| // layout.cc -- lay out output file sections for gold |
| |
| // Copyright (C) 2006-2021 Free Software Foundation, Inc. |
| // Written by Ian Lance Taylor <iant@google.com>. |
| |
| // This file is part of gold. |
| |
| // This program is free software; you can redistribute it and/or modify |
| // it under the terms of the GNU General Public License as published by |
| // the Free Software Foundation; either version 3 of the License, or |
| // (at your option) any later version. |
| |
| // This program is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // You should have received a copy of the GNU General Public License |
| // along with this program; if not, write to the Free Software |
| // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| // MA 02110-1301, USA. |
| |
| #include "gold.h" |
| |
| #include <cerrno> |
| #include <cstring> |
| #include <algorithm> |
| #include <iostream> |
| #include <fstream> |
| #include <utility> |
| #include <fcntl.h> |
| #include <fnmatch.h> |
| #include <unistd.h> |
| #include "libiberty.h" |
| #include "md5.h" |
| #include "sha1.h" |
| #ifdef __MINGW32__ |
| #include <windows.h> |
| #include <rpcdce.h> |
| #endif |
| |
| #include "parameters.h" |
| #include "options.h" |
| #include "mapfile.h" |
| #include "script.h" |
| #include "script-sections.h" |
| #include "output.h" |
| #include "symtab.h" |
| #include "dynobj.h" |
| #include "ehframe.h" |
| #include "gdb-index.h" |
| #include "compressed_output.h" |
| #include "reduced_debug_output.h" |
| #include "object.h" |
| #include "reloc.h" |
| #include "descriptors.h" |
| #include "plugin.h" |
| #include "incremental.h" |
| #include "layout.h" |
| |
| namespace gold |
| { |
| |
| // Class Free_list. |
| |
| // The total number of free lists used. |
| unsigned int Free_list::num_lists = 0; |
| // The total number of free list nodes used. |
| unsigned int Free_list::num_nodes = 0; |
| // The total number of calls to Free_list::remove. |
| unsigned int Free_list::num_removes = 0; |
| // The total number of nodes visited during calls to Free_list::remove. |
| unsigned int Free_list::num_remove_visits = 0; |
| // The total number of calls to Free_list::allocate. |
| unsigned int Free_list::num_allocates = 0; |
| // The total number of nodes visited during calls to Free_list::allocate. |
| unsigned int Free_list::num_allocate_visits = 0; |
| |
| // Initialize the free list. Creates a single free list node that |
| // describes the entire region of length LEN. If EXTEND is true, |
| // allocate() is allowed to extend the region beyond its initial |
| // length. |
| |
| void |
| Free_list::init(off_t len, bool extend) |
| { |
| this->list_.push_front(Free_list_node(0, len)); |
| this->last_remove_ = this->list_.begin(); |
| this->extend_ = extend; |
| this->length_ = len; |
| ++Free_list::num_lists; |
| ++Free_list::num_nodes; |
| } |
| |
| // Remove a chunk from the free list. Because we start with a single |
| // node that covers the entire section, and remove chunks from it one |
| // at a time, we do not need to coalesce chunks or handle cases that |
| // span more than one free node. We expect to remove chunks from the |
| // free list in order, and we expect to have only a few chunks of free |
| // space left (corresponding to files that have changed since the last |
| // incremental link), so a simple linear list should provide sufficient |
| // performance. |
| |
| void |
| Free_list::remove(off_t start, off_t end) |
| { |
| if (start == end) |
| return; |
| gold_assert(start < end); |
| |
| ++Free_list::num_removes; |
| |
| Iterator p = this->last_remove_; |
| if (p->start_ > start) |
| p = this->list_.begin(); |
| |
| for (; p != this->list_.end(); ++p) |
| { |
| ++Free_list::num_remove_visits; |
| // Find a node that wholly contains the indicated region. |
| if (p->start_ <= start && p->end_ >= end) |
| { |
| // Case 1: the indicated region spans the whole node. |
| // Add some fuzz to avoid creating tiny free chunks. |
| if (p->start_ + 3 >= start && p->end_ <= end + 3) |
| p = this->list_.erase(p); |
| // Case 2: remove a chunk from the start of the node. |
| else if (p->start_ + 3 >= start) |
| p->start_ = end; |
| // Case 3: remove a chunk from the end of the node. |
| else if (p->end_ <= end + 3) |
| p->end_ = start; |
| // Case 4: remove a chunk from the middle, and split |
| // the node into two. |
| else |
| { |
| Free_list_node newnode(p->start_, start); |
| p->start_ = end; |
| this->list_.insert(p, newnode); |
| ++Free_list::num_nodes; |
| } |
| this->last_remove_ = p; |
| return; |
| } |
| } |
| |
| // Did not find a node containing the given chunk. This could happen |
| // because a small chunk was already removed due to the fuzz. |
| gold_debug(DEBUG_INCREMENTAL, |
| "Free_list::remove(%d,%d) not found", |
| static_cast<int>(start), static_cast<int>(end)); |
| } |
| |
| // Allocate a chunk of size LEN from the free list. Returns -1ULL |
| // if a sufficiently large chunk of free space is not found. |
| // We use a simple first-fit algorithm. |
| |
| off_t |
| Free_list::allocate(off_t len, uint64_t align, off_t minoff) |
| { |
| gold_debug(DEBUG_INCREMENTAL, |
| "Free_list::allocate(%08lx, %d, %08lx)", |
| static_cast<long>(len), static_cast<int>(align), |
| static_cast<long>(minoff)); |
| if (len == 0) |
| return align_address(minoff, align); |
| |
| ++Free_list::num_allocates; |
| |
| // We usually want to drop free chunks smaller than 4 bytes. |
| // If we need to guarantee a minimum hole size, though, we need |
| // to keep track of all free chunks. |
| const int fuzz = this->min_hole_ > 0 ? 0 : 3; |
| |
| for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p) |
| { |
| ++Free_list::num_allocate_visits; |
| off_t start = p->start_ > minoff ? p->start_ : minoff; |
| start = align_address(start, align); |
| off_t end = start + len; |
| if (end > p->end_ && p->end_ == this->length_ && this->extend_) |
| { |
| this->length_ = end; |
| p->end_ = end; |
| } |
| if (end == p->end_ || (end <= p->end_ - this->min_hole_)) |
| { |
| if (p->start_ + fuzz >= start && p->end_ <= end + fuzz) |
| this->list_.erase(p); |
| else if (p->start_ + fuzz >= start) |
| p->start_ = end; |
| else if (p->end_ <= end + fuzz) |
| p->end_ = start; |
| else |
| { |
| Free_list_node newnode(p->start_, start); |
| p->start_ = end; |
| this->list_.insert(p, newnode); |
| ++Free_list::num_nodes; |
| } |
| return start; |
| } |
| } |
| if (this->extend_) |
| { |
| off_t start = align_address(this->length_, align); |
| this->length_ = start + len; |
| return start; |
| } |
| return -1; |
| } |
| |
| // Dump the free list (for debugging). |
| void |
| Free_list::dump() |
| { |
| gold_info("Free list:\n start end length\n"); |
| for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p) |
| gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_), |
| static_cast<long>(p->end_), |
| static_cast<long>(p->end_ - p->start_)); |
| } |
| |
| // Print the statistics for the free lists. |
| void |
| Free_list::print_stats() |
| { |
| fprintf(stderr, _("%s: total free lists: %u\n"), |
| program_name, Free_list::num_lists); |
| fprintf(stderr, _("%s: total free list nodes: %u\n"), |
| program_name, Free_list::num_nodes); |
| fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"), |
| program_name, Free_list::num_removes); |
| fprintf(stderr, _("%s: nodes visited: %u\n"), |
| program_name, Free_list::num_remove_visits); |
| fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"), |
| program_name, Free_list::num_allocates); |
| fprintf(stderr, _("%s: nodes visited: %u\n"), |
| program_name, Free_list::num_allocate_visits); |
| } |
| |
| // A Hash_task computes the MD5 checksum of an array of char. |
| |
| class Hash_task : public Task |
| { |
| public: |
| Hash_task(Output_file* of, |
| size_t offset, |
| size_t size, |
| unsigned char* dst, |
| Task_token* final_blocker) |
| : of_(of), offset_(offset), size_(size), dst_(dst), |
| final_blocker_(final_blocker) |
| { } |
| |
| void |
| run(Workqueue*) |
| { |
| const unsigned char* iv = |
| this->of_->get_input_view(this->offset_, this->size_); |
| md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_); |
| this->of_->free_input_view(this->offset_, this->size_, iv); |
| } |
| |
| Task_token* |
| is_runnable() |
| { return NULL; } |
| |
| // Unblock FINAL_BLOCKER_ when done. |
| void |
| locks(Task_locker* tl) |
| { tl->add(this, this->final_blocker_); } |
| |
| std::string |
| get_name() const |
| { return "Hash_task"; } |
| |
| private: |
| Output_file* of_; |
| const size_t offset_; |
| const size_t size_; |
| unsigned char* const dst_; |
| Task_token* const final_blocker_; |
| }; |
| |
| // Layout::Relaxation_debug_check methods. |
| |
| // Check that sections and special data are in reset states. |
| // We do not save states for Output_sections and special Output_data. |
| // So we check that they have not assigned any addresses or offsets. |
| // clean_up_after_relaxation simply resets their addresses and offsets. |
| void |
| Layout::Relaxation_debug_check::check_output_data_for_reset_values( |
| const Layout::Section_list& sections, |
| const Layout::Data_list& special_outputs, |
| const Layout::Data_list& relax_outputs) |
| { |
| for(Layout::Section_list::const_iterator p = sections.begin(); |
| p != sections.end(); |
| ++p) |
| gold_assert((*p)->address_and_file_offset_have_reset_values()); |
| |
| for(Layout::Data_list::const_iterator p = special_outputs.begin(); |
| p != special_outputs.end(); |
| ++p) |
| gold_assert((*p)->address_and_file_offset_have_reset_values()); |
| |
| gold_assert(relax_outputs.empty()); |
| } |
| |
| // Save information of SECTIONS for checking later. |
| |
| void |
| Layout::Relaxation_debug_check::read_sections( |
| const Layout::Section_list& sections) |
| { |
| for(Layout::Section_list::const_iterator p = sections.begin(); |
| p != sections.end(); |
| ++p) |
| { |
| Output_section* os = *p; |
| Section_info info; |
| info.output_section = os; |
| info.address = os->is_address_valid() ? os->address() : 0; |
| info.data_size = os->is_data_size_valid() ? os->data_size() : -1; |
| info.offset = os->is_offset_valid()? os->offset() : -1 ; |
| this->section_infos_.push_back(info); |
| } |
| } |
| |
| // Verify SECTIONS using previously recorded information. |
| |
| void |
| Layout::Relaxation_debug_check::verify_sections( |
| const Layout::Section_list& sections) |
| { |
| size_t i = 0; |
| for(Layout::Section_list::const_iterator p = sections.begin(); |
| p != sections.end(); |
| ++p, ++i) |
| { |
| Output_section* os = *p; |
| uint64_t address = os->is_address_valid() ? os->address() : 0; |
| off_t data_size = os->is_data_size_valid() ? os->data_size() : -1; |
| off_t offset = os->is_offset_valid()? os->offset() : -1 ; |
| |
| if (i >= this->section_infos_.size()) |
| { |
| gold_fatal("Section_info of %s missing.\n", os->name()); |
| } |
| const Section_info& info = this->section_infos_[i]; |
| if (os != info.output_section) |
| gold_fatal("Section order changed. Expecting %s but see %s\n", |
| info.output_section->name(), os->name()); |
| if (address != info.address |
| || data_size != info.data_size |
| || offset != info.offset) |
| gold_fatal("Section %s changed.\n", os->name()); |
| } |
| } |
| |
| // Layout_task_runner methods. |
| |
| // Lay out the sections. This is called after all the input objects |
| // have been read. |
| |
| void |
| Layout_task_runner::run(Workqueue* workqueue, const Task* task) |
| { |
| // See if any of the input definitions violate the One Definition Rule. |
| // TODO: if this is too slow, do this as a task, rather than inline. |
| this->symtab_->detect_odr_violations(task, this->options_.output_file_name()); |
| |
| Layout* layout = this->layout_; |
| off_t file_size = layout->finalize(this->input_objects_, |
| this->symtab_, |
| this->target_, |
| task); |
| |
| // Now we know the final size of the output file and we know where |
| // each piece of information goes. |
| |
| if (this->mapfile_ != NULL) |
| { |
| this->mapfile_->print_discarded_sections(this->input_objects_); |
| layout->print_to_mapfile(this->mapfile_); |
| } |
| |
| Output_file* of; |
| if (layout->incremental_base() == NULL) |
