floating point arguments from the fp regs to the gp regs and |
| then jump to FNNAME. If any 32 bit function calls FNNAME, the |
| call should be redirected to the stub instead. If no 32 bit |
| function calls FNNAME, the stub should be discarded. We need to |
| consider any reference to the function, not just a call, because |
| if the address of the function is taken we will need the stub, |
| since the address might be passed to a 32 bit function. |
| |
| Section names that look like .mips16.call.FNNAME contain stubs |
| that copy floating point arguments from the gp regs to the fp |
| regs and then jump to FNNAME. If FNNAME is a 32 bit function, |
| then any 16 bit function that calls FNNAME should be redirected |
| to the stub instead. If FNNAME is not a 32 bit function, the |
| stub should be discarded. |
| |
| .mips16.call.fp.FNNAME sections are similar, but contain stubs |
| which call FNNAME and then copy the return value from the fp regs |
| to the gp regs. These stubs store the return value in $18 while |
| calling FNNAME; any function which might call one of these stubs |
| must arrange to save $18 around the call. (This case is not |
| needed for 32 bit functions that call 16 bit functions, because |
| 16 bit functions always return floating point values in both |
| $f0/$f1 and $2/$3.) |
| |
| Note that in all cases FNNAME might be defined statically. |
| Therefore, FNNAME is not used literally. Instead, the relocation |
| information will indicate which symbol the section is for. |
| |
| We record any stubs that we find in the symbol table. */ |
| |
| #define FN_STUB ".mips16.fn." |
| #define CALL_STUB ".mips16.call." |
| #define CALL_FP_STUB ".mips16.call.fp." |
| |
| #define FN_STUB_P(name) startswith (name, FN_STUB) |
| #define CALL_STUB_P(name) startswith (name, CALL_STUB) |
| #define CALL_FP_STUB_P(name) startswith (name, CALL_FP_STUB) |
| |
| /* The format of the first PLT entry in an O32 executable. */ |
| static const bfd_vma mips_o32_exec_plt0_entry[] = |
| { |
| 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */ |
| 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */ |
| 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ |
| 0x031cc023, /* subu $24, $24, $28 */ |
| 0x03e07825, /* or t7, ra, zero */ |
| 0x0018c082, /* srl $24, $24, 2 */ |
| 0x0320f809, /* jalr $25 */ |
| 0x2718fffe /* subu $24, $24, 2 */ |
| }; |
| |
| /* The format of the first PLT entry in an O32 executable using compact |
| jumps. */ |
| static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] = |
| { |
| 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */ |
| 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */ |
| 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ |
| 0x031cc023, /* subu $24, $24, $28 */ |
| 0x03e07821, /* move $15, $31 # 32-bit move (addu) */ |
| 0x0018c082, /* srl $24, $24, 2 */ |
| 0x2718fffe, /* subu $24, $24, 2 */ |
| 0xf8190000 /* jalrc $25 */ |
| }; |
| |
| /* The format of the first PLT entry in an N32 executable. Different |
| because gp ($28) is not available; we use t2 ($14) instead. */ |
| static const bfd_vma mips_n32_exec_plt0_entry[] = |
| { |
| 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ |
| 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */ |
| 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ |
| 0x030ec023, /* subu $24, $24, $14 */ |
| 0x03e07825, /* or t7, ra, zero */ |
| 0x0018c082, /* srl $24, $24, 2 */ |
| 0x0320f809, /* jalr $25 */ |
| 0x2718fffe /* subu $24, $24, 2 */ |
| }; |
| |
| /* The format of the first PLT entry in an N32 executable using compact |
| jumps. Different because gp ($28) is not available; we use t2 ($14) |
| instead. */ |
| static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] = |
| { |
| 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ |
| 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */ |
| 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ |
| 0x030ec023, /* subu $24, $24, $14 */ |
| 0x03e07821, /* move $15, $31 # 32-bit move (addu) */ |
| 0x0018c082, /* srl $24, $24, 2 */ |
| 0x2718fffe, /* subu $24, $24, 2 */ |
| 0xf8190000 /* jalrc $25 */ |
| }; |
| |
| /* The format of the first PLT entry in an N64 executable. Different |
| from N32 because of the increased size of GOT entries. */ |
| static const bfd_vma mips_n64_exec_plt0_entry[] = |
| { |
| 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ |
| 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */ |
| 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ |
| 0x030ec023, /* subu $24, $24, $14 */ |
| 0x03e07825, /* or t7, ra, zero */ |
| 0x0018c0c2, /* srl $24, $24, 3 */ |
| 0x0320f809, /* jalr $25 */ |
| 0x2718fffe /* subu $24, $24, 2 */ |
| }; |
| |
| /* The format of the first PLT entry in an N64 executable using compact |
| jumps. Different from N32 because of the increased size of GOT |
| entries. */ |
| static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] = |
| { |
| 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ |
| 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */ |
| 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ |
| 0x030ec023, /* subu $24, $24, $14 */ |
| 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */ |
| 0x0018c0c2, /* srl $24, $24, 3 */ |
| 0x2718fffe, /* subu $24, $24, 2 */ |
| 0xf8190000 /* jalrc $25 */ |
| }; |
| |
| |
| /* The format of the microMIPS first PLT entry in an O32 executable. |
| We rely on v0 ($2) rather than t8 ($24) to contain the address |
| of the GOTPLT entry handled, so this stub may only be used when |
| all the subsequent PLT entries are microMIPS code too. |
| |
| The trailing NOP is for alignment and correct disassembly only. */ |
| static const bfd_vma micromips_o32_exec_plt0_entry[] = |
| { |
| 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */ |
| 0xff23, 0x0000, /* lw $25, 0($3) */ |
| 0x0535, /* subu $2, $2, $3 */ |
| 0x2525, /* srl $2, $2, 2 */ |
| 0x3302, 0xfffe, /* subu $24, $2, 2 */ |
| 0x0dff, /* move $15, $31 */ |
| 0x45f9, /* jalrs $25 */ |
| 0x0f83, /* move $28, $3 */ |
| 0x0c00 /* nop */ |
| }; |
| |
| /* The format of the microMIPS first PLT entry in an O32 executable |
| in the insn32 mode. */ |
| static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] = |
| { |
| 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */ |
| 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */ |
| 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ |
| 0x0398, 0xc1d0, /* subu $24, $24, $28 */ |
| 0x001f, 0x7a90, /* or $15, $31, zero */ |
| 0x0318, 0x1040, /* srl $24, $24, 2 */ |
| 0x03f9, 0x0f3c, /* jalr $25 */ |
| 0x3318, 0xfffe /* subu $24, $24, 2 */ |
| }; |
| |
| /* The format of subsequent standard PLT entries. */ |
| static const bfd_vma mips_exec_plt_entry[] = |
| { |
| 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ |
| 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ |
| 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ |
| 0x03200008 /* jr $25 */ |
| }; |
| |
| static const bfd_vma mipsr6_exec_plt_entry[] = |
| { |
| 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ |
| 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ |
| 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ |
| 0x03200009 /* jr $25 */ |
| }; |
| |
| static const bfd_vma mipsr6_exec_plt_entry_compact[] = |
| { |
| 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ |
| 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ |
| 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ |
| 0xd8190000 /* jic $25, 0 */ |
| }; |
| |
| /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2) |
| and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not |
| directly addressable. */ |
| static const bfd_vma mips16_o32_exec_plt_entry[] = |
| { |
| 0xb203, /* lw $2, 12($pc) */ |
| 0x9a60, /* lw $3, 0($2) */ |
| 0x651a, /* move $24, $2 */ |
| 0xeb00, /* jr $3 */ |
| 0x653b, /* move $25, $3 */ |
| 0x6500, /* nop */ |
| 0x0000, 0x0000 /* .word (.got.plt entry) */ |
| }; |
| |
| /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2) |
| as a temporary because t8 ($24) is not addressable with ADDIUPC. */ |
| static const bfd_vma micromips_o32_exec_plt_entry[] = |
| { |
| 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */ |
| 0xff22, 0x0000, /* lw $25, 0($2) */ |
| 0x4599, /* jr $25 */ |
| 0x0f02 /* move $24, $2 */ |
| }; |
| |
| /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */ |
| static const bfd_vma micromips_insn32_o32_exec_plt_entry[] = |
| { |
| 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */ |
| 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */ |
| 0x0019, 0x0f3c, /* jr $25 */ |
| 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */ |
| }; |
| |
| /* The format of the first PLT entry in a VxWorks executable. */ |
| static const bfd_vma mips_vxworks_exec_plt0_entry[] = |
| { |
| 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */ |
| 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */ |
| 0x8f390008, /* lw t9, 8(t9) */ |
| 0x00000000, /* nop */ |
| 0x03200008, /* jr t9 */ |
| 0x00000000 /* nop */ |
| }; |
| |
| /* The format of subsequent PLT entries. */ |
| static const bfd_vma mips_vxworks_exec_plt_entry[] = |
| { |
| 0x10000000, /* b .PLT_resolver */ |
| 0x24180000, /* li t8, <pltindex> */ |
| 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */ |
| 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */ |
| 0x8f390000, /* lw t9, 0(t9) */ |
| 0x00000000, /* nop */ |
| 0x03200008, /* jr t9 */ |
| 0x00000000 /* nop */ |
| }; |
| |
| /* The format of the first PLT entry in a VxWorks shared object. */ |
| static const bfd_vma mips_vxworks_shared_plt0_entry[] = |
| { |
| 0x8f990008, /* lw t9, 8(gp) */ |
| 0x00000000, /* nop */ |
| 0x03200008, /* jr t9 */ |
| 0x00000000, /* nop */ |
| 0x00000000, /* nop */ |
| 0x00000000 /* nop */ |
| }; |
| |
| /* The format of subsequent PLT entries. */ |
| static const bfd_vma mips_vxworks_shared_plt_entry[] = |
| { |
| 0x10000000, /* b .PLT_resolver */ |
| 0x24180000 /* li t8, <pltindex> */ |
| }; |
| |
| /* microMIPS 32-bit opcode helper installer. */ |
| |
| static void |
| bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr) |
| { |
| bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr); |
| bfd_put_16 (abfd, opcode & 0xffff, ptr + 2); |
| } |
| |
| /* microMIPS 32-bit opcode helper retriever. */ |
| |
| static bfd_vma |
| bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr) |
| { |
| return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2); |
| } |
| |
| /* Look up an entry in a MIPS ELF linker hash table. */ |
| |
| #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ |
| ((struct mips_elf_link_hash_entry *) \ |
| elf_link_hash_lookup (&(table)->root, (string), (create), \ |
| (copy), (follow))) |
| |
| /* Traverse a MIPS ELF linker hash table. */ |
| |
| #define mips_elf_link_hash_traverse(table, func, info) \ |
| (elf_link_hash_traverse \ |
| (&(table)->root, \ |
| (bool (*) (struct elf_link_hash_entry *, void *)) (func), \ |
| (info))) |
| |
| /* Find the base offsets for thread-local storage in this object, |
| for GD/LD and IE/LE respectively. */ |
| |
| #define TP_OFFSET 0x7000 |
| #define DTP_OFFSET 0x8000 |
| |
| static bfd_vma |
| dtprel_base (struct bfd_link_info *info) |
| { |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (elf_hash_table (info)->tls_sec == NULL) |
| return 0; |
| return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; |
| } |
| |
| static bfd_vma |
| tprel_base (struct bfd_link_info *info) |
| { |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (elf_hash_table (info)->tls_sec == NULL) |
| return 0; |
| return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; |
| } |
| |
| /* Create an entry in a MIPS ELF linker hash table. */ |
| |
| static struct bfd_hash_entry * |
| mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, const char *string) |
| { |
| struct mips_elf_link_hash_entry *ret = |
| (struct mips_elf_link_hash_entry *) entry; |
| |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (ret == NULL) |
| ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); |
| if (ret == NULL) |
| return (struct bfd_hash_entry *) ret; |
| |
| /* Call the allocation method of the superclass. */ |
| ret = ((struct mips_elf_link_hash_entry *) |
| _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, |
| table, string)); |
| if (ret != NULL) |
| { |
| /* Set local fields. */ |
| memset (&ret->esym, 0, sizeof (EXTR)); |
| /* We use -2 as a marker to indicate that the information has |
| not been set. -1 means there is no associated ifd. */ |
| ret->esym.ifd = -2; |
| ret->la25_stub = 0; |
| ret->possibly_dynamic_relocs = 0; |
| ret->fn_stub = NULL; |
| ret->call_stub = NULL; |
| ret->call_fp_stub = NULL; |
| ret->mipsxhash_loc = 0; |
| ret->global_got_area = GGA_NONE; |
| ret->got_only_for_calls = true; |
| ret->readonly_reloc = false; |
| ret->has_static_relocs = false; |
| ret->no_fn_stub = false; |
| ret->need_fn_stub = false; |
| ret->has_nonpic_branches = false; |
| ret->needs_lazy_stub = false; |
| ret->use_plt_entry = false; |
| } |
| |
| return (struct bfd_hash_entry *) ret; |
| } |
| |
| /* Allocate MIPS ELF private object data. */ |
| |
| bool |
| _bfd_mips_elf_mkobject (bfd *abfd) |
| { |
| return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata), |
| MIPS_ELF_DATA); |
| } |
| |
| /* MIPS ELF uses a special find_nearest_line routine in order the |
| handle the ECOFF debugging information. */ |
| |
| struct mips_elf_find_line |
| { |
| struct ecoff_debug_info d; |
| struct ecoff_find_line i; |
| }; |
| |
| bool |
| _bfd_mips_elf_free_cached_info (bfd *abfd) |
| { |
| struct mips_elf_obj_tdata *tdata; |
| |
| if ((bfd_get_format (abfd) == bfd_object |
| || bfd_get_format (abfd) == bfd_core) |
| && (tdata = mips_elf_tdata (abfd)) != NULL) |
| { |
| BFD_ASSERT (tdata->root.object_id == MIPS_ELF_DATA); |
| while (tdata->mips_hi16_list != NULL) |
| { |
| struct mips_hi16 *hi = tdata->mips_hi16_list; |
| tdata->mips_hi16_list = hi->next; |
| free (hi); |
| } |
| if (tdata->find_line_info != NULL) |
| _bfd_ecoff_free_ecoff_debug_info (&tdata->find_line_info->d); |
| } |
| return _bfd_elf_free_cached_info (abfd); |
| } |
| |
| bool |
| _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) |
| { |
| if (!sec->used_by_bfd) |
| { |
| struct _mips_elf_section_data *sdata; |
| size_t amt = sizeof (*sdata); |
| |
| sdata = bfd_zalloc (abfd, amt); |
| if (sdata == NULL) |
| return false; |
| sec->used_by_bfd = sdata; |
| } |
| |
| return _bfd_elf_new_section_hook (abfd, sec); |
| } |
| |
| /* Read ECOFF debugging information from a .mdebug section into a |
| ecoff_debug_info structure. */ |
| |
| bool |
| _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, |
| struct ecoff_debug_info *debug) |
| { |
| HDRR *symhdr; |
| const struct ecoff_debug_swap *swap; |
| char *ext_hdr; |
| |
| swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
| memset (debug, 0, sizeof (*debug)); |
| |
| ext_hdr = bfd_malloc (swap->external_hdr_size); |
| if (ext_hdr == NULL && swap->external_hdr_size != 0) |
| goto error_return; |
| |
| if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, |
| swap->external_hdr_size)) |
| goto error_return; |
| |
| symhdr = &debug->symbolic_header; |
| (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); |
| free (ext_hdr); |
| ext_hdr = NULL; |
| |
| /* The symbolic header contains absolute file offsets and sizes to |
| read. */ |
| #define READ(ptr, offset, count, size) \ |
| do \ |
| { \ |
| size_t amt; \ |
| debug->ptr = NULL; \ |
| if (symhdr->count == 0) \ |
| break; \ |
| if (_bfd_mul_overflow (size, symhdr->count, &amt)) \ |
| { \ |
| bfd_set_error (bfd_error_file_too_big); \ |
| goto error_return; \ |
| } \ |
| if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0) \ |
| goto error_return; \ |
| debug->ptr = _bfd_malloc_and_read (abfd, amt + 1, amt); \ |
| if (debug->ptr == NULL) \ |
| goto error_return; \ |
| ((char *) debug->ptr)[amt] = 0; \ |
| } while (0) |
| |
| READ (line, cbLineOffset, cbLine, sizeof (unsigned char)); |
| READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size); |
| READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size); |
| READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size); |
| READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size); |
| READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext)); |
| READ (ss, cbSsOffset, issMax, sizeof (char)); |
| READ (ssext, cbSsExtOffset, issExtMax, sizeof (char)); |
| READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size); |
| READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size); |
| READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size); |
| #undef READ |
| |
| return true; |
| |
| error_return: |
| free (ext_hdr); |
| _bfd_ecoff_free_ecoff_debug_info (debug); |
| return false; |
| } |
| |
| /* Swap RPDR (runtime procedure table entry) for output. */ |
| |
| static void |
| ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) |
| { |
| H_PUT_S32 (abfd, in->adr, ex->p_adr); |
| H_PUT_32 (abfd, in->regmask, ex->p_regmask); |
| H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); |
| H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); |
| H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); |
| H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); |
| |
| H_PUT_16 (abfd, in->framereg, ex->p_framereg); |
| H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); |
| |
| H_PUT_32 (abfd, in->irpss, ex->p_irpss); |
| } |
| |
| /* Create a runtime procedure table from the .mdebug section. */ |
| |
| static bool |
| mips_elf_create_procedure_table (void *handle, bfd *abfd, |
| struct bfd_link_info *info, asection *s, |
| struct ecoff_debug_info *debug) |
| { |
| const struct ecoff_debug_swap *swap; |
| HDRR *hdr = &debug->symbolic_header; |
| RPDR *rpdr, *rp; |
| struct rpdr_ext *erp; |
| void *rtproc; |
| struct pdr_ext *epdr; |
| struct sym_ext *esym; |
| char *ss, **sv; |
| char *str; |
| bfd_size_type size; |
| bfd_size_type count; |
| unsigned long sindex; |
| unsigned long i; |
| PDR pdr; |
| SYMR sym; |
| const char *no_name_func = _("static procedure (no name)"); |
| |
| epdr = NULL; |
| rpdr = NULL; |
| esym = NULL; |
| ss = NULL; |
| sv = NULL; |
| |
| swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
| |
| sindex = strlen (no_name_func) + 1; |
| count = hdr->ipdMax; |
| if (count > 0) |
| { |
| size = swap->external_pdr_size; |
| |
| epdr = bfd_malloc (size * count); |
| if (epdr == NULL) |
| goto error_return; |
| |
| if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) |
| goto error_return; |
| |
| size = sizeof (RPDR); |
| rp = rpdr = bfd_malloc (size * count); |
| if (rpdr == NULL) |
| goto error_return; |
| |
| size = sizeof (char *); |
| sv = bfd_malloc (size * count); |
| if (sv == NULL) |
| goto error_return; |
| |
| count = hdr->isymMax; |
| size = swap->external_sym_size; |
| esym = bfd_malloc (size * count); |
| if (esym == NULL) |
| goto error_return; |
| |
| if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) |
| goto error_return; |
| |
| count = hdr->issMax; |
| ss = bfd_malloc (count); |
| if (ss == NULL) |
| goto error_return; |
| if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) |
| goto error_return; |
| |
| count = hdr->ipdMax; |
| for (i = 0; i < (unsigned long) count; i++, rp++) |
| { |
| (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); |
| (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); |
| rp->adr = sym.value; |
| rp->regmask = pdr.regmask; |
| rp->regoffset = pdr.regoffset; |
| rp->fregmask = pdr.fregmask; |
| rp->fregoffset = pdr.fregoffset; |
| rp->frameoffset = pdr.frameoffset; |
| rp->framereg = pdr.framereg; |
| rp->pcreg = pdr.pcreg; |
| rp->irpss = sindex; |
| sv[i] = ss + sym.iss; |
| sindex += strlen (sv[i]) + 1; |
| } |
| } |
| |
| size = sizeof (struct rpdr_ext) * (count + 2) + sindex; |
| size = BFD_ALIGN (size, 16); |
| rtproc = bfd_alloc (abfd, size); |
| if (rtproc == NULL) |
| { |
| mips_elf_hash_table (info)->procedure_count = 0; |
| goto error_return; |
| } |
| |
| mips_elf_hash_table (info)->procedure_count = count + 2; |
| |
| erp = rtproc; |
| memset (erp, 0, sizeof (struct rpdr_ext)); |
| erp++; |
| str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); |
| strcpy (str, no_name_func); |
| str += strlen (no_name_func) + 1; |
| for (i = 0; i < count; i++) |
| { |
| ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); |
| strcpy (str, sv[i]); |
| str += strlen (sv[i]) + 1; |
| } |
| H_PUT_S32 (abfd, -1, (erp + count)->p_adr); |
| |
| /* Set the size and contents of .rtproc section. */ |
| s->size = size; |
| s->contents = rtproc; |
| |
| /* Skip this section later on (I don't think this currently |
| matters, but someday it might). */ |
| s->map_head.link_order = NULL; |
| |
| free (epdr); |
| free (rpdr); |
| free (esym); |
| free (ss); |
| free (sv); |
| return true; |
| |
| error_return: |
| free (epdr); |
| free (rpdr); |
| free (esym); |
| free (ss); |
| free (sv); |
| return false; |
| } |
| |
| /* We're going to create a stub for H. Create a symbol for the stub's |
| value and size, to help make the disassembly easier to read. */ |
| |
| static bool |
| mips_elf_create_stub_symbol (struct bfd_link_info *info, |
| struct mips_elf_link_hash_entry *h, |
| const char *prefix, asection *s, bfd_vma value, |
| bfd_vma size) |
| { |
| bool micromips_p = ELF_ST_IS_MICROMIPS (h->root.other); |
| struct bfd_link_hash_entry *bh; |
| struct elf_link_hash_entry *elfh; |
| char *name; |
| bool res; |
| |
| if (micromips_p) |
| value |= 1; |
| |
| /* Create a new symbol. */ |
| name = concat (prefix, h->root.root.root.string, NULL); |
| bh = NULL; |
| res = _bfd_generic_link_add_one_symbol (info, s->owner, name, |
| BSF_LOCAL, s, value, NULL, |
| true, false, &bh); |
| free (name); |
| if (! res) |
| return false; |
| |
| /* Make it a local function. */ |
| elfh = (struct elf_link_hash_entry *) bh; |
| elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); |
| elfh->size = size; |
| elfh->forced_local = 1; |
| if (micromips_p) |
| elfh->other = ELF_ST_SET_MICROMIPS (elfh->other); |
| return true; |
| } |
| |
| /* We're about to redefine H. Create a symbol to represent H's |
| current value and size, to help make the disassembly easier |
| to read. */ |
| |
| static bool |
| mips_elf_create_shadow_symbol (struct bfd_link_info *info, |
| struct mips_elf_link_hash_entry *h, |
| const char *prefix) |
| { |
| struct bfd_link_hash_entry *bh; |
| struct elf_link_hash_entry *elfh; |
| char *name; |
| asection *s; |
| bfd_vma value; |
| bool res; |
| |
| /* Read the symbol's value. */ |
| BFD_ASSERT (h->root.root.type == bfd_link_hash_defined |
| || h->root.root.type == bfd_link_hash_defweak); |
| s = h->root.root.u.def.section; |
| value = h->root.root.u.def.value; |
| |
| /* Create a new symbol. */ |
| name = concat (prefix, h->root.root.root.string, NULL); |
| bh = NULL; |
| res = _bfd_generic_link_add_one_symbol (info, s->owner, name, |
| BSF_LOCAL, s, value, NULL, |
| true, false, &bh); |
| free (name); |
| if (! res) |
| return false; |
| |
| /* Make it local and copy the other attributes from H. */ |
| elfh = (struct elf_link_hash_entry *) bh; |
| elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type)); |
| elfh->other = h->root.other; |
| elfh->size = h->root.size; |
| elfh->forced_local = 1; |
| return true; |
| } |
| |
| /* Return TRUE if relocations in SECTION can refer directly to a MIPS16 |
| function rather than to a hard-float stub. */ |
| |
| static bool |
| section_allows_mips16_refs_p (asection *section) |
| { |
| const char *name; |
| |
| name = bfd_section_name (section); |
| return (FN_STUB_P (name) |
| || CALL_STUB_P (name) |
| || CALL_FP_STUB_P (name) |
| || strcmp (name, ".pdr") == 0); |
| } |
| |
| /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16 |
| stub section of some kind. Return the R_SYMNDX of the target |
| function, or 0 if we can't decide which function that is. */ |
| |
| static unsigned long |
| mips16_stub_symndx (const struct elf_backend_data *bed, |
| asection *sec ATTRIBUTE_UNUSED, |
| const Elf_Internal_Rela *relocs, |
| const Elf_Internal_Rela *relend) |
| { |
| int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel; |
| const Elf_Internal_Rela *rel; |
| |
| /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent |
| one in a compound relocation. */ |
| for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel) |
| if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE) |
| return ELF_R_SYM (sec->owner, rel->r_info); |
| |
| /* Otherwise trust the first relocation, whatever its kind. This is |
| the traditional behavior. */ |
| if (relocs < relend) |
| return ELF_R_SYM (sec->owner, relocs->r_info); |
| |
| return 0; |
| } |
| |
| /* Check the mips16 stubs for a particular symbol, and see if we can |
| discard them. */ |
| |
| static void |
| mips_elf_check_mips16_stubs (struct bfd_link_info *info, |
| struct mips_elf_link_hash_entry *h) |
| { |
| /* Dynamic symbols must use the standard call interface, in case other |
| objects try to call them. */ |
| if (h->fn_stub != NULL |
| && h->root.dynindx != -1) |
| { |
| mips_elf_create_shadow_symbol (info, h, ".mips16."); |
| h->need_fn_stub = true; |
| } |
| |
| if (h->fn_stub != NULL |
| && ! h->need_fn_stub) |
| { |
| /* We don't need the fn_stub; the only references to this symbol |
| are 16 bit calls. Clobber the size to 0 to prevent it from |
| being included in the link. */ |
| h->fn_stub->size = 0; |
| h->fn_stub->flags &= ~SEC_RELOC; |
| h->fn_stub->reloc_count = 0; |
| h->fn_stub->flags |= SEC_EXCLUDE; |
| h->fn_stub->output_section = bfd_abs_section_ptr; |
| } |
| |
| if (h->call_stub != NULL |
| && ELF_ST_IS_MIPS16 (h->root.other)) |
| { |
| /* We don't need the call_stub; this is a 16 bit function, so |
| calls from other 16 bit functions are OK. Clobber the size |
| to 0 to prevent it from being included in the link. */ |
| h->call_stub->size = 0; |
| h->call_stub->flags &= ~SEC_RELOC; |
| h->call_stub->reloc_count = 0; |
| h->call_stub->flags |= SEC_EXCLUDE; |
| h->call_stub->output_section = bfd_abs_section_ptr; |
| } |
| |
| if (h->call_fp_stub != NULL |
| && ELF_ST_IS_MIPS16 (h->root.other)) |
| { |
| /* We don't need the call_stub; this is a 16 bit function, so |
| calls from other 16 bit functions are OK. Clobber the size |
| to 0 to prevent it from being included in the link. */ |
| h->call_fp_stub->size = 0; |
| h->call_fp_stub->flags &= ~SEC_RELOC; |
| h->call_fp_stub->reloc_count = 0; |
| h->call_fp_stub->flags |= SEC_EXCLUDE; |
| h->call_fp_stub->output_section = bfd_abs_section_ptr; |
| } |
| } |
| |
| /* Hashtable callbacks for mips_elf_la25_stubs. */ |
| |
| static hashval_t |
| mips_elf_la25_stub_hash (const void *entry_) |
| { |
| const struct mips_elf_la25_stub *entry; |
| |
| entry = (struct mips_elf_la25_stub *) entry_; |
| return entry->h->root.root.u.def.section->id |
| + entry->h->root.root.u.def.value; |
| } |
| |
| static int |
| mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_) |
| { |
| const struct mips_elf_la25_stub *entry1, *entry2; |
| |
| entry1 = (struct mips_elf_la25_stub *) entry1_; |
| entry2 = (struct mips_elf_la25_stub *) entry2_; |
| return ((entry1->h->root.root.u.def.section |
| == entry2->h->root.root.u.def.section) |
| && (entry1->h->root.root.u.def.value |
| == entry2->h->root.root.u.def.value)); |
| } |
| |
| /* Called by the linker to set up the la25 stub-creation code. FN is |
| the linker's implementation of add_stub_function. Return true on |
| success. */ |
| |
| bool |
| _bfd_mips_elf_init_stubs (struct bfd_link_info *info, |
| asection *(*fn) (const char *, asection *, |
| asection *)) |
| { |
| struct mips_elf_link_hash_table *htab; |
| |
| htab = mips_elf_hash_table (info); |
| if (htab == NULL) |
| return false; |
| |
| htab->add_stub_section = fn; |
| htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash, |
| mips_elf_la25_stub_eq, NULL); |
| if (htab->la25_stubs == NULL) |
| return false; |
| |
| return true; |
| } |
| |
| /* Return true if H is a locally-defined PIC function, in the sense |
| that it or its fn_stub might need $25 to be valid on entry. |
| Note that MIPS16 functions set up $gp using PC-relative instructions, |
| so they themselves never need $25 to be valid. Only non-MIPS16 |
| entry points are of interest here. */ |
| |
| static bool |
| mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h) |
| { |
| return ((h->root.root.type == bfd_link_hash_defined |
| || h->root.root.type == bfd_link_hash_defweak) |
| && h->root.def_regular |
| && !bfd_is_abs_section (h->root.root.u.def.section) |
| && !bfd_is_und_section (h->root.root.u.def.section) |
| && (!ELF_ST_IS_MIPS16 (h->root.other) |
| || (h->fn_stub && h->need_fn_stub)) |
| && (PIC_OBJECT_P (h->root.root.u.def.section->owner) |
| || ELF_ST_IS_MIPS_PIC (h->root.other))); |
| } |
| |
| /* Set *SEC to the input section that contains the target of STUB. |
| Return the offset of the target from the start of that section. */ |
| |
| static bfd_vma |
| mips_elf_get_la25_target (struct mips_elf_la25_stub *stub, |
| asection **sec) |
| { |
| if (ELF_ST_IS_MIPS16 (stub->h->root.other)) |
| { |
| BFD_ASSERT (stub->h->need_fn_stub); |
| *sec = stub->h->fn_stub; |
| return 0; |
| } |
| else |
| { |
| *sec = stub->h->root.root.u.def.section; |
| return stub->h->root.root.u.def.value; |
| } |
| } |
| |
| /* STUB describes an la25 stub that we have decided to implement |
| by inserting an LUI/ADDIU pair before the target function. |
| Create the section and redirect the function symbol to it. */ |
| |
| static bool |
| mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub, |
| struct bfd_link_info *info) |
| { |
| struct mips_elf_link_hash_table *htab; |
| char *name; |
| asection *s, *input_section; |
| unsigned int align; |
| |
| htab = mips_elf_hash_table (info); |
| if (htab == NULL) |
| return false; |
| |
| /* Create a unique name for the new section. */ |
| name = bfd_malloc (11 + sizeof (".text.stub.")); |
| if (name == NULL) |
| return false; |
| sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs)); |
| |
| /* Create the section. */ |
| mips_elf_get_la25_target (stub, &input_section); |
| s = htab->add_stub_section (name, input_section, |
| input_section->output_section); |
| if (s == NULL) |
| return false; |
| |
| /* Make sure that any padding goes before the stub. */ |
| align = input_section->alignment_power; |
| if (!bfd_set_section_alignment (s, align)) |
| return false; |
| if (align > 3) |
| s->size = (1 << align) - 8; |
| |
| /* Create a symbol for the stub. */ |
| mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8); |
| stub->stub_section = s; |
| stub->offset = s->size; |
| |
| /* Allocate room for it. */ |
| s->size += 8; |
| return true; |
| } |
| |
| /* STUB describes an la25 stub that we have decided to implement |
| with a separate trampoline. Allocate room for it and redirect |
| the function symbol to it. */ |
| |
| static bool |
| mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub, |
| struct bfd_link_info *info) |
| { |
| struct mips_elf_link_hash_table *htab; |
| asection *s; |
| |
| htab = mips_elf_hash_table (info); |
| if (htab == NULL) |
| return false; |
| |
| /* Create a trampoline section, if we haven't already. */ |
| s = htab->strampoline; |
| if (s == NULL) |
| { |
| asection *input_section = stub->h->root.root.u.def.section; |
| s = htab->add_stub_section (".text", NULL, |
| input_section->output_section); |
| if (s == NULL || !bfd_set_section_alignment (s, 4)) |
| return false; |
| htab->strampoline = s; |
| } |
| |
| /* Create a symbol for the stub. */ |
| mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16); |
| stub->stub_section = s; |
| stub->offset = s->size; |
| |
| /* Allocate room for it. */ |
| s->size += 16; |
| return true; |
| } |
| |
| /* H describes a symbol that needs an la25 stub. Make sure that an |
| appropriate stub exists and point H at it. */ |
| |
| static bool |
| mips_elf_add_la25_stub (struct bfd_link_info *info, |
| struct mips_elf_link_hash_entry *h) |
| { |
| struct mips_elf_link_hash_table *htab; |
| struct mips_elf_la25_stub search, *stub; |
| bool use_trampoline_p; |
| asection *s; |
| bfd_vma value; |
| void **slot; |
| |
| /* Describe the stub we want. */ |
| search.stub_section = NULL; |
| search.offset = 0; |
| search.h = h; |
| |
| /* See if we've already created an equivalent stub. */ |
| htab = mips_elf_hash_table (info); |
| if (htab == NULL) |
| return false; |
| |
| slot = htab_find_slot (htab->la25_stubs, &search, INSERT); |
| if (slot == NULL) |
| return false; |
| |
| stub = (struct mips_elf_la25_stub *) *slot; |
| if (stub != NULL) |
| { |
| /* We can reuse the existing stub. */ |
| h->la25_stub = stub; |
| return true; |
| } |
| |
| /* Create a permanent copy of ENTRY and add it to the hash table. */ |
| stub = bfd_malloc (sizeof (search)); |
| if (stub == NULL) |
| return false; |
| *stub = search; |
| *slot = stub; |
| |
| /* Prefer to use LUI/ADDIU stubs if the function is at the beginning |
| of the section and if we would need no more than 2 nops. */ |
| value = mips_elf_get_la25_target (stub, &s); |
| if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) |
| value &= ~1; |
| use_trampoline_p = (value != 0 || s->alignment_power > 4); |
| |
| h->la25_stub = stub; |
| return (use_trampoline_p |
| ? mips_elf_add_la25_trampoline (stub, info) |
| : mips_elf_add_la25_intro (stub, info)); |
| } |
| |
| /* A mips_elf_link_hash_traverse callback that is called before sizing |
| sections. DATA points to a mips_htab_traverse_info structure. */ |
| |
| static bool |
| mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data) |
| { |
| struct mips_htab_traverse_info *hti; |
| |
| hti = (struct mips_htab_traverse_info *) data; |
| if (!bfd_link_relocatable (hti->info)) |
| mips_elf_check_mips16_stubs (hti->info, h); |
| |
| if (mips_elf_local_pic_function_p (h)) |
| { |
| /* PR 12845: If H is in a section that has been garbage |
| collected it will have its output section set to *ABS*. */ |
| if (bfd_is_abs_section (h->root.root.u.def.section->output_section)) |
| return true; |
| |
| /* H is a function that might need $25 to be valid on entry. |
| If we're creating a non-PIC relocatable object, mark H as |
| being PIC. If we're creating a non-relocatable object with |
| non-PIC branches and jumps to H, make sure that H has an la25 |
| stub. */ |
| if (bfd_link_relocatable (hti->info)) |
| { |
| if (!PIC_OBJECT_P (hti->output_bfd)) |
| h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other); |
| } |
| else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h)) |
| { |
| hti->error = true; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. |
| Most mips16 instructions are 16 bits, but these instructions |
| are 32 bits. |
| |
| The format of these instructions is: |
| |
| +--------------+--------------------------------+ |
| | JALX | X| Imm 20:16 | Imm 25:21 | |
| +--------------+--------------------------------+ |
| | Immediate 15:0 | |
| +-----------------------------------------------+ |
| |
| JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. |
| Note that the immediate value in the first word is swapped. |
| |
| When producing a relocatable object file, R_MIPS16_26 is |
| handled mostly like R_MIPS_26. In particular, the addend is |
| stored as a straight 26-bit value in a 32-bit instruction. |
| (gas makes life simpler for itself by never adjusting a |
| R_MIPS16_26 reloc to be against a section, so the addend is |
| always zero). However, the 32 bit instruction is stored as 2 |
| 16-bit values, rather than a single 32-bit value. In a |
| big-endian file, the result is the same; in a little-endian |
| file, the two 16-bit halves of the 32 bit value are swapped. |
| This is so that a disassembler can recognize the jal |
| instruction. |
| |
| When doing a final link, R_MIPS16_26 is treated as a 32 bit |
| instruction stored as two 16-bit values. The addend A is the |
| contents of the targ26 field. The calculation is the same as |
| R_MIPS_26. When storing the calculated value, reorder the |
| immediate value as shown above, and don't forget to store the |
| value as two 16-bit values. |
| |
| To put it in MIPS ABI terms, the relocation field is T-targ26-16, |
| defined as |
| |
| big-endian: |
| +--------+----------------------+ |
| | | | |
| | | targ26-16 | |
| |31 26|25 0| |
| +--------+----------------------+ |
| |
| little-endian: |
| +----------+------+-------------+ |
| | | | | |
| | sub1 | | sub2 | |
| |0 9|10 15|16 31| |
| +----------+--------------------+ |
| where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is |
| ((sub1 << 16) | sub2)). |
| |
| When producing a relocatable object file, the calculation is |
| (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) |
| When producing a fully linked file, the calculation is |
| let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) |
| ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) |
| |
| The table below lists the other MIPS16 instruction relocations. |
| Each one is calculated in the same way as the non-MIPS16 relocation |
| given on the right, but using the extended MIPS16 layout of 16-bit |
| immediate fields: |
| |
| R_MIPS16_GPREL R_MIPS_GPREL16 |
| R_MIPS16_GOT16 R_MIPS_GOT16 |
| R_MIPS16_CALL16 R_MIPS_CALL16 |
| R_MIPS16_HI16 R_MIPS_HI16 |
| R_MIPS16_LO16 R_MIPS_LO16 |
| |
| A typical instruction will have a format like this: |
| |
| +--------------+--------------------------------+ |
| | EXTEND | Imm 10:5 | Imm 15:11 | |
| +--------------+--------------------------------+ |
| | Major | rx | ry | Imm 4:0 | |
| +--------------+--------------------------------+ |
| |
| EXTEND is the five bit value 11110. Major is the instruction |
| opcode. |
| |
| All we need to do here is shuffle the bits appropriately. |
| As above, the two 16-bit halves must be swapped on a |
| little-endian system. |
| |
| Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the |
| relocatable field is shifted by 1 rather than 2 and the same bit |
| shuffling is done as with the relocations above. */ |
| |
| static inline bool |
| mips16_reloc_p (int r_type) |
| { |
| switch (r_type) |
| { |
| case R_MIPS16_26: |
| case R_MIPS16_GPREL: |
| case R_MIPS16_GOT16: |
| case R_MIPS16_CALL16: |
| case R_MIPS16_HI16: |
| case R_MIPS16_LO16: |
| case R_MIPS16_TLS_GD: |
| case R_MIPS16_TLS_LDM: |
| case R_MIPS16_TLS_DTPREL_HI16: |
| case R_MIPS16_TLS_DTPREL_LO16: |
| case R_MIPS16_TLS_GOTTPREL: |
| case R_MIPS16_TLS_TPREL_HI16: |
| case R_MIPS16_TLS_TPREL_LO16: |
| case R_MIPS16_PC16_S1: |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| /* Check if a microMIPS reloc. */ |
| |
| static inline bool |
| micromips_reloc_p (unsigned int r_type) |
| { |
| return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max; |
| } |
| |
| /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped |
| on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1, |
| R_MICROMIPS_PC10_S1 and R_MICROMIPS_GPREL7_S2 relocs that apply to |
| 16-bit instructions. */ |
| |
| static inline bool |
| micromips_reloc_shuffle_p (unsigned int r_type) |
| { |
| return (micromips_reloc_p (r_type) |
| && r_type != R_MICROMIPS_PC7_S1 |
| && r_type != R_MICROMIPS_PC10_S1 |
| && r_type != R_MICROMIPS_GPREL7_S2); |
| } |
| |
| static inline bool |
| got16_reloc_p (int r_type) |
| { |
| return (r_type == R_MIPS_GOT16 |
| || r_type == R_MIPS16_GOT16 |
| || r_type == R_MICROMIPS_GOT16); |
| } |
| |
| static inline bool |
| call16_reloc_p (int r_type) |
| { |
| return (r_type == R_MIPS_CALL16 |
| || r_type == R_MIPS16_CALL16 |
| || r_type == R_MICROMIPS_CALL16); |
| } |
| |
| static inline bool |
| got_disp_reloc_p (unsigned int r_type) |
| { |
| return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP; |
| } |
| |
| static inline bool |
| got_page_reloc_p (unsigned int r_type) |
| { |
| return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE; |
| } |
| |
| static inline bool |
| got_lo16_reloc_p (unsigned int r_type) |
| { |
| return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16; |
| } |
| |
| static inline bool |
| call_hi16_reloc_p (unsigned int r_type) |
| { |
| return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16; |
| } |
| |
| static inline bool |
| call_lo16_reloc_p (unsigned int r_type) |
| { |
| return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16; |
| } |
| |
| static inline bool |
| hi16_reloc_p (int r_type) |
| { |
| return (r_type == R_MIPS_HI16 |
| || r_type == R_MIPS16_HI16 |
| || r_type == R_MICROMIPS_HI16 |
| || r_type == R_MIPS_PCHI16); |
| } |
| |
| static inline bool |
| lo16_reloc_p (int r_type) |
| { |
| return (r_type == R_MIPS_LO16 |
| || r_type == R_MIPS16_LO16 |
| || r_type == R_MICROMIPS_LO16 |
| || r_type == R_MIPS_PCLO16); |
| } |
| |
| static inline bool |
| mips16_call_reloc_p (int r_type) |
| { |
| return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16; |
| } |
| |
| static inline bool |
| jal_reloc_p (int r_type) |
| { |
| return (r_type == R_MIPS_26 |
| || r_type == R_MIPS16_26 |
| || r_type == R_MICROMIPS_26_S1); |
| } |
| |
| static inline bool |
| b_reloc_p (int r_type) |
| { |
| return (r_type == R_MIPS_PC26_S2 |
| || r_type == R_MIPS_PC21_S2 |
| || r_type == R_MIPS_PC16 |
| || r_type == R_MIPS_GNU_REL16_S2 |
| || r_type == R_MIPS16_PC16_S1 |
| || r_type == R_MICROMIPS_PC16_S1 |
| || r_type == R_MICROMIPS_PC10_S1 |
| || r_type == R_MICROMIPS_PC7_S1); |
| } |
| |
| static inline bool |
| aligned_pcrel_reloc_p (int r_type) |
| { |
| return (r_type == R_MIPS_PC18_S3 |
| || r_type == R_MIPS_PC19_S2); |
| } |
| |
| static inline bool |
| branch_reloc_p (int r_type) |
| { |
| return (r_type == R_MIPS_26 |
| || r_type == R_MIPS_PC26_S2 |
| || r_type == R_MIPS_PC21_S2 |
| || r_type == R_MIPS_PC16 |
| || r_type == R_MIPS_GNU_REL16_S2); |
| } |
| |
| static inline bool |
| mips16_branch_reloc_p (int r_type) |
| { |
| return (r_type == R_MIPS16_26 |
| || r_type == R_MIPS16_PC16_S1); |
| } |
| |
| static inline bool |
| micromips_branch_reloc_p (int r_type) |
| { |
| return (r_type == R_MICROMIPS_26_S1 |
| || r_type == R_MICROMIPS_PC16_S1 |
| || r_type == R_MICROMIPS_PC10_S1 |
| || r_type == R_MICROMIPS_PC7_S1); |
| } |
| |
| static inline bool |
| tls_gd_reloc_p (unsigned int r_type) |
| { |
| return (r_type == R_MIPS_TLS_GD |
| || r_type == R_MIPS16_TLS_GD |
| || r_type == R_MICROMIPS_TLS_GD); |
| } |
| |
| static inline bool |
| tls_ldm_reloc_p (unsigned int r_type) |
| { |
| return (r_type == R_MIPS_TLS_LDM |
| || r_type == R_MIPS16_TLS_LDM |
| || r_type == R_MICROMIPS_TLS_LDM); |
| } |
| |
| static inline bool |
| tls_gottprel_reloc_p (unsigned int r_type) |
| { |
| return (r_type == R_MIPS_TLS_GOTTPREL |
| || r_type == R_MIPS16_TLS_GOTTPREL |
| || r_type == R_MICROMIPS_TLS_GOTTPREL); |
| } |
| |
| static inline bool |
| needs_shuffle (int r_type) |
| { |
| return mips16_reloc_p (r_type) || micromips_reloc_shuffle_p (r_type); |
| } |
| |
| void |
| _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type, |
| bool jal_shuffle, bfd_byte *data) |
| { |
| bfd_vma first, second, val; |
| |
| if (!needs_shuffle (r_type)) |
| return; |
| |
| /* Pick up the first and second halfwords of the instruction. */ |
| first = bfd_get_16 (abfd, data); |
| second = bfd_get_16 (abfd, data + 2); |
| if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) |
| val = first << 16 | second; |
| else if (r_type != R_MIPS16_26) |
| val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11) |
| | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f)); |
| else |
| val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11) |
| | ((first & 0x1f) << 21) | second); |
| bfd_put_32 (abfd, val, data); |
| } |
| |
| void |
| _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type, |
| bool jal_shuffle, bfd_byte *data) |
| { |
| bfd_vma first, second, val; |
| |
| if (!needs_shuffle (r_type)) |
| return; |
| |
| val = bfd_get_32 (abfd, data); |
| if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) |
| { |
| second = val & 0xffff; |
| first = val >> 16; |
| } |
| else if (r_type != R_MIPS16_26) |
| { |
| second = ((val >> 11) & 0xffe0) | (val & 0x1f); |
| first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); |
| } |
| else |
| { |
| second = val & 0xffff; |
| first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) |
| | ((val >> 21) & 0x1f); |
| } |
| bfd_put_16 (abfd, second, data + 2); |
| bfd_put_16 (abfd, first, data); |
| } |
| |
| /* Perform reloc offset checking. |
| We can only use bfd_reloc_offset_in_range, which takes into account |
| the size of the field being relocated, when section contents will |
| be accessed because mips object files may use relocations that seem |
| to access beyond section limits. |
| gas/testsuite/gas/mips/dla-reloc.s is an example that puts |
| R_MIPS_SUB, a 64-bit relocation, on the last instruction in the |
| section. The R_MIPS_SUB applies to the addend for the next reloc |
| rather than the section contents. |
| |
| CHECK is CHECK_STD for the standard bfd_reloc_offset_in_range check, |
| CHECK_INPLACE to only check partial_inplace relocs, and |
| CHECK_SHUFFLE to only check relocs that shuffle/unshuffle. */ |
| |
| bool |
| _bfd_mips_reloc_offset_in_range (bfd *abfd, asection *input_section, |
| arelent *reloc_entry, enum reloc_check check) |
| { |
| if (check == check_inplace && !reloc_entry->howto->partial_inplace) |
| return true; |
| if (check == check_shuffle && !needs_shuffle (reloc_entry->howto->type)) |
| return true; |
| return bfd_reloc_offset_in_range (reloc_entry->howto, abfd, |
| input_section, reloc_entry->address); |
| } |
| |
| bfd_reloc_status_type |
| _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, |
| arelent *reloc_entry, asection *input_section, |
| bool relocatable, void *data, bfd_vma gp) |
| { |
| bfd_vma relocation; |
| bfd_signed_vma val; |
| bfd_reloc_status_type status; |
| |
| if (bfd_is_com_section (symbol->section)) |
| relocation = 0; |
| else |
| relocation = symbol->value; |
| |
| if (symbol->section->output_section != NULL) |
| { |
| relocation += symbol->section->output_section->vma; |
| relocation += symbol->section->output_offset; |
| } |
| |
| /* Set val to the offset into the section or symbol. */ |
| val = reloc_entry->addend; |
| |
| _bfd_mips_elf_sign_extend (val, 16); |
| |
| /* Adjust val for the final section location and GP value. If we |
| are producing relocatable output, we don't want to do this for |
| an external symbol. */ |
| if (! relocatable |
| || (symbol->flags & BSF_SECTION_SYM) != 0) |
| val += relocation - gp; |
| |
| if (reloc_entry->howto->partial_inplace) |
| { |
| if (!bfd_reloc_offset_in_range (reloc_entry->howto, abfd, input_section, |
| reloc_entry->address)) |
| return bfd_reloc_outofrange; |
| |
| status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
| (bfd_byte *) data |
| + reloc_entry->address); |
| if (status != bfd_reloc_ok) |
| return status; |
| } |
| else |
| reloc_entry->addend = val; |
| |
| if (relocatable) |
| reloc_entry->address += input_section->output_offset; |
| |
| return bfd_reloc_ok; |
| } |
| |
| /* A howto special_function for REL *HI16 relocations. We can only |
| calculate the correct value once we've seen the partnering |
| *LO16 relocation, so just save the information for later. |
| |
| The ABI requires that the *LO16 immediately follow the *HI16. |
| However, as a GNU extension, we permit an arbitrary number of |
| *HI16s to be associated with a single *LO16. This significantly |
| simplies the relocation handling in gcc. */ |
| |
| bfd_reloc_status_type |
| _bfd_mips_elf_hi16_reloc (bfd *abfd, arelent *reloc_entry, |
| asymbol *symbol ATTRIBUTE_UNUSED, void *data, |
| asection *input_section, bfd *output_bfd, |
| char **error_message ATTRIBUTE_UNUSED) |
| { |
| struct mips_hi16 *n; |
| struct mips_elf_obj_tdata *tdata; |
| |
| if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
| return bfd_reloc_outofrange; |
| |
| n = bfd_malloc (sizeof *n); |
| if (n == NULL) |
| return bfd_reloc_outofrange; |
| |
| tdata = mips_elf_tdata (abfd); |
| n->next = tdata->mips_hi16_list; |
| n->data = data; |
| n->input_section = input_section; |
| n->rel = *reloc_entry; |
| tdata->mips_hi16_list = n; |
| |
| if (output_bfd != NULL) |
| reloc_entry->address += input_section->output_offset; |
| |
| return bfd_reloc_ok; |
| } |
| |
| /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just |
| like any other 16-bit relocation when applied to global symbols, but is |
| treated in the same as R_MIPS_HI16 when applied to local symbols. */ |
| |
| bfd_reloc_status_type |
| _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, |
| void *data, asection *input_section, |
| bfd *output_bfd, char **error_message) |
| { |
| if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 |
| || bfd_is_und_section (bfd_asymbol_section (symbol)) |
| || bfd_is_com_section (bfd_asymbol_section (symbol))) |
| /* The relocation is against a global symbol. */ |
| return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, |
| input_section, output_bfd, |
| error_message); |
| |
| return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, |
| input_section, output_bfd, error_message); |
| } |
| |
| /* A howto special_function for REL *LO16 relocations. The *LO16 itself |
| is a straightforward 16 bit inplace relocation, but we must deal with |
| any partnering high-part relocations as well. */ |
| |
| bfd_reloc_status_type |
| _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, |
| void *data, asection *input_section, |
| bfd *output_bfd, char **error_message) |
| { |
| bfd_vma vallo; |
| bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
| struct mips_elf_obj_tdata *tdata; |
| |
| if (!bfd_reloc_offset_in_range (reloc_entry->howto, abfd, input_section, |
| reloc_entry->address)) |
| return bfd_reloc_outofrange; |
| |
| _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false, |
| location); |
| /* The high 16 bits of the addend are stored in the high insn, the |
| low 16 bits in the low insn, but there is a catch: You can't |
| just concatenate the high and low parts. The high part of the |
| addend is adjusted for the fact that the low part is sign |
| extended. For example, an addend of 0x38000 would have 0x0004 in |
| the high part and 0x8000 (=0xff..f8000) in the low part. |
| To extract the actual addend, calculate (a) |
| ((hi & 0xffff) << 16) + ((lo & 0xffff) ^ 0x8000) - 0x8000. |
| We will be applying (symbol + addend) & 0xffff to the low insn, |
| and we want to apply (b) (symbol + addend + 0x8000) >> 16 to the |
| high insn (the +0x8000 adjusting for when the applied low part is |
| negative). Substituting (a) into (b) and recognising that |
| (hi & 0xffff) is already in the high insn gives a high part |
| addend adjustment of (lo & 0xffff) ^ 0x8000. */ |
| vallo = (bfd_get_32 (abfd, location) & 0xffff) ^ 0x8000; |
| _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false, |
| location); |
| |
| tdata = mips_elf_tdata (abfd); |
| while (tdata->mips_hi16_list != NULL) |
| { |
| bfd_reloc_status_type ret; |
| struct mips_hi16 *hi; |
| |
| hi = tdata->mips_hi16_list; |
| |
| /* R_MIPS*_GOT16 relocations are something of a special case. We |
| want to install the addend in the same way as for a R_MIPS*_HI16 |
| relocation (with a rightshift of 16). However, since GOT16 |
| relocations can also be used with global symbols, their howto |
| has a rightshift of 0. */ |
| if (hi->rel.howto->type == R_MIPS_GOT16) |
| hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, false); |
| else if (hi->rel.howto->type == R_MIPS16_GOT16) |
| hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, false); |
| else if (hi->rel.howto->type == R_MICROMIPS_GOT16) |
| hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, false); |
| |
| hi->rel.addend += vallo; |
| |
| ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, |
| hi->input_section, output_bfd, |
| error_message); |
| if (ret != bfd_reloc_ok) |
| return ret; |
| |
| tdata->mips_hi16_list = hi->next; |
| free (hi); |
| } |
| |
| return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, |
| input_section, output_bfd, |
| error_message); |
| } |
| |
| /* A generic howto special_function. This calculates and installs the |
| relocation itself, thus avoiding the oft-discussed problems in |
| bfd_perform_relocation and bfd_install_relocation. */ |
| |
| bfd_reloc_status_type |
| _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, |
| asymbol *symbol, void *data ATTRIBUTE_UNUSED, |
| asection *input_section, bfd *output_bfd, |
| char **error_message ATTRIBUTE_UNUSED) |
| { |
| bfd_signed_vma val; |
| bfd_reloc_status_type status; |
| bool relocatable; |
| |
| relocatable = (output_bfd != NULL); |
| |
| if (!_bfd_mips_reloc_offset_in_range (abfd, input_section, reloc_entry, |
| (relocatable |
| ? check_inplace : check_std))) |
| return bfd_reloc_outofrange; |
| |
| /* Build up the field adjustment in VAL. */ |
| val = 0; |
| if ((!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) |
| && symbol->section->output_section != NULL) |
| { |
| /* Either we're calculating the final field value or we have a |
| relocation against a section symbol. Add in the section's |
| offset or address. */ |
| val += symbol->section->output_section->vma; |
| val += symbol->section->output_offset; |
| } |
| |
| if (!relocatable) |
| { |
| /* We're calculating the final field value. Add in the symbol's value |
| and, if pc-relative, subtract the address of the field itself. */ |
| val += symbol->value; |
| if (reloc_entry->howto->pc_relative) |
| { |
| val -= input_section->output_section->vma; |
| val -= input_section->output_offset; |
| val -= reloc_entry->address; |
| } |
| } |
| |
| /* VAL is now the final adjustment. If we're keeping this relocation |
| in the output file, and if the relocation uses a separate addend, |
| we just need to add VAL to that addend. Otherwise we need to add |
| VAL to the relocation field itself. */ |
| if (relocatable && !reloc_entry->howto->partial_inplace) |
| reloc_entry->addend += val; |
| else |
| { |
| bfd_byte *location = (bfd_byte *) data + reloc_entry->address; |
| |
| /* Add in the separate addend, if any. */ |
| val += reloc_entry->addend; |
| |
| /* Add VAL to the relocation field. */ |
| _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false, |
| location); |
| status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, |
| location); |
| _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false, |
| location); |
| |
| if (status != bfd_reloc_ok) |
| return status; |
| } |
| |
| if (relocatable) |
| reloc_entry->address += input_section->output_offset; |
| |
| return bfd_reloc_ok; |
| } |
| |
| /* Swap an entry in a .gptab section. Note that these routines rely |
| on the equivalence of the two elements of the union. */ |
| |
| static void |
| bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, |
| Elf32_gptab *in) |
| { |
| in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); |
| in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); |
| } |
| |
| static void |
| bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, |
| Elf32_External_gptab *ex) |
| { |
| H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); |
| H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); |
| } |
| |
| static void |
| bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, |
| Elf32_External_compact_rel *ex) |
| { |
| H_PUT_32 (abfd, in->id1, ex->id1); |
| H_PUT_32 (abfd, in->num, ex->num); |
| H_PUT_32 (abfd, in->id2, ex->id2); |
| H_PUT_32 (abfd, in->offset, ex->offset); |
| H_PUT_32 (abfd, in->reserved0, ex->reserved0); |
| H_PUT_32 (abfd, in->reserved1, ex->reserved1); |
| } |
| |
| static void |
| bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, |
| Elf32_External_crinfo *ex) |
| { |
| unsigned long l; |
| |
| l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) |
| | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) |
| | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) |
| | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); |
| H_PUT_32 (abfd, l, ex->info); |
| H_PUT_32 (abfd, in->konst, ex->konst); |
| H_PUT_32 (abfd, in->vaddr, ex->vaddr); |
| } |
| |
| /* A .reginfo section holds a single Elf32_RegInfo structure. These |
| routines swap this structure in and out. They are used outside of |
| BFD, so they are globally visible. */ |
| |
| void |
| bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, |
| Elf32_RegInfo *in) |
| { |
| in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); |
| in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); |
| in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); |
| in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); |
| in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); |
| in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); |
| } |
| |
| void |
| bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, |
| Elf32_External_RegInfo *ex) |
| { |
| H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); |
| H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); |
| H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); |
| H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); |
| H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); |
| H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); |
| } |
| |
| /* In the 64 bit ABI, the .MIPS.options section holds register |
| information in an Elf64_Reginfo structure. These routines swap |
| them in and out. They are globally visible because they are used |
| outside of BFD. These routines are here so that gas can call them |
| without worrying about whether the 64 bit ABI has been included. */ |
| |
| void |
| bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, |
| Elf64_Internal_RegInfo *in) |
| { |
| in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); |
| in->ri_pad = H_GET_32 (abfd, ex->ri_pad); |
| in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); |
| in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); |
| in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); |
| in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); |
| in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); |
| } |
| |
| void |
| bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, |
| Elf64_External_RegInfo *ex) |
| { |
| H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); |
| H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); |
| H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); |
| H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); |
| H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); |
| H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); |
| H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); |
| } |
| |
| /* Swap in an options header. */ |
| |
| void |
| bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, |
| Elf_Internal_Options *in) |
| { |
| in->kind = H_GET_8 (abfd, ex->kind); |
| in->size = H_GET_8 (abfd, ex->size); |
| in->section = H_GET_16 (abfd, ex->section); |
| in->info = H_GET_32 (abfd, ex->info); |
| } |
| |
| /* Swap out an options header. */ |
| |
| void |
| bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, |
| Elf_External_Options *ex) |
| { |
| H_PUT_8 (abfd, in->kind, ex->kind); |
| H_PUT_8 (abfd, in->size, ex->size); |
| H_PUT_16 (abfd, in->section, ex->section); |
| H_PUT_32 (abfd, in->info, ex->info); |
| } |
| |
| /* Swap in an abiflags structure. */ |
| |
| void |
| bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd, |
| const Elf_External_ABIFlags_v0 *ex, |
| Elf_Internal_ABIFlags_v0 *in) |
| { |
| in->version = H_GET_16 (abfd, ex->version); |
| in->isa_level = H_GET_8 (abfd, ex->isa_level); |
| in->isa_rev = H_GET_8 (abfd, ex->isa_rev); |
| in->gpr_size = H_GET_8 (abfd, ex->gpr_size); |
| in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size); |
| in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size); |
| in->fp_abi = H_GET_8 (abfd, ex->fp_abi); |
| in->isa_ext = H_GET_32 (abfd, ex->isa_ext); |
| in->ases = H_GET_32 (abfd, ex->ases); |
| in->flags1 = H_GET_32 (abfd, ex->flags1); |
| in->flags2 = H_GET_32 (abfd, ex->flags2); |
| } |
| |
| /* Swap out an abiflags structure. */ |
| |
| void |
| bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd, |
| const Elf_Internal_ABIFlags_v0 *in, |
| Elf_External_ABIFlags_v0 *ex) |
| { |
| H_PUT_16 (abfd, in->version, ex->version); |
