| /* frv simulator fr550 dependent profiling code. |
| |
| Copyright (C) 2003-2021 Free Software Foundation, Inc. |
| Contributed by Red Hat |
| |
| This file is part of the GNU simulators. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| /* This must come before any other includes. */ |
| #include "defs.h" |
| |
| #define WANT_CPU |
| #define WANT_CPU_FRVBF |
| |
| #include "sim-main.h" |
| #include "bfd.h" |
| |
| #if WITH_PROFILE_MODEL_P |
| |
| #include "profile.h" |
| #include "profile-fr550.h" |
| |
| /* Initialize cycle counting for an insn. |
| FIRST_P is non-zero if this is the first insn in a set of parallel |
| insns. */ |
| void |
| fr550_model_insn_before (SIM_CPU *cpu, int first_p) |
| { |
| if (first_p) |
| { |
| MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu); |
| d->cur_fr_load = d->prev_fr_load; |
| d->cur_fr_complex_1 = d->prev_fr_complex_1; |
| d->cur_fr_complex_2 = d->prev_fr_complex_2; |
| d->cur_ccr_complex = d->prev_ccr_complex; |
| d->cur_acc_mmac = d->prev_acc_mmac; |
| } |
| } |
| |
| /* Record the cycles computed for an insn. |
| LAST_P is non-zero if this is the last insn in a set of parallel insns, |
| and we update the total cycle count. |
| CYCLES is the cycle count of the insn. */ |
| void |
| fr550_model_insn_after (SIM_CPU *cpu, int last_p, int cycles) |
| { |
| if (last_p) |
| { |
| MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu); |
| d->prev_fr_load = d->cur_fr_load; |
| d->prev_fr_complex_1 = d->cur_fr_complex_1; |
| d->prev_fr_complex_2 = d->cur_fr_complex_2; |
| d->prev_ccr_complex = d->cur_ccr_complex; |
| d->prev_acc_mmac = d->cur_acc_mmac; |
| } |
| } |
| |
| static void fr550_reset_fr_flags (SIM_CPU *cpu, INT fr); |
| static void fr550_reset_ccr_flags (SIM_CPU *cpu, INT ccr); |
| static void fr550_reset_acc_flags (SIM_CPU *cpu, INT acc); |
| |
| static void |
| set_use_is_fr_load (SIM_CPU *cpu, INT fr) |
| { |
| MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu); |
| fr550_reset_fr_flags (cpu, (fr)); |
| d->cur_fr_load |= (((DI)1) << (fr)); |
| } |
| |
| static void |
| set_use_not_fr_load (SIM_CPU *cpu, INT fr) |
| { |
| MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu); |
| d->cur_fr_load &= ~(((DI)1) << (fr)); |
| } |
| |
| static int |
| use_is_fr_load (SIM_CPU *cpu, INT fr) |
| { |
| MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu); |
| return d->prev_fr_load & (((DI)1) << (fr)); |
| } |
| |
| static void |
| set_use_is_fr_complex_1 (SIM_CPU *cpu, INT fr) |
| { |
| MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu); |
| fr550_reset_fr_flags (cpu, (fr)); |
| d->cur_fr_complex_1 |= (((DI)1) << (fr)); |
| } |
| |
| static void |
| set_use_not_fr_complex_1 (SIM_CPU *cpu, INT fr) |
| { |
| MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu); |
| d->cur_fr_complex_1 &= ~(((DI)1) << (fr)); |
| } |
| |
| static int |
| use_is_fr_complex_1 (SIM_CPU *cpu, INT fr) |
| { |
| MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu); |
| return d->prev_fr_complex_1 & (((DI)1) << (fr)); |
| } |
| |
| static void |
| set_use_is_fr_complex_2 (SIM_CPU *cpu, INT fr) |
| { |
| MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu); |
| fr550_reset_fr_flags (cpu, (fr)); |
| d->cur_fr_complex_2 |= (((DI)1) << (fr)); |
| } |
| |
| static void |
| set_use_not_fr_complex_2 (SIM_CPU *cpu, INT fr) |
| { |
| MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu); |
| d->cur_fr_complex_2 &= ~(((DI)1) << (fr)); |
| } |
| |
| static int |
| use_is_fr_complex_2 (SIM_CPU *cpu, INT fr) |
| { |
| MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu); |
| return d->prev_fr_complex_2 & (((DI)1) << (fr)); |
| } |
| |
| static void |
| set_use_is_ccr_complex (SIM_CPU *cpu, INT ccr) |
| { |
| MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu); |
| fr550_reset_ccr_flags (cpu, (ccr)); |
| d->cur_ccr_complex |= (((SI)1) << (ccr)); |
| } |
| |
| static void |
| set_use_not_ccr_complex (SIM_CPU *cpu, INT ccr) |
| { |
| MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu); |
| d->cur_ccr_complex &= ~(((SI)1) << (ccr)); |
| } |
| |
| #if 0 |
| static int |
| use_is_ccr_complex (SIM_CPU *cpu, INT ccr) |
| { |
| MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu); |
| return d->prev_ccr_complex & (((SI)1) << (ccr)); |
| } |
| #endif |
| |
| static void |
| set_use_is_acc_mmac (SIM_CPU *cpu, INT acc) |
| { |
| MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu); |
| fr550_reset_acc_flags (cpu, (acc)); |
| d->cur_acc_mmac |= (((DI)1) << (acc)); |
| } |
| |
| static void |
| set_use_not_acc_mmac (SIM_CPU *cpu, INT acc) |
| { |
| MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu); |
| d->cur_acc_mmac &= ~(((DI)1) << (acc)); |
| } |
| |
| static int |
| use_is_acc_mmac (SIM_CPU *cpu, INT acc) |
| { |
| MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu); |
| return d->prev_acc_mmac & (((DI)1) << (acc)); |
| } |
| |
| static void |
| fr550_reset_fr_flags (SIM_CPU *cpu, INT fr) |
| { |
| set_use_not_fr_load (cpu, fr); |
| set_use_not_fr_complex_1 (cpu, fr); |
| set_use_not_fr_complex_2 (cpu, fr); |
| } |
| |
| static void |
| fr550_reset_ccr_flags (SIM_CPU *cpu, INT ccr) |
| { |
| set_use_not_ccr_complex (cpu, ccr); |
| } |
| |
| static void |
| fr550_reset_acc_flags (SIM_CPU *cpu, INT acc) |
| { |
| set_use_not_acc_mmac (cpu, acc); |
| } |
| |
| /* Detect overlap between two register ranges. Works if one of the registers |
| is -1 with width 1 (i.e. undefined), but not both. */ |
| #define REG_OVERLAP(r1, w1, r2, w2) ( \ |
| (r1) + (w1) - 1 >= (r2) && (r2) + (w2) - 1 >= (r1) \ |
| ) |
| |
| /* Latency of floating point registers may be less than recorded when followed |
| by another floating point insn. */ |
| static void |
| adjust_float_register_busy (SIM_CPU *cpu, |
| INT in_FRi, int iwidth, |
| INT in_FRj, int jwidth, |
| INT out_FRk, int kwidth) |
| { |
| int i; |
| /* The latency of FRk may be less than previously recorded. |
| See Table 14-15 in the LSI. */ |
| if (in_FRi >= 0) |
| { |
| for (i = 0; i < iwidth; ++i) |
| { |
| if (! REG_OVERLAP (in_FRi + i, 1, out_FRk, kwidth)) |
| { |
| if (use_is_fr_load (cpu, in_FRi + i)) |
| decrease_FR_busy (cpu, in_FRi + i, 1); |
| else |
| enforce_full_fr_latency (cpu, in_FRi + i); |
| } |
| } |
| } |
| |
| if (in_FRj >= 0) |
| { |
| for (i = 0; i < jwidth; ++i) |
| { |
| if (! REG_OVERLAP (in_FRj + i, 1, in_FRi, iwidth) |
| && ! REG_OVERLAP (in_FRj + i, 1, out_FRk, kwidth)) |
| { |
| if (use_is_fr_load (cpu, in_FRj + i)) |
| decrease_FR_busy (cpu, in_FRj + i, 1); |
| else |
| enforce_full_fr_latency (cpu, in_FRj + i); |
| } |
| } |
| } |
| |
| if (out_FRk >= 0) |
| { |
| for (i = 0; i < kwidth; ++i) |
| { |
| if (! REG_OVERLAP (out_FRk + i, 1, in_FRi, iwidth) |
| && ! REG_OVERLAP (out_FRk + i, 1, in_FRj, jwidth)) |
| { |
| if (use_is_fr_complex_1 (cpu, out_FRk + i)) |
| decrease_FR_busy (cpu, out_FRk + i, 1); |
| else if (use_is_fr_complex_2 (cpu, out_FRk + i)) |
| decrease_FR_busy (cpu, out_FRk + i, 2); |
| else |
| enforce_full_fr_latency (cpu, out_FRk + i); |
| } |
| } |
| } |
| } |
| |
| static void |
| restore_float_register_busy (SIM_CPU *cpu, |
| INT in_FRi, int iwidth, |
| INT in_FRj, int jwidth, |
| INT out_FRk, int kwidth) |
| { |
| int i; |
| /* The latency of FRk may be less than previously recorded. |
| See Table 14-15 in the LSI. */ |
| if (in_FRi >= 0) |
| { |
| for (i = 0; i < iwidth; ++i) |
| { |
| if (! REG_OVERLAP (in_FRi + i, 1, out_FRk, kwidth)) |
| if (use_is_fr_load (cpu, in_FRi + i)) |
| increase_FR_busy (cpu, in_FRi + i, 1); |
| } |
| } |
| |
| if (in_FRj >= 0) |
| { |
| for (i = 0; i < jwidth; ++i) |
| { |
| if (! REG_OVERLAP (in_FRj + i, 1, in_FRi, iwidth) |
| && ! REG_OVERLAP (in_FRj + i, 1, out_FRk, kwidth)) |
| if (use_is_fr_load (cpu, in_FRj + i)) |
| increase_FR_busy (cpu, in_FRj + i, 1); |
| } |
| } |
| |
| if (out_FRk >= 0) |
| { |
| for (i = 0; i < kwidth; ++i) |
| { |
| if (! REG_OVERLAP (out_FRk + i, 1, in_FRi, iwidth) |
| && ! REG_OVERLAP (out_FRk + i, 1, in_FRj, jwidth)) |
| { |
| if (use_is_fr_complex_1 (cpu, out_FRk + i)) |
| increase_FR_busy (cpu, out_FRk + i, 1); |
| else if (use_is_fr_complex_2 (cpu, out_FRk + i)) |
| increase_FR_busy (cpu, out_FRk + i, 2); |
| } |
| } |
| } |
| } |
| |
| /* Latency of floating point registers may be less than recorded when used in a |
| media insns and followed by another media insn. */ |
| static void |
| adjust_float_register_busy_for_media (SIM_CPU *cpu, |
| INT in_FRi, int iwidth, |
| INT in_FRj, int jwidth, |
| INT out_FRk, int kwidth) |
| { |
| int i; |
| /* The latency of FRk may be less than previously recorded. |
| See Table 14-15 in the LSI. */ |
| if (out_FRk >= 0) |
| { |
| for (i = 0; i < kwidth; ++i) |
| { |
| if (! REG_OVERLAP (out_FRk + i, 1, in_FRi, iwidth) |
| && ! REG_OVERLAP (out_FRk + i, 1, in_FRj, jwidth)) |
| { |
| if (use_is_fr_complex_1 (cpu, out_FRk + i)) |
| decrease_FR_busy (cpu, out_FRk + i, 1); |
| else |
| enforce_full_fr_latency (cpu, out_FRk + i); |
| } |
| } |
| } |
| } |
| |
| static void |
