|  | /* Target-dependent code for the Renesas RL78 for GDB, the GNU debugger. | 
|  |  | 
|  | Copyright (C) 2011-2023 Free Software Foundation, Inc. | 
|  |  | 
|  | Contributed by Red Hat, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "defs.h" | 
|  | #include "arch-utils.h" | 
|  | #include "prologue-value.h" | 
|  | #include "target.h" | 
|  | #include "regcache.h" | 
|  | #include "opcode/rl78.h" | 
|  | #include "dis-asm.h" | 
|  | #include "gdbtypes.h" | 
|  | #include "frame.h" | 
|  | #include "frame-unwind.h" | 
|  | #include "frame-base.h" | 
|  | #include "value.h" | 
|  | #include "gdbcore.h" | 
|  | #include "dwarf2/frame.h" | 
|  | #include "reggroups.h" | 
|  | #include "gdbarch.h" | 
|  |  | 
|  | #include "elf/rl78.h" | 
|  | #include "elf-bfd.h" | 
|  |  | 
|  | /* Register Banks.  */ | 
|  |  | 
|  | enum | 
|  | { | 
|  | RL78_BANK0 = 0, | 
|  | RL78_BANK1 = 1, | 
|  | RL78_BANK2 = 2, | 
|  | RL78_BANK3 = 3, | 
|  | RL78_NUMBANKS = 4, | 
|  | RL78_REGS_PER_BANK = 8 | 
|  | }; | 
|  |  | 
|  | /* Register Numbers.  */ | 
|  |  | 
|  | enum | 
|  | { | 
|  | /* All general purpose registers are 8 bits wide.  */ | 
|  | RL78_RAW_BANK0_R0_REGNUM = 0, | 
|  | RL78_RAW_BANK0_R1_REGNUM, | 
|  | RL78_RAW_BANK0_R2_REGNUM, | 
|  | RL78_RAW_BANK0_R3_REGNUM, | 
|  | RL78_RAW_BANK0_R4_REGNUM, | 
|  | RL78_RAW_BANK0_R5_REGNUM, | 
|  | RL78_RAW_BANK0_R6_REGNUM, | 
|  | RL78_RAW_BANK0_R7_REGNUM, | 
|  |  | 
|  | RL78_RAW_BANK1_R0_REGNUM, | 
|  | RL78_RAW_BANK1_R1_REGNUM, | 
|  | RL78_RAW_BANK1_R2_REGNUM, | 
|  | RL78_RAW_BANK1_R3_REGNUM, | 
|  | RL78_RAW_BANK1_R4_REGNUM, | 
|  | RL78_RAW_BANK1_R5_REGNUM, | 
|  | RL78_RAW_BANK1_R6_REGNUM, | 
|  | RL78_RAW_BANK1_R7_REGNUM, | 
|  |  | 
|  | RL78_RAW_BANK2_R0_REGNUM, | 
|  | RL78_RAW_BANK2_R1_REGNUM, | 
|  | RL78_RAW_BANK2_R2_REGNUM, | 
|  | RL78_RAW_BANK2_R3_REGNUM, | 
|  | RL78_RAW_BANK2_R4_REGNUM, | 
|  | RL78_RAW_BANK2_R5_REGNUM, | 
|  | RL78_RAW_BANK2_R6_REGNUM, | 
|  | RL78_RAW_BANK2_R7_REGNUM, | 
|  |  | 
|  | RL78_RAW_BANK3_R0_REGNUM, | 
|  | RL78_RAW_BANK3_R1_REGNUM, | 
|  | RL78_RAW_BANK3_R2_REGNUM, | 
|  | RL78_RAW_BANK3_R3_REGNUM, | 
|  | RL78_RAW_BANK3_R4_REGNUM, | 
|  | RL78_RAW_BANK3_R5_REGNUM, | 
|  | RL78_RAW_BANK3_R6_REGNUM, | 
|  | RL78_RAW_BANK3_R7_REGNUM, | 
|  |  | 
|  | RL78_PSW_REGNUM,	/* 8 bits */ | 
|  | RL78_ES_REGNUM,	/* 8 bits */ | 
|  | RL78_CS_REGNUM,	/* 8 bits */ | 
|  | RL78_RAW_PC_REGNUM,	/* 20 bits; we'll use 32 bits for it.  */ | 
|  |  | 
|  | /* Fixed address SFRs (some of those above are SFRs too.) */ | 
|  | RL78_SPL_REGNUM,	/* 8 bits; lower half of SP */ | 
|  | RL78_SPH_REGNUM,	/* 8 bits; upper half of SP */ | 
|  | RL78_PMC_REGNUM,	/* 8 bits */ | 
|  | RL78_MEM_REGNUM,	/* 8 bits ?? */ | 
|  |  | 
|  | RL78_NUM_REGS, | 
|  |  | 
|  | /* Pseudo registers.  */ | 
|  | RL78_PC_REGNUM = RL78_NUM_REGS, | 
|  | RL78_SP_REGNUM, | 
|  |  | 
|  | RL78_X_REGNUM, | 
|  | RL78_A_REGNUM, | 
|  | RL78_C_REGNUM, | 
|  | RL78_B_REGNUM, | 
|  | RL78_E_REGNUM, | 
|  | RL78_D_REGNUM, | 
|  | RL78_L_REGNUM, | 
|  | RL78_H_REGNUM, | 
|  |  | 
|  | RL78_AX_REGNUM, | 
|  | RL78_BC_REGNUM, | 
|  | RL78_DE_REGNUM, | 
|  | RL78_HL_REGNUM, | 
|  |  | 
|  | RL78_BANK0_R0_REGNUM, | 
|  | RL78_BANK0_R1_REGNUM, | 
|  | RL78_BANK0_R2_REGNUM, | 
|  | RL78_BANK0_R3_REGNUM, | 
|  | RL78_BANK0_R4_REGNUM, | 
|  | RL78_BANK0_R5_REGNUM, | 
|  | RL78_BANK0_R6_REGNUM, | 
|  | RL78_BANK0_R7_REGNUM, | 
|  |  | 
|  | RL78_BANK1_R0_REGNUM, | 
|  | RL78_BANK1_R1_REGNUM, | 
|  | RL78_BANK1_R2_REGNUM, | 
|  | RL78_BANK1_R3_REGNUM, | 
|  | RL78_BANK1_R4_REGNUM, | 
|  | RL78_BANK1_R5_REGNUM, | 