| H_PUT_8 (abfd, in->isa_level, ex->isa_level); |
| H_PUT_8 (abfd, in->isa_rev, ex->isa_rev); |
| H_PUT_8 (abfd, in->gpr_size, ex->gpr_size); |
| H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size); |
| H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size); |
| H_PUT_8 (abfd, in->fp_abi, ex->fp_abi); |
| H_PUT_32 (abfd, in->isa_ext, ex->isa_ext); |
| H_PUT_32 (abfd, in->ases, ex->ases); |
| H_PUT_32 (abfd, in->flags1, ex->flags1); |
| H_PUT_32 (abfd, in->flags2, ex->flags2); |
| } |
| |
| /* This function is called via qsort() to sort the dynamic relocation |
| entries by increasing r_symndx value. */ |
| |
| static int |
| sort_dynamic_relocs (const void *arg1, const void *arg2) |
| { |
| Elf_Internal_Rela int_reloc1; |
| Elf_Internal_Rela int_reloc2; |
| int diff; |
| |
| bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); |
| bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); |
| |
| diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); |
| if (diff != 0) |
| return diff; |
| |
| if (int_reloc1.r_offset < int_reloc2.r_offset) |
| return -1; |
| if (int_reloc1.r_offset > int_reloc2.r_offset) |
| return 1; |
| return 0; |
| } |
| |
| /* Like sort_dynamic_relocs, but used for elf64 relocations. */ |
| |
| static int |
| sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, |
| const void *arg2 ATTRIBUTE_UNUSED) |
| { |
| #ifdef BFD64 |
| Elf_Internal_Rela int_reloc1[3]; |
| Elf_Internal_Rela int_reloc2[3]; |
| |
| (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) |
| (reldyn_sorting_bfd, arg1, int_reloc1); |
| (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) |
| (reldyn_sorting_bfd, arg2, int_reloc2); |
| |
| if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info)) |
| return -1; |
| if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info)) |
| return 1; |
| |
| if (int_reloc1[0].r_offset < int_reloc2[0].r_offset) |
| return -1; |
| if (int_reloc1[0].r_offset > int_reloc2[0].r_offset) |
| return 1; |
| return 0; |
| #else |
| abort (); |
| #endif |
| } |
| |
| |
| /* This routine is used to write out ECOFF debugging external symbol |
| information. It is called via mips_elf_link_hash_traverse. The |
| ECOFF external symbol information must match the ELF external |
| symbol information. Unfortunately, at this point we don't know |
| whether a symbol is required by reloc information, so the two |
| tables may wind up being different. We must sort out the external |
| symbol information before we can set the final size of the .mdebug |
| section, and we must set the size of the .mdebug section before we |
| can relocate any sections, and we can't know which symbols are |
| required by relocation until we relocate the sections. |
| Fortunately, it is relatively unlikely that any symbol will be |
| stripped but required by a reloc. In particular, it can not happen |
| when generating a final executable. */ |
| |
| static bool |
| mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) |
| { |
| struct extsym_info *einfo = data; |
| bool strip; |
| asection *sec, *output_section; |
| |
| if (h->root.indx == -2) |
| strip = false; |
| else if ((h->root.def_dynamic |
| || h->root.ref_dynamic |
| || h->root.type == bfd_link_hash_new) |
| && !h->root.def_regular |
| && !h->root.ref_regular) |
| strip = true; |
| else if (einfo->info->strip == strip_all |
| || (einfo->info->strip == strip_some |
| && bfd_hash_lookup (einfo->info->keep_hash, |
| h->root.root.root.string, |
| false, false) == NULL)) |
| strip = true; |
| else |
| strip = false; |
| |
| if (strip) |
| return true; |
| |
| if (h->esym.ifd == -2) |
| { |
| h->esym.jmptbl = 0; |
| h->esym.cobol_main = 0; |
| h->esym.weakext = 0; |
| h->esym.reserved = 0; |
| h->esym.ifd = ifdNil; |
| h->esym.asym.value = 0; |
| h->esym.asym.st = stGlobal; |
| |
| if (h->root.root.type == bfd_link_hash_undefined |
| || h->root.root.type == bfd_link_hash_undefweak) |
| { |
| const char *name; |
| |
| /* Use undefined class. Also, set class and type for some |
| special symbols. */ |
| name = h->root.root.root.string; |
| if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 |
| || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) |
| { |
| h->esym.asym.sc = scData; |
| h->esym.asym.st = stLabel; |
| h->esym.asym.value = 0; |
| } |
| else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) |
| { |
| h->esym.asym.sc = scAbs; |
| h->esym.asym.st = stLabel; |
| h->esym.asym.value = |
| mips_elf_hash_table (einfo->info)->procedure_count; |
| } |
| else |
| h->esym.asym.sc = scUndefined; |
| } |
| else if (h->root.root.type != bfd_link_hash_defined |
| && h->root.root.type != bfd_link_hash_defweak) |
| h->esym.asym.sc = scAbs; |
| else |
| { |
| const char *name; |
| |
| sec = h->root.root.u.def.section; |
| output_section = sec->output_section; |
| |
| /* When making a shared library and symbol h is the one from |
| the another shared library, OUTPUT_SECTION may be null. */ |
| if (output_section == NULL) |
| h->esym.asym.sc = scUndefined; |
| else |
| { |
| name = bfd_section_name (output_section); |
| |
| if (strcmp (name, ".text") == 0) |
| h->esym.asym.sc = scText; |
| else if (strcmp (name, ".data") == 0) |
| h->esym.asym.sc = scData; |
| else if (strcmp (name, ".sdata") == 0) |
| h->esym.asym.sc = scSData; |
| else if (strcmp (name, ".rodata") == 0 |
| || strcmp (name, ".rdata") == 0) |
| h->esym.asym.sc = scRData; |
| else if (strcmp (name, ".bss") == 0) |
| h->esym.asym.sc = scBss; |
| else if (strcmp (name, ".sbss") == 0) |
| h->esym.asym.sc = scSBss; |
| else if (strcmp (name, ".init") == 0) |
| h->esym.asym.sc = scInit; |
| else if (strcmp (name, ".fini") == 0) |
| h->esym.asym.sc = scFini; |
| else |
| h->esym.asym.sc = scAbs; |
| } |
| } |
| |
| h->esym.asym.reserved = 0; |
| h->esym.asym.index = indexNil; |
| } |
| |
| if (h->root.root.type == bfd_link_hash_common) |
| h->esym.asym.value = h->root.root.u.c.size; |
| else if (h->root.root.type == bfd_link_hash_defined |
| || h->root.root.type == bfd_link_hash_defweak) |
| { |
| if (h->esym.asym.sc == scCommon) |
| h->esym.asym.sc = scBss; |
| else if (h->esym.asym.sc == scSCommon) |
| h->esym.asym.sc = scSBss; |
| |
| sec = h->root.root.u.def.section; |
| output_section = sec->output_section; |
| if (output_section != NULL) |
| h->esym.asym.value = (h->root.root.u.def.value |
| + sec->output_offset |
| + output_section->vma); |
| else |
| h->esym.asym.value = 0; |
| } |
| else |
| { |
| struct mips_elf_link_hash_entry *hd = h; |
| |
| while (hd->root.root.type == bfd_link_hash_indirect) |
| hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; |
| |
| if (hd->needs_lazy_stub) |
| { |
| BFD_ASSERT (hd->root.plt.plist != NULL); |
| BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE); |
| /* Set type and value for a symbol with a function stub. */ |
| h->esym.asym.st = stProc; |
| sec = hd->root.root.u.def.section; |
| if (sec == NULL) |
| h->esym.asym.value = 0; |
| else |
| { |
| output_section = sec->output_section; |
| if (output_section != NULL) |
| h->esym.asym.value = (hd->root.plt.plist->stub_offset |
| + sec->output_offset |
| + output_section->vma); |
| else |
| h->esym.asym.value = 0; |
| } |
| } |
| } |
| |
| if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, |
| h->root.root.root.string, |
| &h->esym)) |
| { |
| einfo->failed = true; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* A comparison routine used to sort .gptab entries. */ |
| |
| static int |
| gptab_compare (const void *p1, const void *p2) |
| { |
| const Elf32_gptab *a1 = p1; |
| const Elf32_gptab *a2 = p2; |
| |
| return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; |
| } |
| |
| /* Functions to manage the got entry hash table. */ |
| |
| /* Use all 64 bits of a bfd_vma for the computation of a 32-bit |
| hash number. */ |
| |
| static inline hashval_t |
| mips_elf_hash_bfd_vma (bfd_vma addr) |
| { |
| #ifdef BFD64 |
| return addr + (addr >> 32); |
| #else |
| return addr; |
| #endif |
| } |
| |
| static hashval_t |
| mips_elf_got_entry_hash (const void *entry_) |
| { |
| const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; |
| |
| return (entry->symndx |
| + ((entry->tls_type == GOT_TLS_LDM) << 18) |
| + (entry->tls_type == GOT_TLS_LDM ? 0 |
| : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) |
| : entry->symndx >= 0 ? (entry->abfd->id |
| + mips_elf_hash_bfd_vma (entry->d.addend)) |
| : entry->d.h->root.root.root.hash)); |
| } |
| |
| static int |
| mips_elf_got_entry_eq (const void *entry1, const void *entry2) |
| { |
| const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; |
| const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; |
| |
| return (e1->symndx == e2->symndx |
| && e1->tls_type == e2->tls_type |
| && (e1->tls_type == GOT_TLS_LDM ? true |
| : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address |
| : e1->symndx >= 0 ? (e1->abfd == e2->abfd |
| && e1->d.addend == e2->d.addend) |
| : e2->abfd && e1->d.h == e2->d.h)); |
| } |
| |
| static hashval_t |
| mips_got_page_ref_hash (const void *ref_) |
| { |
| const struct mips_got_page_ref *ref; |
| |
| ref = (const struct mips_got_page_ref *) ref_; |
| return ((ref->symndx >= 0 |
| ? (hashval_t) (ref->u.abfd->id + ref->symndx) |
| : ref->u.h->root.root.root.hash) |
| + mips_elf_hash_bfd_vma (ref->addend)); |
| } |
| |
| static int |
| mips_got_page_ref_eq (const void *ref1_, const void *ref2_) |
| { |
| const struct mips_got_page_ref *ref1, *ref2; |
| |
| ref1 = (const struct mips_got_page_ref *) ref1_; |
| ref2 = (const struct mips_got_page_ref *) ref2_; |
| return (ref1->symndx == ref2->symndx |
| && (ref1->symndx < 0 |
| ? ref1->u.h == ref2->u.h |
| : ref1->u.abfd == ref2->u.abfd) |
| && ref1->addend == ref2->addend); |
| } |
| |
| static hashval_t |
| mips_got_page_entry_hash (const void *entry_) |
| { |
| const struct mips_got_page_entry *entry; |
| |
| entry = (const struct mips_got_page_entry *) entry_; |
| return entry->sec->id; |
| } |
| |
| static int |
| mips_got_page_entry_eq (const void *entry1_, const void *entry2_) |
| { |
| const struct mips_got_page_entry *entry1, *entry2; |
| |
| entry1 = (const struct mips_got_page_entry *) entry1_; |
| entry2 = (const struct mips_got_page_entry *) entry2_; |
| return entry1->sec == entry2->sec; |
| } |
| |
| /* Create and return a new mips_got_info structure. */ |
| |
| static struct mips_got_info * |
| mips_elf_create_got_info (bfd *abfd) |
| { |
| struct mips_got_info *g; |
| |
| g = bfd_zalloc (abfd, sizeof (struct mips_got_info)); |
| if (g == NULL) |
| return NULL; |
| |
| g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, |
| mips_elf_got_entry_eq, NULL); |
| if (g->got_entries == NULL) |
| return NULL; |
| |
| g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash, |
| mips_got_page_ref_eq, NULL); |
| if (g->got_page_refs == NULL) |
| return NULL; |
| |
| return g; |
| } |
| |
| /* Return the GOT info for input bfd ABFD, trying to create a new one if |
| CREATE_P and if ABFD doesn't already have a GOT. */ |
| |
| static struct mips_got_info * |
| mips_elf_bfd_got (bfd *abfd, bool create_p) |
| { |
| struct mips_elf_obj_tdata *tdata; |
| |
| if (!is_mips_elf (abfd)) |
| return NULL; |
| |
| tdata = mips_elf_tdata (abfd); |
| if (!tdata->got && create_p) |
| tdata->got = mips_elf_create_got_info (abfd); |
| return tdata->got; |
| } |
| |
| /* Record that ABFD should use output GOT G. */ |
| |
| static void |
| mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g) |
| { |
| struct mips_elf_obj_tdata *tdata; |
| |
| BFD_ASSERT (is_mips_elf (abfd)); |
| tdata = mips_elf_tdata (abfd); |
| if (tdata->got) |
| { |
| /* The GOT structure itself and the hash table entries are |
| allocated to a bfd, but the hash tables aren't. */ |
| htab_delete (tdata->got->got_entries); |
| htab_delete (tdata->got->got_page_refs); |
| if (tdata->got->got_page_entries) |
| htab_delete (tdata->got->got_page_entries); |
| } |
| tdata->got = g; |
| } |
| |
| /* Return the dynamic relocation section. If it doesn't exist, try to |
| create a new it if CREATE_P, otherwise return NULL. Also return NULL |
| if creation fails. */ |
| |
| static asection * |
| mips_elf_rel_dyn_section (struct bfd_link_info *info, bool create_p) |
| { |
| const char *dname; |
| asection *sreloc; |
| bfd *dynobj; |
| |
| dname = MIPS_ELF_REL_DYN_NAME (info); |
| dynobj = elf_hash_table (info)->dynobj; |
| sreloc = bfd_get_linker_section (dynobj, dname); |
| if (sreloc == NULL && create_p) |
| { |
| sreloc = bfd_make_section_anyway_with_flags (dynobj, dname, |
| (SEC_ALLOC |
| | SEC_LOAD |
| | SEC_HAS_CONTENTS |
| | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED |
| | SEC_READONLY)); |
| if (sreloc == NULL |
| || !bfd_set_section_alignment (sreloc, |
| MIPS_ELF_LOG_FILE_ALIGN (dynobj))) |
| return NULL; |
| } |
| return sreloc; |
| } |
| |
| /* Return the GOT_TLS_* type required by relocation type R_TYPE. */ |
| |
| static int |
| mips_elf_reloc_tls_type (unsigned int r_type) |
| { |
| if (tls_gd_reloc_p (r_type)) |
| return GOT_TLS_GD; |
| |
| if (tls_ldm_reloc_p (r_type)) |
| return GOT_TLS_LDM; |
| |
| if (tls_gottprel_reloc_p (r_type)) |
| return GOT_TLS_IE; |
| |
| return GOT_TLS_NONE; |
| } |
| |
| /* Return the number of GOT slots needed for GOT TLS type TYPE. */ |
| |
| static int |
| mips_tls_got_entries (unsigned int type) |
| { |
| switch (type) |
| { |
| case GOT_TLS_GD: |
| case GOT_TLS_LDM: |
| return 2; |
| |
| case GOT_TLS_IE: |
| return 1; |
| |
| case GOT_TLS_NONE: |
| return 0; |
| } |
| abort (); |
| } |
| |
| /* Count the number of relocations needed for a TLS GOT entry, with |
| access types from TLS_TYPE, and symbol H (or a local symbol if H |
| is NULL). */ |
| |
| static int |
| mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, |
| struct elf_link_hash_entry *h) |
| { |
| int indx = 0; |
| bool need_relocs = false; |
| bool dyn = elf_hash_table (info)->dynamic_sections_created; |
| |
| if (h != NULL |
| && h->dynindx != -1 |
| && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) |
| && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h))) |
| indx = h->dynindx; |
| |
| if ((bfd_link_dll (info) || indx != 0) |
| && (h == NULL |
| || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak)) |
| need_relocs = true; |
| |
| if (!need_relocs) |
| return 0; |
| |
| switch (tls_type) |
| { |
| case GOT_TLS_GD: |
| return indx != 0 ? 2 : 1; |
| |
| case GOT_TLS_IE: |
| return 1; |
| |
| case GOT_TLS_LDM: |
| return bfd_link_dll (info) ? 1 : 0; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| /* Add the number of GOT entries and TLS relocations required by ENTRY |
| to G. */ |
| |
| static void |
| mips_elf_count_got_entry (struct bfd_link_info *info, |
| struct mips_got_info *g, |
| struct mips_got_entry *entry) |
| { |
| if (entry->tls_type) |
| { |
| g->tls_gotno += mips_tls_got_entries (entry->tls_type); |
| g->relocs += mips_tls_got_relocs (info, entry->tls_type, |
| entry->symndx < 0 |
| ? &entry->d.h->root : NULL); |
| } |
| else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE) |
| g->local_gotno += 1; |
| else |
| g->global_gotno += 1; |
| } |
| |
| /* Output a simple dynamic relocation into SRELOC. */ |
| |
| static void |
| mips_elf_output_dynamic_relocation (bfd *output_bfd, |
| asection *sreloc, |
| unsigned long reloc_index, |
| unsigned long indx, |
| int r_type, |
| bfd_vma offset) |
| { |
| Elf_Internal_Rela rel[3]; |
| |
| memset (rel, 0, sizeof (rel)); |
| |
| rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); |
| rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; |
| |
| if (ABI_64_P (output_bfd)) |
| { |
| (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) |
| (output_bfd, &rel[0], |
| (sreloc->contents |
| + reloc_index * sizeof (Elf64_Mips_External_Rel))); |
| } |
| else |
| bfd_elf32_swap_reloc_out |
| (output_bfd, &rel[0], |
| (sreloc->contents |
| + reloc_index * sizeof (Elf32_External_Rel))); |
| } |
| |
| /* Initialize a set of TLS GOT entries for one symbol. */ |
| |
| static void |
| mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info, |
| struct mips_got_entry *entry, |
| struct mips_elf_link_hash_entry *h, |
| bfd_vma value) |
| { |
| bool dyn = elf_hash_table (info)->dynamic_sections_created; |
| struct mips_elf_link_hash_table *htab; |
| int indx; |
| asection *sreloc, *sgot; |
| bfd_vma got_offset, got_offset2; |
| bool need_relocs = false; |
| |
| htab = mips_elf_hash_table (info); |
| if (htab == NULL) |
| return; |
| |
| sgot = htab->root.sgot; |
| |
| indx = 0; |
| if (h != NULL |
| && h->root.dynindx != -1 |
| && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root) |
| && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) |
| indx = h->root.dynindx; |
| |
| if (entry->tls_initialized) |
| return; |
| |
| if ((bfd_link_dll (info) || indx != 0) |
| && (h == NULL |
| || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak)) |
| need_relocs = true; |
| |
| /* MINUS_ONE means the symbol is not defined in this object. It may not |
| be defined at all; assume that the value doesn't matter in that |
| case. Otherwise complain if we would use the value. */ |
| BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) |
| || h->root.root.type == bfd_link_hash_undefweak); |
| |
| /* Emit necessary relocations. */ |
| sreloc = mips_elf_rel_dyn_section (info, false); |
| got_offset = entry->gotidx; |
| |
| switch (entry->tls_type) |
| { |
| case GOT_TLS_GD: |
| /* General Dynamic. */ |
| got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd); |
| |
| if (need_relocs) |
| { |
| mips_elf_output_dynamic_relocation |
| (abfd, sreloc, sreloc->reloc_count++, indx, |
| ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, |
| sgot->output_offset + sgot->output_section->vma + got_offset); |
| |
| if (indx) |
| mips_elf_output_dynamic_relocation |
| (abfd, sreloc, sreloc->reloc_count++, indx, |
| ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, |
| sgot->output_offset + sgot->output_section->vma + got_offset2); |
| else |
| MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), |
| sgot->contents + got_offset2); |
| } |
| else |
| { |
| MIPS_ELF_PUT_WORD (abfd, 1, |
| sgot->contents + got_offset); |
| MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), |
| sgot->contents + got_offset2); |
| } |
| break; |
| |
| case GOT_TLS_IE: |
| /* Initial Exec model. */ |
| if (need_relocs) |
| { |
| if (indx == 0) |
| MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, |
| sgot->contents + got_offset); |
| else |
| MIPS_ELF_PUT_WORD (abfd, 0, |
| sgot->contents + got_offset); |
| |
| mips_elf_output_dynamic_relocation |
| (abfd, sreloc, sreloc->reloc_count++, indx, |
| ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, |
| sgot->output_offset + sgot->output_section->vma + got_offset); |
| } |
| else |
| MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), |
| sgot->contents + got_offset); |
| break; |
| |
| case GOT_TLS_LDM: |
| /* The initial offset is zero, and the LD offsets will include the |
| bias by DTP_OFFSET. */ |
| MIPS_ELF_PUT_WORD (abfd, 0, |
| sgot->contents + got_offset |
| + MIPS_ELF_GOT_SIZE (abfd)); |
| |
| if (!bfd_link_dll (info)) |
| MIPS_ELF_PUT_WORD (abfd, 1, |
| sgot->contents + got_offset); |
| else |
| mips_elf_output_dynamic_relocation |
| (abfd, sreloc, sreloc->reloc_count++, indx, |
| ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, |
| sgot->output_offset + sgot->output_section->vma + got_offset); |
| break; |
| |
| default: |
| abort (); |
| } |
| |
| entry->tls_initialized = true; |
| } |
| |
| /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry |
| for global symbol H. .got.plt comes before the GOT, so the offset |
| will be negative. */ |
| |
| static bfd_vma |
| mips_elf_gotplt_index (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| bfd_vma got_address, got_value; |
| struct mips_elf_link_hash_table *htab; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| BFD_ASSERT (h->plt.plist != NULL); |
| BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE); |
| |
| /* Calculate the address of the associated .got.plt entry. */ |
| got_address = (htab->root.sgotplt->output_section->vma |
| + htab->root.sgotplt->output_offset |
| + (h->plt.plist->gotplt_index |
| * MIPS_ELF_GOT_SIZE (info->output_bfd))); |
| |
| /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ |
| got_value = (htab->root.hgot->root.u.def.section->output_section->vma |
| + htab->root.hgot->root.u.def.section->output_offset |
| + htab->root.hgot->root.u.def.value); |
| |
| return got_address - got_value; |
| } |
| |
| /* Return the GOT offset for address VALUE. If there is not yet a GOT |
| entry for this value, create one. If R_SYMNDX refers to a TLS symbol, |
| create a TLS GOT entry instead. Return -1 if no satisfactory GOT |
| offset can be found. */ |
| |
| static bfd_vma |
| mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
| bfd_vma value, unsigned long r_symndx, |
| struct mips_elf_link_hash_entry *h, int r_type) |
| { |
| struct mips_elf_link_hash_table *htab; |
| struct mips_got_entry *entry; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, |
| r_symndx, h, r_type); |
| if (!entry) |
| return MINUS_ONE; |
| |
| if (entry->tls_type) |
| mips_elf_initialize_tls_slots (abfd, info, entry, h, value); |
| return entry->gotidx; |
| } |
| |
| /* Return the GOT index of global symbol H in the primary GOT. */ |
| |
| static bfd_vma |
| mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| struct mips_elf_link_hash_table *htab; |
| long global_got_dynindx; |
| struct mips_got_info *g; |
| bfd_vma got_index; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| global_got_dynindx = 0; |
| if (htab->global_gotsym != NULL) |
| global_got_dynindx = htab->global_gotsym->dynindx; |
| |
| /* Once we determine the global GOT entry with the lowest dynamic |
| symbol table index, we must put all dynamic symbols with greater |
| indices into the primary GOT. That makes it easy to calculate the |
| GOT offset. */ |
| BFD_ASSERT (h->dynindx >= global_got_dynindx); |
| g = mips_elf_bfd_got (obfd, false); |
| got_index = ((h->dynindx - global_got_dynindx + g->local_gotno) |
| * MIPS_ELF_GOT_SIZE (obfd)); |
| BFD_ASSERT (got_index < htab->root.sgot->size); |
| |
| return got_index; |
| } |
| |
| /* Return the GOT index for the global symbol indicated by H, which is |
| referenced by a relocation of type R_TYPE in IBFD. */ |
| |
| static bfd_vma |
| mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd, |
| struct elf_link_hash_entry *h, int r_type) |
| { |
| struct mips_elf_link_hash_table *htab; |
| struct mips_got_info *g; |
| struct mips_got_entry lookup, *entry; |
| bfd_vma gotidx; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| g = mips_elf_bfd_got (ibfd, false); |
| BFD_ASSERT (g); |
| |
| lookup.tls_type = mips_elf_reloc_tls_type (r_type); |
| if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, false)) |
| return mips_elf_primary_global_got_index (obfd, info, h); |
| |
| lookup.abfd = ibfd; |
| lookup.symndx = -1; |
| lookup.d.h = (struct mips_elf_link_hash_entry *) h; |
| entry = htab_find (g->got_entries, &lookup); |
| BFD_ASSERT (entry); |
| |
| gotidx = entry->gotidx; |
| BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size); |
| |
| if (lookup.tls_type) |
| { |
| bfd_vma value = MINUS_ONE; |
| |
| if ((h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && h->root.u.def.section->output_section) |
| value = (h->root.u.def.value |
| + h->root.u.def.section->output_offset |
| + h->root.u.def.section->output_section->vma); |
| |
| mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value); |
| } |
| return gotidx; |
| } |
| |
| /* Find a GOT page entry that points to within 32KB of VALUE. These |
| entries are supposed to be placed at small offsets in the GOT, i.e., |
| within 32KB of GP. Return the index of the GOT entry, or -1 if no |
| entry could be created. If OFFSETP is nonnull, use it to return the |
| offset of the GOT entry from VALUE. */ |
| |
| static bfd_vma |
| mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
| bfd_vma value, bfd_vma *offsetp) |
| { |
| bfd_vma page, got_index; |
| struct mips_got_entry *entry; |
| |
| page = (value + 0x8000) & ~(bfd_vma) 0xffff; |
| entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0, |
| NULL, R_MIPS_GOT_PAGE); |
| |
| if (!entry) |
| return MINUS_ONE; |
| |
| got_index = entry->gotidx; |
| |
| if (offsetp) |
| *offsetp = value - entry->d.address; |
| |
| return got_index; |
| } |
| |
| /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE. |
| EXTERNAL is true if the relocation was originally against a global |
| symbol that binds locally. */ |
| |
| static bfd_vma |
| mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, |
| bfd_vma value, bool external) |
| { |
| struct mips_got_entry *entry; |
| |
| /* GOT16 relocations against local symbols are followed by a LO16 |
| relocation; those against global symbols are not. Thus if the |
| symbol was originally local, the GOT16 relocation should load the |
| equivalent of %hi(VALUE), otherwise it should load VALUE itself. */ |
| if (! external) |
| value = mips_elf_high (value) << 16; |
| |
| /* It doesn't matter whether the original relocation was R_MIPS_GOT16, |
| R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the |
| same in all cases. */ |
| entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0, |
| NULL, R_MIPS_GOT16); |
| if (entry) |
| return entry->gotidx; |
| else |
| return MINUS_ONE; |
| } |
| |
| /* Returns the offset for the entry at the INDEXth position |
| in the GOT. */ |
| |
| static bfd_vma |
| mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd, |
| bfd *input_bfd, bfd_vma got_index) |
| { |
| struct mips_elf_link_hash_table *htab; |
| asection *sgot; |
| bfd_vma gp; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| sgot = htab->root.sgot; |
| gp = _bfd_get_gp_value (output_bfd) |
| + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd); |
| |
| return sgot->output_section->vma + sgot->output_offset + got_index - gp; |
| } |
| |
| /* Create and return a local GOT entry for VALUE, which was calculated |
| from a symbol belonging to INPUT_SECTON. Return NULL if it could not |
| be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry |
| instead. */ |
| |
| static struct mips_got_entry * |
| mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, |
| bfd *ibfd, bfd_vma value, |
| unsigned long r_symndx, |
| struct mips_elf_link_hash_entry *h, |
| int r_type) |
| { |
| struct mips_got_entry lookup, *entry; |
| void **loc; |
| struct mips_got_info *g; |
| struct mips_elf_link_hash_table *htab; |
| bfd_vma gotidx; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| g = mips_elf_bfd_got (ibfd, false); |
| if (g == NULL) |
| { |
| g = mips_elf_bfd_got (abfd, false); |
| BFD_ASSERT (g != NULL); |
| } |
| |
| /* This function shouldn't be called for symbols that live in the global |
| area of the GOT. */ |
| BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE); |
| |
| lookup.tls_type = mips_elf_reloc_tls_type (r_type); |
| if (lookup.tls_type) |
| { |
| lookup.abfd = ibfd; |
| if (tls_ldm_reloc_p (r_type)) |
| { |
| lookup.symndx = 0; |
| lookup.d.addend = 0; |
| } |
| else if (h == NULL) |
| { |
| lookup.symndx = r_symndx; |
| lookup.d.addend = 0; |
| } |
| else |
| { |
| lookup.symndx = -1; |
| lookup.d.h = h; |
| } |
| |
| entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup); |
| BFD_ASSERT (entry); |
| |
| gotidx = entry->gotidx; |
| BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size); |
| |
| return entry; |
| } |
| |
| lookup.abfd = NULL; |
| lookup.symndx = -1; |
| lookup.d.address = value; |
| loc = htab_find_slot (g->got_entries, &lookup, INSERT); |
| if (!loc) |
| return NULL; |
| |
| entry = (struct mips_got_entry *) *loc; |
| if (entry) |
| return entry; |
| |
| if (g->assigned_low_gotno > g->assigned_high_gotno) |
| { |
| /* We didn't allocate enough space in the GOT. */ |
| _bfd_error_handler |
| (_("not enough GOT space for local GOT entries")); |
| bfd_set_error (bfd_error_bad_value); |
| return NULL; |
| } |
| |
| entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); |
| if (!entry) |
| return NULL; |
| |
| if (got16_reloc_p (r_type) |
| || call16_reloc_p (r_type) |
| || got_page_reloc_p (r_type) |
| || got_disp_reloc_p (r_type)) |
| lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++; |
| else |
| lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--; |
| |
| *entry = lookup; |
| *loc = entry; |
| |
| MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx); |
| |
| /* These GOT entries need a dynamic relocation on VxWorks. */ |
| if (htab->root.target_os == is_vxworks) |
| { |
| Elf_Internal_Rela outrel; |
| asection *s; |
| bfd_byte *rloc; |
| bfd_vma got_address; |
| |
| s = mips_elf_rel_dyn_section (info, false); |
| got_address = (htab->root.sgot->output_section->vma |
| + htab->root.sgot->output_offset |
| + entry->gotidx); |
| |
| rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); |
| outrel.r_offset = got_address; |
| outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32); |
| outrel.r_addend = value; |
| bfd_elf32_swap_reloca_out (abfd, &outrel, rloc); |
| } |
| |
| return entry; |
| } |
| |
| /* Return the number of dynamic section symbols required by OUTPUT_BFD. |
| The number might be exact or a worst-case estimate, depending on how |
| much information is available to elf_backend_omit_section_dynsym at |
| the current linking stage. */ |
| |
| static bfd_size_type |
| count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| bfd_size_type count; |
| |
| count = 0; |
| if (bfd_link_pic (info)) |
| { |
| asection *p; |
| const struct elf_backend_data *bed; |
| |
| bed = get_elf_backend_data (output_bfd); |
| for (p = output_bfd->sections; p ; p = p->next) |
| if ((p->flags & SEC_EXCLUDE) == 0 |
| && (p->flags & SEC_ALLOC) != 0 |
| && elf_hash_table (info)->dynamic_relocs |
| && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) |
| ++count; |
| } |
| return count; |
| } |
| |
| /* Sort the dynamic symbol table so that symbols that need GOT entries |
| appear towards the end. */ |
| |
| static bool |
| mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info) |
| { |
| struct mips_elf_link_hash_table *htab; |
| struct mips_elf_hash_sort_data hsd; |
| struct mips_got_info *g; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| if (htab->root.dynsymcount == 0) |
| return true; |
| |
| g = htab->got_info; |
| if (g == NULL) |
| return true; |
| |
| hsd.low = NULL; |
| hsd.max_unref_got_dynindx |
| = hsd.min_got_dynindx |
| = (htab->root.dynsymcount - g->reloc_only_gotno); |
| /* Add 1 to local symbol indices to account for the mandatory NULL entry |
| at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */ |
| hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1; |
| hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1; |
| hsd.output_bfd = abfd; |
| if (htab->root.dynobj != NULL |
| && htab->root.dynamic_sections_created |
| && info->emit_gnu_hash) |
| { |
| asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash"); |
| BFD_ASSERT (s != NULL); |
| hsd.mipsxhash = s->contents; |
| BFD_ASSERT (hsd.mipsxhash != NULL); |
| } |
| else |
| hsd.mipsxhash = NULL; |
| mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd); |
| |
| /* There should have been enough room in the symbol table to |
| accommodate both the GOT and non-GOT symbols. */ |
| BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1); |
| BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); |
| BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount); |
| BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno); |
| |
| /* Now we know which dynamic symbol has the lowest dynamic symbol |
| table index in the GOT. */ |
| htab->global_gotsym = hsd.low; |
| |
| return true; |
| } |
| |
| /* If H needs a GOT entry, assign it the highest available dynamic |
| index. Otherwise, assign it the lowest available dynamic |
| index. */ |
| |
| static bool |
| mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) |
| { |
| struct mips_elf_hash_sort_data *hsd = data; |
| |
| /* Symbols without dynamic symbol table entries aren't interesting |
| at all. */ |
| if (h->root.dynindx == -1) |
| return true; |
| |
| switch (h->global_got_area) |
| { |
| case GGA_NONE: |
| if (h->root.forced_local) |
| h->root.dynindx = hsd->max_local_dynindx++; |
| else |
| h->root.dynindx = hsd->max_non_got_dynindx++; |
| break; |
| |
| case GGA_NORMAL: |
| h->root.dynindx = --hsd->min_got_dynindx; |
| hsd->low = (struct elf_link_hash_entry *) h; |
| break; |
| |
| case GGA_RELOC_ONLY: |
| if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) |
| hsd->low = (struct elf_link_hash_entry *) h; |
| h->root.dynindx = hsd->max_unref_got_dynindx++; |
| break; |
| } |
| |
| /* Populate the .MIPS.xhash translation table entry with |
| the symbol dynindx. */ |
| if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL) |
| bfd_put_32 (hsd->output_bfd, h->root.dynindx, |
| hsd->mipsxhash + h->mipsxhash_loc); |
| |
| return true; |
| } |
| |
| /* Record that input bfd ABFD requires a GOT entry like *LOOKUP |
| (which is owned by the caller and shouldn't be added to the |
| hash table directly). */ |
| |
| static bool |
| mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd, |
| struct mips_got_entry *lookup) |
| { |
| struct mips_elf_link_hash_table *htab; |
| struct mips_got_entry *entry; |
| struct mips_got_info *g; |
| void **loc, **bfd_loc; |
| |
| /* Make sure there's a slot for this entry in the master GOT. */ |
| htab = mips_elf_hash_table (info); |
| g = htab->got_info; |
| loc = htab_find_slot (g->got_entries, lookup, INSERT); |
| if (!loc) |
| return false; |
| |
| /* Populate the entry if it isn't already. */ |
| entry = (struct mips_got_entry *) *loc; |
| if (!entry) |
| { |
| entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); |
| if (!entry) |
| return false; |
| |
| lookup->tls_initialized = false; |
| lookup->gotidx = -1; |
| *entry = *lookup; |
| *loc = entry; |
| } |
| |
| /* Reuse the same GOT entry for the BFD's GOT. */ |
| g = mips_elf_bfd_got (abfd, true); |
| if (!g) |
| return false; |
| |
| bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT); |
| if (!bfd_loc) |
| return false; |
| |
| if (!*bfd_loc) |
| *bfd_loc = entry; |
| return true; |
| } |
| |
| /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT |
| entry for it. FOR_CALL is true if the caller is only interested in |
| using the GOT entry for calls. */ |
| |
| static bool |
| mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, |
| bfd *abfd, struct bfd_link_info *info, |
| bool for_call, int r_type) |
| { |
| struct mips_elf_link_hash_table *htab; |
| struct mips_elf_link_hash_entry *hmips; |
| struct mips_got_entry entry; |
| unsigned char tls_type; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| hmips = (struct mips_elf_link_hash_entry *) h; |
| if (!for_call) |
| hmips->got_only_for_calls = false; |
| |
| /* A global symbol in the GOT must also be in the dynamic symbol |
| table. */ |
| if (h->dynindx == -1) |
| { |
| switch (ELF_ST_VISIBILITY (h->other)) |
| { |
| case STV_INTERNAL: |
| case STV_HIDDEN: |
| _bfd_mips_elf_hide_symbol (info, h, true); |
| break; |
| } |
| if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| |
| tls_type = mips_elf_reloc_tls_type (r_type); |
| if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL) |
| hmips->global_got_area = GGA_NORMAL; |
| |
| entry.abfd = abfd; |
| entry.symndx = -1; |
| entry.d.h = (struct mips_elf_link_hash_entry *) h; |
| entry.tls_type = tls_type; |
| return mips_elf_record_got_entry (info, abfd, &entry); |
| } |
| |
| /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND, |
| where SYMNDX is a local symbol. Reserve a GOT entry for it. */ |
| |
| static bool |
| mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, |
| struct bfd_link_info *info, int r_type) |
| { |
| struct mips_elf_link_hash_table *htab; |
| struct mips_got_info *g; |
| struct mips_got_entry entry; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| g = htab->got_info; |
| BFD_ASSERT (g != NULL); |
| |
| entry.abfd = abfd; |
| entry.symndx = symndx; |
| entry.d.addend = addend; |
| entry.tls_type = mips_elf_reloc_tls_type (r_type); |
| return mips_elf_record_got_entry (info, abfd, &entry); |
| } |
| |
| /* Record that ABFD has a page relocation against SYMNDX + ADDEND. |
| H is the symbol's hash table entry, or null if SYMNDX is local |
| to ABFD. */ |
| |
| static bool |
| mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd, |
| long symndx, struct elf_link_hash_entry *h, |
| bfd_signed_vma addend) |
| { |
| struct mips_elf_link_hash_table *htab; |
| struct mips_got_info *g1, *g2; |
| struct mips_got_page_ref lookup, *entry; |
| void **loc, **bfd_loc; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| g1 = htab->got_info; |
| BFD_ASSERT (g1 != NULL); |
| |
| if (h) |
| { |
| lookup.symndx = -1; |
| lookup.u.h = (struct mips_elf_link_hash_entry *) h; |
| } |
| else |
| { |
| lookup.symndx = symndx; |
| lookup.u.abfd = abfd; |
| } |
| lookup.addend = addend; |
| loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT); |
| if (loc == NULL) |
| return false; |
| |
| entry = (struct mips_got_page_ref *) *loc; |
| if (!entry) |
| { |
| entry = bfd_alloc (abfd, sizeof (*entry)); |
| if (!entry) |
| return false; |
| |
| *entry = lookup; |
| *loc = entry; |
| } |
| |
| /* Add the same entry to the BFD's GOT. */ |
| g2 = mips_elf_bfd_got (abfd, true); |
| if (!g2) |
| return false; |
| |
| bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT); |
| if (!bfd_loc) |
| return false; |
| |
| if (!*bfd_loc) |
| *bfd_loc = entry; |
| |
| return true; |
| } |
| |
| /* Add room for N relocations to the .rel(a).dyn section in ABFD. */ |
| |
| static void |
| mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, |
| unsigned int n) |
| { |
| asection *s; |
| struct mips_elf_link_hash_table *htab; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| s = mips_elf_rel_dyn_section (info, false); |
| BFD_ASSERT (s != NULL); |
| |
| if (htab->root.target_os == is_vxworks) |
| s->size += n * MIPS_ELF_RELA_SIZE (abfd); |
| else |
| { |
| if (s->size == 0) |
| { |
| /* Make room for a null element. */ |
| s->size += MIPS_ELF_REL_SIZE (abfd); |
| ++s->reloc_count; |
| } |
| s->size += n * MIPS_ELF_REL_SIZE (abfd); |
| } |
| } |
| |
| /* A htab_traverse callback for GOT entries, with DATA pointing to a |
| mips_elf_traverse_got_arg structure. Count the number of GOT |
| entries and TLS relocs. Set DATA->value to true if we need |
| to resolve indirect or warning symbols and then recreate the GOT. */ |
| |
| static int |
| mips_elf_check_recreate_got (void **entryp, void *data) |
| { |
| struct mips_got_entry *entry; |
| struct mips_elf_traverse_got_arg *arg; |
| |
| entry = (struct mips_got_entry *) *entryp; |
| arg = (struct mips_elf_traverse_got_arg *) data; |
| if (entry->abfd != NULL && entry->symndx == -1) |
| { |
| struct mips_elf_link_hash_entry *h; |
| |
| h = entry->d.h; |
| if (h->root.root.type == bfd_link_hash_indirect |
| || h->root.root.type == bfd_link_hash_warning) |
| { |
| arg->value = true; |
| return 0; |
| } |
| } |
| mips_elf_count_got_entry (arg->info, arg->g, entry); |
| return 1; |
| } |
| |
| /* A htab_traverse callback for GOT entries, with DATA pointing to a |
| mips_elf_traverse_got_arg structure. Add all entries to DATA->g, |
| converting entries for indirect and warning symbols into entries |
| for the target symbol. Set DATA->g to null on error. */ |
| |
| static int |
| mips_elf_recreate_got (void **entryp, void *data) |
| { |
| struct mips_got_entry new_entry, *entry; |
| struct mips_elf_traverse_got_arg *arg; |
| void **slot; |
| |
| entry = (struct mips_got_entry *) *entryp; |
| arg = (struct mips_elf_traverse_got_arg *) data; |
| if (entry->abfd != NULL |
| && entry->symndx == -1 |
| && (entry->d.h->root.root.type == bfd_link_hash_indirect |
| || entry->d.h->root.root.type == bfd_link_hash_warning)) |
| { |
| struct mips_elf_link_hash_entry *h; |
| |
| new_entry = *entry; |
| entry = &new_entry; |
| h = entry->d.h; |
| do |
| { |
| BFD_ASSERT (h->global_got_area == GGA_NONE); |
| h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| } |
| while (h->root.root.type == bfd_link_hash_indirect |
| || h->root.root.type == bfd_link_hash_warning); |
| entry->d.h = h; |
| } |
| slot = htab_find_slot (arg->g->got_entries, entry, INSERT); |
| if (slot == NULL) |
| { |
| arg->g = NULL; |
| return 0; |
| } |
| if (*slot == NULL) |
| { |
| if (entry == &new_entry) |
| { |
| entry = bfd_alloc (entry->abfd, sizeof (*entry)); |
| if (!entry) |
| { |
| arg->g = NULL; |
| return 0; |
| } |
| *entry = new_entry; |
| } |
| *slot = entry; |
| mips_elf_count_got_entry (arg->info, arg->g, entry); |
| } |
| return 1; |
| } |
| |
| /* Return the maximum number of GOT page entries required for RANGE. */ |
| |
| static bfd_vma |
| mips_elf_pages_for_range (const struct mips_got_page_range *range) |
| { |
| return (range->max_addend - range->min_addend + 0x1ffff) >> 16; |
| } |
| |
| /* Record that G requires a page entry that can reach SEC + ADDEND. */ |
| |
| static bool |
| mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg, |
| asection *sec, bfd_signed_vma addend) |
| { |
| struct mips_got_info *g = arg->g; |
| struct mips_got_page_entry lookup, *entry; |
| struct mips_got_page_range **range_ptr, *range; |
| bfd_vma old_pages, new_pages; |
| void **loc; |
| |
| /* Find the mips_got_page_entry hash table entry for this section. */ |
| lookup.sec = sec; |
| loc = htab_find_slot (g->got_page_entries, &lookup, INSERT); |
| if (loc == NULL) |
| return false; |
| |
| /* Create a mips_got_page_entry if this is the first time we've |
| seen the section. */ |
| entry = (struct mips_got_page_entry *) *loc; |
| if (!entry) |
| { |
| entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry)); |
| if (!entry) |
| return false; |
| |
| entry->sec = sec; |
| *loc = entry; |
| } |
| |
| /* Skip over ranges whose maximum extent cannot share a page entry |
| with ADDEND. */ |
| range_ptr = &entry->ranges; |
| while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff) |
| range_ptr = &(*range_ptr)->next; |
| |
| /* If we scanned to the end of the list, or found a range whose |
| minimum extent cannot share a page entry with ADDEND, create |
| a new singleton range. */ |
| range = *range_ptr; |
| if (!range || addend < range->min_addend - 0xffff) |
| { |
| range = bfd_zalloc (arg->info->output_bfd, sizeof (*range)); |
| if (!range) |
| return false; |
| |
| range->next = *range_ptr; |
| range->min_addend = addend; |
| range->max_addend = addend; |
| |
| *range_ptr = range; |
| entry->num_pages++; |
| g->page_gotno++; |
| return true; |
| } |
| |
| /* Remember how many pages the old range contributed. */ |
| old_pages = mips_elf_pages_for_range (range); |
| |
| /* Update the ranges. */ |
| if (addend < range->min_addend) |
| range->min_addend = addend; |
| else if (addend > range->max_addend) |
| { |
| if (range->next && addend >= range->next->min_addend - 0xffff) |
| { |
| old_pages += mips_elf_pages_for_range (range->next); |
| range->max_addend = range->next->max_addend; |
| range->next = range->next->next; |
| } |
| else |
| range->max_addend = addend; |
| } |
| |
| /* Record any change in the total estimate. */ |
| new_pages = mips_elf_pages_for_range (range); |
| if (old_pages != new_pages) |
| { |
| entry->num_pages += new_pages - old_pages; |
| g->page_gotno += new_pages - old_pages; |
| } |
| |
| return true; |
| } |
| |
| /* A htab_traverse callback for which *REFP points to a mips_got_page_ref |
| and for which DATA points to a mips_elf_traverse_got_arg. Work out |
| whether the page reference described by *REFP needs a GOT page entry, |
| and record that entry in DATA->g if so. Set DATA->g to null on failure. */ |
| |
| static int |
| mips_elf_resolve_got_page_ref (void **refp, void *data) |
| { |
| struct mips_got_page_ref *ref; |
| struct mips_elf_traverse_got_arg *arg; |
| struct mips_elf_link_hash_table *htab; |
| asection *sec; |
| bfd_vma addend; |
| |
| ref = (struct mips_got_page_ref *) *refp; |
| arg = (struct mips_elf_traverse_got_arg *) data; |
| htab = mips_elf_hash_table (arg->info); |
| |
| if (ref->symndx < 0) |
| { |
| struct mips_elf_link_hash_entry *h; |
| |
| /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */ |
| h = ref->u.h; |
| if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root)) |
| return 1; |
| |
| /* Ignore undefined symbols; we'll issue an error later if |
| appropriate. */ |
| if (!((h->root.root.type == bfd_link_hash_defined |
| || h->root.root.type == bfd_link_hash_defweak) |
| && h->root.root.u.def.section)) |
| return 1; |
| |
| sec = h->root.root.u.def.section; |
| addend = h->root.root.u.def.value + ref->addend; |
| } |
| else |
| { |
| Elf_Internal_Sym *isym; |
| |
| /* Read in the symbol. */ |
| isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ref->u.abfd, |
| ref->symndx); |
| if (isym == NULL) |
| { |
| arg->g = NULL; |
| return 0; |
| } |
| |
| /* Get the associated input section. */ |
| sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx); |
| if (sec == NULL) |
| { |
| arg->g = NULL; |
| return 0; |
| } |
| |
| /* If this is a mergable section, work out the section and offset |
| of the merged data. For section symbols, the addend specifies |
| of the offset _of_ the first byte in the data, otherwise it |
| specifies the offset _from_ the first byte. */ |
| if (sec->flags & SEC_MERGE) |
| { |
| void *secinfo; |
| |
| secinfo = elf_section_data (sec)->sec_info; |
| if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) |
| addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, |
| isym->st_value + ref->addend); |
| else |
| addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, |
| isym->st_value) + ref->addend; |
| } |
| else |
| addend = isym->st_value + ref->addend; |
| } |
| if (!mips_elf_record_got_page_entry (arg, sec, addend)) |
| { |
| arg->g = NULL; |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* If any entries in G->got_entries are for indirect or warning symbols, |
| replace them with entries for the target symbol. Convert g->got_page_refs |
| into got_page_entry structures and estimate the number of page entries |
| that they require. */ |
| |
| static bool |
| mips_elf_resolve_final_got_entries (struct bfd_link_info *info, |
| struct mips_got_info *g) |
| { |
| struct mips_elf_traverse_got_arg tga; |
| struct mips_got_info oldg; |
| |
| oldg = *g; |
| |
| tga.info = info; |
| tga.g = g; |
| tga.value = false; |
| htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga); |
| if (tga.value) |
| { |
| *g = oldg; |
| g->got_entries = htab_create (htab_size (oldg.got_entries), |
| mips_elf_got_entry_hash, |
| mips_elf_got_entry_eq, NULL); |
| if (!g->got_entries) |
| return false; |
| |
| htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga); |
| if (!tga.g) |
| return false; |
| |
| htab_delete (oldg.got_entries); |
| } |
| |
| g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, |
| mips_got_page_entry_eq, NULL); |
| if (g->got_page_entries == NULL) |
| return false; |
| |
| tga.info = info; |
| tga.g = g; |
| htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga); |
| |
| return true; |
| } |
| |
| /* Return true if a GOT entry for H should live in the local rather than |
| global GOT area. */ |
| |
| static bool |
| mips_use_local_got_p (struct bfd_link_info *info, |
| struct mips_elf_link_hash_entry *h) |
| { |
| /* Symbols that aren't in the dynamic symbol table must live in the |
| local GOT. This includes symbols that are completely undefined |
| and which therefore don't bind locally. We'll report undefined |
| symbols later if appropriate. */ |
| if (h->root.dynindx == -1) |
| return true; |
| |
| /* Absolute symbols, if ever they need a GOT entry, cannot ever go |
| to the local GOT, as they would be implicitly relocated by the |
| base address by the dynamic loader. */ |
| if (bfd_is_abs_symbol (&h->root.root)) |
| return false; |
| |
| /* Symbols that bind locally can (and in the case of forced-local |
| symbols, must) live in the local GOT. */ |
| if (h->got_only_for_calls |
| ? SYMBOL_CALLS_LOCAL (info, &h->root) |
| : SYMBOL_REFERENCES_LOCAL (info, &h->root)) |
| return true; |
| |
| /* If this is an executable that must provide a definition of the symbol, |
| either though PLTs or copy relocations, then that address should go in |
| the local rather than global GOT. */ |
| if (bfd_link_executable (info) && h->has_static_relocs) |
| return true; |
| |
| return false; |
| } |
| |
| /* A mips_elf_link_hash_traverse callback for which DATA points to the |
| link_info structure. Decide whether the hash entry needs an entry in |
| the global part of the primary GOT, setting global_got_area accordingly. |
| Count the number of global symbols that are in the primary GOT only |
| because they have relocations against them (reloc_only_gotno). */ |
| |
| static bool |
| mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data) |
| { |
| struct bfd_link_info *info; |
| struct mips_elf_link_hash_table *htab; |
| struct mips_got_info *g; |
| |
| info = (struct bfd_link_info *) data; |
| htab = mips_elf_hash_table (info); |
| g = htab->got_info; |
| if (h->global_got_area != GGA_NONE) |
| { |
| /* Make a final decision about whether the symbol belongs in the |
| local or global GOT. */ |
| if (mips_use_local_got_p (info, h)) |
| /* The symbol belongs in the local GOT. We no longer need this |
| entry if it was only used for relocations; those relocations |
| will be against the null or section symbol instead of H. */ |
| h->global_got_area = GGA_NONE; |
| else if (htab->root.target_os == is_vxworks |
| && h->got_only_for_calls |
| && h->root.plt.plist->mips_offset != MINUS_ONE) |
| /* On VxWorks, calls can refer directly to the .got.plt entry; |
| they don't need entries in the regular GOT. .got.plt entries |
| will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */ |
| h->global_got_area = GGA_NONE; |
| else if (h->global_got_area == GGA_RELOC_ONLY) |
| { |
| g->reloc_only_gotno++; |
| g->global_gotno++; |
| } |
| } |
| return 1; |
| } |
| |
| /* A htab_traverse callback for GOT entries. Add each one to the GOT |
| given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ |
| |
| static int |
| mips_elf_add_got_entry (void **entryp, void *data) |
| { |
| struct mips_got_entry *entry; |
| struct mips_elf_traverse_got_arg *arg; |
| void **slot; |
| |
| entry = (struct mips_got_entry *) *entryp; |
| arg = (struct mips_elf_traverse_got_arg *) data; |
| slot = htab_find_slot (arg->g->got_entries, entry, INSERT); |
| if (!slot) |
| { |
| arg->g = NULL; |
| return 0; |
| } |
| if (!*slot) |
| { |
| *slot = entry; |
| mips_elf_count_got_entry (arg->info, arg->g, entry); |
| } |
| return 1; |
| } |
| |
| /* A htab_traverse callback for GOT page entries. Add each one to the GOT |
| given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ |
| |
| static int |
| mips_elf_add_got_page_entry (void **entryp, void *data) |
| { |
| struct mips_got_page_entry *entry; |
| struct mips_elf_traverse_got_arg *arg; |
| void **slot; |
| |
| entry = (struct mips_got_page_entry *) *entryp; |
| arg = (struct mips_elf_traverse_got_arg *) data; |
| slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT); |
| if (!slot) |
| { |
| arg->g = NULL; |
| return 0; |
| } |
| if (!*slot) |
| { |
| *slot = entry; |
| arg->g->page_gotno += entry->num_pages; |
| } |
| return 1; |
| } |
| |
| /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if |
| this would lead to overflow, 1 if they were merged successfully, |
| and 0 if a merge failed due to lack of memory. (These values are chosen |
| so that nonnegative return values can be returned by a htab_traverse |
| callback.) */ |
| |
| static int |
| mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from, |
| struct mips_got_info *to, |
| struct mips_elf_got_per_bfd_arg *arg) |
| { |
| struct mips_elf_traverse_got_arg tga; |
| unsigned int estimate; |
| |
| /* Work out how many page entries we would need for the combined GOT. */ |
| estimate = arg->max_pages; |
| if (estimate >= from->page_gotno + to->page_gotno) |
| estimate = from->page_gotno + to->page_gotno; |
| |
| /* And conservatively estimate how many local and TLS entries |
| would be needed. */ |
| estimate += from->local_gotno + to->local_gotno; |
| estimate += from->tls_gotno + to->tls_gotno; |
| |
| /* If we're merging with the primary got, any TLS relocations will |
| come after the full set of global entries. Otherwise estimate those |
| conservatively as well. */ |
| if (to == arg->primary && from->tls_gotno + to->tls_gotno) |
| estimate += arg->global_count; |
| else |
| estimate += from->global_gotno + to->global_gotno; |
| |
| /* Bail out if the combined GOT might be too big. */ |
| if (estimate > arg->max_count) |
| return -1; |
| |
| /* Transfer the bfd's got information from FROM to TO. */ |
| tga.info = arg->info; |
| tga.g = to; |
| htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga); |
| if (!tga.g) |
| return 0; |
| |
| htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga); |
| if (!tga.g) |
| return 0; |
| |
| mips_elf_replace_bfd_got (abfd, to); |
| return 1; |
| } |
| |
| /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much |
| as possible of the primary got, since it doesn't require explicit |
| dynamic relocations, but don't use bfds that would reference global |
| symbols out of the addressable range. Failing the primary got, |
| attempt to merge with the current got, or finish the current got |
| and then make make the new got current. */ |
| |
| static bool |
| mips_elf_merge_got (bfd *abfd, struct mips_got_info *g, |
| struct mips_elf_got_per_bfd_arg *arg) |
| { |
| unsigned int estimate; |
| int result; |
| |
| if (!mips_elf_resolve_final_got_entries (arg->info, g)) |
| return false; |
| |
| /* Work out the number of page, local and TLS entries. */ |
| estimate = arg->max_pages; |
| if (estimate > g->page_gotno) |
| estimate = g->page_gotno; |
| estimate += g->local_gotno + g->tls_gotno; |
| |
| /* We place TLS GOT entries after both locals and globals. The globals |
| for the primary GOT may overflow the normal GOT size limit, so be |
| sure not to merge a GOT which requires TLS with the primary GOT in that |
| case. This doesn't affect non-primary GOTs. */ |
| estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno); |
| |
| if (estimate <= arg->max_count) |
| { |
| /* If we don't have a primary GOT, use it as |
| a starting point for the primary GOT. */ |
| if (!arg->primary) |
| { |
| arg->primary = g; |
| return true; |
| } |
| |
| /* Try merging with the primary GOT. */ |
| result = mips_elf_merge_got_with (abfd, g, arg->primary, arg); |
| if (result >= 0) |
| return result; |
| } |
| |
| /* If we can merge with the last-created got, do it. */ |
| if (arg->current) |
| { |
| result = mips_elf_merge_got_with (abfd, g, arg->current, arg); |
| if (result >= 0) |
| return result; |
| } |
| |
| /* Well, we couldn't merge, so create a new GOT. Don't check if it |
| fits; if it turns out that it doesn't, we'll get relocation |
| overflows anyway. */ |
| g->next = arg->current; |
| arg->current = g; |
| |
| return true; |
| } |
| |
| /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx |
| to GOTIDX, duplicating the entry if it has already been assigned |
| an index in a different GOT. */ |
| |
| static bool |
| mips_elf_set_gotidx (void **entryp, long gotidx) |
| { |
| struct mips_got_entry *entry; |
| |
| entry = (struct mips_got_entry *) *entryp; |
| if (entry->gotidx > 0) |
| { |
| struct mips_got_entry *new_entry; |
| |
| new_entry = bfd_alloc (entry->abfd, sizeof (*entry)); |
| if (!new_entry) |
| return false; |
| |
| *new_entry = *entry; |
| *entryp = new_entry; |
| entry = new_entry; |
| } |
| entry->gotidx = gotidx; |
| return true; |
| } |
| |
| /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a |
| mips_elf_traverse_got_arg in which DATA->value is the size of one |
| GOT entry. Set DATA->g to null on failure. */ |
| |
| static int |
| mips_elf_initialize_tls_index (void **entryp, void *data) |
| { |
| struct mips_got_entry *entry; |
| struct mips_elf_traverse_got_arg *arg; |
| |
| /* We're only interested in TLS symbols. */ |
| entry = (struct mips_got_entry *) *entryp; |
| if (entry->tls_type == GOT_TLS_NONE) |
| return 1; |
| |
| arg = (struct mips_elf_traverse_got_arg *) data; |
| if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno)) |
| { |
| arg->g = NULL; |
| return 0; |
| } |
| |
| /* Account for the entries we've just allocated. */ |
| arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type); |
| return 1; |
| } |
| |
| /* A htab_traverse callback for GOT entries, where DATA points to a |
| mips_elf_traverse_got_arg. Set the global_got_area of each global |
| symbol to DATA->value. */ |
| |
| static int |
| mips_elf_set_global_got_area (void **entryp, void *data) |
| { |
| struct mips_got_entry *entry; |
| struct mips_elf_traverse_got_arg *arg; |
| |
| entry = (struct mips_got_entry *) *entryp; |
| arg = (struct mips_elf_traverse_got_arg *) data; |
| if (entry->abfd != NULL |
| && entry->symndx == -1 |
| && entry->d.h->global_got_area != GGA_NONE) |
| entry->d.h->global_got_area = arg->value; |
| return 1; |
| } |
| |
| /* A htab_traverse callback for secondary GOT entries, where DATA points |
| to a mips_elf_traverse_got_arg. Assign GOT indices to global entries |
| and record the number of relocations they require. DATA->value is |
| the size of one GOT entry. Set DATA->g to null on failure. */ |
| |
| static int |
| mips_elf_set_global_gotidx (void **entryp, void *data) |
| { |
| struct mips_got_entry *entry; |
| struct mips_elf_traverse_got_arg *arg; |
| |
| entry = (struct mips_got_entry *) *entryp; |
| arg = (struct mips_elf_traverse_got_arg *) data; |
| if (entry->abfd != NULL |
| && entry->symndx == -1 |
| && entry->d.h->global_got_area != GGA_NONE) |
| { |
| if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno)) |
| { |
| arg->g = NULL; |
| return 0; |
| } |
| arg->g->assigned_low_gotno += 1; |
| |
| if (bfd_link_pic (arg->info) |
| || (elf_hash_table (arg->info)->dynamic_sections_created |
| && entry->d.h->root.def_dynamic |
| && !entry->d.h->root.def_regular)) |
| arg->g->relocs += 1; |
| } |
| |
| return 1; |
| } |
| |
| /* A htab_traverse callback for GOT entries for which DATA is the |
| bfd_link_info. Forbid any global symbols from having traditional |
| lazy-binding stubs. */ |
| |
| static int |
| mips_elf_forbid_lazy_stubs (void **entryp, void *data) |
| { |
| struct bfd_link_info *info; |
| struct mips_elf_link_hash_table *htab; |
| struct mips_got_entry *entry; |
| |
| entry = (struct mips_got_entry *) *entryp; |
| info = (struct bfd_link_info *) data; |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| if (entry->abfd != NULL |
| && entry->symndx == -1 |
| && entry->d.h->needs_lazy_stub) |
| { |
| entry->d.h->needs_lazy_stub = false; |
| htab->lazy_stub_count--; |
| } |
| |
| return 1; |
| } |
| |
| /* Return the offset of an input bfd IBFD's GOT from the beginning of |
| the primary GOT. */ |
| static bfd_vma |
| mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) |
| { |
| if (!g->next) |
| return 0; |
| |
| g = mips_elf_bfd_got (ibfd, false); |
| if (! g) |
| return 0; |
| |
| BFD_ASSERT (g->next); |
| |
| g = g->next; |
| |
| return (g->local_gotno + g->global_gotno + g->tls_gotno) |
| * MIPS_ELF_GOT_SIZE (abfd); |
| } |
| |
| /* Turn a single GOT that is too big for 16-bit addressing into |
| a sequence of GOTs, each one 16-bit addressable. */ |
| |
| static bool |
| mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, |
| asection *got, bfd_size_type pages) |
| { |
| struct mips_elf_link_hash_table *htab; |
| struct mips_elf_got_per_bfd_arg got_per_bfd_arg; |
| struct mips_elf_traverse_got_arg tga; |
| struct mips_got_info *g, *gg; |
| unsigned int assign, needed_relocs; |
| bfd *dynobj, *ibfd; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| g = htab->got_info; |
| |
| got_per_bfd_arg.obfd = abfd; |
| got_per_bfd_arg.info = info; |
| got_per_bfd_arg.current = NULL; |
| got_per_bfd_arg.primary = NULL; |
| got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) |
| / MIPS_ELF_GOT_SIZE (abfd)) |
| - htab->reserved_gotno); |
| got_per_bfd_arg.max_pages = pages; |
| /* The number of globals that will be included in the primary GOT. |