| restore_float_register_busy_for_media (SIM_CPU *cpu, |
| INT in_FRi, int iwidth, |
| INT in_FRj, int jwidth, |
| INT out_FRk, int kwidth) |
| { |
| int i; |
| if (out_FRk >= 0) |
| { |
| for (i = 0; i < kwidth; ++i) |
| { |
| if (! REG_OVERLAP (out_FRk + i, 1, in_FRi, iwidth) |
| && ! REG_OVERLAP (out_FRk + i, 1, in_FRj, jwidth)) |
| { |
| if (use_is_fr_complex_1 (cpu, out_FRk + i)) |
| increase_FR_busy (cpu, out_FRk + i, 1); |
| } |
| } |
| } |
| } |
| |
| /* Latency of accumulator registers may be less than recorded when used in a |
| media insns and followed by another media insn. */ |
| static void |
| adjust_acc_busy_for_mmac (SIM_CPU *cpu, |
| INT in_ACC, int inwidth, |
| INT out_ACC, int outwidth) |
| { |
| int i; |
| /* The latency of an accumulator may be less than previously recorded. |
| See Table 14-15 in the LSI. */ |
| if (in_ACC >= 0) |
| { |
| for (i = 0; i < inwidth; ++i) |
| { |
| if (use_is_acc_mmac (cpu, in_ACC + i)) |
| decrease_ACC_busy (cpu, in_ACC + i, 1); |
| else |
| enforce_full_acc_latency (cpu, in_ACC + i); |
| } |
| } |
| if (out_ACC >= 0) |
| { |
| for (i = 0; i < outwidth; ++i) |
| { |
| if (! REG_OVERLAP (out_ACC + i, 1, in_ACC, inwidth)) |
| { |
| if (use_is_acc_mmac (cpu, out_ACC + i)) |
| decrease_ACC_busy (cpu, out_ACC + i, 1); |
| else |
| enforce_full_acc_latency (cpu, out_ACC + i); |
| } |
| } |
| } |
| } |
| |
| static void |
| restore_acc_busy_for_mmac (SIM_CPU *cpu, |
| INT in_ACC, int inwidth, |
| INT out_ACC, int outwidth) |
| { |
| int i; |
| if (in_ACC >= 0) |
| { |
| for (i = 0; i < inwidth; ++i) |
| { |
| if (use_is_acc_mmac (cpu, in_ACC + i)) |
| increase_ACC_busy (cpu, in_ACC + i, 1); |
| } |
| } |
| if (out_ACC >= 0) |
| { |
| for (i = 0; i < outwidth; ++i) |
| { |
| if (! REG_OVERLAP (out_ACC + i, 1, in_ACC, inwidth)) |
| { |
| if (use_is_acc_mmac (cpu, out_ACC + i)) |
| increase_ACC_busy (cpu, out_ACC + i, 1); |
| } |
| } |
| } |
| } |
| |
| int |
| frvbf_model_fr550_u_exec (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced) |
| { |
| return idesc->timing->units[unit_num].done; |
| } |
| |
| int |
| frvbf_model_fr550_u_integer (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRi, INT in_GRj, INT out_GRk, |
| INT out_ICCi_1) |
| { |
| int cycles; |
| |
| /* icc0-icc4 are the upper 4 fields of the CCR. */ |
| if (out_ICCi_1 >= 0) |
| out_ICCi_1 += 4; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. */ |
| vliw_wait_for_GR (cpu, in_GRi); |
| vliw_wait_for_GR (cpu, in_GRj); |
| vliw_wait_for_GR (cpu, out_GRk); |
| vliw_wait_for_CCR (cpu, out_ICCi_1); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRi); |
| load_wait_for_GR (cpu, in_GRj); |
| load_wait_for_GR (cpu, out_GRk); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| fr550_reset_ccr_flags (cpu, out_ICCi_1); |
| |
| /* GRk is available immediately to the next VLIW insn as is ICCi_1. */ |
| cycles = idesc->timing->units[unit_num].done; |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_imul (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1) |
| { |
| int cycles; |
| /* icc0-icc4 are the upper 4 fields of the CCR. */ |
| if (out_ICCi_1 >= 0) |
| out_ICCi_1 += 4; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. */ |
| vliw_wait_for_GR (cpu, in_GRi); |
| vliw_wait_for_GR (cpu, in_GRj); |
| vliw_wait_for_GRdouble (cpu, out_GRk); |
| vliw_wait_for_CCR (cpu, out_ICCi_1); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRi); |
| load_wait_for_GR (cpu, in_GRj); |
| load_wait_for_GRdouble (cpu, out_GRk); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| /* GRk has a latency of 1 cycles. */ |
| cycles = idesc->timing->units[unit_num].done; |
| update_GRdouble_latency (cpu, out_GRk, cycles + 1); |
| |
| /* ICCi_1 has a latency of 1 cycle. */ |
| update_CCR_latency (cpu, out_ICCi_1, cycles + 1); |
| |
| fr550_reset_ccr_flags (cpu, out_ICCi_1); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_idiv (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1) |
| { |
| int cycles; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| /* icc0-icc4 are the upper 4 fields of the CCR. */ |
| if (out_ICCi_1 >= 0) |
| out_ICCi_1 += 4; |
| |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_I0; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. */ |
| vliw_wait_for_GR (cpu, in_GRi); |
| vliw_wait_for_GR (cpu, in_GRj); |
| vliw_wait_for_GR (cpu, out_GRk); |
| vliw_wait_for_CCR (cpu, out_ICCi_1); |
| vliw_wait_for_idiv_resource (cpu, slot); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRi); |
| load_wait_for_GR (cpu, in_GRj); |
| load_wait_for_GR (cpu, out_GRk); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| /* GRk has a latency of 18 cycles! */ |
| cycles = idesc->timing->units[unit_num].done; |
| update_GR_latency (cpu, out_GRk, cycles + 18); |
| |
| /* ICCi_1 has a latency of 18 cycles. */ |
| update_CCR_latency (cpu, out_ICCi_1, cycles + 18); |
| |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| { |
| /* GNER has a latency of 18 cycles. */ |
| update_SPR_latency (cpu, GNER_FOR_GR (out_GRk), cycles + 18); |
| } |
| |
| /* the idiv resource has a latency of 18 cycles! */ |
| update_idiv_resource_latency (cpu, slot, cycles + 18); |
| |
| fr550_reset_ccr_flags (cpu, out_ICCi_1); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_branch (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRi, INT in_GRj, |
| INT in_ICCi_2, INT in_FCCi_2) |
| { |
| int cycles; |
| FRV_PROFILE_STATE *ps; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* icc0-icc4 are the upper 4 fields of the CCR. */ |
| if (in_ICCi_2 >= 0) |
| in_ICCi_2 += 4; |
| |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. */ |
| vliw_wait_for_GR (cpu, in_GRi); |
| vliw_wait_for_GR (cpu, in_GRj); |
| vliw_wait_for_CCR (cpu, in_ICCi_2); |
| vliw_wait_for_CCR (cpu, in_FCCi_2); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRi); |
| load_wait_for_GR (cpu, in_GRj); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| /* When counting branches taken or not taken, don't consider branches after |
| the first taken branch in a vliw insn. */ |
| ps = CPU_PROFILE_STATE (cpu); |
| if (! ps->vliw_branch_taken) |
| { |
| /* (1 << 4): The pc is the 5th element in inputs, outputs. |
| ??? can be cleaned up */ |
| PROFILE_DATA *p = CPU_PROFILE_DATA (cpu); |
| int taken = (referenced & (1 << 4)) != 0; |
| if (taken) |
| { |
| ++PROFILE_MODEL_TAKEN_COUNT (p); |
| ps->vliw_branch_taken = 1; |
| } |
| else |
| ++PROFILE_MODEL_UNTAKEN_COUNT (p); |
| } |
| |
| cycles = idesc->timing->units[unit_num].done; |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_trap (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRi, INT in_GRj, |
| INT in_ICCi_2, INT in_FCCi_2) |
| { |
| int cycles; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* icc0-icc4 are the upper 4 fields of the CCR. */ |
| if (in_ICCi_2 >= 0) |
| in_ICCi_2 += 4; |
| |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. */ |
| vliw_wait_for_GR (cpu, in_GRi); |
| vliw_wait_for_GR (cpu, in_GRj); |
| vliw_wait_for_CCR (cpu, in_ICCi_2); |
| vliw_wait_for_CCR (cpu, in_FCCi_2); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRi); |
| load_wait_for_GR (cpu, in_GRj); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| cycles = idesc->timing->units[unit_num].done; |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_check (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_ICCi_3, INT in_FCCi_3) |
| { |
| /* Modelling for this unit is the same as for fr500. */ |
| return frvbf_model_fr500_u_check (cpu, idesc, unit_num, referenced, |
| in_ICCi_3, in_FCCi_3); |
| } |
| |
| int |
| frvbf_model_fr550_u_set_hilo (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT out_GRkhi, INT out_GRklo) |
| { |
| int cycles; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a GR |
| which is not ready yet. */ |
| vliw_wait_for_GR (cpu, out_GRkhi); |
| vliw_wait_for_GR (cpu, out_GRklo); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, out_GRkhi); |
| load_wait_for_GR (cpu, out_GRklo); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| /* GRk is available immediately to the next VLIW insn. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_gr_load (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRi, INT in_GRj, |
| INT out_GRk, INT out_GRdoublek) |
| { |
| int cycles; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. */ |
| vliw_wait_for_GR (cpu, in_GRi); |
| vliw_wait_for_GR (cpu, in_GRj); |
| vliw_wait_for_GR (cpu, out_GRk); |
| vliw_wait_for_GRdouble (cpu, out_GRdoublek); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRi); |
| load_wait_for_GR (cpu, in_GRj); |
| load_wait_for_GR (cpu, out_GRk); |
| load_wait_for_GRdouble (cpu, out_GRdoublek); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| cycles = idesc->timing->units[unit_num].done; |
| |
| /* The latency of GRk for a load will depend on how long it takes to retrieve |
| the the data from the cache or memory. */ |
| update_GR_latency_for_load (cpu, out_GRk, cycles); |
| update_GRdouble_latency_for_load (cpu, out_GRdoublek, cycles); |