|  | RL78_BANK1_R6_REGNUM, | 
|  | RL78_BANK1_R7_REGNUM, | 
|  |  | 
|  | RL78_BANK2_R0_REGNUM, | 
|  | RL78_BANK2_R1_REGNUM, | 
|  | RL78_BANK2_R2_REGNUM, | 
|  | RL78_BANK2_R3_REGNUM, | 
|  | RL78_BANK2_R4_REGNUM, | 
|  | RL78_BANK2_R5_REGNUM, | 
|  | RL78_BANK2_R6_REGNUM, | 
|  | RL78_BANK2_R7_REGNUM, | 
|  |  | 
|  | RL78_BANK3_R0_REGNUM, | 
|  | RL78_BANK3_R1_REGNUM, | 
|  | RL78_BANK3_R2_REGNUM, | 
|  | RL78_BANK3_R3_REGNUM, | 
|  | RL78_BANK3_R4_REGNUM, | 
|  | RL78_BANK3_R5_REGNUM, | 
|  | RL78_BANK3_R6_REGNUM, | 
|  | RL78_BANK3_R7_REGNUM, | 
|  |  | 
|  | RL78_BANK0_RP0_REGNUM, | 
|  | RL78_BANK0_RP1_REGNUM, | 
|  | RL78_BANK0_RP2_REGNUM, | 
|  | RL78_BANK0_RP3_REGNUM, | 
|  |  | 
|  | RL78_BANK1_RP0_REGNUM, | 
|  | RL78_BANK1_RP1_REGNUM, | 
|  | RL78_BANK1_RP2_REGNUM, | 
|  | RL78_BANK1_RP3_REGNUM, | 
|  |  | 
|  | RL78_BANK2_RP0_REGNUM, | 
|  | RL78_BANK2_RP1_REGNUM, | 
|  | RL78_BANK2_RP2_REGNUM, | 
|  | RL78_BANK2_RP3_REGNUM, | 
|  |  | 
|  | RL78_BANK3_RP0_REGNUM, | 
|  | RL78_BANK3_RP1_REGNUM, | 
|  | RL78_BANK3_RP2_REGNUM, | 
|  | RL78_BANK3_RP3_REGNUM, | 
|  |  | 
|  | /* These are the same as the above 16 registers, but have | 
|  | a pointer type for use as base registers in expression | 
|  | evaluation.  These are not user visible registers.  */ | 
|  | RL78_BANK0_RP0_PTR_REGNUM, | 
|  | RL78_BANK0_RP1_PTR_REGNUM, | 
|  | RL78_BANK0_RP2_PTR_REGNUM, | 
|  | RL78_BANK0_RP3_PTR_REGNUM, | 
|  |  | 
|  | RL78_BANK1_RP0_PTR_REGNUM, | 
|  | RL78_BANK1_RP1_PTR_REGNUM, | 
|  | RL78_BANK1_RP2_PTR_REGNUM, | 
|  | RL78_BANK1_RP3_PTR_REGNUM, | 
|  |  | 
|  | RL78_BANK2_RP0_PTR_REGNUM, | 
|  | RL78_BANK2_RP1_PTR_REGNUM, | 
|  | RL78_BANK2_RP2_PTR_REGNUM, | 
|  | RL78_BANK2_RP3_PTR_REGNUM, | 
|  |  | 
|  | RL78_BANK3_RP0_PTR_REGNUM, | 
|  | RL78_BANK3_RP1_PTR_REGNUM, | 
|  | RL78_BANK3_RP2_PTR_REGNUM, | 
|  | RL78_BANK3_RP3_PTR_REGNUM, | 
|  |  | 
|  | RL78_NUM_TOTAL_REGS, | 
|  | RL78_NUM_PSEUDO_REGS = RL78_NUM_TOTAL_REGS - RL78_NUM_REGS | 
|  | }; | 
|  |  | 
|  | #define RL78_SP_ADDR 0xffff8 | 
|  |  | 
|  | /* Architecture specific data.  */ | 
|  |  | 
|  | struct rl78_gdbarch_tdep : gdbarch_tdep_base | 
|  | { | 
|  | /* The ELF header flags specify the multilib used.  */ | 
|  | int elf_flags = 0; | 
|  |  | 
|  | struct type *rl78_void = nullptr, | 
|  | *rl78_uint8 = nullptr, | 
|  | *rl78_int8 = nullptr, | 
|  | *rl78_uint16 = nullptr, | 
|  | *rl78_int16 = nullptr, | 
|  | *rl78_uint32 = nullptr, | 
|  | *rl78_int32 = nullptr, | 
|  | *rl78_data_pointer = nullptr, | 
|  | *rl78_code_pointer = nullptr, | 
|  | *rl78_psw_type = nullptr; | 
|  | }; | 
|  |  | 
|  | /* This structure holds the results of a prologue analysis.  */ | 
|  |  | 
|  | struct rl78_prologue | 
|  | { | 
|  | /* The offset from the frame base to the stack pointer --- always | 
|  | zero or negative. | 
|  |  | 
|  | Calling this a "size" is a bit misleading, but given that the | 
|  | stack grows downwards, using offsets for everything keeps one | 
|  | from going completely sign-crazy: you never change anything's | 
|  | sign for an ADD instruction; always change the second operand's | 
|  | sign for a SUB instruction; and everything takes care of | 
|  | itself.  */ | 
|  | int frame_size; | 
|  |  | 
|  | /* Non-zero if this function has initialized the frame pointer from | 
|  | the stack pointer, zero otherwise.  */ | 
|  | int has_frame_ptr; | 
|  |  | 
|  | /* If has_frame_ptr is non-zero, this is the offset from the frame | 
|  | base to where the frame pointer points.  This is always zero or | 
|  | negative.  */ | 
|  | int frame_ptr_offset; | 
