| // aarch64.cc -- aarch64 target support for gold. |
| |
| // Copyright (C) 2014-2021 Free Software Foundation, Inc. |
| // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>. |
| |
| // This file is part of gold. |
| |
| // This program is free software; you can redistribute it and/or modify |
| // it under the terms of the GNU General Public License as published by |
| // the Free Software Foundation; either version 3 of the License, or |
| // (at your option) any later version. |
| |
| // This program is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // You should have received a copy of the GNU General Public License |
| // along with this program; if not, write to the Free Software |
| // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| // MA 02110-1301, USA. |
| |
| #include "gold.h" |
| |
| #include <cstring> |
| #include <map> |
| #include <set> |
| |
| #include "elfcpp.h" |
| #include "dwarf.h" |
| #include "parameters.h" |
| #include "reloc.h" |
| #include "aarch64.h" |
| #include "object.h" |
| #include "symtab.h" |
| #include "layout.h" |
| #include "output.h" |
| #include "copy-relocs.h" |
| #include "target.h" |
| #include "target-reloc.h" |
| #include "target-select.h" |
| #include "tls.h" |
| #include "freebsd.h" |
| #include "nacl.h" |
| #include "gc.h" |
| #include "icf.h" |
| #include "aarch64-reloc-property.h" |
| |
| // The first three .got.plt entries are reserved. |
| const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3; |
| |
| |
| namespace |
| { |
| |
| using namespace gold; |
| |
| template<int size, bool big_endian> |
| class Output_data_plt_aarch64; |
| |
| template<int size, bool big_endian> |
| class Output_data_plt_aarch64_standard; |
| |
| template<int size, bool big_endian> |
| class Target_aarch64; |
| |
| template<int size, bool big_endian> |
| class AArch64_relocate_functions; |
| |
| // Utility class dealing with insns. This is ported from macros in |
| // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This |
| // class is used in erratum sequence scanning. |
| |
| template<bool big_endian> |
| class AArch64_insn_utilities |
| { |
| public: |
| typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype; |
| |
| static const int BYTES_PER_INSN; |
| |
| // Zero register encoding - 31. |
| static const unsigned int AARCH64_ZR; |
| |
| static unsigned int |
| aarch64_bit(Insntype insn, int pos) |
| { return ((1 << pos) & insn) >> pos; } |
| |
| static unsigned int |
| aarch64_bits(Insntype insn, int pos, int l) |
| { return (insn >> pos) & ((1 << l) - 1); } |
| |
| // Get the encoding field "op31" of 3-source data processing insns. "op31" is |
| // the name defined in armv8 insn manual C3.5.9. |
| static unsigned int |
| aarch64_op31(Insntype insn) |
| { return aarch64_bits(insn, 21, 3); } |
| |
| // Get the encoding field "ra" of 3-source data processing insns. "ra" is the |
| // third source register. See armv8 insn manual C3.5.9. |
| static unsigned int |
| aarch64_ra(Insntype insn) |
| { return aarch64_bits(insn, 10, 5); } |
| |
| static bool |
| is_adr(const Insntype insn) |
| { return (insn & 0x9F000000) == 0x10000000; } |
| |
| static bool |
| is_adrp(const Insntype insn) |
| { return (insn & 0x9F000000) == 0x90000000; } |
| |
| static bool |
| is_mrs_tpidr_el0(const Insntype insn) |
| { return (insn & 0xFFFFFFE0) == 0xd53bd040; } |
| |
| static unsigned int |
| aarch64_rm(const Insntype insn) |
| { return aarch64_bits(insn, 16, 5); } |
| |
| static unsigned int |
| aarch64_rn(const Insntype insn) |
| { return aarch64_bits(insn, 5, 5); } |
| |
| static unsigned int |
| aarch64_rd(const Insntype insn) |
| { return aarch64_bits(insn, 0, 5); } |
| |
| static unsigned int |
| aarch64_rt(const Insntype insn) |
| { return aarch64_bits(insn, 0, 5); } |
| |
| static unsigned int |
| aarch64_rt2(const Insntype insn) |
| { return aarch64_bits(insn, 10, 5); } |
| |
| // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M). |
| static Insntype |
| aarch64_adr_encode_imm(Insntype adr, int imm21) |
| { |
| gold_assert(is_adr(adr)); |
| gold_assert(-(1 << 20) <= imm21 && imm21 < (1 << 20)); |
| const int mask19 = (1 << 19) - 1; |
| const int mask2 = 3; |
| adr &= ~((mask19 << 5) | (mask2 << 29)); |
| adr |= ((imm21 & mask2) << 29) | (((imm21 >> 2) & mask19) << 5); |
| return adr; |
| } |
| |
| // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by |
| // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and |
| // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0. |
| static int64_t |
| aarch64_adrp_decode_imm(const Insntype adrp) |
| { |
| const int mask19 = (1 << 19) - 1; |
| const int mask2 = 3; |
| gold_assert(is_adrp(adrp)); |
| // 21-bit imm encoded in adrp. |
| uint64_t imm = ((adrp >> 29) & mask2) | (((adrp >> 5) & mask19) << 2); |
| // Retrieve msb of 21-bit-signed imm for sign extension. |
| uint64_t msbt = (imm >> 20) & 1; |
| // Real value is imm multiplied by 4k. Value now has 33-bit information. |
| int64_t value = imm << 12; |
| // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it |
| // with value. |
| return ((((uint64_t)(1) << 32) - msbt) << 33) | value; |
| } |
| |
| static bool |
| aarch64_b(const Insntype insn) |
| { return (insn & 0xFC000000) == 0x14000000; } |
| |
| static bool |
| aarch64_bl(const Insntype insn) |
| { return (insn & 0xFC000000) == 0x94000000; } |
| |
| static bool |
| aarch64_blr(const Insntype insn) |
| { return (insn & 0xFFFFFC1F) == 0xD63F0000; } |
| |
| static bool |
| aarch64_br(const Insntype insn) |
| { return (insn & 0xFFFFFC1F) == 0xD61F0000; } |
| |
| // All ld/st ops. See C4-182 of the ARM ARM. The encoding space for |
| // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. |
| static bool |
| aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; } |
| |
| static bool |
| aarch64_ldst(Insntype insn) |
| { return (insn & 0x0a000000) == 0x08000000; } |
| |
| static bool |
| aarch64_ldst_ex(Insntype insn) |
| { return (insn & 0x3f000000) == 0x08000000; } |
| |
| static bool |
| aarch64_ldst_pcrel(Insntype insn) |
| { return (insn & 0x3b000000) == 0x18000000; } |
| |
| static bool |
| aarch64_ldst_nap(Insntype insn) |
| { return (insn & 0x3b800000) == 0x28000000; } |
| |
| static bool |
| aarch64_ldstp_pi(Insntype insn) |
| { return (insn & 0x3b800000) == 0x28800000; } |
| |
| static bool |
| aarch64_ldstp_o(Insntype insn) |
| { return (insn & 0x3b800000) == 0x29000000; } |
| |
| static bool |
| aarch64_ldstp_pre(Insntype insn) |
| { return (insn & 0x3b800000) == 0x29800000; } |
| |
| static bool |
| aarch64_ldst_ui(Insntype insn) |
| { return (insn & 0x3b200c00) == 0x38000000; } |
| |
| static bool |
| aarch64_ldst_piimm(Insntype insn) |
| { return (insn & 0x3b200c00) == 0x38000400; } |
| |
| static bool |
| aarch64_ldst_u(Insntype insn) |
| { return (insn & 0x3b200c00) == 0x38000800; } |
| |
| static bool |
| aarch64_ldst_preimm(Insntype insn) |
| { return (insn & 0x3b200c00) == 0x38000c00; } |
| |
| static bool |
| aarch64_ldst_ro(Insntype insn) |
| { return (insn & 0x3b200c00) == 0x38200800; } |
| |
| static bool |
| aarch64_ldst_uimm(Insntype insn) |
| { return (insn & 0x3b000000) == 0x39000000; } |
| |
| static bool |
| aarch64_ldst_simd_m(Insntype insn) |
| { return (insn & 0xbfbf0000) == 0x0c000000; } |
| |
| static bool |
| aarch64_ldst_simd_m_pi(Insntype insn) |
| { return (insn & 0xbfa00000) == 0x0c800000; } |
| |
| static bool |
| aarch64_ldst_simd_s(Insntype insn) |
| { return (insn & 0xbf9f0000) == 0x0d000000; } |
| |
| static bool |
| aarch64_ldst_simd_s_pi(Insntype insn) |
| { return (insn & 0xbf800000) == 0x0d800000; } |
| |
| // Classify an INSN if it is indeed a load/store. Return true if INSN is a |
| // LD/ST instruction otherwise return false. For scalar LD/ST instructions |
| // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair |
| // instructions PAIR is TRUE, RT and RT2 are returned. |
| static bool |
| aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2, |
| bool *pair, bool *load) |
| { |
| uint32_t opcode; |
| unsigned int r; |
| uint32_t opc = 0; |
| uint32_t v = 0; |
| uint32_t opc_v = 0; |
| |
| /* Bail out quickly if INSN doesn't fall into the load-store |
| encoding space. */ |
| if (!aarch64_ldst (insn)) |
| return false; |
| |
| *pair = false; |
| *load = false; |
| if (aarch64_ldst_ex (insn)) |
| { |
| *rt = aarch64_rt (insn); |
| *rt2 = *rt; |
| if (aarch64_bit (insn, 21) == 1) |
| { |
| *pair = true; |
| *rt2 = aarch64_rt2 (insn); |
| } |
| *load = aarch64_ld (insn); |
| return true; |
| } |
| else if (aarch64_ldst_nap (insn) |
| || aarch64_ldstp_pi (insn) |
| || aarch64_ldstp_o (insn) |
| || aarch64_ldstp_pre (insn)) |
| { |
| *pair = true; |
| *rt = aarch64_rt (insn); |
| *rt2 = aarch64_rt2 (insn); |
| *load = aarch64_ld (insn); |
| return true; |
| } |
| else if (aarch64_ldst_pcrel (insn) |
| || aarch64_ldst_ui (insn) |
| || aarch64_ldst_piimm (insn) |
| || aarch64_ldst_u (insn) |
| || aarch64_ldst_preimm (insn) |
| || aarch64_ldst_ro (insn) |
| || aarch64_ldst_uimm (insn)) |
| { |
| *rt = aarch64_rt (insn); |
| *rt2 = *rt; |
| if (aarch64_ldst_pcrel (insn)) |
| *load = true; |
| opc = aarch64_bits (insn, 22, 2); |
| v = aarch64_bit (insn, 26); |
| opc_v = opc | (v << 2); |
| *load = (opc_v == 1 || opc_v == 2 || opc_v == 3 |
| || opc_v == 5 || opc_v == 7); |
| return true; |
| } |
| else if (aarch64_ldst_simd_m (insn) |
| || aarch64_ldst_simd_m_pi (insn)) |
| { |
| *rt = aarch64_rt (insn); |
| *load = aarch64_bit (insn, 22); |
| opcode = (insn >> 12) & 0xf; |
| switch (opcode) |
| { |
| case 0: |
| case 2: |
| *rt2 = *rt + 3; |
| break; |
| |
| case 4: |
| case 6: |
| *rt2 = *rt + 2; |
| break; |
| |
| case 7: |
| *rt2 = *rt; |
| break; |
| |
| case 8: |
| case 10: |
| *rt2 = *rt + 1; |
| break; |
| |
| default: |
| return false; |
| } |
| return true; |
| } |
| else if (aarch64_ldst_simd_s (insn) |
| || aarch64_ldst_simd_s_pi (insn)) |
| { |
| *rt = aarch64_rt (insn); |
| r = (insn >> 21) & 1; |
| *load = aarch64_bit (insn, 22); |
| opcode = (insn >> 13) & 0x7; |
| switch (opcode) |
| { |
| case 0: |
| case 2: |
| case 4: |
| *rt2 = *rt + r; |
| break; |
| |
| case 1: |
| case 3: |
| case 5: |
| *rt2 = *rt + (r == 0 ? 2 : 3); |
| break; |
| |
| case 6: |
| *rt2 = *rt + r; |
| break; |
| |
| case 7: |
| *rt2 = *rt + (r == 0 ? 2 : 3); |
| break; |
| |
| default: |
| return false; |
| } |
| return true; |
| } |
| return false; |
| } // End of "aarch64_mem_op_p". |
| |
| // Return true if INSN is mac insn. |
| static bool |
| aarch64_mac(Insntype insn) |
| { return (insn & 0xff000000) == 0x9b000000; } |
| |
| // Return true if INSN is multiply-accumulate. |
| // (This is similar to implementaton in elfnn-aarch64.c.) |
| static bool |
| aarch64_mlxl(Insntype insn) |
| { |
| uint32_t op31 = aarch64_op31(insn); |
| if (aarch64_mac(insn) |
| && (op31 == 0 || op31 == 1 || op31 == 5) |
| /* Exclude MUL instructions which are encoded as a multiple-accumulate |
| with RA = XZR. */ |
| && aarch64_ra(insn) != AARCH64_ZR) |
| { |
| return true; |
| } |
| return false; |
| } |
| }; // End of "AArch64_insn_utilities". |
| |
| |
| // Insn length in byte. |
| |
| template<bool big_endian> |
| const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4; |
| |
| |
| // Zero register encoding - 31. |
| |
| template<bool big_endian> |
| const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f; |
| |
| |
| // Output_data_got_aarch64 class. |
| |
| template<int size, bool big_endian> |
| class Output_data_got_aarch64 : public Output_data_got<size, big_endian> |
| { |
| public: |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype; |
| Output_data_got_aarch64(Symbol_table* symtab, Layout* layout) |
| : Output_data_got<size, big_endian>(), |
| symbol_table_(symtab), layout_(layout) |
| { } |
| |
| // Add a static entry for the GOT entry at OFFSET. GSYM is a global |
| // symbol and R_TYPE is the code of a dynamic relocation that needs to be |
| // applied in a static link. |
| void |
| add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym) |
| { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); } |
| |
| |
| // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object |
| // defining a local symbol with INDEX. R_TYPE is the code of a dynamic |
| // relocation that needs to be applied in a static link. |
| void |
| add_static_reloc(unsigned int got_offset, unsigned int r_type, |
| Sized_relobj_file<size, big_endian>* relobj, |
| unsigned int index) |
| { |
| this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj, |
| index)); |
| } |
| |
| |
| protected: |
| // Write out the GOT table. |
| void |
| do_write(Output_file* of) { |
| // The first entry in the GOT is the address of the .dynamic section. |
| gold_assert(this->data_size() >= size / 8); |
| Output_section* dynamic = this->layout_->dynamic_section(); |
| Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address(); |
| this->replace_constant(0, dynamic_addr); |
| Output_data_got<size, big_endian>::do_write(of); |
| |
| // Handling static relocs |
| if (this->static_relocs_.empty()) |
| return; |
| |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address; |
| |
| gold_assert(parameters->doing_static_link()); |
| const off_t offset = this->offset(); |
| const section_size_type oview_size = |
| convert_to_section_size_type(this->data_size()); |
| unsigned char* const oview = of->get_output_view(offset, oview_size); |
| |
| Output_segment* tls_segment = this->layout_->tls_segment(); |
| gold_assert(tls_segment != NULL); |
| |
| AArch64_address aligned_tcb_address = |
| align_address(Target_aarch64<size, big_endian>::TCB_SIZE, |
| tls_segment->maximum_alignment()); |
| |
| for (size_t i = 0; i < this->static_relocs_.size(); ++i) |
| { |
| Static_reloc& reloc(this->static_relocs_[i]); |
| AArch64_address value; |
| |
| if (!reloc.symbol_is_global()) |
| { |
| Sized_relobj_file<size, big_endian>* object = reloc.relobj(); |
| const Symbol_value<size>* psymval = |
| reloc.relobj()->local_symbol(reloc.index()); |
| |
| // We are doing static linking. Issue an error and skip this |
| // relocation if the symbol is undefined or in a discarded_section. |
| bool is_ordinary; |
| unsigned int shndx = psymval->input_shndx(&is_ordinary); |
| if ((shndx == elfcpp::SHN_UNDEF) |
| || (is_ordinary |
| && shndx != elfcpp::SHN_UNDEF |
| && !object->is_section_included(shndx) |
| && !this->symbol_table_->is_section_folded(object, shndx))) |
| { |
| gold_error(_("undefined or discarded local symbol %u from " |
| " object %s in GOT"), |
| reloc.index(), reloc.relobj()->name().c_str()); |
| continue; |
| } |
| value = psymval->value(object, 0); |
| } |
| else |
| { |
| const Symbol* gsym = reloc.symbol(); |
| gold_assert(gsym != NULL); |
| if (gsym->is_forwarder()) |
| gsym = this->symbol_table_->resolve_forwards(gsym); |
| |
| // We are doing static linking. Issue an error and skip this |
| // relocation if the symbol is undefined or in a discarded_section |
| // unless it is a weakly_undefined symbol. |
| if ((gsym->is_defined_in_discarded_section() |
| || gsym->is_undefined()) |
| && !gsym->is_weak_undefined()) |
| { |
| gold_error(_("undefined or discarded symbol %s in GOT"), |
| gsym->name()); |
| continue; |
| } |
| |
| if (!gsym->is_weak_undefined()) |
| { |
| const Sized_symbol<size>* sym = |
| static_cast<const Sized_symbol<size>*>(gsym); |
| value = sym->value(); |
| } |
| else |
| value = 0; |
| } |
| |
| unsigned got_offset = reloc.got_offset(); |
| gold_assert(got_offset < oview_size); |
| |
| typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype; |
| Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset); |
| Valtype x; |
| switch (reloc.r_type()) |
| { |
| case elfcpp::R_AARCH64_TLS_DTPREL64: |
| x = value; |
| break; |
| case elfcpp::R_AARCH64_TLS_TPREL64: |
| x = value + aligned_tcb_address; |
| break; |
| default: |
| gold_unreachable(); |
| } |
| elfcpp::Swap<size, big_endian>::writeval(wv, x); |
| } |
| |
| of->write_output_view(offset, oview_size, oview); |
| } |
| |
| private: |
| // Symbol table of the output object. |
| Symbol_table* symbol_table_; |
| // A pointer to the Layout class, so that we can find the .dynamic |
| // section when we write out the GOT section. |
| Layout* layout_; |
| |
| // This class represent dynamic relocations that need to be applied by |
| // gold because we are using TLS relocations in a static link. |
| class Static_reloc |
| { |
| public: |
| Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym) |
| : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true) |
| { this->u_.global.symbol = gsym; } |
| |
| Static_reloc(unsigned int got_offset, unsigned int r_type, |
| Sized_relobj_file<size, big_endian>* relobj, unsigned int index) |
| : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false) |
| { |
| this->u_.local.relobj = relobj; |
| this->u_.local.index = index; |
| } |
| |
| // Return the GOT offset. |
| unsigned int |
| got_offset() const |
| { return this->got_offset_; } |
| |
| // Relocation type. |
| unsigned int |
| r_type() const |
| { return this->r_type_; } |
| |
| // Whether the symbol is global or not. |
| bool |
| symbol_is_global() const |
| { return this->symbol_is_global_; } |
| |
| // For a relocation against a global symbol, the global symbol. |
| Symbol* |
| symbol() const |
| { |
| gold_assert(this->symbol_is_global_); |
| return this->u_.global.symbol; |
| } |
| |
| // For a relocation against a local symbol, the defining object. |
| Sized_relobj_file<size, big_endian>* |
| relobj() const |
| { |
| gold_assert(!this->symbol_is_global_); |
| return this->u_.local.relobj; |
| } |
| |
| // For a relocation against a local symbol, the local symbol index. |
| unsigned int |
| index() const |
| { |
| gold_assert(!this->symbol_is_global_); |
| return this->u_.local.index; |
| } |
| |
| private: |
| // GOT offset of the entry to which this relocation is applied. |
| unsigned int got_offset_; |
| // Type of relocation. |
| unsigned int r_type_; |
| // Whether this relocation is against a global symbol. |
| bool symbol_is_global_; |
| // A global or local symbol. |
| union |
| { |
| struct |
| { |
| // For a global symbol, the symbol itself. |
| Symbol* symbol; |
| } global; |
| struct |
| { |
| // For a local symbol, the object defining the symbol. |
| Sized_relobj_file<size, big_endian>* relobj; |
| // For a local symbol, the symbol index. |
| unsigned int index; |
| } local; |
| } u_; |
| }; // End of inner class Static_reloc |
| |
| std::vector<Static_reloc> static_relocs_; |
| }; // End of Output_data_got_aarch64 |
| |
| |
| template<int size, bool big_endian> |
| class AArch64_input_section; |
| |
| |
| template<int size, bool big_endian> |
| class AArch64_output_section; |
| |
| |
| template<int size, bool big_endian> |
| class AArch64_relobj; |
| |
| |
| // Stub type enum constants. |
| |
| enum |
| { |
| ST_NONE = 0, |
| |
| // Using adrp/add pair, 4 insns (including alignment) without mem access, |
| // the fastest stub. This has a limited jump distance, which is tested by |
| // aarch64_valid_for_adrp_p. |
| ST_ADRP_BRANCH = 1, |
| |
| // Using ldr-absolute-address/br-register, 4 insns with 1 mem access, |
| // unlimited in jump distance. |
| ST_LONG_BRANCH_ABS = 2, |
| |
| // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1 |
| // mem access, slowest one. Only used in position independent executables. |
| ST_LONG_BRANCH_PCREL = 3, |
| |
| // Stub for erratum 843419 handling. |
| ST_E_843419 = 4, |
| |
| // Stub for erratum 835769 handling. |
| ST_E_835769 = 5, |
| |
| // Number of total stub types. |
| ST_NUMBER = 6 |
| }; |
| |
| |
| // Struct that wraps insns for a particular stub. All stub templates are |
| // created/initialized as constants by Stub_template_repertoire. |
| |
| template<bool big_endian> |
| struct Stub_template |
| { |
| const typename AArch64_insn_utilities<big_endian>::Insntype* insns; |
| const int insn_num; |
| }; |
| |
| |
| // Simple singleton class that creates/initializes/stores all types of stub |
| // templates. |
| |
| template<bool big_endian> |
| class Stub_template_repertoire |
| { |
| public: |
| typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype; |
| |
| // Single static method to get stub template for a given stub type. |
| static const Stub_template<big_endian>* |
| get_stub_template(int type) |
| { |
| static Stub_template_repertoire<big_endian> singleton; |
| return singleton.stub_templates_[type]; |
| } |
| |
| private: |
| // Constructor - creates/initializes all stub templates. |
| Stub_template_repertoire(); |
| ~Stub_template_repertoire() |
| { } |
| |
| // Disallowing copy ctor and copy assignment operator. |
| Stub_template_repertoire(Stub_template_repertoire&); |
| Stub_template_repertoire& operator=(Stub_template_repertoire&); |
| |
| // Data that stores all insn templates. |
| const Stub_template<big_endian>* stub_templates_[ST_NUMBER]; |
| }; // End of "class Stub_template_repertoire". |
| |
| |
| // Constructor - creates/initilizes all stub templates. |
| |
| template<bool big_endian> |
| Stub_template_repertoire<big_endian>::Stub_template_repertoire() |
| { |
| // Insn array definitions. |
| const static Insntype ST_NONE_INSNS[] = {}; |
| |
| const static Insntype ST_ADRP_BRANCH_INSNS[] = |
| { |
| 0x90000010, /* adrp ip0, X */ |
| /* ADR_PREL_PG_HI21(X) */ |
| 0x91000210, /* add ip0, ip0, :lo12:X */ |
| /* ADD_ABS_LO12_NC(X) */ |
| 0xd61f0200, /* br ip0 */ |
| 0x00000000, /* alignment padding */ |
| }; |
| |
| const static Insntype ST_LONG_BRANCH_ABS_INSNS[] = |
| { |
| 0x58000050, /* ldr ip0, 0x8 */ |
| 0xd61f0200, /* br ip0 */ |
| 0x00000000, /* address field */ |
| 0x00000000, /* address fields */ |
| }; |
| |
| const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] = |
| { |
| 0x58000090, /* ldr ip0, 0x10 */ |
| 0x10000011, /* adr ip1, #0 */ |
| 0x8b110210, /* add ip0, ip0, ip1 */ |
| 0xd61f0200, /* br ip0 */ |
| 0x00000000, /* address field */ |
| 0x00000000, /* address field */ |
| 0x00000000, /* alignment padding */ |
| 0x00000000, /* alignment padding */ |
| }; |
| |
| const static Insntype ST_E_843419_INSNS[] = |
| { |
| 0x00000000, /* Placeholder for erratum insn. */ |
| 0x14000000, /* b <label> */ |
| }; |
| |
| // ST_E_835769 has the same stub template as ST_E_843419 |
| // but we reproduce the array here so that the sizeof |
| // expressions in install_insn_template will work. |
| const static Insntype ST_E_835769_INSNS[] = |
| { |
| 0x00000000, /* Placeholder for erratum insn. */ |
| 0x14000000, /* b <label> */ |
| }; |
| |
| #define install_insn_template(T) \ |
| const static Stub_template<big_endian> template_##T = { \ |
| T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \ |
| this->stub_templates_[T] = &template_##T |
| |
| install_insn_template(ST_NONE); |
| install_insn_template(ST_ADRP_BRANCH); |
| install_insn_template(ST_LONG_BRANCH_ABS); |
| install_insn_template(ST_LONG_BRANCH_PCREL); |
| install_insn_template(ST_E_843419); |
| install_insn_template(ST_E_835769); |
| |
| #undef install_insn_template |
| } |
| |
| |
| // Base class for stubs. |
| |
| template<int size, bool big_endian> |
| class Stub_base |
| { |
| public: |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address; |
| typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype; |
| |
| static const AArch64_address invalid_address = |
| static_cast<AArch64_address>(-1); |
| |
| static const section_offset_type invalid_offset = |
| static_cast<section_offset_type>(-1); |
| |
| Stub_base(int type) |
| : destination_address_(invalid_address), |
| offset_(invalid_offset), |
| type_(type) |
| {} |
| |
| ~Stub_base() |
| {} |
| |
| // Get stub type. |
| int |
| type() const |
| { return this->type_; } |
| |
| // Get stub template that provides stub insn information. |
| const Stub_template<big_endian>* |
| stub_template() const |
| { |
| return Stub_template_repertoire<big_endian>:: |
| get_stub_template(this->type()); |
| } |
| |
| // Get destination address. |
| AArch64_address |