| |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| { |
| /* GNER has a latency of 2 cycles. */ |
| update_SPR_latency (cpu, GNER_FOR_GR (out_GRk), cycles + 2); |
| update_SPR_latency (cpu, GNER_FOR_GR (out_GRdoublek), cycles + 2); |
| } |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_gr_store (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRi, INT in_GRj, |
| INT in_GRk, INT in_GRdoublek) |
| { |
| int cycles; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. */ |
| vliw_wait_for_GR (cpu, in_GRi); |
| vliw_wait_for_GR (cpu, in_GRj); |
| vliw_wait_for_GR (cpu, in_GRk); |
| vliw_wait_for_GRdouble (cpu, in_GRdoublek); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRi); |
| load_wait_for_GR (cpu, in_GRj); |
| load_wait_for_GR (cpu, in_GRk); |
| load_wait_for_GRdouble (cpu, in_GRdoublek); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| /* The target register is available immediately. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_fr_load (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRi, INT in_GRj, |
| INT out_FRk, INT out_FRdoublek) |
| { |
| int cycles; |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. |
| The latency of the registers may be less than previously recorded, |
| depending on how they were used previously. |
| See Table 13-8 in the LSI. */ |
| adjust_float_register_busy (cpu, -1, 1, -1, 1, out_FRk, 1); |
| adjust_float_register_busy (cpu, -1, 1, -1, 1, out_FRdoublek, 2); |
| vliw_wait_for_GR (cpu, in_GRi); |
| vliw_wait_for_GR (cpu, in_GRj); |
| vliw_wait_for_FR (cpu, out_FRk); |
| vliw_wait_for_FRdouble (cpu, out_FRdoublek); |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| { |
| vliw_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk)); |
| vliw_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek)); |
| } |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRi); |
| load_wait_for_GR (cpu, in_GRj); |
| load_wait_for_FR (cpu, out_FRk); |
| load_wait_for_FRdouble (cpu, out_FRdoublek); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| cycles = idesc->timing->units[unit_num].done; |
| |
| /* The latency of FRk for a load will depend on how long it takes to retrieve |
| the the data from the cache or memory. */ |
| update_FR_latency_for_load (cpu, out_FRk, cycles); |
| update_FRdouble_latency_for_load (cpu, out_FRdoublek, cycles); |
| |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| { |
| /* FNER has a latency of 3 cycles. */ |
| update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), cycles + 3); |
| update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), cycles + 3); |
| } |
| |
| if (out_FRk >= 0) |
| set_use_is_fr_load (cpu, out_FRk); |
| if (out_FRdoublek >= 0) |
| { |
| set_use_is_fr_load (cpu, out_FRdoublek); |
| set_use_is_fr_load (cpu, out_FRdoublek + 1); |
| } |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_fr_store (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRi, INT in_GRj, |
| INT in_FRk, INT in_FRdoublek) |
| { |
| int cycles; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. */ |
| adjust_float_register_busy (cpu, in_FRk, 1, -1, 1, -1, 1); |
| adjust_float_register_busy (cpu, in_FRdoublek, 2, -1, 1, -1, 1); |
| vliw_wait_for_GR (cpu, in_GRi); |
| vliw_wait_for_GR (cpu, in_GRj); |
| vliw_wait_for_FR (cpu, in_FRk); |
| vliw_wait_for_FRdouble (cpu, in_FRdoublek); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRi); |
| load_wait_for_GR (cpu, in_GRj); |
| load_wait_for_FR (cpu, in_FRk); |
| load_wait_for_FRdouble (cpu, in_FRdoublek); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| /* The target register is available immediately. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_ici (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRi, INT in_GRj) |
| { |
| int cycles; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. */ |
| vliw_wait_for_GR (cpu, in_GRi); |
| vliw_wait_for_GR (cpu, in_GRj); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRi); |
| load_wait_for_GR (cpu, in_GRj); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| cycles = idesc->timing->units[unit_num].done; |
| request_cache_invalidate (cpu, CPU_INSN_CACHE (cpu), cycles); |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_dci (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRi, INT in_GRj) |
| { |
| int cycles; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. */ |
| vliw_wait_for_GR (cpu, in_GRi); |
| vliw_wait_for_GR (cpu, in_GRj); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRi); |
| load_wait_for_GR (cpu, in_GRj); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| cycles = idesc->timing->units[unit_num].done; |
| request_cache_invalidate (cpu, CPU_DATA_CACHE (cpu), cycles); |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_dcf (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRi, INT in_GRj) |
| { |
| int cycles; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. */ |
| vliw_wait_for_GR (cpu, in_GRi); |
| vliw_wait_for_GR (cpu, in_GRj); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRi); |
| load_wait_for_GR (cpu, in_GRj); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| cycles = idesc->timing->units[unit_num].done; |
| request_cache_flush (cpu, CPU_DATA_CACHE (cpu), cycles); |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_icpl (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRi, INT in_GRj) |
| { |
| int cycles; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. */ |
| vliw_wait_for_GR (cpu, in_GRi); |
| vliw_wait_for_GR (cpu, in_GRj); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRi); |
| load_wait_for_GR (cpu, in_GRj); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| cycles = idesc->timing->units[unit_num].done; |
| request_cache_preload (cpu, CPU_INSN_CACHE (cpu), cycles); |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_dcpl (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRi, INT in_GRj) |
| { |
| int cycles; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. */ |
| vliw_wait_for_GR (cpu, in_GRi); |
| vliw_wait_for_GR (cpu, in_GRj); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRi); |
| load_wait_for_GR (cpu, in_GRj); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| cycles = idesc->timing->units[unit_num].done; |
| request_cache_preload (cpu, CPU_DATA_CACHE (cpu), cycles); |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_icul (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRi, INT in_GRj) |
| { |
| int cycles; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. */ |
| vliw_wait_for_GR (cpu, in_GRi); |
| vliw_wait_for_GR (cpu, in_GRj); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRi); |
| load_wait_for_GR (cpu, in_GRj); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| cycles = idesc->timing->units[unit_num].done; |
| request_cache_unlock (cpu, CPU_INSN_CACHE (cpu), cycles); |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_dcul (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRi, INT in_GRj) |
| { |
| int cycles; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. */ |
| vliw_wait_for_GR (cpu, in_GRi); |
| vliw_wait_for_GR (cpu, in_GRj); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRi); |
| load_wait_for_GR (cpu, in_GRj); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| cycles = idesc->timing->units[unit_num].done; |
| request_cache_unlock (cpu, CPU_DATA_CACHE (cpu), cycles); |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_float_arith (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRi, INT in_FRj, |
| INT in_FRdoublei, INT in_FRdoublej, |
| INT out_FRk, INT out_FRdoublek) |
| { |
| int cycles; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| adjust_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1); |
| adjust_float_register_busy (cpu, in_FRdoublei, 2, in_FRdoublej, 2, out_FRdoublek, 2); |
| ps = CPU_PROFILE_STATE (cpu); |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_float (cpu, slot); |
| post_wait_for_FR (cpu, in_FRi); |
| post_wait_for_FR (cpu, in_FRj); |
| post_wait_for_FR (cpu, out_FRk); |
| post_wait_for_FRdouble (cpu, in_FRdoublei); |
| post_wait_for_FRdouble (cpu, in_FRdoublej); |
| post_wait_for_FRdouble (cpu, out_FRdoublek); |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| { |
| post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk)); |
| post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek)); |
| } |
| restore_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1); |
| restore_float_register_busy (cpu, in_FRdoublei, 2, in_FRdoublej, 2, out_FRdoublek, 2); |
| |
| /* The latency of FRk will be at least the latency of the other inputs. */ |
| update_FR_latency (cpu, out_FRk, ps->post_wait); |
| update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait); |
| |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| { |
| update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait); |
| update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait); |
| } |
| |
| /* Once initiated, post-processing will take 2 cycles. */ |
