| /* Matsushita 10300 specific support for 32-bit ELF |
| Copyright (C) 1996-2022 Free Software Foundation, Inc. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "libbfd.h" |
| #include "elf-bfd.h" |
| #include "elf/mn10300.h" |
| #include "libiberty.h" |
| |
| /* The mn10300 linker needs to keep track of the number of relocs that |
| it decides to copy in check_relocs for each symbol. This is so |
| that it can discard PC relative relocs if it doesn't need them when |
| linking with -Bsymbolic. We store the information in a field |
| extending the regular ELF linker hash table. */ |
| |
| struct elf32_mn10300_link_hash_entry |
| { |
| /* The basic elf link hash table entry. */ |
| struct elf_link_hash_entry root; |
| |
| /* For function symbols, the number of times this function is |
| called directly (ie by name). */ |
| unsigned int direct_calls; |
| |
| /* For function symbols, the size of this function's stack |
| (if <= 255 bytes). We stuff this into "call" instructions |
| to this target when it's valid and profitable to do so. |
| |
| This does not include stack allocated by movm! */ |
| unsigned char stack_size; |
| |
| /* For function symbols, arguments (if any) for movm instruction |
| in the prologue. We stuff this value into "call" instructions |
| to the target when it's valid and profitable to do so. */ |
| unsigned char movm_args; |
| |
| /* For function symbols, the amount of stack space that would be allocated |
| by the movm instruction. This is redundant with movm_args, but we |
| add it to the hash table to avoid computing it over and over. */ |
| unsigned char movm_stack_size; |
| |
| /* When set, convert all "call" instructions to this target into "calls" |
| instructions. */ |
| #define MN10300_CONVERT_CALL_TO_CALLS 0x1 |
| |
| /* Used to mark functions which have had redundant parts of their |
| prologue deleted. */ |
| #define MN10300_DELETED_PROLOGUE_BYTES 0x2 |
| unsigned char flags; |
| |
| /* Calculated value. */ |
| bfd_vma value; |
| |
| #define GOT_UNKNOWN 0 |
| #define GOT_NORMAL 1 |
| #define GOT_TLS_GD 2 |
| #define GOT_TLS_LD 3 |
| #define GOT_TLS_IE 4 |
| /* Used to distinguish GOT entries for TLS types from normal GOT entries. */ |
| unsigned char tls_type; |
| }; |
| |
| /* We derive a hash table from the main elf linker hash table so |
| we can store state variables and a secondary hash table without |
| resorting to global variables. */ |
| struct elf32_mn10300_link_hash_table |
| { |
| /* The main hash table. */ |
| struct elf_link_hash_table root; |
| |
| /* A hash table for static functions. We could derive a new hash table |
| instead of using the full elf32_mn10300_link_hash_table if we wanted |
| to save some memory. */ |
| struct elf32_mn10300_link_hash_table *static_hash_table; |
| |
| /* Random linker state flags. */ |
| #define MN10300_HASH_ENTRIES_INITIALIZED 0x1 |
| char flags; |
| struct |
| { |
| bfd_signed_vma refcount; |
| bfd_vma offset; |
| char got_allocated; |
| char rel_emitted; |
| } tls_ldm_got; |
| }; |
| |
| #define elf_mn10300_hash_entry(ent) ((struct elf32_mn10300_link_hash_entry *)(ent)) |
| |
| struct elf_mn10300_obj_tdata |
| { |
| struct elf_obj_tdata root; |
| |
| /* tls_type for each local got entry. */ |
| char * local_got_tls_type; |
| }; |
| |
| #define elf_mn10300_tdata(abfd) \ |
| ((struct elf_mn10300_obj_tdata *) (abfd)->tdata.any) |
| |
| #define elf_mn10300_local_got_tls_type(abfd) \ |
| (elf_mn10300_tdata (abfd)->local_got_tls_type) |
| |
| #ifndef streq |
| #define streq(a, b) (strcmp ((a),(b)) == 0) |
| #endif |
| |
| /* For MN10300 linker hash table. */ |
| |
| /* Get the MN10300 ELF linker hash table from a link_info structure. */ |
| |
| #define elf32_mn10300_hash_table(p) \ |
| ((is_elf_hash_table ((p)->hash) \ |
| && elf_hash_table_id (elf_hash_table (p)) == MN10300_ELF_DATA) \ |
| ? (struct elf32_mn10300_link_hash_table *) (p)->hash : NULL) |
| |
| #define elf32_mn10300_link_hash_traverse(table, func, info) \ |
| (elf_link_hash_traverse \ |
| (&(table)->root, \ |
| (bool (*) (struct elf_link_hash_entry *, void *)) (func), \ |
| (info))) |
| |
| static reloc_howto_type elf_mn10300_howto_table[] = |
| { |
| /* Dummy relocation. Does nothing. */ |
| HOWTO (R_MN10300_NONE, |
| 0, |
| 3, |
| 0, |
| false, |
| 0, |
| complain_overflow_dont, |
| bfd_elf_generic_reloc, |
| "R_MN10300_NONE", |
| false, |
| 0, |
| 0, |
| false), |
| /* Standard 32 bit reloc. */ |
| HOWTO (R_MN10300_32, |
| 0, |
| 2, |
| 32, |
| false, |
| 0, |
| complain_overflow_bitfield, |
| bfd_elf_generic_reloc, |
| "R_MN10300_32", |
| false, |
| 0xffffffff, |
| 0xffffffff, |
| false), |
| /* Standard 16 bit reloc. */ |
| HOWTO (R_MN10300_16, |
| 0, |
| 1, |
| 16, |
| false, |
| 0, |
| complain_overflow_bitfield, |
| bfd_elf_generic_reloc, |
| "R_MN10300_16", |
| false, |
| 0xffff, |
| 0xffff, |
| false), |
| /* Standard 8 bit reloc. */ |
| HOWTO (R_MN10300_8, |
| 0, |
| 0, |
| 8, |
| false, |
| 0, |
| complain_overflow_bitfield, |
| bfd_elf_generic_reloc, |
| "R_MN10300_8", |
| false, |
| 0xff, |
| 0xff, |
| false), |
| /* Standard 32bit pc-relative reloc. */ |
| HOWTO (R_MN10300_PCREL32, |
| 0, |
| 2, |
| 32, |
| true, |
| 0, |
| complain_overflow_bitfield, |
| bfd_elf_generic_reloc, |
| "R_MN10300_PCREL32", |
| false, |
| 0xffffffff, |
| 0xffffffff, |
| true), |
| /* Standard 16bit pc-relative reloc. */ |
| HOWTO (R_MN10300_PCREL16, |
| 0, |
| 1, |
| 16, |
| true, |
| 0, |
| complain_overflow_bitfield, |
| bfd_elf_generic_reloc, |
| "R_MN10300_PCREL16", |
| false, |
| 0xffff, |
| 0xffff, |
| true), |
| /* Standard 8 pc-relative reloc. */ |
| HOWTO (R_MN10300_PCREL8, |
| 0, |
| 0, |
| 8, |
| true, |
| 0, |
| complain_overflow_bitfield, |
| bfd_elf_generic_reloc, |
| "R_MN10300_PCREL8", |
| false, |
| 0xff, |
| 0xff, |
| true), |
| |
| /* GNU extension to record C++ vtable hierarchy. */ |
| HOWTO (R_MN10300_GNU_VTINHERIT, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| NULL, /* special_function */ |
| "R_MN10300_GNU_VTINHERIT", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| /* GNU extension to record C++ vtable member usage */ |
| HOWTO (R_MN10300_GNU_VTENTRY, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| NULL, /* special_function */ |
| "R_MN10300_GNU_VTENTRY", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| /* Standard 24 bit reloc. */ |
| HOWTO (R_MN10300_24, |
| 0, |
| 2, |
| 24, |
| false, |
| 0, |
| complain_overflow_bitfield, |
| bfd_elf_generic_reloc, |
| "R_MN10300_24", |
| false, |
| 0xffffff, |
| 0xffffff, |
| false), |
| HOWTO (R_MN10300_GOTPC32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GOTPC32", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_GOTPC16, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 16, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GOTPC16", /* name */ |
| false, /* partial_inplace */ |
| 0xffff, /* src_mask */ |
| 0xffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_GOTOFF32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GOTOFF32", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_GOTOFF24, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 24, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GOTOFF24", /* name */ |
| false, /* partial_inplace */ |
| 0xffffff, /* src_mask */ |
| 0xffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_GOTOFF16, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 16, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GOTOFF16", /* name */ |
| false, /* partial_inplace */ |
| 0xffff, /* src_mask */ |
| 0xffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_PLT32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_PLT32", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_PLT16, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 16, /* bitsize */ |
| true, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_PLT16", /* name */ |
| false, /* partial_inplace */ |
| 0xffff, /* src_mask */ |
| 0xffff, /* dst_mask */ |
| true), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_GOT32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GOT32", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_GOT24, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 24, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GOT24", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_GOT16, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 16, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GOT16", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_COPY, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_COPY", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_GLOB_DAT, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_GLOB_DAT", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_JMP_SLOT, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_JMP_SLOT", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_RELATIVE, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_RELATIVE", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_GD, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_GD", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_LD, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_LD", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_LDO, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_LDO", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_GOTIE, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_GOTIE", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_IE, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_IE", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_LE, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_LE", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_DTPMOD, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_DTPMOD", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_DTPOFF, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_DTPOFF", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_TLS_TPOFF, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* */ |
| "R_MN10300_TLS_TPOFF", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_SYM_DIFF, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont,/* complain_on_overflow */ |
| NULL, /* special handler. */ |
| "R_MN10300_SYM_DIFF", /* name */ |
| false, /* partial_inplace */ |
| 0xffffffff, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| false), /* pcrel_offset */ |
| |
| HOWTO (R_MN10300_ALIGN, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| false, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont,/* complain_on_overflow */ |
| NULL, /* special handler. */ |
| "R_MN10300_ALIGN", /* name */ |
| false, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| false) /* pcrel_offset */ |
| }; |
| |
| struct mn10300_reloc_map |
| { |
| bfd_reloc_code_real_type bfd_reloc_val; |
| unsigned char elf_reloc_val; |
| }; |
| |
| static const struct mn10300_reloc_map mn10300_reloc_map[] = |
| { |
| { BFD_RELOC_NONE, R_MN10300_NONE, }, |
| { BFD_RELOC_32, R_MN10300_32, }, |
| { BFD_RELOC_16, R_MN10300_16, }, |
| { BFD_RELOC_8, R_MN10300_8, }, |
| { BFD_RELOC_32_PCREL, R_MN10300_PCREL32, }, |
| { BFD_RELOC_16_PCREL, R_MN10300_PCREL16, }, |
| { BFD_RELOC_8_PCREL, R_MN10300_PCREL8, }, |
| { BFD_RELOC_24, R_MN10300_24, }, |
| { BFD_RELOC_VTABLE_INHERIT, R_MN10300_GNU_VTINHERIT }, |
| { BFD_RELOC_VTABLE_ENTRY, R_MN10300_GNU_VTENTRY }, |
| { BFD_RELOC_32_GOT_PCREL, R_MN10300_GOTPC32 }, |
| { BFD_RELOC_16_GOT_PCREL, R_MN10300_GOTPC16 }, |
| { BFD_RELOC_32_GOTOFF, R_MN10300_GOTOFF32 }, |
| { BFD_RELOC_MN10300_GOTOFF24, R_MN10300_GOTOFF24 }, |
| { BFD_RELOC_16_GOTOFF, R_MN10300_GOTOFF16 }, |
| { BFD_RELOC_32_PLT_PCREL, R_MN10300_PLT32 }, |
| { BFD_RELOC_16_PLT_PCREL, R_MN10300_PLT16 }, |
| { BFD_RELOC_MN10300_GOT32, R_MN10300_GOT32 }, |
| { BFD_RELOC_MN10300_GOT24, R_MN10300_GOT24 }, |
| { BFD_RELOC_MN10300_GOT16, R_MN10300_GOT16 }, |
| { BFD_RELOC_MN10300_COPY, R_MN10300_COPY }, |
| { BFD_RELOC_MN10300_GLOB_DAT, R_MN10300_GLOB_DAT }, |
| { BFD_RELOC_MN10300_JMP_SLOT, R_MN10300_JMP_SLOT }, |
| { BFD_RELOC_MN10300_RELATIVE, R_MN10300_RELATIVE }, |
| { BFD_RELOC_MN10300_TLS_GD, R_MN10300_TLS_GD }, |
| { BFD_RELOC_MN10300_TLS_LD, R_MN10300_TLS_LD }, |
| { BFD_RELOC_MN10300_TLS_LDO, R_MN10300_TLS_LDO }, |
| { BFD_RELOC_MN10300_TLS_GOTIE, R_MN10300_TLS_GOTIE }, |
| { BFD_RELOC_MN10300_TLS_IE, R_MN10300_TLS_IE }, |
| { BFD_RELOC_MN10300_TLS_LE, R_MN10300_TLS_LE }, |
| { BFD_RELOC_MN10300_TLS_DTPMOD, R_MN10300_TLS_DTPMOD }, |
| { BFD_RELOC_MN10300_TLS_DTPOFF, R_MN10300_TLS_DTPOFF }, |
| { BFD_RELOC_MN10300_TLS_TPOFF, R_MN10300_TLS_TPOFF }, |
| { BFD_RELOC_MN10300_SYM_DIFF, R_MN10300_SYM_DIFF }, |
| { BFD_RELOC_MN10300_ALIGN, R_MN10300_ALIGN } |
| }; |
| |
| /* Create the GOT section. */ |
| |
| static bool |
| _bfd_mn10300_elf_create_got_section (bfd * abfd, |
| struct bfd_link_info * info) |
| { |
| flagword flags; |
| flagword pltflags; |
| asection * s; |
| struct elf_link_hash_entry * h; |
| const struct elf_backend_data * bed = get_elf_backend_data (abfd); |
| struct elf_link_hash_table *htab; |
| int ptralign; |
| |
| /* This function may be called more than once. */ |
| htab = elf_hash_table (info); |
| if (htab->sgot != NULL) |
| return true; |
| |
| switch (bed->s->arch_size) |
| { |
| case 32: |
| ptralign = 2; |
| break; |
| |
| case 64: |
| ptralign = 3; |
| break; |
| |
| default: |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED); |
| |
| pltflags = flags; |
| pltflags |= SEC_CODE; |
| if (bed->plt_not_loaded) |
| pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS); |
| if (bed->plt_readonly) |
| pltflags |= SEC_READONLY; |
| |
| s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags); |
| htab->splt = s; |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->plt_alignment)) |
| return false; |
| |
| /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the |
| .plt section. */ |
| if (bed->want_plt_sym) |
| { |
| h = _bfd_elf_define_linkage_sym (abfd, info, s, |
| "_PROCEDURE_LINKAGE_TABLE_"); |
| htab->hplt = h; |
| if (h == NULL) |
| return false; |
| } |
| |
| s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); |
| htab->sgot = s; |
| if (s == NULL |
| || !bfd_set_section_alignment (s, ptralign)) |
| return false; |
| |
| if (bed->want_got_plt) |
| { |
| s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); |
| htab->sgotplt = s; |
| if (s == NULL |
| || !bfd_set_section_alignment (s, ptralign)) |
| return false; |
| } |
| |
| /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got |
| (or .got.plt) section. We don't do this in the linker script |
| because we don't want to define the symbol if we are not creating |
| a global offset table. */ |
| h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_"); |
| htab->hgot = h; |
| if (h == NULL) |
| return false; |
| |
| /* The first bit of the global offset table is the header. */ |
| s->size += bed->got_header_size; |
| |
| return true; |
| } |
| |
| static reloc_howto_type * |
| bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| bfd_reloc_code_real_type code) |
| { |
| unsigned int i; |
| |
| for (i = ARRAY_SIZE (mn10300_reloc_map); i--;) |
| if (mn10300_reloc_map[i].bfd_reloc_val == code) |
| return &elf_mn10300_howto_table[mn10300_reloc_map[i].elf_reloc_val]; |
| |
| return NULL; |
| } |
| |
| static reloc_howto_type * |
| bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| const char *r_name) |
| { |
| unsigned int i; |
| |
| for (i = ARRAY_SIZE (elf_mn10300_howto_table); i--;) |
| if (elf_mn10300_howto_table[i].name != NULL |
| && strcasecmp (elf_mn10300_howto_table[i].name, r_name) == 0) |
| return elf_mn10300_howto_table + i; |
| |
| return NULL; |
| } |
| |
| /* Set the howto pointer for an MN10300 ELF reloc. */ |
| |
| static bool |
| mn10300_info_to_howto (bfd *abfd, |
| arelent *cache_ptr, |
| Elf_Internal_Rela *dst) |
| { |
| unsigned int r_type; |
| |
| r_type = ELF32_R_TYPE (dst->r_info); |
| if (r_type >= R_MN10300_MAX) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: unsupported relocation type %#x"), |
| abfd, r_type); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| cache_ptr->howto = elf_mn10300_howto_table + r_type; |
| return true; |
| } |
| |
| static int |
| elf_mn10300_tls_transition (struct bfd_link_info * info, |
| int r_type, |
| struct elf_link_hash_entry * h, |
| asection * sec, |
| bool counting) |
| { |
| bool is_local; |
| |
| if (r_type == R_MN10300_TLS_GD |
| && h != NULL |
| && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE) |
| return R_MN10300_TLS_GOTIE; |
| |
| if (bfd_link_pic (info)) |
| return r_type; |
| |
| if (! (sec->flags & SEC_CODE)) |
| return r_type; |
| |
| if (! counting && h != NULL && ! elf_hash_table (info)->dynamic_sections_created) |
| is_local = true; |
| else |
| is_local = SYMBOL_CALLS_LOCAL (info, h); |
| |
| /* For the main program, these are the transitions we do. */ |
| switch (r_type) |
| { |
| case R_MN10300_TLS_GD: return is_local ? R_MN10300_TLS_LE : R_MN10300_TLS_GOTIE; |
| case R_MN10300_TLS_LD: return R_MN10300_NONE; |
| case R_MN10300_TLS_LDO: return R_MN10300_TLS_LE; |
| case R_MN10300_TLS_IE: |
| case R_MN10300_TLS_GOTIE: return is_local ? R_MN10300_TLS_LE : r_type; |
| } |
| |
| return r_type; |
| } |
| |
| /* Return the relocation value for @tpoff relocation |
| if STT_TLS virtual address is ADDRESS. */ |
| |
| static bfd_vma |
| dtpoff (struct bfd_link_info * info, bfd_vma address) |
| { |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (htab->tls_sec == NULL) |
| return 0; |
| return address - htab->tls_sec->vma; |
| } |
| |
| /* Return the relocation value for @tpoff relocation |
| if STT_TLS virtual address is ADDRESS. */ |
| |
| static bfd_vma |
| tpoff (struct bfd_link_info * info, bfd_vma address) |
| { |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (htab->tls_sec == NULL) |
| return 0; |
| return address - (htab->tls_size + htab->tls_sec->vma); |
| } |
| |
| /* Returns nonzero if there's a R_MN10300_PLT32 reloc that we now need |
| to skip, after this one. The actual value is the offset between |
| this reloc and the PLT reloc. */ |
| |
| static int |
| mn10300_do_tls_transition (bfd * input_bfd, |
| unsigned int r_type, |
| unsigned int tls_r_type, |
| bfd_byte * contents, |
| bfd_vma offset) |
| { |
| bfd_byte *op = contents + offset; |
| int gotreg = 0; |
| |
| #define TLS_PAIR(r1,r2) ((r1) * R_MN10300_MAX + (r2)) |
| |
| /* This is common to all GD/LD transitions, so break it out. */ |
| if (r_type == R_MN10300_TLS_GD |
| || r_type == R_MN10300_TLS_LD) |
| { |
| op -= 2; |
| /* mov imm,d0. */ |
| BFD_ASSERT (bfd_get_8 (input_bfd, op) == 0xFC); |
| BFD_ASSERT (bfd_get_8 (input_bfd, op + 1) == 0xCC); |
| /* add aN,d0. */ |
| BFD_ASSERT (bfd_get_8 (input_bfd, op + 6) == 0xF1); |
| gotreg = (bfd_get_8 (input_bfd, op + 7) & 0x0c) >> 2; |
| /* Call. */ |
| BFD_ASSERT (bfd_get_8 (input_bfd, op + 8) == 0xDD); |
| } |
| |
| switch (TLS_PAIR (r_type, tls_r_type)) |
| { |
| case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_GOTIE): |
| { |
| /* Keep track of which register we put GOTptr in. */ |
| /* mov (_x@indntpoff,a2),a0. */ |
| memcpy (op, "\xFC\x20\x00\x00\x00\x00", 6); |
| op[1] |= gotreg; |
| /* add e2,a0. */ |
| memcpy (op+6, "\xF9\x78\x28", 3); |
| /* or 0x00000000, d0 - six byte nop. */ |
| memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6); |
| } |
| return 7; |
| |
| case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_LE): |
| { |