|  |  | 
|  | /* The address of the first instruction at which the frame has been | 
|  | set up and the arguments are where the debug info says they are | 
|  | --- as best as we can tell.  */ | 
|  | CORE_ADDR prologue_end; | 
|  |  | 
|  | /* reg_offset[R] is the offset from the CFA at which register R is | 
|  | saved, or 1 if register R has not been saved.  (Real values are | 
|  | always zero or negative.)  */ | 
|  | int reg_offset[RL78_NUM_TOTAL_REGS]; | 
|  | }; | 
|  |  | 
|  | /* Construct type for PSW register.  */ | 
|  |  | 
|  | static struct type * | 
|  | rl78_psw_type (struct gdbarch *gdbarch) | 
|  | { | 
|  | rl78_gdbarch_tdep *tdep = gdbarch_tdep<rl78_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (tdep->rl78_psw_type == NULL) | 
|  | { | 
|  | tdep->rl78_psw_type = arch_flags_type (gdbarch, | 
|  | "builtin_type_rl78_psw", 8); | 
|  | append_flags_type_flag (tdep->rl78_psw_type, 0, "CY"); | 
|  | append_flags_type_flag (tdep->rl78_psw_type, 1, "ISP0"); | 
|  | append_flags_type_flag (tdep->rl78_psw_type, 2, "ISP1"); | 
|  | append_flags_type_flag (tdep->rl78_psw_type, 3, "RBS0"); | 
|  | append_flags_type_flag (tdep->rl78_psw_type, 4, "AC"); | 
|  | append_flags_type_flag (tdep->rl78_psw_type, 5, "RBS1"); | 
|  | append_flags_type_flag (tdep->rl78_psw_type, 6, "Z"); | 
|  | append_flags_type_flag (tdep->rl78_psw_type, 7, "IE"); | 
|  | } | 
|  |  | 
|  | return tdep->rl78_psw_type; | 
|  | } | 
|  |  | 
|  | /* Implement the "register_type" gdbarch method.  */ | 
|  |  | 
|  | static struct type * | 
|  | rl78_register_type (struct gdbarch *gdbarch, int reg_nr) | 
|  | { | 
|  | rl78_gdbarch_tdep *tdep = gdbarch_tdep<rl78_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (reg_nr == RL78_PC_REGNUM) | 
|  | return tdep->rl78_code_pointer; | 
|  | else if (reg_nr == RL78_RAW_PC_REGNUM) | 
|  | return tdep->rl78_uint32; | 
|  | else if (reg_nr == RL78_PSW_REGNUM) | 
|  | return rl78_psw_type (gdbarch); | 
|  | else if (reg_nr <= RL78_MEM_REGNUM | 
|  | || (RL78_X_REGNUM <= reg_nr && reg_nr <= RL78_H_REGNUM) | 
|  | || (RL78_BANK0_R0_REGNUM <= reg_nr | 
|  | && reg_nr <= RL78_BANK3_R7_REGNUM)) | 
|  | return tdep->rl78_int8; | 
|  | else if (reg_nr == RL78_SP_REGNUM | 
|  | || (RL78_BANK0_RP0_PTR_REGNUM <= reg_nr | 
|  | && reg_nr <= RL78_BANK3_RP3_PTR_REGNUM)) | 
|  | return tdep->rl78_data_pointer; | 
|  | else | 
|  | return tdep->rl78_int16; | 
|  | } | 
|  |  | 
|  | /* Implement the "register_name" gdbarch method.  */ | 
|  |  | 
|  | static const char * | 
|  | rl78_register_name (struct gdbarch *gdbarch, int regnr) | 
|  | { | 
|  | static const char *const reg_names[] = | 
|  | { | 
|  | "",		/* bank0_r0 */ | 
|  | "",		/* bank0_r1 */ | 
|  | "",		/* bank0_r2 */ | 
|  | "",		/* bank0_r3 */ | 
|  | "",		/* bank0_r4 */ | 
|  | "",		/* bank0_r5 */ | 
|  | "",		/* bank0_r6 */ | 
|  | "",		/* bank0_r7 */ | 
|  |  | 
|  | "",		/* bank1_r0 */ | 
|  | "",		/* bank1_r1 */ | 
|  | "",		/* bank1_r2 */ | 
|  | "",		/* bank1_r3 */ | 
|  | "",		/* bank1_r4 */ | 
|  | "",		/* bank1_r5 */ | 
|  | "",		/* bank1_r6 */ | 
|  | "",		/* bank1_r7 */ | 
|  |  | 
|  | "",		/* bank2_r0 */ | 
|  | "",		/* bank2_r1 */ | 
|  | "",		/* bank2_r2 */ | 
|  | "",		/* bank2_r3 */ | 
|  | "",		/* bank2_r4 */ | 
|  | "",		/* bank2_r5 */ | 
|  | "",		/* bank2_r6 */ | 
|  | "",		/* bank2_r7 */ | 
|  |  | 
|  | "",		/* bank3_r0 */ | 
|  | "",		/* bank3_r1 */ | 
|  | "",		/* bank3_r2 */ | 
|  | "",		/* bank3_r3 */ | 
|  | "",		/* bank3_r4 */ | 
|  | "",		/* bank3_r5 */ | 
|  | "",		/* bank3_r6 */ | 
|  | "",		/* bank3_r7 */ | 
|  |  | 