| { |
| of = new Output_file(parameters->options().output_file_name()); |
| if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF) |
| of->set_is_temporary(); |
| of->open(file_size); |
| } |
| else |
| { |
| of = layout->incremental_base()->output_file(); |
| |
| // Apply the incremental relocations for symbols whose values |
| // have changed. We do this before we resize the file and start |
| // writing anything else to it, so that we can read the old |
| // incremental information from the file before (possibly) |
| // overwriting it. |
| if (parameters->incremental_update()) |
| layout->incremental_base()->apply_incremental_relocs(this->symtab_, |
| this->layout_, |
| of); |
| |
| of->resize(file_size); |
| } |
| |
| // Queue up the final set of tasks. |
| gold::queue_final_tasks(this->options_, this->input_objects_, |
| this->symtab_, layout, workqueue, of); |
| } |
| |
| // Layout methods. |
| |
| Layout::Layout(int number_of_input_files, Script_options* script_options) |
| : number_of_input_files_(number_of_input_files), |
| script_options_(script_options), |
| namepool_(), |
| sympool_(), |
| dynpool_(), |
| signatures_(), |
| section_name_map_(), |
| segment_list_(), |
| section_list_(), |
| unattached_section_list_(), |
| special_output_list_(), |
| relax_output_list_(), |
| section_headers_(NULL), |
| tls_segment_(NULL), |
| relro_segment_(NULL), |
| interp_segment_(NULL), |
| increase_relro_(0), |
| symtab_section_(NULL), |
| symtab_xindex_(NULL), |
| dynsym_section_(NULL), |
| dynsym_xindex_(NULL), |
| dynamic_section_(NULL), |
| dynamic_symbol_(NULL), |
| dynamic_data_(NULL), |
| eh_frame_section_(NULL), |
| eh_frame_data_(NULL), |
| added_eh_frame_data_(false), |
| eh_frame_hdr_section_(NULL), |
| gdb_index_data_(NULL), |
| build_id_note_(NULL), |
| debug_abbrev_(NULL), |
| debug_info_(NULL), |
| group_signatures_(), |
| output_file_size_(-1), |
| have_added_input_section_(false), |
| sections_are_attached_(false), |
| input_requires_executable_stack_(false), |
| input_with_gnu_stack_note_(false), |
| input_without_gnu_stack_note_(false), |
| has_static_tls_(false), |
| any_postprocessing_sections_(false), |
| resized_signatures_(false), |
| have_stabstr_section_(false), |
| section_ordering_specified_(false), |
| unique_segment_for_sections_specified_(false), |
| incremental_inputs_(NULL), |
| record_output_section_data_from_script_(false), |
| lto_slim_object_(false), |
| script_output_section_data_list_(), |
| segment_states_(NULL), |
| relaxation_debug_check_(NULL), |
| section_order_map_(), |
| section_segment_map_(), |
| input_section_position_(), |
| input_section_glob_(), |
| incremental_base_(NULL), |
| free_list_(), |
| gnu_properties_() |
| { |
| // Make space for more than enough segments for a typical file. |
| // This is just for efficiency--it's OK if we wind up needing more. |
| this->segment_list_.reserve(12); |
| |
| // We expect two unattached Output_data objects: the file header and |
| // the segment headers. |
| this->special_output_list_.reserve(2); |
| |
| // Initialize structure needed for an incremental build. |
| if (parameters->incremental()) |
| this->incremental_inputs_ = new Incremental_inputs; |
| |
| // The section name pool is worth optimizing in all cases, because |
| // it is small, but there are often overlaps due to .rel sections. |
| this->namepool_.set_optimize(); |
| } |
| |
| // For incremental links, record the base file to be modified. |
| |
| void |
| Layout::set_incremental_base(Incremental_binary* base) |
| { |
| this->incremental_base_ = base; |
| this->free_list_.init(base->output_file()->filesize(), true); |
| } |
| |
| // Hash a key we use to look up an output section mapping. |
| |
| size_t |
| Layout::Hash_key::operator()(const Layout::Key& k) const |
| { |
| return k.first + k.second.first + k.second.second; |
| } |
| |
| // These are the debug sections that are actually used by gdb. |
| // Currently, we've checked versions of gdb up to and including 7.4. |
| // We only check the part of the name that follows ".debug_" or |
| // ".zdebug_". |
| |
| static const char* gdb_sections[] = |
| { |
| "abbrev", |
| "addr", // Fission extension |
| // "aranges", // not used by gdb as of 7.4 |
| "frame", |
| "gdb_scripts", |
| "info", |
| "types", |
| "line", |
| "loc", |
| "macinfo", |
| "macro", |
| // "pubnames", // not used by gdb as of 7.4 |
| // "pubtypes", // not used by gdb as of 7.4 |
| // "gnu_pubnames", // Fission extension |
| // "gnu_pubtypes", // Fission extension |
| "ranges", |
| "str", |
| "str_offsets", |
| }; |
| |
| // This is the minimum set of sections needed for line numbers. |
| |
| static const char* lines_only_debug_sections[] = |
| { |
| "abbrev", |
| // "addr", // Fission extension |
| // "aranges", // not used by gdb as of 7.4 |
| // "frame", |
| // "gdb_scripts", |
| "info", |
| // "types", |
| "line", |
| // "loc", |
| // "macinfo", |
| // "macro", |
| // "pubnames", // not used by gdb as of 7.4 |
| // "pubtypes", // not used by gdb as of 7.4 |
| // "gnu_pubnames", // Fission extension |
| // "gnu_pubtypes", // Fission extension |
| // "ranges", |
| "str", |
| "str_offsets", // Fission extension |
| }; |
| |
| // These sections are the DWARF fast-lookup tables, and are not needed |
| // when building a .gdb_index section. |
| |
| static const char* gdb_fast_lookup_sections[] = |
| { |
| "aranges", |
| "pubnames", |
| "gnu_pubnames", |
| "pubtypes", |
| "gnu_pubtypes", |
| }; |
| |
| // Returns whether the given debug section is in the list of |
| // debug-sections-used-by-some-version-of-gdb. SUFFIX is the |
| // portion of the name following ".debug_" or ".zdebug_". |
| |
| static inline bool |
| is_gdb_debug_section(const char* suffix) |
| { |
| // We can do this faster: binary search or a hashtable. But why bother? |
| for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i) |
| if (strcmp(suffix, gdb_sections[i]) == 0) |
| return true; |
| return false; |
| } |
| |
| // Returns whether the given section is needed for lines-only debugging. |
| |
| static inline bool |
| is_lines_only_debug_section(const char* suffix) |
| { |
| // We can do this faster: binary search or a hashtable. But why bother? |
| for (size_t i = 0; |
| i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections); |
| ++i) |
| if (strcmp(suffix, lines_only_debug_sections[i]) == 0) |
| return true; |
| return false; |
| } |
| |
| // Returns whether the given section is a fast-lookup section that |
| // will not be needed when building a .gdb_index section. |
| |
| static inline bool |
| is_gdb_fast_lookup_section(const char* suffix) |
| { |
| // We can do this faster: binary search or a hashtable. But why bother? |
| for (size_t i = 0; |
| i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections); |
| ++i) |
| if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0) |
| return true; |
| return false; |
| } |
| |
| // Sometimes we compress sections. This is typically done for |
| // sections that are not part of normal program execution (such as |
| // .debug_* sections), and where the readers of these sections know |
| // how to deal with compressed sections. This routine doesn't say for |
| // certain whether we'll compress -- it depends on commandline options |
| // as well -- just whether this section is a candidate for compression. |
| // (The Output_compressed_section class decides whether to compress |
| // a given section, and picks the name of the compressed section.) |
| |
| static bool |
| is_compressible_debug_section(const char* secname) |
| { |
| return (is_prefix_of(".debug", secname)); |
| } |
| |
| // We may see compressed debug sections in input files. Return TRUE |
| // if this is the name of a compressed debug section. |
| |
| bool |
| is_compressed_debug_section(const char* secname) |
| { |
| return (is_prefix_of(".zdebug", secname)); |
| } |
| |
| std::string |
| corresponding_uncompressed_section_name(std::string secname) |
| { |
| gold_assert(secname[0] == '.' && secname[1] == 'z'); |
| std::string ret("."); |
| ret.append(secname, 2, std::string::npos); |
| return ret; |
| } |
| |
| // Whether to include this section in the link. |
| |
| template<int size, bool big_endian> |
| bool |
| Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name, |
| const elfcpp::Shdr<size, big_endian>& shdr) |
| { |
| if (!parameters->options().relocatable() |
| && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)) |
| return false; |
| |
| elfcpp::Elf_Word sh_type = shdr.get_sh_type(); |
| |
| if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS) |
| || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC)) |
| return parameters->target().should_include_section(sh_type); |
| |
| switch (sh_type) |
| { |
| case elfcpp::SHT_NULL: |
| case elfcpp::SHT_SYMTAB: |
| case elfcpp::SHT_DYNSYM: |
| case elfcpp::SHT_HASH: |
| case elfcpp::SHT_DYNAMIC: |
| case elfcpp::SHT_SYMTAB_SHNDX: |
| return false; |
| |
| case elfcpp::SHT_STRTAB: |
| // Discard the sections which have special meanings in the ELF |
| // ABI. Keep others (e.g., .stabstr). We could also do this by |
| // checking the sh_link fields of the appropriate sections. |
| return (strcmp(name, ".dynstr") != 0 |
| && strcmp(name, ".strtab") != 0 |
| && strcmp(name, ".shstrtab") != 0); |
| |
| case elfcpp::SHT_RELA: |
| case elfcpp::SHT_REL: |
| case elfcpp::SHT_GROUP: |
| // If we are emitting relocations these should be handled |
| // elsewhere. |
| gold_assert(!parameters->options().relocatable()); |
| return false; |
| |
| case elfcpp::SHT_PROGBITS: |
| if (parameters->options().strip_debug() |
| && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) |
| { |
| if (is_debug_info_section(name)) |
| return false; |
| } |
| if (parameters->options().strip_debug_non_line() |
| && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) |
| { |
| // Debugging sections can only be recognized by name. |
| if (is_prefix_of(".debug_", name) |
| && !is_lines_only_debug_section(name + 7)) |
| return false; |
| if (is_prefix_of(".zdebug_", name) |
| && !is_lines_only_debug_section(name + 8)) |
| return false; |
| } |
| if (parameters->options().strip_debug_gdb() |
| && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) |
| { |
| // Debugging sections can only be recognized by name. |
| if (is_prefix_of(".debug_", name) |
| && !is_gdb_debug_section(name + 7)) |
| return false; |
| if (is_prefix_of(".zdebug_", name) |
| && !is_gdb_debug_section(name + 8)) |
| return false; |
| } |
| if (parameters->options().gdb_index() |
| && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) |
| { |
| // When building .gdb_index, we can strip .debug_pubnames, |
| // .debug_pubtypes, and .debug_aranges sections. |
| if (is_prefix_of(".debug_", name) |
| && is_gdb_fast_lookup_section(name + 7)) |
| return false; |
| if (is_prefix_of(".zdebug_", name) |
| && is_gdb_fast_lookup_section(name + 8)) |
| return false; |
| } |
| if (parameters->options().strip_lto_sections() |
| && !parameters->options().relocatable() |
| && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) |
| { |
| // Ignore LTO sections containing intermediate code. |
| if (is_prefix_of(".gnu.lto_", name)) |
| return false; |
| } |
| // The GNU linker strips .gnu_debuglink sections, so we do too. |
| // This is a feature used to keep debugging information in |
| // separate files. |
| if (strcmp(name, ".gnu_debuglink") == 0) |
| return false; |
| return true; |
| |
| default: |
| return true; |
| } |
| } |
| |
| // Return an output section named NAME, or NULL if there is none. |
| |
| Output_section* |
| Layout::find_output_section(const char* name) const |
| { |
| for (Section_list::const_iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| if (strcmp((*p)->name(), name) == 0) |
| return *p; |
| return NULL; |
| } |
| |
| // Return an output segment of type TYPE, with segment flags SET set |
| // and segment flags CLEAR clear. Return NULL if there is none. |
| |
| Output_segment* |
| Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set, |
| elfcpp::Elf_Word clear) const |
| { |
| for (Segment_list::const_iterator p = this->segment_list_.begin(); |
| p != this->segment_list_.end(); |
| ++p) |