| See the calls to mips_elf_set_global_got_area below for more |
| information. */ |
| got_per_bfd_arg.global_count = g->global_gotno; |
| |
| /* Try to merge the GOTs of input bfds together, as long as they |
| don't seem to exceed the maximum GOT size, choosing one of them |
| to be the primary GOT. */ |
| for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) |
| { |
| gg = mips_elf_bfd_got (ibfd, false); |
| if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg)) |
| return false; |
| } |
| |
| /* If we do not find any suitable primary GOT, create an empty one. */ |
| if (got_per_bfd_arg.primary == NULL) |
| g->next = mips_elf_create_got_info (abfd); |
| else |
| g->next = got_per_bfd_arg.primary; |
| g->next->next = got_per_bfd_arg.current; |
| |
| /* GG is now the master GOT, and G is the primary GOT. */ |
| gg = g; |
| g = g->next; |
| |
| /* Map the output bfd to the primary got. That's what we're going |
| to use for bfds that use GOT16 or GOT_PAGE relocations that we |
| didn't mark in check_relocs, and we want a quick way to find it. |
| We can't just use gg->next because we're going to reverse the |
| list. */ |
| mips_elf_replace_bfd_got (abfd, g); |
| |
| /* Every symbol that is referenced in a dynamic relocation must be |
| present in the primary GOT, so arrange for them to appear after |
| those that are actually referenced. */ |
| gg->reloc_only_gotno = gg->global_gotno - g->global_gotno; |
| g->global_gotno = gg->global_gotno; |
| |
| tga.info = info; |
| tga.value = GGA_RELOC_ONLY; |
| htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga); |
| tga.value = GGA_NORMAL; |
| htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga); |
| |
| /* Now go through the GOTs assigning them offset ranges. |
| [assigned_low_gotno, local_gotno[ will be set to the range of local |
| entries in each GOT. We can then compute the end of a GOT by |
| adding local_gotno to global_gotno. We reverse the list and make |
| it circular since then we'll be able to quickly compute the |
| beginning of a GOT, by computing the end of its predecessor. To |
| avoid special cases for the primary GOT, while still preserving |
| assertions that are valid for both single- and multi-got links, |
| we arrange for the main got struct to have the right number of |
| global entries, but set its local_gotno such that the initial |
| offset of the primary GOT is zero. Remember that the primary GOT |
| will become the last item in the circular linked list, so it |
| points back to the master GOT. */ |
| gg->local_gotno = -g->global_gotno; |
| gg->global_gotno = g->global_gotno; |
| gg->tls_gotno = 0; |
| assign = 0; |
| gg->next = gg; |
| |
| do |
| { |
| struct mips_got_info *gn; |
| |
| assign += htab->reserved_gotno; |
| g->assigned_low_gotno = assign; |
| g->local_gotno += assign; |
| g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno); |
| g->assigned_high_gotno = g->local_gotno - 1; |
| assign = g->local_gotno + g->global_gotno + g->tls_gotno; |
| |
| /* Take g out of the direct list, and push it onto the reversed |
| list that gg points to. g->next is guaranteed to be nonnull after |
| this operation, as required by mips_elf_initialize_tls_index. */ |
| gn = g->next; |
| g->next = gg->next; |
| gg->next = g; |
| |
| /* Set up any TLS entries. We always place the TLS entries after |
| all non-TLS entries. */ |
| g->tls_assigned_gotno = g->local_gotno + g->global_gotno; |
| tga.g = g; |
| tga.value = MIPS_ELF_GOT_SIZE (abfd); |
| htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); |
| if (!tga.g) |
| return false; |
| BFD_ASSERT (g->tls_assigned_gotno == assign); |
| |
| /* Move onto the next GOT. It will be a secondary GOT if nonull. */ |
| g = gn; |
| |
| /* Forbid global symbols in every non-primary GOT from having |
| lazy-binding stubs. */ |
| if (g) |
| htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info); |
| } |
| while (g); |
| |
| got->size = assign * MIPS_ELF_GOT_SIZE (abfd); |
| |
| needed_relocs = 0; |
| for (g = gg->next; g && g->next != gg; g = g->next) |
| { |
| unsigned int save_assign; |
| |
| /* Assign offsets to global GOT entries and count how many |
| relocations they need. */ |
| save_assign = g->assigned_low_gotno; |
| g->assigned_low_gotno = g->local_gotno; |
| tga.info = info; |
| tga.value = MIPS_ELF_GOT_SIZE (abfd); |
| tga.g = g; |
| htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga); |
| if (!tga.g) |
| return false; |
| BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno); |
| g->assigned_low_gotno = save_assign; |
| |
| if (bfd_link_pic (info)) |
| { |
| g->relocs += g->local_gotno - g->assigned_low_gotno; |
| BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno |
| + g->next->global_gotno |
| + g->next->tls_gotno |
| + htab->reserved_gotno); |
| } |
| needed_relocs += g->relocs; |
| } |
| needed_relocs += g->relocs; |
| |
| if (needed_relocs) |
| mips_elf_allocate_dynamic_relocations (dynobj, info, |
| needed_relocs); |
| |
| return true; |
| } |
| |
| |
| /* Returns the first relocation of type r_type found, beginning with |
| RELOCATION. RELEND is one-past-the-end of the relocation table. */ |
| |
| static const Elf_Internal_Rela * |
| mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, |
| const Elf_Internal_Rela *relocation, |
| const Elf_Internal_Rela *relend) |
| { |
| unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info); |
| |
| while (relocation < relend) |
| { |
| if (ELF_R_TYPE (abfd, relocation->r_info) == r_type |
| && ELF_R_SYM (abfd, relocation->r_info) == r_symndx) |
| return relocation; |
| |
| ++relocation; |
| } |
| |
| /* We didn't find it. */ |
| return NULL; |
| } |
| |
| /* Return whether an input relocation is against a local symbol. */ |
| |
| static bool |
| mips_elf_local_relocation_p (bfd *input_bfd, |
| const Elf_Internal_Rela *relocation, |
| asection **local_sections) |
| { |
| unsigned long r_symndx; |
| Elf_Internal_Shdr *symtab_hdr; |
| size_t extsymoff; |
| |
| r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; |
| |
| if (r_symndx < extsymoff) |
| return true; |
| if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) |
| return true; |
| |
| return false; |
| } |
| |
| /* Sign-extend VALUE, which has the indicated number of BITS. */ |
| |
| bfd_vma |
| _bfd_mips_elf_sign_extend (bfd_vma value, int bits) |
| { |
| if (value & ((bfd_vma) 1 << (bits - 1))) |
| /* VALUE is negative. */ |
| value |= ((bfd_vma) - 1) << bits; |
| |
| return value; |
| } |
| |
| /* Return non-zero if the indicated VALUE has overflowed the maximum |
| range expressible by a signed number with the indicated number of |
| BITS. */ |
| |
| static bool |
| mips_elf_overflow_p (bfd_vma value, int bits) |
| { |
| bfd_signed_vma svalue = (bfd_signed_vma) value; |
| |
| if (svalue > (1 << (bits - 1)) - 1) |
| /* The value is too big. */ |
| return true; |
| else if (svalue < -(1 << (bits - 1))) |
| /* The value is too small. */ |
| return true; |
| |
| /* All is well. */ |
| return false; |
| } |
| |
| /* Calculate the %high function. */ |
| |
| static bfd_vma |
| mips_elf_high (bfd_vma value) |
| { |
| return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; |
| } |
| |
| /* Calculate the %higher function. */ |
| |
| static bfd_vma |
| mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) |
| { |
| #ifdef BFD64 |
| return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; |
| #else |
| abort (); |
| return MINUS_ONE; |
| #endif |
| } |
| |
| /* Calculate the %highest function. */ |
| |
| static bfd_vma |
| mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) |
| { |
| #ifdef BFD64 |
| return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; |
| #else |
| abort (); |
| return MINUS_ONE; |
| #endif |
| } |
| |
| /* Create the .compact_rel section. */ |
| |
| static bool |
| mips_elf_create_compact_rel_section |
| (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) |
| { |
| flagword flags; |
| register asection *s; |
| |
| if (bfd_get_linker_section (abfd, ".compact_rel") == NULL) |
| { |
| flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED |
| | SEC_READONLY); |
| |
| s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) |
| return false; |
| |
| s->size = sizeof (Elf32_External_compact_rel); |
| } |
| |
| return true; |
| } |
| |
| /* Create the .got section to hold the global offset table. */ |
| |
| static bool |
| mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) |
| { |
| flagword flags; |
| register asection *s; |
| struct elf_link_hash_entry *h; |
| struct bfd_link_hash_entry *bh; |
| struct mips_elf_link_hash_table *htab; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| /* This function may be called more than once. */ |
| if (htab->root.sgot) |
| return true; |
| |
| flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED); |
| |
| /* We have to use an alignment of 2**4 here because this is hardcoded |
| in the function stub generation and in the linker script. */ |
| s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, 4)) |
| return false; |
| htab->root.sgot = s; |
| |
| /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the |
| linker script because we don't want to define the symbol if we |
| are not creating a global offset table. */ |
| bh = NULL; |
| if (! (_bfd_generic_link_add_one_symbol |
| (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, |
| 0, NULL, false, get_elf_backend_data (abfd)->collect, &bh))) |
| return false; |
| |
| h = (struct elf_link_hash_entry *) bh; |
| h->non_elf = 0; |
| h->def_regular = 1; |
| h->type = STT_OBJECT; |
| h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; |
| elf_hash_table (info)->hgot = h; |
| |
| if (bfd_link_pic (info) |
| && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| |
| htab->got_info = mips_elf_create_got_info (abfd); |
| mips_elf_section_data (s)->elf.this_hdr.sh_flags |
| |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
| |
| /* We also need a .got.plt section when generating PLTs. */ |
| s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", |
| SEC_ALLOC | SEC_LOAD |
| | SEC_HAS_CONTENTS |
| | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED); |
| if (s == NULL) |
| return false; |
| htab->root.sgotplt = s; |
| |
| return true; |
| } |
| |
| /* Return true if H refers to the special VxWorks __GOTT_BASE__ or |
| __GOTT_INDEX__ symbols. These symbols are only special for |
| shared objects; they are not used in executables. */ |
| |
| static bool |
| is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) |
| { |
| return (mips_elf_hash_table (info)->root.target_os == is_vxworks |
| && bfd_link_pic (info) |
| && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 |
| || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); |
| } |
| |
| /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might |
| require an la25 stub. See also mips_elf_local_pic_function_p, |
| which determines whether the destination function ever requires a |
| stub. */ |
| |
| static bool |
| mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type, |
| bool target_is_16_bit_code_p) |
| { |
| /* We specifically ignore branches and jumps from EF_PIC objects, |
| where the onus is on the compiler or programmer to perform any |
| necessary initialization of $25. Sometimes such initialization |
| is unnecessary; for example, -mno-shared functions do not use |
| the incoming value of $25, and may therefore be called directly. */ |
| if (PIC_OBJECT_P (input_bfd)) |
| return false; |
| |
| switch (r_type) |
| { |
| case R_MIPS_26: |
| case R_MIPS_PC16: |
| case R_MIPS_PC21_S2: |
| case R_MIPS_PC26_S2: |
| case R_MICROMIPS_26_S1: |
| case R_MICROMIPS_PC7_S1: |
| case R_MICROMIPS_PC10_S1: |
| case R_MICROMIPS_PC16_S1: |
| case R_MICROMIPS_PC23_S2: |
| return true; |
| |
| case R_MIPS16_26: |
| return !target_is_16_bit_code_p; |
| |
| default: |
| return false; |
| } |
| } |
| |
| /* Obtain the field relocated by RELOCATION. */ |
| |
| static bfd_vma |
| mips_elf_obtain_contents (reloc_howto_type *howto, |
| const Elf_Internal_Rela *relocation, |
| bfd *input_bfd, bfd_byte *contents) |
| { |
| bfd_vma x = 0; |
| bfd_byte *location = contents + relocation->r_offset; |
| unsigned int size = bfd_get_reloc_size (howto); |
| |
| /* Obtain the bytes. */ |
| if (size != 0) |
| x = bfd_get (8 * size, input_bfd, location); |
| |
| return x; |
| } |
| |
| /* Store the field relocated by RELOCATION. */ |
| |
| static void |
| mips_elf_store_contents (reloc_howto_type *howto, |
| const Elf_Internal_Rela *relocation, |
| bfd *input_bfd, bfd_byte *contents, bfd_vma x) |
| { |
| bfd_byte *location = contents + relocation->r_offset; |
| unsigned int size = bfd_get_reloc_size (howto); |
| |
| /* Put the value into the output. */ |
| if (size != 0) |
| bfd_put (8 * size, input_bfd, x, location); |
| } |
| |
| /* Try to patch a load from GOT instruction in CONTENTS pointed to by |
| RELOCATION described by HOWTO, with a move of 0 to the load target |
| register, returning TRUE if that is successful and FALSE otherwise. |
| If DOIT is FALSE, then only determine it patching is possible and |
| return status without actually changing CONTENTS. |
| */ |
| |
| static bool |
| mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents, |
| const Elf_Internal_Rela *relocation, |
| reloc_howto_type *howto, bool doit) |
| { |
| int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); |
| bfd_byte *location = contents + relocation->r_offset; |
| bool nullified = true; |
| bfd_vma x; |
| |
| _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location); |
| |
| /* Obtain the current value. */ |
| x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); |
| |
| /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19] |
| while RY is at bits [18:16] of the combined 32-bit instruction word. */ |
| if (mips16_reloc_p (r_type) |
| && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */ |
| || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */ |
| x = (0x3cdU << 22) | (x & (7 << 16)) << 3; /* LI */ |
| else if (micromips_reloc_p (r_type) |
| && ((x >> 26) & 0x37) == 0x37) /* LW/LD */ |
| x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */ |
| else if (((x >> 26) & 0x3f) == 0x23 /* LW */ |
| || ((x >> 26) & 0x3f) == 0x37) /* LD */ |
| x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */ |
| else |
| nullified = false; |
| |
| /* Put the value into the output. */ |
| if (doit && nullified) |
| mips_elf_store_contents (howto, relocation, input_bfd, contents, x); |
| |
| _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, false, location); |
| |
| return nullified; |
| } |
| |
| /* Calculate the value produced by the RELOCATION (which comes from |
| the INPUT_BFD). The ADDEND is the addend to use for this |
| RELOCATION; RELOCATION->R_ADDEND is ignored. |
| |
| The result of the relocation calculation is stored in VALUEP. |
| On exit, set *CROSS_MODE_JUMP_P to true if the relocation field |
| is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. |
| |
| This function returns bfd_reloc_continue if the caller need take no |
| further action regarding this relocation, bfd_reloc_notsupported if |
| something goes dramatically wrong, bfd_reloc_overflow if an |
| overflow occurs, and bfd_reloc_ok to indicate success. */ |
| |
| static bfd_reloc_status_type |
| mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, |
| asection *input_section, bfd_byte *contents, |
| struct bfd_link_info *info, |
| const Elf_Internal_Rela *relocation, |
| bfd_vma addend, reloc_howto_type *howto, |
| Elf_Internal_Sym *local_syms, |
| asection **local_sections, bfd_vma *valuep, |
| const char **namep, |
| bool *cross_mode_jump_p, |
| bool save_addend) |
| { |
| /* The eventual value we will return. */ |
| bfd_vma value; |
| /* The address of the symbol against which the relocation is |
| occurring. */ |
| bfd_vma symbol = 0; |
| /* The final GP value to be used for the relocatable, executable, or |
| shared object file being produced. */ |
| bfd_vma gp; |
| /* The place (section offset or address) of the storage unit being |
| relocated. */ |
| bfd_vma p; |
| /* The value of GP used to create the relocatable object. */ |
| bfd_vma gp0; |
| /* The offset into the global offset table at which the address of |
| the relocation entry symbol, adjusted by the addend, resides |
| during execution. */ |
| bfd_vma g = MINUS_ONE; |
| /* The section in which the symbol referenced by the relocation is |
| located. */ |
| asection *sec = NULL; |
| struct mips_elf_link_hash_entry *h = NULL; |
| /* TRUE if the symbol referred to by this relocation is a local |
| symbol. */ |
| bool local_p, was_local_p; |
| /* TRUE if the symbol referred to by this relocation is a section |
| symbol. */ |
| bool section_p = false; |
| /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ |
| bool gp_disp_p = false; |
| /* TRUE if the symbol referred to by this relocation is |
| "__gnu_local_gp". */ |
| bool gnu_local_gp_p = false; |
| Elf_Internal_Shdr *symtab_hdr; |
| size_t extsymoff; |
| unsigned long r_symndx; |
| int r_type; |
| /* TRUE if overflow occurred during the calculation of the |
| relocation value. */ |
| bool overflowed_p; |
| /* TRUE if this relocation refers to a MIPS16 function. */ |
| bool target_is_16_bit_code_p = false; |
| bool target_is_micromips_code_p = false; |
| struct mips_elf_link_hash_table *htab; |
| bfd *dynobj; |
| bool resolved_to_zero; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| /* Parse the relocation. */ |
| r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); |
| r_type = ELF_R_TYPE (input_bfd, relocation->r_info); |
| p = (input_section->output_section->vma |
| + input_section->output_offset |
| + relocation->r_offset); |
| |
| /* Assume that there will be no overflow. */ |
| overflowed_p = false; |
| |
| /* Figure out whether or not the symbol is local, and get the offset |
| used in the array of hash table entries. */ |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| local_p = mips_elf_local_relocation_p (input_bfd, relocation, |
| local_sections); |
| was_local_p = local_p; |
| if (! elf_bad_symtab (input_bfd)) |
| extsymoff = symtab_hdr->sh_info; |
| else |
| { |
| /* The symbol table does not follow the rule that local symbols |
| must come before globals. */ |
| extsymoff = 0; |
| } |
| |
| /* Figure out the value of the symbol. */ |
| if (local_p) |
| { |
| bool micromips_p = MICROMIPS_P (abfd); |
| Elf_Internal_Sym *sym; |
| |
| sym = local_syms + r_symndx; |
| sec = local_sections[r_symndx]; |
| |
| section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION; |
| |
| symbol = sec->output_section->vma + sec->output_offset; |
| if (!section_p || (sec->flags & SEC_MERGE)) |
| symbol += sym->st_value; |
| if ((sec->flags & SEC_MERGE) && section_p) |
| { |
| addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); |
| addend -= symbol; |
| addend += sec->output_section->vma + sec->output_offset; |
| } |
| |
| /* MIPS16/microMIPS text labels should be treated as odd. */ |
| if (ELF_ST_IS_COMPRESSED (sym->st_other)) |
| ++symbol; |
| |
| /* Record the name of this symbol, for our caller. */ |
| *namep = bfd_elf_string_from_elf_section (input_bfd, |
| symtab_hdr->sh_link, |
| sym->st_name); |
| if (*namep == NULL || **namep == '\0') |
| *namep = bfd_section_name (sec); |
| |
| /* For relocations against a section symbol and ones against no |
| symbol (absolute relocations) infer the ISA mode from the addend. */ |
| if (section_p || r_symndx == STN_UNDEF) |
| { |
| target_is_16_bit_code_p = (addend & 1) && !micromips_p; |
| target_is_micromips_code_p = (addend & 1) && micromips_p; |
| } |
| /* For relocations against an absolute symbol infer the ISA mode |
| from the value of the symbol plus addend. */ |
| else if (bfd_is_abs_section (sec)) |
| { |
| target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p; |
| target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p; |
| } |
| /* Otherwise just use the regular symbol annotation available. */ |
| else |
| { |
| target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other); |
| target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other); |
| } |
| } |
| else |
| { |
| /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ |
| |
| /* For global symbols we look up the symbol in the hash-table. */ |
| h = ((struct mips_elf_link_hash_entry *) |
| elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); |
| /* Find the real hash-table entry for this symbol. */ |
| while (h->root.root.type == bfd_link_hash_indirect |
| || h->root.root.type == bfd_link_hash_warning) |
| h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| |
| /* Record the name of this symbol, for our caller. */ |
| *namep = h->root.root.root.string; |
| |
| /* See if this is the special _gp_disp symbol. Note that such a |
| symbol must always be a global symbol. */ |
| if (strcmp (*namep, "_gp_disp") == 0 |
| && ! NEWABI_P (input_bfd)) |
| { |
| /* Relocations against _gp_disp are permitted only with |
| R_MIPS_HI16 and R_MIPS_LO16 relocations. */ |
| if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type)) |
| return bfd_reloc_notsupported; |
| |
| gp_disp_p = true; |
| } |
| /* See if this is the special _gp symbol. Note that such a |
| symbol must always be a global symbol. */ |
| else if (strcmp (*namep, "__gnu_local_gp") == 0) |
| gnu_local_gp_p = true; |
| |
| |
| /* If this symbol is defined, calculate its address. Note that |
| _gp_disp is a magic symbol, always implicitly defined by the |
| linker, so it's inappropriate to check to see whether or not |
| its defined. */ |
| else if ((h->root.root.type == bfd_link_hash_defined |
| || h->root.root.type == bfd_link_hash_defweak) |
| && h->root.root.u.def.section) |
| { |
| sec = h->root.root.u.def.section; |
| if (sec->output_section) |
| symbol = (h->root.root.u.def.value |
| + sec->output_section->vma |
| + sec->output_offset); |
| else |
| symbol = h->root.root.u.def.value; |
| } |
| else if (h->root.root.type == bfd_link_hash_undefweak) |
| /* We allow relocations against undefined weak symbols, giving |
| it the value zero, so that you can undefined weak functions |
| and check to see if they exist by looking at their |
| addresses. */ |
| symbol = 0; |
| else if (info->unresolved_syms_in_objects == RM_IGNORE |
| && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) |
| symbol = 0; |
| else if (strcmp (*namep, SGI_COMPAT (input_bfd) |
| ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) |
| { |
| /* If this is a dynamic link, we should have created a |
| _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol |
| in _bfd_mips_elf_create_dynamic_sections. |
| Otherwise, we should define the symbol with a value of 0. |
| FIXME: It should probably get into the symbol table |
| somehow as well. */ |
| BFD_ASSERT (! bfd_link_pic (info)); |
| BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); |
| symbol = 0; |
| } |
| else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) |
| { |
| /* This is an optional symbol - an Irix specific extension to the |
| ELF spec. Ignore it for now. |
| XXX - FIXME - there is more to the spec for OPTIONAL symbols |
| than simply ignoring them, but we do not handle this for now. |
| For information see the "64-bit ELF Object File Specification" |
| which is available from here: |
| http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */ |
| symbol = 0; |
| } |
| else |
| { |
| bool reject_undefined |
| = ((info->unresolved_syms_in_objects == RM_DIAGNOSE |
| && !info->warn_unresolved_syms) |
| || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT); |
| |
| info->callbacks->undefined_symbol |
| (info, h->root.root.root.string, input_bfd, |
| input_section, relocation->r_offset, reject_undefined); |
| |
| if (reject_undefined) |
| return bfd_reloc_undefined; |
| |
| symbol = 0; |
| } |
| |
| target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other); |
| target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other); |
| } |
| |
| /* If this is a reference to a 16-bit function with a stub, we need |
| to redirect the relocation to the stub unless: |
| |
| (a) the relocation is for a MIPS16 JAL; |
| |
| (b) the relocation is for a MIPS16 PIC call, and there are no |
| non-MIPS16 uses of the GOT slot; or |
| |
| (c) the section allows direct references to MIPS16 functions. */ |
| if (r_type != R_MIPS16_26 |
| && !bfd_link_relocatable (info) |
| && ((h != NULL |
| && h->fn_stub != NULL |
| && (r_type != R_MIPS16_CALL16 || h->need_fn_stub)) |
| || (local_p |
| && mips_elf_tdata (input_bfd)->local_stubs != NULL |
| && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) |
| && !section_allows_mips16_refs_p (input_section)) |
| { |
| /* This is a 32- or 64-bit call to a 16-bit function. We should |
| have already noticed that we were going to need the |
| stub. */ |
| if (local_p) |
| { |
| sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx]; |
| value = 0; |
| } |
| else |
| { |
| BFD_ASSERT (h->need_fn_stub); |
| if (h->la25_stub) |
| { |
| /* If a LA25 header for the stub itself exists, point to the |
| prepended LUI/ADDIU sequence. */ |
| sec = h->la25_stub->stub_section; |
| value = h->la25_stub->offset; |
| } |
| else |
| { |
| sec = h->fn_stub; |
| value = 0; |
| } |
| } |
| |
| symbol = sec->output_section->vma + sec->output_offset + value; |
| /* The target is 16-bit, but the stub isn't. */ |
| target_is_16_bit_code_p = false; |
| } |
| /* If this is a MIPS16 call with a stub, that is made through the PLT or |
| to a standard MIPS function, we need to redirect the call to the stub. |
| Note that we specifically exclude R_MIPS16_CALL16 from this behavior; |
| indirect calls should use an indirect stub instead. */ |
| else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info) |
| && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL)) |
| || (local_p |
| && mips_elf_tdata (input_bfd)->local_call_stubs != NULL |
| && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL)) |
| && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p)) |
| { |
| if (local_p) |
| sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx]; |
| else |
| { |
| /* If both call_stub and call_fp_stub are defined, we can figure |
| out which one to use by checking which one appears in the input |
| file. */ |
| if (h->call_stub != NULL && h->call_fp_stub != NULL) |
| { |
| asection *o; |
| |
| sec = NULL; |
| for (o = input_bfd->sections; o != NULL; o = o->next) |
| { |
| if (CALL_FP_STUB_P (bfd_section_name (o))) |
| { |
| sec = h->call_fp_stub; |
| break; |
| } |
| } |
| if (sec == NULL) |
| sec = h->call_stub; |
| } |
| else if (h->call_stub != NULL) |
| sec = h->call_stub; |
| else |
| sec = h->call_fp_stub; |
| } |
| |
| BFD_ASSERT (sec->size > 0); |
| symbol = sec->output_section->vma + sec->output_offset; |
| } |
| /* If this is a direct call to a PIC function, redirect to the |
| non-PIC stub. */ |
| else if (h != NULL && h->la25_stub |
| && mips_elf_relocation_needs_la25_stub (input_bfd, r_type, |
| target_is_16_bit_code_p)) |
| { |
| symbol = (h->la25_stub->stub_section->output_section->vma |
| + h->la25_stub->stub_section->output_offset |
| + h->la25_stub->offset); |
| if (ELF_ST_IS_MICROMIPS (h->root.other)) |
| symbol |= 1; |
| } |
| /* For direct MIPS16 and microMIPS calls make sure the compressed PLT |
| entry is used if a standard PLT entry has also been made. In this |
| case the symbol will have been set by mips_elf_set_plt_sym_value |
| to point to the standard PLT entry, so redirect to the compressed |
| one. */ |
| else if ((mips16_branch_reloc_p (r_type) |
| || micromips_branch_reloc_p (r_type)) |
| && !bfd_link_relocatable (info) |
| && h != NULL |
| && h->use_plt_entry |
| && h->root.plt.plist->comp_offset != MINUS_ONE |
| && h->root.plt.plist->mips_offset != MINUS_ONE) |
| { |
| bool micromips_p = MICROMIPS_P (abfd); |
| |
| sec = htab->root.splt; |
| symbol = (sec->output_section->vma |
| + sec->output_offset |
| + htab->plt_header_size |
| + htab->plt_mips_offset |
| + h->root.plt.plist->comp_offset |
| + 1); |
| |
| target_is_16_bit_code_p = !micromips_p; |
| target_is_micromips_code_p = micromips_p; |
| } |
| |
| /* Make sure MIPS16 and microMIPS are not used together. */ |
| if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p) |
| || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p)) |
| { |
| _bfd_error_handler |
| (_("MIPS16 and microMIPS functions cannot call each other")); |
| return bfd_reloc_notsupported; |
| } |
| |
| /* Calls from 16-bit code to 32-bit code and vice versa require the |
| mode change. However, we can ignore calls to undefined weak symbols, |
| which should never be executed at runtime. This exception is important |
| because the assembly writer may have "known" that any definition of the |
| symbol would be 16-bit code, and that direct jumps were therefore |
| acceptable. */ |
| *cross_mode_jump_p = (!bfd_link_relocatable (info) |
| && !(h && h->root.root.type == bfd_link_hash_undefweak) |
| && ((mips16_branch_reloc_p (r_type) |
| && !target_is_16_bit_code_p) |
| || (micromips_branch_reloc_p (r_type) |
| && !target_is_micromips_code_p) |
| || ((branch_reloc_p (r_type) |
| || r_type == R_MIPS_JALR) |
| && (target_is_16_bit_code_p |
| || target_is_micromips_code_p)))); |
| |
| resolved_to_zero = (h != NULL |
| && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root)); |
| |
| switch (r_type) |
| { |
| case R_MIPS16_CALL16: |
| case R_MIPS16_GOT16: |
| case R_MIPS_CALL16: |
| case R_MIPS_GOT16: |
| case R_MIPS_GOT_PAGE: |
| case R_MIPS_GOT_DISP: |
| case R_MIPS_GOT_LO16: |
| case R_MIPS_CALL_LO16: |
| case R_MICROMIPS_CALL16: |
| case R_MICROMIPS_GOT16: |
| case R_MICROMIPS_GOT_PAGE: |
| case R_MICROMIPS_GOT_DISP: |
| case R_MICROMIPS_GOT_LO16: |
| case R_MICROMIPS_CALL_LO16: |
| if (resolved_to_zero |
| && !bfd_link_relocatable (info) |
| && bfd_reloc_offset_in_range (howto, input_bfd, input_section, |
| relocation->r_offset) |
| && mips_elf_nullify_got_load (input_bfd, contents, |
| relocation, howto, true)) |
| return bfd_reloc_continue; |
| |
| /* Fall through. */ |
| case R_MIPS_GOT_HI16: |
| case R_MIPS_CALL_HI16: |
| case R_MICROMIPS_GOT_HI16: |
| case R_MICROMIPS_CALL_HI16: |
| if (resolved_to_zero |
| && htab->use_absolute_zero |
| && bfd_link_pic (info)) |
| { |
| /* Redirect to the special `__gnu_absolute_zero' symbol. */ |
| h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero", |
| false, false, false); |
| BFD_ASSERT (h != NULL); |
| } |
| break; |
| } |
| |
| local_p = (h == NULL || mips_use_local_got_p (info, h)); |
| |
| gp0 = _bfd_get_gp_value (input_bfd); |
| gp = _bfd_get_gp_value (abfd); |
| if (htab->got_info) |
| gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd); |
| |
| if (gnu_local_gp_p) |
| symbol = gp; |
| |
| /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent |
| to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the |
| corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */ |
| if (got_page_reloc_p (r_type) && !local_p) |
| { |
| r_type = (micromips_reloc_p (r_type) |
| ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP); |
| addend = 0; |
| } |
| |
| /* If we haven't already determined the GOT offset, and we're going |
| to need it, get it now. */ |
| switch (r_type) |
| { |
| case R_MIPS16_CALL16: |
| case R_MIPS16_GOT16: |
| case R_MIPS_CALL16: |
| case R_MIPS_GOT16: |
| case R_MIPS_GOT_DISP: |
| case R_MIPS_GOT_HI16: |
| case R_MIPS_CALL_HI16: |
| case R_MIPS_GOT_LO16: |
| case R_MIPS_CALL_LO16: |
| case R_MICROMIPS_CALL16: |
| case R_MICROMIPS_GOT16: |
| case R_MICROMIPS_GOT_DISP: |
| case R_MICROMIPS_GOT_HI16: |
| case R_MICROMIPS_CALL_HI16: |
| case R_MICROMIPS_GOT_LO16: |
| case R_MICROMIPS_CALL_LO16: |
| case R_MIPS_TLS_GD: |
| case R_MIPS_TLS_GOTTPREL: |
| case R_MIPS_TLS_LDM: |
| case R_MIPS16_TLS_GD: |
| case R_MIPS16_TLS_GOTTPREL: |
| case R_MIPS16_TLS_LDM: |
| case R_MICROMIPS_TLS_GD: |
| case R_MICROMIPS_TLS_GOTTPREL: |
| case R_MICROMIPS_TLS_LDM: |
| /* Find the index into the GOT where this value is located. */ |
| if (tls_ldm_reloc_p (r_type)) |
| { |
| g = mips_elf_local_got_index (abfd, input_bfd, info, |
| 0, 0, NULL, r_type); |
| if (g == MINUS_ONE) |
| return bfd_reloc_outofrange; |
| } |
| else if (!local_p) |
| { |
| /* On VxWorks, CALL relocations should refer to the .got.plt |
| entry, which is initialized to point at the PLT stub. */ |
| if (htab->root.target_os == is_vxworks |
| && (call_hi16_reloc_p (r_type) |
| || call_lo16_reloc_p (r_type) |
| || call16_reloc_p (r_type))) |
| { |
| BFD_ASSERT (addend == 0); |
| BFD_ASSERT (h->root.needs_plt); |
| g = mips_elf_gotplt_index (info, &h->root); |
| } |
| else |
| { |
| BFD_ASSERT (addend == 0); |
| g = mips_elf_global_got_index (abfd, info, input_bfd, |
| &h->root, r_type); |
| if (!TLS_RELOC_P (r_type) |
| && !elf_hash_table (info)->dynamic_sections_created) |
| /* This is a static link. We must initialize the GOT entry. */ |
| MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g); |
| } |
| } |
| else if (htab->root.target_os != is_vxworks |
| && (call16_reloc_p (r_type) || got16_reloc_p (r_type))) |
| /* The calculation below does not involve "g". */ |
| break; |
| else |
| { |
| g = mips_elf_local_got_index (abfd, input_bfd, info, |
| symbol + addend, r_symndx, h, r_type); |
| if (g == MINUS_ONE) |
| return bfd_reloc_outofrange; |
| } |
| |
| /* Convert GOT indices to actual offsets. */ |
| g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g); |
| break; |
| } |
| |
| /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ |
| symbols are resolved by the loader. Add them to .rela.dyn. */ |
| if (h != NULL && is_gott_symbol (info, &h->root)) |
| { |
| Elf_Internal_Rela outrel; |
| bfd_byte *loc; |
| asection *s; |
| |
| s = mips_elf_rel_dyn_section (info, false); |
| loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); |
| |
| outrel.r_offset = (input_section->output_section->vma |
| + input_section->output_offset |
| + relocation->r_offset); |
| outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); |
| outrel.r_addend = addend; |
| bfd_elf32_swap_reloca_out (abfd, &outrel, loc); |
| |
| /* If we've written this relocation for a readonly section, |
| we need to set DF_TEXTREL again, so that we do not delete the |
| DT_TEXTREL tag. */ |
| if (MIPS_ELF_READONLY_SECTION (input_section)) |
| info->flags |= DF_TEXTREL; |
| |
| *valuep = 0; |
| return bfd_reloc_ok; |
| } |
| |
| /* Figure out what kind of relocation is being performed. */ |
| switch (r_type) |
| { |
| case R_MIPS_NONE: |
| return bfd_reloc_continue; |
| |
| case R_MIPS_16: |
| if (howto->partial_inplace) |
| addend = _bfd_mips_elf_sign_extend (addend, 16); |
| value = symbol + addend; |
| overflowed_p = mips_elf_overflow_p (value, 16); |
| break; |
| |
| case R_MIPS_32: |
| case R_MIPS_REL32: |
| case R_MIPS_64: |
| if ((bfd_link_pic (info) |
| || (htab->root.dynamic_sections_created |
| && h != NULL |
| && h->root.def_dynamic |
| && !h->root.def_regular |
| && !h->has_static_relocs)) |
| && r_symndx != STN_UNDEF |
| && (h == NULL |
| || h->root.root.type != bfd_link_hash_undefweak |
| || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT |
| && !resolved_to_zero)) |
| && (input_section->flags & SEC_ALLOC) != 0) |
| { |
| /* If we're creating a shared library, then we can't know |
| where the symbol will end up. So, we create a relocation |
| record in the output, and leave the job up to the dynamic |
| linker. We must do the same for executable references to |
| shared library symbols, unless we've decided to use copy |
| relocs or PLTs instead. */ |
| value = addend; |
| if (!mips_elf_create_dynamic_relocation (abfd, |
| info, |
| relocation, |
| h, |
| sec, |
| symbol, |
| &value, |
| input_section)) |
| return bfd_reloc_undefined; |
| } |
| else |
| { |
| if (r_type != R_MIPS_REL32) |
| value = symbol + addend; |
| else |
| value = addend; |
| } |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_PC32: |
| value = symbol + addend - p; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS16_26: |
| /* The calculation for R_MIPS16_26 is just the same as for an |
| R_MIPS_26. It's only the storage of the relocated field into |
| the output file that's different. That's handled in |
| mips_elf_perform_relocation. So, we just fall through to the |
| R_MIPS_26 case here. */ |
| case R_MIPS_26: |
| case R_MICROMIPS_26_S1: |
| { |
| unsigned int shift; |
| |
| /* Shift is 2, unusually, for microMIPS JALX. */ |
| shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2; |
| |
| if (howto->partial_inplace && !section_p) |
| value = _bfd_mips_elf_sign_extend (addend, 26 + shift); |
| else |
| value = addend; |
| value += symbol; |
| |
| /* Make sure the target of a jump is suitably aligned. Bit 0 must |
| be the correct ISA mode selector except for weak undefined |
| symbols. */ |
| if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
| && (*cross_mode_jump_p |
| ? (value & 3) != (r_type == R_MIPS_26) |
| : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26))) |
| return bfd_reloc_outofrange; |
| |
| value >>= shift; |
| if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
| overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift)); |
| value &= howto->dst_mask; |
| } |
| break; |
| |
| case R_MIPS_TLS_DTPREL_HI16: |
| case R_MIPS16_TLS_DTPREL_HI16: |
| case R_MICROMIPS_TLS_DTPREL_HI16: |
| value = (mips_elf_high (addend + symbol - dtprel_base (info)) |
| & howto->dst_mask); |
| break; |
| |
| case R_MIPS_TLS_DTPREL_LO16: |
| case R_MIPS_TLS_DTPREL32: |
| case R_MIPS_TLS_DTPREL64: |
| case R_MIPS16_TLS_DTPREL_LO16: |
| case R_MICROMIPS_TLS_DTPREL_LO16: |
| value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; |
| break; |
| |
| case R_MIPS_TLS_TPREL_HI16: |
| case R_MIPS16_TLS_TPREL_HI16: |
| case R_MICROMIPS_TLS_TPREL_HI16: |
| value = (mips_elf_high (addend + symbol - tprel_base (info)) |
| & howto->dst_mask); |
| break; |
| |
| case R_MIPS_TLS_TPREL_LO16: |
| case R_MIPS_TLS_TPREL32: |
| case R_MIPS_TLS_TPREL64: |
| case R_MIPS16_TLS_TPREL_LO16: |
| case R_MICROMIPS_TLS_TPREL_LO16: |
| value = (symbol + addend - tprel_base (info)) & howto->dst_mask; |
| break; |
| |
| case R_MIPS_HI16: |
| case R_MIPS16_HI16: |
| case R_MICROMIPS_HI16: |
| if (!gp_disp_p) |
| { |
| value = mips_elf_high (addend + symbol); |
| value &= howto->dst_mask; |
| } |
| else |
| { |
| /* For MIPS16 ABI code we generate this sequence |
| 0: li $v0,%hi(_gp_disp) |
| 4: addiupc $v1,%lo(_gp_disp) |
| 8: sll $v0,16 |
| 12: addu $v0,$v1 |
| 14: move $gp,$v0 |
| So the offsets of hi and lo relocs are the same, but the |
| base $pc is that used by the ADDIUPC instruction at $t9 + 4. |
| ADDIUPC clears the low two bits of the instruction address, |
| so the base is ($t9 + 4) & ~3. */ |
| if (r_type == R_MIPS16_HI16) |
| value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3)); |
| /* The microMIPS .cpload sequence uses the same assembly |
| instructions as the traditional psABI version, but the |
| incoming $t9 has the low bit set. */ |
| else if (r_type == R_MICROMIPS_HI16) |
| value = mips_elf_high (addend + gp - p - 1); |
| else |
| value = mips_elf_high (addend + gp - p); |
| } |
| break; |
| |
| case R_MIPS_LO16: |
| case R_MIPS16_LO16: |
| case R_MICROMIPS_LO16: |
| case R_MICROMIPS_HI0_LO16: |
| if (!gp_disp_p) |
| value = (symbol + addend) & howto->dst_mask; |
| else |
| { |
| /* See the comment for R_MIPS16_HI16 above for the reason |
| for this conditional. */ |
| if (r_type == R_MIPS16_LO16) |
| value = addend + gp - (p & ~(bfd_vma) 0x3); |
| else if (r_type == R_MICROMIPS_LO16 |
| || r_type == R_MICROMIPS_HI0_LO16) |
| value = addend + gp - p + 3; |
| else |
| value = addend + gp - p + 4; |
| /* The MIPS ABI requires checking the R_MIPS_LO16 relocation |
| for overflow. But, on, say, IRIX5, relocations against |
| _gp_disp are normally generated from the .cpload |
| pseudo-op. It generates code that normally looks like |
| this: |
| |
| lui $gp,%hi(_gp_disp) |
| addiu $gp,$gp,%lo(_gp_disp) |
| addu $gp,$gp,$t9 |
| |
| Here $t9 holds the address of the function being called, |
| as required by the MIPS ELF ABI. The R_MIPS_LO16 |
| relocation can easily overflow in this situation, but the |
| R_MIPS_HI16 relocation will handle the overflow. |
| Therefore, we consider this a bug in the MIPS ABI, and do |
| not check for overflow here. */ |
| } |
| break; |
| |
| case R_MIPS_LITERAL: |
| case R_MICROMIPS_LITERAL: |
| /* Because we don't merge literal sections, we can handle this |
| just like R_MIPS_GPREL16. In the long run, we should merge |
| shared literals, and then we will need to additional work |
| here. */ |
| |
| /* Fall through. */ |
| |
| case R_MIPS16_GPREL: |
| /* The R_MIPS16_GPREL performs the same calculation as |
| R_MIPS_GPREL16, but stores the relocated bits in a different |
| order. We don't need to do anything special here; the |
| differences are handled in mips_elf_perform_relocation. */ |
| case R_MIPS_GPREL16: |
| case R_MICROMIPS_GPREL7_S2: |
| case R_MICROMIPS_GPREL16: |
| { |
| int bits = howto->bitsize + howto->rightshift; |
| /* Only sign-extend the addend if it was extracted from the |
| instruction. If the addend was separate, leave it alone, |
| otherwise we may lose significant bits. */ |
| if (howto->partial_inplace) |
| addend = _bfd_mips_elf_sign_extend (addend, bits); |
| value = symbol + addend - gp; |
| /* If the symbol was local, any earlier relocatable links will |
| have adjusted its addend with the gp offset, so compensate |
| for that now. Don't do it for symbols forced local in this |
| link, though, since they won't have had the gp offset applied |
| to them before. */ |
| if (was_local_p) |
| value += gp0; |
| if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
| overflowed_p = mips_elf_overflow_p (value, bits); |
| } |
| break; |
| |
| case R_MIPS16_GOT16: |
| case R_MIPS16_CALL16: |
| case R_MIPS_GOT16: |
| case R_MIPS_CALL16: |
| case R_MICROMIPS_GOT16: |
| case R_MICROMIPS_CALL16: |
| /* VxWorks does not have separate local and global semantics for |
| R_MIPS*_GOT16; every relocation evaluates to "G". */ |
| if (htab->root.target_os != is_vxworks && local_p) |
| { |
| value = mips_elf_got16_entry (abfd, input_bfd, info, |
| symbol + addend, !was_local_p); |
| if (value == MINUS_ONE) |
| return bfd_reloc_outofrange; |
| value |
| = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); |
| overflowed_p = mips_elf_overflow_p (value, 16); |
| break; |
| } |
| |
| /* Fall through. */ |
| |
| case R_MIPS_TLS_GD: |
| case R_MIPS_TLS_GOTTPREL: |
| case R_MIPS_TLS_LDM: |
| case R_MIPS_GOT_DISP: |
| case R_MIPS16_TLS_GD: |
| case R_MIPS16_TLS_GOTTPREL: |
| case R_MIPS16_TLS_LDM: |
| case R_MICROMIPS_TLS_GD: |
| case R_MICROMIPS_TLS_GOTTPREL: |
| case R_MICROMIPS_TLS_LDM: |
| case R_MICROMIPS_GOT_DISP: |
| value = g; |
| overflowed_p = mips_elf_overflow_p (value, 16); |
| break; |
| |
| case R_MIPS_GPREL32: |
| value = (addend + symbol + gp0 - gp); |
| if (!save_addend) |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_PC16: |
| case R_MIPS_GNU_REL16_S2: |
| if (howto->partial_inplace) |
| addend = _bfd_mips_elf_sign_extend (addend, 18); |
| |
| /* No need to exclude weak undefined symbols here as they resolve |
| to 0 and never set `*cross_mode_jump_p', so this alignment check |
| will never trigger for them. */ |
| if (*cross_mode_jump_p |
| ? ((symbol + addend) & 3) != 1 |
| : ((symbol + addend) & 3) != 0) |
| return bfd_reloc_outofrange; |
| |
| value = symbol + addend - p; |
| if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
| overflowed_p = mips_elf_overflow_p (value, 18); |
| value >>= howto->rightshift; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS16_PC16_S1: |
| if (howto->partial_inplace) |
| addend = _bfd_mips_elf_sign_extend (addend, 17); |
| |
| if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
| && (*cross_mode_jump_p |
| ? ((symbol + addend) & 3) != 0 |
| : ((symbol + addend) & 1) == 0)) |
| return bfd_reloc_outofrange; |
| |
| value = symbol + addend - p; |
| if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
| overflowed_p = mips_elf_overflow_p (value, 17); |
| value >>= howto->rightshift; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_PC21_S2: |
| if (howto->partial_inplace) |
| addend = _bfd_mips_elf_sign_extend (addend, 23); |
| |
| if ((symbol + addend) & 3) |
| return bfd_reloc_outofrange; |
| |
| value = symbol + addend - p; |
| if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
| overflowed_p = mips_elf_overflow_p (value, 23); |
| value >>= howto->rightshift; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_PC26_S2: |
| if (howto->partial_inplace) |
| addend = _bfd_mips_elf_sign_extend (addend, 28); |
| |
| if ((symbol + addend) & 3) |
| return bfd_reloc_outofrange; |
| |
| value = symbol + addend - p; |
| if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
| overflowed_p = mips_elf_overflow_p (value, 28); |
| value >>= howto->rightshift; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_PC18_S3: |
| if (howto->partial_inplace) |
| addend = _bfd_mips_elf_sign_extend (addend, 21); |
| |
| if ((symbol + addend) & 7) |
| return bfd_reloc_outofrange; |
| |
| value = symbol + addend - ((p | 7) ^ 7); |
| if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
| overflowed_p = mips_elf_overflow_p (value, 21); |
| value >>= howto->rightshift; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_PC19_S2: |
| if (howto->partial_inplace) |
| addend = _bfd_mips_elf_sign_extend (addend, 21); |
| |
| if ((symbol + addend) & 3) |
| return bfd_reloc_outofrange; |
| |
| value = symbol + addend - p; |
| if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
| overflowed_p = mips_elf_overflow_p (value, 21); |
| value >>= howto->rightshift; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_PCHI16: |
| value = mips_elf_high (symbol + addend - p); |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_PCLO16: |
| if (howto->partial_inplace) |
| addend = _bfd_mips_elf_sign_extend (addend, 16); |
| value = symbol + addend - p; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MICROMIPS_PC7_S1: |
| if (howto->partial_inplace) |
| addend = _bfd_mips_elf_sign_extend (addend, 8); |
| |
| if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
| && (*cross_mode_jump_p |
| ? ((symbol + addend + 2) & 3) != 0 |
| : ((symbol + addend + 2) & 1) == 0)) |
| return bfd_reloc_outofrange; |
| |
| value = symbol + addend - p; |
| if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
| overflowed_p = mips_elf_overflow_p (value, 8); |
| value >>= howto->rightshift; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MICROMIPS_PC10_S1: |
| if (howto->partial_inplace) |
| addend = _bfd_mips_elf_sign_extend (addend, 11); |
| |
| if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
| && (*cross_mode_jump_p |
| ? ((symbol + addend + 2) & 3) != 0 |
| : ((symbol + addend + 2) & 1) == 0)) |
| return bfd_reloc_outofrange; |
| |
| value = symbol + addend - p; |
| if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
| overflowed_p = mips_elf_overflow_p (value, 11); |
| value >>= howto->rightshift; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MICROMIPS_PC16_S1: |
| if (howto->partial_inplace) |
| addend = _bfd_mips_elf_sign_extend (addend, 17); |
| |
| if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
| && (*cross_mode_jump_p |
| ? ((symbol + addend) & 3) != 0 |
| : ((symbol + addend) & 1) == 0)) |
| return bfd_reloc_outofrange; |
| |
| value = symbol + addend - p; |
| if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
| overflowed_p = mips_elf_overflow_p (value, 17); |
| value >>= howto->rightshift; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MICROMIPS_PC23_S2: |
| if (howto->partial_inplace) |
| addend = _bfd_mips_elf_sign_extend (addend, 25); |
| value = symbol + addend - ((p | 3) ^ 3); |
| if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) |
| overflowed_p = mips_elf_overflow_p (value, 25); |
| value >>= howto->rightshift; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_GOT_HI16: |
| case R_MIPS_CALL_HI16: |
| case R_MICROMIPS_GOT_HI16: |
| case R_MICROMIPS_CALL_HI16: |
| /* We're allowed to handle these two relocations identically. |
| The dynamic linker is allowed to handle the CALL relocations |
| differently by creating a lazy evaluation stub. */ |
| value = g; |
| value = mips_elf_high (value); |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_GOT_LO16: |
| case R_MIPS_CALL_LO16: |
| case R_MICROMIPS_GOT_LO16: |
| case R_MICROMIPS_CALL_LO16: |
| value = g & howto->dst_mask; |
| break; |
| |
| case R_MIPS_GOT_PAGE: |
| case R_MICROMIPS_GOT_PAGE: |
| value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); |
| if (value == MINUS_ONE) |
| return bfd_reloc_outofrange; |
| value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); |
| overflowed_p = mips_elf_overflow_p (value, 16); |
| break; |
| |
| case R_MIPS_GOT_OFST: |
| case R_MICROMIPS_GOT_OFST: |
| if (local_p) |
| mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); |
| else |
| value = addend; |
| overflowed_p = mips_elf_overflow_p (value, 16); |
| break; |
| |
| case R_MIPS_SUB: |
| case R_MICROMIPS_SUB: |
| value = symbol - addend; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_HIGHER: |
| case R_MICROMIPS_HIGHER: |
| value = mips_elf_higher (addend + symbol); |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_HIGHEST: |
| case R_MICROMIPS_HIGHEST: |
| value = mips_elf_highest (addend + symbol); |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_SCN_DISP: |
| case R_MICROMIPS_SCN_DISP: |
| value = symbol + addend - sec->output_offset; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_JALR: |
| case R_MICROMIPS_JALR: |
| /* This relocation is only a hint. In some cases, we optimize |
| it into a bal instruction. But we don't try to optimize |
| when the symbol does not resolve locally. */ |
| if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root)) |
| return bfd_reloc_continue; |
| /* We can't optimize cross-mode jumps either. */ |
| if (*cross_mode_jump_p) |
| return bfd_reloc_continue; |
| value = symbol + addend; |
| /* Neither we can non-instruction-aligned targets. */ |
| if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0) |
| return bfd_reloc_continue; |
| break; |
| |
| case R_MIPS_PJUMP: |
| case R_MIPS_GNU_VTINHERIT: |
| case R_MIPS_GNU_VTENTRY: |
| /* We don't do anything with these at present. */ |
| return bfd_reloc_continue; |
| |
| default: |
| /* An unrecognized relocation type. */ |
| return bfd_reloc_notsupported; |
| } |
| |
| /* Store the VALUE for our caller. */ |
| *valuep = value; |
| return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; |
| } |
| |
| /* It has been determined that the result of the RELOCATION is the |
| VALUE. Use HOWTO to place VALUE into the output file at the |
| appropriate position. The SECTION is the section to which the |
| relocation applies. |
| CROSS_MODE_JUMP_P is true if the relocation field |
| is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. |
| |
| Returns FALSE if anything goes wrong. */ |
| |
| static bool |
| mips_elf_perform_relocation (struct bfd_link_info *info, |
| reloc_howto_type *howto, |
| const Elf_Internal_Rela *relocation, |
| bfd_vma value, bfd *input_bfd, |
| asection *input_section, bfd_byte *contents, |
| bool cross_mode_jump_p) |
| { |
| bfd_vma x; |
| bfd_byte *location; |
| int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); |
| |
| /* Figure out where the relocation is occurring. */ |
| location = contents + relocation->r_offset; |
| |
| _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location); |
| |
| /* Obtain the current value. */ |
| x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); |
| |
| /* Clear the field we are setting. */ |
| x &= ~howto->dst_mask; |
| |
| /* Set the field. */ |
| x |= (value & howto->dst_mask); |
| |
| /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */ |
| if (!cross_mode_jump_p && jal_reloc_p (r_type)) |
| { |
| bfd_vma opcode = x >> 26; |
| |
| if (r_type == R_MIPS16_26 ? opcode == 0x7 |
| : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c |
| : opcode == 0x1d) |
| { |
| info->callbacks->einfo |
| (_("%X%H: unsupported JALX to the same ISA mode\n"), |
| input_bfd, input_section, relocation->r_offset); |
| return true; |
| } |
| } |
| if (cross_mode_jump_p && jal_reloc_p (r_type)) |
| { |
| bool ok; |
| bfd_vma opcode = x >> 26; |
| bfd_vma jalx_opcode; |
| |
| /* Check to see if the opcode is already JAL or JALX. */ |
| if (r_type == R_MIPS16_26) |
| { |
| ok = ((opcode == 0x6) || (opcode == 0x7)); |
| jalx_opcode = 0x7; |
| } |
| else if (r_type == R_MICROMIPS_26_S1) |
| { |
| ok = ((opcode == 0x3d) || (opcode == 0x3c)); |
| jalx_opcode = 0x3c; |
| } |
| else |
| { |
| ok = ((opcode == 0x3) || (opcode == 0x1d)); |
| jalx_opcode = 0x1d; |
| } |
| |
| /* If the opcode is not JAL or JALX, there's a problem. We cannot |
| convert J or JALS to JALX. */ |
| if (!ok) |
| { |
| info->callbacks->einfo |
| (_("%X%H: unsupported jump between ISA modes; " |
| "consider recompiling with interlinking enabled\n"), |
| input_bfd, input_section, relocation->r_offset); |
| return true; |
| } |
| |
| /* Make this the JALX opcode. */ |
| x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26); |
| } |
| else if (cross_mode_jump_p && b_reloc_p (r_type)) |
| { |
| bool ok = false; |
| bfd_vma opcode = x >> 16; |
| bfd_vma jalx_opcode = 0; |
| bfd_vma sign_bit = 0; |
| bfd_vma addr; |
| bfd_vma dest; |
| |
| if (r_type == R_MICROMIPS_PC16_S1) |
| { |
| ok = opcode == 0x4060; |
| jalx_opcode = 0x3c; |
| sign_bit = 0x10000; |
| value <<= 1; |
| } |
| else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2) |
| { |
| ok = opcode == 0x411; |
| jalx_opcode = 0x1d; |
| sign_bit = 0x20000; |
| value <<= 2; |
| } |
| |
| if (ok && !bfd_link_pic (info)) |
| { |
| addr = (input_section->output_section->vma |
| + input_section->output_offset |
| + relocation->r_offset |
| + 4); |
| dest = (addr |
| + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit)); |
| |
| if ((addr >> 28) << 28 != (dest >> 28) << 28) |
| { |
| info->callbacks->einfo |
| (_("%X%H: cannot convert branch between ISA modes " |
| "to JALX: relocation out of range\n"), |
| input_bfd, input_section, relocation->r_offset); |
| return true; |
| } |
| |
| /* Make this the JALX opcode. */ |
| x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26; |
| } |
| else if (!mips_elf_hash_table (info)->ignore_branch_isa) |
| { |
| info->callbacks->einfo |
| (_("%X%H: unsupported branch between ISA modes\n"), |
| input_bfd, input_section, relocation->r_offset); |
| return true; |
| } |
| } |
| |
| /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in |
| range. */ |
| if (!bfd_link_relocatable (info) |
| && !cross_mode_jump_p |
| && ((JAL_TO_BAL_P (input_bfd) |
| && r_type == R_MIPS_26 |
| && (x >> 26) == 0x3) /* jal addr */ |
| || (JALR_TO_BAL_P (input_bfd) |
| && r_type == R_MIPS_JALR |
| && x == 0x0320f809) /* jalr t9 */ |
| || (JR_TO_B_P (input_bfd) |
| && r_type == R_MIPS_JALR |
| && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */ |
| { |
| bfd_vma addr; |
| bfd_vma dest; |
| bfd_signed_vma off; |
| |
| addr = (input_section->output_section->vma |
| + input_section->output_offset |
| + relocation->r_offset |
| + 4); |
| if (r_type == R_MIPS_26) |
| dest = (value << 2) | ((addr >> 28) << 28); |
| else |
| dest = value; |
| off = dest - addr; |
| if (off <= 0x1ffff && off >= -0x20000) |
| { |
| if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */ |
| x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */ |
| else |
| x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ |
| } |
| } |
| |
| /* Put the value into the output. */ |
| mips_elf_store_contents (howto, relocation, input_bfd, contents, x); |
| |
| _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info), |
| location); |
| |
| return true; |
| } |
| |
| /* Create a rel.dyn relocation for the dynamic linker to resolve. REL |
| is the original relocation, which is now being transformed into a |
| dynamic relocation. The ADDENDP is adjusted if necessary; the |
| caller should store the result in place of the original addend. */ |
| |
| static bool |
| mips_elf_create_dynamic_relocation (bfd *output_bfd, |
| struct bfd_link_info *info, |
| const Elf_Internal_Rela *rel, |
| struct mips_elf_link_hash_entry *h, |
| asection *sec, bfd_vma symbol, |
| bfd_vma *addendp, asection *input_section) |
| { |
| Elf_Internal_Rela outrel[3]; |
| asection *sreloc; |
| bfd *dynobj; |
| int r_type; |
| long indx; |
| bool defined_p; |
| struct mips_elf_link_hash_table *htab; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
| dynobj = elf_hash_table (info)->dynobj; |
| sreloc = mips_elf_rel_dyn_section (info, false); |
| BFD_ASSERT (sreloc != NULL); |
| BFD_ASSERT (sreloc->contents != NULL); |
| BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) |
| < sreloc->size); |
| |
| outrel[0].r_offset = |
| _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); |
| if (ABI_64_P (output_bfd)) |
| { |
| outrel[1].r_offset = |
| _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); |
| outrel[2].r_offset = |
| _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); |
| } |
| |
| if (outrel[0].r_offset == MINUS_ONE) |
| /* The relocation field has been deleted. */ |
| return true; |
| |
| if (outrel[0].r_offset == MINUS_TWO) |
| { |
| /* The relocation field has been converted into a relative value of |
| some sort. Functions like _bfd_elf_write_section_eh_frame expect |
| the field to be fully relocated, so add in the symbol's value. */ |
| *addendp += symbol; |
| return true; |
| } |
| |
| /* We must now calculate the dynamic symbol table index to use |
| in the relocation. */ |
| if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root)) |
| { |
| BFD_ASSERT (htab->root.target_os == is_vxworks |
| || h->global_got_area != GGA_NONE); |
| indx = h->root.dynindx; |
| if (SGI_COMPAT (output_bfd)) |
| defined_p = h->root.def_regular; |
| else |
| /* ??? glibc's ld.so just adds the final GOT entry to the |
| relocation field. It therefore treats relocs against |
| defined symbols in the same way as relocs against |
| undefined symbols. */ |
| defined_p = false; |
| } |
| else |
| { |
| if (sec != NULL && bfd_is_abs_section (sec)) |
| indx = 0; |
| else if (sec == NULL || sec->owner == NULL) |
| { |
| BFD_ASSERT (0); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| else |
| { |
| indx = elf_section_data (sec->output_section)->dynindx; |
| if (indx == 0) |
| { |
| asection *osec = htab->root.text_index_section; |
| indx = elf_section_data (osec)->dynindx; |
| } |
| if (indx == 0) |
| abort (); |
| } |
| |
| /* Instead of generating a relocation using the section |
| symbol, we may as well make it a fully relative |
| relocation. We want to avoid generating relocations to |
| local symbols because we used to generate them |
| incorrectly, without adding the original symbol value, |
| which is mandated by the ABI for section symbols. In |
| order to give dynamic loaders and applications time to |
| phase out the incorrect use, we refrain from emitting |
| section-relative relocations. It's not like they're |
| useful, after all. This should be a bit more efficient |
| as well. */ |
| /* ??? Although this behavior is compatible with glibc's ld.so, |
| the ABI says that relocations against STN_UNDEF should have |
| a symbol value of 0. Irix rld honors this, so relocations |
| against STN_UNDEF have no effect. */ |
| if (!SGI_COMPAT (output_bfd)) |
| indx = 0; |
| defined_p = true; |
| } |
| |
| /* If the relocation was previously an absolute relocation and |
| this symbol will not be referred to by the relocation, we must |
| adjust it by the value we give it in the dynamic symbol table. |
| Otherwise leave the job up to the dynamic linker. */ |
| if (defined_p && r_type != R_MIPS_REL32) |
| *addendp += symbol; |
| |
| if (htab->root.target_os == is_vxworks) |
| /* VxWorks uses non-relative relocations for this. */ |
| outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); |
| else |
| /* The relocation is always an REL32 relocation because we don't |
| know where the shared library will wind up at load-time. */ |
| outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, |
| R_MIPS_REL32); |
| |
| /* For strict adherence to the ABI specification, we should |
| generate a R_MIPS_64 relocation record by itself before the |
| _REL32/_64 record as well, such that the addend is read in as |