|  | "psw", | 
|  | "es", | 
|  | "cs", | 
|  | "", | 
|  |  | 
|  | "",		/* spl */ | 
|  | "",		/* sph */ | 
|  | "pmc", | 
|  | "mem", | 
|  |  | 
|  | "pc", | 
|  | "sp", | 
|  |  | 
|  | "x", | 
|  | "a", | 
|  | "c", | 
|  | "b", | 
|  | "e", | 
|  | "d", | 
|  | "l", | 
|  | "h", | 
|  |  | 
|  | "ax", | 
|  | "bc", | 
|  | "de", | 
|  | "hl", | 
|  |  | 
|  | "bank0_r0", | 
|  | "bank0_r1", | 
|  | "bank0_r2", | 
|  | "bank0_r3", | 
|  | "bank0_r4", | 
|  | "bank0_r5", | 
|  | "bank0_r6", | 
|  | "bank0_r7", | 
|  |  | 
|  | "bank1_r0", | 
|  | "bank1_r1", | 
|  | "bank1_r2", | 
|  | "bank1_r3", | 
|  | "bank1_r4", | 
|  | "bank1_r5", | 
|  | "bank1_r6", | 
|  | "bank1_r7", | 
|  |  | 
|  | "bank2_r0", | 
|  | "bank2_r1", | 
|  | "bank2_r2", | 
|  | "bank2_r3", | 
|  | "bank2_r4", | 
|  | "bank2_r5", | 
|  | "bank2_r6", | 
|  | "bank2_r7", | 
|  |  | 
|  | "bank3_r0", | 
|  | "bank3_r1", | 
|  | "bank3_r2", | 
|  | "bank3_r3", | 
|  | "bank3_r4", | 
|  | "bank3_r5", | 
|  | "bank3_r6", | 
|  | "bank3_r7", | 
|  |  | 
|  | "bank0_rp0", | 
|  | "bank0_rp1", | 
|  | "bank0_rp2", | 
|  | "bank0_rp3", | 
|  |  | 
|  | "bank1_rp0", | 
|  | "bank1_rp1", | 
|  | "bank1_rp2", | 
|  | "bank1_rp3", | 
|  |  | 
|  | "bank2_rp0", | 
|  | "bank2_rp1", | 
|  | "bank2_rp2", | 
|  | "bank2_rp3", | 
|  |  | 
|  | "bank3_rp0", | 
|  | "bank3_rp1", | 
|  | "bank3_rp2", | 
|  | "bank3_rp3", | 
|  |  | 
|  | /* The 16 register slots would be named | 
|  | bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't | 
|  | want these to be user visible registers.  */ | 
|  | "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "" | 
|  | }; | 
|  |  | 
|  | return reg_names[regnr]; | 
|  | } | 
|  |  | 
|  | /* Implement the "register_name" gdbarch method for the g10 variant.  */ | 
|  |  | 
|  | static const char * | 
|  | rl78_g10_register_name (struct gdbarch *gdbarch, int regnr) | 
|  | { | 
|  | static const char *const reg_names[] = | 
|  | { | 
|  | "",		/* bank0_r0 */ | 
|  | "",		/* bank0_r1 */ | 
|  | "",		/* bank0_r2 */ | 
|  | "",		/* bank0_r3 */ | 
|  | "",		/* bank0_r4 */ | 
|  | "",		/* bank0_r5 */ | 
|  | "",		/* bank0_r6 */ | 
|  | "",		/* bank0_r7 */ | 
|  |  | 
|  | "",		/* bank1_r0 */ | 
|  | "",		/* bank1_r1 */ | 
|  | "",		/* bank1_r2 */ | 
|  | "",		/* bank1_r3 */ | 
|  | "",		/* bank1_r4 */ | 
|  | "",		/* bank1_r5 */ | 
|  | "",		/* bank1_r6 */ | 
|  | "",		/* bank1_r7 */ | 
|  |  | 
|  | "",		/* bank2_r0 */ | 
|  | "",		/* bank2_r1 */ | 
|  | "",		/* bank2_r2 */ | 
|  | "",		/* bank2_r3 */ | 
|  | "",		/* bank2_r4 */ | 
|  | "",		/* bank2_r5 */ | 
|  | "",		/* bank2_r6 */ | 
|  | "",		/* bank2_r7 */ | 
|  |  | 
|  | "",		/* bank3_r0 */ | 
|  | "",		/* bank3_r1 */ | 
|  | "",		/* bank3_r2 */ | 
|  | "",		/* bank3_r3 */ | 
|  | "",		/* bank3_r4 */ | 
|  | "",		/* bank3_r5 */ | 
|  | "",		/* bank3_r6 */ | 
|  | "",		/* bank3_r7 */ | 
|  |  | 
|  | "psw", | 
|  | "es", | 
|  | "cs", | 
|  | "", | 
|  |  | 
|  | "",		/* spl */ | 
|  | "",		/* sph */ | 
|  | "pmc", | 
|  | "mem", | 
|  |  | 
|  | "pc", | 
|  | "sp", | 
|  |  | 
|  | "x", | 
|  | "a", | 
|  | "c", | 
|  | "b", | 
|  | "e", | 
|  | "d", | 
|  | "l", | 
|  | "h", | 
|  |  | 
|  | "ax", | 
|  | "bc", | 
|  | "de", | 
|  | "hl", | 
|  |  | 
|  | "bank0_r0", | 
|  | "bank0_r1", | 
|  | "bank0_r2", | 
|  | "bank0_r3", | 
|  | "bank0_r4", | 
|  | "bank0_r5", | 
|  | "bank0_r6", | 
|  | "bank0_r7", | 
|  |  | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  |  | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  |  | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  |  | 