| update_FR_ptime (cpu, out_FRk, 2); |
| update_FRdouble_ptime (cpu, out_FRdoublek, 2); |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| { |
| update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 2); |
| update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 2); |
| } |
| |
| /* Mark this use of the register as a floating point op. */ |
| if (out_FRk >= 0) |
| set_use_is_fr_complex_2 (cpu, out_FRk); |
| if (out_FRdoublek >= 0) |
| { |
| set_use_is_fr_complex_2 (cpu, out_FRdoublek); |
| if (out_FRdoublek < 63) |
| set_use_is_fr_complex_2 (cpu, out_FRdoublek + 1); |
| } |
| |
| /* the media point unit resource has a latency of 4 cycles */ |
| update_media_resource_latency (cpu, slot, cycles + 4); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_float_dual_arith (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRi, INT in_FRj, |
| INT in_FRdoublei, INT in_FRdoublej, |
| INT out_FRk, INT out_FRdoublek) |
| { |
| int cycles; |
| INT dual_FRi; |
| INT dual_FRj; |
| INT dual_FRk; |
| INT dual_FRdoublei; |
| INT dual_FRdoublej; |
| INT dual_FRdoublek; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| dual_FRi = DUAL_REG (in_FRi); |
| dual_FRj = DUAL_REG (in_FRj); |
| dual_FRk = DUAL_REG (out_FRk); |
| dual_FRdoublei = DUAL_DOUBLE (in_FRdoublei); |
| dual_FRdoublej = DUAL_DOUBLE (in_FRdoublej); |
| dual_FRdoublek = DUAL_DOUBLE (out_FRdoublek); |
| |
| adjust_float_register_busy (cpu, in_FRi, 2, in_FRj, 2, out_FRk, 2); |
| adjust_float_register_busy (cpu, in_FRdoublei, 4, in_FRdoublej, 4, out_FRdoublek, 4); |
| ps = CPU_PROFILE_STATE (cpu); |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_float (cpu, slot); |
| post_wait_for_FR (cpu, in_FRi); |
| post_wait_for_FR (cpu, in_FRj); |
| post_wait_for_FR (cpu, out_FRk); |
| post_wait_for_FR (cpu, dual_FRi); |
| post_wait_for_FR (cpu, dual_FRj); |
| post_wait_for_FR (cpu, dual_FRk); |
| post_wait_for_FRdouble (cpu, in_FRdoublei); |
| post_wait_for_FRdouble (cpu, in_FRdoublej); |
| post_wait_for_FRdouble (cpu, out_FRdoublek); |
| post_wait_for_FRdouble (cpu, dual_FRdoublei); |
| post_wait_for_FRdouble (cpu, dual_FRdoublej); |
| post_wait_for_FRdouble (cpu, dual_FRdoublek); |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| { |
| post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk)); |
| post_wait_for_SPR (cpu, FNER_FOR_FR (dual_FRk)); |
| post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek)); |
| post_wait_for_SPR (cpu, FNER_FOR_FR (dual_FRdoublek)); |
| } |
| restore_float_register_busy (cpu, in_FRi, 2, in_FRj, 2, out_FRk, 2); |
| restore_float_register_busy (cpu, in_FRdoublei, 4, in_FRdoublej, 4, out_FRdoublek, 4); |
| |
| /* The latency of FRk will be at least the latency of the other inputs. */ |
| update_FR_latency (cpu, out_FRk, ps->post_wait); |
| update_FR_latency (cpu, dual_FRk, ps->post_wait); |
| update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait); |
| update_FRdouble_latency (cpu, dual_FRdoublek, ps->post_wait); |
| |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| { |
| update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait); |
| update_SPR_latency (cpu, FNER_FOR_FR (dual_FRk), ps->post_wait); |
| update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait); |
| update_SPR_latency (cpu, FNER_FOR_FR (dual_FRdoublek), ps->post_wait); |
| } |
| |
| /* Once initiated, post-processing will take 3 cycles. */ |
| update_FR_ptime (cpu, out_FRk, 3); |
| update_FR_ptime (cpu, dual_FRk, 3); |
| update_FRdouble_ptime (cpu, out_FRdoublek, 3); |
| update_FRdouble_ptime (cpu, dual_FRdoublek, 3); |
| |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| { |
| update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 3); |
| update_SPR_ptime (cpu, FNER_FOR_FR (dual_FRk), 3); |
| update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 3); |
| update_SPR_ptime (cpu, FNER_FOR_FR (dual_FRdoublek), 3); |
| } |
| |
| /* Mark this use of the register as a floating point op. */ |
| if (out_FRk >= 0) |
| fr550_reset_fr_flags (cpu, out_FRk); |
| if (dual_FRk >= 0) |
| fr550_reset_fr_flags (cpu, dual_FRk); |
| if (out_FRdoublek >= 0) |
| { |
| fr550_reset_fr_flags (cpu, out_FRdoublek); |
| if (out_FRdoublek < 63) |
| fr550_reset_fr_flags (cpu, out_FRdoublek + 1); |
| } |
| if (dual_FRdoublek >= 0) |
| { |
| fr550_reset_fr_flags (cpu, dual_FRdoublek); |
| if (dual_FRdoublek < 63) |
| fr550_reset_fr_flags (cpu, dual_FRdoublek + 1); |
| } |
| |
| /* the media point unit resource has a latency of 5 cycles */ |
| update_media_resource_latency (cpu, slot, cycles + 5); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_float_div (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRi, INT in_FRj, INT out_FRk) |
| { |
| int cycles; |
| FRV_VLIW *vliw; |
| int slot; |
| FRV_PROFILE_STATE *ps; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| cycles = idesc->timing->units[unit_num].done; |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| adjust_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1); |
| ps = CPU_PROFILE_STATE (cpu); |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_float (cpu, slot); |
| post_wait_for_fdiv (cpu, slot); |
| post_wait_for_FR (cpu, in_FRi); |
| post_wait_for_FR (cpu, in_FRj); |
| post_wait_for_FR (cpu, out_FRk); |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk)); |
| restore_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1); |
| |
| /* The latency of FRk will be at least the latency of the other inputs. */ |
| /* Once initiated, post-processing will take 9 cycles. */ |
| update_FR_latency (cpu, out_FRk, ps->post_wait); |
| update_FR_ptime (cpu, out_FRk, 9); |
| |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| { |
| /* FNER has a latency of 9 cycles. */ |
| update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait); |
| update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 9); |
| } |
| |
| /* The latency of the fdiv unit will be at least the latency of the other |
| inputs. Once initiated, post-processing will take 9 cycles. */ |
| update_fdiv_resource_latency (cpu, slot, ps->post_wait + 9); |
| |
| /* the media point unit resource has a latency of 11 cycles */ |
| update_media_resource_latency (cpu, slot, cycles + 11); |
| |
| fr550_reset_fr_flags (cpu, out_FRk); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_float_sqrt (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRj, INT in_FRdoublej, |
| INT out_FRk, INT out_FRdoublek) |
| { |
| int cycles; |
| FRV_VLIW *vliw; |
| int slot; |
| FRV_PROFILE_STATE *ps; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| cycles = idesc->timing->units[unit_num].done; |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| adjust_float_register_busy (cpu, -1, 1, in_FRj, 1, out_FRk, 1); |
| adjust_float_register_busy (cpu, -1, 1, in_FRdoublej, 2, out_FRdoublek, 2); |
| ps = CPU_PROFILE_STATE (cpu); |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_float (cpu, slot); |
| post_wait_for_fsqrt (cpu, slot); |
| post_wait_for_FR (cpu, in_FRj); |
| post_wait_for_FR (cpu, out_FRk); |
| post_wait_for_FRdouble (cpu, in_FRdoublej); |
| post_wait_for_FRdouble (cpu, out_FRdoublek); |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| { |
| post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk)); |
| post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek)); |
| } |
| restore_float_register_busy (cpu, -1, 1, in_FRj, 1, out_FRk, 1); |
| restore_float_register_busy (cpu, -1, 1, in_FRdoublej, 2, out_FRdoublek, 2); |
| |
| /* The latency of FRk will be at least the latency of the other inputs. */ |
| update_FR_latency (cpu, out_FRk, ps->post_wait); |
| update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait); |
| |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| { |
| /* FNER has a latency of 14 cycles. */ |
| update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait); |
| update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait); |
| } |
| |
| /* Once initiated, post-processing will take 14 cycles. */ |
| update_FR_ptime (cpu, out_FRk, 14); |
| update_FRdouble_ptime (cpu, out_FRdoublek, 14); |
| |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| { |
| /* FNER has a latency of 14 cycles. */ |
| update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 14); |
| update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 14); |
| } |
| |
| /* The latency of the sqrt unit will be the latency of the other |
| inputs plus 14 cycles. */ |
| update_fsqrt_resource_latency (cpu, slot, ps->post_wait + 14); |
| |
| fr550_reset_fr_flags (cpu, out_FRk); |
| if (out_FRdoublek != -1) |
| { |
| fr550_reset_fr_flags (cpu, out_FRdoublek); |
| fr550_reset_fr_flags (cpu, out_FRdoublek + 1); |
| } |
| |
| /* the media point unit resource has a latency of 16 cycles */ |
| update_media_resource_latency (cpu, slot, cycles + 16); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_float_compare (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRi, INT in_FRj, |
| INT in_FRdoublei, INT in_FRdoublej, |
| INT out_FCCi_2) |