| a 64-bit value (REL32 is a 32-bit relocation, after all). |
| However, since none of the existing ELF64 MIPS dynamic |
| loaders seems to care, we don't waste space with these |
| artificial relocations. If this turns out to not be true, |
| mips_elf_allocate_dynamic_relocation() should be tweaked so |
| as to make room for a pair of dynamic relocations per |
| invocation if ABI_64_P, and here we should generate an |
| additional relocation record with R_MIPS_64 by itself for a |
| NULL symbol before this relocation record. */ |
| outrel[1].r_info = ELF_R_INFO (output_bfd, 0, |
| ABI_64_P (output_bfd) |
| ? R_MIPS_64 |
| : R_MIPS_NONE); |
| outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); |
| |
| /* Adjust the output offset of the relocation to reference the |
| correct location in the output file. */ |
| outrel[0].r_offset += (input_section->output_section->vma |
| + input_section->output_offset); |
| outrel[1].r_offset += (input_section->output_section->vma |
| + input_section->output_offset); |
| outrel[2].r_offset += (input_section->output_section->vma |
| + input_section->output_offset); |
| |
| /* Put the relocation back out. We have to use the special |
| relocation outputter in the 64-bit case since the 64-bit |
| relocation format is non-standard. */ |
| if (ABI_64_P (output_bfd)) |
| { |
| (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) |
| (output_bfd, &outrel[0], |
| (sreloc->contents |
| + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); |
| } |
| else if (htab->root.target_os == is_vxworks) |
| { |
| /* VxWorks uses RELA rather than REL dynamic relocations. */ |
| outrel[0].r_addend = *addendp; |
| bfd_elf32_swap_reloca_out |
| (output_bfd, &outrel[0], |
| (sreloc->contents |
| + sreloc->reloc_count * sizeof (Elf32_External_Rela))); |
| } |
| else |
| bfd_elf32_swap_reloc_out |
| (output_bfd, &outrel[0], |
| (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); |
| |
| /* We've now added another relocation. */ |
| ++sreloc->reloc_count; |
| |
| /* Make sure the output section is writable. The dynamic linker |
| will be writing to it. */ |
| elf_section_data (input_section->output_section)->this_hdr.sh_flags |
| |= SHF_WRITE; |
| |
| /* On IRIX5, make an entry of compact relocation info. */ |
| if (IRIX_COMPAT (output_bfd) == ict_irix5) |
| { |
| asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel"); |
| bfd_byte *cr; |
| |
| if (scpt) |
| { |
| Elf32_crinfo cptrel; |
| |
| mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); |
| cptrel.vaddr = (rel->r_offset |
| + input_section->output_section->vma |
| + input_section->output_offset); |
| if (r_type == R_MIPS_REL32) |
| mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); |
| else |
| mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); |
| mips_elf_set_cr_dist2to (cptrel, 0); |
| cptrel.konst = *addendp; |
| |
| cr = (scpt->contents |
| + sizeof (Elf32_External_compact_rel)); |
| mips_elf_set_cr_relvaddr (cptrel, 0); |
| bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, |
| ((Elf32_External_crinfo *) cr |
| + scpt->reloc_count)); |
| ++scpt->reloc_count; |
| } |
| } |
| |
| /* If we've written this relocation for a readonly section, |
| we need to set DF_TEXTREL again, so that we do not delete the |
| DT_TEXTREL tag. */ |
| if (MIPS_ELF_READONLY_SECTION (input_section)) |
| info->flags |= DF_TEXTREL; |
| |
| return true; |
| } |
| |
| /* Return the MACH for a MIPS e_flags value. */ |
| |
| unsigned long |
| _bfd_elf_mips_mach (flagword flags) |
| { |
| switch (flags & EF_MIPS_MACH) |
| { |
| case EF_MIPS_MACH_3900: |
| return bfd_mach_mips3900; |
| |
| case EF_MIPS_MACH_4010: |
| return bfd_mach_mips4010; |
| |
| case EF_MIPS_MACH_ALLEGREX: |
| return bfd_mach_mips_allegrex; |
| |
| case EF_MIPS_MACH_4100: |
| return bfd_mach_mips4100; |
| |
| case EF_MIPS_MACH_4111: |
| return bfd_mach_mips4111; |
| |
| case EF_MIPS_MACH_4120: |
| return bfd_mach_mips4120; |
| |
| case EF_MIPS_MACH_4650: |
| return bfd_mach_mips4650; |
| |
| case EF_MIPS_MACH_5400: |
| return bfd_mach_mips5400; |
| |
| case EF_MIPS_MACH_5500: |
| return bfd_mach_mips5500; |
| |
| case EF_MIPS_MACH_5900: |
| return bfd_mach_mips5900; |
| |
| case EF_MIPS_MACH_9000: |
| return bfd_mach_mips9000; |
| |
| case EF_MIPS_MACH_SB1: |
| return bfd_mach_mips_sb1; |
| |
| case EF_MIPS_MACH_LS2E: |
| return bfd_mach_mips_loongson_2e; |
| |
| case EF_MIPS_MACH_LS2F: |
| return bfd_mach_mips_loongson_2f; |
| |
| case EF_MIPS_MACH_GS464: |
| return bfd_mach_mips_gs464; |
| |
| case EF_MIPS_MACH_GS464E: |
| return bfd_mach_mips_gs464e; |
| |
| case EF_MIPS_MACH_GS264E: |
| return bfd_mach_mips_gs264e; |
| |
| case EF_MIPS_MACH_OCTEON3: |
| return bfd_mach_mips_octeon3; |
| |
| case EF_MIPS_MACH_OCTEON2: |
| return bfd_mach_mips_octeon2; |
| |
| case EF_MIPS_MACH_OCTEON: |
| return bfd_mach_mips_octeon; |
| |
| case EF_MIPS_MACH_XLR: |
| return bfd_mach_mips_xlr; |
| |
| case EF_MIPS_MACH_IAMR2: |
| return bfd_mach_mips_interaptiv_mr2; |
| |
| default: |
| switch (flags & EF_MIPS_ARCH) |
| { |
| default: |
| case EF_MIPS_ARCH_1: |
| return bfd_mach_mips3000; |
| |
| case EF_MIPS_ARCH_2: |
| return bfd_mach_mips6000; |
| |
| case EF_MIPS_ARCH_3: |
| return bfd_mach_mips4000; |
| |
| case EF_MIPS_ARCH_4: |
| return bfd_mach_mips8000; |
| |
| case EF_MIPS_ARCH_5: |
| return bfd_mach_mips5; |
| |
| case EF_MIPS_ARCH_32: |
| return bfd_mach_mipsisa32; |
| |
| case EF_MIPS_ARCH_64: |
| return bfd_mach_mipsisa64; |
| |
| case EF_MIPS_ARCH_32R2: |
| return bfd_mach_mipsisa32r2; |
| |
| case EF_MIPS_ARCH_64R2: |
| return bfd_mach_mipsisa64r2; |
| |
| case EF_MIPS_ARCH_32R6: |
| return bfd_mach_mipsisa32r6; |
| |
| case EF_MIPS_ARCH_64R6: |
| return bfd_mach_mipsisa64r6; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Return printable name for ABI. */ |
| |
| static inline char * |
| elf_mips_abi_name (bfd *abfd) |
| { |
| flagword flags; |
| |
| flags = elf_elfheader (abfd)->e_flags; |
| switch (flags & EF_MIPS_ABI) |
| { |
| case 0: |
| if (ABI_N32_P (abfd)) |
| return "N32"; |
| else if (ABI_64_P (abfd)) |
| return "64"; |
| else |
| return "none"; |
| case EF_MIPS_ABI_O32: |
| return "O32"; |
| case EF_MIPS_ABI_O64: |
| return "O64"; |
| case EF_MIPS_ABI_EABI32: |
| return "EABI32"; |
| case EF_MIPS_ABI_EABI64: |
| return "EABI64"; |
| default: |
| return "unknown abi"; |
| } |
| } |
| |
| /* MIPS ELF uses two common sections. One is the usual one, and the |
| other is for small objects. All the small objects are kept |
| together, and then referenced via the gp pointer, which yields |
| faster assembler code. This is what we use for the small common |
| section. This approach is copied from ecoff.c. */ |
| static asection mips_elf_scom_section; |
| static const asymbol mips_elf_scom_symbol = |
| GLOBAL_SYM_INIT (".scommon", &mips_elf_scom_section); |
| static asection mips_elf_scom_section = |
| BFD_FAKE_SECTION (mips_elf_scom_section, &mips_elf_scom_symbol, |
| ".scommon", 0, SEC_IS_COMMON | SEC_SMALL_DATA); |
| |
| /* MIPS ELF also uses an acommon section, which represents an |
| allocated common symbol which may be overridden by a |
| definition in a shared library. */ |
| static asection mips_elf_acom_section; |
| static const asymbol mips_elf_acom_symbol = |
| GLOBAL_SYM_INIT (".acommon", &mips_elf_acom_section); |
| static asection mips_elf_acom_section = |
| BFD_FAKE_SECTION (mips_elf_acom_section, &mips_elf_acom_symbol, |
| ".acommon", 0, SEC_ALLOC); |
| |
| /* This is used for both the 32-bit and the 64-bit ABI. */ |
| |
| void |
| _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) |
| { |
| elf_symbol_type *elfsym; |
| |
| /* Handle the special MIPS section numbers that a symbol may use. */ |
| elfsym = (elf_symbol_type *) asym; |
| switch (elfsym->internal_elf_sym.st_shndx) |
| { |
| case SHN_MIPS_ACOMMON: |
| /* This section is used in a dynamically linked executable file. |
| It is an allocated common section. The dynamic linker can |
| either resolve these symbols to something in a shared |
| library, or it can just leave them here. For our purposes, |
| we can consider these symbols to be in a new section. */ |
| asym->section = &mips_elf_acom_section; |
| break; |
| |
| case SHN_COMMON: |
| /* Common symbols less than the GP size are automatically |
| treated as SHN_MIPS_SCOMMON symbols, with some exceptions. */ |
| if (asym->value > elf_gp_size (abfd) |
| || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS |
| || IRIX_COMPAT (abfd) == ict_irix6 |
| || strcmp (asym->name, "__gnu_lto_slim") == 0) |
| break; |
| /* Fall through. */ |
| case SHN_MIPS_SCOMMON: |
| asym->section = &mips_elf_scom_section; |
| asym->value = elfsym->internal_elf_sym.st_size; |
| break; |
| |
| case SHN_MIPS_SUNDEFINED: |
| asym->section = bfd_und_section_ptr; |
| break; |
| |
| case SHN_MIPS_TEXT: |
| { |
| asection *section = bfd_get_section_by_name (abfd, ".text"); |
| |
| if (section != NULL) |
| { |
| asym->section = section; |
| /* MIPS_TEXT is a bit special, the address is not an offset |
| to the base of the .text section. So subtract the section |
| base address to make it an offset. */ |
| asym->value -= section->vma; |
| } |
| } |
| break; |
| |
| case SHN_MIPS_DATA: |
| { |
| asection *section = bfd_get_section_by_name (abfd, ".data"); |
| |
| if (section != NULL) |
| { |
| asym->section = section; |
| /* MIPS_DATA is a bit special, the address is not an offset |
| to the base of the .data section. So subtract the section |
| base address to make it an offset. */ |
| asym->value -= section->vma; |
| } |
| } |
| break; |
| } |
| |
| /* If this is an odd-valued function symbol, assume it's a MIPS16 |
| or microMIPS one. */ |
| if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC |
| && (asym->value & 1) != 0) |
| { |
| asym->value--; |
| if (MICROMIPS_P (abfd)) |
| elfsym->internal_elf_sym.st_other |
| = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other); |
| else |
| elfsym->internal_elf_sym.st_other |
| = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other); |
| } |
| } |
| |
| /* Implement elf_backend_eh_frame_address_size. This differs from |
| the default in the way it handles EABI64. |
| |
| EABI64 was originally specified as an LP64 ABI, and that is what |
| -mabi=eabi normally gives on a 64-bit target. However, gcc has |
| historically accepted the combination of -mabi=eabi and -mlong32, |
| and this ILP32 variation has become semi-official over time. |
| Both forms use elf32 and have pointer-sized FDE addresses. |
| |
| If an EABI object was generated by GCC 4.0 or above, it will have |
| an empty .gcc_compiled_longXX section, where XX is the size of longs |
| in bits. Unfortunately, ILP32 objects generated by earlier compilers |
| have no special marking to distinguish them from LP64 objects. |
| |
| We don't want users of the official LP64 ABI to be punished for the |
| existence of the ILP32 variant, but at the same time, we don't want |
| to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. |
| We therefore take the following approach: |
| |
| - If ABFD contains a .gcc_compiled_longXX section, use it to |
| determine the pointer size. |
| |
| - Otherwise check the type of the first relocation. Assume that |
| the LP64 ABI is being used if the relocation is of type R_MIPS_64. |
| |
| - Otherwise punt. |
| |
| The second check is enough to detect LP64 objects generated by pre-4.0 |
| compilers because, in the kind of output generated by those compilers, |
| the first relocation will be associated with either a CIE personality |
| routine or an FDE start address. Furthermore, the compilers never |
| used a special (non-pointer) encoding for this ABI. |
| |
| Checking the relocation type should also be safe because there is no |
| reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never |
| did so. */ |
| |
| unsigned int |
| _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec) |
| { |
| if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) |
| return 8; |
| if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == EF_MIPS_ABI_EABI64) |
| { |
| bool long32_p, long64_p; |
| |
| long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; |
| long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; |
| if (long32_p && long64_p) |
| return 0; |
| if (long32_p) |
| return 4; |
| if (long64_p) |
| return 8; |
| |
| if (sec->reloc_count > 0) |
| { |
| /* Load the relocations for this section. */ |
| Elf_Internal_Rela *internal_relocs = |
| _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, true); |
| if (internal_relocs == NULL) |
| return 0; |
| |
| unsigned int size = 0; |
| if (ELF32_R_TYPE (internal_relocs[0].r_info) == R_MIPS_64) |
| size = 8; |
| |
| if (elf_section_data (sec)->relocs != internal_relocs) |
| free (internal_relocs); |
| |
| return size; |
| } |
| |
| return 0; |
| } |
| return 4; |
| } |
| |
| /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP |
| relocations against two unnamed section symbols to resolve to the |
| same address. For example, if we have code like: |
| |
| lw $4,%got_disp(.data)($gp) |
| lw $25,%got_disp(.text)($gp) |
| jalr $25 |
| |
| then the linker will resolve both relocations to .data and the program |
| will jump there rather than to .text. |
| |
| We can work around this problem by giving names to local section symbols. |
| This is also what the MIPSpro tools do. */ |
| |
| bool |
| _bfd_mips_elf_name_local_section_symbols (bfd *abfd) |
| { |
| return elf_elfheader (abfd)->e_type == ET_REL && SGI_COMPAT (abfd); |
| } |
| |
| /* Work over a section just before writing it out. This routine is |
| used by both the 32-bit and the 64-bit ABI. FIXME: We recognize |
| sections that need the SHF_MIPS_GPREL flag by name; there has to be |
| a better way. */ |
| |
| bool |
| _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) |
| { |
| if (hdr->sh_type == SHT_MIPS_REGINFO |
| && hdr->sh_size > 0) |
| { |
| bfd_byte buf[4]; |
| |
| BFD_ASSERT (hdr->contents == NULL); |
| |
| if (hdr->sh_size != sizeof (Elf32_External_RegInfo)) |
| { |
| _bfd_error_handler |
| (_("%pB: incorrect `.reginfo' section size; " |
| "expected %" PRIu64 ", got %" PRIu64), |
| abfd, (uint64_t) sizeof (Elf32_External_RegInfo), |
| (uint64_t) hdr->sh_size); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| if (bfd_seek (abfd, |
| hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, |
| SEEK_SET) != 0) |
| return false; |
| H_PUT_32 (abfd, elf_gp (abfd), buf); |
| if (bfd_write (buf, 4, abfd) != 4) |
| return false; |
| } |
| |
| if (hdr->sh_type == SHT_MIPS_OPTIONS |
| && hdr->bfd_section != NULL |
| && mips_elf_section_data (hdr->bfd_section) != NULL |
| && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) |
| { |
| bfd_byte *contents, *l, *lend; |
| |
| /* We stored the section contents in the tdata field in the |
| set_section_contents routine. We save the section contents |
| so that we don't have to read them again. |
| At this point we know that elf_gp is set, so we can look |
| through the section contents to see if there is an |
| ODK_REGINFO structure. */ |
| |
| contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; |
| l = contents; |
| lend = contents + hdr->sh_size; |
| while (l + sizeof (Elf_External_Options) <= lend) |
| { |
| Elf_Internal_Options intopt; |
| |
| bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, |
| &intopt); |
| if (intopt.size < sizeof (Elf_External_Options)) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: warning: bad `%s' option size %u smaller than" |
| " its header"), |
| abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); |
| break; |
| } |
| if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
| { |
| bfd_byte buf[8]; |
| |
| if (bfd_seek (abfd, |
| (hdr->sh_offset |
| + (l - contents) |
| + sizeof (Elf_External_Options) |
| + (sizeof (Elf64_External_RegInfo) - 8)), |
| SEEK_SET) != 0) |
| return false; |
| H_PUT_64 (abfd, elf_gp (abfd), buf); |
| if (bfd_write (buf, 8, abfd) != 8) |
| return false; |
| } |
| else if (intopt.kind == ODK_REGINFO) |
| { |
| bfd_byte buf[4]; |
| |
| if (bfd_seek (abfd, |
| (hdr->sh_offset |
| + (l - contents) |
| + sizeof (Elf_External_Options) |
| + (sizeof (Elf32_External_RegInfo) - 4)), |
| SEEK_SET) != 0) |
| return false; |
| H_PUT_32 (abfd, elf_gp (abfd), buf); |
| if (bfd_write (buf, 4, abfd) != 4) |
| return false; |
| } |
| l += intopt.size; |
| } |
| } |
| |
| if (hdr->bfd_section != NULL) |
| { |
| const char *name = bfd_section_name (hdr->bfd_section); |
| |
| /* .sbss is not handled specially here because the GNU/Linux |
| prelinker can convert .sbss from NOBITS to PROGBITS and |
| changing it back to NOBITS breaks the binary. The entry in |
| _bfd_mips_elf_special_sections will ensure the correct flags |
| are set on .sbss if BFD creates it without reading it from an |
| input file, and without special handling here the flags set |
| on it in an input file will be followed. */ |
| if (strcmp (name, ".sdata") == 0 |
| || strcmp (name, ".lit8") == 0 |
| || strcmp (name, ".lit4") == 0) |
| hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
| else if (strcmp (name, ".srdata") == 0) |
| hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; |
| else if (strcmp (name, ".compact_rel") == 0) |
| hdr->sh_flags = 0; |
| else if (strcmp (name, ".rtproc") == 0) |
| { |
| if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) |
| { |
| unsigned int adjust; |
| |
| adjust = hdr->sh_size % hdr->sh_addralign; |
| if (adjust != 0) |
| hdr->sh_size += hdr->sh_addralign - adjust; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Handle a MIPS specific section when reading an object file. This |
| is called when elfcode.h finds a section with an unknown type. |
| This routine supports both the 32-bit and 64-bit ELF ABI. */ |
| |
| bool |
| _bfd_mips_elf_section_from_shdr (bfd *abfd, |
| Elf_Internal_Shdr *hdr, |
| const char *name, |
| int shindex) |
| { |
| flagword flags = 0; |
| |
| /* There ought to be a place to keep ELF backend specific flags, but |
| at the moment there isn't one. We just keep track of the |
| sections by their name, instead. Fortunately, the ABI gives |
| suggested names for all the MIPS specific sections, so we will |
| probably get away with this. */ |
| switch (hdr->sh_type) |
| { |
| case SHT_MIPS_LIBLIST: |
| if (strcmp (name, ".liblist") != 0) |
| return false; |
| break; |
| case SHT_MIPS_MSYM: |
| if (strcmp (name, ".msym") != 0) |
| return false; |
| break; |
| case SHT_MIPS_CONFLICT: |
| if (strcmp (name, ".conflict") != 0) |
| return false; |
| break; |
| case SHT_MIPS_GPTAB: |
| if (! startswith (name, ".gptab.")) |
| return false; |
| break; |
| case SHT_MIPS_UCODE: |
| if (strcmp (name, ".ucode") != 0) |
| return false; |
| break; |
| case SHT_MIPS_DEBUG: |
| if (strcmp (name, ".mdebug") != 0) |
| return false; |
| flags = SEC_DEBUGGING; |
| break; |
| case SHT_MIPS_REGINFO: |
| if (strcmp (name, ".reginfo") != 0 |
| || hdr->sh_size != sizeof (Elf32_External_RegInfo)) |
| return false; |
| flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); |
| break; |
| case SHT_MIPS_IFACE: |
| if (strcmp (name, ".MIPS.interfaces") != 0) |
| return false; |
| break; |
| case SHT_MIPS_CONTENT: |
| if (! startswith (name, ".MIPS.content")) |
| return false; |
| break; |
| case SHT_MIPS_OPTIONS: |
| if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
| return false; |
| break; |
| case SHT_MIPS_ABIFLAGS: |
| if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name)) |
| return false; |
| flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); |
| break; |
| case SHT_MIPS_DWARF: |
| if (! startswith (name, ".debug_") |
| && ! startswith (name, ".gnu.debuglto_.debug_") |
| && ! startswith (name, ".zdebug_") |
| && ! startswith (name, ".gnu.debuglto_.zdebug_")) |
| return false; |
| break; |
| case SHT_MIPS_SYMBOL_LIB: |
| if (strcmp (name, ".MIPS.symlib") != 0) |
| return false; |
| break; |
| case SHT_MIPS_EVENTS: |
| if (! startswith (name, ".MIPS.events") |
| && ! startswith (name, ".MIPS.post_rel")) |
| return false; |
| break; |
| case SHT_MIPS_XHASH: |
| if (strcmp (name, ".MIPS.xhash") != 0) |
| return false; |
| default: |
| break; |
| } |
| |
| if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
| return false; |
| |
| if (hdr->sh_flags & SHF_MIPS_GPREL) |
| flags |= SEC_SMALL_DATA; |
| |
| if (flags) |
| { |
| if (!bfd_set_section_flags (hdr->bfd_section, |
| (bfd_section_flags (hdr->bfd_section) |
| | flags))) |
| return false; |
| } |
| |
| if (hdr->sh_type == SHT_MIPS_ABIFLAGS) |
| { |
| Elf_External_ABIFlags_v0 ext; |
| |
| if (! bfd_get_section_contents (abfd, hdr->bfd_section, |
| &ext, 0, sizeof ext)) |
| return false; |
| bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext, |
| &mips_elf_tdata (abfd)->abiflags); |
| if (mips_elf_tdata (abfd)->abiflags.version != 0) |
| return false; |
| mips_elf_tdata (abfd)->abiflags_valid = true; |
| } |
| |
| /* FIXME: We should record sh_info for a .gptab section. */ |
| |
| /* For a .reginfo section, set the gp value in the tdata information |
| from the contents of this section. We need the gp value while |
| processing relocs, so we just get it now. The .reginfo section |
| is not used in the 64-bit MIPS ELF ABI. */ |
| if (hdr->sh_type == SHT_MIPS_REGINFO) |
| { |
| Elf32_External_RegInfo ext; |
| Elf32_RegInfo s; |
| |
| if (! bfd_get_section_contents (abfd, hdr->bfd_section, |
| &ext, 0, sizeof ext)) |
| return false; |
| bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); |
| elf_gp (abfd) = s.ri_gp_value; |
| } |
| |
| /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and |
| set the gp value based on what we find. We may see both |
| SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, |
| they should agree. */ |
| if (hdr->sh_type == SHT_MIPS_OPTIONS) |
| { |
| bfd_byte *contents, *l, *lend; |
| |
| if (!bfd_malloc_and_get_section (abfd, hdr->bfd_section, &contents)) |
| { |
| free (contents); |
| return false; |
| } |
| l = contents; |
| lend = contents + hdr->sh_size; |
| while (l + sizeof (Elf_External_Options) <= lend) |
| { |
| Elf_Internal_Options intopt; |
| |
| bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, |
| &intopt); |
| if (intopt.size < sizeof (Elf_External_Options)) |
| { |
| bad_opt: |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: warning: truncated `%s' option"), |
| abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)); |
| break; |
| } |
| if (intopt.kind == ODK_REGINFO) |
| { |
| if (ABI_64_P (abfd)) |
| { |
| Elf64_Internal_RegInfo intreg; |
| size_t needed = (sizeof (Elf_External_Options) |
| + sizeof (Elf64_External_RegInfo)); |
| if (intopt.size < needed || (size_t) (lend - l) < needed) |
| goto bad_opt; |
| bfd_mips_elf64_swap_reginfo_in |
| (abfd, |
| ((Elf64_External_RegInfo *) |
| (l + sizeof (Elf_External_Options))), |
| &intreg); |
| elf_gp (abfd) = intreg.ri_gp_value; |
| } |
| else |
| { |
| Elf32_RegInfo intreg; |
| size_t needed = (sizeof (Elf_External_Options) |
| + sizeof (Elf32_External_RegInfo)); |
| if (intopt.size < needed || (size_t) (lend - l) < needed) |
| goto bad_opt; |
| bfd_mips_elf32_swap_reginfo_in |
| (abfd, |
| ((Elf32_External_RegInfo *) |
| (l + sizeof (Elf_External_Options))), |
| &intreg); |
| elf_gp (abfd) = intreg.ri_gp_value; |
| } |
| } |
| l += intopt.size; |
| } |
| free (contents); |
| } |
| |
| return true; |
| } |
| |
| /* Set the correct type for a MIPS ELF section. We do this by the |
| section name, which is a hack, but ought to work. This routine is |
| used by both the 32-bit and the 64-bit ABI. */ |
| |
| bool |
| _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) |
| { |
| const char *name = bfd_section_name (sec); |
| |
| if (strcmp (name, ".liblist") == 0) |
| { |
| hdr->sh_type = SHT_MIPS_LIBLIST; |
| hdr->sh_info = sec->size / sizeof (Elf32_Lib); |
| /* The sh_link field is set in final_write_processing. */ |
| } |
| else if (strcmp (name, ".conflict") == 0) |
| hdr->sh_type = SHT_MIPS_CONFLICT; |
| else if (startswith (name, ".gptab.")) |
| { |
| hdr->sh_type = SHT_MIPS_GPTAB; |
| hdr->sh_entsize = sizeof (Elf32_External_gptab); |
| /* The sh_info field is set in final_write_processing. */ |
| } |
| else if (strcmp (name, ".ucode") == 0) |
| hdr->sh_type = SHT_MIPS_UCODE; |
| else if (strcmp (name, ".mdebug") == 0) |
| { |
| hdr->sh_type = SHT_MIPS_DEBUG; |
| /* In a shared object on IRIX 5.3, the .mdebug section has an |
| entsize of 0. FIXME: Does this matter? */ |
| if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) |
| hdr->sh_entsize = 0; |
| else |
| hdr->sh_entsize = 1; |
| } |
| else if (strcmp (name, ".reginfo") == 0) |
| { |
| hdr->sh_type = SHT_MIPS_REGINFO; |
| /* In a shared object on IRIX 5.3, the .reginfo section has an |
| entsize of 0x18. FIXME: Does this matter? */ |
| if (SGI_COMPAT (abfd)) |
| { |
| if ((abfd->flags & DYNAMIC) != 0) |
| hdr->sh_entsize = sizeof (Elf32_External_RegInfo); |
| else |
| hdr->sh_entsize = 1; |
| } |
| else |
| hdr->sh_entsize = sizeof (Elf32_External_RegInfo); |
| } |
| else if (SGI_COMPAT (abfd) |
| && (strcmp (name, ".hash") == 0 |
| || strcmp (name, ".dynamic") == 0 |
| || strcmp (name, ".dynstr") == 0)) |
| { |
| if (SGI_COMPAT (abfd)) |
| hdr->sh_entsize = 0; |
| #if 0 |
| /* This isn't how the IRIX6 linker behaves. */ |
| hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; |
| #endif |
| } |
| else if (strcmp (name, ".got") == 0 |
| || strcmp (name, ".srdata") == 0 |
| || strcmp (name, ".sdata") == 0 |
| || strcmp (name, ".sbss") == 0 |
| || strcmp (name, ".lit4") == 0 |
| || strcmp (name, ".lit8") == 0) |
| hdr->sh_flags |= SHF_MIPS_GPREL; |
| else if (strcmp (name, ".MIPS.interfaces") == 0) |
| { |
| hdr->sh_type = SHT_MIPS_IFACE; |
| hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
| } |
| else if (startswith (name, ".MIPS.content")) |
| { |
| hdr->sh_type = SHT_MIPS_CONTENT; |
| hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
| /* The sh_info field is set in final_write_processing. */ |
| } |
| else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) |
| { |
| hdr->sh_type = SHT_MIPS_OPTIONS; |
| hdr->sh_entsize = 1; |
| hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
| } |
| else if (startswith (name, ".MIPS.abiflags")) |
| { |
| hdr->sh_type = SHT_MIPS_ABIFLAGS; |
| hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0); |
| } |
| else if (startswith (name, ".debug_") |
| || startswith (name, ".gnu.debuglto_.debug_") |
| || startswith (name, ".zdebug_") |
| || startswith (name, ".gnu.debuglto_.zdebug_")) |
| { |
| hdr->sh_type = SHT_MIPS_DWARF; |
| |
| /* Irix facilities such as libexc expect a single .debug_frame |
| per executable, the system ones have NOSTRIP set and the linker |
| doesn't merge sections with different flags so ... */ |
| if (SGI_COMPAT (abfd) && startswith (name, ".debug_frame")) |
| hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
| } |
| else if (strcmp (name, ".MIPS.symlib") == 0) |
| { |
| hdr->sh_type = SHT_MIPS_SYMBOL_LIB; |
| /* The sh_link and sh_info fields are set in |
| final_write_processing. */ |
| } |
| else if (startswith (name, ".MIPS.events") |
| || startswith (name, ".MIPS.post_rel")) |
| { |
| hdr->sh_type = SHT_MIPS_EVENTS; |
| hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
| /* The sh_link field is set in final_write_processing. */ |
| } |
| else if (strcmp (name, ".msym") == 0) |
| { |
| hdr->sh_type = SHT_MIPS_MSYM; |
| hdr->sh_flags |= SHF_ALLOC; |
| hdr->sh_entsize = 8; |
| } |
| else if (strcmp (name, ".MIPS.xhash") == 0) |
| { |
| hdr->sh_type = SHT_MIPS_XHASH; |
| hdr->sh_flags |= SHF_ALLOC; |
| hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4; |
| } |
| |
| /* The generic elf_fake_sections will set up REL_HDR using the default |
| kind of relocations. We used to set up a second header for the |
| non-default kind of relocations here, but only NewABI would use |
| these, and the IRIX ld doesn't like resulting empty RELA sections. |
| Thus we create those header only on demand now. */ |
| |
| return true; |
| } |
| |
| /* Given a BFD section, try to locate the corresponding ELF section |
| index. This is used by both the 32-bit and the 64-bit ABI. |
| Actually, it's not clear to me that the 64-bit ABI supports these, |
| but for non-PIC objects we will certainly want support for at least |
| the .scommon section. */ |
| |
| bool |
| _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, |
| asection *sec, int *retval) |
| { |
| if (strcmp (bfd_section_name (sec), ".scommon") == 0) |
| { |
| *retval = SHN_MIPS_SCOMMON; |
| return true; |
| } |
| if (strcmp (bfd_section_name (sec), ".acommon") == 0) |
| { |
| *retval = SHN_MIPS_ACOMMON; |
| return true; |
| } |
| return false; |
| } |
| |
| /* Hook called by the linker routine which adds symbols from an object |
| file. We must handle the special MIPS section numbers here. */ |
| |
| bool |
| _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
| Elf_Internal_Sym *sym, const char **namep, |
| flagword *flagsp ATTRIBUTE_UNUSED, |
| asection **secp, bfd_vma *valp) |
| { |
| if (SGI_COMPAT (abfd) |
| && (abfd->flags & DYNAMIC) != 0 |
| && strcmp (*namep, "_rld_new_interface") == 0) |
| { |
| /* Skip IRIX5 rld entry name. */ |
| *namep = NULL; |
| return true; |
| } |
| |
| /* Shared objects may have a dynamic symbol '_gp_disp' defined as |
| a SECTION *ABS*. This causes ld to think it can resolve _gp_disp |
| by setting a DT_NEEDED for the shared object. Since _gp_disp is |
| a magic symbol resolved by the linker, we ignore this bogus definition |
| of _gp_disp. New ABI objects do not suffer from this problem so this |
| is not done for them. */ |
| if (!NEWABI_P(abfd) |
| && (sym->st_shndx == SHN_ABS) |
| && (strcmp (*namep, "_gp_disp") == 0)) |
| { |
| *namep = NULL; |
| return true; |
| } |
| |
| switch (sym->st_shndx) |
| { |
| case SHN_COMMON: |
| /* Common symbols less than the GP size are automatically |
| treated as SHN_MIPS_SCOMMON symbols, with some exceptions. */ |
| if (sym->st_size > elf_gp_size (abfd) |
| || ELF_ST_TYPE (sym->st_info) == STT_TLS |
| || IRIX_COMPAT (abfd) == ict_irix6 |
| || strcmp (*namep, "__gnu_lto_slim") == 0) |
| break; |
| /* Fall through. */ |
| case SHN_MIPS_SCOMMON: |
| *secp = bfd_make_section_old_way (abfd, ".scommon"); |
| (*secp)->flags |= SEC_IS_COMMON | SEC_SMALL_DATA; |
| *valp = sym->st_size; |
| break; |
| |
| case SHN_MIPS_TEXT: |
| /* This section is used in a shared object. */ |
| if (mips_elf_tdata (abfd)->elf_text_section == NULL) |
| { |
| asymbol *elf_text_symbol; |
| asection *elf_text_section; |
| size_t amt = sizeof (asection); |
| |
| elf_text_section = bfd_zalloc (abfd, amt); |
| if (elf_text_section == NULL) |
| return false; |
| |
| amt = sizeof (asymbol); |
| elf_text_symbol = bfd_zalloc (abfd, amt); |
| if (elf_text_symbol == NULL) |
| return false; |
| |
| /* Initialize the section. */ |
| |
| mips_elf_tdata (abfd)->elf_text_section = elf_text_section; |
| mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; |
| |
| elf_text_section->symbol = elf_text_symbol; |
| elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol; |
| |
| elf_text_section->name = ".text"; |
| elf_text_section->flags = SEC_NO_FLAGS; |
| elf_text_section->output_section = NULL; |
| elf_text_section->owner = abfd; |
| elf_text_symbol->name = ".text"; |
| elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; |
| elf_text_symbol->section = elf_text_section; |
| } |
| /* This code used to do *secp = bfd_und_section_ptr if |
| bfd_link_pic (info). I don't know why, and that doesn't make sense, |
| so I took it out. */ |
| *secp = mips_elf_tdata (abfd)->elf_text_section; |
| break; |
| |
| case SHN_MIPS_ACOMMON: |
| /* Fall through. XXX Can we treat this as allocated data? */ |
| case SHN_MIPS_DATA: |
| /* This section is used in a shared object. */ |
| if (mips_elf_tdata (abfd)->elf_data_section == NULL) |
| { |
| asymbol *elf_data_symbol; |
| asection *elf_data_section; |
| size_t amt = sizeof (asection); |
| |
| elf_data_section = bfd_zalloc (abfd, amt); |
| if (elf_data_section == NULL) |
| return false; |
| |
| amt = sizeof (asymbol); |
| elf_data_symbol = bfd_zalloc (abfd, amt); |
| if (elf_data_symbol == NULL) |
| return false; |
| |
| /* Initialize the section. */ |
| |
| mips_elf_tdata (abfd)->elf_data_section = elf_data_section; |
| mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; |
| |
| elf_data_section->symbol = elf_data_symbol; |
| elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol; |
| |
| elf_data_section->name = ".data"; |
| elf_data_section->flags = SEC_NO_FLAGS; |
| elf_data_section->output_section = NULL; |
| elf_data_section->owner = abfd; |
| elf_data_symbol->name = ".data"; |
| elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; |
| elf_data_symbol->section = elf_data_section; |
| } |
| /* This code used to do *secp = bfd_und_section_ptr if |
| bfd_link_pic (info). I don't know why, and that doesn't make sense, |
| so I took it out. */ |
| *secp = mips_elf_tdata (abfd)->elf_data_section; |
| break; |
| |
| case SHN_MIPS_SUNDEFINED: |
| *secp = bfd_und_section_ptr; |
| break; |
| } |
| |
| if (SGI_COMPAT (abfd) |
| && ! bfd_link_pic (info) |
| && info->output_bfd->xvec == abfd->xvec |
| && strcmp (*namep, "__rld_obj_head") == 0) |
| { |
| struct elf_link_hash_entry *h; |
| struct bfd_link_hash_entry *bh; |
| |
| /* Mark __rld_obj_head as dynamic. */ |
| bh = NULL; |
| if (! (_bfd_generic_link_add_one_symbol |
| (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, false, |
| get_elf_backend_data (abfd)->collect, &bh))) |
| return false; |
| |
| h = (struct elf_link_hash_entry *) bh; |
| h->non_elf = 0; |
| h->def_regular = 1; |
| h->type = STT_OBJECT; |
| |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| |
| mips_elf_hash_table (info)->use_rld_obj_head = true; |
| mips_elf_hash_table (info)->rld_symbol = h; |
| } |
| |
| /* If this is a mips16 text symbol, add 1 to the value to make it |
| odd. This will cause something like .word SYM to come up with |
| the right value when it is loaded into the PC. */ |
| if (ELF_ST_IS_COMPRESSED (sym->st_other)) |
| ++*valp; |
| |
| return true; |
| } |
| |
| /* This hook function is called before the linker writes out a global |
| symbol. We mark symbols as small common if appropriate. This is |
| also where we undo the increment of the value for a mips16 symbol. */ |
| |
| int |
| _bfd_mips_elf_link_output_symbol_hook |
| (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, |
| asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) |
| { |
| /* If we see a common symbol, which implies a relocatable link, then |
| if a symbol was small common in an input file, mark it as small |
| common in the output file. */ |
| if (sym->st_shndx == SHN_COMMON |
| && strcmp (input_sec->name, ".scommon") == 0) |
| sym->st_shndx = SHN_MIPS_SCOMMON; |
| |
| if (ELF_ST_IS_COMPRESSED (sym->st_other)) |
| sym->st_value &= ~1; |
| |
| return 1; |
| } |
| |
| /* Functions for the dynamic linker. */ |
| |
| /* Create dynamic sections when linking against a dynamic object. */ |
| |
| bool |
| _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
| { |
| struct elf_link_hash_entry *h; |
| struct bfd_link_hash_entry *bh; |
| flagword flags; |
| register asection *s; |
| const char * const *namep; |
| struct mips_elf_link_hash_table *htab; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED | SEC_READONLY); |
| |
| /* The psABI requires a read-only .dynamic section, but the VxWorks |
| EABI doesn't. */ |
| if (htab->root.target_os != is_vxworks) |
| { |
| s = bfd_get_linker_section (abfd, ".dynamic"); |
| if (s != NULL) |
| { |
| if (!bfd_set_section_flags (s, flags)) |
| return false; |
| } |
| } |
| |
| /* We need to create .got section. */ |
| if (!mips_elf_create_got_section (abfd, info)) |
| return false; |
| |
| if (! mips_elf_rel_dyn_section (info, true)) |
| return false; |
| |
| /* Create .stub section. */ |
| s = bfd_make_section_anyway_with_flags (abfd, |
| MIPS_ELF_STUB_SECTION_NAME (abfd), |
| flags | SEC_CODE); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) |
| return false; |
| htab->sstubs = s; |
| |
| if (!mips_elf_hash_table (info)->use_rld_obj_head |
| && bfd_link_executable (info) |
| && bfd_get_linker_section (abfd, ".rld_map") == NULL) |
| { |
| s = bfd_make_section_anyway_with_flags (abfd, ".rld_map", |
| flags &~ (flagword) SEC_READONLY); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) |
| return false; |
| } |
| |
| /* Create .MIPS.xhash section. */ |
| if (info->emit_gnu_hash) |
| s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash", |
| flags | SEC_READONLY); |
| |
| /* On IRIX5, we adjust add some additional symbols and change the |
| alignments of several sections. There is no ABI documentation |
| indicating that this is necessary on IRIX6, nor any evidence that |
| the linker takes such action. */ |
| if (IRIX_COMPAT (abfd) == ict_irix5) |
| { |
| for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) |
| { |
| bh = NULL; |
| if (! (_bfd_generic_link_add_one_symbol |
| (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, |
| NULL, false, get_elf_backend_data (abfd)->collect, &bh))) |
| return false; |
| |
| h = (struct elf_link_hash_entry *) bh; |
| h->mark = 1; |
| h->non_elf = 0; |
| h->def_regular = 1; |
| h->type = STT_SECTION; |
| |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| |
| /* We need to create a .compact_rel section. */ |
| if (SGI_COMPAT (abfd)) |
| { |
| if (!mips_elf_create_compact_rel_section (abfd, info)) |
| return false; |
| } |
| |
| /* Change alignments of some sections. */ |
| s = bfd_get_linker_section (abfd, ".hash"); |
| if (s != NULL) |
| bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
| |
| s = bfd_get_linker_section (abfd, ".dynsym"); |
| if (s != NULL) |
| bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
| |
| s = bfd_get_linker_section (abfd, ".dynstr"); |
| if (s != NULL) |
| bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
| |
| /* ??? */ |
| s = bfd_get_section_by_name (abfd, ".reginfo"); |
| if (s != NULL) |
| bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
| |
| s = bfd_get_linker_section (abfd, ".dynamic"); |
| if (s != NULL) |
| bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
| } |
| |
| if (bfd_link_executable (info)) |
| { |
| const char *name; |
| |
| name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; |
| bh = NULL; |
| if (!(_bfd_generic_link_add_one_symbol |
| (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, |
| NULL, false, get_elf_backend_data (abfd)->collect, &bh))) |
| return false; |
| |
| h = (struct elf_link_hash_entry *) bh; |
| h->non_elf = 0; |
| h->def_regular = 1; |
| h->type = STT_SECTION; |
| |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| |
| if (! mips_elf_hash_table (info)->use_rld_obj_head) |
| { |
| /* __rld_map is a four byte word located in the .data section |
| and is filled in by the rtld to contain a pointer to |
| the _r_debug structure. Its symbol value will be set in |
| _bfd_mips_elf_finish_dynamic_symbol. */ |
| s = bfd_get_linker_section (abfd, ".rld_map"); |
| BFD_ASSERT (s != NULL); |
| |
| name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; |
| bh = NULL; |
| if (!(_bfd_generic_link_add_one_symbol |
| (info, abfd, name, BSF_GLOBAL, s, 0, NULL, false, |
| get_elf_backend_data (abfd)->collect, &bh))) |
| return false; |
| |
| h = (struct elf_link_hash_entry *) bh; |
| h->non_elf = 0; |
| h->def_regular = 1; |
| h->type = STT_OBJECT; |
| |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| mips_elf_hash_table (info)->rld_symbol = h; |
| } |
| } |
| |
| /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections. |
| Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */ |
| if (!_bfd_elf_create_dynamic_sections (abfd, info)) |
| return false; |
| |
| /* Do the usual VxWorks handling. */ |
| if (htab->root.target_os == is_vxworks |
| && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) |
| return false; |
| |
| return true; |
| } |
| |
| /* Return true if relocation REL against section SEC is a REL rather than |
| RELA relocation. RELOCS is the first relocation in the section and |
| ABFD is the bfd that contains SEC. */ |
| |
| static bool |
| mips_elf_rel_relocation_p (bfd *abfd, asection *sec, |
| const Elf_Internal_Rela *relocs, |
| const Elf_Internal_Rela *rel) |
| { |
| Elf_Internal_Shdr *rel_hdr; |
| const struct elf_backend_data *bed; |
| |
| /* To determine which flavor of relocation this is, we depend on the |
| fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */ |
| rel_hdr = elf_section_data (sec)->rel.hdr; |
| if (rel_hdr == NULL) |
| return false; |
| bed = get_elf_backend_data (abfd); |
| return ((size_t) (rel - relocs) |
| < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel); |
| } |
| |
| /* Read the addend for REL relocation REL, which belongs to bfd ABFD. |
| HOWTO is the relocation's howto and CONTENTS points to the contents |
| of the section that REL is against. */ |
| |
| static bfd_vma |
| mips_elf_read_rel_addend (bfd *abfd, asection *sec, |
| const Elf_Internal_Rela *rel, |
| reloc_howto_type *howto, bfd_byte *contents) |
| { |
| bfd_byte *location; |
| unsigned int r_type; |
| bfd_vma addend; |
| bfd_vma bytes; |
| |
| if (!bfd_reloc_offset_in_range (howto, abfd, sec, rel->r_offset)) |
| return 0; |
| |
| r_type = ELF_R_TYPE (abfd, rel->r_info); |
| location = contents + rel->r_offset; |
| |
| /* Get the addend, which is stored in the input file. */ |
| _bfd_mips_elf_reloc_unshuffle (abfd, r_type, false, location); |
| bytes = mips_elf_obtain_contents (howto, rel, abfd, contents); |
| _bfd_mips_elf_reloc_shuffle (abfd, r_type, false, location); |
| |
| addend = bytes & howto->src_mask; |
| |
| /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend |
| accordingly. */ |
| if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c) |
| addend <<= 1; |
| |
| return addend; |
| } |
| |
| /* REL is a relocation in ABFD that needs a partnering LO16 relocation |
| and *ADDEND is the addend for REL itself. Look for the LO16 relocation |
| and update *ADDEND with the final addend. Return true on success |
| or false if the LO16 could not be found. RELEND is the exclusive |
| upper bound on the relocations for REL's section. */ |
| |
| static bool |
| mips_elf_add_lo16_rel_addend (bfd *abfd, |
| asection *sec, |
| const Elf_Internal_Rela *rel, |
| const Elf_Internal_Rela *relend, |
| bfd_byte *contents, bfd_vma *addend) |
| { |
| unsigned int r_type, lo16_type; |
| const Elf_Internal_Rela *lo16_relocation; |
| reloc_howto_type *lo16_howto; |
| bfd_vma l; |
| |
| r_type = ELF_R_TYPE (abfd, rel->r_info); |
| if (mips16_reloc_p (r_type)) |
| lo16_type = R_MIPS16_LO16; |
| else if (micromips_reloc_p (r_type)) |
| lo16_type = R_MICROMIPS_LO16; |
| else if (r_type == R_MIPS_PCHI16) |
| lo16_type = R_MIPS_PCLO16; |
| else |
| lo16_type = R_MIPS_LO16; |
| |
| /* The combined value is the sum of the HI16 addend, left-shifted by |
| sixteen bits, and the LO16 addend, sign extended. (Usually, the |
| code does a `lui' of the HI16 value, and then an `addiu' of the |
| LO16 value.) |
| |
| Scan ahead to find a matching LO16 relocation. |
| |
| According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must |
| be immediately following. However, for the IRIX6 ABI, the next |
| relocation may be a composed relocation consisting of several |
| relocations for the same address. In that case, the R_MIPS_LO16 |
| relocation may occur as one of these. We permit a similar |
| extension in general, as that is useful for GCC. |
| |
| In some cases GCC dead code elimination removes the LO16 but keeps |
| the corresponding HI16. This is strictly speaking a violation of |
| the ABI but not immediately harmful. */ |
| lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend); |
| if (lo16_relocation == NULL) |
| return false; |
| |
| /* Obtain the addend kept there. */ |
| lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, false); |
| l = mips_elf_read_rel_addend (abfd, sec, lo16_relocation, lo16_howto, |
| contents); |
| |
| l <<= lo16_howto->rightshift; |
| l = _bfd_mips_elf_sign_extend (l, 16); |
| |
| *addend <<= 16; |
| *addend += l; |
| return true; |
| } |
| |
| /* Try to read the contents of section SEC in bfd ABFD. Return true and |
| store the contents in *CONTENTS on success. Assume that *CONTENTS |
| already holds the contents if it is nonull on entry. */ |
| |
| static bool |
| mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents) |
| { |
| if (*contents) |
| return true; |
| |
| /* Get cached copy if it exists. */ |
| if (elf_section_data (sec)->this_hdr.contents != NULL) |
| { |
| *contents = elf_section_data (sec)->this_hdr.contents; |
| return true; |
| } |
| |
| return bfd_malloc_and_get_section (abfd, sec, contents); |
| } |
| |
| /* Make a new PLT record to keep internal data. */ |
| |
| static struct plt_entry * |
| mips_elf_make_plt_record (bfd *abfd) |
| { |
| struct plt_entry *entry; |
| |
| entry = bfd_zalloc (abfd, sizeof (*entry)); |
| if (entry == NULL) |
| return NULL; |
| |
| entry->stub_offset = MINUS_ONE; |
| entry->mips_offset = MINUS_ONE; |
| entry->comp_offset = MINUS_ONE; |
| entry->gotplt_index = MINUS_ONE; |
| return entry; |
| } |
| |
| /* Define the special `__gnu_absolute_zero' symbol. We only need this |
| for PIC code, as otherwise there is no load-time relocation involved |
| and local GOT entries whose value is zero at static link time will |
| retain their value at load time. */ |
| |
| static bool |
| mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info, |
| struct mips_elf_link_hash_table *htab, |
| unsigned int r_type) |
| { |
| union |
| { |
| struct elf_link_hash_entry *eh; |
| struct bfd_link_hash_entry *bh; |
| } |
| hzero; |
| |
| BFD_ASSERT (!htab->use_absolute_zero); |
| BFD_ASSERT (bfd_link_pic (info)); |
| |
| hzero.bh = NULL; |
| if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero", |
| BSF_GLOBAL, bfd_abs_section_ptr, 0, |
| NULL, false, false, &hzero.bh)) |
| return false; |
| |
| BFD_ASSERT (hzero.bh != NULL); |
| hzero.eh->size = 0; |
| hzero.eh->type = STT_NOTYPE; |
| hzero.eh->other = STV_PROTECTED; |
| hzero.eh->def_regular = 1; |
| hzero.eh->non_elf = 0; |
| |
| if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, true, r_type)) |
| return false; |
| |
| htab->use_absolute_zero = true; |
| |
| return true; |
| } |
| |
| /* Look through the relocs for a section during the first phase, and |
| allocate space in the global offset table and record the need for |
| standard MIPS and compressed procedure linkage table entries. */ |
| |
| bool |
| _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, |
| asection *sec, const Elf_Internal_Rela *relocs) |
| { |
| const char *name; |
| bfd *dynobj; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| size_t extsymoff; |
| const Elf_Internal_Rela *rel; |
| const Elf_Internal_Rela *rel_end; |
| asection *sreloc; |
| const struct elf_backend_data *bed; |
| struct mips_elf_link_hash_table *htab; |
| bfd_byte *contents; |
| bfd_vma addend; |
| reloc_howto_type *howto; |
| |
| if (bfd_link_relocatable (info)) |
| return true; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| sym_hashes = elf_sym_hashes (abfd); |
| extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; |
| |
| bed = get_elf_backend_data (abfd); |
| rel_end = relocs + sec->reloc_count; |
| |
| /* Check for the mips16 stub sections. */ |
| |
| name = bfd_section_name (sec); |
| if (FN_STUB_P (name)) |
| { |
| unsigned long r_symndx; |
| |
| /* Look at the relocation information to figure out which symbol |
| this is for. */ |
| |
| r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); |
| if (r_symndx == 0) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: warning: cannot determine the target function for" |
| " stub section `%s'"), |
| abfd, name); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| if (r_symndx < extsymoff |
| || sym_hashes[r_symndx - extsymoff] == NULL) |
| { |
| asection *o; |
| |
| /* This stub is for a local symbol. This stub will only be |
| needed if there is some relocation in this BFD, other |
| than a 16 bit function call, which refers to this symbol. */ |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| Elf_Internal_Rela *sec_relocs; |
| const Elf_Internal_Rela *r, *rend; |
| |
| /* We can ignore stub sections when looking for relocs. */ |
| if ((o->flags & SEC_RELOC) == 0 |
| || o->reloc_count == 0 |
| || section_allows_mips16_refs_p (o)) |
| continue; |
| |
| sec_relocs |
| = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
| info->keep_memory); |
| if (sec_relocs == NULL) |
| return false; |
| |
| rend = sec_relocs + o->reloc_count; |
| for (r = sec_relocs; r < rend; r++) |
| if (ELF_R_SYM (abfd, r->r_info) == r_symndx |
| && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info))) |
| break; |
| |
| if (elf_section_data (o)->relocs != sec_relocs) |
| free (sec_relocs); |
| |
| if (r < rend) |
| break; |
| } |
| |
| if (o == NULL) |
| { |
| /* There is no non-call reloc for this stub, so we do |
| not need it. Since this function is called before |
| the linker maps input sections to output sections, we |
| can easily discard it by setting the SEC_EXCLUDE |
| flag. */ |
| sec->flags |= SEC_EXCLUDE; |
| return true; |
| } |
| |
| /* Record this stub in an array of local symbol stubs for |
| this BFD. */ |
| if (mips_elf_tdata (abfd)->local_stubs == NULL) |
| { |
| unsigned long symcount; |
| asection **n; |
| bfd_size_type amt; |
| |
| if (elf_bad_symtab (abfd)) |
| symcount = NUM_SHDR_ENTRIES (symtab_hdr); |
| else |
| symcount = symtab_hdr->sh_info; |
| amt = symcount * sizeof (asection *); |
| n = bfd_zalloc (abfd, amt); |
| if (n == NULL) |
| return false; |
| mips_elf_tdata (abfd)->local_stubs = n; |
| } |
| |
| sec->flags |= SEC_KEEP; |
| mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec; |
| |
| /* We don't need to set mips16_stubs_seen in this case. |
| That flag is used to see whether we need to look through |
| the global symbol table for stubs. We don't need to set |
| it here, because we just have a local stub. */ |
| } |
| else |
| { |
| struct mips_elf_link_hash_entry *h; |
| |
| h = ((struct mips_elf_link_hash_entry *) |
| sym_hashes[r_symndx - extsymoff]); |
| |
| while (h->root.root.type == bfd_link_hash_indirect |
| || h->root.root.type == bfd_link_hash_warning) |
| h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| |
| /* H is the symbol this stub is for. */ |
| |
| /* If we already have an appropriate stub for this function, we |
| don't need another one, so we can discard this one. Since |
| this function is called before the linker maps input sections |
| to output sections, we can easily discard it by setting the |
| SEC_EXCLUDE flag. */ |
| if (h->fn_stub != NULL) |
| { |
| sec->flags |= SEC_EXCLUDE; |
| return true; |
| } |
| |
| sec->flags |= SEC_KEEP; |
| h->fn_stub = sec; |
| mips_elf_hash_table (info)->mips16_stubs_seen = true; |
| } |
| } |
| else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name)) |
| { |
| unsigned long r_symndx; |
| struct mips_elf_link_hash_entry *h; |
| asection **loc; |
| |
| /* Look at the relocation information to figure out which symbol |
| this is for. */ |
| |
| r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); |
| if (r_symndx == 0) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: warning: cannot determine the target function for" |
| " stub section `%s'"), |
| abfd, name); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| if (r_symndx < extsymoff |
| || sym_hashes[r_symndx - extsymoff] == NULL) |
| { |
| asection *o; |
| |
| /* This stub is for a local symbol. This stub will only be |
| needed if there is some relocation (R_MIPS16_26) in this BFD |
| that refers to this symbol. */ |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| Elf_Internal_Rela *sec_relocs; |
| const Elf_Internal_Rela *r, *rend; |
| |
| /* We can ignore stub sections when looking for relocs. */ |
| if ((o->flags & SEC_RELOC) == 0 |
| || o->reloc_count == 0 |
| || section_allows_mips16_refs_p (o)) |
| continue; |
| |
| sec_relocs |
| = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
| info->keep_memory); |
| if (sec_relocs == NULL) |
| return false; |
| |
| rend = sec_relocs + o->reloc_count; |
| for (r = sec_relocs; r < rend; r++) |
| if (ELF_R_SYM (abfd, r->r_info) == r_symndx |
| && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26) |
| break; |
| |
| if (elf_section_data (o)->relocs != sec_relocs) |
| free (sec_relocs); |
| |
| if (r < rend) |
| break; |
| } |
| |
| if (o == NULL) |
| { |
| /* There is no non-call reloc for this stub, so we do |
| not need it. Since this function is called before |
| the linker maps input sections to output sections, we |
| can easily discard it by setting the SEC_EXCLUDE |
| flag. */ |
| sec->flags |= SEC_EXCLUDE; |
| return true; |
| } |
| |
| /* Record this stub in an array of local symbol call_stubs for |
| this BFD. */ |
| if (mips_elf_tdata (abfd)->local_call_stubs == NULL) |
| { |
| unsigned long symcount; |
| asection **n; |
| bfd_size_type amt; |
| |
| if (elf_bad_symtab (abfd)) |
| symcount = NUM_SHDR_ENTRIES (symtab_hdr); |
| else |
| symcount = symtab_hdr->sh_info; |
| amt = symcount * sizeof (asection *); |
| n = bfd_zalloc (abfd, amt); |
| if (n == NULL) |
| return false; |
| mips_elf_tdata (abfd)->local_call_stubs = n; |
| } |
| |
| sec->flags |= SEC_KEEP; |
| mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec; |
| |
| /* We don't need to set mips16_stubs_seen in this case. |
| That flag is used to see whether we need to look through |
| the global symbol table for stubs. We don't need to set |
| it here, because we just have a local stub. */ |
| } |
| else |
| { |
| h = ((struct mips_elf_link_hash_entry *) |
| sym_hashes[r_symndx - extsymoff]); |
| |
| /* H is the symbol this stub is for. */ |
| |
| if (CALL_FP_STUB_P (name)) |
| loc = &h->call_fp_stub; |
| else |
| loc = &h->call_stub; |
| |
| /* If we already have an appropriate stub for this function, we |
| don't need another one, so we can discard this one. Since |
| this function is called before the linker maps input sections |
| to output sections, we can easily discard it by setting the |
| SEC_EXCLUDE flag. */ |
| if (*loc != NULL) |
| { |
| sec->flags |= SEC_EXCLUDE; |
| return true; |
| } |
| |
| sec->flags |= SEC_KEEP; |
| *loc = sec; |
| mips_elf_hash_table (info)->mips16_stubs_seen = true; |
| } |
| } |
| |
| sreloc = NULL; |
| contents = NULL; |
| for (rel = relocs; rel < rel_end; ++rel) |
| { |
| unsigned long r_symndx; |
| unsigned int r_type; |
| struct elf_link_hash_entry *h; |
| bool can_make_dynamic_p; |
| bool call_reloc_p; |
| bool constrain_symbol_p; |
| |
| r_symndx = ELF_R_SYM (abfd, rel->r_info); |
| r_type = ELF_R_TYPE (abfd, rel->r_info); |
| |
| if (r_symndx < extsymoff) |
| h = NULL; |
| else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: malformed reloc detected for section %s"), |
| abfd, name); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| else |
| { |
| h = sym_hashes[r_symndx - extsymoff]; |
| if (h != NULL) |
| { |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| } |
| |
| /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this |
| relocation into a dynamic one. */ |
| can_make_dynamic_p = false; |
| |
| /* Set CALL_RELOC_P to true if the relocation is for a call, |
| and if pointer equality therefore doesn't matter. */ |
| call_reloc_p = false; |
| |
| /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation |
| into account when deciding how to define the symbol. */ |
| constrain_symbol_p = true; |
| |
| switch (r_type) |
| { |
| case R_MIPS_CALL16: |
| case R_MIPS_CALL_HI16: |
| case R_MIPS_CALL_LO16: |
| case R_MIPS16_CALL16: |
| case R_MICROMIPS_CALL16: |
| case R_MICROMIPS_CALL_HI16: |
| case R_MICROMIPS_CALL_LO16: |
| call_reloc_p = true; |
| /* Fall through. */ |
| |
| case R_MIPS_GOT16: |
| case R_MIPS_GOT_LO16: |
| case R_MIPS_GOT_PAGE: |
| case R_MIPS_GOT_DISP: |
| case R_MIPS16_GOT16: |
| case R_MICROMIPS_GOT16: |
| case R_MICROMIPS_GOT_LO16: |
| case R_MICROMIPS_GOT_PAGE: |
| case R_MICROMIPS_GOT_DISP: |
| /* If we have a symbol that will resolve to zero at static link |
| time and it is used by a GOT relocation applied to code we |
| cannot relax to an immediate zero load, then we will be using |
| the special `__gnu_absolute_zero' symbol whose value is zero |
| at dynamic load time. We ignore HI16-type GOT relocations at |
| this stage, because their handling will depend entirely on |
| the corresponding LO16-type GOT relocation. */ |
| if (!call_hi16_reloc_p (r_type) |
| && h != NULL |
| && bfd_link_pic (info) |
| && !htab->use_absolute_zero |
| && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) |
| { |
| bool rel_reloc; |
| |
| if (!mips_elf_get_section_contents (abfd, sec, &contents)) |
| return false; |
| |
| rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel); |
| howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc); |
| if (bfd_reloc_offset_in_range (howto, abfd, sec, rel->r_offset)) |
| if (!mips_elf_nullify_got_load (abfd, contents, rel, howto, |
| false)) |
| if (!mips_elf_define_absolute_zero (abfd, info, htab, |
| r_type)) |
| return false; |
| } |
| |
| /* Fall through. */ |
| case R_MIPS_GOT_HI16: |
| case R_MIPS_GOT_OFST: |
| case R_MIPS_TLS_GOTTPREL: |
| case R_MIPS_TLS_GD: |
| case R_MIPS_TLS_LDM: |
| case R_MIPS16_TLS_GOTTPREL: |
| case R_MIPS16_TLS_GD: |
| case R_MIPS16_TLS_LDM: |
| case R_MICROMIPS_GOT_HI16: |
| case R_MICROMIPS_GOT_OFST: |
| case R_MICROMIPS_TLS_GOTTPREL: |
| case R_MICROMIPS_TLS_GD: |
| case R_MICROMIPS_TLS_LDM: |
| if (dynobj == NULL) |
| elf_hash_table (info)->dynobj = dynobj = abfd; |
| if (!mips_elf_create_got_section (dynobj, info)) |
| return false; |
| if (htab->root.target_os == is_vxworks |
| && !bfd_link_pic (info)) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"), |
| abfd, (uint64_t) rel->r_offset); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| can_make_dynamic_p = true; |
| break; |
| |
| case R_MIPS_NONE: |
| case R_MIPS_JALR: |
| case R_MICROMIPS_JALR: |
| /* These relocations have empty fields and are purely there to |
| provide link information. The symbol value doesn't matter. */ |
| constrain_symbol_p = false; |
| break; |
| |
| case R_MIPS_GPREL16: |
| case R_MIPS_GPREL32: |
| case R_MIPS16_GPREL: |
| case R_MICROMIPS_GPREL16: |
| /* GP-relative relocations always resolve to a definition in a |
| regular input file, ignoring the one-definition rule. This is |
| important for the GP setup sequence in NewABI code, which |
| always resolves to a local function even if other relocations |
| against the symbol wouldn't. */ |
| constrain_symbol_p = false; |
| break; |
| |
| case R_MIPS_32: |
| case R_MIPS_REL32: |
| case R_MIPS_64: |
| /* In VxWorks executables, references to external symbols |
| must be handled using copy relocs or PLT entries; it is not |
| possible to convert this relocation into a dynamic one. |
| |
| For executables that use PLTs and copy-relocs, we have a |
| choice between converting the relocation into a dynamic |
| one or using copy relocations or PLT entries. It is |
| usually better to do the former, unless the relocation is |
| against a read-only section. */ |
| if ((bfd_link_pic (info) |
| || (h != NULL |
| && htab->root.target_os != is_vxworks |
| && strcmp (h->root.root.string, "__gnu_local_gp") != 0 |
| && !(!info->nocopyreloc |
| && !PIC_OBJECT_P (abfd) |
| && MIPS_ELF_READONLY_SECTION (sec)))) |
| && (sec->flags & SEC_ALLOC) != 0) |
| { |
| can_make_dynamic_p = true; |
| if (dynobj == NULL) |
| elf_hash_table (info)->dynobj = dynobj = abfd; |
| } |
| break; |
| |
| case R_MIPS_26: |
| case R_MIPS_PC16: |
| case R_MIPS_PC21_S2: |
| case R_MIPS_PC26_S2: |
| case R_MIPS16_26: |
| case R_MIPS16_PC16_S1: |
| case R_MICROMIPS_26_S1: |
| case R_MICROMIPS_PC7_S1: |
| case R_MICROMIPS_PC10_S1: |
| case R_MICROMIPS_PC16_S1: |
| case R_MICROMIPS_PC23_S2: |
| call_reloc_p = true; |
| break; |
| } |
| |
| if (h) |
| { |
| if (constrain_symbol_p) |
| { |
| if (!can_make_dynamic_p) |
| ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1; |
| |
| if (!call_reloc_p) |
| h->pointer_equality_needed = 1; |
| |
| /* We must not create a stub for a symbol that has |
| relocations related to taking the function's address. |
| This doesn't apply to VxWorks, where CALL relocs refer |
| to a .got.plt entry instead of a normal .got entry. */ |
| if (htab->root.target_os != is_vxworks |