|  | "bank0_rp0", | 
|  | "bank0_rp1", | 
|  | "bank0_rp2", | 
|  | "bank0_rp3", | 
|  |  | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  |  | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  |  | 
|  | "", | 
|  | "", | 
|  | "", | 
|  | "", | 
|  |  | 
|  | /* The 16 register slots would be named | 
|  | bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't | 
|  | want these to be user visible registers.  */ | 
|  | "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "" | 
|  | }; | 
|  |  | 
|  | return reg_names[regnr]; | 
|  | } | 
|  |  | 
|  | /* Implement the "register_reggroup_p" gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | rl78_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | 
|  | const struct reggroup *group) | 
|  | { | 
|  | if (group == all_reggroup) | 
|  | return 1; | 
|  |  | 
|  | /* All other registers are saved and restored.  */ | 
|  | if (group == save_reggroup || group == restore_reggroup) | 
|  | { | 
|  | if ((regnum < RL78_NUM_REGS | 
|  | && regnum != RL78_SPL_REGNUM | 
|  | && regnum != RL78_SPH_REGNUM | 
|  | && regnum != RL78_RAW_PC_REGNUM) | 
|  | || regnum == RL78_SP_REGNUM | 
|  | || regnum == RL78_PC_REGNUM) | 
|  | return 1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((RL78_BANK0_R0_REGNUM <= regnum && regnum <= RL78_BANK3_R7_REGNUM) | 
|  | || regnum == RL78_ES_REGNUM | 
|  | || regnum == RL78_CS_REGNUM | 
|  | || regnum == RL78_SPL_REGNUM | 
|  | || regnum == RL78_SPH_REGNUM | 
|  | || regnum == RL78_PMC_REGNUM | 
|  | || regnum == RL78_MEM_REGNUM | 
|  | || regnum == RL78_RAW_PC_REGNUM | 
|  | || (RL78_BANK0_RP0_REGNUM <= regnum && regnum <= RL78_BANK3_RP3_REGNUM)) | 
|  | return group == system_reggroup; | 
|  |  | 
|  | return group == general_reggroup; | 
|  | } | 
|  |  | 
|  | /* Strip bits to form an instruction address.  (When fetching a | 
|  | 32-bit address from the stack, the high eight bits are garbage. | 
|  | This function strips off those unused bits.)  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | rl78_make_instruction_address (CORE_ADDR addr) | 
|  | { | 
|  | return addr & 0xffffff; | 
|  | } | 
|  |  | 
|  | /* Set / clear bits necessary to make a data address.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | rl78_make_data_address (CORE_ADDR addr) | 
|  | { | 
|  | return (addr & 0xffff) | 0xf0000; | 
|  | } | 
|  |  | 
|  | /* Implement the "pseudo_register_read" gdbarch method.  */ | 
|  |  | 
|  | static enum register_status | 
|  | rl78_pseudo_register_read (struct gdbarch *gdbarch, | 
|  | readable_regcache *regcache, | 
|  | int reg, gdb_byte *buffer) | 
|  | { | 
|  | enum register_status status; | 
|  |  | 
|  | if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM) | 
|  | { | 
|  | int raw_regnum = RL78_RAW_BANK0_R0_REGNUM | 
|  | + (reg - RL78_BANK0_R0_REGNUM); | 
|  |  | 
|  | status = regcache->raw_read (raw_regnum, buffer); | 
|  | } | 
|  | else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM) | 
|  | { | 
|  | int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM) | 
|  | + RL78_RAW_BANK0_R0_REGNUM; | 
|  |  | 
|  | status = regcache->raw_read (raw_regnum, buffer); | 
|  | if (status == REG_VALID) | 
|  | status = regcache->raw_read (raw_regnum + 1, buffer + 1); | 
|  | } | 
|  | else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM) | 
|  | { | 
|  | int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM) | 
|  | + RL78_RAW_BANK0_R0_REGNUM; | 
|  |  | 
|  | status = regcache->raw_read (raw_regnum, buffer); | 
|  | if (status == REG_VALID) | 
|  | status = regcache->raw_read (raw_regnum + 1, buffer + 1); | 