| { |
| int cycles; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| adjust_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, -1, 1); |
| adjust_float_register_busy (cpu, in_FRdoublei, 2, in_FRdoublej, 2, -1, 1); |
| ps = CPU_PROFILE_STATE (cpu); |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_float (cpu, slot); |
| post_wait_for_FR (cpu, in_FRi); |
| post_wait_for_FR (cpu, in_FRj); |
| post_wait_for_FRdouble (cpu, in_FRdoublei); |
| post_wait_for_FRdouble (cpu, in_FRdoublej); |
| post_wait_for_CCR (cpu, out_FCCi_2); |
| restore_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, -1, 1); |
| restore_float_register_busy (cpu, in_FRdoublei, 2, in_FRdoublej, 2, -1, 1); |
| |
| /* The latency of FCCi_2 will be the latency of the other inputs plus 2 |
| cycles. */ |
| update_CCR_latency (cpu, out_FCCi_2, ps->post_wait + 2); |
| |
| /* the media point unit resource has a latency of 4 cycles */ |
| update_media_resource_latency (cpu, slot, cycles + 4); |
| |
| set_use_is_ccr_complex (cpu, out_FCCi_2); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_float_dual_compare (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRi, INT in_FRj, |
| INT out_FCCi_2) |
| { |
| int cycles; |
| INT dual_FRi; |
| INT dual_FRj; |
| INT dual_FCCi_2; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| ps = CPU_PROFILE_STATE (cpu); |
| ps->post_wait = cycles; |
| dual_FRi = DUAL_REG (in_FRi); |
| dual_FRj = DUAL_REG (in_FRj); |
| dual_FCCi_2 = out_FCCi_2 + 1; |
| adjust_float_register_busy (cpu, in_FRi, 2, in_FRj, 2, -1, 1); |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_float (cpu, slot); |
| post_wait_for_FR (cpu, in_FRi); |
| post_wait_for_FR (cpu, in_FRj); |
| post_wait_for_FR (cpu, dual_FRi); |
| post_wait_for_FR (cpu, dual_FRj); |
| post_wait_for_CCR (cpu, out_FCCi_2); |
| post_wait_for_CCR (cpu, dual_FCCi_2); |
| restore_float_register_busy (cpu, in_FRi, 2, in_FRj, 2, -1, 1); |
| |
| /* The latency of FCCi_2 will be the latency of the other inputs plus 3 |
| cycles. */ |
| update_CCR_latency (cpu, out_FCCi_2, ps->post_wait + 3); |
| update_CCR_latency (cpu, dual_FCCi_2, ps->post_wait + 3); |
| |
| set_use_is_ccr_complex (cpu, out_FCCi_2); |
| if (dual_FCCi_2 >= 0) |
| set_use_is_ccr_complex (cpu, dual_FCCi_2); |
| |
| /* the media point unit resource has a latency of 5 cycles */ |
| update_media_resource_latency (cpu, slot, cycles + 5); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_float_convert (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRj, INT in_FRintj, INT in_FRdoublej, |
| INT out_FRk, INT out_FRintk, |
| INT out_FRdoublek) |
| { |
| int cycles; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| ps = CPU_PROFILE_STATE (cpu); |
| ps->post_wait = cycles; |
| adjust_float_register_busy (cpu, -1, 1, in_FRj, 1, out_FRk, 1); |
| adjust_float_register_busy (cpu, -1, 1, in_FRintj, 1, out_FRintk, 1); |
| adjust_float_register_busy (cpu, -1, 1, in_FRdoublej, 2, out_FRdoublek, 2); |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_float (cpu, slot); |
| post_wait_for_FR (cpu, in_FRj); |
| post_wait_for_FR (cpu, in_FRintj); |
| post_wait_for_FRdouble (cpu, in_FRdoublej); |
| post_wait_for_FR (cpu, out_FRk); |
| post_wait_for_FR (cpu, out_FRintk); |
| post_wait_for_FRdouble (cpu, out_FRdoublek); |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| { |
| post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk)); |
| post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRintk)); |
| post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek)); |
| } |
| restore_float_register_busy (cpu, -1, 1, in_FRj, 1, out_FRk, 1); |
| restore_float_register_busy (cpu, -1, 1, in_FRintj, 1, out_FRintk, 1); |
| restore_float_register_busy (cpu, -1, 1, in_FRdoublej, 2, out_FRdoublek, 2); |
| |
| /* The latency of FRk will be at least the latency of the other inputs. */ |
| update_FR_latency (cpu, out_FRk, ps->post_wait); |
| update_FR_latency (cpu, out_FRintk, ps->post_wait); |
| update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait); |
| |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| { |
| update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait); |
| update_SPR_latency (cpu, FNER_FOR_FR (out_FRintk), ps->post_wait); |
| update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait); |
| } |
| |
| /* Once initiated, post-processing will take 2 cycles. */ |
| update_FR_ptime (cpu, out_FRk, 2); |
| update_FR_ptime (cpu, out_FRintk, 2); |
| update_FRdouble_ptime (cpu, out_FRdoublek, 2); |
| |
| if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) |
| { |
| update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 2); |
| update_SPR_ptime (cpu, FNER_FOR_FR (out_FRintk), 2); |
| update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 2); |
| } |
| |
| /* Mark this use of the register as a floating point op. */ |
| if (out_FRk >= 0) |
| set_use_is_fr_complex_2 (cpu, out_FRk); |
| if (out_FRintk >= 0) |
| set_use_is_fr_complex_2 (cpu, out_FRintk); |
| if (out_FRdoublek >= 0) |
| { |
| set_use_is_fr_complex_2 (cpu, out_FRdoublek); |
| set_use_is_fr_complex_2 (cpu, out_FRdoublek + 1); |
| } |
| |
| /* the media point unit resource has a latency of 4 cycles */ |
| update_media_resource_latency (cpu, slot, cycles + 4); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_spr2gr (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_spr, INT out_GRj) |
| { |
| /* Modelling for this unit is the same as for fr500. */ |
| return frvbf_model_fr500_u_spr2gr (cpu, idesc, unit_num, referenced, |
| in_spr, out_GRj); |
| } |
| |
| int |
| frvbf_model_fr550_u_gr2spr (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRj, INT out_spr) |
| { |
| int cycles; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. */ |
| vliw_wait_for_GR (cpu, in_GRj); |
| vliw_wait_for_SPR (cpu, out_spr); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRj); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| cycles = idesc->timing->units[unit_num].done; |
| |
| #if 0 |
| /* The latency of spr is ? cycles. */ |
| update_SPR_latency (cpu, out_spr, cycles + ?); |
| #endif |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_gr2fr (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRj, INT out_FRk) |
| { |
| int cycles; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. |
| The latency of the registers may be less than previously recorded, |
| depending on how they were used previously. |
| See Table 14-15 in the LSI. */ |
| adjust_float_register_busy (cpu, -1, 1, -1, 1, out_FRk, 1); |
| vliw_wait_for_GR (cpu, in_GRj); |
| vliw_wait_for_FR (cpu, out_FRk); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRj); |
| load_wait_for_FR (cpu, out_FRk); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| /* The latency of FRk is 1 cycles. */ |
| cycles = idesc->timing->units[unit_num].done; |
| update_FR_latency (cpu, out_FRk, cycles + 1); |
| |
| set_use_is_fr_complex_1 (cpu, out_FRk); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_swap (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRi, INT in_GRj, INT out_GRk) |
| { |
| int cycles; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. */ |
| vliw_wait_for_GR (cpu, in_GRi); |
| vliw_wait_for_GR (cpu, in_GRj); |
| vliw_wait_for_GR (cpu, out_GRk); |
| handle_resource_wait (cpu); |
| load_wait_for_GR (cpu, in_GRi); |
| load_wait_for_GR (cpu, in_GRj); |
| load_wait_for_GR (cpu, out_GRk); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| cycles = idesc->timing->units[unit_num].done; |
| |
| /* The latency of GRk will depend on how long it takes to swap |
| the the data from the cache or memory. */ |
| update_GR_latency_for_swap (cpu, out_GRk, cycles); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_fr2fr (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRj, INT out_FRk) |
| { |
| int cycles; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. |
| The latency of the registers may be less than previously recorded, |
| depending on how they were used previously. |
| See Table 14-15 in the LSI. */ |
| adjust_float_register_busy (cpu, -1, 1, in_FRj, 1, out_FRk, 1); |
| vliw_wait_for_FR (cpu, in_FRj); |
| vliw_wait_for_FR (cpu, out_FRk); |
| handle_resource_wait (cpu); |
| load_wait_for_FR (cpu, in_FRj); |
| load_wait_for_FR (cpu, out_FRk); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| /* The latency of FRj is 2 cycles. */ |
| cycles = idesc->timing->units[unit_num].done; |
| update_FR_latency (cpu, out_FRk, cycles + 2); |
| |
| set_use_is_fr_complex_2 (cpu, out_FRk); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_fr2gr (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRk, INT out_GRj) |
| { |
| int cycles; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| { |
| /* The entire VLIW insn must wait if there is a dependency on a register |
| which is not ready yet. |
| The latency of the registers may be less than previously recorded, |
| depending on how they were used previously. |
| See Table 14-15 in the LSI. */ |