| && (!can_make_dynamic_p || !call_reloc_p)) |
| ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = true; |
| } |
| |
| /* Relocations against the special VxWorks __GOTT_BASE__ and |
| __GOTT_INDEX__ symbols must be left to the loader. Allocate |
| room for them in .rela.dyn. */ |
| if (is_gott_symbol (info, h)) |
| { |
| if (sreloc == NULL) |
| { |
| sreloc = mips_elf_rel_dyn_section (info, true); |
| if (sreloc == NULL) |
| return false; |
| } |
| mips_elf_allocate_dynamic_relocations (dynobj, info, 1); |
| if (MIPS_ELF_READONLY_SECTION (sec)) |
| /* We tell the dynamic linker that there are |
| relocations against the text segment. */ |
| info->flags |= DF_TEXTREL; |
| } |
| } |
| else if (call_lo16_reloc_p (r_type) |
| || got_lo16_reloc_p (r_type) |
| || got_disp_reloc_p (r_type) |
| || (got16_reloc_p (r_type) |
| && htab->root.target_os == is_vxworks)) |
| { |
| /* We may need a local GOT entry for this relocation. We |
| don't count R_MIPS_GOT_PAGE because we can estimate the |
| maximum number of pages needed by looking at the size of |
| the segment. Similar comments apply to R_MIPS*_GOT16 and |
| R_MIPS*_CALL16, except on VxWorks, where GOT relocations |
| always evaluate to "G". We don't count R_MIPS_GOT_HI16, or |
| R_MIPS_CALL_HI16 because these are always followed by an |
| R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ |
| if (!mips_elf_record_local_got_symbol (abfd, r_symndx, |
| rel->r_addend, info, r_type)) |
| return false; |
| } |
| |
| if (h != NULL |
| && mips_elf_relocation_needs_la25_stub (abfd, r_type, |
| ELF_ST_IS_MIPS16 (h->other))) |
| ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = true; |
| |
| switch (r_type) |
| { |
| case R_MIPS_CALL16: |
| case R_MIPS16_CALL16: |
| case R_MICROMIPS_CALL16: |
| if (h == NULL) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"), |
| abfd, (uint64_t) rel->r_offset); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| /* Fall through. */ |
| |
| case R_MIPS_CALL_HI16: |
| case R_MIPS_CALL_LO16: |
| case R_MICROMIPS_CALL_HI16: |
| case R_MICROMIPS_CALL_LO16: |
| if (h != NULL) |
| { |
| /* Make sure there is room in the regular GOT to hold the |
| function's address. We may eliminate it in favour of |
| a .got.plt entry later; see mips_elf_count_got_symbols. */ |
| if (!mips_elf_record_global_got_symbol (h, abfd, info, true, |
| r_type)) |
| return false; |
| |
| /* We need a stub, not a plt entry for the undefined |
| function. But we record it as if it needs plt. See |
| _bfd_elf_adjust_dynamic_symbol. */ |
| h->needs_plt = 1; |
| h->type = STT_FUNC; |
| } |
| break; |
| |
| case R_MIPS_GOT_PAGE: |
| case R_MICROMIPS_GOT_PAGE: |
| case R_MIPS16_GOT16: |
| case R_MIPS_GOT16: |
| case R_MIPS_GOT_HI16: |
| case R_MIPS_GOT_LO16: |
| case R_MICROMIPS_GOT16: |
| case R_MICROMIPS_GOT_HI16: |
| case R_MICROMIPS_GOT_LO16: |
| if (!h || got_page_reloc_p (r_type)) |
| { |
| /* This relocation needs (or may need, if h != NULL) a |
| page entry in the GOT. For R_MIPS_GOT_PAGE we do not |
| know for sure until we know whether the symbol is |
| preemptible. */ |
| if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel)) |
| { |
| if (!mips_elf_get_section_contents (abfd, sec, &contents)) |
| return false; |
| howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, false); |
| addend = mips_elf_read_rel_addend (abfd, sec, rel, |
| howto, contents); |
| if (got16_reloc_p (r_type)) |
| mips_elf_add_lo16_rel_addend (abfd, sec, rel, rel_end, |
| contents, &addend); |
| else |
| addend <<= howto->rightshift; |
| } |
| else |
| addend = rel->r_addend; |
| if (!mips_elf_record_got_page_ref (info, abfd, r_symndx, |
| h, addend)) |
| return false; |
| |
| if (h) |
| { |
| struct mips_elf_link_hash_entry *hmips = |
| (struct mips_elf_link_hash_entry *) h; |
| |
| /* This symbol is definitely not overridable. */ |
| if (hmips->root.def_regular |
| && ! (bfd_link_pic (info) && ! info->symbolic |
| && ! hmips->root.forced_local)) |
| h = NULL; |
| } |
| } |
| /* If this is a global, overridable symbol, GOT_PAGE will |
| decay to GOT_DISP, so we'll need a GOT entry for it. */ |
| /* Fall through. */ |
| |
| case R_MIPS_GOT_DISP: |
| case R_MICROMIPS_GOT_DISP: |
| if (h && !mips_elf_record_global_got_symbol (h, abfd, info, |
| false, r_type)) |
| return false; |
| break; |
| |
| case R_MIPS_TLS_GOTTPREL: |
| case R_MIPS16_TLS_GOTTPREL: |
| case R_MICROMIPS_TLS_GOTTPREL: |
| if (bfd_link_pic (info)) |
| info->flags |= DF_STATIC_TLS; |
| /* Fall through */ |
| |
| case R_MIPS_TLS_LDM: |
| case R_MIPS16_TLS_LDM: |
| case R_MICROMIPS_TLS_LDM: |
| if (tls_ldm_reloc_p (r_type)) |
| { |
| r_symndx = STN_UNDEF; |
| h = NULL; |
| } |
| /* Fall through */ |
| |
| case R_MIPS_TLS_GD: |
| case R_MIPS16_TLS_GD: |
| case R_MICROMIPS_TLS_GD: |
| /* This symbol requires a global offset table entry, or two |
| for TLS GD relocations. */ |
| if (h != NULL) |
| { |
| if (!mips_elf_record_global_got_symbol (h, abfd, info, |
| false, r_type)) |
| return false; |
| } |
| else |
| { |
| if (!mips_elf_record_local_got_symbol (abfd, r_symndx, |
| rel->r_addend, |
| info, r_type)) |
| return false; |
| } |
| break; |
| |
| case R_MIPS_32: |
| case R_MIPS_REL32: |
| case R_MIPS_64: |
| /* In VxWorks executables, references to external symbols |
| are handled using copy relocs or PLT stubs, so there's |
| no need to add a .rela.dyn entry for this relocation. */ |
| if (can_make_dynamic_p) |
| { |
| if (sreloc == NULL) |
| { |
| sreloc = mips_elf_rel_dyn_section (info, true); |
| if (sreloc == NULL) |
| return false; |
| } |
| if (bfd_link_pic (info) && h == NULL) |
| { |
| /* When creating a shared object, we must copy these |
| reloc types into the output file as R_MIPS_REL32 |
| relocs. Make room for this reloc in .rel(a).dyn. */ |
| mips_elf_allocate_dynamic_relocations (dynobj, info, 1); |
| if (MIPS_ELF_READONLY_SECTION (sec)) |
| /* We tell the dynamic linker that there are |
| relocations against the text segment. */ |
| info->flags |= DF_TEXTREL; |
| } |
| else |
| { |
| struct mips_elf_link_hash_entry *hmips; |
| |
| /* For a shared object, we must copy this relocation |
| unless the symbol turns out to be undefined and |
| weak with non-default visibility, in which case |
| it will be left as zero. |
| |
| We could elide R_MIPS_REL32 for locally binding symbols |
| in shared libraries, but do not yet do so. |
| |
| For an executable, we only need to copy this |
| reloc if the symbol is defined in a dynamic |
| object. */ |
| hmips = (struct mips_elf_link_hash_entry *) h; |
| ++hmips->possibly_dynamic_relocs; |
| if (MIPS_ELF_READONLY_SECTION (sec)) |
| /* We need it to tell the dynamic linker if there |
| are relocations against the text segment. */ |
| hmips->readonly_reloc = true; |
| } |
| } |
| |
| if (SGI_COMPAT (abfd)) |
| mips_elf_hash_table (info)->compact_rel_size += |
| sizeof (Elf32_External_crinfo); |
| break; |
| |
| case R_MIPS_26: |
| case R_MIPS_GPREL16: |
| case R_MIPS_LITERAL: |
| case R_MIPS_GPREL32: |
| case R_MICROMIPS_26_S1: |
| case R_MICROMIPS_GPREL16: |
| case R_MICROMIPS_LITERAL: |
| case R_MICROMIPS_GPREL7_S2: |
| if (SGI_COMPAT (abfd)) |
| mips_elf_hash_table (info)->compact_rel_size += |
| sizeof (Elf32_External_crinfo); |
| break; |
| |
| /* This relocation describes the C++ object vtable hierarchy. |
| Reconstruct it for later use during GC. */ |
| case R_MIPS_GNU_VTINHERIT: |
| if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| return false; |
| break; |
| |
| /* This relocation describes which C++ vtable entries are actually |
| used. Record for later use during GC. */ |
| case R_MIPS_GNU_VTENTRY: |
| if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) |
| return false; |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Record the need for a PLT entry. At this point we don't know |
| yet if we are going to create a PLT in the first place, but |
| we only record whether the relocation requires a standard MIPS |
| or a compressed code entry anyway. If we don't make a PLT after |
| all, then we'll just ignore these arrangements. Likewise if |
| a PLT entry is not created because the symbol is satisfied |
| locally. */ |
| if (h != NULL |
| && (branch_reloc_p (r_type) |
| || mips16_branch_reloc_p (r_type) |
| || micromips_branch_reloc_p (r_type)) |
| && !SYMBOL_CALLS_LOCAL (info, h)) |
| { |
| if (h->plt.plist == NULL) |
| h->plt.plist = mips_elf_make_plt_record (abfd); |
| if (h->plt.plist == NULL) |
| return false; |
| |
| if (branch_reloc_p (r_type)) |
| h->plt.plist->need_mips = true; |
| else |
| h->plt.plist->need_comp = true; |
| } |
| |
| /* See if this reloc would need to refer to a MIPS16 hard-float stub, |
| if there is one. We only need to handle global symbols here; |
| we decide whether to keep or delete stubs for local symbols |
| when processing the stub's relocations. */ |
| if (h != NULL |
| && !mips16_call_reloc_p (r_type) |
| && !section_allows_mips16_refs_p (sec)) |
| { |
| struct mips_elf_link_hash_entry *mh; |
| |
| mh = (struct mips_elf_link_hash_entry *) h; |
| mh->need_fn_stub = true; |
| } |
| |
| /* Refuse some position-dependent relocations when creating a |
| shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're |
| not PIC, but we can create dynamic relocations and the result |
| will be fine. Also do not refuse R_MIPS_LO16, which can be |
| combined with R_MIPS_GOT16. */ |
| if (bfd_link_pic (info)) |
| { |
| switch (r_type) |
| { |
| case R_MIPS_TLS_TPREL_HI16: |
| case R_MIPS16_TLS_TPREL_HI16: |
| case R_MICROMIPS_TLS_TPREL_HI16: |
| case R_MIPS_TLS_TPREL_LO16: |
| case R_MIPS16_TLS_TPREL_LO16: |
| case R_MICROMIPS_TLS_TPREL_LO16: |
| /* These are okay in PIE, but not in a shared library. */ |
| if (bfd_link_executable (info)) |
| break; |
| |
| /* FALLTHROUGH */ |
| |
| case R_MIPS16_HI16: |
| case R_MIPS_HI16: |
| case R_MIPS_HIGHER: |
| case R_MIPS_HIGHEST: |
| case R_MICROMIPS_HI16: |
| case R_MICROMIPS_HIGHER: |
| case R_MICROMIPS_HIGHEST: |
| /* Don't refuse a high part relocation if it's against |
| no symbol (e.g. part of a compound relocation). */ |
| if (r_symndx == STN_UNDEF) |
| break; |
| |
| /* Likewise an absolute symbol. */ |
| if (h != NULL && bfd_is_abs_symbol (&h->root)) |
| break; |
| |
| /* R_MIPS_HI16 against _gp_disp is used for $gp setup, |
| and has a special meaning. */ |
| if (!NEWABI_P (abfd) && h != NULL |
| && strcmp (h->root.root.string, "_gp_disp") == 0) |
| break; |
| |
| /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */ |
| if (is_gott_symbol (info, h)) |
| break; |
| |
| /* FALLTHROUGH */ |
| |
| case R_MIPS16_26: |
| case R_MIPS_26: |
| case R_MICROMIPS_26_S1: |
| howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd)); |
| /* An error for unsupported relocations is raised as part |
| of the above search, so we can skip the following. */ |
| if (howto != NULL) |
| info->callbacks->einfo |
| /* xgettext:c-format */ |
| (_("%X%H: relocation %s against `%s' cannot be used" |
| " when making a shared object; recompile with -fPIC\n"), |
| abfd, sec, rel->r_offset, howto->name, |
| (h) ? h->root.root.string : "a local symbol"); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Allocate space for global sym dynamic relocs. */ |
| |
| static bool |
| allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) |
| { |
| struct bfd_link_info *info = inf; |
| bfd *dynobj; |
| struct mips_elf_link_hash_entry *hmips; |
| struct mips_elf_link_hash_table *htab; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| hmips = (struct mips_elf_link_hash_entry *) h; |
| |
| /* VxWorks executables are handled elsewhere; we only need to |
| allocate relocations in shared objects. */ |
| if (htab->root.target_os == is_vxworks && !bfd_link_pic (info)) |
| return true; |
| |
| /* Ignore indirect symbols. All relocations against such symbols |
| will be redirected to the target symbol. */ |
| if (h->root.type == bfd_link_hash_indirect) |
| return true; |
| |
| /* If this symbol is defined in a dynamic object, or we are creating |
| a shared library, we will need to copy any R_MIPS_32 or |
| R_MIPS_REL32 relocs against it into the output file. */ |
| if (! bfd_link_relocatable (info) |
| && hmips->possibly_dynamic_relocs != 0 |
| && (h->root.type == bfd_link_hash_defweak |
| || (!h->def_regular && !ELF_COMMON_DEF_P (h)) |
| || bfd_link_pic (info))) |
| { |
| bool do_copy = true; |
| |
| if (h->root.type == bfd_link_hash_undefweak) |
| { |
| /* Do not copy relocations for undefined weak symbols that |
| we are not going to export. */ |
| if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) |
| do_copy = false; |
| |
| /* Make sure undefined weak symbols are output as a dynamic |
| symbol in PIEs. */ |
| else if (h->dynindx == -1 && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| } |
| |
| if (do_copy) |
| { |
| /* Even though we don't directly need a GOT entry for this symbol, |
| the SVR4 psABI requires it to have a dynamic symbol table |
| index greater that DT_MIPS_GOTSYM if there are dynamic |
| relocations against it. |
| |
| VxWorks does not enforce the same mapping between the GOT |
| and the symbol table, so the same requirement does not |
| apply there. */ |
| if (htab->root.target_os != is_vxworks) |
| { |
| if (hmips->global_got_area > GGA_RELOC_ONLY) |
| hmips->global_got_area = GGA_RELOC_ONLY; |
| hmips->got_only_for_calls = false; |
| } |
| |
| mips_elf_allocate_dynamic_relocations |
| (dynobj, info, hmips->possibly_dynamic_relocs); |
| if (hmips->readonly_reloc) |
| /* We tell the dynamic linker that there are relocations |
| against the text segment. */ |
| info->flags |= DF_TEXTREL; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Adjust a symbol defined by a dynamic object and referenced by a |
| regular object. The current definition is in some section of the |
| dynamic object, but we're not including those sections. We have to |
| change the definition to something the rest of the link can |
| understand. */ |
| |
| bool |
| _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| bfd *dynobj; |
| struct mips_elf_link_hash_entry *hmips; |
| struct mips_elf_link_hash_table *htab; |
| asection *s, *srel; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| hmips = (struct mips_elf_link_hash_entry *) h; |
| |
| /* Make sure we know what is going on here. */ |
| if (dynobj == NULL |
| || (! h->needs_plt |
| && ! h->is_weakalias |
| && (! h->def_dynamic |
| || ! h->ref_regular |
| || h->def_regular))) |
| { |
| if (h->type == STT_GNU_IFUNC) |
| _bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"), |
| h->root.root.string); |
| else |
| _bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"), |
| h->root.root.string); |
| return true; |
| } |
| |
| hmips = (struct mips_elf_link_hash_entry *) h; |
| |
| /* If there are call relocations against an externally-defined symbol, |
| see whether we can create a MIPS lazy-binding stub for it. We can |
| only do this if all references to the function are through call |
| relocations, and in that case, the traditional lazy-binding stubs |
| are much more efficient than PLT entries. |
| |
| Traditional stubs are only available on SVR4 psABI-based systems; |
| VxWorks always uses PLTs instead. */ |
| if (htab->root.target_os != is_vxworks |
| && h->needs_plt |
| && !hmips->no_fn_stub) |
| { |
| if (! elf_hash_table (info)->dynamic_sections_created) |
| return true; |
| |
| /* If this symbol is not defined in a regular file, then set |
| the symbol to the stub location. This is required to make |
| function pointers compare as equal between the normal |
| executable and the shared library. */ |
| if (!h->def_regular |
| && !bfd_is_abs_section (htab->sstubs->output_section)) |
| { |
| hmips->needs_lazy_stub = true; |
| htab->lazy_stub_count++; |
| return true; |
| } |
| } |
| /* As above, VxWorks requires PLT entries for externally-defined |
| functions that are only accessed through call relocations. |
| |
| Both VxWorks and non-VxWorks targets also need PLT entries if there |
| are static-only relocations against an externally-defined function. |
| This can technically occur for shared libraries if there are |
| branches to the symbol, although it is unlikely that this will be |
| used in practice due to the short ranges involved. It can occur |
| for any relative or absolute relocation in executables; in that |
| case, the PLT entry becomes the function's canonical address. */ |
| else if (((h->needs_plt && !hmips->no_fn_stub) |
| || (h->type == STT_FUNC && hmips->has_static_relocs)) |
| && htab->use_plts_and_copy_relocs |
| && !SYMBOL_CALLS_LOCAL (info, h) |
| && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| && h->root.type == bfd_link_hash_undefweak)) |
| { |
| bool micromips_p = MICROMIPS_P (info->output_bfd); |
| bool newabi_p = NEWABI_P (info->output_bfd); |
| |
| /* If this is the first symbol to need a PLT entry, then make some |
| basic setup. Also work out PLT entry sizes. We'll need them |
| for PLT offset calculations. */ |
| if (htab->plt_mips_offset + htab->plt_comp_offset == 0) |
| { |
| BFD_ASSERT (htab->root.sgotplt->size == 0); |
| BFD_ASSERT (htab->plt_got_index == 0); |
| |
| /* If we're using the PLT additions to the psABI, each PLT |
| entry is 16 bytes and the PLT0 entry is 32 bytes. |
| Encourage better cache usage by aligning. We do this |
| lazily to avoid pessimizing traditional objects. */ |
| if (htab->root.target_os != is_vxworks |
| && !bfd_set_section_alignment (htab->root.splt, 5)) |
| return false; |
| |
| /* Make sure that .got.plt is word-aligned. We do this lazily |
| for the same reason as above. */ |
| if (!bfd_set_section_alignment (htab->root.sgotplt, |
| MIPS_ELF_LOG_FILE_ALIGN (dynobj))) |
| return false; |
| |
| /* On non-VxWorks targets, the first two entries in .got.plt |
| are reserved. */ |
| if (htab->root.target_os != is_vxworks) |
| htab->plt_got_index |
| += (get_elf_backend_data (dynobj)->got_header_size |
| / MIPS_ELF_GOT_SIZE (dynobj)); |
| |
| /* On VxWorks, also allocate room for the header's |
| .rela.plt.unloaded entries. */ |
| if (htab->root.target_os == is_vxworks |
| && !bfd_link_pic (info)) |
| htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); |
| |
| /* Now work out the sizes of individual PLT entries. */ |
| if (htab->root.target_os == is_vxworks |
| && bfd_link_pic (info)) |
| htab->plt_mips_entry_size |
| = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); |
| else if (htab->root.target_os == is_vxworks) |
| htab->plt_mips_entry_size |
| = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); |
| else if (newabi_p) |
| htab->plt_mips_entry_size |
| = 4 * ARRAY_SIZE (mips_exec_plt_entry); |
| else if (!micromips_p) |
| { |
| htab->plt_mips_entry_size |
| = 4 * ARRAY_SIZE (mips_exec_plt_entry); |
| htab->plt_comp_entry_size |
| = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); |
| } |
| else if (htab->insn32) |
| { |
| htab->plt_mips_entry_size |
| = 4 * ARRAY_SIZE (mips_exec_plt_entry); |
| htab->plt_comp_entry_size |
| = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); |
| } |
| else |
| { |
| htab->plt_mips_entry_size |
| = 4 * ARRAY_SIZE (mips_exec_plt_entry); |
| htab->plt_comp_entry_size |
| = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); |
| } |
| } |
| |
| if (h->plt.plist == NULL) |
| h->plt.plist = mips_elf_make_plt_record (dynobj); |
| if (h->plt.plist == NULL) |
| return false; |
| |
| /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks, |
| n32 or n64, so always use a standard entry there. |
| |
| If the symbol has a MIPS16 call stub and gets a PLT entry, then |
| all MIPS16 calls will go via that stub, and there is no benefit |
| to having a MIPS16 entry. And in the case of call_stub a |
| standard entry actually has to be used as the stub ends with a J |
| instruction. */ |
| if (newabi_p |
| || htab->root.target_os == is_vxworks |
| || hmips->call_stub |
| || hmips->call_fp_stub) |
| { |
| h->plt.plist->need_mips = true; |
| h->plt.plist->need_comp = false; |
| } |
| |
| /* Otherwise, if there are no direct calls to the function, we |
| have a free choice of whether to use standard or compressed |
| entries. Prefer microMIPS entries if the object is known to |
| contain microMIPS code, so that it becomes possible to create |
| pure microMIPS binaries. Prefer standard entries otherwise, |
| because MIPS16 ones are no smaller and are usually slower. */ |
| if (!h->plt.plist->need_mips && !h->plt.plist->need_comp) |
| { |
| if (micromips_p) |
| h->plt.plist->need_comp = true; |
| else |
| h->plt.plist->need_mips = true; |
| } |
| |
| if (h->plt.plist->need_mips) |
| { |
| h->plt.plist->mips_offset = htab->plt_mips_offset; |
| htab->plt_mips_offset += htab->plt_mips_entry_size; |
| } |
| if (h->plt.plist->need_comp) |
| { |
| h->plt.plist->comp_offset = htab->plt_comp_offset; |
| htab->plt_comp_offset += htab->plt_comp_entry_size; |
| } |
| |
| /* Reserve the corresponding .got.plt entry now too. */ |
| h->plt.plist->gotplt_index = htab->plt_got_index++; |
| |
| /* If the output file has no definition of the symbol, set the |
| symbol's value to the address of the stub. */ |
| if (!bfd_link_pic (info) && !h->def_regular) |
| hmips->use_plt_entry = true; |
| |
| /* Make room for the R_MIPS_JUMP_SLOT relocation. */ |
| htab->root.srelplt->size += (htab->root.target_os == is_vxworks |
| ? MIPS_ELF_RELA_SIZE (dynobj) |
| : MIPS_ELF_REL_SIZE (dynobj)); |
| |
| /* Make room for the .rela.plt.unloaded relocations. */ |
| if (htab->root.target_os == is_vxworks && !bfd_link_pic (info)) |
| htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); |
| |
| /* All relocations against this symbol that could have been made |
| dynamic will now refer to the PLT entry instead. */ |
| hmips->possibly_dynamic_relocs = 0; |
| |
| return true; |
| } |
| |
| /* If this is a weak symbol, and there is a real definition, the |
| processor independent code will have arranged for us to see the |
| real definition first, and we can just use the same value. */ |
| if (h->is_weakalias) |
| { |
| struct elf_link_hash_entry *def = weakdef (h); |
| BFD_ASSERT (def->root.type == bfd_link_hash_defined); |
| h->root.u.def.section = def->root.u.def.section; |
| h->root.u.def.value = def->root.u.def.value; |
| return true; |
| } |
| |
| /* Otherwise, there is nothing further to do for symbols defined |
| in regular objects. */ |
| if (h->def_regular) |
| return true; |
| |
| /* There's also nothing more to do if we'll convert all relocations |
| against this symbol into dynamic relocations. */ |
| if (!hmips->has_static_relocs) |
| return true; |
| |
| /* We're now relying on copy relocations. Complain if we have |
| some that we can't convert. */ |
| if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info)) |
| { |
| _bfd_error_handler (_("non-dynamic relocations refer to " |
| "dynamic symbol %s"), |
| h->root.root.string); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| /* We must allocate the symbol in our .dynbss section, which will |
| become part of the .bss section of the executable. There will be |
| an entry for this symbol in the .dynsym section. The dynamic |
| object will contain position independent code, so all references |
| from the dynamic object to this symbol will go through the global |
| offset table. The dynamic linker will use the .dynsym entry to |
| determine the address it must put in the global offset table, so |
| both the dynamic object and the regular object will refer to the |
| same memory location for the variable. */ |
| |
| if ((h->root.u.def.section->flags & SEC_READONLY) != 0) |
| { |
| s = htab->root.sdynrelro; |
| srel = htab->root.sreldynrelro; |
| } |
| else |
| { |
| s = htab->root.sdynbss; |
| srel = htab->root.srelbss; |
| } |
| if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) |
| { |
| if (htab->root.target_os == is_vxworks) |
| srel->size += sizeof (Elf32_External_Rela); |
| else |
| mips_elf_allocate_dynamic_relocations (dynobj, info, 1); |
| h->needs_copy = 1; |
| } |
| |
| /* All relocations against this symbol that could have been made |
| dynamic will now refer to the local copy instead. */ |
| hmips->possibly_dynamic_relocs = 0; |
| |
| return _bfd_elf_adjust_dynamic_copy (info, h, s); |
| } |
| |
| /* If the link uses a GOT, lay it out and work out its size. */ |
| |
| static bool |
| mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| bfd *dynobj; |
| asection *s; |
| struct mips_got_info *g; |
| bfd_size_type loadable_size = 0; |
| bfd_size_type page_gotno; |
| bfd *ibfd; |
| struct mips_elf_traverse_got_arg tga; |
| struct mips_elf_link_hash_table *htab; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| s = htab->root.sgot; |
| if (s == NULL) |
| return true; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| g = htab->got_info; |
| |
| /* Allocate room for the reserved entries. VxWorks always reserves |
| 3 entries; other objects only reserve 2 entries. */ |
| BFD_ASSERT (g->assigned_low_gotno == 0); |
| if (htab->root.target_os == is_vxworks) |
| htab->reserved_gotno = 3; |
| else |
| htab->reserved_gotno = 2; |
| g->local_gotno += htab->reserved_gotno; |
| g->assigned_low_gotno = htab->reserved_gotno; |
| |
| /* Decide which symbols need to go in the global part of the GOT and |
| count the number of reloc-only GOT symbols. */ |
| mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info); |
| |
| if (!mips_elf_resolve_final_got_entries (info, g)) |
| return false; |
| |
| /* Calculate the total loadable size of the output. That |
| will give us the maximum number of GOT_PAGE entries |
| required. */ |
| for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) |
| { |
| asection *subsection; |
| |
| for (subsection = ibfd->sections; |
| subsection; |
| subsection = subsection->next) |
| { |
| if ((subsection->flags & SEC_ALLOC) == 0) |
| continue; |
| loadable_size += ((subsection->size + 0xf) |
| &~ (bfd_size_type) 0xf); |
| } |
| } |
| |
| if (htab->root.target_os == is_vxworks) |
| /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16 |
| relocations against local symbols evaluate to "G", and the EABI does |
| not include R_MIPS_GOT_PAGE. */ |
| page_gotno = 0; |
| else |
| /* Assume there are two loadable segments consisting of contiguous |
| sections. Is 5 enough? */ |
| page_gotno = (loadable_size >> 16) + 5; |
| |
| /* Choose the smaller of the two page estimates; both are intended to be |
| conservative. */ |
| if (page_gotno > g->page_gotno) |
| page_gotno = g->page_gotno; |
| |
| g->local_gotno += page_gotno; |
| g->assigned_high_gotno = g->local_gotno - 1; |
| |
| s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
| s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
| s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
| |
| /* VxWorks does not support multiple GOTs. It initializes $gp to |
| __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the |
| dynamic loader. */ |
| if (htab->root.target_os != is_vxworks |
| && s->size > MIPS_ELF_GOT_MAX_SIZE (info)) |
| { |
| if (!mips_elf_multi_got (output_bfd, info, s, page_gotno)) |
| return false; |
| } |
| else |
| { |
| /* Record that all bfds use G. This also has the effect of freeing |
| the per-bfd GOTs, which we no longer need. */ |
| for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) |
| if (mips_elf_bfd_got (ibfd, false)) |
| mips_elf_replace_bfd_got (ibfd, g); |
| mips_elf_replace_bfd_got (output_bfd, g); |
| |
| /* Set up TLS entries. */ |
| g->tls_assigned_gotno = g->global_gotno + g->local_gotno; |
| tga.info = info; |
| tga.g = g; |
| tga.value = MIPS_ELF_GOT_SIZE (output_bfd); |
| htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); |
| if (!tga.g) |
| return false; |
| BFD_ASSERT (g->tls_assigned_gotno |
| == g->global_gotno + g->local_gotno + g->tls_gotno); |
| |
| /* Each VxWorks GOT entry needs an explicit relocation. */ |
| if (htab->root.target_os == is_vxworks && bfd_link_pic (info)) |
| g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno; |
| |
| /* Allocate room for the TLS relocations. */ |
| if (g->relocs) |
| mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs); |
| } |
| |
| return true; |
| } |
| |
| /* Estimate the size of the .MIPS.stubs section. */ |
| |
| static void |
| mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| struct mips_elf_link_hash_table *htab; |
| bfd_size_type dynsymcount; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| if (htab->lazy_stub_count == 0) |
| return; |
| |
| /* IRIX rld assumes that a function stub isn't at the end of the .text |
| section, so add a dummy entry to the end. */ |
| htab->lazy_stub_count++; |
| |
| /* Get a worst-case estimate of the number of dynamic symbols needed. |
| At this point, dynsymcount does not account for section symbols |
| and count_section_dynsyms may overestimate the number that will |
| be needed. */ |
| dynsymcount = (elf_hash_table (info)->dynsymcount |
| + count_section_dynsyms (output_bfd, info)); |
| |
| /* Determine the size of one stub entry. There's no disadvantage |
| from using microMIPS code here, so for the sake of pure-microMIPS |
| binaries we prefer it whenever there's any microMIPS code in |
| output produced at all. This has a benefit of stubs being |
| shorter by 4 bytes each too, unless in the insn32 mode. */ |
| if (!MICROMIPS_P (output_bfd)) |
| htab->function_stub_size = (dynsymcount > 0x10000 |
| ? MIPS_FUNCTION_STUB_BIG_SIZE |
| : MIPS_FUNCTION_STUB_NORMAL_SIZE); |
| else if (htab->insn32) |
| htab->function_stub_size = (dynsymcount > 0x10000 |
| ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE |
| : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE); |
| else |
| htab->function_stub_size = (dynsymcount > 0x10000 |
| ? MICROMIPS_FUNCTION_STUB_BIG_SIZE |
| : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE); |
| |
| htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size; |
| } |
| |
| /* A mips_elf_link_hash_traverse callback for which DATA points to a |
| mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding |
| stub, allocate an entry in the stubs section. */ |
| |
| static bool |
| mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data) |
| { |
| struct mips_htab_traverse_info *hti = data; |
| struct mips_elf_link_hash_table *htab; |
| struct bfd_link_info *info; |
| bfd *output_bfd; |
| |
| info = hti->info; |
| output_bfd = hti->output_bfd; |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| if (h->needs_lazy_stub) |
| { |
| bool micromips_p = MICROMIPS_P (output_bfd); |
| unsigned int other = micromips_p ? STO_MICROMIPS : 0; |
| bfd_vma isa_bit = micromips_p; |
| |
| BFD_ASSERT (htab->root.dynobj != NULL); |
| if (h->root.plt.plist == NULL) |
| h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner); |
| if (h->root.plt.plist == NULL) |
| { |
| hti->error = true; |
| return false; |
| } |
| h->root.root.u.def.section = htab->sstubs; |
| h->root.root.u.def.value = htab->sstubs->size + isa_bit; |
| h->root.plt.plist->stub_offset = htab->sstubs->size; |
| h->root.other = other; |
| htab->sstubs->size += htab->function_stub_size; |
| } |
| return true; |
| } |
| |
| /* Allocate offsets in the stubs section to each symbol that needs one. |
| Set the final size of the .MIPS.stub section. */ |
| |
| static bool |
| mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info) |
| { |
| bfd *output_bfd = info->output_bfd; |
| bool micromips_p = MICROMIPS_P (output_bfd); |
| unsigned int other = micromips_p ? STO_MICROMIPS : 0; |
| bfd_vma isa_bit = micromips_p; |
| struct mips_elf_link_hash_table *htab; |
| struct mips_htab_traverse_info hti; |
| struct elf_link_hash_entry *h; |
| bfd *dynobj; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| if (htab->lazy_stub_count == 0) |
| return true; |
| |
| htab->sstubs->size = 0; |
| hti.info = info; |
| hti.output_bfd = output_bfd; |
| hti.error = false; |
| mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti); |
| if (hti.error) |
| return false; |
| htab->sstubs->size += htab->function_stub_size; |
| BFD_ASSERT (htab->sstubs->size |
| == htab->lazy_stub_count * htab->function_stub_size); |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| BFD_ASSERT (dynobj != NULL); |
| h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_"); |
| if (h == NULL) |
| return false; |
| h->root.u.def.value = isa_bit; |
| h->other = other; |
| h->type = STT_FUNC; |
| |
| return true; |
| } |
| |
| /* A mips_elf_link_hash_traverse callback for which DATA points to a |
| bfd_link_info. If H uses the address of a PLT entry as the value |
| of the symbol, then set the entry in the symbol table now. Prefer |
| a standard MIPS PLT entry. */ |
| |
| static bool |
| mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data) |
| { |
| struct bfd_link_info *info = data; |
| bool micromips_p = MICROMIPS_P (info->output_bfd); |
| struct mips_elf_link_hash_table *htab; |
| unsigned int other; |
| bfd_vma isa_bit; |
| bfd_vma val; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| if (h->use_plt_entry) |
| { |
| BFD_ASSERT (h->root.plt.plist != NULL); |
| BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE |
| || h->root.plt.plist->comp_offset != MINUS_ONE); |
| |
| val = htab->plt_header_size; |
| if (h->root.plt.plist->mips_offset != MINUS_ONE) |
| { |
| isa_bit = 0; |
| val += h->root.plt.plist->mips_offset; |
| other = 0; |
| } |
| else |
| { |
| isa_bit = 1; |
| val += htab->plt_mips_offset + h->root.plt.plist->comp_offset; |
| other = micromips_p ? STO_MICROMIPS : STO_MIPS16; |
| } |
| val += isa_bit; |
| /* For VxWorks, point at the PLT load stub rather than the lazy |
| resolution stub; this stub will become the canonical function |
| address. */ |
| if (htab->root.target_os == is_vxworks) |
| val += 8; |
| |
| h->root.root.u.def.section = htab->root.splt; |
| h->root.root.u.def.value = val; |
| h->root.other = other; |
| } |
| |
| return true; |
| } |
| |
| /* Set the sizes of the dynamic sections, some mips non-dynamic sections, |
| and check for any mips16 stub sections that we can discard. */ |
| |
| bool |
| _bfd_mips_elf_late_size_sections (bfd *output_bfd, |
| struct bfd_link_info *info) |
| { |
| bfd *dynobj; |
| asection *s, *sreldyn; |
| bool reltext; |
| struct mips_elf_link_hash_table *htab; |
| struct mips_htab_traverse_info hti; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| /* The .reginfo section has a fixed size. */ |
| s = bfd_get_section_by_name (output_bfd, ".reginfo"); |
| if (s != NULL) |
| { |
| bfd_set_section_size (s, sizeof (Elf32_External_RegInfo)); |
| s->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS; |
| } |
| |
| /* The .MIPS.abiflags section has a fixed size. */ |
| s = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags"); |
| if (s != NULL) |
| { |
| bfd_set_section_size (s, sizeof (Elf_External_ABIFlags_v0)); |
| s->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS; |
| } |
| |
| hti.info = info; |
| hti.output_bfd = output_bfd; |
| hti.error = false; |
| mips_elf_link_hash_traverse (htab, mips_elf_check_symbols, &hti); |
| if (hti.error) |
| return false; |
| |
| dynobj = htab->root.dynobj; |
| if (dynobj == NULL) |
| return true; |
| |
| if (htab->root.dynamic_sections_created) |
| { |
| /* Set the contents of the .interp section to the interpreter. */ |
| if (bfd_link_executable (info) && !info->nointerp) |
| { |
| s = bfd_get_linker_section (dynobj, ".interp"); |
| BFD_ASSERT (s != NULL); |
| s->size |
| = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; |
| s->contents |
| = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); |
| } |
| |
| /* Figure out the size of the PLT header if we know that we |
| are using it. For the sake of cache alignment always use |
| a standard header whenever any standard entries are present |
| even if microMIPS entries are present as well. This also |
| lets the microMIPS header rely on the value of $v0 only set |
| by microMIPS entries, for a small size reduction. |
| |
| Set symbol table entry values for symbols that use the |
| address of their PLT entry now that we can calculate it. |
| |
| Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we |
| haven't already in _bfd_elf_create_dynamic_sections. */ |
| if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0) |
| { |
| bool micromips_p = (MICROMIPS_P (output_bfd) |
| && !htab->plt_mips_offset); |
| unsigned int other = micromips_p ? STO_MICROMIPS : 0; |
| bfd_vma isa_bit = micromips_p; |
| struct elf_link_hash_entry *h; |
| bfd_vma size; |
| |
| BFD_ASSERT (htab->use_plts_and_copy_relocs); |
| BFD_ASSERT (htab->root.sgotplt->size == 0); |
| BFD_ASSERT (htab->root.splt->size == 0); |
| |
| if (htab->root.target_os == is_vxworks && bfd_link_pic (info)) |
| size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); |
| else if (htab->root.target_os == is_vxworks) |
| size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); |
| else if (ABI_64_P (output_bfd)) |
| size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry); |
| else if (ABI_N32_P (output_bfd)) |
| size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry); |
| else if (!micromips_p) |
| size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); |
| else if (htab->insn32) |
| size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); |
| else |
| size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); |
| |
| htab->plt_header_is_comp = micromips_p; |
| htab->plt_header_size = size; |
| htab->root.splt->size = (size |
| + htab->plt_mips_offset |
| + htab->plt_comp_offset); |
| htab->root.sgotplt->size = (htab->plt_got_index |
| * MIPS_ELF_GOT_SIZE (dynobj)); |
| |
| mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info); |
| |
| if (htab->root.hplt == NULL) |
| { |
| h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt, |
| "_PROCEDURE_LINKAGE_TABLE_"); |
| htab->root.hplt = h; |
| if (h == NULL) |
| return false; |
| } |
| |
| h = htab->root.hplt; |
| h->root.u.def.value = isa_bit; |
| h->other = other; |
| h->type = STT_FUNC; |
| } |
| } |
| |
| /* Allocate space for global sym dynamic relocs. */ |
| elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info); |
| |
| mips_elf_estimate_stub_size (output_bfd, info); |
| |
| if (!mips_elf_lay_out_got (output_bfd, info)) |
| return false; |
| |
| mips_elf_lay_out_lazy_stubs (info); |
| |
| /* The check_relocs and adjust_dynamic_symbol entry points have |
| determined the sizes of the various dynamic sections. Allocate |
| memory for them. */ |
| reltext = false; |
| for (s = dynobj->sections; s != NULL; s = s->next) |
| { |
| const char *name; |
| |
| /* It's OK to base decisions on the section name, because none |
| of the dynobj section names depend upon the input files. */ |
| name = bfd_section_name (s); |
| |
| if ((s->flags & SEC_LINKER_CREATED) == 0) |
| continue; |
| |
| if (startswith (name, ".rel")) |
| { |
| if (s->size != 0) |
| { |
| const char *outname; |
| asection *target; |
| |
| /* If this relocation section applies to a read only |
| section, then we probably need a DT_TEXTREL entry. |
| If the relocation section is .rel(a).dyn, we always |
| assert a DT_TEXTREL entry rather than testing whether |
| there exists a relocation to a read only section or |
| not. */ |
| outname = bfd_section_name (s->output_section); |
| target = bfd_get_section_by_name (output_bfd, outname + 4); |
| if ((target != NULL |
| && (target->flags & SEC_READONLY) != 0 |
| && (target->flags & SEC_ALLOC) != 0) |
| || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) |
| reltext = true; |
| |
| /* We use the reloc_count field as a counter if we need |
| to copy relocs into the output file. */ |
| if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) |
| s->reloc_count = 0; |
| |
| /* If combreloc is enabled, elf_link_sort_relocs() will |
| sort relocations, but in a different way than we do, |
| and before we're done creating relocations. Also, it |
| will move them around between input sections' |
| relocation's contents, so our sorting would be |
| broken, so don't let it run. */ |
| info->combreloc = 0; |
| } |
| } |
| else if (bfd_link_executable (info) |
| && !htab->use_rld_obj_head |
| && startswith (name, ".rld_map")) |
| { |
| /* We add a room for __rld_map. It will be filled in by the |
| rtld to contain a pointer to the _r_debug structure. */ |
| s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd); |
| } |
| else if (SGI_COMPAT (output_bfd) |
| && startswith (name, ".compact_rel")) |
| s->size += htab->compact_rel_size; |
| else if (s == htab->root.splt) |
| { |
| /* If the last PLT entry has a branch delay slot, allocate |
| room for an extra nop to fill the delay slot. This is |
| for CPUs without load interlocking. */ |
| if (! LOAD_INTERLOCKS_P (output_bfd) |
| && htab->root.target_os != is_vxworks |
| && s->size > 0) |
| s->size += 4; |
| } |
| else if (! startswith (name, ".init") |
| && s != htab->root.sgot |
| && s != htab->root.sgotplt |
| && s != htab->sstubs |
| && s != htab->root.sdynbss |
| && s != htab->root.sdynrelro) |
| { |
| /* It's not one of our sections, so don't allocate space. */ |
| continue; |
| } |
| |
| if (s->size == 0) |
| { |
| s->flags |= SEC_EXCLUDE; |
| continue; |
| } |
| |
| if ((s->flags & SEC_HAS_CONTENTS) == 0) |
| continue; |
| |
| /* Allocate memory for the section contents. */ |
| s->contents = bfd_zalloc (dynobj, s->size); |
| if (s->contents == NULL) |
| { |
| bfd_set_error (bfd_error_no_memory); |
| return false; |
| } |
| } |
| |
| if (htab->root.dynamic_sections_created) |
| { |
| /* Add some entries to the .dynamic section. We fill in the |
| values later, in _bfd_mips_elf_finish_dynamic_sections, but we |
| must add the entries now so that we get the correct size for |
| the .dynamic section. */ |
| |
| /* SGI object has the equivalence of DT_DEBUG in the |
| DT_MIPS_RLD_MAP entry. This must come first because glibc |
| only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools |
| may only look at the first one they see. */ |
| if (!bfd_link_pic (info) |
| && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) |
| return false; |
| |
| if (bfd_link_executable (info) |
| && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0)) |
| return false; |
| |
| /* The DT_DEBUG entry may be filled in by the dynamic linker and |
| used by the debugger. */ |
| if (bfd_link_executable (info) |
| && !SGI_COMPAT (output_bfd) |
| && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) |
| return false; |
| |
| if (reltext |
| && (SGI_COMPAT (output_bfd) |
| || htab->root.target_os == is_vxworks)) |
| info->flags |= DF_TEXTREL; |
| |
| if ((info->flags & DF_TEXTREL) != 0) |
| { |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) |
| return false; |
| |
| /* Clear the DF_TEXTREL flag. It will be set again if we |
| write out an actual text relocation; we may not, because |
| at this point we do not know whether e.g. any .eh_frame |
| absolute relocations have been converted to PC-relative. */ |
| info->flags &= ~DF_TEXTREL; |
| } |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) |
| return false; |
| |
| sreldyn = mips_elf_rel_dyn_section (info, false); |
| if (htab->root.target_os == is_vxworks) |
| { |
| /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not |
| use any of the DT_MIPS_* tags. */ |
| if (sreldyn && sreldyn->size > 0) |
| { |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) |
| return false; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) |
| return false; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) |
| return false; |
| } |
| } |
| else |
| { |
| if (sreldyn && sreldyn->size > 0 |
| && !bfd_is_abs_section (sreldyn->output_section)) |
| { |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) |
| return false; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) |
| return false; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) |
| return false; |
| } |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) |
| return false; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) |
| return false; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) |
| return false; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) |
| return false; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) |
| return false; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) |
| return false; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) |
| return false; |
| |
| if (info->emit_gnu_hash |
| && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0)) |
| return false; |
| |
| if (IRIX_COMPAT (dynobj) == ict_irix5 |
| && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) |
| return false; |
| |
| if (IRIX_COMPAT (dynobj) == ict_irix6 |
| && (bfd_get_section_by_name |
| (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) |
| && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) |
| return false; |
| } |
| if (htab->root.splt->size > 0) |
| { |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) |
| return false; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) |
| return false; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) |
| return false; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0)) |
| return false; |
| } |
| if (htab->root.target_os == is_vxworks |
| && !elf_vxworks_add_dynamic_entries (output_bfd, info)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. |
| Adjust its R_ADDEND field so that it is correct for the output file. |
| LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols |
| and sections respectively; both use symbol indexes. */ |
| |
| static void |
| mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, |
| bfd *input_bfd, Elf_Internal_Sym *local_syms, |
| asection **local_sections, Elf_Internal_Rela *rel) |
| { |
| unsigned int r_type, r_symndx; |
| Elf_Internal_Sym *sym; |
| asection *sec; |
| |
| if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) |
| { |
| r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
| if (gprel16_reloc_p (r_type) |
| || r_type == R_MIPS_GPREL32 |
| || literal_reloc_p (r_type)) |
| { |
| rel->r_addend += _bfd_get_gp_value (input_bfd); |
| rel->r_addend -= _bfd_get_gp_value (output_bfd); |
| } |
| |
| r_symndx = ELF_R_SYM (output_bfd, rel->r_info); |
| sym = local_syms + r_symndx; |
| |
| /* Adjust REL's addend to account for section merging. */ |
| if (!bfd_link_relocatable (info)) |
| { |
| sec = local_sections[r_symndx]; |
| _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
| } |
| |
| /* This would normally be done by the rela_normal code in elflink.c. */ |
| if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) |
| rel->r_addend += local_sections[r_symndx]->output_offset; |
| } |
| } |
| |
| /* Handle relocations against symbols from removed linkonce sections, |
| or sections discarded by a linker script. We use this wrapper around |
| RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs |
| on 64-bit ELF targets. In this case for any relocation handled, which |
| always be the first in a triplet, the remaining two have to be processed |
| together with the first, even if they are R_MIPS_NONE. It is the symbol |
| index referred by the first reloc that applies to all the three and the |
| remaining two never refer to an object symbol. And it is the final |
| relocation (the last non-null one) that determines the output field of |
| the whole relocation so retrieve the corresponding howto structure for |
| the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION. |
| |
| Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue" |
| and therefore requires to be pasted in a loop. It also defines a block |
| and does not protect any of its arguments, hence the extra brackets. */ |
| |
| static void |
| mips_reloc_against_discarded_section (bfd *output_bfd, |
| struct bfd_link_info *info, |
| bfd *input_bfd, asection *input_section, |
| Elf_Internal_Rela **rel, |
| const Elf_Internal_Rela **relend, |
| bool rel_reloc, |
| reloc_howto_type *howto, |
| bfd_byte *contents) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
| int count = bed->s->int_rels_per_ext_rel; |
| unsigned int r_type; |
| int i; |
| |
| for (i = count - 1; i > 0; i--) |
| { |
| r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info); |
| if (r_type != R_MIPS_NONE) |
| { |
| howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); |
| break; |
| } |
| } |
| do |
| { |
| RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
| (*rel), count, (*relend), |
| howto, i, contents); |
| } |
| while (0); |
| } |
| |
| /* Relocate a MIPS ELF section. */ |
| |
| int |
| _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, |
| bfd *input_bfd, asection *input_section, |
| bfd_byte *contents, Elf_Internal_Rela *relocs, |
| Elf_Internal_Sym *local_syms, |
| asection **local_sections) |
| { |
| Elf_Internal_Rela *rel; |
| const Elf_Internal_Rela *relend; |
| bfd_vma addend = 0; |
| bool use_saved_addend_p = false; |
| |
| relend = relocs + input_section->reloc_count; |
| for (rel = relocs; rel < relend; ++rel) |
| { |
| const char *name; |
| bfd_vma value = 0; |
| reloc_howto_type *howto; |
| bool cross_mode_jump_p = false; |
| /* TRUE if the relocation is a RELA relocation, rather than a |
| REL relocation. */ |
| bool rela_relocation_p = true; |
| unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
| const char *msg; |
| unsigned long r_symndx; |
| asection *sec; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry *h; |
| bool rel_reloc; |
| |
| rel_reloc = (NEWABI_P (input_bfd) |
| && mips_elf_rel_relocation_p (input_bfd, input_section, |
| relocs, rel)); |
| /* Find the relocation howto for this relocation. */ |
| howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); |
| |
| r_symndx = ELF_R_SYM (input_bfd, rel->r_info); |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) |
| { |
| sec = local_sections[r_symndx]; |
| h = NULL; |
| } |
| else |
| { |
| unsigned long extsymoff; |
| |
| extsymoff = 0; |
| if (!elf_bad_symtab (input_bfd)) |
| extsymoff = symtab_hdr->sh_info; |
| h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| sec = NULL; |
| if (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| sec = h->root.u.def.section; |
| } |
| |
| if (sec != NULL && discarded_section (sec)) |
| { |
| mips_reloc_against_discarded_section (output_bfd, info, input_bfd, |
| input_section, &rel, &relend, |
| rel_reloc, howto, contents); |
| continue; |
| } |
| |
| if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) |
| { |
| /* Some 32-bit code uses R_MIPS_64. In particular, people use |
| 64-bit code, but make sure all their addresses are in the |
| lowermost or uppermost 32-bit section of the 64-bit address |
| space. Thus, when they use an R_MIPS_64 they mean what is |
| usually meant by R_MIPS_32, with the exception that the |
| stored value is sign-extended to 64 bits. */ |
| howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, false); |
| |
| /* On big-endian systems, we need to lie about the position |
| of the reloc. */ |
| if (bfd_big_endian (input_bfd)) |
| rel->r_offset += 4; |
| } |
| |
| if (!use_saved_addend_p) |
| { |
| /* If these relocations were originally of the REL variety, |
| we must pull the addend out of the field that will be |
| relocated. Otherwise, we simply use the contents of the |
| RELA relocation. */ |
| if (mips_elf_rel_relocation_p (input_bfd, input_section, |
| relocs, rel)) |
| { |
| rela_relocation_p = false; |
| addend = mips_elf_read_rel_addend (input_bfd, input_section, |
| rel, howto, contents); |
| if (hi16_reloc_p (r_type) |
| || (got16_reloc_p (r_type) |
| && mips_elf_local_relocation_p (input_bfd, rel, |
| local_sections))) |
| { |
| if (!mips_elf_add_lo16_rel_addend (input_bfd, input_section, |
| rel, relend, |
| contents, &addend)) |
| { |
| if (h) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (input_bfd, symtab_hdr, |
| local_syms + r_symndx, |
| sec); |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: can't find matching LO16 reloc against `%s'" |
| " for %s at %#" PRIx64 " in section `%pA'"), |
| input_bfd, name, |
| howto->name, (uint64_t) rel->r_offset, input_section); |
| } |
| } |
| else |
| addend <<= howto->rightshift; |
| } |
| else |
| addend = rel->r_addend; |
| mips_elf_adjust_addend (output_bfd, info, input_bfd, |
| local_syms, local_sections, rel); |
| } |
| |
| if (bfd_link_relocatable (info)) |
| { |
| if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) |
| && bfd_big_endian (input_bfd)) |
| rel->r_offset -= 4; |
| |
| if (!rela_relocation_p && rel->r_addend) |
| { |
| addend += rel->r_addend; |
| if (hi16_reloc_p (r_type) || got16_reloc_p (r_type)) |
| addend = mips_elf_high (addend); |
| else if (r_type == R_MIPS_HIGHER) |
| addend = mips_elf_higher (addend); |
| else if (r_type == R_MIPS_HIGHEST) |
| addend = mips_elf_highest (addend); |
| else |
| addend >>= howto->rightshift; |
| |
| /* We use the source mask, rather than the destination |
| mask because the place to which we are writing will be |
| source of the addend in the final link. */ |
| addend &= howto->src_mask; |
| |
| if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
| /* See the comment above about using R_MIPS_64 in the 32-bit |
| ABI. Here, we need to update the addend. It would be |
| possible to get away with just using the R_MIPS_32 reloc |
| but for endianness. */ |
| { |
| bfd_vma sign_bits; |
| bfd_vma low_bits; |
| bfd_vma high_bits; |
| |
| if (addend & ((bfd_vma) 1 << 31)) |
| #ifdef BFD64 |
| sign_bits = ((bfd_vma) 1 << 32) - 1; |
| #else |
| sign_bits = -1; |
| #endif |
| else |
| sign_bits = 0; |
| |
| /* If we don't know that we have a 64-bit type, |
| do two separate stores. */ |
| if (bfd_big_endian (input_bfd)) |
| { |
| /* Store the sign-bits (which are most significant) |
| first. */ |
| low_bits = sign_bits; |
| high_bits = addend; |
| } |
| else |
| { |
| low_bits = addend; |
| high_bits = sign_bits; |
| } |
| bfd_put_32 (input_bfd, low_bits, |
| contents + rel->r_offset); |
| bfd_put_32 (input_bfd, high_bits, |
| contents + rel->r_offset + 4); |
| continue; |
| } |
| |
| if (! mips_elf_perform_relocation (info, howto, rel, addend, |
| input_bfd, input_section, |
| contents, false)) |
| return false; |
| } |
| |
| /* Go on to the next relocation. */ |
| continue; |
| } |
| |
| /* In the N32 and 64-bit ABIs there may be multiple consecutive |
| relocations for the same offset. In that case we are |
| supposed to treat the output of each relocation as the addend |
| for the next. */ |
| if (rel + 1 < relend |
| && rel->r_offset == rel[1].r_offset |
| && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) |
| use_saved_addend_p = true; |
| else |
| use_saved_addend_p = false; |
| |
| /* Figure out what value we are supposed to relocate. */ |
| switch (mips_elf_calculate_relocation (output_bfd, input_bfd, |
| input_section, contents, |
| info, rel, addend, howto, |
| local_syms, local_sections, |
| &value, &name, &cross_mode_jump_p, |
| use_saved_addend_p)) |
| { |
| case bfd_reloc_continue: |
| /* There's nothing to do. */ |
| continue; |
| |
| case bfd_reloc_undefined: |
| /* mips_elf_calculate_relocation already called the |
| undefined_symbol callback. There's no real point in |
| trying to perform the relocation at this point, so we |
| just skip ahead to the next relocation. */ |
| continue; |
| |
| case bfd_reloc_notsupported: |
| msg = _("internal error: unsupported relocation error"); |
| info->callbacks->warning |
| (info, msg, name, input_bfd, input_section, rel->r_offset); |
| return false; |
| |
| case bfd_reloc_overflow: |
| if (use_saved_addend_p) |
| /* Ignore overflow until we reach the last relocation for |
| a given location. */ |
| ; |
| else |
| { |
| struct mips_elf_link_hash_table *htab; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| BFD_ASSERT (name != NULL); |
| if (!htab->small_data_overflow_reported |
| && (gprel16_reloc_p (howto->type) |
| || literal_reloc_p (howto->type))) |
| { |
| msg = _("small-data section too large;" |
| " lower small-data size limit (see option -G)"); |
| |
| htab->small_data_overflow_reported = true; |
| (*info->callbacks->einfo) ("%P: %s\n", msg); |
| } |
| (*info->callbacks->reloc_overflow) |
| (info, NULL, name, howto->name, (bfd_vma) 0, |
| input_bfd, input_section, rel->r_offset); |
| } |
| break; |
| |
| case bfd_reloc_ok: |
| break; |
| |
| case bfd_reloc_outofrange: |
| msg = NULL; |
| if (jal_reloc_p (howto->type)) |
| msg = (cross_mode_jump_p |
| ? _("cannot convert a jump to JALX " |
| "for a non-word-aligned address") |
| : (howto->type == R_MIPS16_26 |
| ? _("jump to a non-word-aligned address") |
| : _("jump to a non-instruction-aligned address"))); |
| else if (b_reloc_p (howto->type)) |
| msg = (cross_mode_jump_p |
| ? _("cannot convert a branch to JALX " |
| "for a non-word-aligned address") |
| : _("branch to a non-instruction-aligned address")); |
| else if (aligned_pcrel_reloc_p (howto->type)) |
| msg = _("PC-relative load from unaligned address"); |
| if (msg) |
| { |
| info->callbacks->einfo |
| ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg); |
| break; |
| } |
| /* Fall through. */ |
| |
| default: |
| abort (); |
| break; |
| } |
| |
| /* If we've got another relocation for the address, keep going |
| until we reach the last one. */ |
| if (use_saved_addend_p) |
| { |
| addend = value; |
| continue; |
| } |
| |
| if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
| /* See the comment above about using R_MIPS_64 in the 32-bit |
| ABI. Until now, we've been using the HOWTO for R_MIPS_32; |
| that calculated the right value. Now, however, we |
| sign-extend the 32-bit result to 64-bits, and store it as a |
| 64-bit value. We are especially generous here in that we |
| go to extreme lengths to support this usage on systems with |
| only a 32-bit VMA. */ |
| { |
| bfd_vma sign_bits; |
| bfd_vma low_bits; |
| bfd_vma high_bits; |
| |
| if (value & ((bfd_vma) 1 << 31)) |
| #ifdef BFD64 |
| sign_bits = ((bfd_vma) 1 << 32) - 1; |
| #else |
| sign_bits = -1; |
| #endif |
| else |
| sign_bits = 0; |
| |
| /* If we don't know that we have a 64-bit type, |
| do two separate stores. */ |
| if (bfd_big_endian (input_bfd)) |
| { |
| /* Undo what we did above. */ |
| rel->r_offset -= 4; |
| /* Store the sign-bits (which are most significant) |
| first. */ |
| low_bits = sign_bits; |
| high_bits = value; |
| } |
| else |
| { |
| low_bits = value; |
| high_bits = sign_bits; |
| } |
| bfd_put_32 (input_bfd, low_bits, |
| contents + rel->r_offset); |
| bfd_put_32 (input_bfd, high_bits, |
| contents + rel->r_offset + 4); |
| continue; |
| } |
| |
| /* Actually perform the relocation. */ |
| if (! mips_elf_perform_relocation (info, howto, rel, value, |
| input_bfd, input_section, |
| contents, cross_mode_jump_p)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* A function that iterates over each entry in la25_stubs and fills |
| in the code for each one. DATA points to a mips_htab_traverse_info. */ |
| |
| static int |
| mips_elf_create_la25_stub (void **slot, void *data) |
| { |
| struct mips_htab_traverse_info *hti; |
| struct mips_elf_link_hash_table *htab; |
| struct mips_elf_la25_stub *stub; |
| asection *s; |
| bfd_byte *loc; |
| bfd_vma offset, target, target_high, target_low; |
| bfd_vma branch_pc; |
| bfd_signed_vma pcrel_offset = 0; |
| |
| stub = (struct mips_elf_la25_stub *) *slot; |
| hti = (struct mips_htab_traverse_info *) data; |
| htab = mips_elf_hash_table (hti->info); |
| BFD_ASSERT (htab != NULL); |
| |
| /* Create the section contents, if we haven't already. */ |
| s = stub->stub_section; |
| loc = s->contents; |
| if (loc == NULL) |
| { |
| loc = bfd_malloc (s->size); |
| if (loc == NULL) |
| { |
| hti->error = true; |
| return false; |
| } |
| s->contents = loc; |
| } |
| |
| /* Work out where in the section this stub should go. */ |
| offset = stub->offset; |
| |
| /* We add 8 here to account for the LUI/ADDIU instructions |
| before the branch instruction. This cannot be moved down to |
| where pcrel_offset is calculated as 's' is updated in |
| mips_elf_get_la25_target. */ |
| branch_pc = s->output_section->vma + s->output_offset + offset + 8; |
| |
| /* Work out the target address. */ |
| target = mips_elf_get_la25_target (stub, &s); |
| target += s->output_section->vma + s->output_offset; |
| |
| target_high = ((target + 0x8000) >> 16) & 0xffff; |
| target_low = (target & 0xffff); |
| |
| /* Calculate the PC of the compact branch instruction (for the case where |
| compact branches are used for either microMIPSR6 or MIPSR6 with |
| compact branches. Add 4-bytes to account for BC using the PC of the |
| next instruction as the base. */ |