| destination_address() const |
| { |
| gold_assert(this->destination_address_ != this->invalid_address); |
| return this->destination_address_; |
| } |
| |
| // Set destination address. |
| void |
| set_destination_address(AArch64_address address) |
| { |
| gold_assert(address != this->invalid_address); |
| this->destination_address_ = address; |
| } |
| |
| // Reset the destination address. |
| void |
| reset_destination_address() |
| { this->destination_address_ = this->invalid_address; } |
| |
| // Get offset of code stub. For Reloc_stub, it is the offset from the |
| // beginning of its containing stub table; for Erratum_stub, it is the offset |
| // from the end of reloc_stubs. |
| section_offset_type |
| offset() const |
| { |
| gold_assert(this->offset_ != this->invalid_offset); |
| return this->offset_; |
| } |
| |
| // Set stub offset. |
| void |
| set_offset(section_offset_type offset) |
| { this->offset_ = offset; } |
| |
| // Return the stub insn. |
| const Insntype* |
| insns() const |
| { return this->stub_template()->insns; } |
| |
| // Return num of stub insns. |
| unsigned int |
| insn_num() const |
| { return this->stub_template()->insn_num; } |
| |
| // Get size of the stub. |
| int |
| stub_size() const |
| { |
| return this->insn_num() * |
| AArch64_insn_utilities<big_endian>::BYTES_PER_INSN; |
| } |
| |
| // Write stub to output file. |
| void |
| write(unsigned char* view, section_size_type view_size) |
| { this->do_write(view, view_size); } |
| |
| protected: |
| // Abstract method to be implemented by sub-classes. |
| virtual void |
| do_write(unsigned char*, section_size_type) = 0; |
| |
| private: |
| // The last insn of a stub is a jump to destination insn. This field records |
| // the destination address. |
| AArch64_address destination_address_; |
| // The stub offset. Note this has difference interpretations between an |
| // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the |
| // beginning of the containing stub_table, whereas for Erratum_stub, this is |
| // the offset from the end of reloc_stubs. |
| section_offset_type offset_; |
| // Stub type. |
| const int type_; |
| }; // End of "Stub_base". |
| |
| |
| // Erratum stub class. An erratum stub differs from a reloc stub in that for |
| // each erratum occurrence, we generate an erratum stub. We never share erratum |
| // stubs, whereas for reloc stubs, different branch insns share a single reloc |
| // stub as long as the branch targets are the same. (More to the point, reloc |
| // stubs can be shared because they're used to reach a specific target, whereas |
| // erratum stubs branch back to the original control flow.) |
| |
| template<int size, bool big_endian> |
| class Erratum_stub : public Stub_base<size, big_endian> |
| { |
| public: |
| typedef AArch64_relobj<size, big_endian> The_aarch64_relobj; |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address; |
| typedef AArch64_insn_utilities<big_endian> Insn_utilities; |
| typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype; |
| |
| static const int STUB_ADDR_ALIGN; |
| |
| static const Insntype invalid_insn = static_cast<Insntype>(-1); |
| |
| Erratum_stub(The_aarch64_relobj* relobj, int type, |
| unsigned shndx, unsigned int sh_offset) |
| : Stub_base<size, big_endian>(type), relobj_(relobj), |
| shndx_(shndx), sh_offset_(sh_offset), |
| erratum_insn_(invalid_insn), |
| erratum_address_(this->invalid_address) |
| {} |
| |
| ~Erratum_stub() {} |
| |
| // Return the object that contains the erratum. |
| The_aarch64_relobj* |
| relobj() |
| { return this->relobj_; } |
| |
| // Get section index of the erratum. |
| unsigned int |
| shndx() const |
| { return this->shndx_; } |
| |
| // Get section offset of the erratum. |
| unsigned int |
| sh_offset() const |
| { return this->sh_offset_; } |
| |
| // Get the erratum insn. This is the insn located at erratum_insn_address. |
| Insntype |
| erratum_insn() const |
| { |
| gold_assert(this->erratum_insn_ != this->invalid_insn); |
| return this->erratum_insn_; |
| } |
| |
| // Set the insn that the erratum happens to. |
| void |
| set_erratum_insn(Insntype insn) |
| { this->erratum_insn_ = insn; } |
| |
| // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a |
| // relocation spot, in this case, the erratum_insn_ recorded at scanning phase |
| // is no longer the one we want to write out to the stub, update erratum_insn_ |
| // with relocated version. Also note that in this case xn must not be "PC", so |
| // it is safe to move the erratum insn from the origin place to the stub. For |
| // 835769, the erratum insn is multiply-accumulate insn, which could not be a |
| // relocation spot (assertion added though). |
| void |
| update_erratum_insn(Insntype insn) |
| { |
| gold_assert(this->erratum_insn_ != this->invalid_insn); |
| switch (this->type()) |
| { |
| case ST_E_843419: |
| gold_assert(Insn_utilities::aarch64_ldst_uimm(insn)); |
| gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn())); |
| gold_assert(Insn_utilities::aarch64_rd(insn) == |
| Insn_utilities::aarch64_rd(this->erratum_insn())); |
| gold_assert(Insn_utilities::aarch64_rn(insn) == |
| Insn_utilities::aarch64_rn(this->erratum_insn())); |
| // Update plain ld/st insn with relocated insn. |
| this->erratum_insn_ = insn; |
| break; |
| case ST_E_835769: |
| gold_assert(insn == this->erratum_insn()); |
| break; |
| default: |
| gold_unreachable(); |
| } |
| } |
| |
| |
| // Return the address where an erratum must be done. |
| AArch64_address |
| erratum_address() const |
| { |
| gold_assert(this->erratum_address_ != this->invalid_address); |
| return this->erratum_address_; |
| } |
| |
| // Set the address where an erratum must be done. |
| void |
| set_erratum_address(AArch64_address addr) |
| { this->erratum_address_ = addr; } |
| |
| // Later relaxation passes of may alter the recorded erratum and destination |
| // address. Given an up to date output section address of shidx_ in |
| // relobj_ we can derive the erratum_address and destination address. |
| void |
| update_erratum_address(AArch64_address output_section_addr) |
| { |
| const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN; |
| AArch64_address updated_addr = output_section_addr + this->sh_offset_; |
| this->set_erratum_address(updated_addr); |
| this->set_destination_address(updated_addr + BPI); |
| } |
| |
| // Comparator used to group Erratum_stubs in a set by (obj, shndx, |
| // sh_offset). We do not include 'type' in the calculation, because there is |
| // at most one stub type at (obj, shndx, sh_offset). |
| bool |
| operator<(const Erratum_stub<size, big_endian>& k) const |
| { |
| if (this == &k) |
| return false; |
| // We group stubs by relobj. |
| if (this->relobj_ != k.relobj_) |
| return this->relobj_ < k.relobj_; |
| // Then by section index. |
| if (this->shndx_ != k.shndx_) |
| return this->shndx_ < k.shndx_; |
| // Lastly by section offset. |
| return this->sh_offset_ < k.sh_offset_; |
| } |
| |
| void |
| invalidate_erratum_stub() |
| { |
| gold_assert(this->erratum_insn_ != invalid_insn); |
| this->erratum_insn_ = invalid_insn; |
| } |
| |
| bool |
| is_invalidated_erratum_stub() |
| { return this->erratum_insn_ == invalid_insn; } |
| |
| protected: |
| virtual void |
| do_write(unsigned char*, section_size_type); |
| |
| private: |
| // The object that needs to be fixed. |
| The_aarch64_relobj* relobj_; |
| // The shndx in the object that needs to be fixed. |
| const unsigned int shndx_; |
| // The section offset in the obejct that needs to be fixed. |
| const unsigned int sh_offset_; |
| // The insn to be fixed. |
| Insntype erratum_insn_; |
| // The address of the above insn. |
| AArch64_address erratum_address_; |
| }; // End of "Erratum_stub". |
| |
| |
| // Erratum sub class to wrap additional info needed by 843419. In fixing this |
| // erratum, we may choose to replace 'adrp' with 'adr', in this case, we need |
| // adrp's code position (two or three insns before erratum insn itself). |
| |
| template<int size, bool big_endian> |
| class E843419_stub : public Erratum_stub<size, big_endian> |
| { |
| public: |
| typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype; |
| |
| E843419_stub(AArch64_relobj<size, big_endian>* relobj, |
| unsigned int shndx, unsigned int sh_offset, |
| unsigned int adrp_sh_offset) |
| : Erratum_stub<size, big_endian>(relobj, ST_E_843419, shndx, sh_offset), |
| adrp_sh_offset_(adrp_sh_offset) |
| {} |
| |
| unsigned int |
| adrp_sh_offset() const |
| { return this->adrp_sh_offset_; } |
| |
| private: |
| // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we |
| // can obtain it from its parent.) |
| const unsigned int adrp_sh_offset_; |
| }; |
| |
| |
| template<int size, bool big_endian> |
| const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4; |
| |
| // Comparator used in set definition. |
| template<int size, bool big_endian> |
| struct Erratum_stub_less |
| { |
| bool |
| operator()(const Erratum_stub<size, big_endian>* s1, |
| const Erratum_stub<size, big_endian>* s2) const |
| { return *s1 < *s2; } |
| }; |
| |
| // Erratum_stub implementation for writing stub to output file. |
| |
| template<int size, bool big_endian> |
| void |
| Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type) |
| { |
| typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype; |
| const Insntype* insns = this->insns(); |
| uint32_t num_insns = this->insn_num(); |
| Insntype* ip = reinterpret_cast<Insntype*>(view); |
| // For current implemented erratum 843419 and 835769, the first insn in the |
| // stub is always a copy of the problematic insn (in 843419, the mem access |
| // insn, in 835769, the mac insn), followed by a jump-back. |
| elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn()); |
| for (uint32_t i = 1; i < num_insns; ++i) |
| elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]); |
| } |
| |
| |
| // Reloc stub class. |
| |
| template<int size, bool big_endian> |
| class Reloc_stub : public Stub_base<size, big_endian> |
| { |
| public: |
| typedef Reloc_stub<size, big_endian> This; |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address; |
| |
| // Branch range. This is used to calculate the section group size, as well as |
| // determine whether a stub is needed. |
| static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2; |
| static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2); |
| |
| // Constant used to determine if an offset fits in the adrp instruction |
| // encoding. |
| static const int MAX_ADRP_IMM = (1 << 20) - 1; |
| static const int MIN_ADRP_IMM = -(1 << 20); |
| |
| static const int BYTES_PER_INSN = 4; |
| static const int STUB_ADDR_ALIGN; |
| |
| // Determine whether the offset fits in the jump/branch instruction. |
| static bool |
| aarch64_valid_branch_offset_p(int64_t offset) |
| { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; } |
| |
| // Determine whether the offset fits in the adrp immediate field. |
| static bool |
| aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest) |
| { |
| typedef AArch64_relocate_functions<size, big_endian> Reloc; |
| int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12; |
| return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM; |
| } |
| |
| // Determine the stub type for a certain relocation or ST_NONE, if no stub is |
| // needed. |
| static int |
| stub_type_for_reloc(unsigned int r_type, AArch64_address address, |
| AArch64_address target); |
| |
| Reloc_stub(int type) |
| : Stub_base<size, big_endian>(type) |
| { } |
| |
| ~Reloc_stub() |
| { } |
| |
| // The key class used to index the stub instance in the stub table's stub map. |
| class Key |
| { |
| public: |
| Key(int type, const Symbol* symbol, const Relobj* relobj, |
| unsigned int r_sym, int32_t addend) |
| : type_(type), addend_(addend) |
| { |
| if (symbol != NULL) |
| { |
| this->r_sym_ = Reloc_stub::invalid_index; |
| this->u_.symbol = symbol; |
| } |
| else |
| { |