| if (static_cast<elfcpp::PT>((*p)->type()) == type |
| && ((*p)->flags() & set) == set |
| && ((*p)->flags() & clear) == 0) |
| return *p; |
| return NULL; |
| } |
| |
| // When we put a .ctors or .dtors section with more than one word into |
| // a .init_array or .fini_array section, we need to reverse the words |
| // in the .ctors/.dtors section. This is because .init_array executes |
| // constructors front to back, where .ctors executes them back to |
| // front, and vice-versa for .fini_array/.dtors. Although we do want |
| // to remap .ctors/.dtors into .init_array/.fini_array because it can |
| // be more efficient, we don't want to change the order in which |
| // constructors/destructors are run. This set just keeps track of |
| // these sections which need to be reversed. It is only changed by |
| // Layout::layout. It should be a private member of Layout, but that |
| // would require layout.h to #include object.h to get the definition |
| // of Section_id. |
| static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array; |
| |
| // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a |
| // .init_array/.fini_array section. |
| |
| bool |
| Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const |
| { |
| return (ctors_sections_in_init_array.find(Section_id(relobj, shndx)) |
| != ctors_sections_in_init_array.end()); |
| } |
| |
| // Return the output section to use for section NAME with type TYPE |
| // and section flags FLAGS. NAME must be canonicalized in the string |
| // pool, and NAME_KEY is the key. ORDER is where this should appear |
| // in the output sections. IS_RELRO is true for a relro section. |
| |
| Output_section* |
| Layout::get_output_section(const char* name, Stringpool::Key name_key, |
| elfcpp::Elf_Word type, elfcpp::Elf_Xword flags, |
| Output_section_order order, bool is_relro) |
| { |
| elfcpp::Elf_Word lookup_type = type; |
| |
| // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and |
| // PREINIT_ARRAY like PROGBITS. This ensures that we combine |
| // .init_array, .fini_array, and .preinit_array sections by name |
| // whatever their type in the input file. We do this because the |
| // types are not always right in the input files. |
| if (lookup_type == elfcpp::SHT_INIT_ARRAY |
| || lookup_type == elfcpp::SHT_FINI_ARRAY |
| || lookup_type == elfcpp::SHT_PREINIT_ARRAY) |
| lookup_type = elfcpp::SHT_PROGBITS; |
| |
| elfcpp::Elf_Xword lookup_flags = flags; |
| |
| // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine |
| // read-write with read-only sections. Some other ELF linkers do |
| // not do this. FIXME: Perhaps there should be an option |
| // controlling this. |
| lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR); |
| |
| const Key key(name_key, std::make_pair(lookup_type, lookup_flags)); |
| const std::pair<Key, Output_section*> v(key, NULL); |
| std::pair<Section_name_map::iterator, bool> ins( |
| this->section_name_map_.insert(v)); |
| |
| if (!ins.second) |
| return ins.first->second; |
| else |
| { |
| // This is the first time we've seen this name/type/flags |
| // combination. For compatibility with the GNU linker, we |
| // combine sections with contents and zero flags with sections |
| // with non-zero flags. This is a workaround for cases where |
| // assembler code forgets to set section flags. FIXME: Perhaps |
| // there should be an option to control this. |
| Output_section* os = NULL; |
| |
| if (lookup_type == elfcpp::SHT_PROGBITS) |
| { |
| if (flags == 0) |
| { |
| Output_section* same_name = this->find_output_section(name); |
| if (same_name != NULL |
| && (same_name->type() == elfcpp::SHT_PROGBITS |
| || same_name->type() == elfcpp::SHT_INIT_ARRAY |
| || same_name->type() == elfcpp::SHT_FINI_ARRAY |
| || same_name->type() == elfcpp::SHT_PREINIT_ARRAY) |
| && (same_name->flags() & elfcpp::SHF_TLS) == 0) |
| os = same_name; |
| } |
| else if ((flags & elfcpp::SHF_TLS) == 0) |
| { |
| elfcpp::Elf_Xword zero_flags = 0; |
| const Key zero_key(name_key, std::make_pair(lookup_type, |
| zero_flags)); |
| Section_name_map::iterator p = |
| this->section_name_map_.find(zero_key); |
| if (p != this->section_name_map_.end()) |
| os = p->second; |
| } |
| } |
| |
| if (os == NULL) |
| os = this->make_output_section(name, type, flags, order, is_relro); |
| |
| ins.first->second = os; |
| return os; |
| } |
| } |
| |
| // Returns TRUE iff NAME (an input section from RELOBJ) will |
| // be mapped to an output section that should be KEPT. |
| |
| bool |
| Layout::keep_input_section(const Relobj* relobj, const char* name) |
| { |
| if (! this->script_options_->saw_sections_clause()) |
| return false; |
| |
| Script_sections* ss = this->script_options_->script_sections(); |
| const char* file_name = relobj == NULL ? NULL : relobj->name().c_str(); |
| Output_section** output_section_slot; |
| Script_sections::Section_type script_section_type; |
| bool keep; |
| |
| name = ss->output_section_name(file_name, name, &output_section_slot, |
| &script_section_type, &keep, true); |
| return name != NULL && keep; |
| } |
| |
| // Clear the input section flags that should not be copied to the |
| // output section. |
| |
| elfcpp::Elf_Xword |
| Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags) |
| { |
| // Some flags in the input section should not be automatically |
| // copied to the output section. |
| input_section_flags &= ~ (elfcpp::SHF_INFO_LINK |
| | elfcpp::SHF_GROUP |
| | elfcpp::SHF_COMPRESSED |
| | elfcpp::SHF_MERGE |
| | elfcpp::SHF_STRINGS); |
| |
| // We only clear the SHF_LINK_ORDER flag in for |
| // a non-relocatable link. |
| if (!parameters->options().relocatable()) |
| input_section_flags &= ~elfcpp::SHF_LINK_ORDER; |
| |
| return input_section_flags; |
| } |
| |
| // Pick the output section to use for section NAME, in input file |
| // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a |
| // linker created section. IS_INPUT_SECTION is true if we are |
| // choosing an output section for an input section found in a input |
| // file. ORDER is where this section should appear in the output |
| // sections. IS_RELRO is true for a relro section. This will return |
| // NULL if the input section should be discarded. MATCH_INPUT_SPEC |
| // is true if the section name should be matched against input specs |
| // in a linker script. |
| |
| Output_section* |
| Layout::choose_output_section(const Relobj* relobj, const char* name, |
| elfcpp::Elf_Word type, elfcpp::Elf_Xword flags, |
| bool is_input_section, Output_section_order order, |
| bool is_relro, bool is_reloc, |
| bool match_input_spec) |
| { |
| // We should not see any input sections after we have attached |
| // sections to segments. |
| gold_assert(!is_input_section || !this->sections_are_attached_); |
| |
| flags = this->get_output_section_flags(flags); |
| |
| if (this->script_options_->saw_sections_clause() && !is_reloc) |
| { |
| // We are using a SECTIONS clause, so the output section is |
| // chosen based only on the name. |
| |
| Script_sections* ss = this->script_options_->script_sections(); |
| const char* file_name = relobj == NULL ? NULL : relobj->name().c_str(); |
| Output_section** output_section_slot; |
| Script_sections::Section_type script_section_type; |
| const char* orig_name = name; |
| bool keep; |
| name = ss->output_section_name(file_name, name, &output_section_slot, |
| &script_section_type, &keep, |
| match_input_spec); |
| |
| if (name == NULL) |
| { |
| gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' " |
| "because it is not allowed by the " |
| "SECTIONS clause of the linker script"), |
| orig_name); |
| // The SECTIONS clause says to discard this input section. |
| return NULL; |
| } |
| |
| // We can only handle script section types ST_NONE and ST_NOLOAD. |
| switch (script_section_type) |
| { |
| case Script_sections::ST_NONE: |
| break; |
| case Script_sections::ST_NOLOAD: |
| flags &= elfcpp::SHF_ALLOC; |
| break; |
| default: |
| gold_unreachable(); |
| } |
| |
| // If this is an orphan section--one not mentioned in the linker |
| // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the |
| // default processing below. |
| |
| if (output_section_slot != NULL) |
| { |
| if (*output_section_slot != NULL) |
| { |
| (*output_section_slot)->update_flags_for_input_section(flags); |
| return *output_section_slot; |
| } |
| |
| // We don't put sections found in the linker script into |
| // SECTION_NAME_MAP_. That keeps us from getting confused |
| // if an orphan section is mapped to a section with the same |
| // name as one in the linker script. |
| |
| name = this->namepool_.add(name, false, NULL); |
| |
| Output_section* os = this->make_output_section(name, type, flags, |
| order, is_relro); |
| |
| os->set_found_in_sections_clause(); |
| |
| // Special handling for NOLOAD sections. |
| if (script_section_type == Script_sections::ST_NOLOAD) |
| { |
| os->set_is_noload(); |
| |
| // The constructor of Output_section sets addresses of non-ALLOC |
| // sections to 0 by default. We don't want that for NOLOAD |
| // sections even if they have no SHF_ALLOC flag. |
| if ((os->flags() & elfcpp::SHF_ALLOC) == 0 |
| && os->is_address_valid()) |
| { |
| gold_assert(os->address() == 0 |
| && !os->is_offset_valid() |
| && !os->is_data_size_valid()); |
| os->reset_address_and_file_offset(); |
| } |
| } |
| |
| *output_section_slot = os; |
| return os; |
| } |
| } |
| |
| // FIXME: Handle SHF_OS_NONCONFORMING somewhere. |
| |
| size_t len = strlen(name); |
| std::string uncompressed_name; |
| |
| // Compressed debug sections should be mapped to the corresponding |
| // uncompressed section. |
| if (is_compressed_debug_section(name)) |
| { |
| uncompressed_name = |
| corresponding_uncompressed_section_name(std::string(name, len)); |
| name = uncompressed_name.c_str(); |
| len = uncompressed_name.length(); |
| } |
| |
| // Turn NAME from the name of the input section into the name of the |
| // output section. |
| if (is_input_section |
| && !this->script_options_->saw_sections_clause() |
| && !parameters->options().relocatable()) |
| { |
| const char *orig_name = name; |
| name = parameters->target().output_section_name(relobj, name, &len); |
| if (name == NULL) |
| name = Layout::output_section_name(relobj, orig_name, &len); |
| } |
| |
| Stringpool::Key name_key; |
| name = this->namepool_.add_with_length(name, len, true, &name_key); |
| |
| // Find or make the output section. The output section is selected |
| // based on the section name, type, and flags. |
| return this->get_output_section(name, name_key, type, flags, order, is_relro); |
| } |
| |
| // For incremental links, record the initial fixed layout of a section |
| // from the base file, and return a pointer to the Output_section. |
| |
| template<int size, bool big_endian> |
| Output_section* |
| Layout::init_fixed_output_section(const char* name, |
| elfcpp::Shdr<size, big_endian>& shdr) |
| { |
| unsigned int sh_type = shdr.get_sh_type(); |
| |
| // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY, |
| // PRE_INIT_ARRAY, and NOTE sections. |
| // All others will be created from scratch and reallocated. |
| if (!can_incremental_update(sh_type)) |
| return NULL; |
| |
| // If we're generating a .gdb_index section, we need to regenerate |
| // it from scratch. |
| if (parameters->options().gdb_index() |
| && sh_type == elfcpp::SHT_PROGBITS |
| && strcmp(name, ".gdb_index") == 0) |
| return NULL; |
| |
| typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr(); |
| typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset(); |
| typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size(); |
| typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = |
| this->get_output_section_flags(shdr.get_sh_flags()); |
| typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign = |
| shdr.get_sh_addralign(); |
| |
| // Make the output section. |
| Stringpool::Key name_key; |
| name = this->namepool_.add(name, true, &name_key); |
| Output_section* os = this->get_output_section(name, name_key, sh_type, |
| sh_flags, ORDER_INVALID, false); |
| os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign); |
| if (sh_type != elfcpp::SHT_NOBITS) |