| /* Register is *always* a0. */ |
| /* mov _x@tpoff,a0. */ |
| memcpy (op, "\xFC\xDC\x00\x00\x00\x00", 6); |
| /* add e2,a0. */ |
| memcpy (op+6, "\xF9\x78\x28", 3); |
| /* or 0x00000000, d0 - six byte nop. */ |
| memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6); |
| } |
| return 7; |
| case TLS_PAIR (R_MN10300_TLS_LD, R_MN10300_NONE): |
| { |
| /* Register is *always* a0. */ |
| /* mov e2,a0. */ |
| memcpy (op, "\xF5\x88", 2); |
| /* or 0x00000000, d0 - six byte nop. */ |
| memcpy (op+2, "\xFC\xE4\x00\x00\x00\x00", 6); |
| /* or 0x00000000, e2 - seven byte nop. */ |
| memcpy (op+8, "\xFE\x19\x22\x00\x00\x00\x00", 7); |
| } |
| return 7; |
| |
| case TLS_PAIR (R_MN10300_TLS_LDO, R_MN10300_TLS_LE): |
| /* No changes needed, just the reloc change. */ |
| return 0; |
| |
| /* These are a little tricky, because we have to detect which |
| opcode is being used (they're different sizes, with the reloc |
| at different offsets within the opcode) and convert each |
| accordingly, copying the operands as needed. The conversions |
| we do are as follows (IE,GOTIE,LE): |
| |
| 1111 1100 1010 01Dn [-- abs32 --] MOV (x@indntpoff),Dn |
| 1111 1100 0000 DnAm [-- abs32 --] MOV (x@gotntpoff,Am),Dn |
| 1111 1100 1100 11Dn [-- abs32 --] MOV x@tpoff,Dn |
| |
| 1111 1100 1010 00An [-- abs32 --] MOV (x@indntpoff),An |
| 1111 1100 0010 AnAm [-- abs32 --] MOV (x@gotntpoff,Am),An |
| 1111 1100 1101 11An [-- abs32 --] MOV x@tpoff,An |
| |
| 1111 1110 0000 1110 Rnnn Xxxx [-- abs32 --] MOV (x@indntpoff),Rn |
| 1111 1110 0000 1010 Rnnn Rmmm [-- abs32 --] MOV (x@indntpoff,Rm),Rn |
| 1111 1110 0000 1000 Rnnn Xxxx [-- abs32 --] MOV x@tpoff,Rn |
| |
| Since the GOT pointer is always $a2, we assume the last |
| normally won't happen, but let's be paranoid and plan for the |
| day that GCC optimizes it somewhow. */ |
| |
| case TLS_PAIR (R_MN10300_TLS_IE, R_MN10300_TLS_LE): |
| if (op[-2] == 0xFC) |
| { |
| op -= 2; |
| if ((op[1] & 0xFC) == 0xA4) /* Dn */ |
| { |
| op[1] &= 0x03; /* Leaves Dn. */ |
| op[1] |= 0xCC; |
| } |
| else /* An */ |
| { |
| op[1] &= 0x03; /* Leaves An. */ |
| op[1] |= 0xDC; |
| } |
| } |
| else if (op[-3] == 0xFE) |
| op[-2] = 0x08; |
| else |
| abort (); |
| break; |
| |
| case TLS_PAIR (R_MN10300_TLS_GOTIE, R_MN10300_TLS_LE): |
| if (op[-2] == 0xFC) |
| { |
| op -= 2; |
| if ((op[1] & 0xF0) == 0x00) /* Dn */ |
| { |
| op[1] &= 0x0C; /* Leaves Dn. */ |
| op[1] >>= 2; |
| op[1] |= 0xCC; |
| } |
| else /* An */ |
| { |
| op[1] &= 0x0C; /* Leaves An. */ |
| op[1] >>= 2; |
| op[1] |= 0xDC; |
| } |
| } |
| else if (op[-3] == 0xFE) |
| op[-2] = 0x08; |
| else |
| abort (); |
| break; |
| |
| default: |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: unsupported transition from %s to %s"), |
| input_bfd, |
| elf_mn10300_howto_table[r_type].name, |
| elf_mn10300_howto_table[tls_r_type].name); |
| break; |
| } |
| #undef TLS_PAIR |
| return 0; |
| } |
| |
| /* Look through the relocs for a section during the first phase. |
| Since we don't do .gots or .plts, we just need to consider the |
| virtual table relocs for gc. */ |
| |
| static bool |
| mn10300_elf_check_relocs (bfd *abfd, |
| struct bfd_link_info *info, |
| asection *sec, |
| const Elf_Internal_Rela *relocs) |
| { |
| struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info); |
| bool sym_diff_reloc_seen; |
| Elf_Internal_Shdr *symtab_hdr; |
| Elf_Internal_Sym * isymbuf = NULL; |
| struct elf_link_hash_entry **sym_hashes; |
| const Elf_Internal_Rela *rel; |
| const Elf_Internal_Rela *rel_end; |
| bfd * dynobj; |
| bfd_vma * local_got_offsets; |
| asection * sgot; |
| asection * srelgot; |
| asection * sreloc; |
| bool result = false; |
| |
| sgot = NULL; |
| srelgot = NULL; |
| sreloc = NULL; |
| |
| if (bfd_link_relocatable (info)) |
| return true; |
| |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| sym_hashes = elf_sym_hashes (abfd); |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| local_got_offsets = elf_local_got_offsets (abfd); |
| rel_end = relocs + sec->reloc_count; |
| sym_diff_reloc_seen = false; |
| |
| for (rel = relocs; rel < rel_end; rel++) |
| { |
| struct elf_link_hash_entry *h; |
| unsigned long r_symndx; |
| unsigned int r_type; |
| int tls_type = GOT_NORMAL; |
| |
| r_symndx = ELF32_R_SYM (rel->r_info); |
| if (r_symndx < symtab_hdr->sh_info) |
| h = NULL; |
| else |
| { |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| |
| r_type = ELF32_R_TYPE (rel->r_info); |
| r_type = elf_mn10300_tls_transition (info, r_type, h, sec, true); |
| |
| /* Some relocs require a global offset table. */ |
| if (dynobj == NULL) |
| { |
| switch (r_type) |
| { |
| case R_MN10300_GOT32: |
| case R_MN10300_GOT24: |
| case R_MN10300_GOT16: |
| case R_MN10300_GOTOFF32: |
| case R_MN10300_GOTOFF24: |
| case R_MN10300_GOTOFF16: |
| case R_MN10300_GOTPC32: |
| case R_MN10300_GOTPC16: |
| case R_MN10300_TLS_GD: |
| case R_MN10300_TLS_LD: |
| case R_MN10300_TLS_GOTIE: |
| case R_MN10300_TLS_IE: |
| elf_hash_table (info)->dynobj = dynobj = abfd; |
| if (! _bfd_mn10300_elf_create_got_section (dynobj, info)) |
| goto fail; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| switch (r_type) |
| { |
| /* This relocation describes the C++ object vtable hierarchy. |
| Reconstruct it for later use during GC. */ |
| case R_MN10300_GNU_VTINHERIT: |
| if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| goto fail; |
| break; |
| |
| /* This relocation describes which C++ vtable entries are actually |
| used. Record for later use during GC. */ |
| case R_MN10300_GNU_VTENTRY: |
| if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
| goto fail; |
| break; |
| |
| case R_MN10300_TLS_LD: |
| htab->tls_ldm_got.refcount ++; |
| tls_type = GOT_TLS_LD; |
| |
| if (htab->tls_ldm_got.got_allocated) |
| break; |
| goto create_got; |
| |
| case R_MN10300_TLS_IE: |
| case R_MN10300_TLS_GOTIE: |
| if (bfd_link_pic (info)) |
| info->flags |= DF_STATIC_TLS; |
| /* Fall through */ |
| |
| case R_MN10300_TLS_GD: |
| case R_MN10300_GOT32: |
| case R_MN10300_GOT24: |
| case R_MN10300_GOT16: |
| create_got: |
| /* This symbol requires a global offset table entry. */ |
| |
| switch (r_type) |
| { |
| case R_MN10300_TLS_IE: |
| case R_MN10300_TLS_GOTIE: tls_type = GOT_TLS_IE; break; |
| case R_MN10300_TLS_GD: tls_type = GOT_TLS_GD; break; |
| default: tls_type = GOT_NORMAL; break; |
| } |
| |
| sgot = htab->root.sgot; |
| srelgot = htab->root.srelgot; |
| BFD_ASSERT (sgot != NULL && srelgot != NULL); |
| |
| if (r_type == R_MN10300_TLS_LD) |
| { |
| htab->tls_ldm_got.offset = sgot->size; |
| htab->tls_ldm_got.got_allocated ++; |
| } |
| else if (h != NULL) |
| { |
| if (elf_mn10300_hash_entry (h)->tls_type != tls_type |
| && elf_mn10300_hash_entry (h)->tls_type != GOT_UNKNOWN) |
| { |
| if (tls_type == GOT_TLS_IE |
| && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_GD) |
| /* No change - this is ok. */; |
| else if (tls_type == GOT_TLS_GD |
| && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE) |
| /* Transition GD->IE. */ |
| tls_type = GOT_TLS_IE; |
| else |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: %s' accessed both as normal and thread local symbol"), |
| abfd, h ? h->root.root.string : "<local>"); |
| } |
| |
| elf_mn10300_hash_entry (h)->tls_type = tls_type; |
| |
| if (h->got.offset != (bfd_vma) -1) |
| /* We have already allocated space in the .got. */ |
| break; |
| |
| h->got.offset = sgot->size; |
| |
| if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL |
| /* Make sure this symbol is output as a dynamic symbol. */ |
| && h->dynindx == -1) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| goto fail; |
| } |
| |
| srelgot->size += sizeof (Elf32_External_Rela); |
| if (r_type == R_MN10300_TLS_GD) |
| srelgot->size += sizeof (Elf32_External_Rela); |
| } |
| else |
| { |
| /* This is a global offset table entry for a local |
| symbol. */ |
| if (local_got_offsets == NULL) |
| { |
| size_t size; |
| unsigned int i; |
| |
| size = symtab_hdr->sh_info * (sizeof (bfd_vma) + sizeof (char)); |
| local_got_offsets = bfd_alloc (abfd, size); |
| |
| if (local_got_offsets == NULL) |
| goto fail; |
| |
| elf_local_got_offsets (abfd) = local_got_offsets; |
| elf_mn10300_local_got_tls_type (abfd) |
| = (char *) (local_got_offsets + symtab_hdr->sh_info); |
| |
| for (i = 0; i < symtab_hdr->sh_info; i++) |
| local_got_offsets[i] = (bfd_vma) -1; |
| } |
| |
| if (local_got_offsets[r_symndx] != (bfd_vma) -1) |
| /* We have already allocated space in the .got. */ |
| break; |
| |
| local_got_offsets[r_symndx] = sgot->size; |
| |
| if (bfd_link_pic (info)) |
| { |
| /* If we are generating a shared object, we need to |
| output a R_MN10300_RELATIVE reloc so that the dynamic |
| linker can adjust this GOT entry. */ |
| srelgot->size += sizeof (Elf32_External_Rela); |
| |
| if (r_type == R_MN10300_TLS_GD) |
| /* And a R_MN10300_TLS_DTPOFF reloc as well. */ |
| srelgot->size += sizeof (Elf32_External_Rela); |
| } |
| |
| elf_mn10300_local_got_tls_type (abfd) [r_symndx] = tls_type; |
| } |
| |
| sgot->size += 4; |
| if (r_type == R_MN10300_TLS_GD |
| || r_type == R_MN10300_TLS_LD) |
| sgot->size += 4; |
| |
| goto need_shared_relocs; |
| |
| case R_MN10300_PLT32: |
| case R_MN10300_PLT16: |
| /* This symbol requires a procedure linkage table entry. We |
| actually build the entry in adjust_dynamic_symbol, |
| because this might be a case of linking PIC code which is |
| never referenced by a dynamic object, in which case we |
| don't need to generate a procedure linkage table entry |
| after all. */ |
| |
| /* If this is a local symbol, we resolve it directly without |
| creating a procedure linkage table entry. */ |
| if (h == NULL) |
| continue; |
| |
| if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL |
| || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) |
| break; |
| |
| h->needs_plt = 1; |
| break; |
| |
| case R_MN10300_24: |
| case R_MN10300_16: |
| case R_MN10300_8: |
| case R_MN10300_PCREL32: |
| case R_MN10300_PCREL16: |
| case R_MN10300_PCREL8: |
| if (h != NULL) |
| h->non_got_ref = 1; |
| break; |
| |
| case R_MN10300_SYM_DIFF: |
| sym_diff_reloc_seen = true; |
| break; |
| |
| case R_MN10300_32: |
| if (h != NULL) |
| h->non_got_ref = 1; |
| |
| need_shared_relocs: |
| /* If we are creating a shared library, then we |
| need to copy the reloc into the shared library. */ |
| if (bfd_link_pic (info) |
| && (sec->flags & SEC_ALLOC) != 0 |
| /* Do not generate a dynamic reloc for a |
| reloc associated with a SYM_DIFF operation. */ |
| && ! sym_diff_reloc_seen) |
| { |
| asection * sym_section = NULL; |
| |
| /* Find the section containing the |
| symbol involved in the relocation. */ |
| if (h == NULL) |
| { |
| Elf_Internal_Sym * isym; |
| |
| if (isymbuf == NULL) |
| isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, |
| symtab_hdr->sh_info, 0, |
| NULL, NULL, NULL); |
| if (isymbuf) |
| { |
| isym = isymbuf + r_symndx; |
| /* All we care about is whether this local symbol is absolute. */ |
| if (isym->st_shndx == SHN_ABS) |
| sym_section = bfd_abs_section_ptr; |
| } |
| } |
| else |
| { |
| if (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| sym_section = h->root.u.def.section; |
| } |
| |
| /* If the symbol is absolute then the relocation can |
| be resolved during linking and there is no need for |
| a dynamic reloc. */ |
| if (sym_section != bfd_abs_section_ptr) |
| { |
| /* When creating a shared object, we must copy these |
| reloc types into the output file. We create a reloc |
| section in dynobj and make room for this reloc. */ |
| if (sreloc == NULL) |
| { |
| sreloc = _bfd_elf_make_dynamic_reloc_section |
| (sec, dynobj, 2, abfd, /*rela?*/ true); |
| if (sreloc == NULL) |
| goto fail; |
| } |
| |
| sreloc->size += sizeof (Elf32_External_Rela); |
| } |
| } |
| |
| break; |
| } |
| |
| if (ELF32_R_TYPE (rel->r_info) != R_MN10300_SYM_DIFF) |
| sym_diff_reloc_seen = false; |
| } |
| |
| result = true; |
| fail: |
| if (symtab_hdr->contents != (unsigned char *) isymbuf) |
| free (isymbuf); |
| |
| return result; |
| } |
| |
| /* Return the section that should be marked against GC for a given |
| relocation. */ |
| |
| static asection * |
| mn10300_elf_gc_mark_hook (asection *sec, |
| struct bfd_link_info *info, |
| Elf_Internal_Rela *rel, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| if (h != NULL) |
| switch (ELF32_R_TYPE (rel->r_info)) |
| { |
| case R_MN10300_GNU_VTINHERIT: |
| case R_MN10300_GNU_VTENTRY: |
| return NULL; |
| } |
| |
| return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
| } |
| |
| /* Perform a relocation as part of a final link. */ |
| |
| static bfd_reloc_status_type |
| mn10300_elf_final_link_relocate (reloc_howto_type *howto, |
| bfd *input_bfd, |
| bfd *output_bfd ATTRIBUTE_UNUSED, |
| asection *input_section, |
| bfd_byte *contents, |
| bfd_vma offset, |
| bfd_vma value, |
| bfd_vma addend, |
| struct elf_link_hash_entry * h, |
| unsigned long symndx, |
| struct bfd_link_info *info, |
| asection *sym_sec ATTRIBUTE_UNUSED, |
| int is_local ATTRIBUTE_UNUSED) |
| { |
| struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info); |
| static asection * sym_diff_section; |
| static bfd_vma sym_diff_value; |
| bool is_sym_diff_reloc; |
| unsigned long r_type = howto->type; |
| bfd_byte * hit_data = contents + offset; |
| bfd * dynobj; |
| asection * sgot; |
| asection * splt; |
| asection * sreloc; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| sgot = NULL; |
| splt = NULL; |
| sreloc = NULL; |
| |
| switch (r_type) |
| { |
| case R_MN10300_24: |
| case R_MN10300_16: |
| case R_MN10300_8: |
| case R_MN10300_PCREL8: |
| case R_MN10300_PCREL16: |
| case R_MN10300_PCREL32: |
| case R_MN10300_GOTOFF32: |
| case R_MN10300_GOTOFF24: |
| case R_MN10300_GOTOFF16: |
| if (bfd_link_pic (info) |
| && (input_section->flags & SEC_ALLOC) != 0 |
| && h != NULL |
| && ! SYMBOL_REFERENCES_LOCAL (info, h)) |
| return bfd_reloc_dangerous; |
| /* Fall through. */ |
| case R_MN10300_GOT32: |
| /* Issue 2052223: |
| Taking the address of a protected function in a shared library |
| is illegal. Issue an error message here. */ |
| if (bfd_link_pic (info) |
| && (input_section->flags & SEC_ALLOC) != 0 |
| && h != NULL |
| && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED |
| && (h->type == STT_FUNC || h->type == STT_GNU_IFUNC) |
| && ! SYMBOL_REFERENCES_LOCAL (info, h)) |
| return bfd_reloc_dangerous; |
| } |
| |
| is_sym_diff_reloc = false; |
| if (sym_diff_section != NULL) |
| { |
| BFD_ASSERT (sym_diff_section == input_section); |
| |
| switch (r_type) |
| { |
| case R_MN10300_32: |
| case R_MN10300_24: |
| case R_MN10300_16: |
| case R_MN10300_8: |
| value -= sym_diff_value; |
| /* If we are computing a 32-bit value for the location lists |
| and the result is 0 then we add one to the value. A zero |
| value can result because of linker relaxation deleteing |
| prologue instructions and using a value of 1 (for the begin |
| and end offsets in the location list entry) results in a |
| nul entry which does not prevent the following entries from |
| being parsed. */ |
| if (r_type == R_MN10300_32 |
| && value == 0 |
| && strcmp (input_section->name, ".debug_loc") == 0) |
| value = 1; |
| sym_diff_section = NULL; |
| is_sym_diff_reloc = true; |
| break; |
| |
| default: |
| sym_diff_section = NULL; |
| break; |
| } |
| } |
| |
| switch (r_type) |
| { |
| case R_MN10300_SYM_DIFF: |
| BFD_ASSERT (addend == 0); |
| /* Cache the input section and value. |
| The offset is unreliable, since relaxation may |
| have reduced the following reloc's offset. */ |
| sym_diff_section = input_section; |
| sym_diff_value = value; |
| return bfd_reloc_ok; |
| |
| case R_MN10300_ALIGN: |
| case R_MN10300_NONE: |
| return bfd_reloc_ok; |
| |
| case R_MN10300_32: |
| if (bfd_link_pic (info) |
| /* Do not generate relocs when an R_MN10300_32 has been used |
| with an R_MN10300_SYM_DIFF to compute a difference of two |
| symbols. */ |
| && !is_sym_diff_reloc |
| /* Also, do not generate a reloc when the symbol associated |
| with the R_MN10300_32 reloc is absolute - there is no |
| need for a run time computation in this case. */ |
| && sym_sec != bfd_abs_section_ptr |
| /* If the section is not going to be allocated at load time |
| then there is no need to generate relocs for it. */ |
| && (input_section->flags & SEC_ALLOC) != 0) |
| { |
| Elf_Internal_Rela outrel; |
| bool skip, relocate; |
| |
| /* When generating a shared object, these relocations are |
| copied into the output file to be resolved at run |
| time. */ |
| if (sreloc == NULL) |
| { |
| sreloc = _bfd_elf_get_dynamic_reloc_section |
| (input_bfd, input_section, /*rela?*/ true); |
| if (sreloc == NULL) |
| return false; |
| } |
| |
| skip = false; |
| |
| outrel.r_offset = _bfd_elf_section_offset (input_bfd, info, |
| input_section, offset); |
| if (outrel.r_offset == (bfd_vma) -1) |
| skip = true; |
| |
| outrel.r_offset += (input_section->output_section->vma |
| + input_section->output_offset); |
| |
| if (skip) |
| { |
| memset (&outrel, 0, sizeof outrel); |
| relocate = false; |
| } |
| else |
| { |
| /* h->dynindx may be -1 if this symbol was marked to |
| become local. */ |
| if (h == NULL |
| || SYMBOL_REFERENCES_LOCAL (info, h)) |
| { |
| relocate = true; |
| outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE); |
| outrel.r_addend = value + addend; |
| } |
| else |
| { |
| BFD_ASSERT (h->dynindx != -1); |
| relocate = false; |
| outrel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_32); |
| outrel.r_addend = value + addend; |
| } |
| } |
| |
| bfd_elf32_swap_reloca_out (output_bfd, &outrel, |
| (bfd_byte *) (((Elf32_External_Rela *) sreloc->contents) |
| + sreloc->reloc_count)); |
| ++sreloc->reloc_count; |
| |
| /* If this reloc is against an external symbol, we do |
| not want to fiddle with the addend. Otherwise, we |
| need to include the symbol value so that it becomes |
| an addend for the dynamic reloc. */ |
| if (! relocate) |
| return bfd_reloc_ok; |
| } |
| value += addend; |
| bfd_put_32 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_24: |
| value += addend; |
| |
| if ((long) value > 0x7fffff || (long) value < -0x800000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_8 (input_bfd, value & 0xff, hit_data); |
| bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1); |
| bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_16: |
| value += addend; |
| |
| if ((long) value > 0x7fff || (long) value < -0x8000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_16 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_8: |
| value += addend; |
| |
| if ((long) value > 0x7f || (long) value < -0x80) |
| return bfd_reloc_overflow; |
| |
| bfd_put_8 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_PCREL8: |
| value -= (input_section->output_section->vma |
| + input_section->output_offset); |
| value -= offset; |
| value += addend; |
| |
| if ((long) value > 0x7f || (long) value < -0x80) |
| return bfd_reloc_overflow; |
| |
| bfd_put_8 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_PCREL16: |
| value -= (input_section->output_section->vma |
| + input_section->output_offset); |
| value -= offset; |
| value += addend; |
| |
| if ((long) value > 0x7fff || (long) value < -0x8000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_16 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_PCREL32: |
| value -= (input_section->output_section->vma |