| gold_assert(relobj != NULL && r_sym != invalid_index); |
| this->r_sym_ = r_sym; |
| this->u_.relobj = relobj; |
| } |
| } |
| |
| ~Key() |
| { } |
| |
| // Return stub type. |
| int |
| type() const |
| { return this->type_; } |
| |
| // Return the local symbol index or invalid_index. |
| unsigned int |
| r_sym() const |
| { return this->r_sym_; } |
| |
| // Return the symbol if there is one. |
| const Symbol* |
| symbol() const |
| { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; } |
| |
| // Return the relobj if there is one. |
| const Relobj* |
| relobj() const |
| { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; } |
| |
| // Whether this equals to another key k. |
| bool |
| eq(const Key& k) const |
| { |
| return ((this->type_ == k.type_) |
| && (this->r_sym_ == k.r_sym_) |
| && ((this->r_sym_ != Reloc_stub::invalid_index) |
| ? (this->u_.relobj == k.u_.relobj) |
| : (this->u_.symbol == k.u_.symbol)) |
| && (this->addend_ == k.addend_)); |
| } |
| |
| // Return a hash value. |
| size_t |
| hash_value() const |
| { |
| size_t name_hash_value = gold::string_hash<char>( |
| (this->r_sym_ != Reloc_stub::invalid_index) |
| ? this->u_.relobj->name().c_str() |
| : this->u_.symbol->name()); |
| // We only have 4 stub types. |
| size_t stub_type_hash_value = 0x03 & this->type_; |
| return (name_hash_value |
| ^ stub_type_hash_value |
| ^ ((this->r_sym_ & 0x3fff) << 2) |
| ^ ((this->addend_ & 0xffff) << 16)); |
| } |
| |
| // Functors for STL associative containers. |
| struct hash |
| { |
| size_t |
| operator()(const Key& k) const |
| { return k.hash_value(); } |
| }; |
| |
| struct equal_to |
| { |
| bool |
| operator()(const Key& k1, const Key& k2) const |
| { return k1.eq(k2); } |
| }; |
| |
| private: |
| // Stub type. |
| const int type_; |
| // If this is a local symbol, this is the index in the defining object. |
| // Otherwise, it is invalid_index for a global symbol. |
| unsigned int r_sym_; |
| // If r_sym_ is an invalid index, this points to a global symbol. |
| // Otherwise, it points to a relobj. We used the unsized and target |
| // independent Symbol and Relobj classes instead of Sized_symbol<32> and |
| // Arm_relobj, in order to avoid making the stub class a template |
| // as most of the stub machinery is endianness-neutral. However, it |
| // may require a bit of casting done by users of this class. |
| union |
| { |
| const Symbol* symbol; |
| const Relobj* relobj; |
| } u_; |
| // Addend associated with a reloc. |
| int32_t addend_; |
| }; // End of inner class Reloc_stub::Key |
| |
| protected: |
| // This may be overridden in the child class. |
| virtual void |
| do_write(unsigned char*, section_size_type); |
| |
| private: |
| static const unsigned int invalid_index = static_cast<unsigned int>(-1); |
| }; // End of Reloc_stub |
| |
| template<int size, bool big_endian> |
| const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4; |
| |
| // Write data to output file. |
| |
| template<int size, bool big_endian> |
| void |
| Reloc_stub<size, big_endian>:: |
| do_write(unsigned char* view, section_size_type) |
| { |
| typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype; |
| const uint32_t* insns = this->insns(); |
| uint32_t num_insns = this->insn_num(); |
| Insntype* ip = reinterpret_cast<Insntype*>(view); |
| for (uint32_t i = 0; i < num_insns; ++i) |
| elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]); |
| } |
| |
| |
| // Determine the stub type for a certain relocation or ST_NONE, if no stub is |
| // needed. |
| |
| template<int size, bool big_endian> |
| inline int |
| Reloc_stub<size, big_endian>::stub_type_for_reloc( |
| unsigned int r_type, AArch64_address location, AArch64_address dest) |
| { |
| int64_t branch_offset = 0; |
| switch(r_type) |
| { |
| case elfcpp::R_AARCH64_CALL26: |
| case elfcpp::R_AARCH64_JUMP26: |
| branch_offset = dest - location; |
| break; |
| default: |
| gold_unreachable(); |
| } |
| |
| if (aarch64_valid_branch_offset_p(branch_offset)) |
| return ST_NONE; |
| |
| if (aarch64_valid_for_adrp_p(location, dest)) |
| return ST_ADRP_BRANCH; |
| |
| // Always use PC-relative addressing in case of -shared or -pie. |
| if (parameters->options().output_is_position_independent()) |
| return ST_LONG_BRANCH_PCREL; |
| |
| // This saves 2 insns per stub, compared to ST_LONG_BRANCH_PCREL. |
| // But is only applicable to non-shared or non-pie. |
| return ST_LONG_BRANCH_ABS; |
| } |
| |
| // A class to hold stubs for the ARM target. This contains 2 different types of |
| // stubs - reloc stubs and erratum stubs. |
| |
| template<int size, bool big_endian> |
| class Stub_table : public Output_data |
| { |
| public: |
| typedef Target_aarch64<size, big_endian> The_target_aarch64; |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address; |
| typedef AArch64_relobj<size, big_endian> The_aarch64_relobj; |
| typedef AArch64_input_section<size, big_endian> The_aarch64_input_section; |
| typedef Reloc_stub<size, big_endian> The_reloc_stub; |
| typedef typename The_reloc_stub::Key The_reloc_stub_key; |
| typedef Erratum_stub<size, big_endian> The_erratum_stub; |
| typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less; |
| typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash; |
| typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to; |
| typedef Stub_table<size, big_endian> The_stub_table; |
| typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*, |
| The_reloc_stub_key_hash, The_reloc_stub_key_equal_to> |
| Reloc_stub_map; |
| typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter; |
| typedef Relocate_info<size, big_endian> The_relocate_info; |
| |
| typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set; |
| typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter; |
| |
| Stub_table(The_aarch64_input_section* owner) |
| : Output_data(), owner_(owner), reloc_stubs_size_(0), |
| erratum_stubs_size_(0), prev_data_size_(0) |
| { } |
| |
| ~Stub_table() |
| { } |
| |
| The_aarch64_input_section* |
| owner() const |
| { return owner_; } |
| |
| // Whether this stub table is empty. |
| bool |
| empty() const |
| { return reloc_stubs_.empty() && erratum_stubs_.empty(); } |
| |
| // Return the current data size. |
| off_t |
| current_data_size() const |
| { return this->current_data_size_for_child(); } |
| |
| // Add a STUB using KEY. The caller is responsible for avoiding addition |
| // if a STUB with the same key has already been added. |
| void |
| add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key); |
| |
| // Add an erratum stub into the erratum stub set. The set is ordered by |
| // (relobj, shndx, sh_offset). |
| void |
| add_erratum_stub(The_erratum_stub* stub); |
| |
| // Find if such erratum exists for any given (obj, shndx, sh_offset). |
| The_erratum_stub* |
| find_erratum_stub(The_aarch64_relobj* a64relobj, |
| unsigned int shndx, unsigned int sh_offset); |
| |
| // Find all the erratums for a given input section. The return value is a pair |
| // of iterators [begin, end). |
| std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> |
| find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj, |
| unsigned int shndx); |
| |
| // Compute the erratum stub address. |
| AArch64_address |
| erratum_stub_address(The_erratum_stub* stub) const |
| { |
| AArch64_address r = align_address(this->address() + this->reloc_stubs_size_, |
| The_erratum_stub::STUB_ADDR_ALIGN); |
| r += stub->offset(); |
| return r; |
| } |
| |
| // Finalize stubs. No-op here, just for completeness. |
| void |
| finalize_stubs() |
| { } |
| |
| // Look up a relocation stub using KEY. Return NULL if there is none. |
| The_reloc_stub* |
| find_reloc_stub(The_reloc_stub_key& key) |
| { |
| Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key); |
| return (p != this->reloc_stubs_.end()) ? p->second : NULL; |
| } |
| |
| // Relocate reloc stubs in this stub table. This does not relocate erratum stubs. |
| void |
| relocate_reloc_stubs(const The_relocate_info*, |
| The_target_aarch64*, |
| Output_section*, |
| unsigned char*, |
| AArch64_address, |
| section_size_type); |
| |
| // Relocate an erratum stub. |
| void |
| relocate_erratum_stub(The_erratum_stub*, unsigned char*); |
| |
| // Update data size at the end of a relaxation pass. Return true if data size |
| // is different from that of the previous relaxation pass. |
| bool |
| update_data_size_changed_p() |
| { |
| // No addralign changed here. |
| off_t s = align_address(this->reloc_stubs_size_, |
| The_erratum_stub::STUB_ADDR_ALIGN) |
| + this->erratum_stubs_size_; |
| bool changed = (s != this->prev_data_size_); |
| this->prev_data_size_ = s; |
| return changed; |
| } |
| |
| protected: |
| // Write out section contents. |
| void |
| do_write(Output_file*); |
| |
| // Return the required alignment. |
| uint64_t |
| do_addralign() const |
| { |
| return std::max(The_reloc_stub::STUB_ADDR_ALIGN, |
| The_erratum_stub::STUB_ADDR_ALIGN); |
| } |
| |
| // Reset address and file offset. |
| void |
| do_reset_address_and_file_offset() |
| { this->set_current_data_size_for_child(this->prev_data_size_); } |
| |
| // Set final data size. |
| void |
| set_final_data_size() |
| { this->set_data_size(this->current_data_size()); } |
| |
| private: |
| // Relocate one reloc stub. |
| void |
| relocate_reloc_stub(The_reloc_stub*, |
| const The_relocate_info*, |
| The_target_aarch64*, |
| Output_section*, |
| unsigned char*, |
| AArch64_address, |
| section_size_type); |
| |
| private: |
| // Owner of this stub table. |
| The_aarch64_input_section* owner_; |
| // The relocation stubs. |
| Reloc_stub_map reloc_stubs_; |
| // The erratum stubs. |
| Erratum_stub_set erratum_stubs_; |
| // Size of reloc stubs. |
| off_t reloc_stubs_size_; |
| // Size of erratum stubs. |
| off_t erratum_stubs_size_; |
| // data size of this in the previous pass. |
| off_t prev_data_size_; |
| }; // End of Stub_table |
| |
| |
| // Add an erratum stub into the erratum stub set. The set is ordered by |
| // (relobj, shndx, sh_offset). |
| |
| template<int size, bool big_endian> |
| void |
| Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub) |
| { |
| std::pair<Erratum_stub_set_iter, bool> ret = |
| this->erratum_stubs_.insert(stub); |
| gold_assert(ret.second); |
| this->erratum_stubs_size_ = align_address( |
| this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN); |
| stub->set_offset(this->erratum_stubs_size_); |
| this->erratum_stubs_size_ += stub->stub_size(); |
| } |
| |
| |
| // Find if such erratum exists for given (obj, shndx, sh_offset). |
| |
| template<int size, bool big_endian> |
| Erratum_stub<size, big_endian>* |
| Stub_table<size, big_endian>::find_erratum_stub( |
| The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset) |
| { |
| // A dummy object used as key to search in the set. |
| The_erratum_stub key(a64relobj, ST_NONE, |
| shndx, sh_offset); |
| Erratum_stub_set_iter i = this->erratum_stubs_.find(&key); |
| if (i != this->erratum_stubs_.end()) |
| { |
| The_erratum_stub* stub(*i); |
| gold_assert(stub->erratum_insn() != 0); |
| return stub; |
| } |
| return NULL; |
| } |
| |
| |
| // Find all the errata for a given input section. The return value is a pair of |
| // iterators [begin, end). |
| |
| template<int size, bool big_endian> |
| std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter, |
| typename Stub_table<size, big_endian>::Erratum_stub_set_iter> |
| Stub_table<size, big_endian>::find_erratum_stubs_for_input_section( |
| The_aarch64_relobj* a64relobj, unsigned int shndx) |
| { |
| typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair; |
| Erratum_stub_set_iter start, end; |
| The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0); |
| start = this->erratum_stubs_.lower_bound(&low_key); |
| if (start == this->erratum_stubs_.end()) |
| return Result_pair(this->erratum_stubs_.end(), |
| this->erratum_stubs_.end()); |
| end = start; |
| while (end != this->erratum_stubs_.end() && |
| (*end)->relobj() == a64relobj && (*end)->shndx() == shndx) |