| this->free_list_.remove(sh_offset, sh_offset + sh_size); |
| return os; |
| } |
| |
| // Return the index by which an input section should be ordered. This |
| // is used to sort some .text sections, for compatibility with GNU ld. |
| |
| int |
| Layout::special_ordering_of_input_section(const char* name) |
| { |
| // The GNU linker has some special handling for some sections that |
| // wind up in the .text section. Sections that start with these |
| // prefixes must appear first, and must appear in the order listed |
| // here. |
| static const char* const text_section_sort[] = |
| { |
| ".text.unlikely", |
| ".text.exit", |
| ".text.startup", |
| ".text.hot", |
| ".text.sorted" |
| }; |
| |
| for (size_t i = 0; |
| i < sizeof(text_section_sort) / sizeof(text_section_sort[0]); |
| i++) |
| if (is_prefix_of(text_section_sort[i], name)) |
| return i; |
| |
| return -1; |
| } |
| |
| // Return the output section to use for input section SHNDX, with name |
| // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the |
| // index of a relocation section which applies to this section, or 0 |
| // if none, or -1U if more than one. RELOC_TYPE is the type of the |
| // relocation section if there is one. Set *OFF to the offset of this |
| // input section without the output section. Return NULL if the |
| // section should be discarded. Set *OFF to -1 if the section |
| // contents should not be written directly to the output file, but |
| // will instead receive special handling. |
| |
| template<int size, bool big_endian> |
| Output_section* |
| Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx, |
| const char* name, const elfcpp::Shdr<size, big_endian>& shdr, |
| unsigned int sh_type, unsigned int reloc_shndx, |
| unsigned int, off_t* off) |
| { |
| *off = 0; |
| |
| if (!this->include_section(object, name, shdr)) |
| return NULL; |
| |
| // In a relocatable link a grouped section must not be combined with |
| // any other sections. |
| Output_section* os; |
| if (parameters->options().relocatable() |
| && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0) |
| { |
| // Some flags in the input section should not be automatically |
| // copied to the output section. |
| elfcpp::Elf_Xword sh_flags = (shdr.get_sh_flags() |
| & ~ elfcpp::SHF_COMPRESSED); |
| name = this->namepool_.add(name, true, NULL); |
| os = this->make_output_section(name, sh_type, sh_flags, ORDER_INVALID, |
| false); |
| } |
| else |
| { |
| // Get the section flags and mask out any flags that do not |
| // take part in section matching. |
| elfcpp::Elf_Xword sh_flags |
| = (this->get_output_section_flags(shdr.get_sh_flags()) |
| & ~object->osabi().ignored_sh_flags()); |
| |
| // All ".text.unlikely.*" sections can be moved to a unique |
| // segment with --text-unlikely-segment option. |
| bool text_unlikely_segment |
| = (parameters->options().text_unlikely_segment() |
| && is_prefix_of(".text.unlikely", |
| object->section_name(shndx).c_str())); |
| if (text_unlikely_segment) |
| { |
| Stringpool::Key name_key; |
| const char* os_name = this->namepool_.add(".text.unlikely", true, |
| &name_key); |
| os = this->get_output_section(os_name, name_key, sh_type, sh_flags, |
| ORDER_INVALID, false); |
| // Map this output section to a unique segment. This is done to |
| // separate "text" that is not likely to be executed from "text" |
| // that is likely executed. |
| os->set_is_unique_segment(); |
| } |
| else |
| { |
| // Plugins can choose to place one or more subsets of sections in |
| // unique segments and this is done by mapping these section subsets |
| // to unique output sections. Check if this section needs to be |
| // remapped to a unique output section. |
| Section_segment_map::iterator it |
| = this->section_segment_map_.find(Const_section_id(object, shndx)); |
| if (it == this->section_segment_map_.end()) |
| { |
| os = this->choose_output_section(object, name, sh_type, |
| sh_flags, true, ORDER_INVALID, |
| false, false, true); |
| } |
| else |
| { |
| // We know the name of the output section, directly call |
| // get_output_section here by-passing choose_output_section. |
| const char* os_name = it->second->name; |
| Stringpool::Key name_key; |
| os_name = this->namepool_.add(os_name, true, &name_key); |
| os = this->get_output_section(os_name, name_key, sh_type, |
| sh_flags, ORDER_INVALID, false); |
| if (!os->is_unique_segment()) |
| { |
| os->set_is_unique_segment(); |
| os->set_extra_segment_flags(it->second->flags); |
| os->set_segment_alignment(it->second->align); |
| } |
| } |
| } |
| if (os == NULL) |
| return NULL; |
| } |
| |
| // By default the GNU linker sorts input sections whose names match |
| // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The |
| // sections are sorted by name. This is used to implement |
| // constructor priority ordering. We are compatible. When we put |
| // .ctor sections in .init_array and .dtor sections in .fini_array, |
| // we must also sort plain .ctor and .dtor sections. |
| if (!this->script_options_->saw_sections_clause() |
| && !parameters->options().relocatable() |
| && (is_prefix_of(".ctors.", name) |
| || is_prefix_of(".dtors.", name) |
| || is_prefix_of(".init_array.", name) |
| || is_prefix_of(".fini_array.", name) |
| || (parameters->options().ctors_in_init_array() |
| && (strcmp(name, ".ctors") == 0 |
| || strcmp(name, ".dtors") == 0)))) |
| os->set_must_sort_attached_input_sections(); |
| |
| // By default the GNU linker sorts some special text sections ahead |
| // of others. We are compatible. |
| if (parameters->options().text_reorder() |
| && !this->script_options_->saw_sections_clause() |
| && !this->is_section_ordering_specified() |
| && !parameters->options().relocatable() |
| && Layout::special_ordering_of_input_section(name) >= 0) |
| os->set_must_sort_attached_input_sections(); |
| |
| // If this is a .ctors or .ctors.* section being mapped to a |
| // .init_array section, or a .dtors or .dtors.* section being mapped |
| // to a .fini_array section, we will need to reverse the words if |
| // there is more than one. Record this section for later. See |
| // ctors_sections_in_init_array above. |
| if (!this->script_options_->saw_sections_clause() |
| && !parameters->options().relocatable() |
| && shdr.get_sh_size() > size / 8 |
| && (((strcmp(name, ".ctors") == 0 |
| || is_prefix_of(".ctors.", name)) |
| && strcmp(os->name(), ".init_array") == 0) |
| || ((strcmp(name, ".dtors") == 0 |
| || is_prefix_of(".dtors.", name)) |
| && strcmp(os->name(), ".fini_array") == 0))) |
| ctors_sections_in_init_array.insert(Section_id(object, shndx)); |
| |
| // FIXME: Handle SHF_LINK_ORDER somewhere. |
| |
| elfcpp::Elf_Xword orig_flags = os->flags(); |
| |
| *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx, |
| this->script_options_->saw_sections_clause()); |
| |
| // If the flags changed, we may have to change the order. |
| if ((orig_flags & elfcpp::SHF_ALLOC) != 0) |
| { |
| orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR); |
| elfcpp::Elf_Xword new_flags = |
| os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR); |
| if (orig_flags != new_flags) |
| os->set_order(this->default_section_order(os, false)); |
| } |
| |
| this->have_added_input_section_ = true; |
| |
| return os; |
| } |
| |
| // Maps section SECN to SEGMENT s. |
| void |
| Layout::insert_section_segment_map(Const_section_id secn, |
| Unique_segment_info *s) |
| { |
| gold_assert(this->unique_segment_for_sections_specified_); |
| this->section_segment_map_[secn] = s; |
| } |
| |
| // Handle a relocation section when doing a relocatable link. |
| |
| template<int size, bool big_endian> |
| Output_section* |
| Layout::layout_reloc(Sized_relobj_file<size, big_endian>*, |
| unsigned int, |
| const elfcpp::Shdr<size, big_endian>& shdr, |
| Output_section* data_section, |
| Relocatable_relocs* rr) |
| { |
| gold_assert(parameters->options().relocatable() |
| || parameters->options().emit_relocs()); |
| |
| int sh_type = shdr.get_sh_type(); |
| |
| std::string name; |
| if (sh_type == elfcpp::SHT_REL) |
| name = ".rel"; |
| else if (sh_type == elfcpp::SHT_RELA) |
| name = ".rela"; |
| else |
| gold_unreachable(); |
| name += data_section->name(); |
| |
| // If the output data section already has a reloc section, use that; |
| // otherwise, make a new one. |
| Output_section* os = data_section->reloc_section(); |
| if (os == NULL) |
| { |
| const char* n = this->namepool_.add(name.c_str(), true, NULL); |
| os = this->make_output_section(n, sh_type, shdr.get_sh_flags(), |
| ORDER_INVALID, false); |
| os->set_should_link_to_symtab(); |
| os->set_info_section(data_section); |
| data_section->set_reloc_section(os); |
| } |
| |
| Output_section_data* posd; |
| if (sh_type == elfcpp::SHT_REL) |
| { |
| os->set_entsize(elfcpp::Elf_sizes<size>::rel_size); |
| posd = new Output_relocatable_relocs<elfcpp::SHT_REL, |
| size, |
| big_endian>(rr); |
| } |
| else if (sh_type == elfcpp::SHT_RELA) |
| { |
| os->set_entsize(elfcpp::Elf_sizes<size>::rela_size); |
| posd = new Output_relocatable_relocs<elfcpp::SHT_RELA, |
| size, |
| big_endian>(rr); |
| } |
| else |
| gold_unreachable(); |
| |
| os->add_output_section_data(posd); |
| rr->set_output_data(posd); |
| |
| return os; |
| } |
| |
| // Handle a group section when doing a relocatable link. |
| |
| template<int size, bool big_endian> |
| void |
| Layout::layout_group(Symbol_table* symtab, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int, |
| const char* group_section_name, |
| const char* signature, |
| const elfcpp::Shdr<size, big_endian>& shdr, |
| elfcpp::Elf_Word flags, |
| std::vector<unsigned int>* shndxes) |
| { |
| gold_assert(parameters->options().relocatable()); |
| gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP); |
| group_section_name = this->namepool_.add(group_section_name, true, NULL); |
| Output_section* os = this->make_output_section(group_section_name, |
| elfcpp::SHT_GROUP, |
| shdr.get_sh_flags(), |
| ORDER_INVALID, false); |
| |
| // We need to find a symbol with the signature in the symbol table. |
| // If we don't find one now, we need to look again later. |
| Symbol* sym = symtab->lookup(signature, NULL); |
| if (sym != NULL) |
| os->set_info_symndx(sym); |
| else |
| { |
| // Reserve some space to minimize reallocations. |
| if (this->group_signatures_.empty()) |
| this->group_signatures_.reserve(this->number_of_input_files_ * 16); |
| |
| // We will wind up using a symbol whose name is the signature. |
| // So just put the signature in the symbol name pool to save it. |
| signature = symtab->canonicalize_name(signature); |
| this->group_signatures_.push_back(Group_signature(os, signature)); |
| } |
| |
| os->set_should_link_to_symtab(); |
| os->set_entsize(4); |
| |
| section_size_type entry_count = |
| convert_to_section_size_type(shdr.get_sh_size() / 4); |
| Output_section_data* posd = |
| new Output_data_group<size, big_endian>(object, entry_count, flags, |
| shndxes); |
| os->add_output_section_data(posd); |
| } |
| |
| // Special GNU handling of sections name .eh_frame. They will |
| // normally hold exception frame data as defined by the C++ ABI |
| // (http://codesourcery.com/cxx-abi/). |
| |
| template<int size, bool big_endian> |
| Output_section* |
| Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object, |
| const unsigned char* symbols, |
| off_t symbols_size, |
| const unsigned char* symbol_names, |
| off_t symbol_names_size, |
| unsigned int shndx, |
| const elfcpp::Shdr<size, big_endian>& shdr, |
| unsigned int reloc_shndx, unsigned int reloc_type, |
| off_t* off) |
| { |
| const unsigned int unwind_section_type = |
| parameters->target().unwind_section_type(); |
| |
| gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS |
| || shdr.get_sh_type() == unwind_section_type); |
| gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0); |
| |
| Output_section* os = this->make_eh_frame_section(object); |
| if (os == NULL) |
| return NULL; |
| |
| gold_assert(this->eh_frame_section_ == os); |
| |
| elfcpp::Elf_Xword orig_flags = os->flags(); |
| |
| Eh_frame::Eh_frame_section_disposition disp = |
| Eh_frame::EH_UNRECOGNIZED_SECTION; |
| if (!parameters->incremental()) |
| { |