| + input_section->output_offset); |
| value -= offset; |
| value += addend; |
| |
| bfd_put_32 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_GNU_VTINHERIT: |
| case R_MN10300_GNU_VTENTRY: |
| return bfd_reloc_ok; |
| |
| case R_MN10300_GOTPC32: |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| /* Use global offset table as symbol value. */ |
| value = htab->root.sgot->output_section->vma; |
| value -= (input_section->output_section->vma |
| + input_section->output_offset); |
| value -= offset; |
| value += addend; |
| |
| bfd_put_32 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_GOTPC16: |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| /* Use global offset table as symbol value. */ |
| value = htab->root.sgot->output_section->vma; |
| value -= (input_section->output_section->vma |
| + input_section->output_offset); |
| value -= offset; |
| value += addend; |
| |
| if ((long) value > 0x7fff || (long) value < -0x8000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_16 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_GOTOFF32: |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| value -= htab->root.sgot->output_section->vma; |
| value += addend; |
| |
| bfd_put_32 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_GOTOFF24: |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| value -= htab->root.sgot->output_section->vma; |
| value += addend; |
| |
| if ((long) value > 0x7fffff || (long) value < -0x800000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_8 (input_bfd, value, hit_data); |
| bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1); |
| bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_GOTOFF16: |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| value -= htab->root.sgot->output_section->vma; |
| value += addend; |
| |
| if ((long) value > 0x7fff || (long) value < -0x8000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_16 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_PLT32: |
| if (h != NULL |
| && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL |
| && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN |
| && h->plt.offset != (bfd_vma) -1) |
| { |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| splt = htab->root.splt; |
| value = (splt->output_section->vma |
| + splt->output_offset |
| + h->plt.offset) - value; |
| } |
| |
| value -= (input_section->output_section->vma |
| + input_section->output_offset); |
| value -= offset; |
| value += addend; |
| |
| bfd_put_32 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_PLT16: |
| if (h != NULL |
| && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL |
| && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN |
| && h->plt.offset != (bfd_vma) -1) |
| { |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| splt = htab->root.splt; |
| value = (splt->output_section->vma |
| + splt->output_offset |
| + h->plt.offset) - value; |
| } |
| |
| value -= (input_section->output_section->vma |
| + input_section->output_offset); |
| value -= offset; |
| value += addend; |
| |
| if ((long) value > 0x7fff || (long) value < -0x8000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_16 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_TLS_LDO: |
| value = dtpoff (info, value); |
| bfd_put_32 (input_bfd, value + addend, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_TLS_LE: |
| value = tpoff (info, value); |
| bfd_put_32 (input_bfd, value + addend, hit_data); |
| return bfd_reloc_ok; |
| |
| case R_MN10300_TLS_LD: |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| sgot = htab->root.sgot; |
| BFD_ASSERT (sgot != NULL); |
| value = htab->tls_ldm_got.offset + sgot->output_offset; |
| bfd_put_32 (input_bfd, value, hit_data); |
| |
| if (!htab->tls_ldm_got.rel_emitted) |
| { |
| asection *srelgot = htab->root.srelgot; |
| Elf_Internal_Rela rel; |
| |
| BFD_ASSERT (srelgot != NULL); |
| htab->tls_ldm_got.rel_emitted ++; |
| rel.r_offset = (sgot->output_section->vma |
| + sgot->output_offset |
| + htab->tls_ldm_got.offset); |
| bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset); |
| bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset+4); |
| rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD); |
| rel.r_addend = 0; |
| bfd_elf32_swap_reloca_out (output_bfd, & rel, |
| (bfd_byte *) ((Elf32_External_Rela *) srelgot->contents |
| + srelgot->reloc_count)); |
| ++ srelgot->reloc_count; |
| } |
| |
| return bfd_reloc_ok; |
| |
| case R_MN10300_TLS_GOTIE: |
| value = tpoff (info, value); |
| /* Fall Through. */ |
| |
| case R_MN10300_TLS_GD: |
| case R_MN10300_TLS_IE: |
| case R_MN10300_GOT32: |
| case R_MN10300_GOT24: |
| case R_MN10300_GOT16: |
| if (dynobj == NULL) |
| return bfd_reloc_dangerous; |
| |
| sgot = htab->root.sgot; |
| if (r_type == R_MN10300_TLS_GD) |
| value = dtpoff (info, value); |
| |
| if (h != NULL) |
| { |
| bfd_vma off; |
| |
| off = h->got.offset; |
| /* Offsets in the GOT are allocated in check_relocs |
| which is not called for shared libraries... */ |
| if (off == (bfd_vma) -1) |
| off = 0; |
| |
| if (sgot->contents != NULL |
| && (! elf_hash_table (info)->dynamic_sections_created |
| || SYMBOL_REFERENCES_LOCAL (info, h))) |
| /* This is actually a static link, or it is a |
| -Bsymbolic link and the symbol is defined |
| locally, or the symbol was forced to be local |
| because of a version file. We must initialize |
| this entry in the global offset table. |
| |
| When doing a dynamic link, we create a .rela.got |
| relocation entry to initialize the value. This |
| is done in the finish_dynamic_symbol routine. */ |
| bfd_put_32 (output_bfd, value, |
| sgot->contents + off); |
| |
| value = sgot->output_offset + off; |
| } |
| else |
| { |
| bfd_vma off; |
| |
| off = elf_local_got_offsets (input_bfd)[symndx]; |
| |
| if (off & 1) |
| bfd_put_32 (output_bfd, value, sgot->contents + (off & ~ 1)); |
| else |
| { |
| bfd_put_32 (output_bfd, value, sgot->contents + off); |
| |
| if (bfd_link_pic (info)) |
| { |
| asection *srelgot = htab->root.srelgot;; |
| Elf_Internal_Rela outrel; |
| |
| BFD_ASSERT (srelgot != NULL); |
| |
| outrel.r_offset = (sgot->output_section->vma |
| + sgot->output_offset |
| + off); |
| switch (r_type) |
| { |
| case R_MN10300_TLS_GD: |
| outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPOFF); |
| outrel.r_offset = (sgot->output_section->vma |
| + sgot->output_offset |
| + off + 4); |
| bfd_elf32_swap_reloca_out (output_bfd, & outrel, |
| (bfd_byte *) (((Elf32_External_Rela *) |
| srelgot->contents) |
| + srelgot->reloc_count)); |
| ++ srelgot->reloc_count; |
| outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD); |
| break; |
| case R_MN10300_TLS_GOTIE: |
| case R_MN10300_TLS_IE: |
| outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF); |
| break; |
| default: |
| outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE); |
| break; |
| } |
| |
| outrel.r_addend = value; |
| bfd_elf32_swap_reloca_out (output_bfd, &outrel, |
| (bfd_byte *) (((Elf32_External_Rela *) |
| srelgot->contents) |
| + srelgot->reloc_count)); |
| ++ srelgot->reloc_count; |
| elf_local_got_offsets (input_bfd)[symndx] |= 1; |
| } |
| |
| value = sgot->output_offset + (off & ~(bfd_vma) 1); |
| } |
| } |
| |
| value += addend; |
| |
| if (r_type == R_MN10300_TLS_IE) |
| { |
| value += sgot->output_section->vma; |
| bfd_put_32 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| } |
| else if (r_type == R_MN10300_TLS_GOTIE |
| || r_type == R_MN10300_TLS_GD |
| || r_type == R_MN10300_TLS_LD) |
| { |
| bfd_put_32 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| } |
| else if (r_type == R_MN10300_GOT32) |
| { |
| bfd_put_32 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| } |
| else if (r_type == R_MN10300_GOT24) |
| { |
| if ((long) value > 0x7fffff || (long) value < -0x800000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_8 (input_bfd, value & 0xff, hit_data); |
| bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1); |
| bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2); |
| return bfd_reloc_ok; |
| } |
| else if (r_type == R_MN10300_GOT16) |
| { |
| if ((long) value > 0x7fff || (long) value < -0x8000) |
| return bfd_reloc_overflow; |
| |
| bfd_put_16 (input_bfd, value, hit_data); |
| return bfd_reloc_ok; |
| } |
| /* Fall through. */ |
| |
| default: |
| return bfd_reloc_notsupported; |
| } |
| } |
| |
| /* Relocate an MN10300 ELF section. */ |
| |
| static int |
| mn10300_elf_relocate_section (bfd *output_bfd, |
| struct bfd_link_info *info, |
| bfd *input_bfd, |
| asection *input_section, |
| bfd_byte *contents, |
| Elf_Internal_Rela *relocs, |
| Elf_Internal_Sym *local_syms, |
| asection **local_sections) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| Elf_Internal_Rela *rel, *relend; |
| Elf_Internal_Rela * trel; |
| |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| sym_hashes = elf_sym_hashes (input_bfd); |
| |
| rel = relocs; |
| relend = relocs + input_section->reloc_count; |
| for (; rel < relend; rel++) |
| { |
| int r_type; |
| reloc_howto_type *howto; |
| unsigned long r_symndx; |
| Elf_Internal_Sym *sym; |
| asection *sec; |
| struct elf32_mn10300_link_hash_entry *h; |
| bfd_vma relocation; |
| bfd_reloc_status_type r; |
| int tls_r_type; |
| bool unresolved_reloc = false; |
| bool warned, ignored; |
| struct elf_link_hash_entry * hh; |
| |
| relocation = 0; |
| r_symndx = ELF32_R_SYM (rel->r_info); |
| r_type = ELF32_R_TYPE (rel->r_info); |
| howto = elf_mn10300_howto_table + r_type; |
| |
| /* Just skip the vtable gc relocs. */ |
| if (r_type == R_MN10300_GNU_VTINHERIT |
| || r_type == R_MN10300_GNU_VTENTRY) |
| continue; |
| |
| h = NULL; |
| sym = NULL; |
| sec = NULL; |
| if (r_symndx < symtab_hdr->sh_info) |
| hh = NULL; |
| else |
| { |
| RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
| r_symndx, symtab_hdr, sym_hashes, |
| hh, sec, relocation, |
| unresolved_reloc, warned, ignored); |
| } |
| h = elf_mn10300_hash_entry (hh); |
| |
| tls_r_type = elf_mn10300_tls_transition (info, r_type, hh, input_section, 0); |
| if (tls_r_type != r_type) |
| { |
| bool had_plt; |
| |
| had_plt = mn10300_do_tls_transition (input_bfd, r_type, tls_r_type, |
| contents, rel->r_offset); |
| r_type = tls_r_type; |
| howto = elf_mn10300_howto_table + r_type; |
| |
| if (had_plt) |
| for (trel = rel+1; trel < relend; trel++) |
| if ((ELF32_R_TYPE (trel->r_info) == R_MN10300_PLT32 |
| || ELF32_R_TYPE (trel->r_info) == R_MN10300_PCREL32) |
| && rel->r_offset + had_plt == trel->r_offset) |
| trel->r_info = ELF32_R_INFO (0, R_MN10300_NONE); |
| } |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| sym = local_syms + r_symndx; |
| sec = local_sections[r_symndx]; |
| relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
| } |
| else |
| { |
| if ((h->root.root.type == bfd_link_hash_defined |
| || h->root.root.type == bfd_link_hash_defweak) |
| && ( r_type == R_MN10300_GOTPC32 |
| || r_type == R_MN10300_GOTPC16 |
| || (( r_type == R_MN10300_PLT32 |
| || r_type == R_MN10300_PLT16) |
| && ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL |
| && ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN |
| && h->root.plt.offset != (bfd_vma) -1) |
| || (( r_type == R_MN10300_GOT32 |
| || r_type == R_MN10300_GOT24 |
| || r_type == R_MN10300_TLS_GD |
| || r_type == R_MN10300_TLS_LD |
| || r_type == R_MN10300_TLS_GOTIE |
| || r_type == R_MN10300_TLS_IE |
| || r_type == R_MN10300_GOT16) |
| && elf_hash_table (info)->dynamic_sections_created |
| && !SYMBOL_REFERENCES_LOCAL (info, hh)) |
| || (r_type == R_MN10300_32 |
| && !SYMBOL_REFERENCES_LOCAL (info, hh) |
| /* _32 relocs in executables force _COPY relocs, |
| such that the address of the symbol ends up |
| being local. */ |
| && (((input_section->flags & SEC_ALLOC) != 0 |
| && !bfd_link_executable (info)) |
| /* DWARF will emit R_MN10300_32 relocations |
| in its sections against symbols defined |
| externally in shared libraries. We can't |
| do anything with them here. */ |
| || ((input_section->flags & SEC_DEBUGGING) != 0 |
| && h->root.def_dynamic))))) |
| /* In these cases, we don't need the relocation |
| value. We check specially because in some |
| obscure cases sec->output_section will be NULL. */ |
| relocation = 0; |
| |
| else if (!bfd_link_relocatable (info) && unresolved_reloc |
| && _bfd_elf_section_offset (output_bfd, info, input_section, |
| rel->r_offset) != (bfd_vma) -1) |
| |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA+%#" PRIx64 "): " |
| "unresolvable %s relocation against symbol `%s'"), |
| input_bfd, |
| input_section, |
| (uint64_t) rel->r_offset, |
| howto->name, |
| h->root.root.root.string); |
| } |
| |
| if (sec != NULL && discarded_section (sec)) |
| RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
| rel, 1, relend, howto, 0, contents); |
| |
| if (bfd_link_relocatable (info)) |
| continue; |
| |
| r = mn10300_elf_final_link_relocate (howto, input_bfd, output_bfd, |
| input_section, |
| contents, rel->r_offset, |
| relocation, rel->r_addend, |
| (struct elf_link_hash_entry *) h, |
| r_symndx, |
| info, sec, h == NULL); |
| |
| if (r != bfd_reloc_ok) |
| { |
| const char *name; |
| const char *msg = NULL; |
| |
| if (h != NULL) |
| name = h->root.root.root.string; |
| else |
| { |
| name = (bfd_elf_string_from_elf_section |
| (input_bfd, symtab_hdr->sh_link, sym->st_name)); |
| if (name == NULL || *name == '\0') |
| name = bfd_section_name (sec); |
| } |
| |
| switch (r) |
| { |
| case bfd_reloc_overflow: |
| (*info->callbacks->reloc_overflow) |
| (info, (h ? &h->root.root : NULL), name, howto->name, |
| (bfd_vma) 0, input_bfd, input_section, rel->r_offset); |
| break; |
| |
| case bfd_reloc_undefined: |
| (*info->callbacks->undefined_symbol) |
| (info, name, input_bfd, input_section, rel->r_offset, true); |
| break; |
| |
| case bfd_reloc_outofrange: |
| msg = _("internal error: out of range error"); |
| goto common_error; |
| |
| case bfd_reloc_notsupported: |
| msg = _("internal error: unsupported relocation error"); |
| goto common_error; |
| |
| case bfd_reloc_dangerous: |
| if (r_type == R_MN10300_PCREL32) |
| msg = _("error: inappropriate relocation type for shared" |
| " library (did you forget -fpic?)"); |
| else if (r_type == R_MN10300_GOT32) |
| /* xgettext:c-format */ |
| msg = _("%pB: taking the address of protected function" |
| " '%s' cannot be done when making a shared library"); |
| else |
| msg = _("internal error: suspicious relocation type used" |
| " in shared library"); |
| goto common_error; |
| |
| default: |
| msg = _("internal error: unknown error"); |
| /* Fall through. */ |
| |
| common_error: |
| _bfd_error_handler (msg, input_bfd, name); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Finish initializing one hash table entry. */ |
| |
| static bool |
| elf32_mn10300_finish_hash_table_entry (struct bfd_hash_entry *gen_entry, |
| void * in_args) |
| { |
| struct elf32_mn10300_link_hash_entry *entry; |
| struct bfd_link_info *link_info = (struct bfd_link_info *) in_args; |
| unsigned int byte_count = 0; |
| |
| entry = (struct elf32_mn10300_link_hash_entry *) gen_entry; |
| |
| /* If we already know we want to convert "call" to "calls" for calls |
| to this symbol, then return now. */ |
| if (entry->flags == MN10300_CONVERT_CALL_TO_CALLS) |
| return true; |
| |
| /* If there are no named calls to this symbol, or there's nothing we |
| can move from the function itself into the "call" instruction, |
| then note that all "call" instructions should be converted into |
| "calls" instructions and return. If a symbol is available for |
| dynamic symbol resolution (overridable or overriding), avoid |
| custom calling conventions. */ |
| if (entry->direct_calls == 0 |
| || (entry->stack_size == 0 && entry->movm_args == 0) |
| || (elf_hash_table (link_info)->dynamic_sections_created |
| && ELF_ST_VISIBILITY (entry->root.other) != STV_INTERNAL |
| && ELF_ST_VISIBILITY (entry->root.other) != STV_HIDDEN)) |
| { |
| /* Make a note that we should convert "call" instructions to "calls" |
| instructions for calls to this symbol. */ |
| entry->flags |= MN10300_CONVERT_CALL_TO_CALLS; |
| return true; |
| } |
| |
| /* We may be able to move some instructions from the function itself into |
| the "call" instruction. Count how many bytes we might be able to |
| eliminate in the function itself. */ |
| |
| /* A movm instruction is two bytes. */ |
| if (entry->movm_args) |
| byte_count += 2; |
| |
| /* Count the insn to allocate stack space too. */ |
| if (entry->stack_size > 0) |
| { |
| if (entry->stack_size <= 128) |
| byte_count += 3; |
| else |
| byte_count += 4; |
| } |
| |
| /* If using "call" will result in larger code, then turn all |
| the associated "call" instructions into "calls" instructions. */ |
| if (byte_count < entry->direct_calls) |
| entry->flags |= MN10300_CONVERT_CALL_TO_CALLS; |
| |
| /* This routine never fails. */ |
| return true; |
| } |
| |
| /* Used to count hash table entries. */ |
| |
| static bool |
| elf32_mn10300_count_hash_table_entries (struct bfd_hash_entry *gen_entry ATTRIBUTE_UNUSED, |
| void * in_args) |
| { |
| int *count = (int *) in_args; |
| |
| (*count) ++; |
| return true; |
| } |
| |
| /* Used to enumerate hash table entries into a linear array. */ |
| |
| static bool |
| elf32_mn10300_list_hash_table_entries (struct bfd_hash_entry *gen_entry, |
| void * in_args) |
| { |
| struct bfd_hash_entry ***ptr = (struct bfd_hash_entry ***) in_args; |
| |
| **ptr = gen_entry; |
| (*ptr) ++; |
| return true; |
| } |
| |
| /* Used to sort the array created by the above. */ |
| |
| static int |
| sort_by_value (const void *va, const void *vb) |
| { |
| struct elf32_mn10300_link_hash_entry *a |
| = *(struct elf32_mn10300_link_hash_entry **) va; |
| struct elf32_mn10300_link_hash_entry *b |
| = *(struct elf32_mn10300_link_hash_entry **) vb; |
| |
| return a->value - b->value; |
| } |
| |
| /* Compute the stack size and movm arguments for the function |
| referred to by HASH at address ADDR in section with |
| contents CONTENTS, store the information in the hash table. */ |
| |
| static void |
| compute_function_info (bfd *abfd, |
| struct elf32_mn10300_link_hash_entry *hash, |
| bfd_vma addr, |
| unsigned char *contents) |
| { |
| unsigned char byte1, byte2; |
| /* We only care about a very small subset of the possible prologue |
| sequences here. Basically we look for: |
| |
| movm [d2,d3,a2,a3],sp (optional) |
| add <size>,sp (optional, and only for sizes which fit in an unsigned |
| 8 bit number) |
| |
| If we find anything else, we quit. */ |
| |
| /* Look for movm [regs],sp. */ |
| byte1 = bfd_get_8 (abfd, contents + addr); |
| byte2 = bfd_get_8 (abfd, contents + addr + 1); |
| |
| if (byte1 == 0xcf) |
| { |
| hash->movm_args = byte2; |
| addr += 2; |
| byte1 = bfd_get_8 (abfd, contents + addr); |
| byte2 = bfd_get_8 (abfd, contents + addr + 1); |
| } |
| |
| /* Now figure out how much stack space will be allocated by the movm |
| instruction. We need this kept separate from the function's normal |
| stack space. */ |
| if (hash->movm_args) |
| { |
| /* Space for d2. */ |
| if (hash->movm_args & 0x80) |
| hash->movm_stack_size += 4; |
| |
| /* Space for d3. */ |
| if (hash->movm_args & 0x40) |
| hash->movm_stack_size += 4; |
| |
| /* Space for a2. */ |
| if (hash->movm_args & 0x20) |
| hash->movm_stack_size += 4; |
| |
| /* Space for a3. */ |
| if (hash->movm_args & 0x10) |
| hash->movm_stack_size += 4; |
| |