| ++end; |
| return Result_pair(start, end); |
| } |
| |
| |
| // Add a STUB using KEY. The caller is responsible for avoiding addition |
| // if a STUB with the same key has already been added. |
| |
| template<int size, bool big_endian> |
| void |
| Stub_table<size, big_endian>::add_reloc_stub( |
| The_reloc_stub* stub, const The_reloc_stub_key& key) |
| { |
| gold_assert(stub->type() == key.type()); |
| this->reloc_stubs_[key] = stub; |
| |
| // Assign stub offset early. We can do this because we never remove |
| // reloc stubs and they are in the beginning of the stub table. |
| this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, |
| The_reloc_stub::STUB_ADDR_ALIGN); |
| stub->set_offset(this->reloc_stubs_size_); |
| this->reloc_stubs_size_ += stub->stub_size(); |
| } |
| |
| |
| // Relocate an erratum stub. |
| |
| template<int size, bool big_endian> |
| void |
| Stub_table<size, big_endian>:: |
| relocate_erratum_stub(The_erratum_stub* estub, |
| unsigned char* view) |
| { |
| // Just for convenience. |
| const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN; |
| |
| gold_assert(!estub->is_invalidated_erratum_stub()); |
| AArch64_address stub_address = this->erratum_stub_address(estub); |
| // The address of "b" in the stub that is to be "relocated". |
| AArch64_address stub_b_insn_address; |
| // Branch offset that is to be filled in "b" insn. |
| int b_offset = 0; |
| switch (estub->type()) |
| { |
| case ST_E_843419: |
| case ST_E_835769: |
| // The 1st insn of the erratum could be a relocation spot, |
| // in this case we need to fix it with |
| // "(*i)->erratum_insn()". |
| elfcpp::Swap<32, big_endian>::writeval( |
| view + (stub_address - this->address()), |
| estub->erratum_insn()); |
| // For the erratum, the 2nd insn is a b-insn to be patched |
| // (relocated). |
| stub_b_insn_address = stub_address + 1 * BPI; |
| b_offset = estub->destination_address() - stub_b_insn_address; |
| AArch64_relocate_functions<size, big_endian>::construct_b( |
| view + (stub_b_insn_address - this->address()), |
| ((unsigned int)(b_offset)) & 0xfffffff); |
| break; |
| default: |
| gold_unreachable(); |
| break; |
| } |
| estub->invalidate_erratum_stub(); |
| } |
| |
| |
| // Relocate only reloc stubs in this stub table. This does not relocate erratum |
| // stubs. |
| |
| template<int size, bool big_endian> |
| void |
| Stub_table<size, big_endian>:: |
| relocate_reloc_stubs(const The_relocate_info* relinfo, |
| The_target_aarch64* target_aarch64, |
| Output_section* output_section, |
| unsigned char* view, |
| AArch64_address address, |
| section_size_type view_size) |
| { |
| // "view_size" is the total size of the stub_table. |
| gold_assert(address == this->address() && |
| view_size == static_cast<section_size_type>(this->data_size())); |
| for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin(); |
| p != this->reloc_stubs_.end(); ++p) |
| relocate_reloc_stub(p->second, relinfo, target_aarch64, output_section, |
| view, address, view_size); |
| } |
| |
| |
| // Relocate one reloc stub. This is a helper for |
| // Stub_table::relocate_reloc_stubs(). |
| |
| template<int size, bool big_endian> |
| void |
| Stub_table<size, big_endian>:: |
| relocate_reloc_stub(The_reloc_stub* stub, |
| const The_relocate_info* relinfo, |
| The_target_aarch64* target_aarch64, |
| Output_section* output_section, |
| unsigned char* view, |
| AArch64_address address, |
| section_size_type view_size) |
| { |
| // "offset" is the offset from the beginning of the stub_table. |
| section_size_type offset = stub->offset(); |
| section_size_type stub_size = stub->stub_size(); |
| // "view_size" is the total size of the stub_table. |
| gold_assert(offset + stub_size <= view_size); |
| |
| target_aarch64->relocate_reloc_stub(stub, relinfo, output_section, |
| view + offset, address + offset, view_size); |
| } |
| |
| |
| // Write out the stubs to file. |
| |
| template<int size, bool big_endian> |
| void |
| Stub_table<size, big_endian>::do_write(Output_file* of) |
| { |
| off_t offset = this->offset(); |
| const section_size_type oview_size = |
| convert_to_section_size_type(this->data_size()); |
| unsigned char* const oview = of->get_output_view(offset, oview_size); |
| |
| // Write relocation stubs. |
| for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin(); |
| p != this->reloc_stubs_.end(); ++p) |
| { |
| The_reloc_stub* stub = p->second; |
| AArch64_address address = this->address() + stub->offset(); |
| gold_assert(address == |
| align_address(address, The_reloc_stub::STUB_ADDR_ALIGN)); |
| stub->write(oview + stub->offset(), stub->stub_size()); |
| } |
| |
| // Write erratum stubs. |
| unsigned int erratum_stub_start_offset = |
| align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN); |
| for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin(); |
| p != this->erratum_stubs_.end(); ++p) |
| { |
| The_erratum_stub* stub(*p); |
| stub->write(oview + erratum_stub_start_offset + stub->offset(), |
| stub->stub_size()); |
| } |
| |
| of->write_output_view(this->offset(), oview_size, oview); |
| } |
| |
| |
| // AArch64_relobj class. |
| |
| template<int size, bool big_endian> |
| class AArch64_relobj : public Sized_relobj_file<size, big_endian> |
| { |
| public: |
| typedef AArch64_relobj<size, big_endian> This; |
| typedef Target_aarch64<size, big_endian> The_target_aarch64; |
| typedef AArch64_input_section<size, big_endian> The_aarch64_input_section; |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address; |
| typedef Stub_table<size, big_endian> The_stub_table; |
| typedef Erratum_stub<size, big_endian> The_erratum_stub; |
| typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter; |
| typedef std::vector<The_stub_table*> Stub_table_list; |
| static const AArch64_address invalid_address = |
| static_cast<AArch64_address>(-1); |
| |
| AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset, |
| const typename elfcpp::Ehdr<size, big_endian>& ehdr) |
| : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr), |
| stub_tables_() |
| { } |
| |
| ~AArch64_relobj() |
| { } |
| |
| // Return the stub table of the SHNDX-th section if there is one. |
| The_stub_table* |
| stub_table(unsigned int shndx) const |
| { |
| gold_assert(shndx < this->stub_tables_.size()); |
| return this->stub_tables_[shndx]; |
| } |
| |
| // Set STUB_TABLE to be the stub_table of the SHNDX-th section. |
| void |
| set_stub_table(unsigned int shndx, The_stub_table* stub_table) |
| { |
| gold_assert(shndx < this->stub_tables_.size()); |
| this->stub_tables_[shndx] = stub_table; |
| } |
| |
| // Entrance to errata scanning. |
| void |
| scan_errata(unsigned int shndx, |
| const elfcpp::Shdr<size, big_endian>&, |
| Output_section*, const Symbol_table*, |
| The_target_aarch64*); |
| |
| // Scan all relocation sections for stub generation. |
| void |
| scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*, |
| const Layout*); |
| |
| // Whether a section is a scannable text section. |
| bool |
| text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int, |
| const Output_section*, const Symbol_table*); |
| |
| // Convert regular input section with index SHNDX to a relaxed section. |
| void |
| convert_input_section_to_relaxed_section(unsigned shndx) |
| { |
| // The stubs have relocations and we need to process them after writing |
| // out the stubs. So relocation now must follow section write. |
| this->set_section_offset(shndx, -1ULL); |
| this->set_relocs_must_follow_section_writes(); |
| } |
| |
| // Structure for mapping symbol position. |
| struct Mapping_symbol_position |
| { |
| Mapping_symbol_position(unsigned int shndx, AArch64_address offset): |
| shndx_(shndx), offset_(offset) |
| {} |
| |
| // "<" comparator used in ordered_map container. |
| bool |
| operator<(const Mapping_symbol_position& p) const |
| { |
| return (this->shndx_ < p.shndx_ |
| || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_)); |
| } |
| |
| // Section index. |
| unsigned int shndx_; |
| |
| // Section offset. |
| AArch64_address offset_; |
| }; |
| |
| typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info; |
| |
| protected: |
| // Post constructor setup. |
| void |
| do_setup() |
| { |
| // Call parent's setup method. |
| Sized_relobj_file<size, big_endian>::do_setup(); |
| |
| // Initialize look-up tables. |
| this->stub_tables_.resize(this->shnum()); |
| } |
| |
| virtual void |
| do_relocate_sections( |
| const Symbol_table* symtab, const Layout* layout, |
| const unsigned char* pshdrs, Output_file* of, |
| typename Sized_relobj_file<size, big_endian>::Views* pviews); |
| |
| // Count local symbols and (optionally) record mapping info. |
| virtual void |
| do_count_local_symbols(Stringpool_template<char>*, |
| Stringpool_template<char>*); |
| |
| private: |
| // Fix all errata in the object, and for each erratum, relocate corresponding |
| // erratum stub. |
| void |
| fix_errata_and_relocate_erratum_stubs( |
| typename Sized_relobj_file<size, big_endian>::Views* pviews); |
| |
| // Try to fix erratum 843419 in an optimized way. Return true if patch is |
| // applied. |
| bool |
| try_fix_erratum_843419_optimized( |
| The_erratum_stub*, AArch64_address, |
| typename Sized_relobj_file<size, big_endian>::View_size&); |
| |
| // Whether a section needs to be scanned for relocation stubs. |
| bool |
| section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&, |
| const Relobj::Output_sections&, |
| const Symbol_table*, const unsigned char*); |
| |
| // List of stub tables. |
| Stub_table_list stub_tables_; |
| |
| // Mapping symbol information sorted by (section index, section_offset). |
| Mapping_symbol_info mapping_symbol_info_; |
| }; // End of AArch64_relobj |
| |
| |
| // Override to record mapping symbol information. |
| template<int size, bool big_endian> |
| void |
| AArch64_relobj<size, big_endian>::do_count_local_symbols( |
| Stringpool_template<char>* pool, Stringpool_template<char>* dynpool) |
| { |
| Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool); |
| |
| // Only erratum-fixing work needs mapping symbols, so skip this time consuming |
| // processing if not fixing erratum. |
| if (!parameters->options().fix_cortex_a53_843419() |
| && !parameters->options().fix_cortex_a53_835769()) |
| return; |
| |
| const unsigned int loccount = this->local_symbol_count(); |
| if (loccount == 0) |
| return; |
| |
| // Read the symbol table section header. |
| const unsigned int symtab_shndx = this->symtab_shndx(); |
| elfcpp::Shdr<size, big_endian> |
| symtabshdr(this, this->elf_file()->section_header(symtab_shndx)); |
| gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); |
| |
| // Read the local symbols. |
| const int sym_size =elfcpp::Elf_sizes<size>::sym_size; |
| gold_assert(loccount == symtabshdr.get_sh_info()); |
| off_t locsize = loccount * sym_size; |
| const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), |
| locsize, true, true); |
| |
| // For mapping symbol processing, we need to read the symbol names. |
| unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link()); |
| if (strtab_shndx >= this->shnum()) |
| { |
| this->error(_("invalid symbol table name index: %u"), strtab_shndx); |
| return; |
| } |
| |
| elfcpp::Shdr<size, big_endian> |
| strtabshdr(this, this->elf_file()->section_header(strtab_shndx)); |
| if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) |
| { |
| this->error(_("symbol table name section has wrong type: %u"), |
| static_cast<unsigned int>(strtabshdr.get_sh_type())); |
| return; |
| } |
| |
| const char* pnames = |
| reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(), |
| strtabshdr.get_sh_size(), |
| false, false)); |
| |
| // Skip the first dummy symbol. |
| psyms += sym_size; |
| typename Sized_relobj_file<size, big_endian>::Local_values* |
| plocal_values = this->local_values(); |
| for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) |
| { |
| elfcpp::Sym<size, big_endian> sym(psyms); |