| disp = this->eh_frame_data_->add_ehframe_input_section(object, |
| symbols, |
| symbols_size, |
| symbol_names, |
| symbol_names_size, |
| shndx, |
| reloc_shndx, |
| reloc_type); |
| } |
| |
| if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION) |
| { |
| os->update_flags_for_input_section(shdr.get_sh_flags()); |
| |
| // A writable .eh_frame section is a RELRO section. |
| if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)) |
| != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))) |
| { |
| os->set_is_relro(); |
| os->set_order(ORDER_RELRO); |
| } |
| |
| *off = -1; |
| return os; |
| } |
| |
| if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_) |
| { |
| // We found the end marker section, so now we can add the set of |
| // optimized sections to the output section. We need to postpone |
| // adding this until we've found a section we can optimize so that |
| // the .eh_frame section in crtbeginT.o winds up at the start of |
| // the output section. |
| os->add_output_section_data(this->eh_frame_data_); |
| this->added_eh_frame_data_ = true; |
| } |
| |
| // We couldn't handle this .eh_frame section for some reason. |
| // Add it as a normal section. |
| bool saw_sections_clause = this->script_options_->saw_sections_clause(); |
| *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr, |
| reloc_shndx, saw_sections_clause); |
| this->have_added_input_section_ = true; |
| |
| if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)) |
| != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))) |
| os->set_order(this->default_section_order(os, false)); |
| |
| return os; |
| } |
| |
| void |
| Layout::finalize_eh_frame_section() |
| { |
| // If we never found an end marker section, we need to add the |
| // optimized eh sections to the output section now. |
| if (!parameters->incremental() |
| && this->eh_frame_section_ != NULL |
| && !this->added_eh_frame_data_) |
| { |
| this->eh_frame_section_->add_output_section_data(this->eh_frame_data_); |
| this->added_eh_frame_data_ = true; |
| } |
| } |
| |
| // Create and return the magic .eh_frame section. Create |
| // .eh_frame_hdr also if appropriate. OBJECT is the object with the |
| // input .eh_frame section; it may be NULL. |
| |
| Output_section* |
| Layout::make_eh_frame_section(const Relobj* object) |
| { |
| const unsigned int unwind_section_type = |
| parameters->target().unwind_section_type(); |
| |
| Output_section* os = this->choose_output_section(object, ".eh_frame", |
| unwind_section_type, |
| elfcpp::SHF_ALLOC, false, |
| ORDER_EHFRAME, false, false, |
| false); |
| if (os == NULL) |
| return NULL; |
| |
| if (this->eh_frame_section_ == NULL) |
| { |
| this->eh_frame_section_ = os; |
| this->eh_frame_data_ = new Eh_frame(); |
| |
| // For incremental linking, we do not optimize .eh_frame sections |
| // or create a .eh_frame_hdr section. |
| if (parameters->options().eh_frame_hdr() && !parameters->incremental()) |
| { |
| Output_section* hdr_os = |
| this->choose_output_section(NULL, ".eh_frame_hdr", |
| unwind_section_type, |
| elfcpp::SHF_ALLOC, false, |
| ORDER_EHFRAME, false, false, |
| false); |
| |
| if (hdr_os != NULL) |
| { |
| Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os, |
| this->eh_frame_data_); |
| hdr_os->add_output_section_data(hdr_posd); |
| |
| hdr_os->set_after_input_sections(); |
| |
| if (!this->script_options_->saw_phdrs_clause()) |
| { |
| Output_segment* hdr_oseg; |
| hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME, |
| elfcpp::PF_R); |
| hdr_oseg->add_output_section_to_nonload(hdr_os, |
| elfcpp::PF_R); |
| } |
| |
| this->eh_frame_data_->set_eh_frame_hdr(hdr_posd); |
| } |
| } |
| } |
| |
| return os; |
| } |
| |
| // Add an exception frame for a PLT. This is called from target code. |
| |
| void |
| Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data, |
| size_t cie_length, const unsigned char* fde_data, |
| size_t fde_length) |
| { |
| if (parameters->incremental()) |
| { |
| // FIXME: Maybe this could work some day.... |
| return; |
| } |
| Output_section* os = this->make_eh_frame_section(NULL); |
| if (os == NULL) |
| return; |
| this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length, |
| fde_data, fde_length); |
| if (!this->added_eh_frame_data_) |
| { |
| os->add_output_section_data(this->eh_frame_data_); |
| this->added_eh_frame_data_ = true; |
| } |
| } |
| |
| // Remove all post-map .eh_frame information for a PLT. |
| |
| void |
| Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data, |
| size_t cie_length) |
| { |
| if (parameters->incremental()) |
| { |
| // FIXME: Maybe this could work some day.... |
| return; |
| } |
| this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length); |
| } |
| |
| // Scan a .debug_info or .debug_types section, and add summary |
| // information to the .gdb_index section. |
| |
| template<int size, bool big_endian> |
| void |
| Layout::add_to_gdb_index(bool is_type_unit, |
| Sized_relobj<size, big_endian>* object, |
| const unsigned char* symbols, |
| off_t symbols_size, |
| unsigned int shndx, |
| unsigned int reloc_shndx, |
| unsigned int reloc_type) |
| { |
| if (this->gdb_index_data_ == NULL) |
| { |
| Output_section* os = this->choose_output_section(NULL, ".gdb_index", |
| elfcpp::SHT_PROGBITS, 0, |
| false, ORDER_INVALID, |
| false, false, false); |
| if (os == NULL) |
| return; |
| |
| this->gdb_index_data_ = new Gdb_index(os); |
| os->add_output_section_data(this->gdb_index_data_); |
| os->set_after_input_sections(); |
| } |
| |
| this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols, |
| symbols_size, shndx, reloc_shndx, |
| reloc_type); |
| } |
| |
| // Add POSD to an output section using NAME, TYPE, and FLAGS. Return |
| // the output section. |
| |
| Output_section* |
| Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type, |
| elfcpp::Elf_Xword flags, |
| Output_section_data* posd, |
| Output_section_order order, bool is_relro) |
| { |
| Output_section* os = this->choose_output_section(NULL, name, type, flags, |
| false, order, is_relro, |
| false, false); |
| if (os != NULL) |
| os->add_output_section_data(posd); |
| return os; |
| } |
| |
| // Map section flags to segment flags. |
| |
| elfcpp::Elf_Word |
| Layout::section_flags_to_segment(elfcpp::Elf_Xword flags) |
| { |
| elfcpp::Elf_Word ret = elfcpp::PF_R; |
| if ((flags & elfcpp::SHF_WRITE) != 0) |
| ret |= elfcpp::PF_W; |
| if ((flags & elfcpp::SHF_EXECINSTR) != 0) |
| ret |= elfcpp::PF_X; |
| return ret; |
| } |
| |
| // Make a new Output_section, and attach it to segments as |
| // appropriate. ORDER is the order in which this section should |
| // appear in the output segment. IS_RELRO is true if this is a relro |
| // (read-only after relocations) section. |
| |
| Output_section* |
| Layout::make_output_section(const char* name, elfcpp::Elf_Word type, |
| elfcpp::Elf_Xword flags, |
| Output_section_order order, bool is_relro) |
| { |
| Output_section* os; |
| if ((flags & elfcpp::SHF_ALLOC) == 0 |
| && strcmp(parameters->options().compress_debug_sections(), "none") != 0 |
| && is_compressible_debug_section(name)) |
| os = new Output_compressed_section(¶meters->options(), name, type, |
| flags); |
| else if ((flags & elfcpp::SHF_ALLOC) == 0 |
| && parameters->options().strip_debug_non_line() |
| && strcmp(".debug_abbrev", name) == 0) |
| { |
| os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section( |
| name, type, flags); |
| if (this->debug_info_) |
| this->debug_info_->set_abbreviations(this->debug_abbrev_); |
| } |
| else if ((flags & elfcpp::SHF_ALLOC) == 0 |
| && parameters->options().strip_debug_non_line() |
| && strcmp(".debug_info", name) == 0) |
| { |
| os = this->debug_info_ = new Output_reduced_debug_info_section( |
| name, type, flags); |
| if (this->debug_abbrev_) |
| this->debug_info_->set_abbreviations(this->debug_abbrev_); |
| } |
| else |
| { |
| // Sometimes .init_array*, .preinit_array* and .fini_array* do |
| // not have correct section types. Force them here. |
| if (type == elfcpp::SHT_PROGBITS) |
| { |
| if (is_prefix_of(".init_array", name)) |
| type = elfcpp::SHT_INIT_ARRAY; |
| else if (is_prefix_of(".preinit_array", name)) |
| type = elfcpp::SHT_PREINIT_ARRAY; |
| else if (is_prefix_of(".fini_array", name)) |
| type = elfcpp::SHT_FINI_ARRAY; |
| } |
| |
| // FIXME: const_cast is ugly. |
| Target* target = const_cast<Target*>(¶meters->target()); |
| os = target->make_output_section(name, type, flags); |
| } |
| |
| // With -z relro, we have to recognize the special sections by name. |
| // There is no other way. |
| bool is_relro_local = false; |
| if (!this->script_options_->saw_sections_clause() |
| && parameters->options().relro() |
| && (flags & elfcpp::SHF_ALLOC) != 0 |
| && (flags & elfcpp::SHF_WRITE) != 0) |
| { |
| if (type == elfcpp::SHT_PROGBITS) |
| { |
| if ((flags & elfcpp::SHF_TLS) != 0) |
| is_relro = true; |
| else if (strcmp(name, ".data.rel.ro") == 0) |
| is_relro = true; |
| else if (strcmp(name, ".data.rel.ro.local") == 0) |
| { |
| is_relro = true; |
| is_relro_local = true; |
| } |
| else if (strcmp(name, ".ctors") == 0 |
| || strcmp(name, ".dtors") == 0 |
| || strcmp(name, ".jcr") == 0) |
| is_relro = true; |
| } |
| else if (type == elfcpp::SHT_INIT_ARRAY |
| || type == elfcpp::SHT_FINI_ARRAY |
| || type == elfcpp::SHT_PREINIT_ARRAY) |
| is_relro = true; |
| } |
| |
| if (is_relro) |
| os->set_is_relro(); |
| |
| if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0) |
| order = this->default_section_order(os, is_relro_local); |
| |
| os->set_order(order); |
| |
| parameters->target().new_output_section(os); |
| |
| this->section_list_.push_back(os); |
| |
| // The GNU linker by default sorts some sections by priority, so we |
| // do the same. We need to know that this might happen before we |
| // attach any input sections. |
| if (!this->script_options_->saw_sections_clause() |
| && !parameters->options().relocatable() |
| && (strcmp(name, ".init_array") == 0 |
| || strcmp(name, ".fini_array") == 0 |
| || (!parameters->options().ctors_in_init_array() |
| && (strcmp(name, ".ctors") == 0 |
| || strcmp(name, ".dtors") == 0)))) |
| os->set_may_sort_attached_input_sections(); |
| |
| // The GNU linker by default sorts .text.{unlikely,exit,startup,hot} |
| // sections before other .text sections. We are compatible. We |
| // need to know that this might happen before we attach any input |
| // sections. |
| if (parameters->options().text_reorder() |
| && !this->script_options_->saw_sections_clause() |
| && !this->is_section_ordering_specified() |
| && !parameters->options().relocatable() |
| && strcmp(name, ".text") == 0) |
| os->set_may_sort_attached_input_sections(); |
| |
| // GNU linker sorts section by name with --sort-section=name. |
| if (strcmp(parameters->options().sort_section(), "name") == 0) |
| os->set_must_sort_attached_input_sections(); |
| |
| // Check for .stab*str sections, as .stab* sections need to link to |
| // them. |
| if (type == elfcpp::SHT_STRTAB |
| && !this->have_stabstr_section_ |
| && strncmp(name, ".stab", 5) == 0 |
| && strcmp(name + strlen(name) - 3, "str") == 0) |
| this->have_stabstr_section_ = true; |
| |
| // During a full incremental link, we add patch space to most |
| // PROGBITS and NOBITS sections. Flag those that may be |
| // arbitrarily padded. |
| if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS) |
| && order != ORDER_INTERP |
| && order != ORDER_INIT |
| && order != ORDER_PLT |
| && order != ORDER_FINI |
| && order != ORDER_RELRO_LAST |
| && order != ORDER_NON_RELRO_FIRST |
| && strcmp(name, ".eh_frame") != 0 |
| && strcmp(name, ".ctors") != 0 |
| && strcmp(name, ".dtors") != 0 |
| && strcmp(name, ".jcr") != 0) |
| { |
| os->set_is_patch_space_allowed(); |
| |
| // Certain sections require "holes" to be filled with |
| // specific fill patterns. These fill patterns may have |
| // a minimum size, so we must prevent allocations from the |
| // free list that leave a hole smaller than the minimum. |
| if (strcmp(name, ".debug_info") == 0) |
| os->set_free_space_fill(new Output_fill_debug_info(false)); |
| else if (strcmp(name, ".debug_types") == 0) |
| os->set_free_space_fill(new Output_fill_debug_info(true)); |