| /* "other" space. d0, d1, a0, a1, mdr, lir, lar, 4 byte pad. */ |
| if (hash->movm_args & 0x08) |
| hash->movm_stack_size += 8 * 4; |
| |
| if (bfd_get_mach (abfd) == bfd_mach_am33 |
| || bfd_get_mach (abfd) == bfd_mach_am33_2) |
| { |
| /* "exother" space. e0, e1, mdrq, mcrh, mcrl, mcvf */ |
| if (hash->movm_args & 0x1) |
| hash->movm_stack_size += 6 * 4; |
| |
| /* exreg1 space. e4, e5, e6, e7 */ |
| if (hash->movm_args & 0x2) |
| hash->movm_stack_size += 4 * 4; |
| |
| /* exreg0 space. e2, e3 */ |
| if (hash->movm_args & 0x4) |
| hash->movm_stack_size += 2 * 4; |
| } |
| } |
| |
| /* Now look for the two stack adjustment variants. */ |
| if (byte1 == 0xf8 && byte2 == 0xfe) |
| { |
| int temp = bfd_get_8 (abfd, contents + addr + 2); |
| temp = ((temp & 0xff) ^ (~0x7f)) + 0x80; |
| |
| hash->stack_size = -temp; |
| } |
| else if (byte1 == 0xfa && byte2 == 0xfe) |
| { |
| int temp = bfd_get_16 (abfd, contents + addr + 2); |
| temp = ((temp & 0xffff) ^ (~0x7fff)) + 0x8000; |
| temp = -temp; |
| |
| if (temp < 255) |
| hash->stack_size = temp; |
| } |
| |
| /* If the total stack to be allocated by the call instruction is more |
| than 255 bytes, then we can't remove the stack adjustment by using |
| "call" (we might still be able to remove the "movm" instruction. */ |
| if (hash->stack_size + hash->movm_stack_size > 255) |
| hash->stack_size = 0; |
| } |
| |
| /* Delete some bytes from a section while relaxing. */ |
| |
| static bool |
| mn10300_elf_relax_delete_bytes (bfd *abfd, |
| asection *sec, |
| bfd_vma addr, |
| int count) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| unsigned int sec_shndx; |
| bfd_byte *contents; |
| Elf_Internal_Rela *irel, *irelend; |
| Elf_Internal_Rela *irelalign; |
| bfd_vma toaddr; |
| Elf_Internal_Sym *isym, *isymend; |
| struct elf_link_hash_entry **sym_hashes; |
| struct elf_link_hash_entry **end_hashes; |
| unsigned int symcount; |
| |
| sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); |
| |
| contents = elf_section_data (sec)->this_hdr.contents; |
| |
| irelalign = NULL; |
| toaddr = sec->size; |
| |
| irel = elf_section_data (sec)->relocs; |
| irelend = irel + sec->reloc_count; |
| |
| if (sec->reloc_count > 0) |
| { |
| /* If there is an align reloc at the end of the section ignore it. |
| GAS creates these relocs for reasons of its own, and they just |
| serve to keep the section artifically inflated. */ |
| if (ELF32_R_TYPE ((irelend - 1)->r_info) == (int) R_MN10300_ALIGN) |
| --irelend; |
| |
| /* The deletion must stop at the next ALIGN reloc for an alignment |
| power larger than, or not a multiple of, the number of bytes we |
| are deleting. */ |
| for (; irel < irelend; irel++) |
| { |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN |
| && irel->r_offset > addr |
| && irel->r_offset < toaddr) |
| { |
| int alignment = 1 << irel->r_addend; |
| |
| if (count < alignment |
| || alignment % count != 0) |
| { |
| irelalign = irel; |
| toaddr = irel->r_offset; |
| break; |
| } |
| } |
| } |
| } |
| |
| /* Actually delete the bytes. */ |
| memmove (contents + addr, contents + addr + count, |
| (size_t) (toaddr - addr - count)); |
| |
| /* Adjust the section's size if we are shrinking it, or else |
| pad the bytes between the end of the shrunken region and |
| the start of the next region with NOP codes. */ |
| if (irelalign == NULL) |
| { |
| sec->size -= count; |
| /* Include symbols at the end of the section, but |
| not at the end of a sub-region of the section. */ |
| toaddr ++; |
| } |
| else |
| { |
| int i; |
| |
| #define NOP_OPCODE 0xcb |
| |
| for (i = 0; i < count; i ++) |
| bfd_put_8 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i); |
| } |
| |
| /* Adjust all the relocs. */ |
| for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) |
| { |
| /* Get the new reloc address. */ |
| if ((irel->r_offset > addr |
| && irel->r_offset < toaddr) |
| || (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN |
| && irel->r_offset == toaddr)) |
| irel->r_offset -= count; |
| } |
| |
| /* Adjust the local symbols in the section, reducing their value |
| by the number of bytes deleted. Note - symbols within the deleted |
| region are moved to the address of the start of the region, which |
| actually means that they will address the byte beyond the end of |
| the region once the deletion has been completed. */ |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| isym = (Elf_Internal_Sym *) symtab_hdr->contents; |
| for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) |
| { |
| if (isym->st_shndx == sec_shndx |
| && isym->st_value > addr |
| && isym->st_value < toaddr) |
| { |
| if (isym->st_value < addr + count) |
| isym->st_value = addr; |
| else |
| isym->st_value -= count; |
| } |
| /* Adjust the function symbol's size as well. */ |
| else if (isym->st_shndx == sec_shndx |
| && ELF_ST_TYPE (isym->st_info) == STT_FUNC |
| && isym->st_value + isym->st_size > addr |
| && isym->st_value + isym->st_size < toaddr) |
| isym->st_size -= count; |
| } |
| |
| /* Now adjust the global symbols defined in this section. */ |
| symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
| - symtab_hdr->sh_info); |
| sym_hashes = elf_sym_hashes (abfd); |
| end_hashes = sym_hashes + symcount; |
| for (; sym_hashes < end_hashes; sym_hashes++) |
| { |
| struct elf_link_hash_entry *sym_hash = *sym_hashes; |
| |
| if ((sym_hash->root.type == bfd_link_hash_defined |
| || sym_hash->root.type == bfd_link_hash_defweak) |
| && sym_hash->root.u.def.section == sec |
| && sym_hash->root.u.def.value > addr |
| && sym_hash->root.u.def.value < toaddr) |
| { |
| if (sym_hash->root.u.def.value < addr + count) |
| sym_hash->root.u.def.value = addr; |
| else |
| sym_hash->root.u.def.value -= count; |
| } |
| /* Adjust the function symbol's size as well. */ |
| else if (sym_hash->root.type == bfd_link_hash_defined |
| && sym_hash->root.u.def.section == sec |
| && sym_hash->type == STT_FUNC |
| && sym_hash->root.u.def.value + sym_hash->size > addr |
| && sym_hash->root.u.def.value + sym_hash->size < toaddr) |
| sym_hash->size -= count; |
| } |
| |
| /* See if we can move the ALIGN reloc forward. |
| We have adjusted r_offset for it already. */ |
| if (irelalign != NULL) |
| { |
| bfd_vma alignto, alignaddr; |
| |
| if ((int) irelalign->r_addend > 0) |
| { |
| /* This is the old address. */ |
| alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend); |
| /* This is where the align points to now. */ |
| alignaddr = BFD_ALIGN (irelalign->r_offset, |
| 1 << irelalign->r_addend); |
| if (alignaddr < alignto) |
| /* Tail recursion. */ |
| return mn10300_elf_relax_delete_bytes (abfd, sec, alignaddr, |
| (int) (alignto - alignaddr)); |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Return TRUE if a symbol exists at the given address, else return |
| FALSE. */ |
| |
| static bool |
| mn10300_elf_symbol_address_p (bfd *abfd, |
| asection *sec, |
| Elf_Internal_Sym *isym, |
| bfd_vma addr) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| unsigned int sec_shndx; |
| Elf_Internal_Sym *isymend; |
| struct elf_link_hash_entry **sym_hashes; |
| struct elf_link_hash_entry **end_hashes; |
| unsigned int symcount; |
| |
| sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); |
| |
| /* Examine all the symbols. */ |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) |
| if (isym->st_shndx == sec_shndx |
| && isym->st_value == addr) |
| return true; |
| |
| symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
| - symtab_hdr->sh_info); |
| sym_hashes = elf_sym_hashes (abfd); |
| end_hashes = sym_hashes + symcount; |
| for (; sym_hashes < end_hashes; sym_hashes++) |
| { |
| struct elf_link_hash_entry *sym_hash = *sym_hashes; |
| |
| if ((sym_hash->root.type == bfd_link_hash_defined |
| || sym_hash->root.type == bfd_link_hash_defweak) |
| && sym_hash->root.u.def.section == sec |
| && sym_hash->root.u.def.value == addr) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* This function handles relaxing for the mn10300. |
| |
| There are quite a few relaxing opportunities available on the mn10300: |
| |
| * calls:32 -> calls:16 2 bytes |
| * call:32 -> call:16 2 bytes |
| |
| * call:32 -> calls:32 1 byte |
| * call:16 -> calls:16 1 byte |
| * These are done anytime using "calls" would result |
| in smaller code, or when necessary to preserve the |
| meaning of the program. |
| |
| * call:32 varies |
| * call:16 |
| * In some circumstances we can move instructions |
| from a function prologue into a "call" instruction. |
| This is only done if the resulting code is no larger |
| than the original code. |
| |
| * jmp:32 -> jmp:16 2 bytes |
| * jmp:16 -> bra:8 1 byte |
| |
| * If the previous instruction is a conditional branch |
| around the jump/bra, we may be able to reverse its condition |
| and change its target to the jump's target. The jump/bra |
| can then be deleted. 2 bytes |
| |
| * mov abs32 -> mov abs16 1 or 2 bytes |
| |
| * Most instructions which accept imm32 can relax to imm16 1 or 2 bytes |
| - Most instructions which accept imm16 can relax to imm8 1 or 2 bytes |
| |
| * Most instructions which accept d32 can relax to d16 1 or 2 bytes |
| - Most instructions which accept d16 can relax to d8 1 or 2 bytes |
| |
| We don't handle imm16->imm8 or d16->d8 as they're very rare |
| and somewhat more difficult to support. */ |
| |
| static bool |
| mn10300_elf_relax_section (bfd *abfd, |
| asection *sec, |
| struct bfd_link_info *link_info, |
| bool *again) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| Elf_Internal_Rela *internal_relocs = NULL; |
| Elf_Internal_Rela *irel, *irelend; |
| bfd_byte *contents = NULL; |
| Elf_Internal_Sym *isymbuf = NULL; |
| struct elf32_mn10300_link_hash_table *hash_table; |
| asection *section = sec; |
| bfd_vma align_gap_adjustment; |
| |
| if (bfd_link_relocatable (link_info)) |
| (*link_info->callbacks->einfo) |
| (_("%P%F: --relax and -r may not be used together\n")); |
| |
| /* Assume nothing changes. */ |
| *again = false; |
| |
| /* We need a pointer to the mn10300 specific hash table. */ |
| hash_table = elf32_mn10300_hash_table (link_info); |
| if (hash_table == NULL) |
| return false; |
| |
| /* Initialize fields in each hash table entry the first time through. */ |
| if ((hash_table->flags & MN10300_HASH_ENTRIES_INITIALIZED) == 0) |
| { |
| bfd *input_bfd; |
| |
| /* Iterate over all the input bfds. */ |
| for (input_bfd = link_info->input_bfds; |
| input_bfd != NULL; |
| input_bfd = input_bfd->link.next) |
| { |
| /* We're going to need all the symbols for each bfd. */ |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| if (symtab_hdr->sh_info != 0) |
| { |
| isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| if (isymbuf == NULL) |
| isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, |
| symtab_hdr->sh_info, 0, |
| NULL, NULL, NULL); |
| if (isymbuf == NULL) |
| goto error_return; |
| } |
| |
| /* Iterate over each section in this bfd. */ |
| for (section = input_bfd->sections; |
| section != NULL; |
| section = section->next) |
| { |
| struct elf32_mn10300_link_hash_entry *hash; |
| asection *sym_sec = NULL; |
| const char *sym_name; |
| char *new_name; |
| |
| /* If there's nothing to do in this section, skip it. */ |
| if (! ((section->flags & SEC_RELOC) != 0 |
| && section->reloc_count != 0)) |
| continue; |
| if ((section->flags & SEC_ALLOC) == 0) |
| continue; |
| |
| /* Get cached copy of section contents if it exists. */ |
| if (elf_section_data (section)->this_hdr.contents != NULL) |
| contents = elf_section_data (section)->this_hdr.contents; |
| else if (section->size != 0) |
| { |
| /* Go get them off disk. */ |
| if (!bfd_malloc_and_get_section (input_bfd, section, |
| &contents)) |
| goto error_return; |
| } |
| else |
| contents = NULL; |
| |
| /* If there aren't any relocs, then there's nothing to do. */ |
| if ((section->flags & SEC_RELOC) != 0 |
| && section->reloc_count != 0) |
| { |
| /* Get a copy of the native relocations. */ |
| internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section, |
| NULL, NULL, |
| link_info->keep_memory); |
| if (internal_relocs == NULL) |
| goto error_return; |
| |
| /* Now examine each relocation. */ |
| irel = internal_relocs; |
| irelend = irel + section->reloc_count; |
| for (; irel < irelend; irel++) |
| { |
| long r_type; |
| unsigned long r_index; |
| unsigned char code; |
| |
| r_type = ELF32_R_TYPE (irel->r_info); |
| r_index = ELF32_R_SYM (irel->r_info); |
| |
| if (r_type < 0 || r_type >= (int) R_MN10300_MAX) |
| goto error_return; |
| |
| /* We need the name and hash table entry of the target |
| symbol! */ |
| hash = NULL; |
| sym_sec = NULL; |
| |
| if (r_index < symtab_hdr->sh_info) |
| { |
| /* A local symbol. */ |
| Elf_Internal_Sym *isym; |
| struct elf_link_hash_table *elftab; |
| size_t amt; |
| |
| isym = isymbuf + r_index; |
| if (isym->st_shndx == SHN_UNDEF) |
| sym_sec = bfd_und_section_ptr; |
| else if (isym->st_shndx == SHN_ABS) |
| sym_sec = bfd_abs_section_ptr; |
| else if (isym->st_shndx == SHN_COMMON) |
| sym_sec = bfd_com_section_ptr; |
| else |
| sym_sec |
| = bfd_section_from_elf_index (input_bfd, |
| isym->st_shndx); |
| |
| sym_name |
| = bfd_elf_string_from_elf_section (input_bfd, |
| (symtab_hdr |
| ->sh_link), |
| isym->st_name); |
| |
| /* If it isn't a function, then we don't care |
| about it. */ |
| if (ELF_ST_TYPE (isym->st_info) != STT_FUNC) |
| continue; |
| |
| /* Tack on an ID so we can uniquely identify this |
| local symbol in the global hash table. */ |
| amt = strlen (sym_name) + 10; |
| new_name = bfd_malloc (amt); |
| if (new_name == NULL) |
| goto error_return; |
| |
| sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); |
| sym_name = new_name; |
| |
| elftab = &hash_table->static_hash_table->root; |
| hash = ((struct elf32_mn10300_link_hash_entry *) |
| elf_link_hash_lookup (elftab, sym_name, |
| true, true, false)); |
| free (new_name); |
| } |
| else |
| { |
| r_index -= symtab_hdr->sh_info; |
| hash = (struct elf32_mn10300_link_hash_entry *) |
| elf_sym_hashes (input_bfd)[r_index]; |
| } |
| |
| sym_name = hash->root.root.root.string; |
| if ((section->flags & SEC_CODE) != 0) |
| { |
| /* If this is not a "call" instruction, then we |
| should convert "call" instructions to "calls" |
| instructions. */ |
| code = bfd_get_8 (input_bfd, |
| contents + irel->r_offset - 1); |
| if (code != 0xdd && code != 0xcd) |
| hash->flags |= MN10300_CONVERT_CALL_TO_CALLS; |
| } |
| |
| /* If this is a jump/call, then bump the |
| direct_calls counter. Else force "call" to |
| "calls" conversions. */ |
| if (r_type == R_MN10300_PCREL32 |
| || r_type == R_MN10300_PLT32 |
| || r_type == R_MN10300_PLT16 |
| || r_type == R_MN10300_PCREL16) |
| hash->direct_calls++; |
| else |
| hash->flags |= MN10300_CONVERT_CALL_TO_CALLS; |
| } |
| } |
| |
| /* Now look at the actual contents to get the stack size, |
| and a list of what registers were saved in the prologue |
| (ie movm_args). */ |
| if ((section->flags & SEC_CODE) != 0) |
| { |
| Elf_Internal_Sym *isym, *isymend; |
| unsigned int sec_shndx; |
| struct elf_link_hash_entry **hashes; |
| struct elf_link_hash_entry **end_hashes; |
| unsigned int symcount; |
| |
| sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd, |
| section); |
| |
| symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
| - symtab_hdr->sh_info); |
| hashes = elf_sym_hashes (input_bfd); |
| end_hashes = hashes + symcount; |
| |
| /* Look at each function defined in this section and |
| update info for that function. */ |
| isymend = isymbuf + symtab_hdr->sh_info; |
| for (isym = isymbuf; isym < isymend; isym++) |
| { |
| if (isym->st_shndx == sec_shndx |
| && ELF_ST_TYPE (isym->st_info) == STT_FUNC) |
| { |
| struct elf_link_hash_table *elftab; |
| size_t amt; |
| struct elf_link_hash_entry **lhashes = hashes; |
| |
| /* Skip a local symbol if it aliases a |
| global one. */ |
| for (; lhashes < end_hashes; lhashes++) |
| { |
| hash = (struct elf32_mn10300_link_hash_entry *) *lhashes; |
| if ((hash->root.root.type == bfd_link_hash_defined |
| || hash->root.root.type == bfd_link_hash_defweak) |
| && hash->root.root.u.def.section == section |
| && hash->root.type == STT_FUNC |
| && hash->root.root.u.def.value == isym->st_value) |
| break; |
| } |
| if (lhashes != end_hashes) |
| continue; |
| |
| if (isym->st_shndx == SHN_UNDEF) |
| sym_sec = bfd_und_section_ptr; |
| else if (isym->st_shndx == SHN_ABS) |
| sym_sec = bfd_abs_section_ptr; |
| else if (isym->st_shndx == SHN_COMMON) |
| sym_sec = bfd_com_section_ptr; |
| else |
| sym_sec |
| = bfd_section_from_elf_index (input_bfd, |
| isym->st_shndx); |
| |
| sym_name = (bfd_elf_string_from_elf_section |
| (input_bfd, symtab_hdr->sh_link, |
| isym->st_name)); |
| |
| /* Tack on an ID so we can uniquely identify this |
| local symbol in the global hash table. */ |
| amt = strlen (sym_name) + 10; |
| new_name = bfd_malloc (amt); |
| if (new_name == NULL) |
| goto error_return; |
| |
| sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); |
| sym_name = new_name; |
| |
| elftab = &hash_table->static_hash_table->root; |
| hash = ((struct elf32_mn10300_link_hash_entry *) |
| elf_link_hash_lookup (elftab, sym_name, |
| true, true, false)); |
| free (new_name); |
| compute_function_info (input_bfd, hash, |
| isym->st_value, contents); |
| hash->value = isym->st_value; |
| } |
| } |
| |
| for (; hashes < end_hashes; hashes++) |
| { |
| hash = (struct elf32_mn10300_link_hash_entry *) *hashes; |
| if ((hash->root.root.type == bfd_link_hash_defined |
| || hash->root.root.type == bfd_link_hash_defweak) |
| && hash->root.root.u.def.section == section |
| && hash->root.type == STT_FUNC) |
| compute_function_info (input_bfd, hash, |
| (hash)->root.root.u.def.value, |
| contents); |
| } |
| } |
| |
| /* Cache or free any memory we allocated for the relocs. */ |
| if (elf_section_data (section)->relocs != internal_relocs) |
| free (internal_relocs); |
| internal_relocs = NULL; |
| |
| /* Cache or free any memory we allocated for the contents. */ |
| if (contents != NULL |
| && elf_section_data (section)->this_hdr.contents != contents) |
| { |
| if (! link_info->keep_memory) |
| free (contents); |
| else |
| { |
| /* Cache the section contents for elf_link_input_bfd. */ |
| elf_section_data (section)->this_hdr.contents = contents; |
| } |
| } |
| contents = NULL; |
| } |
| |
| /* Cache or free any memory we allocated for the symbols. */ |
| if (isymbuf != NULL |
| && symtab_hdr->contents != (unsigned char *) isymbuf) |
| { |
| if (! link_info->keep_memory) |
| free (isymbuf); |
| else |
| { |
| /* Cache the symbols for elf_link_input_bfd. */ |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| } |
| } |
| isymbuf = NULL; |
| } |
| |
| /* Now iterate on each symbol in the hash table and perform |
| the final initialization steps on each. */ |
| elf32_mn10300_link_hash_traverse (hash_table, |
| elf32_mn10300_finish_hash_table_entry, |
| link_info); |
| elf32_mn10300_link_hash_traverse (hash_table->static_hash_table, |
| elf32_mn10300_finish_hash_table_entry, |
| link_info); |
| |
| { |
| /* This section of code collects all our local symbols, sorts |
| them by value, and looks for multiple symbols referring to |
| the same address. For those symbols, the flags are merged. |
| At this point, the only flag that can be set is |
| MN10300_CONVERT_CALL_TO_CALLS, so we simply OR the flags |
| together. */ |
| int static_count = 0, i; |