| Symbol_value<size>& lv((*plocal_values)[i]); |
| AArch64_address input_value = lv.input_value(); |
| |
| // Check to see if this is a mapping symbol. AArch64 mapping symbols are |
| // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping |
| // symbols. |
| // Mapping symbols could be one of the following 4 forms - |
| // a) $x |
| // b) $x.<any...> |
| // c) $d |
| // d) $d.<any...> |
| const char* sym_name = pnames + sym.get_st_name(); |
| if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd') |
| && (sym_name[2] == '\0' || sym_name[2] == '.')) |
| { |
| bool is_ordinary; |
| unsigned int input_shndx = |
| this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary); |
| gold_assert(is_ordinary); |
| |
| Mapping_symbol_position msp(input_shndx, input_value); |
| // Insert mapping_symbol_info into map whose ordering is defined by |
| // (shndx, offset_within_section). |
| this->mapping_symbol_info_[msp] = sym_name[1]; |
| } |
| } |
| } |
| |
| |
| // Fix all errata in the object and for each erratum, we relocate the |
| // corresponding erratum stub (by calling Stub_table::relocate_erratum_stub). |
| |
| template<int size, bool big_endian> |
| void |
| AArch64_relobj<size, big_endian>::fix_errata_and_relocate_erratum_stubs( |
| typename Sized_relobj_file<size, big_endian>::Views* pviews) |
| { |
| typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype; |
| unsigned int shnum = this->shnum(); |
| const Relobj::Output_sections& out_sections(this->output_sections()); |
| for (unsigned int i = 1; i < shnum; ++i) |
| { |
| The_stub_table* stub_table = this->stub_table(i); |
| if (!stub_table) |
| continue; |
| std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> |
| ipair(stub_table->find_erratum_stubs_for_input_section(this, i)); |
| Erratum_stub_set_iter p = ipair.first, end = ipair.second; |
| typename Sized_relobj_file<size, big_endian>::View_size& |
| pview((*pviews)[i]); |
| AArch64_address view_offset = 0; |
| if (pview.is_input_output_view) |
| { |
| // In this case, write_sections has not added the output offset to |
| // the view's address, so we must do so. Currently this only happens |
| // for a relaxed section. |
| unsigned int index = this->adjust_shndx(i); |
| const Output_relaxed_input_section* poris = |
| out_sections[index]->find_relaxed_input_section(this, index); |
| gold_assert(poris != NULL); |
| view_offset = poris->address() - pview.address; |
| } |
| |
| while (p != end) |
| { |
| The_erratum_stub* stub = *p; |
| |
| // Double check data before fix. |
| gold_assert(pview.address + view_offset + stub->sh_offset() |
| == stub->erratum_address()); |
| |
| // Update previously recorded erratum insn with relocated |
| // version. |
| Insntype* ip = |
| reinterpret_cast<Insntype*>( |
| pview.view + view_offset + stub->sh_offset()); |
| Insntype insn_to_fix = ip[0]; |
| stub->update_erratum_insn(insn_to_fix); |
| |
| // First try to see if erratum is 843419 and if it can be fixed |
| // without using branch-to-stub. |
| if (!try_fix_erratum_843419_optimized(stub, view_offset, pview)) |
| { |
| // Replace the erratum insn with a branch-to-stub. |
| AArch64_address stub_address = |
| stub_table->erratum_stub_address(stub); |
| unsigned int b_offset = stub_address - stub->erratum_address(); |
| AArch64_relocate_functions<size, big_endian>::construct_b( |
| pview.view + view_offset + stub->sh_offset(), |
| b_offset & 0xfffffff); |
| } |
| |
| // Erratum fix is done (or skipped), continue to relocate erratum |
| // stub. Note, when erratum fix is skipped (either because we |
| // proactively change the code sequence or the code sequence is |
| // changed by relaxation, etc), we can still safely relocate the |
| // erratum stub, ignoring the fact the erratum could never be |
| // executed. |
| stub_table->relocate_erratum_stub( |
| stub, |
| pview.view + (stub_table->address() - pview.address)); |
| |
| // Next erratum stub. |
| ++p; |
| } |
| } |
| } |
| |
| |
| // This is an optimization for 843419. This erratum requires the sequence begin |
| // with 'adrp', when final value calculated by adrp fits in adr, we can just |
| // replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however, |
| // in this case, we do not delete the erratum stub (too late to do so), it is |
| // merely generated without ever being called.) |
| |
| template<int size, bool big_endian> |
| bool |
| AArch64_relobj<size, big_endian>::try_fix_erratum_843419_optimized( |
| The_erratum_stub* stub, AArch64_address view_offset, |
| typename Sized_relobj_file<size, big_endian>::View_size& pview) |
| { |
| if (stub->type() != ST_E_843419) |
| return false; |
| |
| typedef AArch64_insn_utilities<big_endian> Insn_utilities; |
| typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype; |
| E843419_stub<size, big_endian>* e843419_stub = |
| reinterpret_cast<E843419_stub<size, big_endian>*>(stub); |
| AArch64_address pc = |
| pview.address + view_offset + e843419_stub->adrp_sh_offset(); |
| unsigned int adrp_offset = e843419_stub->adrp_sh_offset (); |
| Insntype* adrp_view = |
| reinterpret_cast<Insntype*>(pview.view + view_offset + adrp_offset); |
| Insntype adrp_insn = adrp_view[0]; |
| |
| // If the instruction at adrp_sh_offset is "mrs R, tpidr_el0", it may come |
| // from IE -> LE relaxation etc. This is a side-effect of TLS relaxation that |
| // ADRP has been turned into MRS, there is no erratum risk anymore. |
| // Therefore, we return true to avoid doing unnecessary branch-to-stub. |
| if (Insn_utilities::is_mrs_tpidr_el0(adrp_insn)) |
| return true; |
| |
| // If the instruction at adrp_sh_offset is not ADRP and the instruction before |
| // it is "mrs R, tpidr_el0", it may come from LD -> LE relaxation etc. |
| // Like the above case, there is no erratum risk any more, we can safely |
| // return true. |
| if (!Insn_utilities::is_adrp(adrp_insn) && adrp_offset) |
| { |
| Insntype* prev_view = |
| reinterpret_cast<Insntype*>( |
| pview.view + view_offset + adrp_offset - 4); |
| Insntype prev_insn = prev_view[0]; |
| |
| if (Insn_utilities::is_mrs_tpidr_el0(prev_insn)) |
| return true; |
| } |
| |
| /* If we reach here, the first instruction must be ADRP. */ |
| gold_assert(Insn_utilities::is_adrp(adrp_insn)); |
| // Get adrp 33-bit signed imm value. |
| int64_t adrp_imm = Insn_utilities:: |
| aarch64_adrp_decode_imm(adrp_insn); |
| // adrp - final value transferred to target register is calculated as: |
| // PC[11:0] = Zeros(12) |
| // adrp_dest_value = PC + adrp_imm; |
| int64_t adrp_dest_value = (pc & ~((1 << 12) - 1)) + adrp_imm; |
| // adr -final value transferred to target register is calucalted as: |
| // PC + adr_imm |
| // So we have: |
| // PC + adr_imm = adrp_dest_value |
| // ==> |
| // adr_imm = adrp_dest_value - PC |
| int64_t adr_imm = adrp_dest_value - pc; |
| // Check if imm fits in adr (21-bit signed). |
| if (-(1 << 20) <= adr_imm && adr_imm < (1 << 20)) |
| { |
| // Convert 'adrp' into 'adr'. |
| Insntype adr_insn = adrp_insn & ((1u << 31) - 1); |
| adr_insn = Insn_utilities:: |
| aarch64_adr_encode_imm(adr_insn, adr_imm); |
| elfcpp::Swap<32, big_endian>::writeval(adrp_view, adr_insn); |
| return true; |
| } |
| return false; |
| } |
| |
| |
| // Relocate sections. |
| |
| template<int size, bool big_endian> |
| void |
| AArch64_relobj<size, big_endian>::do_relocate_sections( |
| const Symbol_table* symtab, const Layout* layout, |
| const unsigned char* pshdrs, Output_file* of, |
| typename Sized_relobj_file<size, big_endian>::Views* pviews) |
| { |
| // Relocate the section data. |
| this->relocate_section_range(symtab, layout, pshdrs, of, pviews, |
| 1, this->shnum() - 1); |
| |
| // We do not generate stubs if doing a relocatable link. |
| if (parameters->options().relocatable()) |
| return; |
| |
| // This part only relocates erratum stubs that belong to input sections of this |
| // object file. |
| if (parameters->options().fix_cortex_a53_843419() |
| || parameters->options().fix_cortex_a53_835769()) |
| this->fix_errata_and_relocate_erratum_stubs(pviews); |
| |
| Relocate_info<size, big_endian> relinfo; |
| relinfo.symtab = symtab; |
| relinfo.layout = layout; |
| relinfo.object = this; |
| |
| // This part relocates all reloc stubs that are contained in stub_tables of |
| // this object file. |
| unsigned int shnum = this->shnum(); |
| The_target_aarch64* target = The_target_aarch64::current_target(); |
| |
| for (unsigned int i = 1; i < shnum; ++i) |
| { |
| The_aarch64_input_section* aarch64_input_section = |
| target->find_aarch64_input_section(this, i); |
| if (aarch64_input_section != NULL |
| && aarch64_input_section->is_stub_table_owner() |
| && !aarch64_input_section->stub_table()->empty()) |
| { |
| Output_section* os = this->output_section(i); |
| gold_assert(os != NULL); |
| |
| relinfo.reloc_shndx = elfcpp::SHN_UNDEF; |
| relinfo.reloc_shdr = NULL; |
| relinfo.data_shndx = i; |
| relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size; |
| |
| typename Sized_relobj_file<size, big_endian>::View_size& |
| view_struct = (*pviews)[i]; |
| gold_assert(view_struct.view != NULL); |
| |
| The_stub_table* stub_table = aarch64_input_section->stub_table(); |
| off_t offset = stub_table->address() - view_struct.address; |
| unsigned char* view = view_struct.view + offset; |
| AArch64_address address = stub_table->address(); |
| section_size_type view_size = stub_table->data_size(); |
| stub_table->relocate_reloc_stubs(&relinfo, target, os, view, address, |
| view_size); |
| } |
| } |
| } |
| |
| |
| // Determine if an input section is scannable for stub processing. SHDR is |
| // the header of the section and SHNDX is the section index. OS is the output |
| // section for the input section and SYMTAB is the global symbol table used to |
| // look up ICF information. |
| |
| template<int size, bool big_endian> |
| bool |
| AArch64_relobj<size, big_endian>::text_section_is_scannable( |
| const elfcpp::Shdr<size, big_endian>& text_shdr, |
| unsigned int text_shndx, |
| const Output_section* os, |
| const Symbol_table* symtab) |
| { |
| // Skip any empty sections, unallocated sections or sections whose |
| // type are not SHT_PROGBITS. |
| if (text_shdr.get_sh_size() == 0 |
| || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0 |
| || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS) |
| return false; |
| |
| // Skip any discarded or ICF'ed sections. |
| if (os == NULL || symtab->is_section_folded(this, text_shndx)) |
| return false; |
| |
| // Skip exception frame. |
| if (strcmp(os->name(), ".eh_frame") == 0) |
| return false ; |
| |
| gold_assert(!this->is_output_section_offset_invalid(text_shndx) || |
| os->find_relaxed_input_section(this, text_shndx) != NULL); |
| |
| return true; |
| } |
| |
| |
| // Determine if we want to scan the SHNDX-th section for relocation stubs. |
| // This is a helper for AArch64_relobj::scan_sections_for_stubs(). |
| |
| template<int size, bool big_endian> |
| bool |
| AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning( |
| const elfcpp::Shdr<size, big_endian>& shdr, |
| const Relobj::Output_sections& out_sections, |
| const Symbol_table* symtab, |
| const unsigned char* pshdrs) |
| { |
| unsigned int sh_type = shdr.get_sh_type(); |
| if (sh_type != elfcpp::SHT_RELA) |
| return false; |
| |
| // Ignore empty section. |
| off_t sh_size = shdr.get_sh_size(); |
| if (sh_size == 0) |
| return false; |
| |
| // Ignore reloc section with unexpected symbol table. The |
| // error will be reported in the final link. |
| if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx()) |
| return false; |
| |
| gold_assert(sh_type == elfcpp::SHT_RELA); |
| unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size; |
| |
| // Ignore reloc section with unexpected entsize or uneven size. |
| // The error will be reported in the final link. |
| if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0) |
| return false; |
| |
| // Ignore reloc section with bad info. This error will be |
| // reported in the final link. |
| unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info()); |
| if (text_shndx >= this->shnum()) |
| return false; |
| |
| const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; |
| const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs + |
| text_shndx * shdr_size); |
| return this->text_section_is_scannable(text_shdr, text_shndx, |
| out_sections[text_shndx], symtab); |
| } |
| |
| |
| // Scan section SHNDX for erratum 843419 and 835769. |
| |
| template<int size, bool big_endian> |
| void |
| AArch64_relobj<size, big_endian>::scan_errata( |
| unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr, |
| Output_section* os, const Symbol_table* symtab, |
| The_target_aarch64* target) |
| { |
| if (shdr.get_sh_size() == 0 |
| || (shdr.get_sh_flags() & |
| (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0 |
| || shdr.get_sh_type() != elfcpp::SHT_PROGBITS) |
| return; |
| |
| if (!os || symtab->is_section_folded(this, shndx)) return; |
| |
| AArch64_address output_offset = this->get_output_section_offset(shndx); |
| AArch64_address output_address; |
| if (output_offset != invalid_address) |
| output_address = os->address() + output_offset; |
| else |
| { |
| const Output_relaxed_input_section* poris = |
| os->find_relaxed_input_section(this, shndx); |
| if (!poris) return; |
| output_address = poris->address(); |
| } |
| |
| // Update the addresses in previously generated erratum stubs. Unlike when |
| // we scan relocations for stubs, if section addresses have changed due to |
| // other relaxations we are unlikely to scan the same erratum instances |
| // again. |
| The_stub_table* stub_table = this->stub_table(shndx); |
| if (stub_table) |
| { |
| std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> |
| ipair(stub_table->find_erratum_stubs_for_input_section(this, shndx)); |
| for (Erratum_stub_set_iter p = ipair.first; p != ipair.second; ++p) |
| (*p)->update_erratum_address(output_address); |
| } |
| |
| section_size_type input_view_size = 0; |
| const unsigned char* input_view = |
| this->section_contents(shndx, &input_view_size, false); |
| |
| Mapping_symbol_position section_start(shndx, 0); |
| // Find the first mapping symbol record within section shndx. |
| typename Mapping_symbol_info::const_iterator p = |
| this->mapping_symbol_info_.lower_bound(section_start); |
| while (p != this->mapping_symbol_info_.end() && |
| p->first.shndx_ == shndx) |
| { |
| typename Mapping_symbol_info::const_iterator prev = p; |
| ++p; |
| if (prev->second == 'x') |
| { |
| section_size_type span_start = |
| convert_to_section_size_type(prev->first.offset_); |
| section_size_type span_end; |
| if (p != this->mapping_symbol_info_.end() |
| && p->first.shndx_ == shndx) |
| span_end = convert_to_section_size_type(p->first.offset_); |
| else |
| span_end = convert_to_section_size_type(shdr.get_sh_size()); |
| |
| // Here we do not share the scanning code of both errata. For 843419, |
| // only the last few insns of each page are examined, which is fast, |
| // whereas, for 835769, every insn pair needs to be checked. |
| |
| if (parameters->options().fix_cortex_a53_843419()) |
| target->scan_erratum_843419_span( |
| this, shndx, span_start, span_end, |
| const_cast<unsigned char*>(input_view), output_address); |
| |
| if (parameters->options().fix_cortex_a53_835769()) |
| target->scan_erratum_835769_span( |
| this, shndx, span_start, span_end, |
| const_cast<unsigned char*>(input_view), output_address); |
| } |
| } |
| } |
| |
| |
| // Scan relocations for stub generation. |
| |
| template<int size, bool big_endian> |
| void |
| AArch64_relobj<size, big_endian>::scan_sections_for_stubs( |
| The_target_aarch64* target, |
| const Symbol_table* symtab, |
| const Layout* layout) |
| { |
| unsigned int shnum = this->shnum(); |
| const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; |
| |
| // Read the section headers. |
| const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(), |
| shnum * shdr_size, |
| true, true); |
| |
| // To speed up processing, we set up hash tables for fast lookup of |
| // input offsets to output addresses. |
| this->initialize_input_to_output_maps(); |
| |
| const Relobj::Output_sections& out_sections(this->output_sections()); |
| |
| Relocate_info<size, big_endian> relinfo; |
| relinfo.symtab = symtab; |
| relinfo.layout = layout; |
| relinfo.object = this; |
| |
| // Do relocation stubs scanning. |
| const unsigned char* p = pshdrs + shdr_size; |
| for (unsigned int i = 1; i < shnum; ++i, p += shdr_size) |
| { |
| const elfcpp::Shdr<size, big_endian> shdr(p); |
| if (parameters->options().fix_cortex_a53_843419() |
| || parameters->options().fix_cortex_a53_835769()) |
| scan_errata(i, shdr, out_sections[i], symtab, target); |
| if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab, |
| pshdrs)) |
| { |
| unsigned int index = this->adjust_shndx(shdr.get_sh_info()); |
| AArch64_address output_offset = |
| this->get_output_section_offset(index); |
| AArch64_address output_address; |
| if (output_offset != invalid_address) |
| { |
| output_address = out_sections[index]->address() + output_offset; |
| } |
| else |
| { |
| // Currently this only happens for a relaxed section. |
| const Output_relaxed_input_section* poris = |
| out_sections[index]->find_relaxed_input_section(this, index); |
| gold_assert(poris != NULL); |
| output_address = poris->address(); |
| } |
| |
| // Get the relocations. |
| const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(), |
| shdr.get_sh_size(), |
| true, false); |
| |
| // Get the section contents. |
| section_size_type input_view_size = 0; |
| const unsigned char* input_view = |
| this->section_contents(index, &input_view_size, false); |
| |
| relinfo.reloc_shndx = i; |
| relinfo.data_shndx = index; |
| unsigned int sh_type = shdr.get_sh_type(); |
| unsigned int reloc_size; |
| gold_assert (sh_type == elfcpp::SHT_RELA); |
| reloc_size = elfcpp::Elf_sizes<size>::rela_size; |
| |
| Output_section* os = out_sections[index]; |
| target->scan_section_for_stubs(&relinfo, sh_type, prelocs, |
| shdr.get_sh_size() / reloc_size, |
| os, |
| output_offset == invalid_address, |
| input_view, output_address, |
| input_view_size); |
| } |
| } |
| } |
| |
| |
| // A class to wrap an ordinary input section containing executable code. |
| |
| template<int size, bool big_endian> |
| class AArch64_input_section : public Output_relaxed_input_section |
| { |
| public: |
| typedef Stub_table<size, big_endian> The_stub_table; |
| |
| AArch64_input_section(Relobj* relobj, unsigned int shndx) |
| : Output_relaxed_input_section(relobj, shndx, 1), |
| stub_table_(NULL), |
| original_contents_(NULL), original_size_(0), |
| original_addralign_(1) |
| { } |
| |
| ~AArch64_input_section() |
| { delete[] this->original_contents_; } |
| |
| // Initialize. |
| void |
| init(); |
| |
| // Set the stub_table. |
| void |
| set_stub_table(The_stub_table* st) |
| { this->stub_table_ = st; } |
| |
| // Whether this is a stub table owner. |
| bool |
| is_stub_table_owner() const |
| { return this->stub_table_ != NULL && this->stub_table_->owner() == this; } |
| |
| // Return the original size of the section. |
| uint32_t |
| original_size() const |
| { return this->original_size_; } |
| |
| // Return the stub table. |
| The_stub_table* |
| stub_table() |
| { return stub_table_; } |
| |
| protected: |
| // Write out this input section. |
| void |
| do_write(Output_file*); |
| |
| // Return required alignment of this. |
| uint64_t |
| do_addralign() const |
| { |
| if (this->is_stub_table_owner()) |
| return std::max(this->stub_table_->addralign(), |
| static_cast<uint64_t>(this->original_addralign_)); |
| else |
| return this->original_addralign_; |
| } |
| |
| // Finalize data size. |
| void |
| set_final_data_size(); |
| |
| // Reset address and file offset. |
| void |
| do_reset_address_and_file_offset(); |
| |
| // Output offset. |
| bool |
| do_output_offset(const Relobj* object, unsigned int shndx, |
| section_offset_type offset, |
| section_offset_type* poutput) const |
| { |
| if ((object == this->relobj()) |
| && (shndx == this->shndx()) |
| && (offset >= 0) |
| && (offset <= |
| convert_types<section_offset_type, uint32_t>(this->original_size_))) |
| { |
| *poutput = offset; |
| return true; |
| } |
| else |
| return false; |
| } |
| |
| private: |
| // Copying is not allowed. |
| AArch64_input_section(const AArch64_input_section&); |
| AArch64_input_section& operator=(const AArch64_input_section&); |
| |
| // The relocation stubs. |
| The_stub_table* stub_table_; |
| // Original section contents. We have to make a copy here since the file |
| // containing the original section may not be locked when we need to access |
| // the contents. |
| unsigned char* original_contents_; |
| // Section size of the original input section. |
| uint32_t original_size_; |
| // Address alignment of the original input section. |
| uint32_t original_addralign_; |
| }; // End of AArch64_input_section |
| |
| |
| // Finalize data size. |
| |
| template<int size, bool big_endian> |
| void |
| AArch64_input_section<size, big_endian>::set_final_data_size() |
| { |
| off_t off = convert_types<off_t, uint64_t>(this->original_size_); |
| |
| if (this->is_stub_table_owner()) |
| { |
| this->stub_table_->finalize_data_size(); |
| off = align_address(off, this->stub_table_->addralign()); |
| off += this->stub_table_->data_size(); |
| } |
| this->set_data_size(off); |
| } |
| |
| |
| // Reset address and file offset. |
| |
| template<int size, bool big_endian> |
| void |
| AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset() |
| { |
| // Size of the original input section contents. |
| off_t off = convert_types<off_t, uint64_t>(this->original_size_); |
| |
| // If this is a stub table owner, account for the stub table size. |
| if (this->is_stub_table_owner()) |
| { |
| The_stub_table* stub_table = this->stub_table_; |
| |
| // Reset the stub table's address and file offset. The |
| // current data size for child will be updated after that. |
| stub_table_->reset_address_and_file_offset(); |
| off = align_address(off, stub_table_->addralign()); |
| off += stub_table->current_data_size(); |
| } |
| |
| this->set_current_data_size(off); |
| } |
| |
| |
| // Initialize an Arm_input_section. |
| |
| template<int size, bool big_endian> |
| void |
| AArch64_input_section<size, big_endian>::init() |
| { |
| Relobj* relobj = this->relobj(); |
| unsigned int shndx = this->shndx(); |
| |
| // We have to cache original size, alignment and contents to avoid locking |
| // the original file. |
| this->original_addralign_ = |
| convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx)); |
| |
| // This is not efficient but we expect only a small number of relaxed |
| // input sections for stubs. |
| section_size_type section_size; |
| const unsigned char* section_contents = |
| relobj->section_contents(shndx, §ion_size, false); |
| this->original_size_ = |
| convert_types<uint32_t, uint64_t>(relobj->section_size(shndx)); |
| |
| gold_assert(this->original_contents_ == NULL); |
| this->original_contents_ = new unsigned char[section_size]; |
| memcpy(this->original_contents_, section_contents, section_size); |
| |
| // We want to make this look like the original input section after |
| // output sections are finalized. |
| Output_section* os = relobj->output_section(shndx); |
| off_t offset = relobj->output_section_offset(shndx); |
| gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx)); |
| this->set_address(os->address() + offset); |
| this->set_file_offset(os->offset() + offset); |
| this->set_current_data_size(this->original_size_); |
| this->finalize_data_size(); |
| } |
| |
| |
| // Write data to output file. |
| |
| template<int size, bool big_endian> |
| void |
| AArch64_input_section<size, big_endian>::do_write(Output_file* of) |
| { |
| // We have to write out the original section content. |
| gold_assert(this->original_contents_ != NULL); |