| adjust_float_register_busy (cpu, in_FRk, 1, -1, 1, -1, 1); |
| vliw_wait_for_FR (cpu, in_FRk); |
| vliw_wait_for_GR (cpu, out_GRj); |
| handle_resource_wait (cpu); |
| load_wait_for_FR (cpu, in_FRk); |
| load_wait_for_GR (cpu, out_GRj); |
| trace_vliw_wait_cycles (cpu); |
| return 0; |
| } |
| |
| /* The latency of GRj is 1 cycle. */ |
| cycles = idesc->timing->units[unit_num].done; |
| update_GR_latency (cpu, out_GRj, cycles + 1); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_clrgr (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRk) |
| { |
| /* Modelling for this unit is the same as for fr500. */ |
| return frvbf_model_fr500_u_clrgr (cpu, idesc, unit_num, referenced, in_GRk); |
| } |
| |
| int |
| frvbf_model_fr550_u_clrfr (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRk) |
| { |
| /* Modelling for this unit is the same as for fr500. */ |
| return frvbf_model_fr500_u_clrfr (cpu, idesc, unit_num, referenced, in_FRk); |
| } |
| |
| int |
| frvbf_model_fr550_u_commit (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_GRk, INT in_FRk) |
| { |
| /* Modelling for this unit is the same as for fr500. */ |
| return frvbf_model_fr500_u_commit (cpu, idesc, unit_num, referenced, |
| in_GRk, in_FRk); |
| } |
| |
| int |
| frvbf_model_fr550_u_media (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRi, INT in_FRj, INT out_FRk) |
| { |
| int cycles; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| /* If the previous use of the registers was a media op, |
| then their latency may be less than previously recorded. |
| See Table 14-15 in the LSI. */ |
| adjust_float_register_busy_for_media (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1); |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| ps = CPU_PROFILE_STATE (cpu); |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_media (cpu, slot); |
| post_wait_for_FR (cpu, in_FRi); |
| post_wait_for_FR (cpu, in_FRj); |
| post_wait_for_FR (cpu, out_FRk); |
| |
| /* Restore the busy cycles of the registers we used. */ |
| restore_float_register_busy_for_media (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1); |
| |
| /* The latency of tht output register will be at least the latency of the |
| other inputs. Once initiated, post-processing will take 1 cycle. */ |
| if (out_FRk >= 0) |
| { |
| update_FR_latency (cpu, out_FRk, ps->post_wait); |
| update_FR_ptime (cpu, out_FRk, 1); |
| /* Mark this use of the register as a media op. */ |
| set_use_is_fr_complex_1 (cpu, out_FRk); |
| } |
| |
| /* the floating point unit resource has a latency of 3 cycles */ |
| update_float_resource_latency (cpu, slot, cycles + 3); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_media_quad (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRi, INT in_FRj, |
| INT out_FRk) |
| { |
| int cycles; |
| INT dual_FRi; |
| INT dual_FRj; |
| INT dual_FRk; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| dual_FRi = DUAL_REG (in_FRi); |
| dual_FRj = DUAL_REG (in_FRj); |
| dual_FRk = DUAL_REG (out_FRk); |
| |
| /* The latency of the registers may be less than previously recorded, |
| depending on how they were used previously. |
| See Table 14-15 in the LSI. */ |
| adjust_float_register_busy_for_media (cpu, in_FRi, 2, in_FRj, 2, out_FRk, 2); |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| ps = CPU_PROFILE_STATE (cpu); |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_media (cpu, slot); |
| post_wait_for_FR (cpu, in_FRi); |
| post_wait_for_FR (cpu, dual_FRi); |
| post_wait_for_FR (cpu, in_FRj); |
| post_wait_for_FR (cpu, dual_FRj); |
| post_wait_for_FR (cpu, out_FRk); |
| post_wait_for_FR (cpu, dual_FRk); |
| |
| /* Restore the busy cycles of the registers we used. */ |
| restore_float_register_busy_for_media (cpu, in_FRi, 2, in_FRj, 2, out_FRk, 2); |
| |
| /* The latency of the output register will be at least the latency of the |
| other inputs. Once initiated, post-processing take 1 cycle. */ |
| update_FR_latency (cpu, out_FRk, ps->post_wait); |
| update_FR_ptime (cpu, out_FRk, 1); |
| set_use_is_fr_complex_1 (cpu, out_FRk); |
| |
| if (dual_FRk >= 0) |
| { |
| update_FR_latency (cpu, dual_FRk, ps->post_wait); |
| update_FR_ptime (cpu, dual_FRk, 1); |
| set_use_is_fr_complex_1 (cpu, dual_FRk); |
| } |
| |
| /* the floating point unit resource has a latency of 3 cycles */ |
| update_float_resource_latency (cpu, slot, cycles + 3); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_media_dual_expand (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRi, INT out_FRk) |
| { |
| int cycles; |
| INT dual_FRk; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| /* If the previous use of the registers was a media op, |
| then their latency will be less than previously recorded. |
| See Table 14-15 in the LSI. */ |
| dual_FRk = DUAL_REG (out_FRk); |
| adjust_float_register_busy_for_media (cpu, in_FRi, 1, -1, 1, out_FRk, 2); |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| ps = CPU_PROFILE_STATE (cpu); |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_media (cpu, slot); |
| post_wait_for_FR (cpu, in_FRi); |
| post_wait_for_FR (cpu, out_FRk); |
| post_wait_for_FR (cpu, dual_FRk); |
| |
| /* Restore the busy cycles of the registers we used. */ |
| restore_float_register_busy_for_media (cpu, in_FRi, 1, -1, 1, out_FRk, 2); |
| |
| /* The latency of the output register will be at least the latency of the |
| other inputs. Once initiated, post-processing will take 1 cycle. */ |
| update_FR_latency (cpu, out_FRk, ps->post_wait); |
| update_FR_ptime (cpu, out_FRk, 1); |
| set_use_is_fr_complex_1 (cpu, out_FRk); |
| |
| if (dual_FRk >= 0) |
| { |
| update_FR_latency (cpu, dual_FRk, ps->post_wait); |
| update_FR_ptime (cpu, dual_FRk, 1); |
| set_use_is_fr_complex_1 (cpu, dual_FRk); |
| } |
| |
| /* the floating point unit resource has a latency of 3 cycles */ |
| update_float_resource_latency (cpu, slot, cycles + 3); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_media_3_dual (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRi, INT out_FRk) |
| { |
| int cycles; |
| INT dual_FRi; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| dual_FRi = DUAL_REG (in_FRi); |
| |
| /* The latency of the registers may be less than previously recorded, |
| depending on how they were used previously. |
| See Table 14-15 in the LSI. */ |
| adjust_float_register_busy_for_media (cpu, in_FRi, 2, -1, 1, out_FRk, 1); |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| ps = CPU_PROFILE_STATE (cpu); |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_media (cpu, slot); |
| post_wait_for_FR (cpu, in_FRi); |
| post_wait_for_FR (cpu, dual_FRi); |
| post_wait_for_FR (cpu, out_FRk); |
| |
| /* Restore the busy cycles of the registers we used. */ |
| restore_float_register_busy_for_media (cpu, in_FRi, 2, -1, 1, out_FRk, 1); |
| |
| /* The latency of the output register will be at least the latency of the |
| other inputs. Once initiated, post-processing takes 1 cycle. */ |
| update_FR_latency (cpu, out_FRk, ps->post_wait); |
| update_FR_ptime (cpu, out_FRk, 1); |
| |
| set_use_is_fr_complex_1 (cpu, out_FRk); |
| |
| /* the floating point unit resource has a latency of 3 cycles */ |
| update_float_resource_latency (cpu, slot, cycles + 3); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_media_3_acc (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRj, INT in_ACC40Si, |
| INT out_FRk) |
| { |
| int cycles; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| /* If the previous use of the registers was a media op, |
| then their latency will be less than previously recorded. |
| See Table 14-15 in the LSI. */ |
| adjust_float_register_busy_for_media (cpu, -1, 1, in_FRj, 1, out_FRk, 1); |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| ps = CPU_PROFILE_STATE (cpu); |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_media (cpu, slot); |
| post_wait_for_FR (cpu, in_FRj); |
| post_wait_for_FR (cpu, out_FRk); |
| post_wait_for_ACC (cpu, in_ACC40Si); |
| |
| /* Restore the busy cycles of the registers we used. */ |
| restore_float_register_busy_for_media (cpu, -1, 1, in_FRj, 1, out_FRk, 1); |
| |
| /* The latency of tht output register will be at least the latency of the |
| other inputs. Once initiated, post-processing will take 1 cycle. */ |
| update_FR_latency (cpu, out_FRk, ps->post_wait); |
| update_FR_ptime (cpu, out_FRk, 1); |
| |
| set_use_is_fr_complex_1 (cpu, out_FRk); |
| |
| /* the floating point unit resource has a latency of 3 cycles */ |
| update_float_resource_latency (cpu, slot, cycles + 3); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_media_3_acc_dual (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_ACC40Si, INT out_FRk) |
| { |
| int cycles; |
| FRV_PROFILE_STATE *ps; |
| INT ACC40Si_1; |
| INT dual_FRk; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| ACC40Si_1 = DUAL_REG (in_ACC40Si); |
| dual_FRk = DUAL_REG (out_FRk); |
| |
| /* If the previous use of the registers was a media op, |
| then their latency will be less than previously recorded. |
| See Table 14-15 in the LSI. */ |