| struct elf32_mn10300_link_hash_entry **entries; |
| struct elf32_mn10300_link_hash_entry **ptr; |
| |
| elf32_mn10300_link_hash_traverse (hash_table->static_hash_table, |
| elf32_mn10300_count_hash_table_entries, |
| &static_count); |
| |
| entries = bfd_malloc (static_count * sizeof (* ptr)); |
| |
| ptr = entries; |
| elf32_mn10300_link_hash_traverse (hash_table->static_hash_table, |
| elf32_mn10300_list_hash_table_entries, |
| & ptr); |
| |
| qsort (entries, static_count, sizeof (entries[0]), sort_by_value); |
| |
| for (i = 0; i < static_count - 1; i++) |
| if (entries[i]->value && entries[i]->value == entries[i+1]->value) |
| { |
| int v = entries[i]->flags; |
| int j; |
| |
| for (j = i + 1; j < static_count && entries[j]->value == entries[i]->value; j++) |
| v |= entries[j]->flags; |
| |
| for (j = i; j < static_count && entries[j]->value == entries[i]->value; j++) |
| entries[j]->flags = v; |
| |
| i = j - 1; |
| } |
| } |
| |
| /* All entries in the hash table are fully initialized. */ |
| hash_table->flags |= MN10300_HASH_ENTRIES_INITIALIZED; |
| |
| /* Now that everything has been initialized, go through each |
| code section and delete any prologue insns which will be |
| redundant because their operations will be performed by |
| a "call" instruction. */ |
| for (input_bfd = link_info->input_bfds; |
| input_bfd != NULL; |
| input_bfd = input_bfd->link.next) |
| { |
| /* We're going to need all the local symbols for each bfd. */ |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| if (symtab_hdr->sh_info != 0) |
| { |
| isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| if (isymbuf == NULL) |
| isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, |
| symtab_hdr->sh_info, 0, |
| NULL, NULL, NULL); |
| if (isymbuf == NULL) |
| goto error_return; |
| } |
| |
| /* Walk over each section in this bfd. */ |
| for (section = input_bfd->sections; |
| section != NULL; |
| section = section->next) |
| { |
| unsigned int sec_shndx; |
| Elf_Internal_Sym *isym, *isymend; |
| struct elf_link_hash_entry **hashes; |
| struct elf_link_hash_entry **end_hashes; |
| unsigned int symcount; |
| |
| /* Skip non-code sections and empty sections. */ |
| if ((section->flags & SEC_CODE) == 0 || section->size == 0) |
| continue; |
| |
| if (section->reloc_count != 0) |
| { |
| /* Get a copy of the native relocations. */ |
| internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section, |
| NULL, NULL, |
| link_info->keep_memory); |
| if (internal_relocs == NULL) |
| goto error_return; |
| } |
| |
| /* Get cached copy of section contents if it exists. */ |
| if (elf_section_data (section)->this_hdr.contents != NULL) |
| contents = elf_section_data (section)->this_hdr.contents; |
| else |
| { |
| /* Go get them off disk. */ |
| if (!bfd_malloc_and_get_section (input_bfd, section, |
| &contents)) |
| goto error_return; |
| } |
| |
| sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd, |
| section); |
| |
| /* Now look for any function in this section which needs |
| insns deleted from its prologue. */ |
| isymend = isymbuf + symtab_hdr->sh_info; |
| for (isym = isymbuf; isym < isymend; isym++) |
| { |
| struct elf32_mn10300_link_hash_entry *sym_hash; |
| asection *sym_sec = NULL; |
| const char *sym_name; |
| char *new_name; |
| struct elf_link_hash_table *elftab; |
| size_t amt; |
| |
| if (isym->st_shndx != sec_shndx) |
| continue; |
| |
| if (isym->st_shndx == SHN_UNDEF) |
| sym_sec = bfd_und_section_ptr; |
| else if (isym->st_shndx == SHN_ABS) |
| sym_sec = bfd_abs_section_ptr; |
| else if (isym->st_shndx == SHN_COMMON) |
| sym_sec = bfd_com_section_ptr; |
| else |
| sym_sec |
| = bfd_section_from_elf_index (input_bfd, isym->st_shndx); |
| |
| sym_name |
| = bfd_elf_string_from_elf_section (input_bfd, |
| symtab_hdr->sh_link, |
| isym->st_name); |
| |
| /* Tack on an ID so we can uniquely identify this |
| local symbol in the global hash table. */ |
| amt = strlen (sym_name) + 10; |
| new_name = bfd_malloc (amt); |
| if (new_name == NULL) |
| goto error_return; |
| sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); |
| sym_name = new_name; |
| |
| elftab = & hash_table->static_hash_table->root; |
| sym_hash = (struct elf32_mn10300_link_hash_entry *) |
| elf_link_hash_lookup (elftab, sym_name, |
| false, false, false); |
| |
| free (new_name); |
| if (sym_hash == NULL) |
| continue; |
| |
| if (! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS) |
| && ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES)) |
| { |
| int bytes = 0; |
| |
| /* Note that we've changed things. */ |
| elf_section_data (section)->relocs = internal_relocs; |
| elf_section_data (section)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| /* Count how many bytes we're going to delete. */ |
| if (sym_hash->movm_args) |
| bytes += 2; |
| |
| if (sym_hash->stack_size > 0) |
| { |
| if (sym_hash->stack_size <= 128) |
| bytes += 3; |
| else |
| bytes += 4; |
| } |
| |
| /* Note that we've deleted prologue bytes for this |
| function. */ |
| sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES; |
| |
| /* Actually delete the bytes. */ |
| if (!mn10300_elf_relax_delete_bytes (input_bfd, |
| section, |
| isym->st_value, |
| bytes)) |
| goto error_return; |
| |
| /* Something changed. Not strictly necessary, but |
| may lead to more relaxing opportunities. */ |
| *again = true; |
| } |
| } |
| |
| /* Look for any global functions in this section which |
| need insns deleted from their prologues. */ |
| symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
| - symtab_hdr->sh_info); |
| hashes = elf_sym_hashes (input_bfd); |
| end_hashes = hashes + symcount; |
| for (; hashes < end_hashes; hashes++) |
| { |
| struct elf32_mn10300_link_hash_entry *sym_hash; |
| |
| sym_hash = (struct elf32_mn10300_link_hash_entry *) *hashes; |
| if ((sym_hash->root.root.type == bfd_link_hash_defined |
| || sym_hash->root.root.type == bfd_link_hash_defweak) |
| && sym_hash->root.root.u.def.section == section |
| && ! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS) |
| && ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES)) |
| { |
| int bytes = 0; |
| bfd_vma symval; |
| struct elf_link_hash_entry **hh; |
| |
| /* Note that we've changed things. */ |
| elf_section_data (section)->relocs = internal_relocs; |
| elf_section_data (section)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| /* Count how many bytes we're going to delete. */ |
| if (sym_hash->movm_args) |
| bytes += 2; |
| |
| if (sym_hash->stack_size > 0) |
| { |
| if (sym_hash->stack_size <= 128) |
| bytes += 3; |
| else |
| bytes += 4; |
| } |
| |
| /* Note that we've deleted prologue bytes for this |
| function. */ |
| sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES; |
| |
| /* Actually delete the bytes. */ |
| symval = sym_hash->root.root.u.def.value; |
| if (!mn10300_elf_relax_delete_bytes (input_bfd, |
| section, |
| symval, |
| bytes)) |
| goto error_return; |
| |
| /* There may be other C++ functions symbols with the same |
| address. If so then mark these as having had their |
| prologue bytes deleted as well. */ |
| for (hh = elf_sym_hashes (input_bfd); hh < end_hashes; hh++) |
| { |
| struct elf32_mn10300_link_hash_entry *h; |
| |
| h = (struct elf32_mn10300_link_hash_entry *) * hh; |
| |
| if (h != sym_hash |
| && (h->root.root.type == bfd_link_hash_defined |
| || h->root.root.type == bfd_link_hash_defweak) |
| && h->root.root.u.def.section == section |
| && ! (h->flags & MN10300_CONVERT_CALL_TO_CALLS) |
| && h->root.root.u.def.value == symval |
| && h->root.type == STT_FUNC) |
| h->flags |= MN10300_DELETED_PROLOGUE_BYTES; |
| } |
| |
| /* Something changed. Not strictly necessary, but |
| may lead to more relaxing opportunities. */ |
| *again = true; |
| } |
| } |
| |
| /* Cache or free any memory we allocated for the relocs. */ |
| if (elf_section_data (section)->relocs != internal_relocs) |
| free (internal_relocs); |
| internal_relocs = NULL; |
| |
| /* Cache or free any memory we allocated for the contents. */ |
| if (contents != NULL |
| && elf_section_data (section)->this_hdr.contents != contents) |
| { |
| if (! link_info->keep_memory) |
| free (contents); |
| else |
| /* Cache the section contents for elf_link_input_bfd. */ |
| elf_section_data (section)->this_hdr.contents = contents; |
| } |
| contents = NULL; |
| } |
| |
| /* Cache or free any memory we allocated for the symbols. */ |
| if (isymbuf != NULL |
| && symtab_hdr->contents != (unsigned char *) isymbuf) |
| { |
| if (! link_info->keep_memory) |
| free (isymbuf); |
| else |
| /* Cache the symbols for elf_link_input_bfd. */ |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| } |
| isymbuf = NULL; |
| } |
| } |
| |
| /* (Re)initialize for the basic instruction shortening/relaxing pass. */ |
| contents = NULL; |
| internal_relocs = NULL; |
| isymbuf = NULL; |
| /* For error_return. */ |
| section = sec; |
| |
| /* We don't have to do anything for a relocatable link, if |
| this section does not have relocs, or if this is not a |
| code section. */ |
| if (bfd_link_relocatable (link_info) |
| || (sec->flags & SEC_RELOC) == 0 |
| || sec->reloc_count == 0 |
| || (sec->flags & SEC_CODE) == 0) |
| return true; |
| |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| |
| /* Get a copy of the native relocations. */ |
| internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, |
| link_info->keep_memory); |
| if (internal_relocs == NULL) |
| goto error_return; |
| |
| /* Scan for worst case alignment gap changes. Note that this logic |
| is not ideal; what we should do is run this scan for every |
| opcode/address range and adjust accordingly, but that's |
| expensive. Worst case is that for an alignment of N bytes, we |
| move by 2*N-N-1 bytes, assuming we have aligns of 1, 2, 4, 8, etc |
| all before it. Plus, this still doesn't cover cross-section |
| jumps with section alignment. */ |
| irelend = internal_relocs + sec->reloc_count; |
| align_gap_adjustment = 0; |
| for (irel = internal_relocs; irel < irelend; irel++) |
| { |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN) |
| { |
| bfd_vma adj = 1 << irel->r_addend; |
| bfd_vma aend = irel->r_offset; |
| |
| aend = BFD_ALIGN (aend, 1 << irel->r_addend); |
| adj = 2 * adj - adj - 1; |
| |
| /* Record the biggest adjustmnet. Skip any alignment at the |
| end of our section. */ |
| if (align_gap_adjustment < adj |
| && aend < sec->output_section->vma + sec->output_offset + sec->size) |
| align_gap_adjustment = adj; |
| } |
| } |
| |
| /* Walk through them looking for relaxing opportunities. */ |
| irelend = internal_relocs + sec->reloc_count; |
| for (irel = internal_relocs; irel < irelend; irel++) |
| { |
| bfd_vma symval; |
| bfd_signed_vma jump_offset; |
| asection *sym_sec = NULL; |
| struct elf32_mn10300_link_hash_entry *h = NULL; |
| |
| /* If this isn't something that can be relaxed, then ignore |
| this reloc. */ |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_NONE |
| || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_8 |
| || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_MAX) |
| continue; |
| |
| /* Get the section contents if we haven't done so already. */ |
| if (contents == NULL) |
| { |
| /* Get cached copy if it exists. */ |
| if (elf_section_data (sec)->this_hdr.contents != NULL) |
| contents = elf_section_data (sec)->this_hdr.contents; |
| else |
| { |
| /* Go get them off disk. */ |
| if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
| goto error_return; |
| } |
| } |
| |
| /* Read this BFD's symbols if we haven't done so already. */ |
| if (isymbuf == NULL && symtab_hdr->sh_info != 0) |
| { |
| isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| if (isymbuf == NULL) |
| isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, |
| symtab_hdr->sh_info, 0, |
| NULL, NULL, NULL); |
| if (isymbuf == NULL) |
| goto error_return; |
| } |
| |
| /* Get the value of the symbol referred to by the reloc. */ |
| if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) |
| { |
| Elf_Internal_Sym *isym; |
| const char *sym_name; |
| char *new_name; |
| |
| /* A local symbol. */ |
| isym = isymbuf + ELF32_R_SYM (irel->r_info); |
| if (isym->st_shndx == SHN_UNDEF) |
| sym_sec = bfd_und_section_ptr; |
| else if (isym->st_shndx == SHN_ABS) |
| sym_sec = bfd_abs_section_ptr; |
| else if (isym->st_shndx == SHN_COMMON) |
| sym_sec = bfd_com_section_ptr; |
| else |
| sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| |
| sym_name = bfd_elf_string_from_elf_section (abfd, |
| symtab_hdr->sh_link, |
| isym->st_name); |
| |
| if ((sym_sec->flags & SEC_MERGE) |
| && sym_sec->sec_info_type == SEC_INFO_TYPE_MERGE) |
| { |
| symval = isym->st_value; |
| |
| /* GAS may reduce relocations against symbols in SEC_MERGE |
| sections to a relocation against the section symbol when |
| the original addend was zero. When the reloc is against |
| a section symbol we should include the addend in the |
| offset passed to _bfd_merged_section_offset, since the |
| location of interest is the original symbol. On the |
| other hand, an access to "sym+addend" where "sym" is not |
| a section symbol should not include the addend; Such an |
| access is presumed to be an offset from "sym"; The |
| location of interest is just "sym". */ |
| if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) |
| symval += irel->r_addend; |
| |
| symval = _bfd_merged_section_offset (abfd, & sym_sec, |
| elf_section_data (sym_sec)->sec_info, |
| symval); |
| |
| if (ELF_ST_TYPE (isym->st_info) != STT_SECTION) |
| symval += irel->r_addend; |
| |
| symval += sym_sec->output_section->vma |
| + sym_sec->output_offset - irel->r_addend; |
| } |
| else |
| symval = (isym->st_value |
| + sym_sec->output_section->vma |
| + sym_sec->output_offset); |
| |
| /* Tack on an ID so we can uniquely identify this |
| local symbol in the global hash table. */ |
| new_name = bfd_malloc ((bfd_size_type) strlen (sym_name) + 10); |
| if (new_name == NULL) |
| goto error_return; |
| sprintf (new_name, "%s_%08x", sym_name, sym_sec->id); |
| sym_name = new_name; |
| |
| h = (struct elf32_mn10300_link_hash_entry *) |
| elf_link_hash_lookup (&hash_table->static_hash_table->root, |
| sym_name, false, false, false); |
| free (new_name); |
| } |
| else |
| { |
| unsigned long indx; |
| |
| /* An external symbol. */ |
| indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; |
| h = (struct elf32_mn10300_link_hash_entry *) |
| (elf_sym_hashes (abfd)[indx]); |
| BFD_ASSERT (h != NULL); |
| if (h->root.root.type != bfd_link_hash_defined |
| && h->root.root.type != bfd_link_hash_defweak) |
| /* This appears to be a reference to an undefined |
| symbol. Just ignore it--it will be caught by the |
| regular reloc processing. */ |
| continue; |
| |
| /* Check for a reference to a discarded symbol and ignore it. */ |
| if (h->root.root.u.def.section->output_section == NULL) |
| continue; |
| |
| sym_sec = h->root.root.u.def.section->output_section; |
| |
| symval = (h->root.root.u.def.value |
| + h->root.root.u.def.section->output_section->vma |
| + h->root.root.u.def.section->output_offset); |
| } |
| |
| /* For simplicity of coding, we are going to modify the section |
| contents, the section relocs, and the BFD symbol table. We |
| must tell the rest of the code not to free up this |
| information. It would be possible to instead create a table |
| of changes which have to be made, as is done in coff-mips.c; |
| that would be more work, but would require less memory when |
| the linker is run. */ |
| |
| /* Try to turn a 32bit pc-relative branch/call into a 16bit pc-relative |
| branch/call, also deal with "call" -> "calls" conversions and |
| insertion of prologue data into "call" instructions. */ |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL32 |
| || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32) |
| { |
| bfd_vma value = symval; |
| |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32 |
| && h != NULL |
| && ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL |
| && ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN |
| && h->root.plt.offset != (bfd_vma) -1) |
| { |
| asection * splt; |
| |
| splt = hash_table->root.splt; |
| value = ((splt->output_section->vma |
| + splt->output_offset |
| + h->root.plt.offset) |
| - (sec->output_section->vma |
| + sec->output_offset |
| + irel->r_offset)); |
| } |
| |
| /* If we've got a "call" instruction that needs to be turned |
| into a "calls" instruction, do so now. It saves a byte. */ |
| if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS)) |
| { |
| unsigned char code; |
| |
| /* Get the opcode. */ |
| code = bfd_get_8 (abfd, contents + irel->r_offset - 1); |
| |
| /* Make sure we're working with a "call" instruction! */ |
| if (code == 0xdd) |
| { |
| /* Note that we've changed the relocs, section contents, |
| etc. */ |
| elf_section_data (sec)->relocs = internal_relocs; |
| elf_section_data (sec)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| /* Fix the opcode. */ |
| bfd_put_8 (abfd, 0xfc, contents + irel->r_offset - 1); |
| bfd_put_8 (abfd, 0xff, contents + irel->r_offset); |
| |
| /* Fix irel->r_offset and irel->r_addend. */ |
| irel->r_offset += 1; |
| irel->r_addend += 1; |
| |
| /* Delete one byte of data. */ |
| if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| irel->r_offset + 3, 1)) |
| goto error_return; |
| |
| /* That will change things, so, we should relax again. |
| Note that this is not required, and it may be slow. */ |
| *again = true; |
| } |
| } |
| else if (h) |
| { |
| /* We've got a "call" instruction which needs some data |
| from target function filled in. */ |
| unsigned char code; |
| |
| /* Get the opcode. */ |
| code = bfd_get_8 (abfd, contents + irel->r_offset - 1); |
| |
| /* Insert data from the target function into the "call" |
| instruction if needed. */ |
| if (code == 0xdd) |
| { |
| bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 4); |
| bfd_put_8 (abfd, h->stack_size + h->movm_stack_size, |
| contents + irel->r_offset + 5); |
| } |
| } |
| |
| /* Deal with pc-relative gunk. */ |
| value -= (sec->output_section->vma + sec->output_offset); |
| value -= irel->r_offset; |
| value += irel->r_addend; |
| |
| /* See if the value will fit in 16 bits, note the high value is |
| 0x7fff + 2 as the target will be two bytes closer if we are |
| able to relax, if it's in the same section. */ |
| if (sec->output_section == sym_sec->output_section) |
| jump_offset = 0x8001; |
| else |
| jump_offset = 0x7fff; |
| |
| /* Account for jumps across alignment boundaries using |
| align_gap_adjustment. */ |
| if ((bfd_signed_vma) value < jump_offset - (bfd_signed_vma) align_gap_adjustment |
| && ((bfd_signed_vma) value > -0x8000 + (bfd_signed_vma) align_gap_adjustment)) |
| { |
| unsigned char code; |
| |
| /* Get the opcode. */ |
| code = bfd_get_8 (abfd, contents + irel->r_offset - 1); |
| |
| if (code != 0xdc && code != 0xdd && code != 0xff) |
| continue; |
| |
| /* Note that we've changed the relocs, section contents, etc. */ |
| elf_section_data (sec)->relocs = internal_relocs; |
| elf_section_data (sec)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| /* Fix the opcode. */ |
| if (code == 0xdc) |
| bfd_put_8 (abfd, 0xcc, contents + irel->r_offset - 1); |
| else if (code == 0xdd) |
| bfd_put_8 (abfd, 0xcd, contents + irel->r_offset - 1); |
| else if (code == 0xff) |
| bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); |
| |
| /* Fix the relocation's type. */ |
| irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_PLT32) |
| ? R_MN10300_PLT16 : |
| R_MN10300_PCREL16); |
| |
| /* Delete two bytes of data. */ |
| if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| irel->r_offset + 1, 2)) |
| goto error_return; |
| |
| /* That will change things, so, we should relax again. |
| Note that this is not required, and it may be slow. */ |
| *again = true; |
| } |
| } |
| |
| /* Try to turn a 16bit pc-relative branch into a 8bit pc-relative |
| branch. */ |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL16) |
| { |
| bfd_vma value = symval; |
| |
| /* If we've got a "call" instruction that needs to be turned |
| into a "calls" instruction, do so now. It saves a byte. */ |
| if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS)) |
| { |
| unsigned char code; |
| |
| /* Get the opcode. */ |
| code = bfd_get_8 (abfd, contents + irel->r_offset - 1); |
| |
| /* Make sure we're working with a "call" instruction! */ |
| if (code == 0xcd) |
| { |
| /* Note that we've changed the relocs, section contents, |
| etc. */ |
| elf_section_data (sec)->relocs = internal_relocs; |
| elf_section_data (sec)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| /* Fix the opcode. */ |
| bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 1); |
| bfd_put_8 (abfd, 0xff, contents + irel->r_offset); |
| |
| /* Fix irel->r_offset and irel->r_addend. */ |
| irel->r_offset += 1; |
| irel->r_addend += 1; |
| |
| /* Delete one byte of data. */ |
| if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| irel->r_offset + 1, 1)) |
| goto error_return; |
| |
| /* That will change things, so, we should relax again. |
| Note that this is not required, and it may be slow. */ |
| *again = true; |
| } |
| } |
| else if (h) |
| { |
| unsigned char code; |
| |
| /* Get the opcode. */ |
| code = bfd_get_8 (abfd, contents + irel->r_offset - 1); |
| |
| /* Insert data from the target function into the "call" |
| instruction if needed. */ |
| if (code == 0xcd) |
| { |
| bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 2); |
| bfd_put_8 (abfd, h->stack_size + h->movm_stack_size, |
| contents + irel->r_offset + 3); |
| } |
| } |
| |
| /* Deal with pc-relative gunk. */ |
| value -= (sec->output_section->vma + sec->output_offset); |
| value -= irel->r_offset; |
| value += irel->r_addend; |
| |
| /* See if the value will fit in 8 bits, note the high value is |
| 0x7f + 1 as the target will be one bytes closer if we are |
| able to relax. */ |
| if ((long) value < 0x80 && (long) value > -0x80) |
| { |
| unsigned char code; |
| |
| /* Get the opcode. */ |
| code = bfd_get_8 (abfd, contents + irel->r_offset - 1); |
| |
| if (code != 0xcc) |
| continue; |
| |
| /* Note that we've changed the relocs, section contents, etc. */ |
| elf_section_data (sec)->relocs = internal_relocs; |
| elf_section_data (sec)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| /* Fix the opcode. */ |
| bfd_put_8 (abfd, 0xca, contents + irel->r_offset - 1); |
| |
| /* Fix the relocation's type. */ |
| irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| R_MN10300_PCREL8); |
| |
| /* Delete one byte of data. */ |
| if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| irel->r_offset + 1, 1)) |
| goto error_return; |
| |
| /* That will change things, so, we should relax again. |
| Note that this is not required, and it may be slow. */ |
| *again = true; |
| } |
| } |
| |
| /* Try to eliminate an unconditional 8 bit pc-relative branch |
| which immediately follows a conditional 8 bit pc-relative |
| branch around the unconditional branch. |
| |
| original: new: |
| bCC lab1 bCC' lab2 |
| bra lab2 |
| lab1: lab1: |
| |
| This happens when the bCC can't reach lab2 at assembly time, |
| but due to other relaxations it can reach at link time. */ |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL8) |
| { |
| Elf_Internal_Rela *nrel; |
| unsigned char code; |
| |
| /* Do nothing if this reloc is the last byte in the section. */ |
| if (irel->r_offset == sec->size) |
| continue; |
| |
| /* See if the next instruction is an unconditional pc-relative |
| branch, more often than not this test will fail, so we |
| test it first to speed things up. */ |
| code = bfd_get_8 (abfd, contents + irel->r_offset + 1); |
| if (code != 0xca) |
| continue; |
| |
| /* Also make sure the next relocation applies to the next |
| instruction and that it's a pc-relative 8 bit branch. */ |
| nrel = irel + 1; |
| if (nrel == irelend |
| || irel->r_offset + 2 != nrel->r_offset |
| || ELF32_R_TYPE (nrel->r_info) != (int) R_MN10300_PCREL8) |
| continue; |
| |
| /* Make sure our destination immediately follows the |
| unconditional branch. */ |
| if (symval != (sec->output_section->vma + sec->output_offset |
| + irel->r_offset + 3)) |
| continue; |
| |
| /* Now make sure we are a conditional branch. This may not |
| be necessary, but why take the chance. |
| |
| Note these checks assume that R_MN10300_PCREL8 relocs |
| only occur on bCC and bCCx insns. If they occured |
| elsewhere, we'd need to know the start of this insn |
| for this check to be accurate. */ |
| code = bfd_get_8 (abfd, contents + irel->r_offset - 1); |
| if (code != 0xc0 && code != 0xc1 && code != 0xc2 |
| && code != 0xc3 && code != 0xc4 && code != 0xc5 |
| && code != 0xc6 && code != 0xc7 && code != 0xc8 |
| && code != 0xc9 && code != 0xe8 && code != 0xe9 |
| && code != 0xea && code != 0xeb) |
| continue; |
| |
| /* We also have to be sure there is no symbol/label |
| at the unconditional branch. */ |
| if (mn10300_elf_symbol_address_p (abfd, sec, isymbuf, |
| irel->r_offset + 1)) |
| continue; |
| |
| /* Note that we've changed the relocs, section contents, etc. */ |
| elf_section_data (sec)->relocs = internal_relocs; |
| elf_section_data (sec)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| /* Reverse the condition of the first branch. */ |
| switch (code) |
| { |
| case 0xc8: |
| code = 0xc9; |
| break; |
| case 0xc9: |
| code = 0xc8; |
| break; |
| case 0xc0: |
| code = 0xc2; |
| break; |
| case 0xc2: |
| code = 0xc0; |
| break; |
| case 0xc3: |
| code = 0xc1; |
| break; |
| case 0xc1: |
| code = 0xc3; |
| break; |
| case 0xc4: |
| code = 0xc6; |
| break; |
| case 0xc6: |
| code = 0xc4; |
| break; |
| case 0xc7: |
| code = 0xc5; |
| break; |
| case 0xc5: |
| code = 0xc7; |
| break; |
| case 0xe8: |
| code = 0xe9; |
| break; |
| case 0x9d: |
| code = 0xe8; |
| break; |
| case 0xea: |
| code = 0xeb; |
| break; |
| case 0xeb: |
| code = 0xea; |
| break; |
| } |
| bfd_put_8 (abfd, code, contents + irel->r_offset - 1); |
| |
| /* Set the reloc type and symbol for the first branch |
| from the second branch. */ |
| irel->r_info = nrel->r_info; |
| |
| /* Make the reloc for the second branch a null reloc. */ |
| nrel->r_info = ELF32_R_INFO (ELF32_R_SYM (nrel->r_info), |
| R_MN10300_NONE); |
| |
| /* Delete two bytes of data. */ |
| if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| irel->r_offset + 1, 2)) |
| goto error_return; |
| |
| /* That will change things, so, we should relax again. |
| Note that this is not required, and it may be slow. */ |
| *again = true; |
| } |
| |
| /* Try to turn a 24 immediate, displacement or absolute address |
| into a 8 immediate, displacement or absolute address. */ |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_24) |
| { |
| bfd_vma value = symval; |
| value += irel->r_addend; |
| |
| /* See if the value will fit in 8 bits. */ |
| if ((long) value < 0x7f && (long) value > -0x80) |
| { |
| unsigned char code; |
| |
| /* AM33 insns which have 24 operands are 6 bytes long and |
| will have 0xfd as the first byte. */ |
| |
| /* Get the first opcode. */ |
| code = bfd_get_8 (abfd, contents + irel->r_offset - 3); |
| |
| if (code == 0xfd) |
| { |
| /* Get the second opcode. */ |
| code = bfd_get_8 (abfd, contents + irel->r_offset - 2); |
| |
| /* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit |
| equivalent instructions exists. */ |
| if (code != 0x6b && code != 0x7b |
| && code != 0x8b && code != 0x9b |
| && ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08 |
| || (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b |
| || (code & 0x0f) == 0x0e)) |
| { |
| /* Not safe if the high bit is on as relaxing may |
| move the value out of high mem and thus not fit |
| in a signed 8bit value. This is currently over |
| conservative. */ |
| if ((value & 0x80) == 0) |
| { |
| /* Note that we've changed the relocation contents, |
| etc. */ |
| elf_section_data (sec)->relocs = internal_relocs; |
| elf_section_data (sec)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| /* Fix the opcode. */ |
| bfd_put_8 (abfd, 0xfb, contents + irel->r_offset - 3); |
| bfd_put_8 (abfd, code, contents + irel->r_offset - 2); |
| |
| /* Fix the relocation's type. */ |
| irel->r_info = |
| ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| R_MN10300_8); |
| |
| /* Delete two bytes of data. */ |
| if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| irel->r_offset + 1, 2)) |
| goto error_return; |
| |
| /* That will change things, so, we should relax |
| again. Note that this is not required, and it |
| may be slow. */ |
| *again = true; |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| /* Try to turn a 32bit immediate, displacement or absolute address |
| into a 16bit immediate, displacement or absolute address. */ |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_32 |
| || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32 |
| || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32) |
| { |
| bfd_vma value = symval; |
| |
| if (ELF32_R_TYPE (irel->r_info) != (int) R_MN10300_32) |
| { |
| asection * sgot; |
| |
| sgot = hash_table->root.sgot; |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32) |
| { |
| value = sgot->output_offset; |
| |
| if (h) |
| value += h->root.got.offset; |
| else |
| value += (elf_local_got_offsets |
| (abfd)[ELF32_R_SYM (irel->r_info)]); |
| } |
| else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32) |
| value -= sgot->output_section->vma; |
| else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTPC32) |
| value = (sgot->output_section->vma |
| - (sec->output_section->vma |
| + sec->output_offset |
| + irel->r_offset)); |
| else |
| abort (); |
| } |
| |
| value += irel->r_addend; |
| |
| /* See if the value will fit in 24 bits. |
| We allow any 16bit match here. We prune those we can't |
| handle below. */ |
| if (value + 0x800000 < 0x1000000 && irel->r_offset >= 3) |
| { |
| unsigned char code; |
| |
| /* AM33 insns which have 32bit operands are 7 bytes long and |
| will have 0xfe as the first byte. */ |
| |
| /* Get the first opcode. */ |
| code = bfd_get_8 (abfd, contents + irel->r_offset - 3); |
| |
| if (code == 0xfe) |
| { |
| /* Get the second opcode. */ |
| code = bfd_get_8 (abfd, contents + irel->r_offset - 2); |
| |
| /* All the am33 32 -> 24 relaxing possibilities. */ |
| /* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit |
| equivalent instructions exists. */ |
| if (code != 0x6b && code != 0x7b |
| && code != 0x8b && code != 0x9b |
| && (ELF32_R_TYPE (irel->r_info) |
| != (int) R_MN10300_GOTPC32) |
| && ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08 |
| || (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b |
| || (code & 0x0f) == 0x0e)) |
| { |
| /* Not safe if the high bit is on as relaxing may |
| move the value out of high mem and thus not fit |
| in a signed 16bit value. This is currently over |
| conservative. */ |
| if ((value & 0x8000) == 0) |
| { |
| /* Note that we've changed the relocation contents, |
| etc. */ |
| elf_section_data (sec)->relocs = internal_relocs; |
| elf_section_data (sec)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| /* Fix the opcode. */ |
| bfd_put_8 (abfd, 0xfd, contents + irel->r_offset - 3); |
| bfd_put_8 (abfd, code, contents + irel->r_offset - 2); |
| |
| /* Fix the relocation's type. */ |
| irel->r_info = |
| ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOTOFF32) |
| ? R_MN10300_GOTOFF24 |
| : (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOT32) |
| ? R_MN10300_GOT24 : |
| R_MN10300_24); |
| |
| /* Delete one byte of data. */ |
| if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| irel->r_offset + 3, 1)) |
| goto error_return; |
| |
| /* That will change things, so, we should relax |
| again. Note that this is not required, and it |
| may be slow. */ |
| *again = true; |
| break; |
| } |
| } |
| } |
| } |
| |
| /* See if the value will fit in 16 bits. |
| We allow any 16bit match here. We prune those we can't |
| handle below. */ |
| if (value + 0x8000 < 0x10000 && irel->r_offset >= 2) |
| { |
| unsigned char code; |
| |
| /* Most insns which have 32bit operands are 6 bytes long; |
| exceptions are pcrel insns and bit insns. |
| |
| We handle pcrel insns above. We don't bother trying |
| to handle the bit insns here. |
| |
| The first byte of the remaining insns will be 0xfc. */ |
| |
| /* Get the first opcode. */ |
| code = bfd_get_8 (abfd, contents + irel->r_offset - 2); |
| |
| if (code != 0xfc) |
| continue; |
| |
| /* Get the second opcode. */ |
| code = bfd_get_8 (abfd, contents + irel->r_offset - 1); |
| |
| if ((code & 0xf0) < 0x80) |
| switch (code & 0xf0) |
| { |
| /* mov (d32,am),dn -> mov (d32,am),dn |
| mov dm,(d32,am) -> mov dn,(d32,am) |
| mov (d32,am),an -> mov (d32,am),an |
| mov dm,(d32,am) -> mov dn,(d32,am) |
| movbu (d32,am),dn -> movbu (d32,am),dn |
| movbu dm,(d32,am) -> movbu dn,(d32,am) |
| movhu (d32,am),dn -> movhu (d32,am),dn |
| movhu dm,(d32,am) -> movhu dn,(d32,am) */ |
| case 0x00: |
| case 0x10: |
| case 0x20: |
| case 0x30: |
| case 0x40: |
| case 0x50: |
| case 0x60: |
| case 0x70: |
| /* Not safe if the high bit is on as relaxing may |
| move the value out of high mem and thus not fit |
| in a signed 16bit value. */ |
| if (code == 0xcc |
| && (value & 0x8000)) |
| continue; |
| |
| /* Note that we've changed the relocation contents, etc. */ |
| elf_section_data (sec)->relocs = internal_relocs; |
| elf_section_data (sec)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| /* Fix the opcode. */ |
| bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); |
| bfd_put_8 (abfd, code, contents + irel->r_offset - 1); |
| |
| /* Fix the relocation's type. */ |
| irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOTOFF32) |
| ? R_MN10300_GOTOFF16 |
| : (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOT32) |
| ? R_MN10300_GOT16 |
| : (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOTPC32) |
| ? R_MN10300_GOTPC16 : |
| R_MN10300_16); |
| |
| /* Delete two bytes of data. */ |
| if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| irel->r_offset + 2, 2)) |
| goto error_return; |
| |
| /* That will change things, so, we should relax again. |
| Note that this is not required, and it may be slow. */ |
| *again = true; |
| break; |
| } |
| else if ((code & 0xf0) == 0x80 |
| || (code & 0xf0) == 0x90) |
| switch (code & 0xf3) |
| { |
| /* mov dn,(abs32) -> mov dn,(abs16) |
| movbu dn,(abs32) -> movbu dn,(abs16) |
| movhu dn,(abs32) -> movhu dn,(abs16) */ |
| case 0x81: |
| case 0x82: |
| case 0x83: |
| /* Note that we've changed the relocation contents, etc. */ |
| elf_section_data (sec)->relocs = internal_relocs; |
| elf_section_data (sec)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| if ((code & 0xf3) == 0x81) |
| code = 0x01 + (code & 0x0c); |
| else if ((code & 0xf3) == 0x82) |
| code = 0x02 + (code & 0x0c); |
| else if ((code & 0xf3) == 0x83) |
| code = 0x03 + (code & 0x0c); |
| else |
| abort (); |
| |
| /* Fix the opcode. */ |
| bfd_put_8 (abfd, code, contents + irel->r_offset - 2); |
| |
| /* Fix the relocation's type. */ |
| irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOTOFF32) |
| ? R_MN10300_GOTOFF16 |
| : (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOT32) |
| ? R_MN10300_GOT16 |
| : (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOTPC32) |
| ? R_MN10300_GOTPC16 : |
| R_MN10300_16); |
| |
| /* The opcode got shorter too, so we have to fix the |
| addend and offset too! */ |
| irel->r_offset -= 1; |
| |
| /* Delete three bytes of data. */ |
| if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| irel->r_offset + 1, 3)) |
| goto error_return; |
| |
| /* That will change things, so, we should relax again. |
| Note that this is not required, and it may be slow. */ |
| *again = true; |
| break; |
| |
| /* mov am,(abs32) -> mov am,(abs16) |
| mov am,(d32,sp) -> mov am,(d16,sp) |
| mov dm,(d32,sp) -> mov dm,(d32,sp) |
| movbu dm,(d32,sp) -> movbu dm,(d32,sp) |
| movhu dm,(d32,sp) -> movhu dm,(d32,sp) */ |
| case 0x80: |
| case 0x90: |
| case 0x91: |
| case 0x92: |
| case 0x93: |
| /* sp-based offsets are zero-extended. */ |
| if (code >= 0x90 && code <= 0x93 |
| && (long) value < 0) |
| continue; |
| |
| /* Note that we've changed the relocation contents, etc. */ |
| elf_section_data (sec)->relocs = internal_relocs; |
| elf_section_data (sec)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| /* Fix the opcode. */ |
| bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); |
| bfd_put_8 (abfd, code, contents + irel->r_offset - 1); |
| |
| /* Fix the relocation's type. */ |
| irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOTOFF32) |
| ? R_MN10300_GOTOFF16 |
| : (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOT32) |
| ? R_MN10300_GOT16 |
| : (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOTPC32) |
| ? R_MN10300_GOTPC16 : |
| R_MN10300_16); |
| |
| /* Delete two bytes of data. */ |
| if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| irel->r_offset + 2, 2)) |
| goto error_return; |
| |
| /* That will change things, so, we should relax again. |
| Note that this is not required, and it may be slow. */ |
| *again = true; |
| break; |
| } |
| else if ((code & 0xf0) < 0xf0) |
| switch (code & 0xfc) |
| { |
| /* mov imm32,dn -> mov imm16,dn |
| mov imm32,an -> mov imm16,an |
| mov (abs32),dn -> mov (abs16),dn |
| movbu (abs32),dn -> movbu (abs16),dn |
| movhu (abs32),dn -> movhu (abs16),dn */ |
| case 0xcc: |
| case 0xdc: |
| case 0xa4: |
| case 0xa8: |
| case 0xac: |
| /* Not safe if the high bit is on as relaxing may |
| move the value out of high mem and thus not fit |
| in a signed 16bit value. */ |
| if (code == 0xcc |
| && (value & 0x8000)) |
| continue; |
| |
| /* "mov imm16, an" zero-extends the immediate. */ |
| if ((code & 0xfc) == 0xdc |
| && (long) value < 0) |
| continue; |
| |
| /* Note that we've changed the relocation contents, etc. */ |
| elf_section_data (sec)->relocs = internal_relocs; |
| elf_section_data (sec)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| if ((code & 0xfc) == 0xcc) |
| code = 0x2c + (code & 0x03); |
| else if ((code & 0xfc) == 0xdc) |
| code = 0x24 + (code & 0x03); |
| else if ((code & 0xfc) == 0xa4) |
| code = 0x30 + (code & 0x03); |
| else if ((code & 0xfc) == 0xa8) |
| code = 0x34 + (code & 0x03); |
| else if ((code & 0xfc) == 0xac) |
| code = 0x38 + (code & 0x03); |
| else |
| abort (); |
| |
| /* Fix the opcode. */ |
| bfd_put_8 (abfd, code, contents + irel->r_offset - 2); |
| |
| /* Fix the relocation's type. */ |
| irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOTOFF32) |
| ? R_MN10300_GOTOFF16 |
| : (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOT32) |
| ? R_MN10300_GOT16 |