| else if (strcmp(name, ".debug_line") == 0) |
| os->set_free_space_fill(new Output_fill_debug_line()); |
| } |
| |
| // If we have already attached the sections to segments, then we |
| // need to attach this one now. This happens for sections created |
| // directly by the linker. |
| if (this->sections_are_attached_) |
| this->attach_section_to_segment(¶meters->target(), os); |
| |
| return os; |
| } |
| |
| // Return the default order in which a section should be placed in an |
| // output segment. This function captures a lot of the ideas in |
| // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a |
| // linker created section is normally set when the section is created; |
| // this function is used for input sections. |
| |
| Output_section_order |
| Layout::default_section_order(Output_section* os, bool is_relro_local) |
| { |
| gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0); |
| bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0; |
| bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0; |
| bool is_bss = false; |
| |
| switch (os->type()) |
| { |
| default: |
| case elfcpp::SHT_PROGBITS: |
| break; |
| case elfcpp::SHT_NOBITS: |
| is_bss = true; |
| break; |
| case elfcpp::SHT_RELA: |
| case elfcpp::SHT_REL: |
| if (!is_write) |
| return ORDER_DYNAMIC_RELOCS; |
| break; |
| case elfcpp::SHT_HASH: |
| case elfcpp::SHT_DYNAMIC: |
| case elfcpp::SHT_SHLIB: |
| case elfcpp::SHT_DYNSYM: |
| case elfcpp::SHT_GNU_HASH: |
| case elfcpp::SHT_GNU_verdef: |
| case elfcpp::SHT_GNU_verneed: |
| case elfcpp::SHT_GNU_versym: |
| if (!is_write) |
| return ORDER_DYNAMIC_LINKER; |
| break; |
| case elfcpp::SHT_NOTE: |
| return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE; |
| } |
| |
| if ((os->flags() & elfcpp::SHF_TLS) != 0) |
| return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA; |
| |
| if (!is_bss && !is_write) |
| { |
| if (is_execinstr) |
| { |
| if (strcmp(os->name(), ".init") == 0) |
| return ORDER_INIT; |
| else if (strcmp(os->name(), ".fini") == 0) |
| return ORDER_FINI; |
| else if (parameters->options().keep_text_section_prefix()) |
| { |
| // -z,keep-text-section-prefix introduces additional |
| // output sections. |
| if (strcmp(os->name(), ".text.hot") == 0) |
| return ORDER_TEXT_HOT; |
| else if (strcmp(os->name(), ".text.startup") == 0) |
| return ORDER_TEXT_STARTUP; |
| else if (strcmp(os->name(), ".text.exit") == 0) |
| return ORDER_TEXT_EXIT; |
| else if (strcmp(os->name(), ".text.unlikely") == 0) |
| return ORDER_TEXT_UNLIKELY; |
| } |
| } |
| return is_execinstr ? ORDER_TEXT : ORDER_READONLY; |
| } |
| |
| if (os->is_relro()) |
| return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO; |
| |
| if (os->is_small_section()) |
| return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA; |
| if (os->is_large_section()) |
| return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA; |
| |
| return is_bss ? ORDER_BSS : ORDER_DATA; |
| } |
| |
| // Attach output sections to segments. This is called after we have |
| // seen all the input sections. |
| |
| void |
| Layout::attach_sections_to_segments(const Target* target) |
| { |
| for (Section_list::iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| this->attach_section_to_segment(target, *p); |
| |
| this->sections_are_attached_ = true; |
| } |
| |
| // Attach an output section to a segment. |
| |
| void |
| Layout::attach_section_to_segment(const Target* target, Output_section* os) |
| { |
| if ((os->flags() & elfcpp::SHF_ALLOC) == 0) |
| this->unattached_section_list_.push_back(os); |
| else |
| this->attach_allocated_section_to_segment(target, os); |
| } |
| |
| // Attach an allocated output section to a segment. |
| |
| void |
| Layout::attach_allocated_section_to_segment(const Target* target, |
| Output_section* os) |
| { |
| elfcpp::Elf_Xword flags = os->flags(); |
| gold_assert((flags & elfcpp::SHF_ALLOC) != 0); |
| |
| if (parameters->options().relocatable()) |
| return; |
| |
| // If we have a SECTIONS clause, we can't handle the attachment to |
| // segments until after we've seen all the sections. |
| if (this->script_options_->saw_sections_clause()) |
| return; |
| |
| gold_assert(!this->script_options_->saw_phdrs_clause()); |
| |
| // This output section goes into a PT_LOAD segment. |
| |
| elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags); |
| |
| // If this output section's segment has extra flags that need to be set, |
| // coming from a linker plugin, do that. |
| seg_flags |= os->extra_segment_flags(); |
| |
| // Check for --section-start. |
| uint64_t addr; |
| bool is_address_set = parameters->options().section_start(os->name(), &addr); |
| |
| // In general the only thing we really care about for PT_LOAD |
| // segments is whether or not they are writable or executable, |
| // so that is how we search for them. |
| // Large data sections also go into their own PT_LOAD segment. |
| // People who need segments sorted on some other basis will |
| // have to use a linker script. |
| |
| Segment_list::const_iterator p; |
| if (!os->is_unique_segment()) |
| { |
| for (p = this->segment_list_.begin(); |
| p != this->segment_list_.end(); |
| ++p) |
| { |
| if ((*p)->type() != elfcpp::PT_LOAD) |
| continue; |
| if ((*p)->is_unique_segment()) |
| continue; |
| if (!parameters->options().omagic() |
| && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W)) |
| continue; |
| if ((target->isolate_execinstr() || parameters->options().rosegment()) |
| && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X)) |
| continue; |
| // If -Tbss was specified, we need to separate the data and BSS |
| // segments. |
| if (parameters->options().user_set_Tbss()) |
| { |
| if ((os->type() == elfcpp::SHT_NOBITS) |
| == (*p)->has_any_data_sections()) |
| continue; |
| } |
| if (os->is_large_data_section() && !(*p)->is_large_data_segment()) |
| continue; |
| |
| if (is_address_set) |
| { |
| if ((*p)->are_addresses_set()) |
| continue; |
| |
| (*p)->add_initial_output_data(os); |
| (*p)->update_flags_for_output_section(seg_flags); |
| (*p)->set_addresses(addr, addr); |
| break; |
| } |
| |
| (*p)->add_output_section_to_load(this, os, seg_flags); |
| break; |
| } |
| } |
| |
| if (p == this->segment_list_.end() |
| || os->is_unique_segment()) |
| { |
| Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD, |
| seg_flags); |
| if (os->is_large_data_section()) |
| oseg->set_is_large_data_segment(); |
| oseg->add_output_section_to_load(this, os, seg_flags); |
| if (is_address_set) |
| oseg->set_addresses(addr, addr); |
| // Check if segment should be marked unique. For segments marked |
| // unique by linker plugins, set the new alignment if specified. |
| if (os->is_unique_segment()) |
| { |
| oseg->set_is_unique_segment(); |
| if (os->segment_alignment() != 0) |
| oseg->set_minimum_p_align(os->segment_alignment()); |
| } |
| } |
| |
| // If we see a loadable SHT_NOTE section, we create a PT_NOTE |
| // segment. |
| if (os->type() == elfcpp::SHT_NOTE) |
| { |
| uint64_t os_align = os->addralign(); |
| |
| // See if we already have an equivalent PT_NOTE segment. |
| for (p = this->segment_list_.begin(); |
| p != segment_list_.end(); |
| ++p) |
| { |
| if ((*p)->type() == elfcpp::PT_NOTE |
| && (*p)->align() == os_align |
| && (((*p)->flags() & elfcpp::PF_W) |
| == (seg_flags & elfcpp::PF_W))) |
| { |
| (*p)->add_output_section_to_nonload(os, seg_flags); |
| break; |
| } |
| } |
| |
| if (p == this->segment_list_.end()) |
| { |
| Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE, |
| seg_flags); |
| oseg->add_output_section_to_nonload(os, seg_flags); |
| oseg->set_align(os_align); |
| } |
| } |
| |
| // If we see a loadable SHF_TLS section, we create a PT_TLS |
| // segment. There can only be one such segment. |
| if ((flags & elfcpp::SHF_TLS) != 0) |
| { |
| if (this->tls_segment_ == NULL) |
| this->make_output_segment(elfcpp::PT_TLS, seg_flags); |
| this->tls_segment_->add_output_section_to_nonload(os, seg_flags); |
| } |
| |
| // If -z relro is in effect, and we see a relro section, we create a |
| // PT_GNU_RELRO segment. There can only be one such segment. |
| if (os->is_relro() && parameters->options().relro()) |
| { |
| gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W)); |
| if (this->relro_segment_ == NULL) |
| this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags); |
| this->relro_segment_->add_output_section_to_nonload(os, seg_flags); |
| } |
| |
| // If we see a section named .interp, put it into a PT_INTERP |
| // segment. This seems broken to me, but this is what GNU ld does, |
| // and glibc expects it. |
| if (strcmp(os->name(), ".interp") == 0 |
| && !this->script_options_->saw_phdrs_clause()) |
| { |
| if (this->interp_segment_ == NULL) |
| this->make_output_segment(elfcpp::PT_INTERP, seg_flags); |
| else |
| gold_warning(_("multiple '.interp' sections in input files " |
| "may cause confusing PT_INTERP segment")); |
| this->interp_segment_->add_output_section_to_nonload(os, seg_flags); |
| } |
| } |
| |
| // Make an output section for a script. |
| |
| Output_section* |
| Layout::make_output_section_for_script( |
| const char* name, |
| Script_sections::Section_type section_type) |
| { |
| name = this->namepool_.add(name, false, NULL); |
| elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC; |
| if (section_type == Script_sections::ST_NOLOAD) |
| sh_flags = 0; |
| Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS, |
| sh_flags, ORDER_INVALID, |
| false); |
| os->set_found_in_sections_clause(); |
| if (section_type == Script_sections::ST_NOLOAD) |
| os->set_is_noload(); |
| return os; |
| } |
| |
| // Return the number of segments we expect to see. |
| |
| size_t |
| Layout::expected_segment_count() const |
| { |
| size_t ret = this->segment_list_.size(); |
| |
| // If we didn't see a SECTIONS clause in a linker script, we should |
| // already have the complete list of segments. Otherwise we ask the |
| // SECTIONS clause how many segments it expects, and add in the ones |
| // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.) |
| |
| if (!this->script_options_->saw_sections_clause()) |
| return ret; |
| else |
| { |
| const Script_sections* ss = this->script_options_->script_sections(); |
| return ret + ss->expected_segment_count(this); |
| } |
| } |
| |
| // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK |
| // is whether we saw a .note.GNU-stack section in the object file. |
| // GNU_STACK_FLAGS is the section flags. The flags give the |
| // protection required for stack memory. We record this in an |
| // executable as a PT_GNU_STACK segment. If an object file does not |
| // have a .note.GNU-stack segment, we must assume that it is an old |
| // object. On some targets that will force an executable stack. |
| |
| void |
| Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags, |
| const Object* obj) |
| { |
| if (!seen_gnu_stack) |
| { |
| this->input_without_gnu_stack_note_ = true; |
| if (parameters->options().warn_execstack() |
| && parameters->target().is_default_stack_executable()) |
| gold_warning(_("%s: missing .note.GNU-stack section" |
| " implies executable stack"), |
| obj->name().c_str()); |
| } |
| else |
| { |
| this->input_with_gnu_stack_note_ = true; |
| if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0) |
| { |
| this->input_requires_executable_stack_ = true; |
| if (parameters->options().warn_execstack()) |
| gold_warning(_("%s: requires executable stack"), |
| obj->name().c_str()); |
| } |
| } |
| } |
| |
| // Read a value with given size and endianness. |
| |
| static inline uint64_t |
| read_sized_value(size_t size, const unsigned char* buf, bool is_big_endian, |
| const Object* object) |
| { |
| uint64_t val = 0; |
| if (size == 4) |
| { |
| if (is_big_endian) |
| val = elfcpp::Swap<32, true>::readval(buf); |
| else |
| val = elfcpp::Swap<32, false>::readval(buf); |
| } |
| else if (size == 8) |
| { |
| if (is_big_endian) |
| val = elfcpp::Swap<64, true>::readval(buf); |
| else |
| val = elfcpp::Swap<64, false>::readval(buf); |
| } |
| else |
| { |
| gold_warning(_("%s: in .note.gnu.property section, " |
| "pr_datasz must be 4 or 8"), |
| object->name().c_str()); |
| } |