| of->write(this->offset(), this->original_contents_, |
| this->original_size_); |
| |
| // If this owns a stub table and it is not empty, write it. |
| if (this->is_stub_table_owner() && !this->stub_table_->empty()) |
| this->stub_table_->write(of); |
| } |
| |
| |
| // Arm output section class. This is defined mainly to add a number of stub |
| // generation methods. |
| |
| template<int size, bool big_endian> |
| class AArch64_output_section : public Output_section |
| { |
| public: |
| typedef Target_aarch64<size, big_endian> The_target_aarch64; |
| typedef AArch64_relobj<size, big_endian> The_aarch64_relobj; |
| typedef Stub_table<size, big_endian> The_stub_table; |
| typedef AArch64_input_section<size, big_endian> The_aarch64_input_section; |
| |
| public: |
| AArch64_output_section(const char* name, elfcpp::Elf_Word type, |
| elfcpp::Elf_Xword flags) |
| : Output_section(name, type, flags) |
| { } |
| |
| ~AArch64_output_section() {} |
| |
| // Group input sections for stub generation. |
| void |
| group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*, |
| const Task*); |
| |
| private: |
| typedef Output_section::Input_section Input_section; |
| typedef Output_section::Input_section_list Input_section_list; |
| |
| // Create a stub group. |
| void |
| create_stub_group(Input_section_list::const_iterator, |
| Input_section_list::const_iterator, |
| Input_section_list::const_iterator, |
| The_target_aarch64*, |
| std::vector<Output_relaxed_input_section*>&, |
| const Task*); |
| }; // End of AArch64_output_section |
| |
| |
| // Create a stub group for input sections from FIRST to LAST. OWNER points to |
| // the input section that will be the owner of the stub table. |
| |
| template<int size, bool big_endian> void |
| AArch64_output_section<size, big_endian>::create_stub_group( |
| Input_section_list::const_iterator first, |
| Input_section_list::const_iterator last, |
| Input_section_list::const_iterator owner, |
| The_target_aarch64* target, |
| std::vector<Output_relaxed_input_section*>& new_relaxed_sections, |
| const Task* task) |
| { |
| // Currently we convert ordinary input sections into relaxed sections only |
| // at this point. |
| The_aarch64_input_section* input_section; |
| if (owner->is_relaxed_input_section()) |
| gold_unreachable(); |
| else |
| { |
| gold_assert(owner->is_input_section()); |
| // Create a new relaxed input section. We need to lock the original |
| // file. |
| Task_lock_obj<Object> tl(task, owner->relobj()); |
| input_section = |
| target->new_aarch64_input_section(owner->relobj(), owner->shndx()); |
| new_relaxed_sections.push_back(input_section); |
| } |
| |
| // Create a stub table. |
| The_stub_table* stub_table = |
| target->new_stub_table(input_section); |
| |
| input_section->set_stub_table(stub_table); |
| |
| Input_section_list::const_iterator p = first; |
| // Look for input sections or relaxed input sections in [first ... last]. |
| do |
| { |
| if (p->is_input_section() || p->is_relaxed_input_section()) |
| { |
| // The stub table information for input sections live |
| // in their objects. |
| The_aarch64_relobj* aarch64_relobj = |
| static_cast<The_aarch64_relobj*>(p->relobj()); |
| aarch64_relobj->set_stub_table(p->shndx(), stub_table); |
| } |
| } |
| while (p++ != last); |
| } |
| |
| |
| // Group input sections for stub generation. GROUP_SIZE is roughly the limit of |
| // stub groups. We grow a stub group by adding input section until the size is |
| // just below GROUP_SIZE. The last input section will be converted into a stub |
| // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond |
| // after the stub table, effectively doubling the group size. |
| // |
| // This is similar to the group_sections() function in elf32-arm.c but is |
| // implemented differently. |
| |
| template<int size, bool big_endian> |
| void AArch64_output_section<size, big_endian>::group_sections( |
| section_size_type group_size, |
| bool stubs_always_after_branch, |
| Target_aarch64<size, big_endian>* target, |
| const Task* task) |
| { |
| typedef enum |
| { |
| NO_GROUP, |
| FINDING_STUB_SECTION, |
| HAS_STUB_SECTION |
| } State; |
| |
| std::vector<Output_relaxed_input_section*> new_relaxed_sections; |
| |
| State state = NO_GROUP; |
| section_size_type off = 0; |
| section_size_type group_begin_offset = 0; |
| section_size_type group_end_offset = 0; |
| section_size_type stub_table_end_offset = 0; |
| Input_section_list::const_iterator group_begin = |
| this->input_sections().end(); |
| Input_section_list::const_iterator stub_table = |
| this->input_sections().end(); |
| Input_section_list::const_iterator group_end = this->input_sections().end(); |
| for (Input_section_list::const_iterator p = this->input_sections().begin(); |
| p != this->input_sections().end(); |
| ++p) |
| { |
| section_size_type section_begin_offset = |
| align_address(off, p->addralign()); |
| section_size_type section_end_offset = |
| section_begin_offset + p->data_size(); |
| |
| // Check to see if we should group the previously seen sections. |
| switch (state) |
| { |
| case NO_GROUP: |
| break; |
| |
| case FINDING_STUB_SECTION: |
| // Adding this section makes the group larger than GROUP_SIZE. |
| if (section_end_offset - group_begin_offset >= group_size) |
| { |
| if (stubs_always_after_branch) |
| { |
| gold_assert(group_end != this->input_sections().end()); |
| this->create_stub_group(group_begin, group_end, group_end, |
| target, new_relaxed_sections, |
| task); |
| state = NO_GROUP; |
| } |
| else |
| { |
| // Input sections up to stub_group_size bytes after the stub |
| // table can be handled by it too. |
| state = HAS_STUB_SECTION; |
| stub_table = group_end; |
| stub_table_end_offset = group_end_offset; |
| } |
| } |
| break; |
| |
| case HAS_STUB_SECTION: |
| // Adding this section makes the post stub-section group larger |
| // than GROUP_SIZE. |
| gold_unreachable(); |
| // NOT SUPPORTED YET. For completeness only. |
| if (section_end_offset - stub_table_end_offset >= group_size) |
| { |
| gold_assert(group_end != this->input_sections().end()); |
| this->create_stub_group(group_begin, group_end, stub_table, |
| target, new_relaxed_sections, task); |
| state = NO_GROUP; |
| } |
| break; |
| |
| default: |
| gold_unreachable(); |
| } |
| |
| // If we see an input section and currently there is no group, start |
| // a new one. Skip any empty sections. We look at the data size |
| // instead of calling p->relobj()->section_size() to avoid locking. |
| if ((p->is_input_section() || p->is_relaxed_input_section()) |
| && (p->data_size() != 0)) |
| { |
| if (state == NO_GROUP) |
| { |
| state = FINDING_STUB_SECTION; |
| group_begin = p; |
| group_begin_offset = section_begin_offset; |
| } |
| |
| // Keep track of the last input section seen. |
| group_end = p; |
| group_end_offset = section_end_offset; |
| } |
| |
| off = section_end_offset; |
| } |
| |
| // Create a stub group for any ungrouped sections. |
| if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION) |
| { |
| gold_assert(group_end != this->input_sections().end()); |
| this->create_stub_group(group_begin, group_end, |
| (state == FINDING_STUB_SECTION |
| ? group_end |
| : stub_table), |
| target, new_relaxed_sections, task); |
| } |
| |
| if (!new_relaxed_sections.empty()) |
| this->convert_input_sections_to_relaxed_sections(new_relaxed_sections); |
| |
| // Update the section offsets |
| for (size_t i = 0; i < new_relaxed_sections.size(); ++i) |
| { |
| The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>( |
| new_relaxed_sections[i]->relobj()); |
| unsigned int shndx = new_relaxed_sections[i]->shndx(); |
| // Tell AArch64_relobj that this input section is converted. |
| relobj->convert_input_section_to_relaxed_section(shndx); |
| } |
| } // End of AArch64_output_section::group_sections |
| |
| |
| AArch64_reloc_property_table* aarch64_reloc_property_table = NULL; |
| |
| |
| // The aarch64 target class. |
| // See the ABI at |
| // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf |
| template<int size, bool big_endian> |
| class Target_aarch64 : public Sized_target<size, big_endian> |
| { |
| public: |
| typedef Target_aarch64<size, big_endian> This; |
| typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> |
| Reloc_section; |
| typedef Relocate_info<size, big_endian> The_relocate_info; |
| typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; |
| typedef AArch64_relobj<size, big_endian> The_aarch64_relobj; |
| typedef Reloc_stub<size, big_endian> The_reloc_stub; |
| typedef Erratum_stub<size, big_endian> The_erratum_stub; |
| typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key; |
| typedef Stub_table<size, big_endian> The_stub_table; |
| typedef std::vector<The_stub_table*> Stub_table_list; |
| typedef typename Stub_table_list::iterator Stub_table_iterator; |
| typedef AArch64_input_section<size, big_endian> The_aarch64_input_section; |
| typedef AArch64_output_section<size, big_endian> The_aarch64_output_section; |
| typedef Unordered_map<Section_id, |
| AArch64_input_section<size, big_endian>*, |
| Section_id_hash> AArch64_input_section_map; |
| typedef AArch64_insn_utilities<big_endian> Insn_utilities; |
| const static int TCB_SIZE = size / 8 * 2; |
| |
| Target_aarch64(const Target::Target_info* info = &aarch64_info) |
| : Sized_target<size, big_endian>(info), |
| got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL), |
| got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL), |
| rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY), |
| got_mod_index_offset_(-1U), |
| tlsdesc_reloc_info_(), tls_base_symbol_defined_(false), |
| stub_tables_(), stub_group_size_(0), aarch64_input_section_map_() |
| { } |
| |
| // Scan the relocations to determine unreferenced sections for |
| // garbage collection. |
| void |
| gc_process_relocs(Symbol_table* symtab, |
| Layout* layout, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| bool needs_special_offset_handling, |
| size_t local_symbol_count, |
| const unsigned char* plocal_symbols); |
| |
| // Scan the relocations to look for symbol adjustments. |
| void |
| scan_relocs(Symbol_table* symtab, |
| Layout* layout, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| bool needs_special_offset_handling, |
| size_t local_symbol_count, |
| const unsigned char* plocal_symbols); |
| |
| // Finalize the sections. |
| void |
| do_finalize_sections(Layout*, const Input_objects*, Symbol_table*); |
| |
| // Return the value to use for a dynamic which requires special |
| // treatment. |
| uint64_t |
| do_dynsym_value(const Symbol*) const; |
| |
| // Relocate a section. |
| void |
| relocate_section(const Relocate_info<size, big_endian>*, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| bool needs_special_offset_handling, |
| unsigned char* view, |
| typename elfcpp::Elf_types<size>::Elf_Addr view_address, |
| section_size_type view_size, |
| const Reloc_symbol_changes*); |
| |
| // Scan the relocs during a relocatable link. |
| void |
| scan_relocatable_relocs(Symbol_table* symtab, |
| Layout* layout, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| bool needs_special_offset_handling, |
| size_t local_symbol_count, |
| const unsigned char* plocal_symbols, |
| Relocatable_relocs*); |
| |
| // Scan the relocs for --emit-relocs. |
| void |
| emit_relocs_scan(Symbol_table* symtab, |
| Layout* layout, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int data_shndx, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| bool needs_special_offset_handling, |
| size_t local_symbol_count, |
| const unsigned char* plocal_syms, |
| Relocatable_relocs* rr); |
| |
| // Relocate a section during a relocatable link. |
| void |
| relocate_relocs( |
| const Relocate_info<size, big_endian>*, |
| unsigned int sh_type, |
| const unsigned char* prelocs, |
| size_t reloc_count, |
| Output_section* output_section, |
| typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section, |
| unsigned char* view |