|  | } | 
|  | else if (reg == RL78_SP_REGNUM) | 
|  | { | 
|  | status = regcache->raw_read (RL78_SPL_REGNUM, buffer); | 
|  | if (status == REG_VALID) | 
|  | status = regcache->raw_read (RL78_SPH_REGNUM, buffer + 1); | 
|  | } | 
|  | else if (reg == RL78_PC_REGNUM) | 
|  | { | 
|  | gdb_byte rawbuf[4]; | 
|  |  | 
|  | status = regcache->raw_read (RL78_RAW_PC_REGNUM, rawbuf); | 
|  | memcpy (buffer, rawbuf, 3); | 
|  | } | 
|  | else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM) | 
|  | { | 
|  | ULONGEST psw; | 
|  |  | 
|  | status = regcache->raw_read (RL78_PSW_REGNUM, &psw); | 
|  | if (status == REG_VALID) | 
|  | { | 
|  | /* RSB0 is at bit 3; RSBS1 is at bit 5.  */ | 
|  | int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1); | 
|  | int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK | 
|  | + (reg - RL78_X_REGNUM); | 
|  | status = regcache->raw_read (raw_regnum, buffer); | 
|  | } | 
|  | } | 
|  | else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM) | 
|  | { | 
|  | ULONGEST psw; | 
|  |  | 
|  | status = regcache->raw_read (RL78_PSW_REGNUM, &psw); | 
|  | if (status == REG_VALID) | 
|  | { | 
|  | /* RSB0 is at bit 3; RSBS1 is at bit 5.  */ | 
|  | int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1); | 
|  | int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK | 
|  | + 2 * (reg - RL78_AX_REGNUM); | 
|  | status = regcache->raw_read (raw_regnum, buffer); | 
|  | if (status == REG_VALID) | 
|  | status = regcache->raw_read (raw_regnum + 1, buffer + 1); | 
|  | } | 
|  | } | 
|  | else | 
|  | gdb_assert_not_reached ("invalid pseudo register number"); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* Implement the "pseudo_register_write" gdbarch method.  */ | 
|  |  | 
|  | static void | 
|  | rl78_pseudo_register_write (struct gdbarch *gdbarch, | 
|  | struct regcache *regcache, | 
|  | int reg, const gdb_byte *buffer) | 
|  | { | 
|  | if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM) | 
|  | { | 
|  | int raw_regnum = RL78_RAW_BANK0_R0_REGNUM | 
|  | + (reg - RL78_BANK0_R0_REGNUM); | 
|  |  | 
|  | regcache->raw_write (raw_regnum, buffer); | 
|  | } | 
|  | else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM) | 
|  | { | 
|  | int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM) | 
|  | + RL78_RAW_BANK0_R0_REGNUM; | 
|  |  | 
|  | regcache->raw_write (raw_regnum, buffer); | 
|  | regcache->raw_write (raw_regnum + 1, buffer + 1); | 
|  | } | 
|  | else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM) | 
|  | { | 
|  | int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM) | 
|  | + RL78_RAW_BANK0_R0_REGNUM; | 
|  |  | 
|  | regcache->raw_write (raw_regnum, buffer); | 
|  | regcache->raw_write (raw_regnum + 1, buffer + 1); | 
|  | } | 
|  | else if (reg == RL78_SP_REGNUM) | 
|  | { | 
|  | regcache->raw_write (RL78_SPL_REGNUM, buffer); | 
|  | regcache->raw_write (RL78_SPH_REGNUM, buffer + 1); | 
|  | } | 
|  | else if (reg == RL78_PC_REGNUM) | 
|  | { | 
|  | gdb_byte rawbuf[4]; | 
|  |  | 
|  | memcpy (rawbuf, buffer, 3); | 
|  | rawbuf[3] = 0; | 
|  | regcache->raw_write (RL78_RAW_PC_REGNUM, rawbuf); | 
|  | } | 
|  | else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM) | 
|  | { | 
|  | ULONGEST psw; | 
|  | int bank; | 
|  | int raw_regnum; | 
|  |  | 
|  | regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw); | 
|  | bank = ((psw >> 3) & 1) | ((psw >> 4) & 1); | 
|  | /* RSB0 is at bit 3; RSBS1 is at bit 5.  */ | 
|  | raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK | 
|  | + (reg - RL78_X_REGNUM); | 