| pcrel_offset = target - (branch_pc + 4); |
| |
| if (stub->stub_section != htab->strampoline) |
| { |
| /* This is a simple LUI/ADDIU stub. Zero out the beginning |
| of the section and write the two instructions at the end. */ |
| memset (loc, 0, offset); |
| loc += offset; |
| if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) |
| { |
| bfd_put_micromips_32 (hti->output_bfd, |
| LA25_LUI_MICROMIPS (target_high), |
| loc); |
| bfd_put_micromips_32 (hti->output_bfd, |
| LA25_ADDIU_MICROMIPS (target_low), |
| loc + 4); |
| } |
| else |
| { |
| bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); |
| bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); |
| } |
| } |
| else |
| { |
| /* This is trampoline. */ |
| loc += offset; |
| if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) |
| { |
| bfd_put_micromips_32 (hti->output_bfd, |
| LA25_LUI_MICROMIPS (target_high), loc); |
| bfd_put_micromips_32 (hti->output_bfd, |
| LA25_J_MICROMIPS (target), loc + 4); |
| bfd_put_micromips_32 (hti->output_bfd, |
| LA25_ADDIU_MICROMIPS (target_low), loc + 8); |
| bfd_put_32 (hti->output_bfd, 0, loc + 12); |
| } |
| else |
| { |
| bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); |
| if (MIPSR6_P (hti->output_bfd) && htab->compact_branches) |
| { |
| bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); |
| bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8); |
| } |
| else |
| { |
| bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4); |
| bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8); |
| } |
| bfd_put_32 (hti->output_bfd, 0, loc + 12); |
| } |
| } |
| return true; |
| } |
| |
| /* If NAME is one of the special IRIX6 symbols defined by the linker, |
| adjust it appropriately now. */ |
| |
| static void |
| mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, |
| const char *name, Elf_Internal_Sym *sym) |
| { |
| /* The linker script takes care of providing names and values for |
| these, but we must place them into the right sections. */ |
| static const char* const text_section_symbols[] = { |
| "_ftext", |
| "_etext", |
| "__dso_displacement", |
| "__elf_header", |
| "__program_header_table", |
| NULL |
| }; |
| |
| static const char* const data_section_symbols[] = { |
| "_fdata", |
| "_edata", |
| "_end", |
| "_fbss", |
| NULL |
| }; |
| |
| const char* const *p; |
| int i; |
| |
| for (i = 0; i < 2; ++i) |
| for (p = (i == 0) ? text_section_symbols : data_section_symbols; |
| *p; |
| ++p) |
| if (strcmp (*p, name) == 0) |
| { |
| /* All of these symbols are given type STT_SECTION by the |
| IRIX6 linker. */ |
| sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
| sym->st_other = STO_PROTECTED; |
| |
| /* The IRIX linker puts these symbols in special sections. */ |
| if (i == 0) |
| sym->st_shndx = SHN_MIPS_TEXT; |
| else |
| sym->st_shndx = SHN_MIPS_DATA; |
| |
| break; |
| } |
| } |
| |
| /* Finish up dynamic symbol handling. We set the contents of various |
| dynamic sections here. */ |
| |
| bool |
| _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, |
| struct bfd_link_info *info, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| bfd *dynobj; |
| asection *sgot; |
| struct mips_got_info *g, *gg; |
| const char *name; |
| int idx; |
| struct mips_elf_link_hash_table *htab; |
| struct mips_elf_link_hash_entry *hmips; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| dynobj = elf_hash_table (info)->dynobj; |
| hmips = (struct mips_elf_link_hash_entry *) h; |
| |
| BFD_ASSERT (htab->root.target_os != is_vxworks); |
| |
| if (h->plt.plist != NULL |
| && (h->plt.plist->mips_offset != MINUS_ONE |
| || h->plt.plist->comp_offset != MINUS_ONE)) |
| { |
| /* We've decided to create a PLT entry for this symbol. */ |
| bfd_byte *loc; |
| bfd_vma header_address, got_address; |
| bfd_vma got_address_high, got_address_low, load; |
| bfd_vma got_index; |
| bfd_vma isa_bit; |
| |
| got_index = h->plt.plist->gotplt_index; |
| |
| BFD_ASSERT (htab->use_plts_and_copy_relocs); |
| BFD_ASSERT (h->dynindx != -1); |
| BFD_ASSERT (htab->root.splt != NULL); |
| BFD_ASSERT (got_index != MINUS_ONE); |
| BFD_ASSERT (!h->def_regular); |
| |
| /* Calculate the address of the PLT header. */ |
| isa_bit = htab->plt_header_is_comp; |
| header_address = (htab->root.splt->output_section->vma |
| + htab->root.splt->output_offset + isa_bit); |
| |
| /* Calculate the address of the .got.plt entry. */ |
| got_address = (htab->root.sgotplt->output_section->vma |
| + htab->root.sgotplt->output_offset |
| + got_index * MIPS_ELF_GOT_SIZE (dynobj)); |
| |
| got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; |
| got_address_low = got_address & 0xffff; |
| |
| /* The PLT sequence is not safe for N64 if .got.plt entry's address |
| cannot be loaded in two instructions. */ |
| if (ABI_64_P (output_bfd) |
| && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range " |
| "supported; consider using `-Ttext-segment=...'"), |
| output_bfd, |
| htab->root.sgotplt->output_section, |
| (int64_t) got_address); |
| bfd_set_error (bfd_error_no_error); |
| return false; |
| } |
| |
| /* Initially point the .got.plt entry at the PLT header. */ |
| loc = (htab->root.sgotplt->contents |
| + got_index * MIPS_ELF_GOT_SIZE (dynobj)); |
| if (ABI_64_P (output_bfd)) |
| bfd_put_64 (output_bfd, header_address, loc); |
| else |
| bfd_put_32 (output_bfd, header_address, loc); |
| |
| /* Now handle the PLT itself. First the standard entry (the order |
| does not matter, we just have to pick one). */ |
| if (h->plt.plist->mips_offset != MINUS_ONE) |
| { |
| const bfd_vma *plt_entry; |
| bfd_vma plt_offset; |
| |
| plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; |
| |
| BFD_ASSERT (plt_offset <= htab->root.splt->size); |
| |
| /* Find out where the .plt entry should go. */ |
| loc = htab->root.splt->contents + plt_offset; |
| |
| /* Pick the load opcode. */ |
| load = MIPS_ELF_LOAD_WORD (output_bfd); |
| |
| /* Fill in the PLT entry itself. */ |
| |
| if (MIPSR6_P (output_bfd)) |
| plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact |
| : mipsr6_exec_plt_entry; |
| else |
| plt_entry = mips_exec_plt_entry; |
| bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc); |
| bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, |
| loc + 4); |
| |
| if (! LOAD_INTERLOCKS_P (output_bfd) |
| || (MIPSR6_P (output_bfd) && htab->compact_branches)) |
| { |
| bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8); |
| bfd_put_32 (output_bfd, plt_entry[3], loc + 12); |
| } |
| else |
| { |
| bfd_put_32 (output_bfd, plt_entry[3], loc + 8); |
| bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, |
| loc + 12); |
| } |
| } |
| |
| /* Now the compressed entry. They come after any standard ones. */ |
| if (h->plt.plist->comp_offset != MINUS_ONE) |
| { |
| bfd_vma plt_offset; |
| |
| plt_offset = (htab->plt_header_size + htab->plt_mips_offset |
| + h->plt.plist->comp_offset); |
| |
| BFD_ASSERT (plt_offset <= htab->root.splt->size); |
| |
| /* Find out where the .plt entry should go. */ |
| loc = htab->root.splt->contents + plt_offset; |
| |
| /* Fill in the PLT entry itself. */ |
| if (!MICROMIPS_P (output_bfd)) |
| { |
| const bfd_vma *plt_entry = mips16_o32_exec_plt_entry; |
| |
| bfd_put_16 (output_bfd, plt_entry[0], loc); |
| bfd_put_16 (output_bfd, plt_entry[1], loc + 2); |
| bfd_put_16 (output_bfd, plt_entry[2], loc + 4); |
| bfd_put_16 (output_bfd, plt_entry[3], loc + 6); |
| bfd_put_16 (output_bfd, plt_entry[4], loc + 8); |
| bfd_put_16 (output_bfd, plt_entry[5], loc + 10); |
| bfd_put_32 (output_bfd, got_address, loc + 12); |
| } |
| else if (htab->insn32) |
| { |
| const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry; |
| |
| bfd_put_16 (output_bfd, plt_entry[0], loc); |
| bfd_put_16 (output_bfd, got_address_high, loc + 2); |
| bfd_put_16 (output_bfd, plt_entry[2], loc + 4); |
| bfd_put_16 (output_bfd, got_address_low, loc + 6); |
| bfd_put_16 (output_bfd, plt_entry[4], loc + 8); |
| bfd_put_16 (output_bfd, plt_entry[5], loc + 10); |
| bfd_put_16 (output_bfd, plt_entry[6], loc + 12); |
| bfd_put_16 (output_bfd, got_address_low, loc + 14); |
| } |
| else |
| { |
| const bfd_vma *plt_entry = micromips_o32_exec_plt_entry; |
| bfd_signed_vma gotpc_offset; |
| bfd_vma loc_address; |
| |
| BFD_ASSERT (got_address % 4 == 0); |
| |
| loc_address = (htab->root.splt->output_section->vma |
| + htab->root.splt->output_offset + plt_offset); |
| gotpc_offset = got_address - ((loc_address | 3) ^ 3); |
| |
| /* ADDIUPC has a span of +/-16MB, check we're in range. */ |
| if (gotpc_offset + 0x1000000 >= 0x2000000) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: `%pA' offset of %" PRId64 " from `%pA' " |
| "beyond the range of ADDIUPC"), |
| output_bfd, |
| htab->root.sgotplt->output_section, |
| (int64_t) gotpc_offset, |
| htab->root.splt->output_section); |
| bfd_set_error (bfd_error_no_error); |
| return false; |
| } |
| bfd_put_16 (output_bfd, |
| plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); |
| bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); |
| bfd_put_16 (output_bfd, plt_entry[2], loc + 4); |
| bfd_put_16 (output_bfd, plt_entry[3], loc + 6); |
| bfd_put_16 (output_bfd, plt_entry[4], loc + 8); |
| bfd_put_16 (output_bfd, plt_entry[5], loc + 10); |
| } |
| } |
| |
| /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ |
| mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt, |
| got_index - 2, h->dynindx, |
| R_MIPS_JUMP_SLOT, got_address); |
| |
| /* We distinguish between PLT entries and lazy-binding stubs by |
| giving the former an st_other value of STO_MIPS_PLT. Set the |
| flag and leave the value if there are any relocations in the |
| binary where pointer equality matters. */ |
| sym->st_shndx = SHN_UNDEF; |
| if (h->pointer_equality_needed) |
| sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other); |
| else |
| { |
| sym->st_value = 0; |
| sym->st_other = 0; |
| } |
| } |
| |
| if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE) |
| { |
| /* We've decided to create a lazy-binding stub. */ |
| bool micromips_p = MICROMIPS_P (output_bfd); |
| unsigned int other = micromips_p ? STO_MICROMIPS : 0; |
| bfd_vma stub_size = htab->function_stub_size; |
| bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE]; |
| bfd_vma isa_bit = micromips_p; |
| bfd_vma stub_big_size; |
| |
| if (!micromips_p) |
| stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE; |
| else if (htab->insn32) |
| stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE; |
| else |
| stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE; |
| |
| /* This symbol has a stub. Set it up. */ |
| |
| BFD_ASSERT (h->dynindx != -1); |
| |
| BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff); |
| |
| /* Values up to 2^31 - 1 are allowed. Larger values would cause |
| sign extension at runtime in the stub, resulting in a negative |
| index value. */ |
| if (h->dynindx & ~0x7fffffff) |
| { |
| _bfd_error_handler |
| (_("%pB: cannot handle more than %d dynamic symbols"), |
| output_bfd, 0x7fffffff); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| /* Fill the stub. */ |
| if (micromips_p) |
| { |
| idx = 0; |
| bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd), |
| stub + idx); |
| idx += 4; |
| if (htab->insn32) |
| { |
| bfd_put_micromips_32 (output_bfd, |
| STUB_MOVE32_MICROMIPS, stub + idx); |
| idx += 4; |
| } |
| else |
| { |
| bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx); |
| idx += 2; |
| } |
| if (stub_size == stub_big_size) |
| { |
| long dynindx_hi = (h->dynindx >> 16) & 0x7fff; |
| |
| bfd_put_micromips_32 (output_bfd, |
| STUB_LUI_MICROMIPS (dynindx_hi), |
| stub + idx); |
| idx += 4; |
| } |
| if (htab->insn32) |
| { |
| bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS, |
| stub + idx); |
| idx += 4; |
| } |
| else |
| { |
| bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx); |
| idx += 2; |
| } |
| |
| /* If a large stub is not required and sign extension is not a |
| problem, then use legacy code in the stub. */ |
| if (stub_size == stub_big_size) |
| bfd_put_micromips_32 (output_bfd, |
| STUB_ORI_MICROMIPS (h->dynindx & 0xffff), |
| stub + idx); |
| else if (h->dynindx & ~0x7fff) |
| bfd_put_micromips_32 (output_bfd, |
| STUB_LI16U_MICROMIPS (h->dynindx & 0xffff), |
| stub + idx); |
| else |
| bfd_put_micromips_32 (output_bfd, |
| STUB_LI16S_MICROMIPS (output_bfd, |
| h->dynindx), |
| stub + idx); |
| } |
| else |
| { |
| idx = 0; |
| bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx); |
| idx += 4; |
| bfd_put_32 (output_bfd, STUB_MOVE, stub + idx); |
| idx += 4; |
| if (stub_size == stub_big_size) |
| { |
| bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff), |
| stub + idx); |
| idx += 4; |
| } |
| |
| if (!(MIPSR6_P (output_bfd) && htab->compact_branches)) |
| { |
| bfd_put_32 (output_bfd, STUB_JALR, stub + idx); |
| idx += 4; |
| } |
| |
| /* If a large stub is not required and sign extension is not a |
| problem, then use legacy code in the stub. */ |
| if (stub_size == stub_big_size) |
| bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), |
| stub + idx); |
| else if (h->dynindx & ~0x7fff) |
| bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), |
| stub + idx); |
| else |
| bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx), |
| stub + idx); |
| idx += 4; |
| |
| if (MIPSR6_P (output_bfd) && htab->compact_branches) |
| bfd_put_32 (output_bfd, STUB_JALRC, stub + idx); |
| } |
| |
| BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size); |
| memcpy (htab->sstubs->contents + h->plt.plist->stub_offset, |
| stub, stub_size); |
| |
| /* Mark the symbol as undefined. stub_offset != -1 occurs |
| only for the referenced symbol. */ |
| sym->st_shndx = SHN_UNDEF; |
| |
| /* The run-time linker uses the st_value field of the symbol |
| to reset the global offset table entry for this external |
| to its stub address when unlinking a shared object. */ |
| sym->st_value = (htab->sstubs->output_section->vma |
| + htab->sstubs->output_offset |
| + h->plt.plist->stub_offset |
| + isa_bit); |
| sym->st_other = other; |
| } |
| |
| /* If we have a MIPS16 function with a stub, the dynamic symbol must |
| refer to the stub, since only the stub uses the standard calling |
| conventions. */ |
| if (h->dynindx != -1 && hmips->fn_stub != NULL) |
| { |
| BFD_ASSERT (hmips->need_fn_stub); |
| sym->st_value = (hmips->fn_stub->output_section->vma |
| + hmips->fn_stub->output_offset); |
| sym->st_size = hmips->fn_stub->size; |
| sym->st_other = ELF_ST_VISIBILITY (sym->st_other); |
| } |
| |
| BFD_ASSERT (h->dynindx != -1 |
| || h->forced_local); |
| |
| sgot = htab->root.sgot; |
| g = htab->got_info; |
| BFD_ASSERT (g != NULL); |
| |
| /* Run through the global symbol table, creating GOT entries for all |
| the symbols that need them. */ |
| if (hmips->global_got_area != GGA_NONE) |
| { |
| bfd_vma offset; |
| bfd_vma value; |
| |
| value = sym->st_value; |
| offset = mips_elf_primary_global_got_index (output_bfd, info, h); |
| MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); |
| } |
| |
| if (hmips->global_got_area != GGA_NONE && g->next) |
| { |
| struct mips_got_entry e, *p; |
| bfd_vma entry; |
| bfd_vma offset; |
| |
| gg = g; |
| |
| e.abfd = output_bfd; |
| e.symndx = -1; |
| e.d.h = hmips; |
| e.tls_type = GOT_TLS_NONE; |
| |
| for (g = g->next; g->next != gg; g = g->next) |
| { |
| if (g->got_entries |
| && (p = (struct mips_got_entry *) htab_find (g->got_entries, |
| &e))) |
| { |
| offset = p->gotidx; |
| BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size); |
| if (bfd_link_pic (info) |
| || (elf_hash_table (info)->dynamic_sections_created |
| && p->d.h != NULL |
| && p->d.h->root.def_dynamic |
| && !p->d.h->root.def_regular)) |
| { |
| /* Create an R_MIPS_REL32 relocation for this entry. Due to |
| the various compatibility problems, it's easier to mock |
| up an R_MIPS_32 or R_MIPS_64 relocation and leave |
| mips_elf_create_dynamic_relocation to calculate the |
| appropriate addend. */ |
| Elf_Internal_Rela rel[3]; |
| |
| memset (rel, 0, sizeof (rel)); |
| if (ABI_64_P (output_bfd)) |
| rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); |
| else |
| rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); |
| rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; |
| |
| entry = 0; |
| if (! (mips_elf_create_dynamic_relocation |
| (output_bfd, info, rel, |
| e.d.h, NULL, sym->st_value, &entry, sgot))) |
| return false; |
| } |
| else |
| entry = sym->st_value; |
| MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); |
| } |
| } |
| } |
| |
| /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
| name = h->root.root.string; |
| if (h == elf_hash_table (info)->hdynamic |
| || h == elf_hash_table (info)->hgot) |
| sym->st_shndx = SHN_ABS; |
| else if (strcmp (name, "_DYNAMIC_LINK") == 0 |
| || strcmp (name, "_DYNAMIC_LINKING") == 0) |
| { |
| sym->st_shndx = SHN_ABS; |
| sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
| sym->st_value = 1; |
| } |
| else if (SGI_COMPAT (output_bfd)) |
| { |
| if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 |
| || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) |
| { |
| sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
| sym->st_other = STO_PROTECTED; |
| sym->st_value = 0; |
| sym->st_shndx = SHN_MIPS_DATA; |
| } |
| else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) |
| { |
| sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
| sym->st_other = STO_PROTECTED; |
| sym->st_value = mips_elf_hash_table (info)->procedure_count; |
| sym->st_shndx = SHN_ABS; |
| } |
| else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) |
| { |
| if (h->type == STT_FUNC) |
| sym->st_shndx = SHN_MIPS_TEXT; |
| else if (h->type == STT_OBJECT) |
| sym->st_shndx = SHN_MIPS_DATA; |
| } |
| } |
| |
| /* Emit a copy reloc, if needed. */ |
| if (h->needs_copy) |
| { |
| asection *s; |
| bfd_vma symval; |
| |
| BFD_ASSERT (h->dynindx != -1); |
| BFD_ASSERT (htab->use_plts_and_copy_relocs); |
| |
| s = mips_elf_rel_dyn_section (info, false); |
| symval = (h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset |
| + h->root.u.def.value); |
| mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++, |
| h->dynindx, R_MIPS_COPY, symval); |
| } |
| |
| /* Handle the IRIX6-specific symbols. */ |
| if (IRIX_COMPAT (output_bfd) == ict_irix6) |
| mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); |
| |
| /* Keep dynamic compressed symbols odd. This allows the dynamic linker |
| to treat compressed symbols like any other. */ |
| if (ELF_ST_IS_MIPS16 (sym->st_other)) |
| { |
| BFD_ASSERT (sym->st_value & 1); |
| sym->st_other -= STO_MIPS16; |
| } |
| else if (ELF_ST_IS_MICROMIPS (sym->st_other)) |
| { |
| BFD_ASSERT (sym->st_value & 1); |
| sym->st_other -= STO_MICROMIPS; |
| } |
| |
| return true; |
| } |
| |
| /* Likewise, for VxWorks. */ |
| |
| bool |
| _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, |
| struct bfd_link_info *info, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| bfd *dynobj; |
| asection *sgot; |
| struct mips_got_info *g; |
| struct mips_elf_link_hash_table *htab; |
| struct mips_elf_link_hash_entry *hmips; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| dynobj = elf_hash_table (info)->dynobj; |
| hmips = (struct mips_elf_link_hash_entry *) h; |
| |
| if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE) |
| { |
| bfd_byte *loc; |
| bfd_vma plt_address, got_address, got_offset, branch_offset; |
| Elf_Internal_Rela rel; |
| static const bfd_vma *plt_entry; |
| bfd_vma gotplt_index; |
| bfd_vma plt_offset; |
| |
| plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; |
| gotplt_index = h->plt.plist->gotplt_index; |
| |
| BFD_ASSERT (h->dynindx != -1); |
| BFD_ASSERT (htab->root.splt != NULL); |
| BFD_ASSERT (gotplt_index != MINUS_ONE); |
| BFD_ASSERT (plt_offset <= htab->root.splt->size); |
| |
| /* Calculate the address of the .plt entry. */ |
| plt_address = (htab->root.splt->output_section->vma |
| + htab->root.splt->output_offset |
| + plt_offset); |
| |
| /* Calculate the address of the .got.plt entry. */ |
| got_address = (htab->root.sgotplt->output_section->vma |
| + htab->root.sgotplt->output_offset |
| + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)); |
| |
| /* Calculate the offset of the .got.plt entry from |
| _GLOBAL_OFFSET_TABLE_. */ |
| got_offset = mips_elf_gotplt_index (info, h); |
| |
| /* Calculate the offset for the branch at the start of the PLT |
| entry. The branch jumps to the beginning of .plt. */ |
| branch_offset = -(plt_offset / 4 + 1) & 0xffff; |
| |
| /* Fill in the initial value of the .got.plt entry. */ |
| bfd_put_32 (output_bfd, plt_address, |
| (htab->root.sgotplt->contents |
| + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd))); |
| |
| /* Find out where the .plt entry should go. */ |
| loc = htab->root.splt->contents + plt_offset; |
| |
| if (bfd_link_pic (info)) |
| { |
| plt_entry = mips_vxworks_shared_plt_entry; |
| bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); |
| bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); |
| } |
| else |
| { |
| bfd_vma got_address_high, got_address_low; |
| |
| plt_entry = mips_vxworks_exec_plt_entry; |
| got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; |
| got_address_low = got_address & 0xffff; |
| |
| bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); |
| bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); |
| bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); |
| bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); |
| bfd_put_32 (output_bfd, plt_entry[4], loc + 16); |
| bfd_put_32 (output_bfd, plt_entry[5], loc + 20); |
| bfd_put_32 (output_bfd, plt_entry[6], loc + 24); |
| bfd_put_32 (output_bfd, plt_entry[7], loc + 28); |
| |
| loc = (htab->srelplt2->contents |
| + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela)); |
| |
| /* Emit a relocation for the .got.plt entry. */ |
| rel.r_offset = got_address; |
| rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); |
| rel.r_addend = plt_offset; |
| bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
| |
| /* Emit a relocation for the lui of %hi(<.got.plt slot>). */ |
| loc += sizeof (Elf32_External_Rela); |
| rel.r_offset = plt_address + 8; |
| rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); |
| rel.r_addend = got_offset; |
| bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
| |
| /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */ |
| loc += sizeof (Elf32_External_Rela); |
| rel.r_offset += 4; |
| rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); |
| bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
| } |
| |
| /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ |
| loc = (htab->root.srelplt->contents |
| + gotplt_index * sizeof (Elf32_External_Rela)); |
| rel.r_offset = got_address; |
| rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); |
| rel.r_addend = 0; |
| bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
| |
| if (!h->def_regular) |
| sym->st_shndx = SHN_UNDEF; |
| } |
| |
| BFD_ASSERT (h->dynindx != -1 || h->forced_local); |
| |
| sgot = htab->root.sgot; |
| g = htab->got_info; |
| BFD_ASSERT (g != NULL); |
| |
| /* See if this symbol has an entry in the GOT. */ |
| if (hmips->global_got_area != GGA_NONE) |
| { |
| bfd_vma offset; |
| Elf_Internal_Rela outrel; |
| bfd_byte *loc; |
| asection *s; |
| |
| /* Install the symbol value in the GOT. */ |
| offset = mips_elf_primary_global_got_index (output_bfd, info, h); |
| MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); |
| |
| /* Add a dynamic relocation for it. */ |
| s = mips_elf_rel_dyn_section (info, false); |
| loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); |
| outrel.r_offset = (sgot->output_section->vma |
| + sgot->output_offset |
| + offset); |
| outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); |
| outrel.r_addend = 0; |
| bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); |
| } |
| |
| /* Emit a copy reloc, if needed. */ |
| if (h->needs_copy) |
| { |
| Elf_Internal_Rela rel; |
| asection *srel; |
| bfd_byte *loc; |
| |
| BFD_ASSERT (h->dynindx != -1); |
| |
| rel.r_offset = (h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset |
| + h->root.u.def.value); |
| rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); |
| rel.r_addend = 0; |
| if (h->root.u.def.section == htab->root.sdynrelro) |
| srel = htab->root.sreldynrelro; |
| else |
| srel = htab->root.srelbss; |
| loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela); |
| bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
| ++srel->reloc_count; |
| } |
| |
| /* If this is a mips16/microMIPS symbol, force the value to be even. */ |
| if (ELF_ST_IS_COMPRESSED (sym->st_other)) |
| sym->st_value &= ~1; |
| |
| return true; |
| } |
| |
| /* Write out a plt0 entry to the beginning of .plt. */ |
| |
| static bool |
| mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| bfd_byte *loc; |
| bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low; |
| static const bfd_vma *plt_entry; |
| struct mips_elf_link_hash_table *htab; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| if (ABI_64_P (output_bfd)) |
| plt_entry = (htab->compact_branches |
| ? mipsr6_n64_exec_plt0_entry_compact |
| : mips_n64_exec_plt0_entry); |
| else if (ABI_N32_P (output_bfd)) |
| plt_entry = (htab->compact_branches |
| ? mipsr6_n32_exec_plt0_entry_compact |
| : mips_n32_exec_plt0_entry); |
| else if (!htab->plt_header_is_comp) |
| plt_entry = (htab->compact_branches |
| ? mipsr6_o32_exec_plt0_entry_compact |
| : mips_o32_exec_plt0_entry); |
| else if (htab->insn32) |
| plt_entry = micromips_insn32_o32_exec_plt0_entry; |
| else |
| plt_entry = micromips_o32_exec_plt0_entry; |
| |
| /* Calculate the value of .got.plt. */ |
| gotplt_value = (htab->root.sgotplt->output_section->vma |
| + htab->root.sgotplt->output_offset); |
| gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff; |
| gotplt_value_low = gotplt_value & 0xffff; |
| |
| /* The PLT sequence is not safe for N64 if .got.plt's address can |
| not be loaded in two instructions. */ |
| if (ABI_64_P (output_bfd) |
| && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range " |
| "supported; consider using `-Ttext-segment=...'"), |
| output_bfd, |
| htab->root.sgotplt->output_section, |
| (int64_t) gotplt_value); |
| bfd_set_error (bfd_error_no_error); |
| return false; |
| } |
| |
| /* Install the PLT header. */ |
| loc = htab->root.splt->contents; |
| if (plt_entry == micromips_o32_exec_plt0_entry) |
| { |
| bfd_vma gotpc_offset; |
| bfd_vma loc_address; |
| size_t i; |
| |
| BFD_ASSERT (gotplt_value % 4 == 0); |
| |
| loc_address = (htab->root.splt->output_section->vma |
| + htab->root.splt->output_offset); |
| gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3); |
| |
| /* ADDIUPC has a span of +/-16MB, check we're in range. */ |
| if (gotpc_offset + 0x1000000 >= 0x2000000) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: `%pA' offset of %" PRId64 " from `%pA' " |
| "beyond the range of ADDIUPC"), |
| output_bfd, |
| htab->root.sgotplt->output_section, |
| (int64_t) gotpc_offset, |
| htab->root.splt->output_section); |
| bfd_set_error (bfd_error_no_error); |
| return false; |
| } |
| bfd_put_16 (output_bfd, |
| plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); |
| bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); |
| for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++) |
| bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); |
| } |
| else if (plt_entry == micromips_insn32_o32_exec_plt0_entry) |
| { |
| size_t i; |
| |
| bfd_put_16 (output_bfd, plt_entry[0], loc); |
| bfd_put_16 (output_bfd, gotplt_value_high, loc + 2); |
| bfd_put_16 (output_bfd, plt_entry[2], loc + 4); |
| bfd_put_16 (output_bfd, gotplt_value_low, loc + 6); |
| bfd_put_16 (output_bfd, plt_entry[4], loc + 8); |
| bfd_put_16 (output_bfd, gotplt_value_low, loc + 10); |
| for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++) |
| bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); |
| } |
| else |
| { |
| bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc); |
| bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4); |
| bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8); |
| bfd_put_32 (output_bfd, plt_entry[3], loc + 12); |
| bfd_put_32 (output_bfd, plt_entry[4], loc + 16); |
| bfd_put_32 (output_bfd, plt_entry[5], loc + 20); |
| bfd_put_32 (output_bfd, plt_entry[6], loc + 24); |
| bfd_put_32 (output_bfd, plt_entry[7], loc + 28); |
| } |
| |
| return true; |
| } |
| |
| /* Install the PLT header for a VxWorks executable and finalize the |
| contents of .rela.plt.unloaded. */ |
| |
| static void |
| mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| Elf_Internal_Rela rela; |
| bfd_byte *loc; |
| bfd_vma got_value, got_value_high, got_value_low, plt_address; |
| static const bfd_vma *plt_entry; |
| struct mips_elf_link_hash_table *htab; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| plt_entry = mips_vxworks_exec_plt0_entry; |
| |
| /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ |
| got_value = (htab->root.hgot->root.u.def.section->output_section->vma |
| + htab->root.hgot->root.u.def.section->output_offset |
| + htab->root.hgot->root.u.def.value); |
| |
| got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; |
| got_value_low = got_value & 0xffff; |
| |
| /* Calculate the address of the PLT header. */ |
| plt_address = (htab->root.splt->output_section->vma |
| + htab->root.splt->output_offset); |
| |
| /* Install the PLT header. */ |
| loc = htab->root.splt->contents; |
| bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); |
| bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); |
| bfd_put_32 (output_bfd, plt_entry[2], loc + 8); |
| bfd_put_32 (output_bfd, plt_entry[3], loc + 12); |
| bfd_put_32 (output_bfd, plt_entry[4], loc + 16); |
| bfd_put_32 (output_bfd, plt_entry[5], loc + 20); |
| |
| /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */ |
| loc = htab->srelplt2->contents; |
| rela.r_offset = plt_address; |
| rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); |
| rela.r_addend = 0; |
| bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); |
| loc += sizeof (Elf32_External_Rela); |
| |
| /* Output the relocation for the following addiu of |
| %lo(_GLOBAL_OFFSET_TABLE_). */ |
| rela.r_offset += 4; |
| rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); |
| bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); |
| loc += sizeof (Elf32_External_Rela); |
| |
| /* Fix up the remaining relocations. They may have the wrong |
| symbol index for _G_O_T_ or _P_L_T_ depending on the order |
| in which symbols were output. */ |
| while (loc < htab->srelplt2->contents + htab->srelplt2->size) |
| { |
| Elf_Internal_Rela rel; |
| |
| bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); |
| rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); |
| bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
| loc += sizeof (Elf32_External_Rela); |
| |
| bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); |
| rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); |
| bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
| loc += sizeof (Elf32_External_Rela); |
| |
| bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); |
| rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); |
| bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); |
| loc += sizeof (Elf32_External_Rela); |
| } |
| } |
| |
| /* Install the PLT header for a VxWorks shared library. */ |
| |
| static void |
| mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| unsigned int i; |
| struct mips_elf_link_hash_table *htab; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| /* We just need to copy the entry byte-by-byte. */ |
| for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) |
| bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], |
| htab->root.splt->contents + i * 4); |
| } |
| |
| /* Finish up the dynamic sections. */ |
| |
| bool |
| _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, |
| struct bfd_link_info *info) |
| { |
| bfd *dynobj; |
| asection *sdyn; |
| asection *sgot; |
| struct mips_got_info *gg, *g; |
| struct mips_elf_link_hash_table *htab; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| |
| sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
| |
| sgot = htab->root.sgot; |
| gg = htab->got_info; |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| bfd_byte *b; |
| int dyn_to_skip = 0, dyn_skipped = 0; |
| |
| BFD_ASSERT (sdyn != NULL); |
| BFD_ASSERT (gg != NULL); |
| |
| g = mips_elf_bfd_got (output_bfd, false); |
| BFD_ASSERT (g != NULL); |
| |
| for (b = sdyn->contents; |
| b < sdyn->contents + sdyn->size; |
| b += MIPS_ELF_DYN_SIZE (dynobj)) |
| { |
| Elf_Internal_Dyn dyn; |
| const char *name; |
| size_t elemsize; |
| asection *s; |
| bool swap_out_p; |
| |
| /* Read in the current dynamic entry. */ |
| (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); |
| |
| /* Assume that we're going to modify it and write it out. */ |
| swap_out_p = true; |
| |
| switch (dyn.d_tag) |
| { |
| case DT_RELENT: |
| dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); |
| break; |
| |
| case DT_RELAENT: |
| BFD_ASSERT (htab->root.target_os == is_vxworks); |
| dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); |
| break; |
| |
| case DT_STRSZ: |
| /* Rewrite DT_STRSZ. */ |
| dyn.d_un.d_val = |
| _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); |
| break; |
| |
| case DT_PLTGOT: |
| s = htab->root.sgot; |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
| break; |
| |
| case DT_MIPS_PLTGOT: |
| s = htab->root.sgotplt; |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
| break; |
| |
| case DT_MIPS_RLD_VERSION: |
| dyn.d_un.d_val = 1; /* XXX */ |
| break; |
| |
| case DT_MIPS_FLAGS: |
| dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ |
| break; |
| |
| case DT_MIPS_TIME_STAMP: |
| { |
| time_t t; |
| time (&t); |
| dyn.d_un.d_val = t; |
| } |
| break; |
| |
| case DT_MIPS_ICHECKSUM: |
| /* XXX FIXME: */ |
| swap_out_p = false; |
| break; |
| |
| case DT_MIPS_IVERSION: |
| /* XXX FIXME: */ |
| swap_out_p = false; |
| break; |
| |
| case DT_MIPS_BASE_ADDRESS: |
| s = output_bfd->sections; |
| BFD_ASSERT (s != NULL); |
| dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; |
| break; |
| |
| case DT_MIPS_LOCAL_GOTNO: |
| dyn.d_un.d_val = g->local_gotno; |
| break; |
| |
| case DT_MIPS_UNREFEXTNO: |
| /* The index into the dynamic symbol table which is the |
| entry of the first external symbol that is not |
| referenced within the same object. */ |
| dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; |
| break; |
| |
| case DT_MIPS_GOTSYM: |
| if (htab->global_gotsym) |
| { |
| dyn.d_un.d_val = htab->global_gotsym->dynindx; |
| break; |
| } |
| /* In case if we don't have global got symbols we default |
| to setting DT_MIPS_GOTSYM to the same value as |
| DT_MIPS_SYMTABNO. */ |
| /* Fall through. */ |
| |
| case DT_MIPS_SYMTABNO: |
| name = ".dynsym"; |
| elemsize = MIPS_ELF_SYM_SIZE (output_bfd); |
| s = bfd_get_linker_section (dynobj, name); |
| |
| if (s != NULL) |
| dyn.d_un.d_val = s->size / elemsize; |
| else |
| dyn.d_un.d_val = 0; |
| break; |
| |
| case DT_MIPS_HIPAGENO: |
| dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno; |
| break; |
| |
| case DT_MIPS_RLD_MAP: |
| { |
| struct elf_link_hash_entry *h; |
| h = mips_elf_hash_table (info)->rld_symbol; |
| if (!h) |
| { |
| dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); |
| swap_out_p = false; |
| break; |
| } |
| s = h->root.u.def.section; |
| |
| /* The MIPS_RLD_MAP tag stores the absolute address of the |
| debug pointer. */ |
| dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset |
| + h->root.u.def.value); |
| } |
| break; |
| |
| case DT_MIPS_RLD_MAP_REL: |
| { |
| struct elf_link_hash_entry *h; |
| bfd_vma dt_addr, rld_addr; |
| h = mips_elf_hash_table (info)->rld_symbol; |
| if (!h) |
| { |
| dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); |
| swap_out_p = false; |
| break; |
| } |
| s = h->root.u.def.section; |
| |
| /* The MIPS_RLD_MAP_REL tag stores the offset to the debug |
| pointer, relative to the address of the tag. */ |
| dt_addr = (sdyn->output_section->vma + sdyn->output_offset |
| + (b - sdyn->contents)); |
| rld_addr = (s->output_section->vma + s->output_offset |
| + h->root.u.def.value); |
| dyn.d_un.d_ptr = rld_addr - dt_addr; |
| } |
| break; |
| |
| case DT_MIPS_OPTIONS: |
| s = (bfd_get_section_by_name |
| (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); |
| dyn.d_un.d_ptr = s->vma; |
| break; |
| |
| case DT_PLTREL: |
| BFD_ASSERT (htab->use_plts_and_copy_relocs); |
| if (htab->root.target_os == is_vxworks) |
| dyn.d_un.d_val = DT_RELA; |
| else |
| dyn.d_un.d_val = DT_REL; |
| break; |
| |
| case DT_PLTRELSZ: |
| BFD_ASSERT (htab->use_plts_and_copy_relocs); |
| dyn.d_un.d_val = htab->root.srelplt->size; |
| break; |
| |
| case DT_JMPREL: |
| BFD_ASSERT (htab->use_plts_and_copy_relocs); |
| dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma |
| + htab->root.srelplt->output_offset); |
| break; |
| |
| case DT_TEXTREL: |
| /* If we didn't need any text relocations after all, delete |
| the dynamic tag. */ |
| if (!(info->flags & DF_TEXTREL)) |
| { |
| dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); |
| swap_out_p = false; |
| } |
| break; |
| |
| case DT_FLAGS: |
| /* If we didn't need any text relocations after all, clear |
| DF_TEXTREL from DT_FLAGS. */ |
| if (!(info->flags & DF_TEXTREL)) |
| dyn.d_un.d_val &= ~DF_TEXTREL; |
| else |
| swap_out_p = false; |
| break; |
| |
| case DT_MIPS_XHASH: |
| name = ".MIPS.xhash"; |
| s = bfd_get_linker_section (dynobj, name); |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
| break; |
| |
| default: |
| swap_out_p = false; |
| if (htab->root.target_os == is_vxworks |
| && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) |
| swap_out_p = true; |
| break; |
| } |
| |
| if (swap_out_p || dyn_skipped) |
| (*get_elf_backend_data (dynobj)->s->swap_dyn_out) |
| (dynobj, &dyn, b - dyn_skipped); |
| |
| if (dyn_to_skip) |
| { |
| dyn_skipped += dyn_to_skip; |
| dyn_to_skip = 0; |
| } |
| } |
| |
| /* Wipe out any trailing entries if we shifted down a dynamic tag. */ |
| if (dyn_skipped > 0) |
| memset (b - dyn_skipped, 0, dyn_skipped); |
| } |
| |
| if (sgot != NULL && sgot->size > 0 |
| && !bfd_is_abs_section (sgot->output_section)) |
| { |
| if (htab->root.target_os == is_vxworks) |
| { |
| /* The first entry of the global offset table points to the |
| ".dynamic" section. The second is initialized by the |
| loader and contains the shared library identifier. |
| The third is also initialized by the loader and points |
| to the lazy resolution stub. */ |
| MIPS_ELF_PUT_WORD (output_bfd, |
| sdyn->output_offset + sdyn->output_section->vma, |
| sgot->contents); |
| MIPS_ELF_PUT_WORD (output_bfd, 0, |
| sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); |
| MIPS_ELF_PUT_WORD (output_bfd, 0, |
| sgot->contents |
| + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); |
| } |
| else |
| { |
| /* The first entry of the global offset table will be filled at |
| runtime. The second entry will be used by some runtime loaders. |
| This isn't the case of IRIX rld. */ |
| MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); |
| MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), |
| sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); |
| } |
| |
| elf_section_data (sgot->output_section)->this_hdr.sh_entsize |
| = MIPS_ELF_GOT_SIZE (output_bfd); |
| } |
| |
| /* Generate dynamic relocations for the non-primary gots. */ |
| if (gg != NULL && gg->next) |
| { |
| Elf_Internal_Rela rel[3]; |
| bfd_vma addend = 0; |
| |
| memset (rel, 0, sizeof (rel)); |
| rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); |
| |
| for (g = gg->next; g->next != gg; g = g->next) |
| { |
| bfd_vma got_index = g->next->local_gotno + g->next->global_gotno |
| + g->next->tls_gotno; |
| |
| MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents |
| + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
| MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), |
| sgot->contents |
| + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
| |
| if (! bfd_link_pic (info)) |
| continue; |
| |
| for (; got_index < g->local_gotno; got_index++) |
| { |
| if (got_index >= g->assigned_low_gotno |
| && got_index <= g->assigned_high_gotno) |
| continue; |
| |
| rel[0].r_offset = rel[1].r_offset = rel[2].r_offset |
| = got_index * MIPS_ELF_GOT_SIZE (output_bfd); |
| if (!(mips_elf_create_dynamic_relocation |
| (output_bfd, info, rel, NULL, |
| bfd_abs_section_ptr, |
| 0, &addend, sgot))) |
| return false; |
| BFD_ASSERT (addend == 0); |
| } |
| } |
| } |
| |
| /* The generation of dynamic relocations for the non-primary gots |
| adds more dynamic relocations. We cannot count them until |
| here. */ |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| bfd_byte *b; |
| bool swap_out_p; |
| |
| BFD_ASSERT (sdyn != NULL); |
| |
| for (b = sdyn->contents; |
| b < sdyn->contents + sdyn->size; |
| b += MIPS_ELF_DYN_SIZE (dynobj)) |
| { |
| Elf_Internal_Dyn dyn; |
| asection *s; |
| |
| /* Read in the current dynamic entry. */ |
| (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); |
| |
| /* Assume that we're going to modify it and write it out. */ |
| swap_out_p = true; |
| |
| switch (dyn.d_tag) |
| { |
| case DT_RELSZ: |
| /* Reduce DT_RELSZ to account for any relocations we |
| decided not to make. This is for the n64 irix rld, |
| which doesn't seem to apply any relocations if there |
| are trailing null entries. */ |
| s = mips_elf_rel_dyn_section (info, false); |
| dyn.d_un.d_val = (s->reloc_count |
| * (ABI_64_P (output_bfd) |
| ? sizeof (Elf64_Mips_External_Rel) |
| : sizeof (Elf32_External_Rel))); |
| /* Adjust the section size too. Tools like the prelinker |
| can reasonably expect the values to the same. */ |
| BFD_ASSERT (!bfd_is_abs_section (s->output_section)); |
| elf_section_data (s->output_section)->this_hdr.sh_size |
| = dyn.d_un.d_val; |
| break; |
| |
| default: |
| swap_out_p = false; |
| break; |
| } |
| |
| if (swap_out_p) |
| (*get_elf_backend_data (dynobj)->s->swap_dyn_out) |
| (dynobj, &dyn, b); |
| } |
| } |
| |
| { |
| asection *s; |
| Elf32_compact_rel cpt; |
| |
| if (SGI_COMPAT (output_bfd)) |
| { |
| /* Write .compact_rel section out. */ |
| s = bfd_get_linker_section (dynobj, ".compact_rel"); |
| if (s != NULL) |
| { |
| cpt.id1 = 1; |
| cpt.num = s->reloc_count; |
| cpt.id2 = 2; |
| cpt.offset = (s->output_section->filepos |
| + sizeof (Elf32_External_compact_rel)); |
| cpt.reserved0 = 0; |
| cpt.reserved1 = 0; |
| bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, |
| ((Elf32_External_compact_rel *) |
| s->contents)); |
| |
| /* Clean up a dummy stub function entry in .text. */ |
| if (htab->sstubs != NULL |
| && htab->sstubs->contents != NULL) |
| { |
| file_ptr dummy_offset; |
| |
| BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size); |
| dummy_offset = htab->sstubs->size - htab->function_stub_size; |
| memset (htab->sstubs->contents + dummy_offset, 0, |
| htab->function_stub_size); |
| } |
| } |
| } |
| |
| /* The psABI says that the dynamic relocations must be sorted in |
| increasing order of r_symndx. The VxWorks EABI doesn't require |
| this, and because the code below handles REL rather than RELA |
| relocations, using it for VxWorks would be outright harmful. */ |
| if (htab->root.target_os != is_vxworks) |
| { |
| s = mips_elf_rel_dyn_section (info, false); |
| if (s != NULL |
| && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) |
| { |
| reldyn_sorting_bfd = output_bfd; |
| |
| if (ABI_64_P (output_bfd)) |
| qsort ((Elf64_External_Rel *) s->contents + 1, |
| s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), |
| sort_dynamic_relocs_64); |
| else |
| qsort ((Elf32_External_Rel *) s->contents + 1, |
| s->reloc_count - 1, sizeof (Elf32_External_Rel), |
| sort_dynamic_relocs); |
| } |
| } |
| } |
| |
| if (htab->root.splt && htab->root.splt->size > 0) |
| { |
| if (htab->root.target_os == is_vxworks) |
| { |
| if (bfd_link_pic (info)) |
| mips_vxworks_finish_shared_plt (output_bfd, info); |
| else |
| mips_vxworks_finish_exec_plt (output_bfd, info); |
| } |
| else |
| { |
| BFD_ASSERT (!bfd_link_pic (info)); |
| if (!mips_finish_exec_plt (output_bfd, info)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ |
| |
| static void |
| mips_set_isa_flags (bfd *abfd) |
| { |
| flagword val; |
| |
| switch (bfd_get_mach (abfd)) |
| { |
| default: |
| if (ABI_N32_P (abfd) || ABI_64_P (abfd)) |
| val = MIPS_DEFAULT_R6 ? EF_MIPS_ARCH_64R6 : EF_MIPS_ARCH_3; |
| else |
| val = MIPS_DEFAULT_R6 ? EF_MIPS_ARCH_32R6 : EF_MIPS_ARCH_1; |
| break; |
| |
| case bfd_mach_mips3000: |
| val = EF_MIPS_ARCH_1; |
| break; |
| |
| case bfd_mach_mips3900: |
| val = EF_MIPS_ARCH_1 | EF_MIPS_MACH_3900; |
| break; |
| |
| case bfd_mach_mips6000: |
| val = EF_MIPS_ARCH_2; |
| break; |
| |
| case bfd_mach_mips4010: |
| val = EF_MIPS_ARCH_2 | EF_MIPS_MACH_4010; |
| break; |
| |
| case bfd_mach_mips_allegrex: |
| val = EF_MIPS_ARCH_2 | EF_MIPS_MACH_ALLEGREX; |
| break; |
| |
| case bfd_mach_mips4000: |
| case bfd_mach_mips4300: |
| case bfd_mach_mips4400: |
| case bfd_mach_mips4600: |
| val = EF_MIPS_ARCH_3; |
| break; |
| |
| case bfd_mach_mips4100: |
| val = EF_MIPS_ARCH_3 | EF_MIPS_MACH_4100; |
| break; |
| |
| case bfd_mach_mips4111: |
| val = EF_MIPS_ARCH_3 | EF_MIPS_MACH_4111; |
| break; |
| |
| case bfd_mach_mips4120: |
| val = EF_MIPS_ARCH_3 | EF_MIPS_MACH_4120; |
| break; |
| |
| case bfd_mach_mips4650: |
| val = EF_MIPS_ARCH_3 | EF_MIPS_MACH_4650; |
| break; |
| |
| case bfd_mach_mips5400: |
| val = EF_MIPS_ARCH_4 | EF_MIPS_MACH_5400; |
| break; |
| |
| case bfd_mach_mips5500: |
| val = EF_MIPS_ARCH_4 | EF_MIPS_MACH_5500; |
| break; |
| |
| case bfd_mach_mips5900: |
| val = EF_MIPS_ARCH_3 | EF_MIPS_MACH_5900; |
| break; |
| |
| case bfd_mach_mips9000: |
| val = EF_MIPS_ARCH_4 | EF_MIPS_MACH_9000; |
| break; |
| |
| case bfd_mach_mips5000: |
| case bfd_mach_mips7000: |
| case bfd_mach_mips8000: |
| case bfd_mach_mips10000: |
| case bfd_mach_mips12000: |
| case bfd_mach_mips14000: |
| case bfd_mach_mips16000: |
| val = EF_MIPS_ARCH_4; |
| break; |
| |
| case bfd_mach_mips5: |
| val = EF_MIPS_ARCH_5; |
| break; |
| |
| case bfd_mach_mips_loongson_2e: |
| val = EF_MIPS_ARCH_3 | EF_MIPS_MACH_LS2E; |
| break; |
| |
| case bfd_mach_mips_loongson_2f: |
| val = EF_MIPS_ARCH_3 | EF_MIPS_MACH_LS2F; |
| break; |
| |
| case bfd_mach_mips_sb1: |
| val = EF_MIPS_ARCH_64 | EF_MIPS_MACH_SB1; |
| break; |
| |
| case bfd_mach_mips_gs464: |
| val = EF_MIPS_ARCH_64R2 | EF_MIPS_MACH_GS464; |
| break; |
| |
| case bfd_mach_mips_gs464e: |
| val = EF_MIPS_ARCH_64R2 | EF_MIPS_MACH_GS464E; |
| break; |
| |
| case bfd_mach_mips_gs264e: |
| val = EF_MIPS_ARCH_64R2 | EF_MIPS_MACH_GS264E; |
| break; |
| |
| case bfd_mach_mips_octeon: |
| case bfd_mach_mips_octeonp: |
| val = EF_MIPS_ARCH_64R2 | EF_MIPS_MACH_OCTEON; |
| break; |
| |
| case bfd_mach_mips_octeon3: |
| val = EF_MIPS_ARCH_64R2 | EF_MIPS_MACH_OCTEON3; |
| break; |
| |
| case bfd_mach_mips_xlr: |
| val = EF_MIPS_ARCH_64 | EF_MIPS_MACH_XLR; |
| break; |
| |
| case bfd_mach_mips_octeon2: |
| val = EF_MIPS_ARCH_64R2 | EF_MIPS_MACH_OCTEON2; |
| break; |
| |
| case bfd_mach_mipsisa32: |
| val = EF_MIPS_ARCH_32; |
| break; |
| |
| case bfd_mach_mipsisa64: |
| val = EF_MIPS_ARCH_64; |
| break; |
| |
| case bfd_mach_mipsisa32r2: |
| case bfd_mach_mipsisa32r3: |
| case bfd_mach_mipsisa32r5: |
| val = EF_MIPS_ARCH_32R2; |
| break; |
| |
| case bfd_mach_mips_interaptiv_mr2: |
| val = EF_MIPS_ARCH_32R2 | EF_MIPS_MACH_IAMR2; |
| break; |
| |
| case bfd_mach_mipsisa64r2: |
| case bfd_mach_mipsisa64r3: |
| case bfd_mach_mipsisa64r5: |
| val = EF_MIPS_ARCH_64R2; |
| break; |
| |
| case bfd_mach_mipsisa32r6: |
| val = EF_MIPS_ARCH_32R6; |
| break; |
| |
| case bfd_mach_mipsisa64r6: |
| val = EF_MIPS_ARCH_64R6; |
| break; |
| } |
| elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
| elf_elfheader (abfd)->e_flags |= val; |
| |
| } |
| |
| |
| /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset. |
| Don't do so for code sections. We want to keep ordering of HI16/LO16 |
| as is. On the other hand, elf-eh-frame.c processing requires .eh_frame |
| relocs to be sorted. */ |
| |
| bool |
| _bfd_mips_elf_sort_relocs_p (asection *sec) |
| { |
| return (sec->flags & SEC_CODE) == 0; |
| } |
| |
| |
| /* The final processing done just before writing out a MIPS ELF object |
| file. This gets the MIPS architecture right based on the machine |
| number. This is used by both the 32-bit and the 64-bit ABI. */ |
| |
| void |
| _bfd_mips_final_write_processing (bfd *abfd) |
| { |
| unsigned int i; |
| Elf_Internal_Shdr **hdrpp; |
| const char *name; |
| asection *sec; |
| |
| /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former |
| is nonzero. This is for compatibility with old objects, which used |
| a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ |
| if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) |
| mips_set_isa_flags (abfd); |
| |
| /* Set the sh_info field for .gptab sections and other appropriate |
| info for each special section. */ |
| for (i = 1, hdrpp = elf_elfsections (abfd) + 1; |
| i < elf_numsections (abfd); |
| i++, hdrpp++) |
| { |
| switch ((*hdrpp)->sh_type) |
| { |
| case SHT_MIPS_MSYM: |
| case SHT_MIPS_LIBLIST: |
| sec = bfd_get_section_by_name (abfd, ".dynstr"); |
| if (sec != NULL) |
| (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
| break; |
| |
| case SHT_MIPS_GPTAB: |
| BFD_ASSERT ((*hdrpp)->bfd_section != NULL); |
| name = bfd_section_name ((*hdrpp)->bfd_section); |
| if (startswith (name, ".gptab.")) |
| { |
| sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); |
| if (sec != NULL) |
| (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; |
| } |
| break; |
| |
| case SHT_MIPS_CONTENT: |
| BFD_ASSERT ((*hdrpp)->bfd_section != NULL); |
| name = bfd_section_name ((*hdrpp)->bfd_section); |
| if (startswith (name, ".MIPS.content")) |
| { |
| sec = bfd_get_section_by_name (abfd, |
| name + sizeof ".MIPS.content" - 1); |
| if (sec != NULL) |
| (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
| } |
| break; |
| |
| case SHT_MIPS_SYMBOL_LIB: |
| sec = bfd_get_section_by_name (abfd, ".dynsym"); |
| if (sec != NULL) |
| (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
| sec = bfd_get_section_by_name (abfd, ".liblist"); |
| if (sec != NULL) |
| (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; |
| break; |
| |
| case SHT_MIPS_EVENTS: |
| BFD_ASSERT ((*hdrpp)->bfd_section != NULL); |
| name = bfd_section_name ((*hdrpp)->bfd_section); |
| if (startswith (name, ".MIPS.events")) |
| sec = bfd_get_section_by_name (abfd, |
| name + sizeof ".MIPS.events" - 1); |
| else if (startswith (name, ".MIPS.post_rel")) |
| sec = bfd_get_section_by_name (abfd, |
| name + sizeof ".MIPS.post_rel" - 1); |
| else |
| sec = NULL; |
| if (sec != NULL) |
| (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
| break; |
| |
| case SHT_MIPS_XHASH: |
| sec = bfd_get_section_by_name (abfd, ".dynsym"); |
| if (sec != NULL) |
| (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
| } |
| } |
| } |
| |
| bool |
| _bfd_mips_elf_final_write_processing (bfd *abfd) |
| { |
| _bfd_mips_final_write_processing (abfd); |
| return _bfd_elf_final_write_processing (abfd); |
| } |
| |
| /* When creating an IRIX5 executable, we need REGINFO and RTPROC |
| segments. */ |
| |
| int |
| _bfd_mips_elf_additional_program_headers (bfd *abfd, |
| struct bfd_link_info *info ATTRIBUTE_UNUSED) |
| { |
| asection *s; |
| int ret = 0; |
| |
| /* See if we need a PT_MIPS_REGINFO segment. */ |
| s = bfd_get_section_by_name (abfd, ".reginfo"); |
| if (s && (s->flags & SEC_LOAD)) |
| ++ret; |
| |
| /* See if we need a PT_MIPS_ABIFLAGS segment. */ |
| if (bfd_get_section_by_name (abfd, ".MIPS.abiflags")) |
| ++ret; |
| |
| /* See if we need a PT_MIPS_OPTIONS segment. */ |
| if (IRIX_COMPAT (abfd) == ict_irix6 |
| && bfd_get_section_by_name (abfd, |
| MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) |
| ++ret; |
| |
| /* See if we need a PT_MIPS_RTPROC segment. */ |
| if (IRIX_COMPAT (abfd) == ict_irix5 |
| && bfd_get_section_by_name (abfd, ".dynamic") |
| && bfd_get_section_by_name (abfd, ".mdebug")) |
| ++ret; |
| |
| /* Allocate a PT_NULL header in dynamic objects. See |
| _bfd_mips_elf_modify_segment_map for details. */ |
| if (!SGI_COMPAT (abfd) |
| && bfd_get_section_by_name (abfd, ".dynamic")) |
| ++ret; |
| |
| return ret; |
| } |
| |
| /* Modify the segment map for an IRIX5 executable. */ |
| |
| bool |
| _bfd_mips_elf_modify_segment_map (bfd *abfd, |
| struct bfd_link_info *info) |
| { |
| asection *s; |
| struct elf_segment_map *m, **pm; |
| size_t amt; |
| |
| /* If there is a .reginfo section, we need a PT_MIPS_REGINFO |
| segment. */ |
| s = bfd_get_section_by_name (abfd, ".reginfo"); |
| if (s != NULL && (s->flags & SEC_LOAD) != 0) |
| { |
| for (m = elf_seg_map (abfd); m != NULL; m = m->next) |
| if (m->p_type == PT_MIPS_REGINFO) |
| break; |
| if (m == NULL) |
| { |
| amt = sizeof *m; |
| m = bfd_zalloc (abfd, amt); |
| if (m == NULL) |
| return false; |
| |
| m->p_type = PT_MIPS_REGINFO; |
| m->count = 1; |
| m->sections[0] = s; |
| |
| /* We want to put it after the PHDR and INTERP segments. */ |
| pm = &elf_seg_map (abfd); |
| while (*pm != NULL |
| && ((*pm)->p_type == PT_PHDR |
| || (*pm)->p_type == PT_INTERP)) |
| pm = &(*pm)->next; |
| |
| m->next = *pm; |
| *pm = m; |
| } |
| } |
| |
| /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS |
| segment. */ |
| s = bfd_get_section_by_name (abfd, ".MIPS.abiflags"); |
| if (s != NULL && (s->flags & SEC_LOAD) != 0) |
| { |
| for (m = elf_seg_map (abfd); m != NULL; m = m->next) |
| if (m->p_type == PT_MIPS_ABIFLAGS) |
| break; |
| if (m == NULL) |
| { |
| amt = sizeof *m; |
| m = bfd_zalloc (abfd, amt); |
| if (m == NULL) |
| return false; |
| |
| m->p_type = PT_MIPS_ABIFLAGS; |
| m->count = 1; |
| m->sections[0] = s; |
| |
| /* We want to put it after the PHDR and INTERP segments. */ |
| pm = &elf_seg_map (abfd); |
| while (*pm != NULL |
| && ((*pm)->p_type == PT_PHDR |
| || (*pm)->p_type == PT_INTERP)) |
| pm = &(*pm)->next; |
| |
| m->next = *pm; |
| *pm = m; |
| } |
| } |
| |
| /* For IRIX 6, we don't have .mdebug sections, nor does anything but |
| .dynamic end up in PT_DYNAMIC. However, we do have to insert a |
| PT_MIPS_OPTIONS segment immediately following the program header |
| table. */ |
| if (NEWABI_P (abfd) |
| /* On non-IRIX6 new abi, we'll have already created a segment |
| for this section, so don't create another. I'm not sure this |
| is not also the case for IRIX 6, but I can't test it right |
| now. */ |
| && IRIX_COMPAT (abfd) == ict_irix6) |
| { |
| for (s = abfd->sections; s; s = s->next) |
| if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) |
| break; |
| |
| if (s) |
| { |
| struct elf_segment_map *options_segment; |
| |
| pm = &elf_seg_map (abfd); |
| while (*pm != NULL |
| && ((*pm)->p_type == PT_PHDR |
| || (*pm)->p_type == PT_INTERP)) |
| pm = &(*pm)->next; |
| |
| if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS) |
| { |
| amt = sizeof (struct elf_segment_map); |
| options_segment = bfd_zalloc (abfd, amt); |
| options_segment->next = *pm; |
| options_segment->p_type = PT_MIPS_OPTIONS; |
| options_segment->p_flags = PF_R; |
| options_segment->p_flags_valid = true; |
| options_segment->count = 1; |
| options_segment->sections[0] = s; |
| *pm = options_segment; |
| } |
| } |
| } |
| else |
| { |
| if (IRIX_COMPAT (abfd) == ict_irix5) |
| { |
| /* If there are .dynamic and .mdebug sections, we make a room |
| for the RTPROC header. FIXME: Rewrite without section names. */ |
| if (bfd_get_section_by_name (abfd, ".interp") == NULL |
| && bfd_get_section_by_name (abfd, ".dynamic") != NULL |
| && bfd_get_section_by_name (abfd, ".mdebug") != NULL) |
| { |
| for (m = elf_seg_map (abfd); m != NULL; m = m->next) |
| if (m->p_type == PT_MIPS_RTPROC) |
| break; |
| if (m == NULL) |
| { |
| amt = sizeof *m; |
| m = bfd_zalloc (abfd, amt); |
| if (m == NULL) |
| return false; |
| |
| m->p_type = PT_MIPS_RTPROC; |
| |
| s = bfd_get_section_by_name (abfd, ".rtproc"); |
| if (s == NULL) |
| { |
| m->count = 0; |
| m->p_flags = 0; |
| m->p_flags_valid = 1; |
| } |
| else |
| { |
| m->count = 1; |
| m->sections[0] = s; |
| } |
| |
| /* We want to put it after the DYNAMIC segment. */ |
| pm = &elf_seg_map (abfd); |
| while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) |
| pm = &(*pm)->next; |
| if (*pm != NULL) |
| pm = &(*pm)->next; |
| |
| m->next = *pm; |
| *pm = m; |
| } |
| } |
| } |
| /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, |
| .dynstr, .dynsym, and .hash sections, and everything in |
| between. */ |
| for (pm = &elf_seg_map (abfd); *pm != NULL; |
| pm = &(*pm)->next) |
| if ((*pm)->p_type == PT_DYNAMIC) |
| break; |
| m = *pm; |
| /* GNU/Linux binaries do not need the extended PT_DYNAMIC section. |
| glibc's dynamic linker has traditionally derived the number of |
| tags from the p_filesz field, and sometimes allocates stack |
| arrays of that size. An overly-big PT_DYNAMIC segment can |
| be actively harmful in such cases. Making PT_DYNAMIC contain |
| other sections can also make life hard for the prelinker, |
| which might move one of the other sections to a different |
| PT_LOAD segment. */ |
| if (SGI_COMPAT (abfd) |
| && m != NULL |
| && m->count == 1 |
| && strcmp (m->sections[0]->name, ".dynamic") == 0) |
| { |
| static const char *sec_names[] = |
| { |
| ".dynamic", ".dynstr", ".dynsym", ".hash" |
| }; |
| bfd_vma low, high; |
| unsigned int i, c; |
| struct elf_segment_map *n; |
| |
| low = ~(bfd_vma) 0; |
| high = 0; |
| for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) |
| { |
| s = bfd_get_section_by_name (abfd, sec_names[i]); |
| if (s != NULL && (s->flags & SEC_LOAD) != 0) |
| { |
| bfd_size_type sz; |
| |
| if (low > s->vma) |
| low = s->vma; |
| sz = s->size; |
| if (high < s->vma + sz) |
| high = s->vma + sz; |
| } |
| } |
| |
| c = 0; |
| for (s = abfd->sections; s != NULL; s = s->next) |
| if ((s->flags & SEC_LOAD) != 0 |
| && s->vma >= low |
| && s->vma + s->size <= high) |
| ++c; |
| |
| amt = sizeof *n - sizeof (asection *) + c * sizeof (asection *); |
| n = bfd_zalloc (abfd, amt); |
| if (n == NULL) |
| return false; |
| *n = *m; |
| n->count = c; |
| |
| i = 0; |
| for (s = abfd->sections; s != NULL; s = s->next) |
| { |
| if ((s->flags & SEC_LOAD) != 0 |
| && s->vma >= low |
| && s->vma + s->size <= high) |
| { |
| n->sections[i] = s; |
| ++i; |
| } |
| } |
| |
| *pm = n; |
| } |
| } |
| |
| /* Allocate a spare program header in dynamic objects so that tools |
| like the prelinker can add an extra PT_LOAD entry. |
| |
| If the prelinker needs to make room for a new PT_LOAD entry, its |
| standard procedure is to move the first (read-only) sections into |
| the new (writable) segment. However, the MIPS ABI requires |
| .dynamic to be in a read-only segment, and the section will often |
| start within sizeof (ElfNN_Phdr) bytes of the last program header. |
| |
| Although the prelinker could in principle move .dynamic to a |
| writable segment, it seems better to allocate a spare program |
| header instead, and avoid the need to move any sections. |
| There is a long tradition of allocating spare dynamic tags, |
| so allocating a spare program header seems like a natural |
| extension. |
| |
| If INFO is NULL, we may be copying an already prelinked binary |
| with objcopy or strip, so do not add this header. */ |
| if (info != NULL |
| && !SGI_COMPAT (abfd) |
| && bfd_get_section_by_name (abfd, ".dynamic")) |
| { |
| for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next) |
| if ((*pm)->p_type == PT_NULL) |
| break; |
| if (*pm == NULL) |
| { |
| m = bfd_zalloc (abfd, sizeof (*m)); |
| if (m == NULL) |
| return false; |
| |
| m->p_type = PT_NULL; |
| *pm = m; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Return the section that should be marked against GC for a given |
| relocation. */ |
| |
| asection * |
| _bfd_mips_elf_gc_mark_hook (asection *sec, |
| struct bfd_link_info *info, |
| Elf_Internal_Rela *rel, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| /* ??? Do mips16 stub sections need to be handled special? */ |
| |
| if (h != NULL) |
| switch (ELF_R_TYPE (sec->owner, rel->r_info)) |