| adjust_float_register_busy_for_media (cpu, -1, 1, -1, 1, out_FRk, 2); |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| ps = CPU_PROFILE_STATE (cpu); |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_media (cpu, slot); |
| post_wait_for_ACC (cpu, in_ACC40Si); |
| post_wait_for_ACC (cpu, ACC40Si_1); |
| post_wait_for_FR (cpu, out_FRk); |
| post_wait_for_FR (cpu, dual_FRk); |
| |
| /* Restore the busy cycles of the registers we used. */ |
| restore_float_register_busy_for_media (cpu, -1, 1, -1, 1, out_FRk, 2); |
| |
| /* The latency of the output register will be at least the latency of the |
| other inputs. Once initiated, post-processing will take 1 cycle. */ |
| update_FR_latency (cpu, out_FRk, ps->post_wait); |
| update_FR_ptime (cpu, out_FRk, 1); |
| set_use_is_fr_complex_1 (cpu, out_FRk); |
| if (dual_FRk >= 0) |
| { |
| update_FR_latency (cpu, dual_FRk, ps->post_wait); |
| update_FR_ptime (cpu, dual_FRk, 1); |
| set_use_is_fr_complex_1 (cpu, dual_FRk); |
| } |
| |
| /* the floating point unit resource has a latency of 3 cycles */ |
| update_float_resource_latency (cpu, slot, cycles + 3); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_media_3_wtacc (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRi, INT out_ACC40Sk) |
| { |
| int cycles; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| ps = CPU_PROFILE_STATE (cpu); |
| |
| /* The latency of the registers may be less than previously recorded, |
| depending on how they were used previously. |
| See Table 14-15 in the LSI. */ |
| adjust_float_register_busy_for_media (cpu, in_FRi, 1, -1, 1, -1, 1); |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_media (cpu, slot); |
| post_wait_for_FR (cpu, in_FRi); |
| post_wait_for_ACC (cpu, out_ACC40Sk); |
| |
| /* Restore the busy cycles of the registers we used. */ |
| restore_float_register_busy_for_media (cpu, in_FRi, 1, -1, 1, -1, 1); |
| |
| /* The latency of the output register will be at least the latency of the |
| other inputs. Once initiated, post-processing will take 1 cycle. */ |
| update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait); |
| update_ACC_ptime (cpu, out_ACC40Sk, 1); |
| set_use_is_acc_mmac (cpu, out_ACC40Sk); |
| |
| /* the floating point unit resource has a latency of 3 cycles */ |
| update_float_resource_latency (cpu, slot, cycles + 3); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_media_3_mclracc (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced) |
| { |
| int cycles; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| int i; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| ps = CPU_PROFILE_STATE (cpu); |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_media (cpu, slot); |
| |
| /* If A was 1 and the accumulator was ACC0, then we must check all |
| accumulators. Otherwise just wait for the specified accumulator. */ |
| if (ps->mclracc_A && ps->mclracc_acc == 0) |
| { |
| for (i = 0; i < 8; ++i) |
| post_wait_for_ACC (cpu, i); |
| } |
| else |
| post_wait_for_ACC (cpu, ps->mclracc_acc); |
| |
| /* The latency of the output registers will be at least the latency of the |
| other inputs. Once initiated, post-processing will take 1 cycle. */ |
| if (ps->mclracc_A && ps->mclracc_acc == 0) |
| { |
| for (i = 0; i < 8; ++i) |
| { |
| update_ACC_latency (cpu, i, ps->post_wait); |
| update_ACC_ptime (cpu, i, 1); |
| set_use_is_acc_mmac (cpu, i); |
| } |
| } |
| else |
| { |
| update_ACC_latency (cpu, ps->mclracc_acc, ps->post_wait); |
| update_ACC_ptime (cpu, ps->mclracc_acc, 1); |
| set_use_is_acc_mmac (cpu, ps->mclracc_acc); |
| } |
| |
| /* the floating point unit resource has a latency of 3 cycles */ |
| update_float_resource_latency (cpu, slot, cycles + 3); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_media_set (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT out_FRk) |
| { |
| int cycles; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| /* If the previous use of the registers was a media op, |
| then their latency will be less than previously recorded. |
| See Table 14-15 in the LSI. */ |
| adjust_float_register_busy_for_media (cpu, -1, 1, -1, 1, out_FRk, 1); |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| ps = CPU_PROFILE_STATE (cpu); |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_media (cpu, slot); |
| post_wait_for_FR (cpu, out_FRk); |
| |
| /* Restore the busy cycles of the registers we used. */ |
| restore_float_register_busy_for_media (cpu, -1, 1, -1, 1, out_FRk, 1); |
| |
| /* The latency of the output register will be at least the latency of the |
| other inputs. Once initiated, post-processing takes 1 cycle. */ |
| update_FR_latency (cpu, out_FRk, ps->post_wait); |
| update_FR_ptime (cpu, out_FRk, 1); |
| fr550_reset_acc_flags (cpu, out_FRk); |
| |
| /* the floating point unit resource has a latency of 3 cycles */ |
| update_float_resource_latency (cpu, slot, cycles + 3); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_media_4 (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRi, INT in_FRj, |
| INT out_ACC40Sk, INT out_ACC40Uk) |
| { |
| int cycles; |
| INT dual_ACC40Sk; |
| INT dual_ACC40Uk; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| ps = CPU_PROFILE_STATE (cpu); |
| dual_ACC40Sk = DUAL_REG (out_ACC40Sk); |
| dual_ACC40Uk = DUAL_REG (out_ACC40Uk); |
| |
| /* The latency of the registers may be less than previously recorded, |
| depending on how they were used previously. |
| See Table 14-15 in the LSI. */ |
| adjust_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Sk, 2); |
| adjust_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Uk, 2); |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_media (cpu, slot); |
| post_wait_for_FR (cpu, in_FRi); |
| post_wait_for_FR (cpu, in_FRj); |
| post_wait_for_ACC (cpu, out_ACC40Sk); |
| post_wait_for_ACC (cpu, dual_ACC40Sk); |
| post_wait_for_ACC (cpu, out_ACC40Uk); |
| post_wait_for_ACC (cpu, dual_ACC40Uk); |
| |
| /* Restore the busy cycles of the registers we used. */ |
| restore_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Sk, 2); |
| restore_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Uk, 2); |
| |
| /* The latency of the output register will be at least the latency of the |
| other inputs. Once initiated, post-processing will take 1 cycles. */ |
| if (out_ACC40Sk >= 0) |
| { |
| update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1); |
| set_use_is_acc_mmac (cpu, out_ACC40Sk); |
| } |
| if (dual_ACC40Sk >= 0) |
| { |
| update_ACC_latency (cpu, dual_ACC40Sk, ps->post_wait + 1); |
| set_use_is_acc_mmac (cpu, dual_ACC40Sk); |
| } |
| if (out_ACC40Uk >= 0) |
| { |
| update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1); |
| set_use_is_acc_mmac (cpu, out_ACC40Uk); |
| } |
| if (dual_ACC40Uk >= 0) |
| { |
| update_ACC_latency (cpu, dual_ACC40Uk, ps->post_wait + 1); |
| set_use_is_acc_mmac (cpu, dual_ACC40Uk); |
| } |
| |
| /* the floating point unit resource has a latency of 3 cycles */ |
| update_float_resource_latency (cpu, slot, cycles + 3); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_media_4_acc (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_ACC40Si, INT out_ACC40Sk) |
| { |
| int cycles; |
| INT ACC40Si_1; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| ACC40Si_1 = DUAL_REG (in_ACC40Si); |
| |
| ps = CPU_PROFILE_STATE (cpu); |
| /* The latency of the registers may be less than previously recorded, |
| depending on how they were used previously. |
| See Table 14-15 in the LSI. */ |
| adjust_acc_busy_for_mmac (cpu, in_ACC40Si, 2, out_ACC40Sk, 1); |
| |
| /* The post processing must wait if there is a dependency on a register |
| which is not ready yet. */ |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_media (cpu, slot); |
| post_wait_for_ACC (cpu, in_ACC40Si); |
| post_wait_for_ACC (cpu, ACC40Si_1); |
| post_wait_for_ACC (cpu, out_ACC40Sk); |
| |
| /* Restore the busy cycles of the registers we used. */ |
| restore_acc_busy_for_mmac (cpu, in_ACC40Si, 2, out_ACC40Sk, 1); |
| |
| /* The latency of the output register will be at least the latency of the |
| other inputs. Once initiated, post-processing will take 1 cycle. */ |
| update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1); |
| set_use_is_acc_mmac (cpu, out_ACC40Sk); |
| |
| /* the floating point unit resource has a latency of 3 cycles */ |
| update_float_resource_latency (cpu, slot, cycles + 3); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_media_4_acc_dual (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_ACC40Si, INT out_ACC40Sk) |
| { |
| int cycles; |
| INT ACC40Si_1; |
| INT ACC40Si_2; |
| INT ACC40Si_3; |
| INT ACC40Sk_1; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| ACC40Si_1 = DUAL_REG (in_ACC40Si); |
| ACC40Si_2 = DUAL_REG (ACC40Si_1); |
| ACC40Si_3 = DUAL_REG (ACC40Si_2); |
| ACC40Sk_1 = DUAL_REG (out_ACC40Sk); |
| |
| ps = CPU_PROFILE_STATE (cpu); |
| /* The latency of the registers may be less than previously recorded, |
| depending on how they were used previously. |
| See Table 14-15 in the LSI. */ |