|  | regcache->raw_write (raw_regnum, buffer); | 
|  | } | 
|  | else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM) | 
|  | { | 
|  | ULONGEST psw; | 
|  | int bank, raw_regnum; | 
|  |  | 
|  | regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw); | 
|  | bank = ((psw >> 3) & 1) | ((psw >> 4) & 1); | 
|  | /* RSB0 is at bit 3; RSBS1 is at bit 5.  */ | 
|  | raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK | 
|  | + 2 * (reg - RL78_AX_REGNUM); | 
|  | regcache->raw_write (raw_regnum, buffer); | 
|  | regcache->raw_write (raw_regnum + 1, buffer + 1); | 
|  | } | 
|  | else | 
|  | gdb_assert_not_reached ("invalid pseudo register number"); | 
|  | } | 
|  |  | 
|  | /* The documented BRK instruction is actually a two byte sequence, | 
|  | {0x61, 0xcc}, but instructions may be as short as one byte. | 
|  | Correspondence with Renesas revealed that the one byte sequence | 
|  | 0xff is used when a one byte breakpoint instruction is required.  */ | 
|  | constexpr gdb_byte rl78_break_insn[] = { 0xff }; | 
|  |  | 
|  | typedef BP_MANIPULATION (rl78_break_insn) rl78_breakpoint; | 
|  |  | 
|  | /* Define a "handle" struct for fetching the next opcode.  */ | 
|  |  | 
|  | struct rl78_get_opcode_byte_handle | 
|  | { | 
|  | CORE_ADDR pc; | 
|  | }; | 
|  |  | 
|  | static int | 
|  | opc_reg_to_gdb_regnum (int opcreg) | 
|  | { | 
|  | switch (opcreg) | 
|  | { | 
|  | case RL78_Reg_X: | 
|  | return RL78_X_REGNUM; | 
|  | case RL78_Reg_A: | 
|  | return RL78_A_REGNUM; | 
|  | case RL78_Reg_C: | 
|  | return RL78_C_REGNUM; | 
|  | case RL78_Reg_B: | 
|  | return RL78_B_REGNUM; | 
|  | case RL78_Reg_E: | 
|  | return RL78_E_REGNUM; | 
|  | case RL78_Reg_D: | 
|  | return RL78_D_REGNUM; | 
|  | case RL78_Reg_L: | 
|  | return RL78_L_REGNUM; | 
|  | case RL78_Reg_H: | 
|  | return RL78_H_REGNUM; | 
|  | case RL78_Reg_AX: | 
|  | return RL78_AX_REGNUM; | 
|  | case RL78_Reg_BC: | 
|  | return RL78_BC_REGNUM; | 
|  | case RL78_Reg_DE: | 
|  | return RL78_DE_REGNUM; | 
|  | case RL78_Reg_HL: | 
|  | return RL78_HL_REGNUM; | 
|  | case RL78_Reg_SP: | 
|  | return RL78_SP_REGNUM; | 
|  | case RL78_Reg_PSW: | 
|  | return RL78_PSW_REGNUM; | 
|  | case RL78_Reg_CS: | 
|  | return RL78_CS_REGNUM; | 
|  | case RL78_Reg_ES: | 
|  | return RL78_ES_REGNUM; | 
|  | case RL78_Reg_PMC: | 
|  | return RL78_PMC_REGNUM; | 
|  | case RL78_Reg_MEM: | 
|  | return RL78_MEM_REGNUM; | 
|  | default: | 
|  | internal_error (_("Undefined mapping for opc reg %d"), | 
|  | opcreg); | 
|  | } | 
|  |  | 
|  | /* Not reached.  */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Fetch a byte on behalf of the opcode decoder.  HANDLE contains | 
|  | the memory address of the next byte to fetch.  If successful, | 
|  | the address in the handle is updated and the byte fetched is | 
|  | returned as the value of the function.  If not successful, -1 | 
|  | is returned.  */ | 
|  |  | 
|  | static int | 
|  | rl78_get_opcode_byte (void *handle) | 
|  | { | 
|  | struct rl78_get_opcode_byte_handle *opcdata | 
|  | = (struct rl78_get_opcode_byte_handle *) handle; | 
|  | int status; | 
|  | gdb_byte byte; | 
|  |  | 
|  | status = target_read_memory (opcdata->pc, &byte, 1); | 
|  | if (status == 0) | 
|  | { | 
|  | opcdata->pc += 1; | 
|  | return byte; | 
|  | } | 
|  | else | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Function for finding saved registers in a 'struct pv_area'; this | 
|  | function is passed to pv_area::scan. | 
|  |  | 
|  | If VALUE is a saved register, ADDR says it was saved at a constant | 
|  | offset from the frame base, and SIZE indicates that the whole | 