| { |
| case R_MIPS_GNU_VTINHERIT: |
| case R_MIPS_GNU_VTENTRY: |
| return NULL; |
| } |
| |
| return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
| } |
| |
| /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */ |
| |
| bool |
| _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info, |
| elf_gc_mark_hook_fn gc_mark_hook) |
| { |
| bfd *sub; |
| |
| _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook); |
| |
| for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
| { |
| asection *o; |
| |
| if (! is_mips_elf (sub)) |
| continue; |
| |
| for (o = sub->sections; o != NULL; o = o->next) |
| if (!o->gc_mark |
| && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o))) |
| { |
| if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Copy data from a MIPS ELF indirect symbol to its direct symbol, |
| hiding the old indirect symbol. Process additional relocation |
| information. Also called for weakdefs, in which case we just let |
| _bfd_elf_link_hash_copy_indirect copy the flags for us. */ |
| |
| void |
| _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *dir, |
| struct elf_link_hash_entry *ind) |
| { |
| struct mips_elf_link_hash_entry *dirmips, *indmips; |
| |
| _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
| |
| dirmips = (struct mips_elf_link_hash_entry *) dir; |
| indmips = (struct mips_elf_link_hash_entry *) ind; |
| /* Any absolute non-dynamic relocations against an indirect or weak |
| definition will be against the target symbol. */ |
| if (indmips->has_static_relocs) |
| dirmips->has_static_relocs = true; |
| |
| if (ind->root.type != bfd_link_hash_indirect) |
| return; |
| |
| dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; |
| if (indmips->readonly_reloc) |
| dirmips->readonly_reloc = true; |
| if (indmips->no_fn_stub) |
| dirmips->no_fn_stub = true; |
| if (indmips->fn_stub) |
| { |
| dirmips->fn_stub = indmips->fn_stub; |
| indmips->fn_stub = NULL; |
| } |
| if (indmips->need_fn_stub) |
| { |
| dirmips->need_fn_stub = true; |
| indmips->need_fn_stub = false; |
| } |
| if (indmips->call_stub) |
| { |
| dirmips->call_stub = indmips->call_stub; |
| indmips->call_stub = NULL; |
| } |
| if (indmips->call_fp_stub) |
| { |
| dirmips->call_fp_stub = indmips->call_fp_stub; |
| indmips->call_fp_stub = NULL; |
| } |
| if (indmips->global_got_area < dirmips->global_got_area) |
| dirmips->global_got_area = indmips->global_got_area; |
| if (indmips->global_got_area < GGA_NONE) |
| indmips->global_got_area = GGA_NONE; |
| if (indmips->has_nonpic_branches) |
| dirmips->has_nonpic_branches = true; |
| } |
| |
| /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts |
| to hide it. It has to remain global (it will also be protected) so as to |
| be assigned a global GOT entry, which will then remain unchanged at load |
| time. */ |
| |
| void |
| _bfd_mips_elf_hide_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *entry, |
| bool force_local) |
| { |
| struct mips_elf_link_hash_table *htab; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| if (htab->use_absolute_zero |
| && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0) |
| return; |
| |
| _bfd_elf_link_hash_hide_symbol (info, entry, force_local); |
| } |
| |
| #define PDR_SIZE 32 |
| |
| bool |
| _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, |
| struct bfd_link_info *info) |
| { |
| asection *o; |
| bool ret = false; |
| unsigned char *tdata; |
| size_t i, skip; |
| |
| o = bfd_get_section_by_name (abfd, ".pdr"); |
| if (! o) |
| return false; |
| if (o->size == 0) |
| return false; |
| if (o->size % PDR_SIZE != 0) |
| return false; |
| if (o->output_section != NULL |
| && bfd_is_abs_section (o->output_section)) |
| return false; |
| |
| tdata = bfd_zmalloc (o->size / PDR_SIZE); |
| if (! tdata) |
| return false; |
| |
| cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
| info->keep_memory); |
| if (!cookie->rels) |
| { |
| free (tdata); |
| return false; |
| } |
| |
| cookie->rel = cookie->rels; |
| cookie->relend = cookie->rels + o->reloc_count; |
| |
| for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) |
| { |
| if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) |
| { |
| tdata[i] = 1; |
| skip ++; |
| } |
| } |
| |
| if (skip != 0) |
| { |
| mips_elf_section_data (o)->u.tdata = tdata; |
| if (o->rawsize == 0) |
| o->rawsize = o->size; |
| o->size -= skip * PDR_SIZE; |
| ret = true; |
| } |
| else |
| free (tdata); |
| |
| if (! info->keep_memory) |
| free (cookie->rels); |
| |
| return ret; |
| } |
| |
| bool |
| _bfd_mips_elf_ignore_discarded_relocs (asection *sec) |
| { |
| if (strcmp (sec->name, ".pdr") == 0) |
| return true; |
| return false; |
| } |
| |
| bool |
| _bfd_mips_elf_write_section (bfd *output_bfd, |
| struct bfd_link_info *link_info ATTRIBUTE_UNUSED, |
| asection *sec, bfd_byte *contents) |
| { |
| bfd_byte *to, *from, *end; |
| int i; |
| |
| if (strcmp (sec->name, ".pdr") != 0) |
| return false; |
| |
| if (mips_elf_section_data (sec)->u.tdata == NULL) |
| return false; |
| |
| to = contents; |
| end = contents + sec->size; |
| for (from = contents, i = 0; |
| from < end; |
| from += PDR_SIZE, i++) |
| { |
| if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) |
| continue; |
| if (to != from) |
| memcpy (to, from, PDR_SIZE); |
| to += PDR_SIZE; |
| } |
| bfd_set_section_contents (output_bfd, sec->output_section, contents, |
| sec->output_offset, sec->size); |
| return true; |
| } |
| |
| /* microMIPS code retains local labels for linker relaxation. Omit them |
| from output by default for clarity. */ |
| |
| bool |
| _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym) |
| { |
| return _bfd_elf_is_local_label_name (abfd, sym->name); |
| } |
| |
| bool |
| _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols, |
| asection *section, bfd_vma offset, |
| const char **filename_ptr, |
| const char **functionname_ptr, |
| unsigned int *line_ptr, |
| unsigned int *discriminator_ptr) |
| { |
| asection *msec; |
| |
| if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, |
| filename_ptr, functionname_ptr, |
| line_ptr, discriminator_ptr, |
| dwarf_debug_sections, |
| &elf_tdata (abfd)->dwarf2_find_line_info) |
| == 1) |
| return true; |
| |
| if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset, |
| filename_ptr, functionname_ptr, |
| line_ptr)) |
| { |
| if (!*functionname_ptr) |
| _bfd_elf_find_function (abfd, symbols, section, offset, |
| *filename_ptr ? NULL : filename_ptr, |
| functionname_ptr); |
| return true; |
| } |
| |
| msec = bfd_get_section_by_name (abfd, ".mdebug"); |
| if (msec != NULL) |
| { |
| flagword origflags; |
| struct mips_elf_find_line *fi; |
| const struct ecoff_debug_swap * const swap = |
| get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
| |
| /* If we are called during a link, mips_elf_final_link may have |
| cleared the SEC_HAS_CONTENTS field. We force it back on here |
| if appropriate (which it normally will be). */ |
| origflags = msec->flags; |
| if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) |
| msec->flags |= SEC_HAS_CONTENTS; |
| |
| fi = mips_elf_tdata (abfd)->find_line_info; |
| if (fi == NULL) |
| { |
| bfd_size_type external_fdr_size; |
| char *fraw_src; |
| char *fraw_end; |
| struct fdr *fdr_ptr; |
| bfd_size_type amt = sizeof (struct mips_elf_find_line); |
| |
| fi = bfd_zalloc (abfd, amt); |
| if (fi == NULL) |
| { |
| msec->flags = origflags; |
| return false; |
| } |
| |
| if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) |
| { |
| msec->flags = origflags; |
| return false; |
| } |
| |
| /* Swap in the FDR information. */ |
| amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); |
| fi->d.fdr = bfd_alloc (abfd, amt); |
| if (fi->d.fdr == NULL) |
| { |
| _bfd_ecoff_free_ecoff_debug_info (&fi->d); |
| msec->flags = origflags; |
| return false; |
| } |
| external_fdr_size = swap->external_fdr_size; |
| fdr_ptr = fi->d.fdr; |
| fraw_src = (char *) fi->d.external_fdr; |
| fraw_end = (fraw_src |
| + fi->d.symbolic_header.ifdMax * external_fdr_size); |
| for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) |
| (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); |
| |
| mips_elf_tdata (abfd)->find_line_info = fi; |
| } |
| |
| if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, |
| &fi->i, filename_ptr, functionname_ptr, |
| line_ptr)) |
| { |
| msec->flags = origflags; |
| return true; |
| } |
| |
| msec->flags = origflags; |
| } |
| |
| /* Fall back on the generic ELF find_nearest_line routine. */ |
| |
| return _bfd_elf_find_nearest_line (abfd, symbols, section, offset, |
| filename_ptr, functionname_ptr, |
| line_ptr, discriminator_ptr); |
| } |
| |
| bool |
| _bfd_mips_elf_find_inliner_info (bfd *abfd, |
| const char **filename_ptr, |
| const char **functionname_ptr, |
| unsigned int *line_ptr) |
| { |
| bool found; |
| found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, |
| functionname_ptr, line_ptr, |
| & elf_tdata (abfd)->dwarf2_find_line_info); |
| return found; |
| } |
| |
| |
| /* When are writing out the .options or .MIPS.options section, |
| remember the bytes we are writing out, so that we can install the |
| GP value in the section_processing routine. */ |
| |
| bool |
| _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, |
| const void *location, |
| file_ptr offset, bfd_size_type count) |
| { |
| if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) |
| { |
| bfd_byte *c; |
| |
| if (elf_section_data (section) == NULL) |
| { |
| size_t amt = sizeof (struct bfd_elf_section_data); |
| section->used_by_bfd = bfd_zalloc (abfd, amt); |
| if (elf_section_data (section) == NULL) |
| return false; |
| } |
| c = mips_elf_section_data (section)->u.tdata; |
| if (c == NULL) |
| { |
| c = bfd_zalloc (abfd, section->size); |
| if (c == NULL) |
| return false; |
| mips_elf_section_data (section)->u.tdata = c; |
| } |
| |
| memcpy (c + offset, location, count); |
| } |
| |
| return _bfd_elf_set_section_contents (abfd, section, location, offset, |
| count); |
| } |
| |
| /* This is almost identical to bfd_generic_get_... except that some |
| MIPS relocations need to be handled specially. Sigh. */ |
| |
| bfd_byte * |
| _bfd_elf_mips_get_relocated_section_contents |
| (bfd *abfd, |
| struct bfd_link_info *link_info, |
| struct bfd_link_order *link_order, |
| bfd_byte *data, |
| bool relocatable, |
| asymbol **symbols) |
| { |
| bfd *input_bfd = link_order->u.indirect.section->owner; |
| asection *input_section = link_order->u.indirect.section; |
| long reloc_size; |
| arelent **reloc_vector; |
| long reloc_count; |
| |
| reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); |
| if (reloc_size < 0) |
| return NULL; |
| |
| /* Read in the section. */ |
| bfd_byte *orig_data = data; |
| if (!bfd_get_full_section_contents (input_bfd, input_section, &data)) |
| return NULL; |
| |
| if (data == NULL) |
| return NULL; |
| |
| if (reloc_size == 0) |
| return data; |
| |
| reloc_vector = (arelent **) bfd_malloc (reloc_size); |
| if (reloc_vector == NULL) |
| { |
| struct mips_elf_obj_tdata *tdata; |
| struct mips_hi16 **hip, *hi; |
| error_return: |
| /* If we are going to return an error, remove entries on |
| mips_hi16_list that point into this section's data. Data |
| will typically be freed on return from this function. */ |
| tdata = mips_elf_tdata (abfd); |
| hip = &tdata->mips_hi16_list; |
| while ((hi = *hip) != NULL) |
| { |
| if (hi->input_section == input_section) |
| { |
| *hip = hi->next; |
| free (hi); |
| } |
| else |
| hip = &hi->next; |
| } |
| if (orig_data == NULL) |
| free (data); |
| data = NULL; |
| goto out; |
| } |
| |
| reloc_count = bfd_canonicalize_reloc (input_bfd, |
| input_section, |
| reloc_vector, |
| symbols); |
| if (reloc_count < 0) |
| goto error_return; |
| |
| if (reloc_count > 0) |
| { |
| arelent **parent; |
| /* for mips */ |
| int gp_found; |
| bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ |
| |
| { |
| struct bfd_hash_entry *h; |
| struct bfd_link_hash_entry *lh; |
| /* Skip all this stuff if we aren't mixing formats. */ |
| if (abfd && input_bfd |
| && abfd->xvec == input_bfd->xvec) |
| lh = 0; |
| else |
| { |
| h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false); |
| lh = (struct bfd_link_hash_entry *) h; |
| } |
| lookup: |
| if (lh) |
| { |
| switch (lh->type) |
| { |
| case bfd_link_hash_undefined: |
| case bfd_link_hash_undefweak: |
| case bfd_link_hash_common: |
| gp_found = 0; |
| break; |
| case bfd_link_hash_defined: |
| case bfd_link_hash_defweak: |
| gp_found = 1; |
| gp = lh->u.def.value; |
| break; |
| case bfd_link_hash_indirect: |
| case bfd_link_hash_warning: |
| lh = lh->u.i.link; |
| /* @@FIXME ignoring warning for now */ |
| goto lookup; |
| case bfd_link_hash_new: |
| default: |
| abort (); |
| } |
| } |
| else |
| gp_found = 0; |
| } |
| /* end mips */ |
| |
| for (parent = reloc_vector; *parent != NULL; parent++) |
| { |
| char *error_message = NULL; |
| asymbol *symbol; |
| bfd_reloc_status_type r; |
| |
| symbol = *(*parent)->sym_ptr_ptr; |
| /* PR ld/19628: A specially crafted input file |
| can result in a NULL symbol pointer here. */ |
| if (symbol == NULL) |
| { |
| link_info->callbacks->einfo |
| /* xgettext:c-format */ |
| (_("%X%P: %pB(%pA): error: relocation for offset %V has no value\n"), |
| abfd, input_section, (* parent)->address); |
| goto error_return; |
| } |
| |
| /* Zap reloc field when the symbol is from a discarded |
| section, ignoring any addend. Do the same when called |
| from bfd_simple_get_relocated_section_contents for |
| undefined symbols in debug sections. This is to keep |
| debug info reasonably sane, in particular so that |
| DW_FORM_ref_addr to another file's .debug_info isn't |
| confused with an offset into the current file's |
| .debug_info. */ |
| if ((symbol->section != NULL && discarded_section (symbol->section)) |
| || (symbol->section == bfd_und_section_ptr |
| && (input_section->flags & SEC_DEBUGGING) != 0 |
| && link_info->input_bfds == link_info->output_bfd)) |
| { |
| bfd_vma off; |
| static reloc_howto_type none_howto |
| = HOWTO (0, 0, 0, 0, false, 0, complain_overflow_dont, NULL, |
| "unused", false, 0, 0, false); |
| |
| off = ((*parent)->address |
| * bfd_octets_per_byte (input_bfd, input_section)); |
| _bfd_clear_contents ((*parent)->howto, input_bfd, |
| input_section, data, off); |
| (*parent)->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; |
| (*parent)->addend = 0; |
| (*parent)->howto = &none_howto; |
| r = bfd_reloc_ok; |
| } |
| |
| /* Specific to MIPS: Deal with relocation types that require |
| knowing the gp of the output bfd. */ |
| |
| /* If we've managed to find the gp and have a special |
| function for the relocation then go ahead, else default |
| to the generic handling. */ |
| else if (gp_found |
| && ((*parent)->howto->special_function |
| == _bfd_mips_elf32_gprel16_reloc)) |
| r = _bfd_mips_elf_gprel16_with_gp (input_bfd, symbol, *parent, |
| input_section, relocatable, |
| data, gp); |
| else |
| r = bfd_perform_relocation (input_bfd, |
| *parent, |
| data, |
| input_section, |
| relocatable ? abfd : NULL, |
| &error_message); |
| |
| if (relocatable) |
| { |
| asection *os = input_section->output_section; |
| |
| /* A partial link, so keep the relocs. */ |
| os->orelocation[os->reloc_count] = *parent; |
| os->reloc_count++; |
| } |
| |
| if (r != bfd_reloc_ok) |
| { |
| switch (r) |
| { |
| case bfd_reloc_undefined: |
| (*link_info->callbacks->undefined_symbol) |
| (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), |
| input_bfd, input_section, (*parent)->address, true); |
| break; |
| case bfd_reloc_dangerous: |
| BFD_ASSERT (error_message != NULL); |
| (*link_info->callbacks->reloc_dangerous) |
| (link_info, error_message, |
| input_bfd, input_section, (*parent)->address); |
| break; |
| case bfd_reloc_overflow: |
| (*link_info->callbacks->reloc_overflow) |
| (link_info, NULL, |
| bfd_asymbol_name (*(*parent)->sym_ptr_ptr), |
| (*parent)->howto->name, (*parent)->addend, |
| input_bfd, input_section, (*parent)->address); |
| break; |
| case bfd_reloc_outofrange: |
| /* PR ld/13730: |
| This error can result when processing some partially |
| complete binaries. Do not abort, but issue an error |
| message instead. */ |
| link_info->callbacks->einfo |
| /* xgettext:c-format */ |
| (_("%X%P: %pB(%pA): relocation \"%pR\" goes out of range\n"), |
| abfd, input_section, * parent); |
| goto error_return; |
| |
| case bfd_reloc_notsupported: |
| /* PR ld/17512 |
| This error can result when processing a corrupt binary. |
| Do not abort. Issue an error message instead. */ |
| link_info->callbacks->einfo |
| /* xgettext:c-format */ |
| (_("%X%P: %pB(%pA): relocation \"%pR\" is not supported\n"), |
| abfd, input_section, * parent); |
| goto error_return; |
| |
| default: |
| /* PR 17512; file: 90c2a92e. |
| Report unexpected results, without aborting. */ |
| link_info->callbacks->einfo |
| /* xgettext:c-format */ |
| (_("%X%P: %pB(%pA): relocation \"%pR\" returns an unrecognized value %x\n"), |
| abfd, input_section, * parent, r); |
| break; |
| } |
| |
| } |
| } |
| } |
| |
| out: |
| free (reloc_vector); |
| return data; |
| } |
| |
| static bool |
| mips_elf_relax_delete_bytes (bfd *abfd, |
| asection *sec, bfd_vma addr, int count) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| unsigned int sec_shndx; |
| bfd_byte *contents; |
| Elf_Internal_Rela *irel, *irelend; |
| Elf_Internal_Sym *isym; |
| Elf_Internal_Sym *isymend; |
| struct elf_link_hash_entry **sym_hashes; |
| struct elf_link_hash_entry **end_hashes; |
| struct elf_link_hash_entry **start_hashes; |
| unsigned int symcount; |
| |
| sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); |
| contents = elf_section_data (sec)->this_hdr.contents; |
| |
| irel = elf_section_data (sec)->relocs; |
| irelend = irel + sec->reloc_count; |
| |
| /* Actually delete the bytes. */ |
| memmove (contents + addr, contents + addr + count, |
| (size_t) (sec->size - addr - count)); |
| sec->size -= count; |
| |
| /* Adjust all the relocs. */ |
| for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) |
| { |
| /* Get the new reloc address. */ |
| if (irel->r_offset > addr) |
| irel->r_offset -= count; |
| } |
| |
| BFD_ASSERT (addr % 2 == 0); |
| BFD_ASSERT (count % 2 == 0); |
| |
| /* Adjust the local symbols defined in this section. */ |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| isym = (Elf_Internal_Sym *) symtab_hdr->contents; |
| for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) |
| if (isym->st_shndx == sec_shndx && isym->st_value > addr) |
| isym->st_value -= count; |
| |
| /* Now adjust the global symbols defined in this section. */ |
| symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
| - symtab_hdr->sh_info); |
| sym_hashes = start_hashes = elf_sym_hashes (abfd); |
| end_hashes = sym_hashes + symcount; |
| |
| for (; sym_hashes < end_hashes; sym_hashes++) |
| { |
| struct elf_link_hash_entry *sym_hash = *sym_hashes; |
| |
| if ((sym_hash->root.type == bfd_link_hash_defined |
| || sym_hash->root.type == bfd_link_hash_defweak) |
| && sym_hash->root.u.def.section == sec) |
| { |
| bfd_vma value = sym_hash->root.u.def.value; |
| |
| if (ELF_ST_IS_MICROMIPS (sym_hash->other)) |
| value &= MINUS_TWO; |
| if (value > addr) |
| sym_hash->root.u.def.value -= count; |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| /* Opcodes needed for microMIPS relaxation as found in |
| opcodes/micromips-opc.c. */ |
| |
| struct opcode_descriptor { |
| unsigned long match; |
| unsigned long mask; |
| }; |
| |
| /* The $ra register aka $31. */ |
| |
| #define RA 31 |
| |
| /* 32-bit instruction format register fields. */ |
| |
| #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f) |
| #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f) |
| |
| /* Check if a 5-bit register index can be abbreviated to 3 bits. */ |
| |
| #define OP16_VALID_REG(r) \ |
| ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17)) |
| |
| |
| /* 32-bit and 16-bit branches. */ |
| |
| static const struct opcode_descriptor b_insns_32[] = { |
| { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */ |
| { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */ |
| { 0, 0 } /* End marker for find_match(). */ |
| }; |
| |
| static const struct opcode_descriptor bc_insn_32 = |
| { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 }; |
| |
| static const struct opcode_descriptor bz_insn_32 = |
| { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }; |
| |
| static const struct opcode_descriptor bzal_insn_32 = |
| { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }; |
| |
| static const struct opcode_descriptor beq_insn_32 = |
| { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }; |
| |
| static const struct opcode_descriptor b_insn_16 = |
| { /* "b", "mD", */ 0xcc00, 0xfc00 }; |
| |
| static const struct opcode_descriptor bz_insn_16 = |
| { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }; |
| |
| |
| /* 32-bit and 16-bit branch EQ and NE zero. */ |
| |
| /* NOTE: All opcode tables have BEQ/BNE in the same order: first the |
| eq and second the ne. This convention is used when replacing a |
| 32-bit BEQ/BNE with the 16-bit version. */ |
| |
| #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16) |
| |
| static const struct opcode_descriptor bz_rs_insns_32[] = { |
| { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 }, |
| { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 }, |
| { 0, 0 } /* End marker for find_match(). */ |
| }; |
| |
| static const struct opcode_descriptor bz_rt_insns_32[] = { |
| { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 }, |
| { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 }, |
| { 0, 0 } /* End marker for find_match(). */ |
| }; |
| |
| static const struct opcode_descriptor bzc_insns_32[] = { |
| { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 }, |
| { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 }, |
| { 0, 0 } /* End marker for find_match(). */ |
| }; |
| |
| static const struct opcode_descriptor bz_insns_16[] = { |
| { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 }, |
| { /* "bnez", "md,mE", */ 0xac00, 0xfc00 }, |
| { 0, 0 } /* End marker for find_match(). */ |
| }; |
| |
| /* Switch between a 5-bit register index and its 3-bit shorthand. */ |
| |
| #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2) |
| #define BZ16_REG_FIELD(r) (((r) & 7) << 7) |
| |
| |
| /* 32-bit instructions with a delay slot. */ |
| |
| static const struct opcode_descriptor jal_insn_32_bd16 = |
| { /* "jals", "a", */ 0x74000000, 0xfc000000 }; |
| |
| static const struct opcode_descriptor jal_insn_32_bd32 = |
| { /* "jal", "a", */ 0xf4000000, 0xfc000000 }; |
| |
| static const struct opcode_descriptor jal_x_insn_32_bd32 = |
| { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }; |
| |
| static const struct opcode_descriptor j_insn_32 = |
| { /* "j", "a", */ 0xd4000000, 0xfc000000 }; |
| |
| static const struct opcode_descriptor jalr_insn_32 = |
| { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }; |
| |
| /* This table can be compacted, because no opcode replacement is made. */ |
| |
| static const struct opcode_descriptor ds_insns_32_bd16[] = { |
| { /* "jals", "a", */ 0x74000000, 0xfc000000 }, |
| |
| { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff }, |
| { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 }, |
| |
| { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }, |
| { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }, |
| { /* "j", "a", */ 0xd4000000, 0xfc000000 }, |
| { 0, 0 } /* End marker for find_match(). */ |
| }; |
| |
| /* This table can be compacted, because no opcode replacement is made. */ |
| |
| static const struct opcode_descriptor ds_insns_32_bd32[] = { |
| { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }, |
| |
| { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }, |
| { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }, |
| { 0, 0 } /* End marker for find_match(). */ |
| }; |
| |
| |
| /* 16-bit instructions with a delay slot. */ |
| |
| static const struct opcode_descriptor jalr_insn_16_bd16 = |
| { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }; |
| |
| static const struct opcode_descriptor jalr_insn_16_bd32 = |
| { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 }; |
| |
| static const struct opcode_descriptor jr_insn_16 = |
| { /* "jr", "mj", */ 0x4580, 0xffe0 }; |
| |
| #define JR16_REG(opcode) ((opcode) & 0x1f) |
| |
| /* This table can be compacted, because no opcode replacement is made. */ |
| |
| static const struct opcode_descriptor ds_insns_16_bd16[] = { |
| { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }, |
| |
| { /* "b", "mD", */ 0xcc00, 0xfc00 }, |
| { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }, |
| { /* "jr", "mj", */ 0x4580, 0xffe0 }, |
| { 0, 0 } /* End marker for find_match(). */ |
| }; |
| |
| |
| /* LUI instruction. */ |
| |
| static const struct opcode_descriptor lui_insn = |
| { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 }; |
| |
| |
| /* ADDIU instruction. */ |
| |
| static const struct opcode_descriptor addiu_insn = |
| { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 }; |
| |
| static const struct opcode_descriptor addiupc_insn = |
| { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 }; |
| |
| #define ADDIUPC_REG_FIELD(r) \ |
| (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23) |
| |
| |
| /* Relaxable instructions in a JAL delay slot: MOVE. */ |
| |
| /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves |
| (ADDU, OR) have rd in 15:11 and rs in 10:16. */ |
| #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f) |
| #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f) |
| |
| #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5) |
| #define MOVE16_RS_FIELD(r) (((r) & 0x1f) ) |
| |
| static const struct opcode_descriptor move_insns_32[] = { |
| { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */ |
| { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */ |
| { 0, 0 } /* End marker for find_match(). */ |
| }; |
| |
| static const struct opcode_descriptor move_insn_16 = |
| { /* "move", "mp,mj", */ 0x0c00, 0xfc00 }; |
| |
| |
| /* NOP instructions. */ |
| |
| static const struct opcode_descriptor nop_insn_32 = |
| { /* "nop", "", */ 0x00000000, 0xffffffff }; |
| |
| static const struct opcode_descriptor nop_insn_16 = |
| { /* "nop", "", */ 0x0c00, 0xffff }; |
| |
| |
| /* Instruction match support. */ |
| |
| #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match) |
| |
| static int |
| find_match (unsigned long opcode, const struct opcode_descriptor insn[]) |
| { |
| unsigned long indx; |
| |
| for (indx = 0; insn[indx].mask != 0; indx++) |
| if (MATCH (opcode, insn[indx])) |
| return indx; |
| |
| return -1; |
| } |
| |
| |
| /* Branch and delay slot decoding support. */ |
| |
| /* If PTR points to what *might* be a 16-bit branch or jump, then |
| return the minimum length of its delay slot, otherwise return 0. |
| Non-zero results are not definitive as we might be checking against |
| the second half of another instruction. */ |
| |
| static int |
| check_br16_dslot (bfd *abfd, bfd_byte *ptr) |
| { |
| unsigned long opcode; |
| int bdsize; |
| |
| opcode = bfd_get_16 (abfd, ptr); |
| if (MATCH (opcode, jalr_insn_16_bd32) != 0) |
| /* 16-bit branch/jump with a 32-bit delay slot. */ |
| bdsize = 4; |
| else if (MATCH (opcode, jalr_insn_16_bd16) != 0 |
| || find_match (opcode, ds_insns_16_bd16) >= 0) |
| /* 16-bit branch/jump with a 16-bit delay slot. */ |
| bdsize = 2; |
| else |
| /* No delay slot. */ |
| bdsize = 0; |
| |
| return bdsize; |
| } |
| |
| /* If PTR points to what *might* be a 32-bit branch or jump, then |
| return the minimum length of its delay slot, otherwise return 0. |
| Non-zero results are not definitive as we might be checking against |
| the second half of another instruction. */ |
| |
| static int |
| check_br32_dslot (bfd *abfd, bfd_byte *ptr) |
| { |
| unsigned long opcode; |
| int bdsize; |
| |
| opcode = bfd_get_micromips_32 (abfd, ptr); |
| if (find_match (opcode, ds_insns_32_bd32) >= 0) |
| /* 32-bit branch/jump with a 32-bit delay slot. */ |
| bdsize = 4; |
| else if (find_match (opcode, ds_insns_32_bd16) >= 0) |
| /* 32-bit branch/jump with a 16-bit delay slot. */ |
| bdsize = 2; |
| else |
| /* No delay slot. */ |
| bdsize = 0; |
| |
| return bdsize; |
| } |
| |
| /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot |
| that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */ |
| |
| static bool |
| check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg) |
| { |
| unsigned long opcode; |
| |
| opcode = bfd_get_16 (abfd, ptr); |
| if (MATCH (opcode, b_insn_16) |
| /* B16 */ |
| || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode)) |
| /* JR16 */ |
| || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode)) |
| /* BEQZ16, BNEZ16 */ |
| || (MATCH (opcode, jalr_insn_16_bd32) |
| /* JALR16 */ |
| && reg != JR16_REG (opcode) && reg != RA)) |
| return true; |
| |
| return false; |
| } |
| |
| /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG, |
| then return TRUE, otherwise FALSE. */ |
| |
| static bool |
| check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg) |
| { |
| unsigned long opcode; |
| |
| opcode = bfd_get_micromips_32 (abfd, ptr); |
| if (MATCH (opcode, j_insn_32) |
| /* J */ |
| || MATCH (opcode, bc_insn_32) |
| /* BC1F, BC1T, BC2F, BC2T */ |
| || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA) |
| /* JAL, JALX */ |
| || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode)) |
| /* BGEZ, BGTZ, BLEZ, BLTZ */ |
| || (MATCH (opcode, bzal_insn_32) |
| /* BGEZAL, BLTZAL */ |
| && reg != OP32_SREG (opcode) && reg != RA) |
| || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32)) |
| /* JALR, JALR.HB, BEQ, BNE */ |
| && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode))) |
| return true; |
| |
| return false; |
| } |
| |
| /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS, |
| IRELEND) at OFFSET indicate that there must be a compact branch there, |
| then return TRUE, otherwise FALSE. */ |
| |
| static bool |
| check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset, |
| const Elf_Internal_Rela *internal_relocs, |
| const Elf_Internal_Rela *irelend) |
| { |
| const Elf_Internal_Rela *irel; |
| unsigned long opcode; |
| |
| opcode = bfd_get_micromips_32 (abfd, ptr); |
| if (find_match (opcode, bzc_insns_32) < 0) |
| return false; |
| |
| for (irel = internal_relocs; irel < irelend; irel++) |
| if (irel->r_offset == offset |
| && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1) |
| return true; |
| |
| return false; |
| } |
| |
| /* Bitsize checking. */ |
| #define IS_BITSIZE(val, N) \ |
| (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \ |
| - (1ULL << ((N) - 1))) == (val)) |
| |
| |
| bool |
| _bfd_mips_elf_relax_section (bfd *abfd, asection *sec, |
| struct bfd_link_info *link_info, |
| bool *again) |
| { |
| bool insn32 = mips_elf_hash_table (link_info)->insn32; |
| Elf_Internal_Shdr *symtab_hdr; |
| Elf_Internal_Rela *internal_relocs; |
| Elf_Internal_Rela *irel, *irelend; |
| bfd_byte *contents = NULL; |
| Elf_Internal_Sym *isymbuf = NULL; |
| |
| /* Assume nothing changes. */ |
| *again = false; |
| |
| /* We don't have to do anything for a relocatable link, if |
| this section does not have relocs, or if this is not a |
| code section. */ |
| |
| if (bfd_link_relocatable (link_info) |
| || sec->reloc_count == 0 |
| || (sec->flags & SEC_RELOC) == 0 |
| || (sec->flags & SEC_HAS_CONTENTS) == 0 |
| || (sec->flags & SEC_CODE) == 0) |
| return true; |
| |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| |
| /* Get a copy of the native relocations. */ |
| internal_relocs = (_bfd_elf_link_read_relocs |
| (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, |
| link_info->keep_memory)); |
| if (internal_relocs == NULL) |
| goto error_return; |
| |
| /* Walk through them looking for relaxing opportunities. */ |
| irelend = internal_relocs + sec->reloc_count; |
| for (irel = internal_relocs; irel < irelend; irel++) |
| { |
| unsigned long r_symndx = ELF32_R_SYM (irel->r_info); |
| unsigned int r_type = ELF32_R_TYPE (irel->r_info); |
| bool target_is_micromips_code_p; |
| unsigned long opcode; |
| bfd_vma symval; |
| bfd_vma pcrval; |
| bfd_byte *ptr; |
| int fndopc; |
| |
| /* The number of bytes to delete for relaxation and from where |
| to delete these bytes starting at irel->r_offset. */ |
| int delcnt = 0; |
| int deloff = 0; |
| |
| /* If this isn't something that can be relaxed, then ignore |
| this reloc. */ |
| if (r_type != R_MICROMIPS_HI16 |
| && r_type != R_MICROMIPS_PC16_S1 |
| && r_type != R_MICROMIPS_26_S1) |
| continue; |
| |
| /* Get the section contents if we haven't done so already. */ |
| if (contents == NULL) |
| { |
| /* Get cached copy if it exists. */ |
| if (elf_section_data (sec)->this_hdr.contents != NULL) |
| contents = elf_section_data (sec)->this_hdr.contents; |
| /* Go get them off disk. */ |
| else if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
| goto error_return; |
| } |
| ptr = contents + irel->r_offset; |
| |
| /* Read this BFD's local symbols if we haven't done so already. */ |
| if (isymbuf == NULL && symtab_hdr->sh_info != 0) |
| { |
| isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| if (isymbuf == NULL) |
| isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, |
| symtab_hdr->sh_info, 0, |
| NULL, NULL, NULL); |
| if (isymbuf == NULL) |
| goto error_return; |
| } |
| |
| /* Get the value of the symbol referred to by the reloc. */ |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| /* A local symbol. */ |
| Elf_Internal_Sym *isym; |
| asection *sym_sec; |
| |
| isym = isymbuf + r_symndx; |
| if (isym->st_shndx == SHN_UNDEF) |
| sym_sec = bfd_und_section_ptr; |
| else if (isym->st_shndx == SHN_ABS) |
| sym_sec = bfd_abs_section_ptr; |
| else if (isym->st_shndx == SHN_COMMON) |
| sym_sec = bfd_com_section_ptr; |
| else |
| sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| symval = (isym->st_value |
| + sym_sec->output_section->vma |
| + sym_sec->output_offset); |
| target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other); |
| } |
| else |
| { |
| unsigned long indx; |
| struct elf_link_hash_entry *h; |
| |
| /* An external symbol. */ |
| indx = r_symndx - symtab_hdr->sh_info; |
| h = elf_sym_hashes (abfd)[indx]; |
| BFD_ASSERT (h != NULL); |
| |
| if (h->root.type != bfd_link_hash_defined |
| && h->root.type != bfd_link_hash_defweak) |
| /* This appears to be a reference to an undefined |
| symbol. Just ignore it -- it will be caught by the |
| regular reloc processing. */ |
| continue; |
| |
| symval = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| target_is_micromips_code_p = (!h->needs_plt |
| && ELF_ST_IS_MICROMIPS (h->other)); |
| } |
| |
| |
| /* For simplicity of coding, we are going to modify the |
| section contents, the section relocs, and the BFD symbol |
| table. We must tell the rest of the code not to free up this |
| information. It would be possible to instead create a table |
| of changes which have to be made, as is done in coff-mips.c; |
| that would be more work, but would require less memory when |
| the linker is run. */ |
| |
| /* Only 32-bit instructions relaxed. */ |
| if (irel->r_offset + 4 > sec->size) |
| continue; |
| |
| opcode = bfd_get_micromips_32 (abfd, ptr); |
| |
| /* This is the pc-relative distance from the instruction the |
| relocation is applied to, to the symbol referred. */ |
| pcrval = (symval |
| - (sec->output_section->vma + sec->output_offset) |
| - irel->r_offset); |
| |
| /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation |
| of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or |
| R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is |
| |
| (symval % 4 == 0 && IS_BITSIZE (pcrval, 25)) |
| |
| where pcrval has first to be adjusted to apply against the LO16 |
| location (we make the adjustment later on, when we have figured |
| out the offset). */ |
| if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn)) |
| { |
| bool bzc = false; |
| unsigned long nextopc; |
| unsigned long reg; |
| bfd_vma offset; |
| |
| /* Give up if the previous reloc was a HI16 against this symbol |
| too. */ |
| if (irel > internal_relocs |
| && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16 |
| && ELF32_R_SYM (irel[-1].r_info) == r_symndx) |
| continue; |
| |
| /* Or if the next reloc is not a LO16 against this symbol. */ |
| if (irel + 1 >= irelend |
| || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16 |
| || ELF32_R_SYM (irel[1].r_info) != r_symndx) |
| continue; |
| |
| /* Or if the second next reloc is a LO16 against this symbol too. */ |
| if (irel + 2 >= irelend |
| && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16 |
| && ELF32_R_SYM (irel[2].r_info) == r_symndx) |
| continue; |
| |
| /* See if the LUI instruction *might* be in a branch delay slot. |
| We check whether what looks like a 16-bit branch or jump is |
| actually an immediate argument to a compact branch, and let |
| it through if so. */ |
| if (irel->r_offset >= 2 |
| && check_br16_dslot (abfd, ptr - 2) |
| && !(irel->r_offset >= 4 |
| && (bzc = check_relocated_bzc (abfd, |
| ptr - 4, irel->r_offset - 4, |
| internal_relocs, irelend)))) |
| continue; |
| if (irel->r_offset >= 4 |
| && !bzc |
| && check_br32_dslot (abfd, ptr - 4)) |
| continue; |
| |
| reg = OP32_SREG (opcode); |
| |
| /* We only relax adjacent instructions or ones separated with |
| a branch or jump that has a delay slot. The branch or jump |
| must not fiddle with the register used to hold the address. |
| Subtract 4 for the LUI itself. */ |
| offset = irel[1].r_offset - irel[0].r_offset; |
| switch (offset - 4) |
| { |
| case 0: |
| break; |
| case 2: |
| if (check_br16 (abfd, ptr + 4, reg)) |
| break; |
| continue; |
| case 4: |
| if (check_br32 (abfd, ptr + 4, reg)) |
| break; |
| continue; |
| default: |
| continue; |
| } |
| |
| nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset); |
| |
| /* Give up unless the same register is used with both |
| relocations. */ |
| if (OP32_SREG (nextopc) != reg) |
| continue; |
| |
| /* Now adjust pcrval, subtracting the offset to the LO16 reloc |
| and rounding up to take masking of the two LSBs into account. */ |
| pcrval = ((pcrval - offset + 3) | 3) ^ 3; |
| |
| /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */ |
| if (IS_BITSIZE (symval, 16)) |
| { |
| /* Fix the relocation's type. */ |
| irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16); |
| |
| /* Instructions using R_MICROMIPS_LO16 have the base or |
| source register in bits 20:16. This register becomes $0 |
| (zero) as the result of the R_MICROMIPS_HI16 being 0. */ |
| nextopc &= ~0x001f0000; |
| bfd_put_16 (abfd, (nextopc >> 16) & 0xffff, |
| contents + irel[1].r_offset); |
| } |
| |
| /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2. |
| We add 4 to take LUI deletion into account while checking |
| the PC-relative distance. */ |
| else if (symval % 4 == 0 |
| && IS_BITSIZE (pcrval + 4, 25) |
| && MATCH (nextopc, addiu_insn) |
| && OP32_TREG (nextopc) == OP32_SREG (nextopc) |
| && OP16_VALID_REG (OP32_TREG (nextopc))) |
| { |
| /* Fix the relocation's type. */ |
| irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2); |
| |
| /* Replace ADDIU with the ADDIUPC version. */ |
| nextopc = (addiupc_insn.match |
| | ADDIUPC_REG_FIELD (OP32_TREG (nextopc))); |
| |
| bfd_put_micromips_32 (abfd, nextopc, |
| contents + irel[1].r_offset); |
| } |
| |
| /* Can't do anything, give up, sigh... */ |
| else |
| continue; |
| |
| /* Fix the relocation's type. */ |
| irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE); |
| |
| /* Delete the LUI instruction: 4 bytes at irel->r_offset. */ |
| delcnt = 4; |
| deloff = 0; |
| } |
| |
| /* Compact branch relaxation -- due to the multitude of macros |
| employed by the compiler/assembler, compact branches are not |
| always generated. Obviously, this can/will be fixed elsewhere, |
| but there is no drawback in double checking it here. */ |
| else if (r_type == R_MICROMIPS_PC16_S1 |
| && irel->r_offset + 5 < sec->size |
| && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 |
| || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0) |
| && ((!insn32 |
| && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4), |
| nop_insn_16) ? 2 : 0)) |
| || (irel->r_offset + 7 < sec->size |
| && (delcnt = MATCH (bfd_get_micromips_32 (abfd, |
| ptr + 4), |
| nop_insn_32) ? 4 : 0)))) |
| { |
| unsigned long reg; |
| |
| reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); |
| |
| /* Replace BEQZ/BNEZ with the compact version. */ |
| opcode = (bzc_insns_32[fndopc].match |
| | BZC32_REG_FIELD (reg) |
| | (opcode & 0xffff)); /* Addend value. */ |
| |
| bfd_put_micromips_32 (abfd, opcode, ptr); |
| |
| /* Delete the delay slot NOP: two or four bytes from |
| irel->offset + 4; delcnt has already been set above. */ |
| deloff = 4; |
| } |
| |
| /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need |
| to check the distance from the next instruction, so subtract 2. */ |
| else if (!insn32 |
| && r_type == R_MICROMIPS_PC16_S1 |
| && IS_BITSIZE (pcrval - 2, 11) |
| && find_match (opcode, b_insns_32) >= 0) |
| { |
| /* Fix the relocation's type. */ |
| irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1); |
| |
| /* Replace the 32-bit opcode with a 16-bit opcode. */ |
| bfd_put_16 (abfd, |
| (b_insn_16.match |
| | (opcode & 0x3ff)), /* Addend value. */ |
| ptr); |
| |
| /* Delete 2 bytes from irel->r_offset + 2. */ |
| delcnt = 2; |
| deloff = 2; |
| } |
| |
| /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need |
| to check the distance from the next instruction, so subtract 2. */ |
| else if (!insn32 |
| && r_type == R_MICROMIPS_PC16_S1 |
| && IS_BITSIZE (pcrval - 2, 8) |
| && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 |
| && OP16_VALID_REG (OP32_SREG (opcode))) |
| || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0 |
| && OP16_VALID_REG (OP32_TREG (opcode))))) |
| { |
| unsigned long reg; |
| |
| reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); |
| |
| /* Fix the relocation's type. */ |
| irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1); |
| |
| /* Replace the 32-bit opcode with a 16-bit opcode. */ |
| bfd_put_16 (abfd, |
| (bz_insns_16[fndopc].match |
| | BZ16_REG_FIELD (reg) |
| | (opcode & 0x7f)), /* Addend value. */ |
| ptr); |
| |
| /* Delete 2 bytes from irel->r_offset + 2. */ |
| delcnt = 2; |
| deloff = 2; |
| } |
| |
| /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */ |
| else if (!insn32 |
| && r_type == R_MICROMIPS_26_S1 |
| && target_is_micromips_code_p |
| && irel->r_offset + 7 < sec->size |
| && MATCH (opcode, jal_insn_32_bd32)) |
| { |
| unsigned long n32opc; |
| bool relaxed = false; |
| |
| n32opc = bfd_get_micromips_32 (abfd, ptr + 4); |
| |
| if (MATCH (n32opc, nop_insn_32)) |
| { |
| /* Replace delay slot 32-bit NOP with a 16-bit NOP. */ |
| bfd_put_16 (abfd, nop_insn_16.match, ptr + 4); |
| |
| relaxed = true; |
| } |
| else if (find_match (n32opc, move_insns_32) >= 0) |
| { |
| /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */ |
| bfd_put_16 (abfd, |
| (move_insn_16.match |
| | MOVE16_RD_FIELD (MOVE32_RD (n32opc)) |
| | MOVE16_RS_FIELD (MOVE32_RS (n32opc))), |
| ptr + 4); |
| |
| relaxed = true; |
| } |
| /* Other 32-bit instructions relaxable to 16-bit |
| instructions will be handled here later. */ |
| |
| if (relaxed) |
| { |
| /* JAL with 32-bit delay slot that is changed to a JALS |
| with 16-bit delay slot. */ |
| bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr); |
| |
| /* Delete 2 bytes from irel->r_offset + 6. */ |
| delcnt = 2; |
| deloff = 6; |
| } |
| } |
| |
| if (delcnt != 0) |
| { |
| /* Note that we've changed the relocs, section contents, etc. */ |
| elf_section_data (sec)->relocs = internal_relocs; |
| elf_section_data (sec)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| /* Delete bytes depending on the delcnt and deloff. */ |
| if (!mips_elf_relax_delete_bytes (abfd, sec, |
| irel->r_offset + deloff, delcnt)) |
| goto error_return; |
| |
| /* That will change things, so we should relax again. |
| Note that this is not required, and it may be slow. */ |
| *again = true; |
| } |
| } |
| |
| if (isymbuf != NULL |
| && symtab_hdr->contents != (unsigned char *) isymbuf) |
| { |
| if (! link_info->keep_memory) |
| free (isymbuf); |
| else |
| { |
| /* Cache the symbols for elf_link_input_bfd. */ |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| } |
| } |
| |
| if (contents != NULL |
| && elf_section_data (sec)->this_hdr.contents != contents) |
| { |
| if (! link_info->keep_memory) |
| free (contents); |
| else |
| { |
| /* Cache the section contents for elf_link_input_bfd. */ |
| elf_section_data (sec)->this_hdr.contents = contents; |
| } |
| } |
| |
| if (elf_section_data (sec)->relocs != internal_relocs) |
| free (internal_relocs); |
| |
| return true; |
| |
| error_return: |
| if (symtab_hdr->contents != (unsigned char *) isymbuf) |
| free (isymbuf); |
| if (elf_section_data (sec)->this_hdr.contents != contents) |
| free (contents); |
| if (elf_section_data (sec)->relocs != internal_relocs) |
| free (internal_relocs); |
| |
| return false; |
| } |
| |
| /* Create a MIPS ELF linker hash table. */ |
| |
| struct bfd_link_hash_table * |
| _bfd_mips_elf_link_hash_table_create (bfd *abfd) |
| { |
| struct mips_elf_link_hash_table *ret; |
| size_t amt = sizeof (struct mips_elf_link_hash_table); |
| |
| ret = bfd_zmalloc (amt); |
| if (ret == NULL) |
| return NULL; |
| |
| if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
| mips_elf_link_hash_newfunc, |
| sizeof (struct mips_elf_link_hash_entry), |
| MIPS_ELF_DATA)) |
| { |
| free (ret); |
| return NULL; |
| } |
| ret->root.init_plt_refcount.plist = NULL; |
| ret->root.init_plt_offset.plist = NULL; |
| |
| return &ret->root.root; |
| } |
| |
| /* Likewise, but indicate that the target is VxWorks. */ |
| |
| struct bfd_link_hash_table * |
| _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) |
| { |
| struct bfd_link_hash_table *ret; |
| |
| ret = _bfd_mips_elf_link_hash_table_create (abfd); |
| if (ret) |
| { |
| struct mips_elf_link_hash_table *htab; |
| |
| htab = (struct mips_elf_link_hash_table *) ret; |
| htab->use_plts_and_copy_relocs = true; |
| } |
| return ret; |
| } |
| |
| /* A function that the linker calls if we are allowed to use PLTs |
| and copy relocs. */ |
| |
| void |
| _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info) |
| { |
| mips_elf_hash_table (info)->use_plts_and_copy_relocs = true; |
| } |
| |
| /* A function that the linker calls to select between all or only |
| 32-bit microMIPS instructions, and between making or ignoring |
| branch relocation checks for invalid transitions between ISA modes. |
| Also record whether we have been configured for a GNU target. */ |
| |
| void |
| _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bool insn32, |
| bool ignore_branch_isa, |
| bool gnu_target) |
| { |
| mips_elf_hash_table (info)->insn32 = insn32; |
| mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa; |
| mips_elf_hash_table (info)->gnu_target = gnu_target; |
| } |
| |
| /* A function that the linker calls to enable use of compact branches in |
| linker generated code for MIPSR6. */ |
| |
| void |
| _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bool on) |
| { |
| mips_elf_hash_table (info)->compact_branches = on; |
| } |
| |
| |
| /* Structure for saying that BFD machine EXTENSION extends BASE. */ |
| |
| struct mips_mach_extension |
| { |
| unsigned long extension, base; |
| }; |
| |
| /* An array that maps 64-bit architectures to the corresponding 32-bit |
| architectures. */ |
| static const struct mips_mach_extension mips_mach_32_64[] = |
| { |
| { bfd_mach_mipsisa64r6, bfd_mach_mipsisa32r6 }, |
| { bfd_mach_mipsisa64r5, bfd_mach_mipsisa32r5 }, |
| { bfd_mach_mipsisa64r3, bfd_mach_mipsisa32r3 }, |
| { bfd_mach_mipsisa64r2, bfd_mach_mipsisa32r2 }, |
| { bfd_mach_mipsisa64, bfd_mach_mipsisa32 } |
| }; |
| |
| /* An array describing how BFD machines relate to one another. The entries |
| are ordered topologically with MIPS I extensions listed last. */ |
| |
| static const struct mips_mach_extension mips_mach_extensions[] = |
| { |
| /* MIPS64r2 extensions. */ |
| { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 }, |
| { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp }, |
| { bfd_mach_mips_octeonp, bfd_mach_mips_octeon }, |
| { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 }, |
| { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e }, |
| { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 }, |
| { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 }, |
| |
| /* MIPS64 extensions. */ |
| { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, |
| { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, |
| { bfd_mach_mips_xlr, bfd_mach_mipsisa64 }, |
| |
| /* MIPS V extensions. */ |
| { bfd_mach_mipsisa64, bfd_mach_mips5 }, |
| |
| /* R10000 extensions. */ |
| { bfd_mach_mips12000, bfd_mach_mips10000 }, |
| { bfd_mach_mips14000, bfd_mach_mips10000 }, |
| { bfd_mach_mips16000, bfd_mach_mips10000 }, |
| |
| /* R5000 extensions. Note: the vr5500 ISA is an extension of the core |
| vr5400 ISA, but doesn't include the multimedia stuff. It seems |
| better to allow vr5400 and vr5500 code to be merged anyway, since |
| many libraries will just use the core ISA. Perhaps we could add |
| some sort of ASE flag if this ever proves a problem. */ |
| { bfd_mach_mips5500, bfd_mach_mips5400 }, |
| { bfd_mach_mips5400, bfd_mach_mips5000 }, |
| |
| /* MIPS IV extensions. */ |
| { bfd_mach_mips5, bfd_mach_mips8000 }, |
| { bfd_mach_mips10000, bfd_mach_mips8000 }, |
| { bfd_mach_mips5000, bfd_mach_mips8000 }, |
| { bfd_mach_mips7000, bfd_mach_mips8000 }, |
| { bfd_mach_mips9000, bfd_mach_mips8000 }, |
| |
| /* VR4100 extensions. */ |
| { bfd_mach_mips4120, bfd_mach_mips4100 }, |
| { bfd_mach_mips4111, bfd_mach_mips4100 }, |
| |
| /* MIPS III extensions. */ |
| { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 }, |
| { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 }, |
| { bfd_mach_mips8000, bfd_mach_mips4000 }, |
| { bfd_mach_mips4650, bfd_mach_mips4000 }, |
| { bfd_mach_mips4600, bfd_mach_mips4000 }, |
| { bfd_mach_mips4400, bfd_mach_mips4000 }, |
| { bfd_mach_mips4300, bfd_mach_mips4000 }, |
| { bfd_mach_mips4100, bfd_mach_mips4000 }, |
| { bfd_mach_mips5900, bfd_mach_mips4000 }, |
| |
| /* MIPS32r3 extensions. */ |
| { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 }, |
| |
| /* MIPS32r2 extensions. */ |
| { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 }, |
| |
| /* MIPS32 extensions. */ |
| { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, |
| |
| /* MIPS II extensions. */ |
| { bfd_mach_mips4000, bfd_mach_mips6000 }, |
| { bfd_mach_mipsisa32, bfd_mach_mips6000 }, |
| { bfd_mach_mips4010, bfd_mach_mips6000 }, |
| { bfd_mach_mips_allegrex, bfd_mach_mips6000 }, |
| |
| /* MIPS I extensions. */ |
| { bfd_mach_mips6000, bfd_mach_mips3000 }, |
| { bfd_mach_mips3900, bfd_mach_mips3000 } |
| }; |
| |
| /* Return true if bfd machine EXTENSION is the same as BASE, or if |
| EXTENSION is the 64-bit equivalent of a 32-bit BASE. */ |
| |
| static bool |
| mips_mach_extends_32_64 (unsigned long base, unsigned long extension) |
| { |
| size_t i; |
| |
| if (extension == base) |
| return true; |
| |
| for (i = 0; i < ARRAY_SIZE (mips_mach_32_64); i++) |
| if (extension == mips_mach_32_64[i].extension) |
| return base == mips_mach_32_64[i].base; |
| |
| return false; |
| } |
| |
| static bool |
| mips_mach_extends_p (unsigned long base, unsigned long extension) |
| { |
| size_t i; |
| |
| if (mips_mach_extends_32_64 (base, extension)) |
| return true; |
| |
| for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) |
| if (extension == mips_mach_extensions[i].extension) |
| { |
| extension = mips_mach_extensions[i].base; |
| if (mips_mach_extends_32_64 (base, extension)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */ |
| |
| static unsigned long |
| bfd_mips_isa_ext_mach (unsigned int isa_ext) |
| { |
| switch (isa_ext) |
| { |
| case AFL_EXT_3900: return bfd_mach_mips3900; |
| case AFL_EXT_4010: return bfd_mach_mips4010; |
| case AFL_EXT_4100: return bfd_mach_mips4100; |
| case AFL_EXT_4111: return bfd_mach_mips4111; |
| case AFL_EXT_4120: return bfd_mach_mips4120; |
| case AFL_EXT_4650: return bfd_mach_mips4650; |
| case AFL_EXT_5400: return bfd_mach_mips5400; |
| case AFL_EXT_5500: return bfd_mach_mips5500; |
| case AFL_EXT_5900: return bfd_mach_mips5900; |
| case AFL_EXT_10000: return bfd_mach_mips10000; |
| case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e; |
| case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f; |
| case AFL_EXT_SB1: return bfd_mach_mips_sb1; |
| case AFL_EXT_OCTEON: return bfd_mach_mips_octeon; |
| case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp; |
| case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2; |
| case AFL_EXT_XLR: return bfd_mach_mips_xlr; |
| default: return bfd_mach_mips3000; |
| } |
| } |
| |
| /* Return the .MIPS.abiflags value representing each ISA Extension. */ |
| |
| unsigned int |
| bfd_mips_isa_ext (bfd *abfd) |
| { |
| switch (bfd_get_mach (abfd)) |
| { |
| case bfd_mach_mips3900: return AFL_EXT_3900; |
| case bfd_mach_mips4010: return AFL_EXT_4010; |
| case bfd_mach_mips4100: return AFL_EXT_4100; |
| case bfd_mach_mips4111: return AFL_EXT_4111; |
| case bfd_mach_mips4120: return AFL_EXT_4120; |
| case bfd_mach_mips4650: return AFL_EXT_4650; |
| case bfd_mach_mips5400: return AFL_EXT_5400; |
| case bfd_mach_mips5500: return AFL_EXT_5500; |
| case bfd_mach_mips5900: return AFL_EXT_5900; |
| case bfd_mach_mips10000: return AFL_EXT_10000; |
| case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E; |
| case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F; |
| case bfd_mach_mips_sb1: return AFL_EXT_SB1; |
| case bfd_mach_mips_octeon: return AFL_EXT_OCTEON; |
| case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP; |
| case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3; |
| case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2; |
| case bfd_mach_mips_xlr: return AFL_EXT_XLR; |
| case bfd_mach_mips_interaptiv_mr2: |
| return AFL_EXT_INTERAPTIV_MR2; |
| default: return 0; |
| } |
| } |
| |
| /* Encode ISA level and revision as a single value. */ |
| #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV)) |
| |
| /* Decode a single value into level and revision. */ |
| #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3) |
| #define ISA_REV(LEVREV) ((LEVREV) & 0x7) |
| |
| /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */ |
| |
| static void |
| update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags) |
| { |
| int new_isa = 0; |
| switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) |
| { |
| case EF_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break; |
| case EF_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break; |
| case EF_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break; |
| case EF_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break; |
| case EF_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break; |
| case EF_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break; |
| case EF_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break; |
| case EF_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break; |
| case EF_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break; |
| case EF_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break; |
| case EF_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break; |
| default: |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: unknown architecture %s"), |
| abfd, bfd_printable_name (abfd)); |
| } |
| |
| if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev)) |
| { |
| abiflags->isa_level = ISA_LEVEL (new_isa); |
| abiflags->isa_rev = ISA_REV (new_isa); |
| } |
| |
| /* Update the isa_ext if ABFD describes a further extension. */ |
| if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext), |
| bfd_get_mach (abfd))) |
| abiflags->isa_ext = bfd_mips_isa_ext (abfd); |
| } |
| |
| /* Return true if the given ELF header flags describe a 32-bit binary. */ |
| |
| static bool |
| mips_32bit_flags_p (flagword flags) |
| { |
| return ((flags & EF_MIPS_32BITMODE) != 0 |
| || (flags & EF_MIPS_ABI) == EF_MIPS_ABI_O32 |
| || (flags & EF_MIPS_ABI) == EF_MIPS_ABI_EABI32 |
| || (flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_1 |
| || (flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_2 |
| || (flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_32 |
| || (flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_32R2 |
| || (flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_32R6); |
| } |
| |
| /* Infer the content of the ABI flags based on the elf header. */ |
| |
| static void |
| infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags) |
| { |
| obj_attribute *in_attr; |
| |
| memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0)); |
| update_mips_abiflags_isa (abfd, abiflags); |
| |
| if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags)) |
| abiflags->gpr_size = AFL_REG_32; |
| else |
| abiflags->gpr_size = AFL_REG_64; |
| |
| abiflags->cpr1_size = AFL_REG_NONE; |
| |
| in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU]; |
| abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i; |
| |
| if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE |
| || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX |
| || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE |
| && abiflags->gpr_size == AFL_REG_32)) |
| abiflags->cpr1_size = AFL_REG_32; |
| else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE |
| || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64 |
| || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A) |
| abiflags->cpr1_size = AFL_REG_64; |
| |
| abiflags->cpr2_size = AFL_REG_NONE; |
| |
| if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) |
| abiflags->ases |= AFL_ASE_MDMX; |
| if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) |
| abiflags->ases |= AFL_ASE_MIPS16; |
| if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) |
| abiflags->ases |= AFL_ASE_MICROMIPS; |
| |
| if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY |
| && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT |
| && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A |
| && abiflags->isa_level >= 32 |
| && abiflags->ases != AFL_ASE_LOONGSON_EXT) |
| abiflags->flags1 |= AFL_FLAGS1_ODDSPREG; |
| } |
| |
| /* We need to use a special link routine to handle the .reginfo and |
| the .mdebug sections. We need to merge all instances of these |
| sections together, not write them all out sequentially. */ |
| |
| bool |
| _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) |
| { |
| asection *o; |
| struct bfd_link_order *p; |
| asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; |
| asection *rtproc_sec, *abiflags_sec; |
| Elf32_RegInfo reginfo; |
| struct ecoff_debug_info debug; |
| struct mips_htab_traverse_info hti; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; |
| HDRR *symhdr = &debug.symbolic_header; |
| void *mdebug_handle = NULL; |
| asection *s; |
| EXTR esym; |
| unsigned int i; |
| bfd_size_type amt; |
| struct mips_elf_link_hash_table *htab; |
| |
| static const char * const secname[] = |
| { |
| ".text", ".init", ".fini", ".data", |
| ".rodata", ".sdata", ".sbss", ".bss" |
| }; |
| static const int sc[] = |
| { |
| scText, scInit, scFini, scData, |
| scRData, scSData, scSBss, scBss |
| }; |
| |
| htab = mips_elf_hash_table (info); |
| BFD_ASSERT (htab != NULL); |
| |
| /* Sort the dynamic symbols so that those with GOT entries come after |
| those without. */ |
| if (!mips_elf_sort_hash_table (abfd, info)) |
| return false; |
| |
| /* Create any scheduled LA25 stubs. */ |
| hti.info = info; |
| hti.output_bfd = abfd; |
| hti.error = false; |
| htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti); |
| if (hti.error) |
| return false; |
| |
| /* Get a value for the GP register. */ |
| if (elf_gp (abfd) == 0) |
| { |
| struct bfd_link_hash_entry *h; |
| |
| h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true); |
| if (h != NULL && h->type == bfd_link_hash_defined) |
| elf_gp (abfd) = (h->u.def.value |