| return val; |
| } |
| |
| // Write a value with given size and endianness. |
| |
| static inline void |
| write_sized_value(uint64_t value, size_t size, unsigned char* buf, |
| bool is_big_endian) |
| { |
| if (size == 4) |
| { |
| if (is_big_endian) |
| elfcpp::Swap<32, true>::writeval(buf, static_cast<uint32_t>(value)); |
| else |
| elfcpp::Swap<32, false>::writeval(buf, static_cast<uint32_t>(value)); |
| } |
| else if (size == 8) |
| { |
| if (is_big_endian) |
| elfcpp::Swap<64, true>::writeval(buf, value); |
| else |
| elfcpp::Swap<64, false>::writeval(buf, value); |
| } |
| else |
| { |
| // We will have already complained about this. |
| } |
| } |
| |
| // Handle the .note.gnu.property section at layout time. |
| |
| void |
| Layout::layout_gnu_property(unsigned int note_type, |
| unsigned int pr_type, |
| size_t pr_datasz, |
| const unsigned char* pr_data, |
| const Object* object) |
| { |
| // We currently support only the one note type. |
| gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0); |
| |
| if (pr_type >= elfcpp::GNU_PROPERTY_LOPROC |
| && pr_type < elfcpp::GNU_PROPERTY_HIPROC) |
| { |
| // Target-dependent property value; call the target to record. |
| const int size = parameters->target().get_size(); |
| const bool is_big_endian = parameters->target().is_big_endian(); |
| if (size == 32) |
| { |
| if (is_big_endian) |
| { |
| #ifdef HAVE_TARGET_32_BIG |
| parameters->sized_target<32, true>()-> |
| record_gnu_property(note_type, pr_type, pr_datasz, pr_data, |
| object); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| else |
| { |
| #ifdef HAVE_TARGET_32_LITTLE |
| parameters->sized_target<32, false>()-> |
| record_gnu_property(note_type, pr_type, pr_datasz, pr_data, |
| object); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| } |
| else if (size == 64) |
| { |
| if (is_big_endian) |
| { |
| #ifdef HAVE_TARGET_64_BIG |
| parameters->sized_target<64, true>()-> |
| record_gnu_property(note_type, pr_type, pr_datasz, pr_data, |
| object); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| else |
| { |
| #ifdef HAVE_TARGET_64_LITTLE |
| parameters->sized_target<64, false>()-> |
| record_gnu_property(note_type, pr_type, pr_datasz, pr_data, |
| object); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| } |
| else |
| gold_unreachable(); |
| return; |
| } |
| |
| Gnu_properties::iterator pprop = this->gnu_properties_.find(pr_type); |
| if (pprop == this->gnu_properties_.end()) |
| { |
| Gnu_property prop; |
| prop.pr_datasz = pr_datasz; |
| prop.pr_data = new unsigned char[pr_datasz]; |
| memcpy(prop.pr_data, pr_data, pr_datasz); |
| this->gnu_properties_[pr_type] = prop; |
| } |
| else |
| { |
| const bool is_big_endian = parameters->target().is_big_endian(); |
| switch (pr_type) |
| { |
| case elfcpp::GNU_PROPERTY_STACK_SIZE: |
| // Record the maximum value seen. |
| { |
| uint64_t val1 = read_sized_value(pprop->second.pr_datasz, |
| pprop->second.pr_data, |
| is_big_endian, object); |
| uint64_t val2 = read_sized_value(pr_datasz, pr_data, |
| is_big_endian, object); |
| if (val2 > val1) |
| write_sized_value(val2, pprop->second.pr_datasz, |
| pprop->second.pr_data, is_big_endian); |
| } |
| break; |
| case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED: |
| // No data to merge. |
| break; |
| default: |
| gold_warning(_("%s: unknown program property type %d " |
| "in .note.gnu.property section"), |
| object->name().c_str(), pr_type); |
| } |
| } |
| } |
| |
| // Merge per-object properties with program properties. |
| // This lets the target identify objects that are missing certain |
| // properties, in cases where properties must be ANDed together. |
| |
| void |
| Layout::merge_gnu_properties(const Object* object) |
| { |
| const int size = parameters->target().get_size(); |
| const bool is_big_endian = parameters->target().is_big_endian(); |
| if (size == 32) |
| { |
| if (is_big_endian) |
| { |
| #ifdef HAVE_TARGET_32_BIG |
| parameters->sized_target<32, true>()->merge_gnu_properties(object); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| else |
| { |
| #ifdef HAVE_TARGET_32_LITTLE |
| parameters->sized_target<32, false>()->merge_gnu_properties(object); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| } |
| else if (size == 64) |
| { |
| if (is_big_endian) |
| { |
| #ifdef HAVE_TARGET_64_BIG |
| parameters->sized_target<64, true>()->merge_gnu_properties(object); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| else |
| { |
| #ifdef HAVE_TARGET_64_LITTLE |
| parameters->sized_target<64, false>()->merge_gnu_properties(object); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| } |
| else |
| gold_unreachable(); |
| } |
| |
| // Add a target-specific property for the output .note.gnu.property section. |
| |
| void |
| Layout::add_gnu_property(unsigned int note_type, |
| unsigned int pr_type, |
| size_t pr_datasz, |
| const unsigned char* pr_data) |
| { |
| gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0); |
| |
| Gnu_property prop; |
| prop.pr_datasz = pr_datasz; |
| prop.pr_data = new unsigned char[pr_datasz]; |
| memcpy(prop.pr_data, pr_data, pr_datasz); |
| this->gnu_properties_[pr_type] = prop; |
| } |
| |
| // Create automatic note sections. |
| |
| void |
| Layout::create_notes() |
| { |
| this->create_gnu_properties_note(); |
| this->create_gold_note(); |
| this->create_stack_segment(); |
| this->create_build_id(); |
| } |
| |
| // Create the dynamic sections which are needed before we read the |
| // relocs. |
| |
| void |
| Layout::create_initial_dynamic_sections(Symbol_table* symtab) |
| { |
| if (parameters->doing_static_link()) |
| return; |
| |
| this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic", |
| elfcpp::SHT_DYNAMIC, |
| (elfcpp::SHF_ALLOC |
| | elfcpp::SHF_WRITE), |
| false, ORDER_RELRO, |
| true, false, false); |
| |
| // A linker script may discard .dynamic, so check for NULL. |
| if (this->dynamic_section_ != NULL) |
| { |
| this->dynamic_symbol_ = |
| symtab->define_in_output_data("_DYNAMIC", NULL, |
| Symbol_table::PREDEFINED, |
| this->dynamic_section_, 0, 0, |
| elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, |
| elfcpp::STV_HIDDEN, 0, false, false); |
| |
| this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_); |
| |
| this->dynamic_section_->add_output_section_data(this->dynamic_data_); |
| } |
| } |
| |
| // For each output section whose name can be represented as C symbol, |
| // define __start and __stop symbols for the section. This is a GNU |
| // extension. |
| |
| void |
| Layout::define_section_symbols(Symbol_table* symtab) |
| { |
| const elfcpp::STV visibility = parameters->options().start_stop_visibility_enum(); |
| for (Section_list::const_iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| { |
| const char* const name = (*p)->name(); |
| if (is_cident(name)) |
| { |
| const std::string name_string(name); |
| const std::string start_name(cident_section_start_prefix |
| + name_string); |
| const std::string stop_name(cident_section_stop_prefix |
| + name_string); |
| |
| symtab->define_in_output_data(start_name.c_str(), |
| NULL, // version |
| Symbol_table::PREDEFINED, |
| *p, |
| 0, // value |
| 0, // symsize |
| elfcpp::STT_NOTYPE, |
| elfcpp::STB_GLOBAL, |
| visibility, |
| 0, // nonvis |
| false, // offset_is_from_end |
| true); // only_if_ref |
| |
| symtab->define_in_output_data(stop_name.c_str(), |
| NULL, // version |
| Symbol_table::PREDEFINED, |
| *p, |
| 0, // value |
| 0, // symsize |
| elfcpp::STT_NOTYPE, |
| elfcpp::STB_GLOBAL, |
| visibility, |
| 0, // nonvis |
| true, // offset_is_from_end |
| true); // only_if_ref |
| } |
| } |
| } |
| |
| // Define symbols for group signatures. |
| |
| void |
| Layout::define_group_signatures(Symbol_table* symtab) |
| { |
| for (Group_signatures::iterator p = this->group_signatures_.begin(); |
| p != this->group_signatures_.end(); |
| ++p) |
| { |
| Symbol* sym = symtab->lookup(p->signature, NULL); |
| if (sym != NULL) |
| p->section->set_info_symndx(sym); |
| else |
| { |
| // Force the name of the group section to the group |
| // signature, and use the group's section symbol as the |
| // signature symbol. |
| if (strcmp(p->section->name(), p->signature) != 0) |
| { |
| const char* name = this->namepool_.add(p->signature, |
| true, NULL); |
| p->section->set_name(name); |
| } |
| p->section->set_needs_symtab_index(); |
| p->section->set_info_section_symndx(p->section); |
| } |
| } |
| |
| this->group_signatures_.clear(); |
| } |
| |
| // Find the first read-only PT_LOAD segment, creating one if |
| // necessary. |
| |
| Output_segment* |
| Layout::find_first_load_seg(const Target* target) |
| { |
| Output_segment* best = NULL; |
| for (Segment_list::const_iterator p = this->segment_list_.begin(); |
| p != this->segment_list_.end(); |
| ++p) |
| { |
| if ((*p)->type() == elfcpp::PT_LOAD |
| && ((*p)->flags() & elfcpp::PF_R) != 0 |
| && (parameters->options().omagic() |
| || ((*p)->flags() & elfcpp::PF_W) == 0) |
| && (!target->isolate_execinstr() |
| || ((*p)->flags() & elfcpp::PF_X) == 0)) |
| { |
| if (best == NULL || this->segment_precedes(*p, best)) |
| best = *p; |
| } |
| } |
| if (best != NULL) |
| return best; |
| |
| gold_assert(!this->script_options_->saw_phdrs_clause()); |
| |
| Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD, |
| elfcpp::PF_R); |
| return load_seg; |
| } |
| |
| // Save states of all current output segments. Store saved states |
| // in SEGMENT_STATES. |
| |
| void |
| Layout::save_segments(Segment_states* segment_states) |
| { |
| for (Segment_list::const_iterator p = this->segment_list_.begin(); |
| p != this->segment_list_.end(); |
| ++p) |
| { |
| Output_segment* segment = *p; |
| // Shallow copy. |
| Output_segment* copy = new Output_segment(*segment); |
| (*segment_states)[segment] = copy; |
| } |
| } |
| |
| // Restore states of output segments and delete any segment not found in |
| // SEGMENT_STATES. |
| |
| void |
| Layout::restore_segments(const Segment_states* segment_states) |
| { |
| // Go through the segment list and remove any segment added in the |
| // relaxation loop. |
| this->tls_segment_ = NULL; |
| this->relro_segment_ = NULL; |
| Segment_list::iterator list_iter = this->segment_list_.begin(); |
| while (list_iter != this->segment_list_.end()) |
| { |
| Output_segment* segment = *list_iter; |
| Segment_states::const_iterator states_iter = |
| segment_states->find(segment); |
| if (states_iter != segment_states->end()) |
| { |
| const Output_segment* copy = states_iter->second; |
| // Shallow copy to restore states. |
| *segment = *copy; |
| |
| // Also fix up TLS and RELRO segment pointers as appropriate. |
| if (segment->type() == elfcpp::PT_TLS) |
| this->tls_segment_ = segment; |
| else if (segment->type() == elfcpp::PT_GNU_RELRO) |
| this->relro_segment_ = segment; |
| |
| ++list_iter; |
| } |
| else |
| { |
| list_iter = this->segment_list_.erase(list_iter); |
| // This is a segment created during section layout. It should be |
| // safe to remove it since we should have removed all pointers to it. |
| delete segment; |
| } |
| } |
| } |
| |
| // Clean up after relaxation so that sections can be laid out again. |
| |
| void |
| Layout::clean_up_after_relaxation() |
| { |
| // Restore the segments to point state just prior to the relaxation loop. |
| Script_sections* script_section = this->script_options_->script_sections(); |
| script_section->release_segments(); |
| this->restore_segments(this->segment_states_); |
| |
| // Reset section addresses and file offsets |
| for (Section_list::iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| { |
| (*p)->restore_states(); |
| |
| // If an input section changes size because of relaxation, |
| // we need to adjust the section offsets of all input sections. |
| // after such a section. |
| if ((*p)->section_offsets_need_adjustment()) |
| (*p)->adjust_section_offsets(); |
| |
| (*p)->reset_address_and_file_offset(); |
| } |
| |
| // Reset special output object address and file offsets. |
| for (Data_list::iterator p = this->special_output_list_.begin(); |
| p != this->special_output_list_.end(); |
| ++p) |
| (*p)->reset_address_and_file_offset(); |
| |
| // A linker script may have created some output section data objects. |