| : (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOTPC32) |
| ? R_MN10300_GOTPC16 : |
| R_MN10300_16); |
| |
| /* The opcode got shorter too, so we have to fix the |
| addend and offset too! */ |
| irel->r_offset -= 1; |
| |
| /* Delete three bytes of data. */ |
| if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| irel->r_offset + 1, 3)) |
| goto error_return; |
| |
| /* That will change things, so, we should relax again. |
| Note that this is not required, and it may be slow. */ |
| *again = true; |
| break; |
| |
| /* mov (abs32),an -> mov (abs16),an |
| mov (d32,sp),an -> mov (d16,sp),an |
| mov (d32,sp),dn -> mov (d16,sp),dn |
| movbu (d32,sp),dn -> movbu (d16,sp),dn |
| movhu (d32,sp),dn -> movhu (d16,sp),dn |
| add imm32,dn -> add imm16,dn |
| cmp imm32,dn -> cmp imm16,dn |
| add imm32,an -> add imm16,an |
| cmp imm32,an -> cmp imm16,an |
| and imm32,dn -> and imm16,dn |
| or imm32,dn -> or imm16,dn |
| xor imm32,dn -> xor imm16,dn |
| btst imm32,dn -> btst imm16,dn */ |
| |
| case 0xa0: |
| case 0xb0: |
| case 0xb1: |
| case 0xb2: |
| case 0xb3: |
| case 0xc0: |
| case 0xc8: |
| |
| case 0xd0: |
| case 0xd8: |
| case 0xe0: |
| case 0xe1: |
| case 0xe2: |
| case 0xe3: |
| /* cmp imm16, an zero-extends the immediate. */ |
| if (code == 0xdc |
| && (long) value < 0) |
| continue; |
| |
| /* So do sp-based offsets. */ |
| if (code >= 0xb0 && code <= 0xb3 |
| && (long) value < 0) |
| continue; |
| |
| /* Note that we've changed the relocation contents, etc. */ |
| elf_section_data (sec)->relocs = internal_relocs; |
| elf_section_data (sec)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| /* Fix the opcode. */ |
| bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); |
| bfd_put_8 (abfd, code, contents + irel->r_offset - 1); |
| |
| /* Fix the relocation's type. */ |
| irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOTOFF32) |
| ? R_MN10300_GOTOFF16 |
| : (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOT32) |
| ? R_MN10300_GOT16 |
| : (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOTPC32) |
| ? R_MN10300_GOTPC16 : |
| R_MN10300_16); |
| |
| /* Delete two bytes of data. */ |
| if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| irel->r_offset + 2, 2)) |
| goto error_return; |
| |
| /* That will change things, so, we should relax again. |
| Note that this is not required, and it may be slow. */ |
| *again = true; |
| break; |
| } |
| else if (code == 0xfe) |
| { |
| /* add imm32,sp -> add imm16,sp */ |
| |
| /* Note that we've changed the relocation contents, etc. */ |
| elf_section_data (sec)->relocs = internal_relocs; |
| elf_section_data (sec)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| /* Fix the opcode. */ |
| bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2); |
| bfd_put_8 (abfd, 0xfe, contents + irel->r_offset - 1); |
| |
| /* Fix the relocation's type. */ |
| irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOT32) |
| ? R_MN10300_GOT16 |
| : (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOTOFF32) |
| ? R_MN10300_GOTOFF16 |
| : (ELF32_R_TYPE (irel->r_info) |
| == (int) R_MN10300_GOTPC32) |
| ? R_MN10300_GOTPC16 : |
| R_MN10300_16); |
| |
| /* Delete two bytes of data. */ |
| if (!mn10300_elf_relax_delete_bytes (abfd, sec, |
| irel->r_offset + 2, 2)) |
| goto error_return; |
| |
| /* That will change things, so, we should relax again. |
| Note that this is not required, and it may be slow. */ |
| *again = true; |
| break; |
| } |
| } |
| } |
| } |
| |
| if (isymbuf != NULL |
| && symtab_hdr->contents != (unsigned char *) isymbuf) |
| { |
| if (! link_info->keep_memory) |
| free (isymbuf); |
| else |
| { |
| /* Cache the symbols for elf_link_input_bfd. */ |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| } |
| } |
| |
| if (contents != NULL |
| && elf_section_data (sec)->this_hdr.contents != contents) |
| { |
| if (! link_info->keep_memory) |
| free (contents); |
| else |
| { |
| /* Cache the section contents for elf_link_input_bfd. */ |
| elf_section_data (sec)->this_hdr.contents = contents; |
| } |
| } |
| |
| if (elf_section_data (sec)->relocs != internal_relocs) |
| free (internal_relocs); |
| |
| return true; |
| |
| error_return: |
| if (symtab_hdr->contents != (unsigned char *) isymbuf) |
| free (isymbuf); |
| if (elf_section_data (section)->this_hdr.contents != contents) |
| free (contents); |
| if (elf_section_data (section)->relocs != internal_relocs) |
| free (internal_relocs); |
| |
| return false; |
| } |
| |
| /* This is a version of bfd_generic_get_relocated_section_contents |
| which uses mn10300_elf_relocate_section. */ |
| |
| static bfd_byte * |
| mn10300_elf_get_relocated_section_contents (bfd *output_bfd, |
| struct bfd_link_info *link_info, |
| struct bfd_link_order *link_order, |
| bfd_byte *data, |
| bool relocatable, |
| asymbol **symbols) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| asection *input_section = link_order->u.indirect.section; |
| bfd *input_bfd = input_section->owner; |
| asection **sections = NULL; |
| Elf_Internal_Rela *internal_relocs = NULL; |
| Elf_Internal_Sym *isymbuf = NULL; |
| |
| /* We only need to handle the case of relaxing, or of having a |
| particular set of section contents, specially. */ |
| if (relocatable |
| || elf_section_data (input_section)->this_hdr.contents == NULL) |
| return bfd_generic_get_relocated_section_contents (output_bfd, link_info, |
| link_order, data, |
| relocatable, |
| symbols); |
| |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| |
| memcpy (data, elf_section_data (input_section)->this_hdr.contents, |
| (size_t) input_section->size); |
| |
| if ((input_section->flags & SEC_RELOC) != 0 |
| && input_section->reloc_count > 0) |
| { |
| asection **secpp; |
| Elf_Internal_Sym *isym, *isymend; |
| bfd_size_type amt; |
| |
| internal_relocs = _bfd_elf_link_read_relocs (input_bfd, input_section, |
| NULL, NULL, false); |
| if (internal_relocs == NULL) |
| goto error_return; |
| |
| if (symtab_hdr->sh_info != 0) |
| { |
| isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| if (isymbuf == NULL) |
| isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, |
| symtab_hdr->sh_info, 0, |
| NULL, NULL, NULL); |
| if (isymbuf == NULL) |
| goto error_return; |
| } |
| |
| amt = symtab_hdr->sh_info; |
| amt *= sizeof (asection *); |
| sections = bfd_malloc (amt); |
| if (sections == NULL && amt != 0) |
| goto error_return; |
| |
| isymend = isymbuf + symtab_hdr->sh_info; |
| for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp) |
| { |
| asection *isec; |
| |
| if (isym->st_shndx == SHN_UNDEF) |
| isec = bfd_und_section_ptr; |
| else if (isym->st_shndx == SHN_ABS) |
| isec = bfd_abs_section_ptr; |
| else if (isym->st_shndx == SHN_COMMON) |
| isec = bfd_com_section_ptr; |
| else |
| isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); |
| |
| *secpp = isec; |
| } |
| |
| if (! mn10300_elf_relocate_section (output_bfd, link_info, input_bfd, |
| input_section, data, internal_relocs, |
| isymbuf, sections)) |
| goto error_return; |
| |
| free (sections); |
| if (symtab_hdr->contents != (unsigned char *) isymbuf) |
| free (isymbuf); |
| if (internal_relocs != elf_section_data (input_section)->relocs) |
| free (internal_relocs); |
| } |
| |
| return data; |
| |
| error_return: |
| free (sections); |
| if (symtab_hdr->contents != (unsigned char *) isymbuf) |
| free (isymbuf); |
| if (internal_relocs != elf_section_data (input_section)->relocs) |
| free (internal_relocs); |
| return NULL; |
| } |
| |
| /* Assorted hash table functions. */ |
| |
| /* Initialize an entry in the link hash table. */ |
| |
| /* Create an entry in an MN10300 ELF linker hash table. */ |
| |
| static struct bfd_hash_entry * |
| elf32_mn10300_link_hash_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, |
| const char *string) |
| { |
| struct elf32_mn10300_link_hash_entry *ret = |
| (struct elf32_mn10300_link_hash_entry *) entry; |
| |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (ret == NULL) |
| ret = (struct elf32_mn10300_link_hash_entry *) |
| bfd_hash_allocate (table, sizeof (* ret)); |
| if (ret == NULL) |
| return (struct bfd_hash_entry *) ret; |
| |
| /* Call the allocation method of the superclass. */ |
| ret = (struct elf32_mn10300_link_hash_entry *) |
| _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, |
| table, string); |
| if (ret != NULL) |
| { |
| ret->direct_calls = 0; |
| ret->stack_size = 0; |
| ret->movm_args = 0; |
| ret->movm_stack_size = 0; |
| ret->flags = 0; |
| ret->value = 0; |
| ret->tls_type = GOT_UNKNOWN; |
| } |
| |
| return (struct bfd_hash_entry *) ret; |
| } |
| |
| static void |
| _bfd_mn10300_copy_indirect_symbol (struct bfd_link_info * info, |
| struct elf_link_hash_entry * dir, |
| struct elf_link_hash_entry * ind) |
| { |
| struct elf32_mn10300_link_hash_entry * edir; |
| struct elf32_mn10300_link_hash_entry * eind; |
| |
| edir = elf_mn10300_hash_entry (dir); |
| eind = elf_mn10300_hash_entry (ind); |
| |
| if (ind->root.type == bfd_link_hash_indirect |
| && dir->got.refcount <= 0) |
| { |
| edir->tls_type = eind->tls_type; |
| eind->tls_type = GOT_UNKNOWN; |
| } |
| edir->direct_calls = eind->direct_calls; |
| edir->stack_size = eind->stack_size; |
| edir->movm_args = eind->movm_args; |
| edir->movm_stack_size = eind->movm_stack_size; |
| edir->flags = eind->flags; |
| |
| _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
| } |
| |
| /* Destroy an mn10300 ELF linker hash table. */ |
| |
| static void |
| elf32_mn10300_link_hash_table_free (bfd *obfd) |
| { |
| struct elf32_mn10300_link_hash_table *ret |
| = (struct elf32_mn10300_link_hash_table *) obfd->link.hash; |
| |
| obfd->link.hash = &ret->static_hash_table->root.root; |
| _bfd_elf_link_hash_table_free (obfd); |
| obfd->is_linker_output = true; |
| obfd->link.hash = &ret->root.root; |
| _bfd_elf_link_hash_table_free (obfd); |
| } |
| |
| /* Create an mn10300 ELF linker hash table. */ |
| |
| static struct bfd_link_hash_table * |
| elf32_mn10300_link_hash_table_create (bfd *abfd) |
| { |
| struct elf32_mn10300_link_hash_table *ret; |
| size_t amt = sizeof (* ret); |
| |
| ret = bfd_zmalloc (amt); |
| if (ret == NULL) |
| return NULL; |
| |
| amt = sizeof (struct elf_link_hash_table); |
| ret->static_hash_table = bfd_zmalloc (amt); |
| if (ret->static_hash_table == NULL) |
| { |
| free (ret); |
| return NULL; |
| } |
| |
| if (!_bfd_elf_link_hash_table_init (&ret->static_hash_table->root, abfd, |
| elf32_mn10300_link_hash_newfunc, |
| sizeof (struct elf32_mn10300_link_hash_entry), |
| MN10300_ELF_DATA)) |
| { |
| free (ret->static_hash_table); |
| free (ret); |
| return NULL; |
| } |
| |
| abfd->is_linker_output = false; |
| abfd->link.hash = NULL; |
| if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
| elf32_mn10300_link_hash_newfunc, |
| sizeof (struct elf32_mn10300_link_hash_entry), |
| MN10300_ELF_DATA)) |
| { |
| abfd->is_linker_output = true; |
| abfd->link.hash = &ret->static_hash_table->root.root; |
| _bfd_elf_link_hash_table_free (abfd); |
| free (ret); |
| return NULL; |
| } |
| ret->root.root.hash_table_free = elf32_mn10300_link_hash_table_free; |
| |
| ret->tls_ldm_got.offset = -1; |
| |
| return & ret->root.root; |
| } |
| |
| static unsigned long |
| elf_mn10300_mach (flagword flags) |
| { |
| switch (flags & EF_MN10300_MACH) |
| { |
| case E_MN10300_MACH_MN10300: |
| default: |
| return bfd_mach_mn10300; |
| |
| case E_MN10300_MACH_AM33: |
| return bfd_mach_am33; |
| |
| case E_MN10300_MACH_AM33_2: |
| return bfd_mach_am33_2; |
| } |
| } |
| |
| /* The final processing done just before writing out a MN10300 ELF object |
| file. This gets the MN10300 architecture right based on the machine |
| number. */ |
| |
| static bool |
| _bfd_mn10300_elf_final_write_processing (bfd *abfd) |
| { |
| unsigned long val; |
| |
| switch (bfd_get_mach (abfd)) |
| { |
| default: |
| case bfd_mach_mn10300: |
| val = E_MN10300_MACH_MN10300; |
| break; |
| |
| case bfd_mach_am33: |
| val = E_MN10300_MACH_AM33; |
| break; |
| |
| case bfd_mach_am33_2: |
| val = E_MN10300_MACH_AM33_2; |
| break; |
| } |
| |
| elf_elfheader (abfd)->e_flags &= ~ (EF_MN10300_MACH); |
| elf_elfheader (abfd)->e_flags |= val; |
| return _bfd_elf_final_write_processing (abfd); |
| } |
| |
| static bool |
| _bfd_mn10300_elf_object_p (bfd *abfd) |
| { |
| bfd_default_set_arch_mach (abfd, bfd_arch_mn10300, |
| elf_mn10300_mach (elf_elfheader (abfd)->e_flags)); |
| return true; |
| } |
| |
| /* Merge backend specific data from an object file to the output |
| object file when linking. */ |
| |
| static bool |
| _bfd_mn10300_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) |
| { |
| bfd *obfd = info->output_bfd; |
| |
| if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour |
| || bfd_get_flavour (obfd) != bfd_target_elf_flavour) |
| return true; |
| |
| if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
| && bfd_get_mach (obfd) < bfd_get_mach (ibfd)) |
| { |
| if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), |
| bfd_get_mach (ibfd))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| #define PLT0_ENTRY_SIZE 15 |
| #define PLT_ENTRY_SIZE 20 |
| #define PIC_PLT_ENTRY_SIZE 24 |
| |
| static const bfd_byte elf_mn10300_plt0_entry[PLT0_ENTRY_SIZE] = |
| { |
| 0xfc, 0xa0, 0, 0, 0, 0, /* mov (.got+8),a0 */ |
| 0xfe, 0xe, 0x10, 0, 0, 0, 0, /* mov (.got+4),r1 */ |
| 0xf0, 0xf4, /* jmp (a0) */ |
| }; |
| |
| static const bfd_byte elf_mn10300_plt_entry[PLT_ENTRY_SIZE] = |
| { |
| 0xfc, 0xa0, 0, 0, 0, 0, /* mov (nameN@GOT + .got),a0 */ |
| 0xf0, 0xf4, /* jmp (a0) */ |
| 0xfe, 8, 0, 0, 0, 0, 0, /* mov reloc-table-address,r0 */ |
| 0xdc, 0, 0, 0, 0, /* jmp .plt0 */ |
| }; |
| |
| static const bfd_byte elf_mn10300_pic_plt_entry[PIC_PLT_ENTRY_SIZE] = |
| { |
| 0xfc, 0x22, 0, 0, 0, 0, /* mov (nameN@GOT,a2),a0 */ |
| 0xf0, 0xf4, /* jmp (a0) */ |
| 0xfe, 8, 0, 0, 0, 0, 0, /* mov reloc-table-address,r0 */ |
| 0xf8, 0x22, 8, /* mov (8,a2),a0 */ |
| 0xfb, 0xa, 0x1a, 4, /* mov (4,a2),r1 */ |
| 0xf0, 0xf4, /* jmp (a0) */ |
| }; |
| |
| /* Return size of the first PLT entry. */ |
| #define elf_mn10300_sizeof_plt0(info) \ |
| (bfd_link_pic (info) ? PIC_PLT_ENTRY_SIZE : PLT0_ENTRY_SIZE) |
| |
| /* Return size of a PLT entry. */ |
| #define elf_mn10300_sizeof_plt(info) \ |
| (bfd_link_pic (info) ? PIC_PLT_ENTRY_SIZE : PLT_ENTRY_SIZE) |
| |
| /* Return offset of the PLT0 address in an absolute PLT entry. */ |
| #define elf_mn10300_plt_plt0_offset(info) 16 |
| |
| /* Return offset of the linker in PLT0 entry. */ |
| #define elf_mn10300_plt0_linker_offset(info) 2 |
| |
| /* Return offset of the GOT id in PLT0 entry. */ |
| #define elf_mn10300_plt0_gotid_offset(info) 9 |
| |
| /* Return offset of the temporary in PLT entry. */ |
| #define elf_mn10300_plt_temp_offset(info) 8 |
| |
| /* Return offset of the symbol in PLT entry. */ |
| #define elf_mn10300_plt_symbol_offset(info) 2 |
| |
| /* Return offset of the relocation in PLT entry. */ |
| #define elf_mn10300_plt_reloc_offset(info) 11 |
| |
| /* The name of the dynamic interpreter. This is put in the .interp |
| section. */ |
| |
| #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" |
| |
| /* Create dynamic sections when linking against a dynamic object. */ |
| |
| static bool |
| _bfd_mn10300_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
| { |
| flagword flags; |
| asection * s; |
| const struct elf_backend_data * bed = get_elf_backend_data (abfd); |
| struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); |
| int ptralign = 0; |
| |
| switch (bed->s->arch_size) |
| { |
| case 32: |
| ptralign = 2; |
| break; |
| |
| case 64: |
| ptralign = 3; |
| break; |
| |
| default: |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and |
| .rel[a].bss sections. */ |
| flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED); |
| |
| s = bfd_make_section_anyway_with_flags (abfd, |
| (bed->default_use_rela_p |
| ? ".rela.plt" : ".rel.plt"), |
| flags | SEC_READONLY); |
| htab->root.srelplt = s; |
| if (s == NULL |
| || !bfd_set_section_alignment (s, ptralign)) |
| return false; |
| |
| if (! _bfd_mn10300_elf_create_got_section (abfd, info)) |
| return false; |
| |
| if (bed->want_dynbss) |
| { |
| /* The .dynbss section is a place to put symbols which are defined |
| by dynamic objects, are referenced by regular objects, and are |
| not functions. We must allocate space for them in the process |
| image and use a R_*_COPY reloc to tell the dynamic linker to |
| initialize them at run time. The linker script puts the .dynbss |
| section into the .bss section of the final image. */ |
| s = bfd_make_section_anyway_with_flags (abfd, ".dynbss", |
| SEC_ALLOC | SEC_LINKER_CREATED); |
| if (s == NULL) |
| return false; |
| |
| /* The .rel[a].bss section holds copy relocs. This section is not |
| normally needed. We need to create it here, though, so that the |
| linker will map it to an output section. We can't just create it |
| only if we need it, because we will not know whether we need it |
| until we have seen all the input files, and the first time the |
| main linker code calls BFD after examining all the input files |
| (size_dynamic_sections) the input sections have already been |
| mapped to the output sections. If the section turns out not to |
| be needed, we can discard it later. We will never need this |
| section when generating a shared object, since they do not use |
| copy relocs. */ |
| if (! bfd_link_pic (info)) |
| { |
| s = bfd_make_section_anyway_with_flags (abfd, |
| (bed->default_use_rela_p |
| ? ".rela.bss" : ".rel.bss"), |
| flags | SEC_READONLY); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, ptralign)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Adjust a symbol defined by a dynamic object and referenced by a |
| regular object. The current definition is in some section of the |
| dynamic object, but we're not including those sections. We have to |
| change the definition to something the rest of the link can |
| understand. */ |
| |
| static bool |
| _bfd_mn10300_elf_adjust_dynamic_symbol (struct bfd_link_info * info, |
| struct elf_link_hash_entry * h) |
| { |
| struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); |
| bfd * dynobj; |
| asection * s; |
| |
| dynobj = htab->root.dynobj; |
| |
| /* Make sure we know what is going on here. */ |
| BFD_ASSERT (dynobj != NULL |
| && (h->needs_plt |
| || h->is_weakalias |
| || (h->def_dynamic |
| && h->ref_regular |
| && !h->def_regular))); |
| |
| /* If this is a function, put it in the procedure linkage table. We |
| will fill in the contents of the procedure linkage table later, |
| when we know the address of the .got section. */ |
| if (h->type == STT_FUNC |
| || h->needs_plt) |
| { |
| if (! bfd_link_pic (info) |
| && !h->def_dynamic |
| && !h->ref_dynamic) |
| { |
| /* This case can occur if we saw a PLT reloc in an input |
| file, but the symbol was never referred to by a dynamic |
| object. In such a case, we don't actually need to build |
| a procedure linkage table, and we can just do a REL32 |
| reloc instead. */ |
| BFD_ASSERT (h->needs_plt); |
| return true; |
| } |
| |
| /* Make sure this symbol is output as a dynamic symbol. */ |
| if (h->dynindx == -1) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| |
| s = htab->root.splt; |
| BFD_ASSERT (s != NULL); |
| |
| /* If this is the first .plt entry, make room for the special |
| first entry. */ |
| if (s->size == 0) |
| s->size += elf_mn10300_sizeof_plt0 (info); |