| + h->u.def.section->output_section->vma |
| + h->u.def.section->output_offset); |
| else if (htab->root.target_os == is_vxworks |
| && (h = bfd_link_hash_lookup (info->hash, |
| "_GLOBAL_OFFSET_TABLE_", |
| false, false, true)) |
| && h->type == bfd_link_hash_defined) |
| elf_gp (abfd) = (h->u.def.section->output_section->vma |
| + h->u.def.section->output_offset |
| + h->u.def.value); |
| else if (bfd_link_relocatable (info)) |
| { |
| bfd_vma lo = MINUS_ONE; |
| |
| /* Find the GP-relative section with the lowest offset. */ |
| for (o = abfd->sections; o != NULL; o = o->next) |
| if (o->vma < lo |
| && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) |
| lo = o->vma; |
| |
| /* And calculate GP relative to that. */ |
| elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); |
| } |
| else |
| { |
| /* If the relocate_section function needs to do a reloc |
| involving the GP value, it should make a reloc_dangerous |
| callback to warn that GP is not defined. */ |
| } |
| } |
| |
| /* Go through the sections and collect the .reginfo and .mdebug |
| information. */ |
| abiflags_sec = NULL; |
| reginfo_sec = NULL; |
| mdebug_sec = NULL; |
| gptab_data_sec = NULL; |
| gptab_bss_sec = NULL; |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| if (strcmp (o->name, ".MIPS.abiflags") == 0) |
| { |
| /* We have found the .MIPS.abiflags section in the output file. |
| Look through all the link_orders comprising it and remove them. |
| The data is merged in _bfd_mips_elf_merge_private_bfd_data. */ |
| for (p = o->map_head.link_order; p != NULL; p = p->next) |
| { |
| asection *input_section; |
| |
| if (p->type != bfd_indirect_link_order) |
| { |
| if (p->type == bfd_data_link_order) |
| continue; |
| abort (); |
| } |
| |
| input_section = p->u.indirect.section; |
| |
| /* Hack: reset the SEC_HAS_CONTENTS flag so that |
| elf_link_input_bfd ignores this section. */ |
| input_section->flags &= ~SEC_HAS_CONTENTS; |
| } |
| |
| /* Size has been set in _bfd_mips_elf_late_size_sections. */ |
| BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0)); |
| |
| /* Skip this section later on (I don't think this currently |
| matters, but someday it might). */ |
| o->map_head.link_order = NULL; |
| |
| abiflags_sec = o; |
| } |
| |
| if (strcmp (o->name, ".reginfo") == 0) |
| { |
| memset (®info, 0, sizeof reginfo); |
| |
| /* We have found the .reginfo section in the output file. |
| Look through all the link_orders comprising it and merge |
| the information together. */ |
| for (p = o->map_head.link_order; p != NULL; p = p->next) |
| { |
| asection *input_section; |
| bfd *input_bfd; |
| Elf32_External_RegInfo ext; |
| Elf32_RegInfo sub; |
| bfd_size_type sz; |
| |
| if (p->type != bfd_indirect_link_order) |
| { |
| if (p->type == bfd_data_link_order) |
| continue; |
| abort (); |
| } |
| |
| input_section = p->u.indirect.section; |
| input_bfd = input_section->owner; |
| |
| sz = (input_section->size < sizeof (ext) |
| ? input_section->size : sizeof (ext)); |
| memset (&ext, 0, sizeof (ext)); |
| if (! bfd_get_section_contents (input_bfd, input_section, |
| &ext, 0, sz)) |
| return false; |
| |
| bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); |
| |
| reginfo.ri_gprmask |= sub.ri_gprmask; |
| reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; |
| reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; |
| reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; |
| reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; |
| |
| /* ri_gp_value is set by the function |
| `_bfd_mips_elf_section_processing' when the section is |
| finally written out. */ |
| |
| /* Hack: reset the SEC_HAS_CONTENTS flag so that |
| elf_link_input_bfd ignores this section. */ |
| input_section->flags &= ~SEC_HAS_CONTENTS; |
| } |
| |
| /* Size has been set in _bfd_mips_elf_late_size_sections. */ |
| BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); |
| |
| /* Skip this section later on (I don't think this currently |
| matters, but someday it might). */ |
| o->map_head.link_order = NULL; |
| |
| reginfo_sec = o; |
| } |
| |
| if (strcmp (o->name, ".mdebug") == 0) |
| { |
| struct extsym_info einfo; |
| bfd_vma last; |
| |
| /* We have found the .mdebug section in the output file. |
| Look through all the link_orders comprising it and merge |
| the information together. */ |
| symhdr->magic = swap->sym_magic; |
| /* FIXME: What should the version stamp be? */ |
| symhdr->vstamp = 0; |
| symhdr->ilineMax = 0; |
| symhdr->cbLine = 0; |
| symhdr->idnMax = 0; |
| symhdr->ipdMax = 0; |
| symhdr->isymMax = 0; |
| symhdr->ioptMax = 0; |
| symhdr->iauxMax = 0; |
| symhdr->issMax = 0; |
| symhdr->issExtMax = 0; |
| symhdr->ifdMax = 0; |
| symhdr->crfd = 0; |
| symhdr->iextMax = 0; |
| |
| /* We accumulate the debugging information itself in the |
| debug_info structure. */ |
| debug.alloc_syments = false; |
| debug.line = NULL; |
| debug.external_dnr = NULL; |
| debug.external_pdr = NULL; |
| debug.external_sym = NULL; |
| debug.external_opt = NULL; |
| debug.external_aux = NULL; |
| debug.ss = NULL; |
| debug.ssext = debug.ssext_end = NULL; |
| debug.external_fdr = NULL; |
| debug.external_rfd = NULL; |
| debug.external_ext = debug.external_ext_end = NULL; |
| |
| mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); |
| if (mdebug_handle == NULL) |
| return false; |
| |
| esym.jmptbl = 0; |
| esym.cobol_main = 0; |
| esym.weakext = 0; |
| esym.reserved = 0; |
| esym.ifd = ifdNil; |
| esym.asym.iss = issNil; |
| esym.asym.st = stLocal; |
| esym.asym.reserved = 0; |
| esym.asym.index = indexNil; |
| last = 0; |
| for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) |
| { |
| esym.asym.sc = sc[i]; |
| s = bfd_get_section_by_name (abfd, secname[i]); |
| if (s != NULL) |
| { |
| esym.asym.value = s->vma; |
| last = s->vma + s->size; |
| } |
| else |
| esym.asym.value = last; |
| if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, |
| secname[i], &esym)) |
| return false; |
| } |
| |
| for (p = o->map_head.link_order; p != NULL; p = p->next) |
| { |
| asection *input_section; |
| bfd *input_bfd; |
| const struct ecoff_debug_swap *input_swap; |
| struct ecoff_debug_info input_debug; |
| char *eraw_src; |
| char *eraw_end; |
| |
| if (p->type != bfd_indirect_link_order) |
| { |
| if (p->type == bfd_data_link_order) |
| continue; |
| abort (); |
| } |
| |
| input_section = p->u.indirect.section; |
| input_bfd = input_section->owner; |
| |
| if (!is_mips_elf (input_bfd)) |
| { |
| /* I don't know what a non MIPS ELF bfd would be |
| doing with a .mdebug section, but I don't really |
| want to deal with it. */ |
| continue; |
| } |
| |
| input_swap = (get_elf_backend_data (input_bfd) |
| ->elf_backend_ecoff_debug_swap); |
| |
| BFD_ASSERT (p->size == input_section->size); |
| |
| /* The ECOFF linking code expects that we have already |
| read in the debugging information and set up an |
| ecoff_debug_info structure, so we do that now. */ |
| if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, |
| &input_debug)) |
| return false; |
| |
| if (! (bfd_ecoff_debug_accumulate |
| (mdebug_handle, abfd, &debug, swap, input_bfd, |
| &input_debug, input_swap, info))) |
| { |
| _bfd_ecoff_free_ecoff_debug_info (&input_debug); |
| return false; |
| } |
| |
| /* Loop through the external symbols. For each one with |
| interesting information, try to find the symbol in |
| the linker global hash table and save the information |
| for the output external symbols. */ |
| eraw_src = input_debug.external_ext; |
| eraw_end = (eraw_src |
| + (input_debug.symbolic_header.iextMax |
| * input_swap->external_ext_size)); |
| for (; |
| eraw_src < eraw_end; |
| eraw_src += input_swap->external_ext_size) |
| { |
| EXTR ext; |
| const char *name; |
| struct mips_elf_link_hash_entry *h; |
| |
| (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); |
| if (ext.asym.sc == scNil |
| || ext.asym.sc == scUndefined |
| || ext.asym.sc == scSUndefined) |
| continue; |
| |
| name = input_debug.ssext + ext.asym.iss; |
| h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), |
| name, false, false, true); |
| if (h == NULL || h->esym.ifd != -2) |
| continue; |
| |
| if (ext.ifd != -1) |
| { |
| BFD_ASSERT (ext.ifd |
| < input_debug.symbolic_header.ifdMax); |
| ext.ifd = input_debug.ifdmap[ext.ifd]; |
| } |
| |
| h->esym = ext; |
| } |
| |
| /* Free up the information we just read. */ |
| _bfd_ecoff_free_ecoff_debug_info (&input_debug); |
| |
| /* Hack: reset the SEC_HAS_CONTENTS flag so that |
| elf_link_input_bfd ignores this section. */ |
| input_section->flags &= ~SEC_HAS_CONTENTS; |
| } |
| |
| if (SGI_COMPAT (abfd) && bfd_link_pic (info)) |
| { |
| /* Create .rtproc section. */ |
| rtproc_sec = bfd_get_linker_section (abfd, ".rtproc"); |
| if (rtproc_sec == NULL) |
| { |
| flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED | SEC_READONLY); |
| |
| rtproc_sec = bfd_make_section_anyway_with_flags (abfd, |
| ".rtproc", |
| flags); |
| if (rtproc_sec == NULL |
| || !bfd_set_section_alignment (rtproc_sec, 4)) |
| return false; |
| } |
| |
| if (! mips_elf_create_procedure_table (mdebug_handle, abfd, |
| info, rtproc_sec, |
| &debug)) |
| return false; |
| } |
| |
| /* Build the external symbol information. */ |
| einfo.abfd = abfd; |
| einfo.info = info; |
| einfo.debug = &debug; |
| einfo.swap = swap; |
| einfo.failed = false; |
| mips_elf_link_hash_traverse (mips_elf_hash_table (info), |
| mips_elf_output_extsym, &einfo); |
| if (einfo.failed) |
| return false; |
| |
| /* Set the size of the .mdebug section. */ |
| o->size = bfd_ecoff_debug_size (abfd, &debug, swap); |
| |
| /* Skip this section later on (I don't think this currently |
| matters, but someday it might). */ |
| o->map_head.link_order = NULL; |
| |
| mdebug_sec = o; |
| } |
| |
| if (startswith (o->name, ".gptab.")) |
| { |
| const char *subname; |
| unsigned int c; |
| Elf32_gptab *tab; |
| Elf32_External_gptab *ext_tab; |
| unsigned int j; |
| |
| /* The .gptab.sdata and .gptab.sbss sections hold |
| information describing how the small data area would |
| change depending upon the -G switch. These sections |
| not used in executables files. */ |
| if (! bfd_link_relocatable (info)) |
| { |
| for (p = o->map_head.link_order; p != NULL; p = p->next) |
| { |
| asection *input_section; |
| |
| if (p->type != bfd_indirect_link_order) |
| { |
| if (p->type == bfd_data_link_order) |
| continue; |
| abort (); |
| } |
| |
| input_section = p->u.indirect.section; |
| |
| /* Hack: reset the SEC_HAS_CONTENTS flag so that |
| elf_link_input_bfd ignores this section. */ |
| input_section->flags &= ~SEC_HAS_CONTENTS; |
| } |
| |
| /* Skip this section later on (I don't think this |
| currently matters, but someday it might). */ |
| o->map_head.link_order = NULL; |
| |
| /* Really remove the section. */ |
| bfd_section_list_remove (abfd, o); |
| --abfd->section_count; |
| |
| continue; |
| } |
| |
| /* There is one gptab for initialized data, and one for |
| uninitialized data. */ |
| if (strcmp (o->name, ".gptab.sdata") == 0) |
| gptab_data_sec = o; |
| else if (strcmp (o->name, ".gptab.sbss") == 0) |
| gptab_bss_sec = o; |
| else |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: illegal section name `%pA'"), abfd, o); |
| bfd_set_error (bfd_error_nonrepresentable_section); |
| return false; |
| } |
| |
| /* The linker script always combines .gptab.data and |
| .gptab.sdata into .gptab.sdata, and likewise for |
| .gptab.bss and .gptab.sbss. It is possible that there is |
| no .sdata or .sbss section in the output file, in which |
| case we must change the name of the output section. */ |
| subname = o->name + sizeof ".gptab" - 1; |
| if (bfd_get_section_by_name (abfd, subname) == NULL) |
| { |
| if (o == gptab_data_sec) |
| o->name = ".gptab.data"; |
| else |
| o->name = ".gptab.bss"; |
| subname = o->name + sizeof ".gptab" - 1; |
| BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); |
| } |
| |
| /* Set up the first entry. */ |
| c = 1; |
| amt = c * sizeof (Elf32_gptab); |
| tab = bfd_malloc (amt); |
| if (tab == NULL) |
| return false; |
| tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); |
| tab[0].gt_header.gt_unused = 0; |
| |
| /* Combine the input sections. */ |
| for (p = o->map_head.link_order; p != NULL; p = p->next) |
| { |
| asection *input_section; |
| bfd *input_bfd; |
| bfd_size_type size; |
| unsigned long last; |
| bfd_size_type gpentry; |
| |
| if (p->type != bfd_indirect_link_order) |
| { |
| if (p->type == bfd_data_link_order) |
| continue; |
| abort (); |
| } |
| |
| input_section = p->u.indirect.section; |
| input_bfd = input_section->owner; |
| |
| /* Combine the gptab entries for this input section one |
| by one. We know that the input gptab entries are |
| sorted by ascending -G value. */ |
| size = input_section->size; |
| last = 0; |
| for (gpentry = sizeof (Elf32_External_gptab); |
| gpentry < size; |
| gpentry += sizeof (Elf32_External_gptab)) |
| { |
| Elf32_External_gptab ext_gptab; |
| Elf32_gptab int_gptab; |
| unsigned long val; |
| unsigned long add; |
| bool exact; |
| unsigned int look; |
| |
| if (! (bfd_get_section_contents |
| (input_bfd, input_section, &ext_gptab, gpentry, |
| sizeof (Elf32_External_gptab)))) |
| { |
| free (tab); |
| return false; |
| } |
| |
| bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, |
| &int_gptab); |
| val = int_gptab.gt_entry.gt_g_value; |
| add = int_gptab.gt_entry.gt_bytes - last; |
| |
| exact = false; |
| for (look = 1; look < c; look++) |
| { |
| if (tab[look].gt_entry.gt_g_value >= val) |
| tab[look].gt_entry.gt_bytes += add; |
| |
| if (tab[look].gt_entry.gt_g_value == val) |
| exact = true; |
| } |
| |
| if (! exact) |
| { |
| Elf32_gptab *new_tab; |
| unsigned int max; |
| |
| /* We need a new table entry. */ |
| amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); |
| new_tab = bfd_realloc (tab, amt); |
| if (new_tab == NULL) |
| { |
| free (tab); |
| return false; |
| } |
| tab = new_tab; |
| tab[c].gt_entry.gt_g_value = val; |
| tab[c].gt_entry.gt_bytes = add; |
| |
| /* Merge in the size for the next smallest -G |
| value, since that will be implied by this new |
| value. */ |
| max = 0; |
| for (look = 1; look < c; look++) |
| { |
| if (tab[look].gt_entry.gt_g_value < val |
| && (max == 0 |
| || (tab[look].gt_entry.gt_g_value |
| > tab[max].gt_entry.gt_g_value))) |
| max = look; |
| } |
| if (max != 0) |
| tab[c].gt_entry.gt_bytes += |
| tab[max].gt_entry.gt_bytes; |
| |
| ++c; |
| } |
| |
| last = int_gptab.gt_entry.gt_bytes; |
| } |
| |
| /* Hack: reset the SEC_HAS_CONTENTS flag so that |
| elf_link_input_bfd ignores this section. */ |
| input_section->flags &= ~SEC_HAS_CONTENTS; |
| } |
| |
| /* The table must be sorted by -G value. */ |
| if (c > 2) |
| qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); |
| |
| /* Swap out the table. */ |
| amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); |
| ext_tab = bfd_alloc (abfd, amt); |
| if (ext_tab == NULL) |
| { |
| free (tab); |
| return false; |
| } |
| |
| for (j = 0; j < c; j++) |
| bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); |
| free (tab); |
| |
| o->size = c * sizeof (Elf32_External_gptab); |
| o->contents = (bfd_byte *) ext_tab; |
| |
| /* Skip this section later on (I don't think this currently |
| matters, but someday it might). */ |
| o->map_head.link_order = NULL; |
| } |
| } |
| |
| /* Invoke the regular ELF backend linker to do all the work. */ |
| if (!bfd_elf_final_link (abfd, info)) |
| return false; |
| |
| /* Now write out the computed sections. */ |
| |
| if (abiflags_sec != NULL) |
| { |
| Elf_External_ABIFlags_v0 ext; |
| Elf_Internal_ABIFlags_v0 *abiflags; |
| |
| abiflags = &mips_elf_tdata (abfd)->abiflags; |
| |
| /* Set up the abiflags if no valid input sections were found. */ |
| if (!mips_elf_tdata (abfd)->abiflags_valid) |
| { |
| infer_mips_abiflags (abfd, abiflags); |
| mips_elf_tdata (abfd)->abiflags_valid = true; |
| } |
| bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext); |
| if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext)) |
| return false; |
| } |
| |
| if (reginfo_sec != NULL) |
| { |
| Elf32_External_RegInfo ext; |
| |
| bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); |
| if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) |
| return false; |
| } |
| |
| if (mdebug_sec != NULL) |
| { |
| BFD_ASSERT (abfd->output_has_begun); |
| if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, |
| swap, info, |
| mdebug_sec->filepos)) |
| return false; |
| |
| bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); |
| } |
| |
| if (gptab_data_sec != NULL) |
| { |
| if (! bfd_set_section_contents (abfd, gptab_data_sec, |
| gptab_data_sec->contents, |
| 0, gptab_data_sec->size)) |
| return false; |
| } |
| |
| if (gptab_bss_sec != NULL) |
| { |
| if (! bfd_set_section_contents (abfd, gptab_bss_sec, |
| gptab_bss_sec->contents, |
| 0, gptab_bss_sec->size)) |
| return false; |
| } |
| |
| if (SGI_COMPAT (abfd)) |
| { |
| rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); |
| if (rtproc_sec != NULL) |
| { |
| if (! bfd_set_section_contents (abfd, rtproc_sec, |
| rtproc_sec->contents, |
| 0, rtproc_sec->size)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Merge object file header flags from IBFD into OBFD. Raise an error |
| if there are conflicting settings. */ |
| |
| static bool |
| mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info) |
| { |
| bfd *obfd = info->output_bfd; |
| struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd); |
| flagword old_flags; |
| flagword new_flags; |
| bool ok; |
| |
| new_flags = elf_elfheader (ibfd)->e_flags; |
| elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; |
| old_flags = elf_elfheader (obfd)->e_flags; |
| |
| /* Check flag compatibility. */ |
| |
| new_flags &= ~EF_MIPS_NOREORDER; |
| old_flags &= ~EF_MIPS_NOREORDER; |
| |
| /* Some IRIX 6 BSD-compatibility objects have this bit set. It |
| doesn't seem to matter. */ |
| new_flags &= ~EF_MIPS_XGOT; |
| old_flags &= ~EF_MIPS_XGOT; |
| |
| /* MIPSpro generates ucode info in n64 objects. Again, we should |
| just be able to ignore this. */ |
| new_flags &= ~EF_MIPS_UCODE; |
| old_flags &= ~EF_MIPS_UCODE; |
| |
| /* DSOs should only be linked with CPIC code. */ |
| if ((ibfd->flags & DYNAMIC) != 0) |
| new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC; |
| |
| if (new_flags == old_flags) |
| return true; |
| |
| ok = true; |
| |
| if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) |
| != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) |
| { |
| _bfd_error_handler |
| (_("%pB: warning: linking abicalls files with non-abicalls files"), |
| ibfd); |
| ok = true; |
| } |
| |
| if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) |
| elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; |
| if (! (new_flags & EF_MIPS_PIC)) |
| elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; |
| |
| new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); |
| old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); |
| |
| /* Compare the ISAs. */ |
| if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) |
| { |
| _bfd_error_handler |
| (_("%pB: linking 32-bit code with 64-bit code"), |
| ibfd); |
| ok = false; |
| } |
| else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) |
| { |
| /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ |
| if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) |
| { |
| /* Copy the architecture info from IBFD to OBFD. Also copy |
| the 32-bit flag (if set) so that we continue to recognise |
| OBFD as a 32-bit binary. */ |
| bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); |
| elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
| elf_elfheader (obfd)->e_flags |
| |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
| |
| /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */ |
| update_mips_abiflags_isa (obfd, &out_tdata->abiflags); |
| |
| /* Copy across the ABI flags if OBFD doesn't use them |
| and if that was what caused us to treat IBFD as 32-bit. */ |
| if ((old_flags & EF_MIPS_ABI) == 0 |
| && mips_32bit_flags_p (new_flags) |
| && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) |
| elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; |
| } |
| else |
| { |
| /* The ISAs aren't compatible. */ |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: linking %s module with previous %s modules"), |
| ibfd, |
| bfd_printable_name (ibfd), |
| bfd_printable_name (obfd)); |
| ok = false; |
| } |
| } |
| |
| new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
| old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
| |
| /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it |
| does set EI_CLASS differently from any 32-bit ABI. */ |
| if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) |
| || (elf_elfheader (ibfd)->e_ident[EI_CLASS] |
| != elf_elfheader (obfd)->e_ident[EI_CLASS])) |
| { |
| /* Only error if both are set (to different values). */ |
| if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) |
| || (elf_elfheader (ibfd)->e_ident[EI_CLASS] |
| != elf_elfheader (obfd)->e_ident[EI_CLASS])) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: ABI mismatch: linking %s module with previous %s modules"), |
| ibfd, |
| elf_mips_abi_name (ibfd), |
| elf_mips_abi_name (obfd)); |
| ok = false; |
| } |
| new_flags &= ~EF_MIPS_ABI; |
| old_flags &= ~EF_MIPS_ABI; |
| } |
| |
| /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together |
| and allow arbitrary mixing of the remaining ASEs (retain the union). */ |
| if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) |
| { |
| int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS; |
| int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS; |
| int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16; |
| int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16; |
| int micro_mis = old_m16 && new_micro; |
| int m16_mis = old_micro && new_m16; |
| |
| if (m16_mis || micro_mis) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: ASE mismatch: linking %s module with previous %s modules"), |
| ibfd, |
| m16_mis ? "MIPS16" : "microMIPS", |
| m16_mis ? "microMIPS" : "MIPS16"); |
| ok = false; |
| } |
| |
| elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; |
| |
| new_flags &= ~ EF_MIPS_ARCH_ASE; |
| old_flags &= ~ EF_MIPS_ARCH_ASE; |
| } |
| |
| /* Compare NaN encodings. */ |
| if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008)) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: linking %s module with previous %s modules"), |
| ibfd, |
| (new_flags & EF_MIPS_NAN2008 |
| ? "-mnan=2008" : "-mnan=legacy"), |
| (old_flags & EF_MIPS_NAN2008 |
| ? "-mnan=2008" : "-mnan=legacy")); |
| ok = false; |
| new_flags &= ~EF_MIPS_NAN2008; |
| old_flags &= ~EF_MIPS_NAN2008; |
| } |
| |
| /* Compare FP64 state. */ |
| if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64)) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: linking %s module with previous %s modules"), |
| ibfd, |
| (new_flags & EF_MIPS_FP64 |
| ? "-mfp64" : "-mfp32"), |
| (old_flags & EF_MIPS_FP64 |
| ? "-mfp64" : "-mfp32")); |
| ok = false; |
| new_flags &= ~EF_MIPS_FP64; |
| old_flags &= ~EF_MIPS_FP64; |
| } |
| |
| /* Warn about any other mismatches */ |
| if (new_flags != old_flags) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler |
| (_("%pB: uses different e_flags (%#x) fields than previous modules " |
| "(%#x)"), |
| ibfd, new_flags, old_flags); |
| ok = false; |
| } |
| |
| return ok; |
| } |
| |
| /* Merge object attributes from IBFD into OBFD. Raise an error if |
| there are conflicting attributes. */ |
| static bool |
| mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info) |
| { |
| bfd *obfd = info->output_bfd; |
| obj_attribute *in_attr; |
| obj_attribute *out_attr; |
| bfd *abi_fp_bfd; |
| bfd *abi_msa_bfd; |
| |
| abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd; |
| in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; |
| if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY) |
| mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; |
| |
| abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd; |
| if (!abi_msa_bfd |
| && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) |
| mips_elf_tdata (obfd)->abi_msa_bfd = ibfd; |
| |
| if (!elf_known_obj_attributes_proc (obfd)[0].i) |
| { |
| /* This is the first object. Copy the attributes. */ |
| _bfd_elf_copy_obj_attributes (ibfd, obfd); |
| |
| /* Use the Tag_null value to indicate the attributes have been |
| initialized. */ |
| elf_known_obj_attributes_proc (obfd)[0].i = 1; |
| |
| return true; |
| } |
| |
| /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge |
| non-conflicting ones. */ |
| out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; |
| if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i) |
| { |
| int out_fp, in_fp; |
| |
| out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i; |
| in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i; |
| out_attr[Tag_GNU_MIPS_ABI_FP].type = 1; |
| if (out_fp == Val_GNU_MIPS_ABI_FP_ANY) |
| out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp; |
| else if (out_fp == Val_GNU_MIPS_ABI_FP_XX |
| && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE |
| || in_fp == Val_GNU_MIPS_ABI_FP_64 |
| || in_fp == Val_GNU_MIPS_ABI_FP_64A)) |
| { |
| mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; |
| out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; |
| } |
| else if (in_fp == Val_GNU_MIPS_ABI_FP_XX |
| && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE |
| || out_fp == Val_GNU_MIPS_ABI_FP_64 |
| || out_fp == Val_GNU_MIPS_ABI_FP_64A)) |
| /* Keep the current setting. */; |
| else if (out_fp == Val_GNU_MIPS_ABI_FP_64A |
| && in_fp == Val_GNU_MIPS_ABI_FP_64) |
| { |
| mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; |
| out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; |
| } |
| else if (in_fp == Val_GNU_MIPS_ABI_FP_64A |
| && out_fp == Val_GNU_MIPS_ABI_FP_64) |
| /* Keep the current setting. */; |
| else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY) |
| { |
| const char *out_string, *in_string; |
| |
| out_string = _bfd_mips_fp_abi_string (out_fp); |
| in_string = _bfd_mips_fp_abi_string (in_fp); |
| /* First warn about cases involving unrecognised ABIs. */ |
| if (!out_string && !in_string) |
| /* xgettext:c-format */ |
| _bfd_error_handler |
| (_("warning: %pB uses unknown floating point ABI %d " |
| "(set by %pB), %pB uses unknown floating point ABI %d"), |
| obfd, out_fp, abi_fp_bfd, ibfd, in_fp); |
| else if (!out_string) |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("warning: %pB uses unknown floating point ABI %d " |
| "(set by %pB), %pB uses %s"), |
| obfd, out_fp, abi_fp_bfd, ibfd, in_string); |
| else if (!in_string) |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("warning: %pB uses %s (set by %pB), " |
| "%pB uses unknown floating point ABI %d"), |
| obfd, out_string, abi_fp_bfd, ibfd, in_fp); |
| else |
| { |
| /* If one of the bfds is soft-float, the other must be |
| hard-float. The exact choice of hard-float ABI isn't |
| really relevant to the error message. */ |
| if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT) |
| out_string = "-mhard-float"; |
| else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT) |
| in_string = "-mhard-float"; |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("warning: %pB uses %s (set by %pB), %pB uses %s"), |
| obfd, out_string, abi_fp_bfd, ibfd, in_string); |
| } |
| } |
| } |
| |
| /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge |
| non-conflicting ones. */ |
| if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i) |
| { |
| out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1; |
| if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY) |
| out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i; |
| else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) |
| switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i) |
| { |
| case Val_GNU_MIPS_ABI_MSA_128: |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("warning: %pB uses %s (set by %pB), " |
| "%pB uses unknown MSA ABI %d"), |
| obfd, "-mmsa", abi_msa_bfd, |
| ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i); |
| break; |
| |
| default: |
| switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i) |
| { |
| case Val_GNU_MIPS_ABI_MSA_128: |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("warning: %pB uses unknown MSA ABI %d " |
| "(set by %pB), %pB uses %s"), |
| obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i, |
| abi_msa_bfd, ibfd, "-mmsa"); |
| break; |
| |
| default: |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("warning: %pB uses unknown MSA ABI %d " |
| "(set by %pB), %pB uses unknown MSA ABI %d"), |
| obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i, |
| abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i); |
| break; |
| } |
| } |
| } |
| |
| /* Merge Tag_compatibility attributes and any common GNU ones. */ |
| return _bfd_elf_merge_object_attributes (ibfd, info); |
| } |
| |
| /* Merge object ABI flags from IBFD into OBFD. Raise an error if |
| there are conflicting settings. */ |
| |
| static bool |
| mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd) |
| { |
| obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; |
| struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd); |
| struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd); |
| |
| /* Update the output abiflags fp_abi using the computed fp_abi. */ |
| out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i; |
| |
| #define max(a, b) ((a) > (b) ? (a) : (b)) |
| /* Merge abiflags. */ |
| out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level, |
| in_tdata->abiflags.isa_level); |
| out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev, |
| in_tdata->abiflags.isa_rev); |
| out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size, |
| in_tdata->abiflags.gpr_size); |
| out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size, |
| in_tdata->abiflags.cpr1_size); |
| out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size, |
| in_tdata->abiflags.cpr2_size); |
| #undef max |
| out_tdata->abiflags.ases |= in_tdata->abiflags.ases; |
| out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1; |
| |
| return true; |
| } |
| |
| /* Merge backend specific data from an object file to the output |
| object file when linking. */ |
| |
| bool |
| _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) |
| { |
| bfd *obfd = info->output_bfd; |
| struct mips_elf_obj_tdata *out_tdata; |
| struct mips_elf_obj_tdata *in_tdata; |
| bool null_input_bfd = true; |
| asection *sec; |
| bool ok; |
| |
| /* Check if we have the same endianness. */ |
| if (! _bfd_generic_verify_endian_match (ibfd, info)) |
| { |
| _bfd_error_handler |
| (_("%pB: endianness incompatible with that of the selected emulation"), |
| ibfd); |
| return false; |
| } |
| |
| if (!is_mips_elf (ibfd) || !is_mips_elf (obfd)) |
| return true; |
| |
| in_tdata = mips_elf_tdata (ibfd); |
| out_tdata = mips_elf_tdata (obfd); |
| |
| if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) |
| { |
| _bfd_error_handler |
| (_("%pB: ABI is incompatible with that of the selected emulation"), |
| ibfd); |
| return false; |
| } |
| |
| /* Check to see if the input BFD actually contains any sections. If not, |
| then it has no attributes, and its flags may not have been initialized |
| either, but it cannot actually cause any incompatibility. */ |
| /* FIXME: This excludes any input shared library from consideration. */ |
| for (sec = ibfd->sections; sec != NULL; sec = sec->next) |
| { |
| /* Ignore synthetic sections and empty .text, .data and .bss sections |
| which are automatically generated by gas. Also ignore fake |
| (s)common sections, since merely defining a common symbol does |
| not affect compatibility. */ |
| if ((sec->flags & SEC_IS_COMMON) == 0 |
| && strcmp (sec->name, ".reginfo") |
| && strcmp (sec->name, ".mdebug") |
| && (sec->size != 0 |
| || (strcmp (sec->name, ".text") |
| && strcmp (sec->name, ".data") |
| && strcmp (sec->name, ".bss")))) |
| { |
| null_input_bfd = false; |
| break; |
| } |
| } |
| if (null_input_bfd) |
| return true; |
| |
| /* Populate abiflags using existing information. */ |
| if (in_tdata->abiflags_valid) |
| { |
| obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; |
| Elf_Internal_ABIFlags_v0 in_abiflags; |
| Elf_Internal_ABIFlags_v0 abiflags; |
| |
| /* Set up the FP ABI attribute from the abiflags if it is not already |
| set. */ |
| if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY) |
| in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi; |
| |
| infer_mips_abiflags (ibfd, &abiflags); |
| in_abiflags = in_tdata->abiflags; |
| |
| /* It is not possible to infer the correct ISA revision |
| for R3 or R5 so drop down to R2 for the checks. */ |
| if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5) |
| in_abiflags.isa_rev = 2; |
| |
| if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev) |
| < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev)) |
| _bfd_error_handler |
| (_("%pB: warning: inconsistent ISA between e_flags and " |
| ".MIPS.abiflags"), ibfd); |
| if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY |
| && in_abiflags.fp_abi != abiflags.fp_abi) |
| _bfd_error_handler |
| (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and " |
| ".MIPS.abiflags"), ibfd); |
| if ((in_abiflags.ases & abiflags.ases) != abiflags.ases) |
| _bfd_error_handler |
| (_("%pB: warning: inconsistent ASEs between e_flags and " |
| ".MIPS.abiflags"), ibfd); |
| /* The isa_ext is allowed to be an extension of what can be inferred |
| from e_flags. */ |
| if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext), |
| bfd_mips_isa_ext_mach (in_abiflags.isa_ext))) |
| _bfd_error_handler |
| (_("%pB: warning: inconsistent ISA extensions between e_flags and " |
| ".MIPS.abiflags"), ibfd); |
| if (in_abiflags.flags2 != 0) |
| _bfd_error_handler |
| (_("%pB: warning: unexpected flag in the flags2 field of " |
| ".MIPS.abiflags (0x%lx)"), ibfd, |
| in_abiflags.flags2); |
| } |
| else |
| { |
| infer_mips_abiflags (ibfd, &in_tdata->abiflags); |
| in_tdata->abiflags_valid = true; |
| } |
| |
| if (!out_tdata->abiflags_valid) |
| { |
| /* Copy input abiflags if output abiflags are not already valid. */ |
| out_tdata->abiflags = in_tdata->abiflags; |
| out_tdata->abiflags_valid = true; |
| } |
| |
| if (! elf_flags_init (obfd)) |
| { |
| elf_flags_init (obfd) = true; |
| elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; |
| elf_elfheader (obfd)->e_ident[EI_CLASS] |
| = elf_elfheader (ibfd)->e_ident[EI_CLASS]; |
| |
| if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
| && (bfd_get_arch_info (obfd)->the_default |
| || mips_mach_extends_p (bfd_get_mach (obfd), |
| bfd_get_mach (ibfd)))) |
| { |
| if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), |
| bfd_get_mach (ibfd))) |
| return false; |
| |
| /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */ |
| update_mips_abiflags_isa (obfd, &out_tdata->abiflags); |
| } |
| |
| ok = true; |
| } |
| else |
| ok = mips_elf_merge_obj_e_flags (ibfd, info); |
| |
| ok = mips_elf_merge_obj_attributes (ibfd, info) && ok; |
| |
| ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok; |
| |
| if (!ok) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ |
| |
| bool |
| _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) |
| { |
| BFD_ASSERT (!elf_flags_init (abfd) |
| || elf_elfheader (abfd)->e_flags == flags); |
| |
| elf_elfheader (abfd)->e_flags = flags; |
| elf_flags_init (abfd) = true; |
| return true; |
| } |
| |
| char * |
| _bfd_mips_elf_get_target_dtag (bfd_vma dtag) |
| { |
| switch (dtag) |
| { |
| default: return ""; |
| case DT_MIPS_RLD_VERSION: |
| return "MIPS_RLD_VERSION"; |
| case DT_MIPS_TIME_STAMP: |
| return "MIPS_TIME_STAMP"; |
| case DT_MIPS_ICHECKSUM: |
| return "MIPS_ICHECKSUM"; |
| case DT_MIPS_IVERSION: |
| return "MIPS_IVERSION"; |
| case DT_MIPS_FLAGS: |
| return "MIPS_FLAGS"; |
| case DT_MIPS_BASE_ADDRESS: |
| return "MIPS_BASE_ADDRESS"; |
| case DT_MIPS_MSYM: |
| return "MIPS_MSYM"; |
| case DT_MIPS_CONFLICT: |
| return "MIPS_CONFLICT"; |
| case DT_MIPS_LIBLIST: |
| return "MIPS_LIBLIST"; |
| case DT_MIPS_LOCAL_GOTNO: |
| return "MIPS_LOCAL_GOTNO"; |
| case DT_MIPS_CONFLICTNO: |
| return "MIPS_CONFLICTNO"; |
| case DT_MIPS_LIBLISTNO: |
| return "MIPS_LIBLISTNO"; |
| case DT_MIPS_SYMTABNO: |
| return "MIPS_SYMTABNO"; |
| case DT_MIPS_UNREFEXTNO: |
| return "MIPS_UNREFEXTNO"; |
| case DT_MIPS_GOTSYM: |
| return "MIPS_GOTSYM"; |
| case DT_MIPS_HIPAGENO: |
| return "MIPS_HIPAGENO"; |
| case DT_MIPS_RLD_MAP: |
| return "MIPS_RLD_MAP"; |
| case DT_MIPS_RLD_MAP_REL: |
| return "MIPS_RLD_MAP_REL"; |
| case DT_MIPS_DELTA_CLASS: |
| return "MIPS_DELTA_CLASS"; |
| case DT_MIPS_DELTA_CLASS_NO: |
| return "MIPS_DELTA_CLASS_NO"; |
| case DT_MIPS_DELTA_INSTANCE: |
| return "MIPS_DELTA_INSTANCE"; |
| case DT_MIPS_DELTA_INSTANCE_NO: |
| return "MIPS_DELTA_INSTANCE_NO"; |
| case DT_MIPS_DELTA_RELOC: |
| return "MIPS_DELTA_RELOC"; |
| case DT_MIPS_DELTA_RELOC_NO: |
| return "MIPS_DELTA_RELOC_NO"; |
| case DT_MIPS_DELTA_SYM: |
| return "MIPS_DELTA_SYM"; |
| case DT_MIPS_DELTA_SYM_NO: |
| return "MIPS_DELTA_SYM_NO"; |
| case DT_MIPS_DELTA_CLASSSYM: |
| return "MIPS_DELTA_CLASSSYM"; |
| case DT_MIPS_DELTA_CLASSSYM_NO: |
| return "MIPS_DELTA_CLASSSYM_NO"; |
| case DT_MIPS_CXX_FLAGS: |
| return "MIPS_CXX_FLAGS"; |
| case DT_MIPS_PIXIE_INIT: |
| return "MIPS_PIXIE_INIT"; |
| case DT_MIPS_SYMBOL_LIB: |
| return "MIPS_SYMBOL_LIB"; |
| case DT_MIPS_LOCALPAGE_GOTIDX: |
| return "MIPS_LOCALPAGE_GOTIDX"; |
| case DT_MIPS_LOCAL_GOTIDX: |
| return "MIPS_LOCAL_GOTIDX"; |
| case DT_MIPS_HIDDEN_GOTIDX: |
| return "MIPS_HIDDEN_GOTIDX"; |
| case DT_MIPS_PROTECTED_GOTIDX: |
| return "MIPS_PROTECTED_GOT_IDX"; |
| case DT_MIPS_OPTIONS: |
| return "MIPS_OPTIONS"; |
| case DT_MIPS_INTERFACE: |
| return "MIPS_INTERFACE"; |
| case DT_MIPS_DYNSTR_ALIGN: |
| return "DT_MIPS_DYNSTR_ALIGN"; |
| case DT_MIPS_INTERFACE_SIZE: |
| return "DT_MIPS_INTERFACE_SIZE"; |
| case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: |
| return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR"; |
| case DT_MIPS_PERF_SUFFIX: |
| return "DT_MIPS_PERF_SUFFIX"; |
| case DT_MIPS_COMPACT_SIZE: |
| return "DT_MIPS_COMPACT_SIZE"; |
| case DT_MIPS_GP_VALUE: |
| return "DT_MIPS_GP_VALUE"; |
| case DT_MIPS_AUX_DYNAMIC: |
| return "DT_MIPS_AUX_DYNAMIC"; |
| case DT_MIPS_PLTGOT: |
| return "DT_MIPS_PLTGOT"; |
| case DT_MIPS_RWPLT: |
| return "DT_MIPS_RWPLT"; |
| case DT_MIPS_XHASH: |
| return "DT_MIPS_XHASH"; |
| } |
| } |
| |
| /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if |
| not known. */ |
| |
| const char * |
| _bfd_mips_fp_abi_string (int fp) |
| { |
| switch (fp) |
| { |
| /* These strings aren't translated because they're simply |
| option lists. */ |
| case Val_GNU_MIPS_ABI_FP_DOUBLE: |
| return "-mdouble-float"; |
| |
| case Val_GNU_MIPS_ABI_FP_SINGLE: |
| return "-msingle-float"; |
| |
| case Val_GNU_MIPS_ABI_FP_SOFT: |
| return "-msoft-float"; |
| |
| case Val_GNU_MIPS_ABI_FP_OLD_64: |
| return _("-mips32r2 -mfp64 (12 callee-saved)"); |
| |
| case Val_GNU_MIPS_ABI_FP_XX: |
| return "-mfpxx"; |
| |
| case Val_GNU_MIPS_ABI_FP_64: |
| return "-mgp32 -mfp64"; |
| |
| case Val_GNU_MIPS_ABI_FP_64A: |
| return "-mgp32 -mfp64 -mno-odd-spreg"; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| static void |
| print_mips_ases (FILE *file, unsigned int mask) |
| { |
| if (mask & AFL_ASE_DSP) |
| fputs ("\n\tDSP ASE", file); |
| if (mask & AFL_ASE_DSPR2) |
| fputs ("\n\tDSP R2 ASE", file); |
| if (mask & AFL_ASE_DSPR3) |
| fputs ("\n\tDSP R3 ASE", file); |
| if (mask & AFL_ASE_EVA) |
| fputs ("\n\tEnhanced VA Scheme", file); |
| if (mask & AFL_ASE_MCU) |
| fputs ("\n\tMCU (MicroController) ASE", file); |
| if (mask & AFL_ASE_MDMX) |
| fputs ("\n\tMDMX ASE", file); |
| if (mask & AFL_ASE_MIPS3D) |
| fputs ("\n\tMIPS-3D ASE", file); |
| if (mask & AFL_ASE_MT) |
| fputs ("\n\tMT ASE", file); |
| if (mask & AFL_ASE_SMARTMIPS) |
| fputs ("\n\tSmartMIPS ASE", file); |
| if (mask & AFL_ASE_VIRT) |
| fputs ("\n\tVZ ASE", file); |
| if (mask & AFL_ASE_MSA) |
| fputs ("\n\tMSA ASE", file); |
| if (mask & AFL_ASE_MIPS16) |
| fputs ("\n\tMIPS16 ASE", file); |
| if (mask & AFL_ASE_MICROMIPS) |
| fputs ("\n\tMICROMIPS ASE", file); |
| if (mask & AFL_ASE_XPA) |
| fputs ("\n\tXPA ASE", file); |
| if (mask & AFL_ASE_MIPS16E2) |
| fputs ("\n\tMIPS16e2 ASE", file); |
| if (mask & AFL_ASE_CRC) |
| fputs ("\n\tCRC ASE", file); |
| if (mask & AFL_ASE_GINV) |
| fputs ("\n\tGINV ASE", file); |
| if (mask & AFL_ASE_LOONGSON_MMI) |
| fputs ("\n\tLoongson MMI ASE", file); |
| if (mask & AFL_ASE_LOONGSON_CAM) |
| fputs ("\n\tLoongson CAM ASE", file); |
| if (mask & AFL_ASE_LOONGSON_EXT) |
| fputs ("\n\tLoongson EXT ASE", file); |
| if (mask & AFL_ASE_LOONGSON_EXT2) |
| fputs ("\n\tLoongson EXT2 ASE", file); |
| if (mask == 0) |
| fprintf (file, "\n\t%s", _("None")); |
| else if ((mask & ~AFL_ASE_MASK) != 0) |
| fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK); |
| } |
| |
| static void |
| print_mips_isa_ext (FILE *file, unsigned int isa_ext) |
| { |
| switch (isa_ext) |
| { |
| case 0: |
| fputs (_("None"), file); |
| break; |
| case AFL_EXT_XLR: |
| fputs ("RMI XLR", file); |
| break; |
| case AFL_EXT_OCTEON3: |
| fputs ("Cavium Networks Octeon3", file); |
| break; |
| case AFL_EXT_OCTEON2: |
| fputs ("Cavium Networks Octeon2", file); |
| break; |
| case AFL_EXT_OCTEONP: |
| fputs ("Cavium Networks OcteonP", file); |
| break; |
| case AFL_EXT_OCTEON: |
| fputs ("Cavium Networks Octeon", file); |
| break; |
| case AFL_EXT_5900: |
| fputs ("Toshiba R5900", file); |
| break; |
| case AFL_EXT_4650: |
| fputs ("MIPS R4650", file); |
| break; |
| case AFL_EXT_4010: |
| fputs ("LSI R4010", file); |
| break; |
| case AFL_EXT_4100: |
| fputs ("NEC VR4100", file); |
| break; |
| case AFL_EXT_3900: |
| fputs ("Toshiba R3900", file); |
| break; |
| case AFL_EXT_10000: |
| fputs ("MIPS R10000", file); |
| break; |
| case AFL_EXT_SB1: |
| fputs ("Broadcom SB-1", file); |
| break; |
| case AFL_EXT_4111: |
| fputs ("NEC VR4111/VR4181", file); |
| break; |
| case AFL_EXT_4120: |
| fputs ("NEC VR4120", file); |
| break; |
| case AFL_EXT_5400: |
| fputs ("NEC VR5400", file); |
| break; |
| case AFL_EXT_5500: |
| fputs ("NEC VR5500", file); |
| break; |
| case AFL_EXT_LOONGSON_2E: |
| fputs ("ST Microelectronics Loongson 2E", file); |
| break; |
| case AFL_EXT_LOONGSON_2F: |
| fputs ("ST Microelectronics Loongson 2F", file); |
| break; |
| case AFL_EXT_INTERAPTIV_MR2: |
| fputs ("Imagination interAptiv MR2", file); |
| break; |
| default: |
| fprintf (file, "%s (%d)", _("Unknown"), isa_ext); |
| break; |
| } |
| } |
| |
| static void |
| print_mips_fp_abi_value (FILE *file, int val) |
| { |
| switch (val) |
| { |
| case Val_GNU_MIPS_ABI_FP_ANY: |
| fprintf (file, _("Hard or soft float\n")); |
| break; |
| case Val_GNU_MIPS_ABI_FP_DOUBLE: |
| fprintf (file, _("Hard float (double precision)\n")); |
| break; |
| case Val_GNU_MIPS_ABI_FP_SINGLE: |
| fprintf (file, _("Hard float (single precision)\n")); |
| break; |
| case Val_GNU_MIPS_ABI_FP_SOFT: |
| fprintf (file, _("Soft float\n")); |
| break; |
| case Val_GNU_MIPS_ABI_FP_OLD_64: |
| fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n")); |
| break; |
| case Val_GNU_MIPS_ABI_FP_XX: |
| fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n")); |
| break; |
| case Val_GNU_MIPS_ABI_FP_64: |
| fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n")); |
| break; |
| case Val_GNU_MIPS_ABI_FP_64A: |
| fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n")); |
| break; |
| default: |
| fprintf (file, "??? (%d)\n", val); |
| break; |
| } |
| } |
| |
| static int |
| get_mips_reg_size (int reg_size) |
| { |
| return (reg_size == AFL_REG_NONE) ? 0 |
| : (reg_size == AFL_REG_32) ? 32 |
| : (reg_size == AFL_REG_64) ? 64 |
| : (reg_size == AFL_REG_128) ? 128 |
| : -1; |
| } |
| |
| bool |
| _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
| { |
| FILE *file = ptr; |
| |
| BFD_ASSERT (abfd != NULL && ptr != NULL); |
| |
| /* Print normal ELF private data. */ |
| _bfd_elf_print_private_bfd_data (abfd, ptr); |
| |
| /* xgettext:c-format */ |
| fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); |
| |
| if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == EF_MIPS_ABI_O32) |
| fprintf (file, _(" [abi=O32]")); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == EF_MIPS_ABI_O64) |
| fprintf (file, _(" [abi=O64]")); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == EF_MIPS_ABI_EABI32) |
| fprintf (file, _(" [abi=EABI32]")); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == EF_MIPS_ABI_EABI64) |
| fprintf (file, _(" [abi=EABI64]")); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) |
| fprintf (file, _(" [abi unknown]")); |
| else if (ABI_N32_P (abfd)) |
| fprintf (file, _(" [abi=N32]")); |
| else if (ABI_64_P (abfd)) |
| fprintf (file, _(" [abi=64]")); |
| else |
| fprintf (file, _(" [no abi set]")); |
| |
| if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_1) |
| fprintf (file, " [mips1]"); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_2) |
| fprintf (file, " [mips2]"); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_3) |
| fprintf (file, " [mips3]"); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_4) |
| fprintf (file, " [mips4]"); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_5) |
| fprintf (file, " [mips5]"); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_32) |
| fprintf (file, " [mips32]"); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_64) |
| fprintf (file, " [mips64]"); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_32R2) |
| fprintf (file, " [mips32r2]"); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_64R2) |
| fprintf (file, " [mips64r2]"); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_32R6) |
| fprintf (file, " [mips32r6]"); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == EF_MIPS_ARCH_64R6) |
| fprintf (file, " [mips64r6]"); |
| else |
| fprintf (file, _(" [unknown ISA]")); |
| |
| if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) |
| fprintf (file, " [mdmx]"); |
| |
| if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) |
| fprintf (file, " [mips16]"); |
| |
| if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) |
| fprintf (file, " [micromips]"); |
| |
| if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008) |
| fprintf (file, " [nan2008]"); |
| |
| if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64) |
| fprintf (file, " [old fp64]"); |
| |
| if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) |
| fprintf (file, " [32bitmode]"); |
| else |
| fprintf (file, _(" [not 32bitmode]")); |
| |
| if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER) |
| fprintf (file, " [noreorder]"); |
| |
| if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) |
| fprintf (file, " [PIC]"); |
| |
| if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC) |
| fprintf (file, " [CPIC]"); |
| |
| if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT) |
| fprintf (file, " [XGOT]"); |
| |
| if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE) |
| fprintf (file, " [UCODE]"); |
| |
| fputc ('\n', file); |
| |
| if (mips_elf_tdata (abfd)->abiflags_valid) |
| { |
| Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags; |
| fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version); |
| fprintf (file, "\nISA: MIPS%d", abiflags->isa_level); |
| if (abiflags->isa_rev > 1) |
| fprintf (file, "r%d", abiflags->isa_rev); |
| fprintf (file, "\nGPR size: %d", |
| get_mips_reg_size (abiflags->gpr_size)); |
| fprintf (file, "\nCPR1 size: %d", |
| get_mips_reg_size (abiflags->cpr1_size)); |
| fprintf (file, "\nCPR2 size: %d", |
| get_mips_reg_size (abiflags->cpr2_size)); |
| fputs ("\nFP ABI: ", file); |
| print_mips_fp_abi_value (file, abiflags->fp_abi); |
| fputs ("ISA Extension: ", file); |
| print_mips_isa_ext (file, abiflags->isa_ext); |
| fputs ("\nASEs:", file); |
| print_mips_ases (file, abiflags->ases); |
| fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1); |
| fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2); |
| fputc ('\n', file); |
| } |
| |
| return true; |
| } |
| |
| const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = |
| { |
| { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
| { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
| { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 }, |
| { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
| { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
| { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 }, |
| { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| /* Merge non visibility st_other attributes. Ensure that the |
| STO_OPTIONAL flag is copied into h->other, even if this is not a |
| definiton of the symbol. */ |
| void |
| _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, |
| unsigned int st_other, |
| bool definition, |
| bool dynamic ATTRIBUTE_UNUSED) |
| { |
| if ((st_other & ~ELF_ST_VISIBILITY (-1)) != 0) |
| { |
| unsigned char other; |
| |
| other = (definition ? st_other : h->other); |
| other &= ~ELF_ST_VISIBILITY (-1); |
| h->other = other | ELF_ST_VISIBILITY (h->other); |
| } |
| |
| if (!definition |
| && ELF_MIPS_IS_OPTIONAL (st_other)) |
| h->other |= STO_OPTIONAL; |
| } |
| |
| /* Decide whether an undefined symbol is special and can be ignored. |
| This is the case for OPTIONAL symbols on IRIX. */ |
| bool |
| _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) |
| { |
| return ELF_MIPS_IS_OPTIONAL (h->other) != 0; |
| } |
| |
| bool |
| _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym) |
| { |
| return (sym->st_shndx == SHN_COMMON |
| || sym->st_shndx == SHN_MIPS_ACOMMON |
| || sym->st_shndx == SHN_MIPS_SCOMMON); |
| } |
| |
| /* Return address for Ith PLT stub in section PLT, for relocation REL |
| or (bfd_vma) -1 if it should not be included. */ |
| |
| bfd_vma |
| _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt, |
| const arelent *rel ATTRIBUTE_UNUSED) |
| { |
| return (plt->vma |
| + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry) |
| + i * 4 * ARRAY_SIZE (mips_exec_plt_entry)); |
| } |
| |
| /* Build a table of synthetic symbols to represent the PLT. As with MIPS16 |
| and microMIPS PLT slots we may have a many-to-one mapping between .plt |
| and .got.plt and also the slots may be of a different size each we walk |
| the PLT manually fetching instructions and matching them against known |
| patterns. To make things easier standard MIPS slots, if any, always come |
| first. As we don't create proper ELF symbols we use the UDATA.I member |
| of ASYMBOL to carry ISA annotation. The encoding used is the same as |
| with the ST_OTHER member of the ELF symbol. */ |
| |
| long |
| _bfd_mips_elf_get_synthetic_symtab (bfd *abfd, |
| long symcount ATTRIBUTE_UNUSED, |
| asymbol **syms ATTRIBUTE_UNUSED, |
| long dynsymcount, asymbol **dynsyms, |
| asymbol **ret) |
| { |
| static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_"; |
| static const char microsuffix[] = "@micromipsplt"; |
| static const char m16suffix[] = "@mips16plt"; |
| static const char mipssuffix[] = "@plt"; |
| |
| bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool); |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| bool micromips_p = MICROMIPS_P (abfd); |
| Elf_Internal_Shdr *hdr; |
| bfd_byte *plt_data; |
| bfd_vma plt_offset; |
| unsigned int other; |
| bfd_vma entry_size; |
| bfd_vma plt0_size; |
| asection *relplt; |
| bfd_vma opcode; |
| asection *plt; |
| asymbol *send; |
| size_t size; |
| char *names; |
| long counti; |
| arelent *p; |
| asymbol *s; |
| char *nend; |
| long count; |
| long pi; |
| long i; |
| long n; |
| |
| *ret = NULL; |
| |
| if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0) |
| return 0; |
| |
| relplt = bfd_get_section_by_name (abfd, ".rel.plt"); |
| if (relplt == NULL) |
| return 0; |
| |
| hdr = &elf_section_data (relplt)->this_hdr; |
| if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL) |
| return 0; |
| |
| plt = bfd_get_section_by_name (abfd, ".plt"); |
| if (plt == NULL || (plt->flags & SEC_HAS_CONTENTS) == 0) |
| return 0; |
| |
| slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; |
| if (!(*slurp_relocs) (abfd, relplt, dynsyms, true)) |
| return -1; |
| p = relplt->relocation; |
| |
| /* Calculating the exact amount of space required for symbols would |
| require two passes over the PLT, so just pessimise assuming two |
| PLT slots per relocation. */ |
| count = NUM_SHDR_ENTRIES (hdr); |
| counti = count * bed->s->int_rels_per_ext_rel; |
| size = 2 * count * sizeof (asymbol); |
| size += count * (sizeof (mipssuffix) + |
| (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix))); |
| for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel) |
| size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name); |
| |
| /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */ |
| size += sizeof (asymbol) + sizeof (pltname); |
| |
| if (!bfd_malloc_and_get_section (abfd, plt, &plt_data)) |
| return -1; |
| |
| if (plt->size < 16) |
| return -1; |
| |
| s = *ret = bfd_malloc (size); |
| if (s == NULL) |
| return -1; |
| send = s + 2 * count + 1; |
| |
| names = (char *) send; |
| nend = (char *) s + size; |
| n = 0; |
| |
| opcode = bfd_get_micromips_32 (abfd, plt_data + 12); |
| if (opcode == 0x3302fffe) |
| { |
| if (!micromips_p) |
| return -1; |
| plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); |
| other = STO_MICROMIPS; |
| } |
| else if (opcode == 0x0398c1d0) |
| { |
| if (!micromips_p) |
| return -1; |
| plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); |
| other = STO_MICROMIPS; |
| } |
| else |
| { |
| plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); |
| other = 0; |
| } |
| |
| s->the_bfd = abfd; |
| s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL; |
| s->section = plt; |
| s->value = 0; |
| s->name = names; |
| s->udata.i = other; |
| memcpy (names, pltname, sizeof (pltname)); |
| names += sizeof (pltname); |
| ++s, ++n; |
| |
| pi = 0; |
| for (plt_offset = plt0_size; |
| plt_offset + 8 <= plt->size && s < send; |
| plt_offset += entry_size) |
| { |
| bfd_vma gotplt_addr; |
| const char *suffix; |
| bfd_vma gotplt_hi; |
| bfd_vma gotplt_lo; |
| size_t suffixlen; |
| |
| opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4); |
| |
| /* Check if the second word matches the expected MIPS16 instruction. */ |
| if (opcode == 0x651aeb00) |
| { |
| if (micromips_p) |
| return -1; |
| /* Truncated table??? */ |
| if (plt_offset + 16 > plt->size) |
| break; |
| gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12); |
| entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); |
| suffixlen = sizeof (m16suffix); |
| suffix = m16suffix; |
| other = STO_MIPS16; |
| } |
| /* Likewise the expected microMIPS instruction (no insn32 mode). */ |
| else if (opcode == 0xff220000) |
| { |
| if (!micromips_p) |
| return -1; |
| gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f; |
| gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; |
| gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18; |
| gotplt_lo <<= 2; |
| gotplt_addr = gotplt_hi + gotplt_lo; |
| gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3; |
| entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); |
| suffixlen = sizeof (microsuffix); |
| suffix = microsuffix; |
| other = STO_MICROMIPS; |
| } |
| /* Likewise the expected microMIPS instruction (insn32 mode). */ |
| else if ((opcode & 0xffff0000) == 0xff2f0000) |
| { |
| gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; |
| gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff; |
| gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; |
| gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; |
| gotplt_addr = gotplt_hi + gotplt_lo; |
| entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); |
| suffixlen = sizeof (microsuffix); |
| suffix = microsuffix; |
| other = STO_MICROMIPS; |
| } |
| /* Otherwise assume standard MIPS code. */ |
| else |
| { |
| gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff; |
| gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff; |
| gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; |
| gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; |
| gotplt_addr = gotplt_hi + gotplt_lo; |
| entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); |
| suffixlen = sizeof (mipssuffix); |
| suffix = mipssuffix; |
| other = 0; |
| } |
| /* Truncated table??? */ |
| if (plt_offset + entry_size > plt->size) |
| break; |
| |
| for (i = 0; |
| i < count && p[pi].address != gotplt_addr; |
| i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti); |
| |
| if (i < count) |
| { |
| size_t namelen; |
| size_t len; |
| |
| *s = **p[pi].sym_ptr_ptr; |
| /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since |
| we are defining a symbol, ensure one of them is set. */ |
| if ((s->flags & BSF_LOCAL) == 0) |
| s->flags |= BSF_GLOBAL; |
| s->flags |= BSF_SYNTHETIC; |
| s->section = plt; |
| s->value = plt_offset; |
| s->name = names; |
| s->udata.i = other; |
| |
| len = strlen ((*p[pi].sym_ptr_ptr)->name); |
| namelen = len + suffixlen; |
| if (names + namelen > nend) |
| break; |
| |
| memcpy (names, (*p[pi].sym_ptr_ptr)->name, len); |
| names += len; |
| memcpy (names, suffix, suffixlen); |
| names += suffixlen; |
| |
| ++s, ++n; |
| pi = (pi + bed->s->int_rels_per_ext_rel) % counti; |
| } |
| } |
| |
| free (plt_data); |
| |
| return n; |
| } |
| |
| /* Return the ABI flags associated with ABFD if available. */ |
| |
| Elf_Internal_ABIFlags_v0 * |
| bfd_mips_elf_get_abiflags (bfd *abfd) |
| { |
| struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd); |
| |
| return tdata->abiflags_valid ? &tdata->abiflags : NULL; |
| } |
| |
| /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header |
| field. Taken from `libc-abis.h' generated at GNU libc build time. |
| Using a MIPS_ prefix as other libc targets use different values. */ |
| enum |
| { |
| MIPS_LIBC_ABI_DEFAULT = 0, |
| MIPS_LIBC_ABI_MIPS_PLT, |
| MIPS_LIBC_ABI_UNIQUE, |
| MIPS_LIBC_ABI_MIPS_O32_FP64, |
| MIPS_LIBC_ABI_ABSOLUTE, |
| MIPS_LIBC_ABI_XHASH, |
| MIPS_LIBC_ABI_MAX |
| }; |
| |
| bool |
| _bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info) |
| { |
| struct mips_elf_link_hash_table *htab = NULL; |
| Elf_Internal_Ehdr *i_ehdrp; |
| |
| if (!_bfd_elf_init_file_header (abfd, link_info)) |
| return false; |
| |
| i_ehdrp = elf_elfheader (abfd); |
| if (link_info) |
| { |
| htab = mips_elf_hash_table (link_info); |
| BFD_ASSERT (htab != NULL); |
| } |
| |
| if (htab != NULL |
| && htab->use_plts_and_copy_relocs |
| && htab->root.target_os != is_vxworks) |
| i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT; |
| |
| if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64 |
| || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A) |
| i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64; |
| |
| /* Mark that we need support for absolute symbols in the dynamic loader. */ |
| if (htab != NULL && htab->use_absolute_zero && htab->gnu_target) |
| i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE; |
| |
| /* Mark that we need support for .MIPS.xhash in the dynamic linker, |
| if it is the only hash section that will be created. */ |
| if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash) |
| i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH; |
| return true; |
| } |
| |
| int |
| _bfd_mips_elf_compact_eh_encoding |
| (struct bfd_link_info *link_info ATTRIBUTE_UNUSED) |
| { |
| return DW_EH_PE_pcrel | DW_EH_PE_sdata4; |
| } |
| |
| /* Return the opcode for can't unwind. */ |
| |
| int |
| _bfd_mips_elf_cant_unwind_opcode |
| (struct bfd_link_info *link_info ATTRIBUTE_UNUSED) |
| { |
| return COMPACT_EH_CANT_UNWIND_OPCODE; |
| } |
| |
| /* Record a position XLAT_LOC in the xlat translation table, associated with |
| the hash entry H. The entry in the translation table will later be |
| populated with the real symbol dynindx. */ |
| |
| void |
| _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h, |
| bfd_vma xlat_loc) |
| { |
| struct mips_elf_link_hash_entry *hmips; |
| |
| hmips = (struct mips_elf_link_hash_entry *) h; |
| hmips->mipsxhash_loc = xlat_loc; |
| } |