| // They are useless now. |
| for (Output_section_data_list::const_iterator p = |
| this->script_output_section_data_list_.begin(); |
| p != this->script_output_section_data_list_.end(); |
| ++p) |
| delete *p; |
| this->script_output_section_data_list_.clear(); |
| |
| // Special-case fill output objects are recreated each time through |
| // the relaxation loop. |
| this->reset_relax_output(); |
| } |
| |
| void |
| Layout::reset_relax_output() |
| { |
| for (Data_list::const_iterator p = this->relax_output_list_.begin(); |
| p != this->relax_output_list_.end(); |
| ++p) |
| delete *p; |
| this->relax_output_list_.clear(); |
| } |
| |
| // Prepare for relaxation. |
| |
| void |
| Layout::prepare_for_relaxation() |
| { |
| // Create an relaxation debug check if in debugging mode. |
| if (is_debugging_enabled(DEBUG_RELAXATION)) |
| this->relaxation_debug_check_ = new Relaxation_debug_check(); |
| |
| // Save segment states. |
| this->segment_states_ = new Segment_states(); |
| this->save_segments(this->segment_states_); |
| |
| for(Section_list::const_iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| (*p)->save_states(); |
| |
| if (is_debugging_enabled(DEBUG_RELAXATION)) |
| this->relaxation_debug_check_->check_output_data_for_reset_values( |
| this->section_list_, this->special_output_list_, |
| this->relax_output_list_); |
| |
| // Also enable recording of output section data from scripts. |
| this->record_output_section_data_from_script_ = true; |
| } |
| |
| // If the user set the address of the text segment, that may not be |
| // compatible with putting the segment headers and file headers into |
| // that segment. For isolate_execinstr() targets, it's the rodata |
| // segment rather than text where we might put the headers. |
| static inline bool |
| load_seg_unusable_for_headers(const Target* target) |
| { |
| const General_options& options = parameters->options(); |
| if (target->isolate_execinstr()) |
| return (options.user_set_Trodata_segment() |
| && options.Trodata_segment() % target->abi_pagesize() != 0); |
| else |
| return (options.user_set_Ttext() |
| && options.Ttext() % target->abi_pagesize() != 0); |
| } |
| |
| // Relaxation loop body: If target has no relaxation, this runs only once |
| // Otherwise, the target relaxation hook is called at the end of |
| // each iteration. If the hook returns true, it means re-layout of |
| // section is required. |
| // |
| // The number of segments created by a linking script without a PHDRS |
| // clause may be affected by section sizes and alignments. There is |
| // a remote chance that relaxation causes different number of PT_LOAD |
| // segments are created and sections are attached to different segments. |
| // Therefore, we always throw away all segments created during section |
| // layout. In order to be able to restart the section layout, we keep |
| // a copy of the segment list right before the relaxation loop and use |
| // that to restore the segments. |
| // |
| // PASS is the current relaxation pass number. |
| // SYMTAB is a symbol table. |
| // PLOAD_SEG is the address of a pointer for the load segment. |
| // PHDR_SEG is a pointer to the PHDR segment. |
| // SEGMENT_HEADERS points to the output segment header. |
| // FILE_HEADER points to the output file header. |
| // PSHNDX is the address to store the output section index. |
| |
| off_t inline |
| Layout::relaxation_loop_body( |
| int pass, |
| Target* target, |
| Symbol_table* symtab, |
| Output_segment** pload_seg, |
| Output_segment* phdr_seg, |
| Output_segment_headers* segment_headers, |
| Output_file_header* file_header, |
| unsigned int* pshndx) |
| { |
| // If this is not the first iteration, we need to clean up after |
| // relaxation so that we can lay out the sections again. |
| if (pass != 0) |
| this->clean_up_after_relaxation(); |
| |
| // If there is a SECTIONS clause, put all the input sections into |
| // the required order. |
| Output_segment* load_seg; |
| if (this->script_options_->saw_sections_clause()) |
| load_seg = this->set_section_addresses_from_script(symtab); |
| else if (parameters->options().relocatable()) |
| load_seg = NULL; |
| else |
| load_seg = this->find_first_load_seg(target); |
| |
| if (parameters->options().oformat_enum() |
| != General_options::OBJECT_FORMAT_ELF) |
| load_seg = NULL; |
| |
| if (load_seg_unusable_for_headers(target)) |
| { |
| load_seg = NULL; |
| phdr_seg = NULL; |
| } |
| |
| gold_assert(phdr_seg == NULL |
| || load_seg != NULL |
| || this->script_options_->saw_sections_clause()); |
| |
| // If the address of the load segment we found has been set by |
| // --section-start rather than by a script, then adjust the VMA and |
| // LMA downward if possible to include the file and section headers. |
| uint64_t header_gap = 0; |
| if (load_seg != NULL |
| && load_seg->are_addresses_set() |
| && !this->script_options_->saw_sections_clause() |
| && !parameters->options().relocatable()) |
| { |
| file_header->finalize_data_size(); |
| segment_headers->finalize_data_size(); |
| size_t sizeof_headers = (file_header->data_size() |
| + segment_headers->data_size()); |
| const uint64_t abi_pagesize = target->abi_pagesize(); |
| uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers; |
| hdr_paddr &= ~(abi_pagesize - 1); |
| uint64_t subtract = load_seg->paddr() - hdr_paddr; |
| if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract) |
| load_seg = NULL; |
| else |
| { |
| load_seg->set_addresses(load_seg->vaddr() - subtract, |
| load_seg->paddr() - subtract); |
| header_gap = subtract - sizeof_headers; |
| } |
| } |
| |
| // Lay out the segment headers. |
| if (!parameters->options().relocatable()) |
| { |
| gold_assert(segment_headers != NULL); |
| if (header_gap != 0 && load_seg != NULL) |
| { |
| Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1); |
| load_seg->add_initial_output_data(z); |
| } |
| if (load_seg != NULL) |
| load_seg->add_initial_output_data(segment_headers); |
| if (phdr_seg != NULL) |
| phdr_seg->add_initial_output_data(segment_headers); |
| } |
| |
| // Lay out the file header. |
| if (load_seg != NULL) |
| load_seg->add_initial_output_data(file_header); |
| |
| if (this->script_options_->saw_phdrs_clause() |
| && !parameters->options().relocatable()) |
| { |
| // Support use of FILEHDRS and PHDRS attachments in a PHDRS |
| // clause in a linker script. |
| Script_sections* ss = this->script_options_->script_sections(); |
| ss->put_headers_in_phdrs(file_header, segment_headers); |
| } |
| |
| // We set the output section indexes in set_segment_offsets and |
| // set_section_indexes. |
| *pshndx = 1; |
| |
| // Set the file offsets of all the segments, and all the sections |
| // they contain. |
| off_t off; |
| if (!parameters->options().relocatable()) |
| off = this->set_segment_offsets(target, load_seg, pshndx); |
| else |
| off = this->set_relocatable_section_offsets(file_header, pshndx); |
| |
| // Verify that the dummy relaxation does not change anything. |
| if (is_debugging_enabled(DEBUG_RELAXATION)) |
| { |
| if (pass == 0) |
| this->relaxation_debug_check_->read_sections(this->section_list_); |
| else |
| this->relaxation_debug_check_->verify_sections(this->section_list_); |
| } |
| |
| *pload_seg = load_seg; |
| return off; |
| } |
| |
| // Search the list of patterns and find the position of the given section |
| // name in the output section. If the section name matches a glob |
| // pattern and a non-glob name, then the non-glob position takes |
| // precedence. Return 0 if no match is found. |
| |
| unsigned int |
| Layout::find_section_order_index(const std::string& section_name) |
| { |
| Unordered_map<std::string, unsigned int>::iterator map_it; |
| map_it = this->input_section_position_.find(section_name); |
| if (map_it != this->input_section_position_.end()) |
| return map_it->second; |
| |
| // Absolute match failed. Linear search the glob patterns. |
| std::vector<std::string>::iterator it; |
| for (it = this->input_section_glob_.begin(); |
| it != this->input_section_glob_.end(); |
| ++it) |
| { |
| if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0) |
| { |
| map_it = this->input_section_position_.find(*it); |
| gold_assert(map_it != this->input_section_position_.end()); |
| return map_it->second; |
| } |
| } |
| return 0; |
| } |
| |
| // Read the sequence of input sections from the file specified with |
| // option --section-ordering-file. |
| |
| void |
| Layout::read_layout_from_file() |
| { |
| const char* filename = parameters->options().section_ordering_file(); |
| std::ifstream in; |
| std::string line; |
| |
| in.open(filename); |
| if (!in) |
| gold_fatal(_("unable to open --section-ordering-file file %s: %s"), |
| filename, strerror(errno)); |
| |
| File_read::record_file_read(filename); |
| |
| std::getline(in, line); // this chops off the trailing \n, if any |
| unsigned int position = 1; |
| this->set_section_ordering_specified(); |
| |
| while (in) |
| { |
| if (!line.empty() && line[line.length() - 1] == '\r') // Windows |
| line.resize(line.length() - 1); |
| // Ignore comments, beginning with '#' |
| if (line[0] == '#') |
| { |
| std::getline(in, line); |
| continue; |
| } |
| this->input_section_position_[line] = position; |
| // Store all glob patterns in a vector. |
| if (is_wildcard_string(line.c_str())) |
| this->input_section_glob_.push_back(line); |
| position++; |
| std::getline(in, line); |
| } |
| } |
| |
| // Finalize the layout. When this is called, we have created all the |
| // output sections and all the output segments which are based on |
| // input sections. We have several things to do, and we have to do |
| // them in the right order, so that we get the right results correctly |
| // and efficiently. |
| |
| // 1) Finalize the list of output segments and create the segment |
| // table header. |
| |
| // 2) Finalize the dynamic symbol table and associated sections. |
| |
| // 3) Determine the final file offset of all the output segments. |
| |
| // 4) Determine the final file offset of all the SHF_ALLOC output |
| // sections. |
| |
| // 5) Create the symbol table sections and the section name table |
| // section. |
| |
| // 6) Finalize the symbol table: set symbol values to their final |
| // value and make a final determination of which symbols are going |
| // into the output symbol table. |
| |
| // 7) Create the section table header. |
| |
| // 8) Determine the final file offset of all the output sections which |
| // are not SHF_ALLOC, including the section table header. |
| |
| // 9) Finalize the ELF file header. |
| |
| // This function returns the size of the output file. |
| |
| off_t |
| Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab, |
| Target* target, const Task* task) |
| { |
| unsigned int local_dynamic_count = 0; |
| unsigned int forced_local_dynamic_count = 0; |
| |
| target->finalize_sections(this, input_objects, symtab); |
| |
| this->count_local_symbols(task, input_objects); |
| |
| this->link_stabs_sections(); |
| |
| Output_segment* phdr_seg = NULL; |
| if (!parameters->options().relocatable() && !parameters->doing_static_link()) |
| { |
| // There was a dynamic object in the link. We need to create |
| // some information for the dynamic linker. |
| |
| // Create the PT_PHDR segment which will hold the program |
| // headers. |
| if (!this->script_options_->saw_phdrs_clause()) |
| phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R); |
| |
| // Create the dynamic symbol table, including the hash table. |
| Output_section* dynstr; |
| std::vector<Symbol*> dynamic_symbols; |
| Versions versions(*this->script_options()->version_script_info(), |
| &this->dynpool_); |
| this->create_dynamic_symtab(input_objects, symtab, &dynstr, |
| &local_dynamic_count, |
| &forced_local_dynamic_count, |
| &dynamic_symbols, |
| &versions); |
| |
| // Create the .interp section to hold the name of the |
| // interpreter, and put it in a PT_INTERP segment. Don't do it |
| // if we saw a .interp section in an input file. |
| if ((!parameters->options().shared() |
| || parameters->options().dynamic_linker() != NULL) |
| && this->interp_segment_ == NULL) |
|