| |
| /* If this symbol is not defined in a regular file, and we are |
| not generating a shared library, then set the symbol to this |
| location in the .plt. This is required to make function |
| pointers compare as equal between the normal executable and |
| the shared library. */ |
| if (! bfd_link_pic (info) |
| && !h->def_regular) |
| { |
| h->root.u.def.section = s; |
| h->root.u.def.value = s->size; |
| } |
| |
| h->plt.offset = s->size; |
| |
| /* Make room for this entry. */ |
| s->size += elf_mn10300_sizeof_plt (info); |
| |
| /* We also need to make an entry in the .got.plt section, which |
| will be placed in the .got section by the linker script. */ |
| s = htab->root.sgotplt; |
| BFD_ASSERT (s != NULL); |
| s->size += 4; |
| |
| /* We also need to make an entry in the .rela.plt section. */ |
| s = htab->root.srelplt; |
| BFD_ASSERT (s != NULL); |
| s->size += sizeof (Elf32_External_Rela); |
| |
| return true; |
| } |
| |
| /* If this is a weak symbol, and there is a real definition, the |
| processor independent code will have arranged for us to see the |
| real definition first, and we can just use the same value. */ |
| if (h->is_weakalias) |
| { |
| struct elf_link_hash_entry *def = weakdef (h); |
| BFD_ASSERT (def->root.type == bfd_link_hash_defined); |
| h->root.u.def.section = def->root.u.def.section; |
| h->root.u.def.value = def->root.u.def.value; |
| return true; |
| } |
| |
| /* This is a reference to a symbol defined by a dynamic object which |
| is not a function. */ |
| |
| /* If we are creating a shared library, we must presume that the |
| only references to the symbol are via the global offset table. |
| For such cases we need not do anything here; the relocations will |
| be handled correctly by relocate_section. */ |
| if (bfd_link_pic (info)) |
| return true; |
| |
| /* If there are no references to this symbol that do not use the |
| GOT, we don't need to generate a copy reloc. */ |
| if (!h->non_got_ref) |
| return true; |
| |
| /* We must allocate the symbol in our .dynbss section, which will |
| become part of the .bss section of the executable. There will be |
| an entry for this symbol in the .dynsym section. The dynamic |
| object will contain position independent code, so all references |
| from the dynamic object to this symbol will go through the global |
| offset table. The dynamic linker will use the .dynsym entry to |
| determine the address it must put in the global offset table, so |
| both the dynamic object and the regular object will refer to the |
| same memory location for the variable. */ |
| |
| s = bfd_get_linker_section (dynobj, ".dynbss"); |
| BFD_ASSERT (s != NULL); |
| |
| /* We must generate a R_MN10300_COPY reloc to tell the dynamic linker to |
| copy the initial value out of the dynamic object and into the |
| runtime process image. We need to remember the offset into the |
| .rela.bss section we are going to use. */ |
| if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) |
| { |
| asection * srel; |
| |
| srel = bfd_get_linker_section (dynobj, ".rela.bss"); |
| BFD_ASSERT (srel != NULL); |
| srel->size += sizeof (Elf32_External_Rela); |
| h->needs_copy = 1; |
| } |
| |
| return _bfd_elf_adjust_dynamic_copy (info, h, s); |
| } |
| |
| /* Set the sizes of the dynamic sections. */ |
| |
| static bool |
| _bfd_mn10300_elf_size_dynamic_sections (bfd * output_bfd, |
| struct bfd_link_info * info) |
| { |
| struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); |
| bfd * dynobj; |
| asection * s; |
| bool relocs; |
| |
| dynobj = htab->root.dynobj; |
| BFD_ASSERT (dynobj != NULL); |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| /* Set the contents of the .interp section to the interpreter. */ |
| if (bfd_link_executable (info) && !info->nointerp) |
| { |
| s = bfd_get_linker_section (dynobj, ".interp"); |
| BFD_ASSERT (s != NULL); |
| s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
| s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
| } |
| } |
| else |
| { |
| /* We may have created entries in the .rela.got section. |
| However, if we are not creating the dynamic sections, we will |
| not actually use these entries. Reset the size of .rela.got, |
| which will cause it to get stripped from the output file |
| below. */ |
| s = htab->root.sgot; |
| if (s != NULL) |
| s->size = 0; |
| } |
| |
| if (htab->tls_ldm_got.refcount > 0) |
| { |
| s = htab->root.srelgot; |
| BFD_ASSERT (s != NULL); |
| s->size += sizeof (Elf32_External_Rela); |
| } |
| |
| /* The check_relocs and adjust_dynamic_symbol entry points have |
| determined the sizes of the various dynamic sections. Allocate |
| memory for them. */ |
| relocs = false; |
| for (s = dynobj->sections; s != NULL; s = s->next) |
| { |
| const char * name; |
| |
| if ((s->flags & SEC_LINKER_CREATED) == 0) |
| continue; |
| |
| /* It's OK to base decisions on the section name, because none |
| of the dynobj section names depend upon the input files. */ |
| name = bfd_section_name (s); |
| |
| if (streq (name, ".plt")) |
| { |
| /* Remember whether there is a PLT. */ |
| ; |
| } |
| else if (startswith (name, ".rela")) |
| { |
| if (s->size != 0) |
| { |
| /* Remember whether there are any reloc sections other |
| than .rela.plt. */ |
| if (! streq (name, ".rela.plt")) |
| relocs = true; |
| |
| /* We use the reloc_count field as a counter if we need |
| to copy relocs into the output file. */ |
| s->reloc_count = 0; |
| } |
| } |
| else if (! startswith (name, ".got") |
| && ! streq (name, ".dynbss")) |
| /* It's not one of our sections, so don't allocate space. */ |
| continue; |
| |
| if (s->size == 0) |
| { |
| /* If we don't need this section, strip it from the |
| output file. This is mostly to handle .rela.bss and |
| .rela.plt. We must create both sections in |
| create_dynamic_sections, because they must be created |
| before the linker maps input sections to output |
| sections. The linker does that before |
| adjust_dynamic_symbol is called, and it is that |
| function which decides whether anything needs to go |
| into these sections. */ |
| s->flags |= SEC_EXCLUDE; |
| continue; |
| } |
| |
| if ((s->flags & SEC_HAS_CONTENTS) == 0) |
| continue; |
| |
| /* Allocate memory for the section contents. We use bfd_zalloc |
| here in case unused entries are not reclaimed before the |
| section's contents are written out. This should not happen, |
| but this way if it does, we get a R_MN10300_NONE reloc |
| instead of garbage. */ |
| s->contents = bfd_zalloc (dynobj, s->size); |
| if (s->contents == NULL) |
| return false; |
| } |
| |
| return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs); |
| } |
| |
| /* Finish up dynamic symbol handling. We set the contents of various |
| dynamic sections here. */ |
| |
| static bool |
| _bfd_mn10300_elf_finish_dynamic_symbol (bfd * output_bfd, |
| struct bfd_link_info * info, |
| struct elf_link_hash_entry * h, |
| Elf_Internal_Sym * sym) |
| { |
| struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); |
| bfd * dynobj; |
| |
| dynobj = htab->root.dynobj; |
| |
| if (h->plt.offset != (bfd_vma) -1) |
| { |
| asection * splt; |
| asection * sgot; |
| asection * srel; |
| bfd_vma plt_index; |
| bfd_vma got_offset; |
| Elf_Internal_Rela rel; |
| |
| /* This symbol has an entry in the procedure linkage table. Set |
| it up. */ |
| |
| BFD_ASSERT (h->dynindx != -1); |
| |
| splt = htab->root.splt; |
| sgot = htab->root.sgotplt; |
| srel = htab->root.srelplt; |
| BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL); |
| |
| /* Get the index in the procedure linkage table which |
| corresponds to this symbol. This is the index of this symbol |
| in all the symbols for which we are making plt entries. The |
| first entry in the procedure linkage table is reserved. */ |
| plt_index = ((h->plt.offset - elf_mn10300_sizeof_plt0 (info)) |
| / elf_mn10300_sizeof_plt (info)); |
| |
| /* Get the offset into the .got table of the entry that |
| corresponds to this function. Each .got entry is 4 bytes. |
| The first three are reserved. */ |
| got_offset = (plt_index + 3) * 4; |
| |
| /* Fill in the entry in the procedure linkage table. */ |
| if (! bfd_link_pic (info)) |
| { |
| memcpy (splt->contents + h->plt.offset, elf_mn10300_plt_entry, |
| elf_mn10300_sizeof_plt (info)); |
| bfd_put_32 (output_bfd, |
| (sgot->output_section->vma |
| + sgot->output_offset |
| + got_offset), |
| (splt->contents + h->plt.offset |
| + elf_mn10300_plt_symbol_offset (info))); |
| |
| bfd_put_32 (output_bfd, |
| (1 - h->plt.offset - elf_mn10300_plt_plt0_offset (info)), |
| (splt->contents + h->plt.offset |
| + elf_mn10300_plt_plt0_offset (info))); |
| } |
| else |
| { |
| memcpy (splt->contents + h->plt.offset, elf_mn10300_pic_plt_entry, |
| elf_mn10300_sizeof_plt (info)); |
| |
| bfd_put_32 (output_bfd, got_offset, |
| (splt->contents + h->plt.offset |
| + elf_mn10300_plt_symbol_offset (info))); |
| } |
| |
| bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela), |
| (splt->contents + h->plt.offset |
| + elf_mn10300_plt_reloc_offset (info))); |
| |
| /* Fill in the entry in the global offset table. */ |
| bfd_put_32 (output_bfd, |
| (splt->output_section->vma |
| + splt->output_offset |
| + h->plt.offset |
| + elf_mn10300_plt_temp_offset (info)), |
| sgot->contents + got_offset); |
| |
| /* Fill in the entry in the .rela.plt section. */ |
| rel.r_offset = (sgot->output_section->vma |
| + sgot->output_offset |
| + got_offset); |
| rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_JMP_SLOT); |
| rel.r_addend = 0; |
| bfd_elf32_swap_reloca_out (output_bfd, &rel, |
| (bfd_byte *) ((Elf32_External_Rela *) srel->contents |
| + plt_index)); |
| |
| if (!h->def_regular) |
| /* Mark the symbol as undefined, rather than as defined in |
| the .plt section. Leave the value alone. */ |
| sym->st_shndx = SHN_UNDEF; |
| } |
| |
| if (h->got.offset != (bfd_vma) -1) |
| { |
| asection * sgot; |
| asection * srel; |
| Elf_Internal_Rela rel; |
| |
| /* This symbol has an entry in the global offset table. Set it up. */ |
| sgot = htab->root.sgot; |
| srel = htab->root.srelgot; |
| BFD_ASSERT (sgot != NULL && srel != NULL); |
| |
| rel.r_offset = (sgot->output_section->vma |
| + sgot->output_offset |
| + (h->got.offset & ~1)); |
| |
| switch (elf_mn10300_hash_entry (h)->tls_type) |
| { |
| case GOT_TLS_GD: |
| bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset); |
| bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset + 4); |
| rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPMOD); |
| rel.r_addend = 0; |
| bfd_elf32_swap_reloca_out (output_bfd, & rel, |
| (bfd_byte *) ((Elf32_External_Rela *) srel->contents |
| + srel->reloc_count)); |
| ++ srel->reloc_count; |
| rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPOFF); |
| rel.r_offset += 4; |
| rel.r_addend = 0; |
| break; |
| |
| case GOT_TLS_IE: |
| /* We originally stored the addend in the GOT, but at this |
| point, we want to move it to the reloc instead as that's |
| where the dynamic linker wants it. */ |
| rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + h->got.offset); |
| bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset); |
| if (h->dynindx == -1) |
| rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF); |
| else |
| rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_TPOFF); |
| break; |
| |
| default: |
| /* If this is a -Bsymbolic link, and the symbol is defined |
| locally, we just want to emit a RELATIVE reloc. Likewise if |
| the symbol was forced to be local because of a version file. |
| The entry in the global offset table will already have been |
| initialized in the relocate_section function. */ |
| if (bfd_link_pic (info) |
| && (info->symbolic || h->dynindx == -1) |
| && h->def_regular) |
| { |
| rel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE); |
| rel.r_addend = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| } |
| else |
| { |
| bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset); |
| rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_GLOB_DAT); |
| rel.r_addend = 0; |
| } |
| } |
| |
| if (ELF32_R_TYPE (rel.r_info) != R_MN10300_NONE) |
| { |
| bfd_elf32_swap_reloca_out (output_bfd, &rel, |
| (bfd_byte *) ((Elf32_External_Rela *) srel->contents |
| + srel->reloc_count)); |
| ++ srel->reloc_count; |
| } |
| } |
| |
| if (h->needs_copy) |
| { |
| asection * s; |
| Elf_Internal_Rela rel; |
| |
| /* This symbol needs a copy reloc. Set it up. */ |
| BFD_ASSERT (h->dynindx != -1 |
| && (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak)); |
| |
| s = bfd_get_linker_section (dynobj, ".rela.bss"); |
| BFD_ASSERT (s != NULL); |
| |
| rel.r_offset = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_COPY); |
| rel.r_addend = 0; |
| bfd_elf32_swap_reloca_out (output_bfd, & rel, |
| (bfd_byte *) ((Elf32_External_Rela *) s->contents |
| + s->reloc_count)); |
| ++ s->reloc_count; |
| } |
| |
| /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
| if (h == elf_hash_table (info)->hdynamic |
| || h == elf_hash_table (info)->hgot) |
| sym->st_shndx = SHN_ABS; |
| |
| return true; |
| } |
| |
| /* Finish up the dynamic sections. */ |
| |
| static bool |
| _bfd_mn10300_elf_finish_dynamic_sections (bfd * output_bfd, |
| struct bfd_link_info * info) |
| { |
| bfd * dynobj; |
| asection * sgot; |
| asection * sdyn; |
| struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info); |
| |
| dynobj = htab->root.dynobj; |
| sgot = htab->root.sgotplt; |
| BFD_ASSERT (sgot != NULL); |
| sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| asection * splt; |
| Elf32_External_Dyn * dyncon; |
| Elf32_External_Dyn * dynconend; |
| |
| BFD_ASSERT (sdyn != NULL); |
| |
| dyncon = (Elf32_External_Dyn *) sdyn->contents; |
| dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); |
| |
| for (; dyncon < dynconend; dyncon++) |
| { |
| Elf_Internal_Dyn dyn; |
| asection * s; |
| |
| bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); |
| |
| switch (dyn.d_tag) |
| { |
| default: |
| break; |
| |
| case DT_PLTGOT: |
| s = htab->root.sgot; |
| goto get_vma; |
| |
| case DT_JMPREL: |
| s = htab->root.srelplt; |
| get_vma: |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
| bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); |
| break; |
| |
| case DT_PLTRELSZ: |
| s = htab->root.srelplt; |
| dyn.d_un.d_val = s->size; |
| bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); |
| break; |
| } |
| } |
| |
| /* Fill in the first entry in the procedure linkage table. */ |
| splt = htab->root.splt; |
| if (splt && splt->size > 0) |
| { |
| if (bfd_link_pic (info)) |
| { |
| memcpy (splt->contents, elf_mn10300_pic_plt_entry, |
| elf_mn10300_sizeof_plt (info)); |
| } |
| else |
| { |
| memcpy (splt->contents, elf_mn10300_plt0_entry, PLT0_ENTRY_SIZE); |
| bfd_put_32 (output_bfd, |
| sgot->output_section->vma + sgot->output_offset + 4, |
| splt->contents + elf_mn10300_plt0_gotid_offset (info)); |
| bfd_put_32 (output_bfd, |
| sgot->output_section->vma + sgot->output_offset + 8, |
| splt->contents + elf_mn10300_plt0_linker_offset (info)); |
| } |
| |
| /* UnixWare sets the entsize of .plt to 4, although that doesn't |
| really seem like the right value. */ |
| elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4; |
| |
| /* UnixWare sets the entsize of .plt to 4, but this is incorrect |
| as it means that the size of the PLT0 section (15 bytes) is not |
| a multiple of the sh_entsize. Some ELF tools flag this as an |
| error. We could pad PLT0 to 16 bytes, but that would introduce |
| compatibilty issues with previous toolchains, so instead we |
| just set the entry size to 1. */ |
| elf_section_data (splt->output_section)->this_hdr.sh_entsize = 1; |
| } |
| } |
| |
| /* Fill in the first three entries in the global offset table. */ |
| if (sgot->size > 0) |
| { |
| if (sdyn == NULL) |
| bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); |
| else |
| bfd_put_32 (output_bfd, |
| sdyn->output_section->vma + sdyn->output_offset, |
| sgot->contents); |
| bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); |
| bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); |
| } |
| |
| elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; |
| |
| return true; |
| } |
| |
| /* Classify relocation types, such that combreloc can sort them |
| properly. */ |
| |
| static enum elf_reloc_type_class |
| _bfd_mn10300_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| const asection *rel_sec ATTRIBUTE_UNUSED, |
| const Elf_Internal_Rela *rela) |
| { |
| switch ((int) ELF32_R_TYPE (rela->r_info)) |
| { |
| case R_MN10300_RELATIVE: return reloc_class_relative; |
| case R_MN10300_JMP_SLOT: return reloc_class_plt; |
| case R_MN10300_COPY: return reloc_class_copy; |
| default: return reloc_class_normal; |
| } |
| } |
| |
| /* Allocate space for an MN10300 extension to the bfd elf data structure. */ |
| |
| static bool |
| mn10300_elf_mkobject (bfd *abfd) |
| { |
| return bfd_elf_allocate_object (abfd, sizeof (struct elf_mn10300_obj_tdata), |
| MN10300_ELF_DATA); |
| } |
| |
| #define bfd_elf32_mkobject mn10300_elf_mkobject |
| |
| #ifndef ELF_ARCH |
| #define TARGET_LITTLE_SYM mn10300_elf32_vec |
| #define TARGET_LITTLE_NAME "elf32-mn10300" |
| #define ELF_ARCH bfd_arch_mn10300 |
| #define ELF_TARGET_ID MN10300_ELF_DATA |
| #define ELF_MACHINE_CODE EM_MN10300 |
| #define ELF_MACHINE_ALT1 EM_CYGNUS_MN10300 |
| #define ELF_MAXPAGESIZE 0x1000 |
| #endif |
| |
| #define elf_info_to_howto mn10300_info_to_howto |
| #define elf_info_to_howto_rel NULL |
| #define elf_backend_can_gc_sections 1 |
| #define elf_backend_rela_normal 1 |
| #define elf_backend_check_relocs mn10300_elf_check_relocs |
| #define elf_backend_gc_mark_hook mn10300_elf_gc_mark_hook |
| #define elf_backend_relocate_section mn10300_elf_relocate_section |
| #define bfd_elf32_bfd_relax_section mn10300_elf_relax_section |
| #define bfd_elf32_bfd_get_relocated_section_contents \ |
| mn10300_elf_get_relocated_section_contents |
| #define bfd_elf32_bfd_link_hash_table_create \ |
| elf32_mn10300_link_hash_table_create |
| |
| #ifndef elf_symbol_leading_char |
| #define elf_symbol_leading_char '_' |
| #endif |
| |
| /* So we can set bits in e_flags. */ |
| #define elf_backend_final_write_processing \ |
| _bfd_mn10300_elf_final_write_processing |
| #define elf_backend_object_p _bfd_mn10300_elf_object_p |
| |
| #define bfd_elf32_bfd_merge_private_bfd_data \ |
| _bfd_mn10300_elf_merge_private_bfd_data |
| |
| #define elf_backend_can_gc_sections 1 |
| #define elf_backend_create_dynamic_sections \ |
| _bfd_mn10300_elf_create_dynamic_sections |
| #define elf_backend_adjust_dynamic_symbol \ |
| _bfd_mn10300_elf_adjust_dynamic_symbol |
| #define elf_backend_size_dynamic_sections \ |
| _bfd_mn10300_elf_size_dynamic_sections |
| #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all |
| #define elf_backend_finish_dynamic_symbol \ |
| _bfd_mn10300_elf_finish_dynamic_symbol |
| #define elf_backend_finish_dynamic_sections \ |
| _bfd_mn10300_elf_finish_dynamic_sections |
| #define elf_backend_copy_indirect_symbol \ |
| _bfd_mn10300_copy_indirect_symbol |
| #define elf_backend_reloc_type_class \ |
| _bfd_mn10300_elf_reloc_type_class |
| |
| #define elf_backend_want_got_plt 1 |
| #define elf_backend_plt_readonly 1 |
| #define elf_backend_want_plt_sym 0 |
| #define elf_backend_got_header_size 12 |
| #define elf_backend_dtrel_excludes_plt 1 |
| |
| #include "elf32-target.h" |