| adjust_acc_busy_for_mmac (cpu, in_ACC40Si, 4, out_ACC40Sk, 2); |
| |
| /* The post processing must wait if there is a dependency on a register |
| which is not ready yet. */ |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_media (cpu, slot); |
| post_wait_for_ACC (cpu, in_ACC40Si); |
| post_wait_for_ACC (cpu, ACC40Si_1); |
| post_wait_for_ACC (cpu, ACC40Si_2); |
| post_wait_for_ACC (cpu, ACC40Si_3); |
| post_wait_for_ACC (cpu, out_ACC40Sk); |
| post_wait_for_ACC (cpu, ACC40Sk_1); |
| |
| /* Restore the busy cycles of the registers we used. */ |
| restore_acc_busy_for_mmac (cpu, in_ACC40Si, 4, out_ACC40Sk, 2); |
| |
| /* The latency of the output register will be at least the latency of the |
| other inputs. Once initiated, post-processing will take 1 cycle. */ |
| update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1); |
| set_use_is_acc_mmac (cpu, out_ACC40Sk); |
| if (ACC40Sk_1 >= 0) |
| { |
| update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1); |
| set_use_is_acc_mmac (cpu, ACC40Sk_1); |
| } |
| |
| /* the floating point unit resource has a latency of 3 cycles */ |
| update_float_resource_latency (cpu, slot, cycles + 3); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_media_4_add_sub (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_ACC40Si, INT out_ACC40Sk) |
| { |
| int cycles; |
| INT ACC40Si_1; |
| INT ACC40Sk_1; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| ACC40Si_1 = DUAL_REG (in_ACC40Si); |
| ACC40Sk_1 = DUAL_REG (out_ACC40Sk); |
| |
| ps = CPU_PROFILE_STATE (cpu); |
| /* The latency of the registers may be less than previously recorded, |
| depending on how they were used previously. |
| See Table 14-15 in the LSI. */ |
| adjust_acc_busy_for_mmac (cpu, in_ACC40Si, 2, out_ACC40Sk, 2); |
| |
| /* The post processing must wait if there is a dependency on a register |
| which is not ready yet. */ |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_media (cpu, slot); |
| post_wait_for_ACC (cpu, in_ACC40Si); |
| post_wait_for_ACC (cpu, ACC40Si_1); |
| post_wait_for_ACC (cpu, out_ACC40Sk); |
| post_wait_for_ACC (cpu, ACC40Sk_1); |
| |
| /* Restore the busy cycles of the registers we used. */ |
| restore_acc_busy_for_mmac (cpu, in_ACC40Si, 2, out_ACC40Sk, 2); |
| |
| /* The latency of the output register will be at least the latency of the |
| other inputs. Once initiated, post-processing will take 1 cycle. */ |
| update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1); |
| set_use_is_acc_mmac (cpu, out_ACC40Sk); |
| if (ACC40Sk_1 >= 0) |
| { |
| update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1); |
| set_use_is_acc_mmac (cpu, ACC40Sk_1); |
| } |
| |
| /* the floating point unit resource has a latency of 3 cycles */ |
| update_float_resource_latency (cpu, slot, cycles + 3); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_media_4_add_sub_dual (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_ACC40Si, INT out_ACC40Sk) |
| { |
| int cycles; |
| INT ACC40Si_1; |
| INT ACC40Si_2; |
| INT ACC40Si_3; |
| INT ACC40Sk_1; |
| INT ACC40Sk_2; |
| INT ACC40Sk_3; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| ACC40Si_1 = DUAL_REG (in_ACC40Si); |
| ACC40Si_2 = DUAL_REG (ACC40Si_1); |
| ACC40Si_3 = DUAL_REG (ACC40Si_2); |
| ACC40Sk_1 = DUAL_REG (out_ACC40Sk); |
| ACC40Sk_2 = DUAL_REG (ACC40Sk_1); |
| ACC40Sk_3 = DUAL_REG (ACC40Sk_2); |
| |
| ps = CPU_PROFILE_STATE (cpu); |
| /* The latency of the registers may be less than previously recorded, |
| depending on how they were used previously. |
| See Table 14-15 in the LSI. */ |
| adjust_acc_busy_for_mmac (cpu, in_ACC40Si, 4, out_ACC40Sk, 4); |
| |
| /* The post processing must wait if there is a dependency on a register |
| which is not ready yet. */ |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_media (cpu, slot); |
| post_wait_for_ACC (cpu, in_ACC40Si); |
| post_wait_for_ACC (cpu, ACC40Si_1); |
| post_wait_for_ACC (cpu, ACC40Si_2); |
| post_wait_for_ACC (cpu, ACC40Si_3); |
| post_wait_for_ACC (cpu, out_ACC40Sk); |
| post_wait_for_ACC (cpu, ACC40Sk_1); |
| post_wait_for_ACC (cpu, ACC40Sk_2); |
| post_wait_for_ACC (cpu, ACC40Sk_3); |
| |
| /* Restore the busy cycles of the registers we used. */ |
| restore_acc_busy_for_mmac (cpu, in_ACC40Si, 4, out_ACC40Sk, 4); |
| |
| /* The latency of the output register will be at least the latency of the |
| other inputs. Once initiated, post-processing will take 1 cycle. */ |
| update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1); |
| set_use_is_acc_mmac (cpu, out_ACC40Sk); |
| if (ACC40Sk_1 >= 0) |
| { |
| update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1); |
| set_use_is_acc_mmac (cpu, ACC40Sk_1); |
| } |
| if (ACC40Sk_2 >= 0) |
| { |
| update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1); |
| set_use_is_acc_mmac (cpu, ACC40Sk_2); |
| } |
| if (ACC40Sk_3 >= 0) |
| { |
| update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1); |
| set_use_is_acc_mmac (cpu, ACC40Sk_3); |
| } |
| |
| /* the floating point unit resource has a latency of 3 cycles */ |
| update_float_resource_latency (cpu, slot, cycles + 3); |
| |
| return cycles; |
| } |
| |
| int |
| frvbf_model_fr550_u_media_4_quad (SIM_CPU *cpu, const IDESC *idesc, |
| int unit_num, int referenced, |
| INT in_FRi, INT in_FRj, |
| INT out_ACC40Sk, INT out_ACC40Uk) |
| { |
| int cycles; |
| INT dual_FRi; |
| INT dual_FRj; |
| INT ACC40Sk_1; |
| INT ACC40Sk_2; |
| INT ACC40Sk_3; |
| INT ACC40Uk_1; |
| INT ACC40Uk_2; |
| INT ACC40Uk_3; |
| FRV_PROFILE_STATE *ps; |
| FRV_VLIW *vliw; |
| int slot; |
| |
| if (model_insn == FRV_INSN_MODEL_PASS_1) |
| return 0; |
| |
| /* The preprocessing can execute right away. */ |
| cycles = idesc->timing->units[unit_num].done; |
| |
| dual_FRi = DUAL_REG (in_FRi); |
| dual_FRj = DUAL_REG (in_FRj); |
| ACC40Sk_1 = DUAL_REG (out_ACC40Sk); |
| ACC40Sk_2 = DUAL_REG (ACC40Sk_1); |
| ACC40Sk_3 = DUAL_REG (ACC40Sk_2); |
| ACC40Uk_1 = DUAL_REG (out_ACC40Uk); |
| ACC40Uk_2 = DUAL_REG (ACC40Uk_1); |
| ACC40Uk_3 = DUAL_REG (ACC40Uk_2); |
| |
| ps = CPU_PROFILE_STATE (cpu); |
| /* The latency of the registers may be less than previously recorded, |
| depending on how they were used previously. |
| See Table 14-15 in the LSI. */ |
| adjust_float_register_busy_for_media (cpu, in_FRi, 2, in_FRj, 2, -1, 1); |
| adjust_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Sk, 4); |
| adjust_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Uk, 4); |
| |
| /* The post processing must wait if there is a dependency on a FR |
| which is not ready yet. */ |
| ps->post_wait = cycles; |
| vliw = CPU_VLIW (cpu); |
| slot = vliw->next_slot - 1; |
| slot = (*vliw->current_vliw)[slot] - UNIT_FM0; |
| post_wait_for_media (cpu, slot); |
| post_wait_for_FR (cpu, in_FRi); |
| post_wait_for_FR (cpu, dual_FRi); |
| post_wait_for_FR (cpu, in_FRj); |
| post_wait_for_FR (cpu, dual_FRj); |
| post_wait_for_ACC (cpu, out_ACC40Sk); |
| post_wait_for_ACC (cpu, ACC40Sk_1); |
| post_wait_for_ACC (cpu, ACC40Sk_2); |
| post_wait_for_ACC (cpu, ACC40Sk_3); |
| post_wait_for_ACC (cpu, out_ACC40Uk); |
| post_wait_for_ACC (cpu, ACC40Uk_1); |
| post_wait_for_ACC (cpu, ACC40Uk_2); |
| post_wait_for_ACC (cpu, ACC40Uk_3); |
| |
| /* Restore the busy cycles of the registers we used. */ |
| restore_float_register_busy_for_media (cpu, in_FRi, 2, in_FRj, 2, -1, 1); |
| restore_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Sk, 4); |
| restore_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Uk, 4); |
| |
| /* The latency of the output register will be at least the latency of the |
| other inputs. Once initiated, post-processing will take 1 cycle. */ |
| if (out_ACC40Sk >= 0) |
| { |
| update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1); |
| |
| set_use_is_acc_mmac (cpu, out_ACC40Sk); |
| if (ACC40Sk_1 >= 0) |
| { |
| update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1); |
| |
| set_use_is_acc_mmac (cpu, ACC40Sk_1); |
| } |
| if (ACC40Sk_2 >= 0) |
| { |
| update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1); |
| |
| set_use_is_acc_mmac (cpu, ACC40Sk_2); |
| } |
| if (ACC40Sk_3 >= 0) |
| { |
| update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1); |
| |
| set_use_is_acc_mmac (cpu, ACC40Sk_3); |
| } |
| } |
| else if (out_ACC40Uk >= 0) |
| { |
| update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1); |
| |
| set_use_is_acc_mmac (cpu, out_ACC40Uk); |
| if (ACC40Uk_1 >= 0) |
| { |
| update_ACC_latency (cpu, ACC40Uk_1, ps->post_wait + 1); |
| |
| set_use_is_acc_mmac (cpu, ACC40Uk_1); |
| } |
| if (ACC40Uk_2 >= 0) |
| { |
| update_ACC_latency (cpu, ACC40Uk_2, ps->post_wait + 1); |
| |
| set_use_is_acc_mmac (cpu, ACC40Uk_2); |
| } |
| if (ACC40Uk_3 >= 0) |
| { |
| update_ACC_latency (cpu, ACC40Uk_3, ps->post_wait + 1); |
| |
| set_use_is_acc_mmac (cpu, ACC40Uk_3); |
| } |
| } |
| |
| /* the floating point unit resource has a latency of 3 cycles */ |
| update_float_resource_latency (cpu, slot, cycles + 3); |
| |
| return cycles; |
| } |
| |
| #endif /* WITH_PROFILE_MODEL_P */ |