|  | register was saved, record its offset.  */ | 
|  |  | 
|  | static void | 
|  | check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, | 
|  | pv_t value) | 
|  | { | 
|  | struct rl78_prologue *result = (struct rl78_prologue *) result_untyped; | 
|  |  | 
|  | if (value.kind == pvk_register | 
|  | && value.k == 0 | 
|  | && pv_is_register (addr, RL78_SP_REGNUM) | 
|  | && size == register_size (target_gdbarch (), value.reg)) | 
|  | result->reg_offset[value.reg] = addr.k; | 
|  | } | 
|  |  | 
|  | /* Analyze a prologue starting at START_PC, going no further than | 
|  | LIMIT_PC.  Fill in RESULT as appropriate.  */ | 
|  |  | 
|  | static void | 
|  | rl78_analyze_prologue (CORE_ADDR start_pc, | 
|  | CORE_ADDR limit_pc, struct rl78_prologue *result) | 
|  | { | 
|  | CORE_ADDR pc, next_pc; | 
|  | int rn; | 
|  | pv_t reg[RL78_NUM_TOTAL_REGS]; | 
|  | CORE_ADDR after_last_frame_setup_insn = start_pc; | 
|  | int bank = 0; | 
|  |  | 
|  | memset (result, 0, sizeof (*result)); | 
|  |  | 
|  | for (rn = 0; rn < RL78_NUM_TOTAL_REGS; rn++) | 
|  | { | 
|  | reg[rn] = pv_register (rn, 0); | 
|  | result->reg_offset[rn] = 1; | 
|  | } | 
|  |  | 
|  | pv_area stack (RL78_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ())); | 
|  |  | 
|  | /* The call instruction has saved the return address on the stack.  */ | 
|  | reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -4); | 
|  | stack.store (reg[RL78_SP_REGNUM], 4, reg[RL78_PC_REGNUM]); | 
|  |  | 
|  | pc = start_pc; | 
|  | while (pc < limit_pc) | 
|  | { | 
|  | int bytes_read; | 
|  | struct rl78_get_opcode_byte_handle opcode_handle; | 
|  | RL78_Opcode_Decoded opc; | 
|  |  | 
|  | opcode_handle.pc = pc; | 
|  | bytes_read = rl78_decode_opcode (pc, &opc, rl78_get_opcode_byte, | 
|  | &opcode_handle, RL78_ISA_DEFAULT); | 
|  | next_pc = pc + bytes_read; | 
|  |  | 
|  | if (opc.id == RLO_sel) | 
|  | { | 
|  | bank = opc.op[1].addend; | 
|  | } | 
|  | else if (opc.id == RLO_mov | 
|  | && opc.op[0].type == RL78_Operand_PreDec | 
|  | && opc.op[0].reg == RL78_Reg_SP | 
|  | && opc.op[1].type == RL78_Operand_Register) | 
|  | { | 
|  | int rsrc = (bank * RL78_REGS_PER_BANK) | 
|  | + 2 * (opc.op[1].reg - RL78_Reg_AX); | 
|  |  | 
|  | reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1); | 
|  | stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc]); | 
|  | reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1); | 
|  | stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc + 1]); | 
|  | after_last_frame_setup_insn = next_pc; | 
|  | } | 
|  | else if (opc.id == RLO_sub | 
|  | && opc.op[0].type == RL78_Operand_Register | 
|  | && opc.op[0].reg == RL78_Reg_SP | 
|  | && opc.op[1].type == RL78_Operand_Immediate) | 
|  | { | 
|  | int addend = opc.op[1].addend; | 
|  |  | 
|  | reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], | 
|  | -addend); | 
|  | after_last_frame_setup_insn = next_pc; | 
|  | } | 
|  | else if (opc.id == RLO_mov | 
|  | && opc.size == RL78_Word | 
|  | && opc.op[0].type == RL78_Operand_Register | 
|  | && opc.op[1].type == RL78_Operand_Indirect | 
|  | && opc.op[1].addend == RL78_SP_ADDR) | 
|  | { | 
|  | reg[opc_reg_to_gdb_regnum (opc.op[0].reg)] | 
|  | = reg[RL78_SP_REGNUM]; | 
|  | } | 
|  | else if (opc.id == RLO_sub | 
|  | && opc.size == RL78_Word | 
|  | && opc.op[0].type == RL78_Operand_Register | 
|  | && opc.op[1].type == RL78_Operand_Immediate) | 
|  | { | 
|  | int addend = opc.op[1].addend; | 
|  | int regnum = opc_reg_to_gdb_regnum (opc.op[0].reg); | 
|  |  | 
|  | reg[regnum] = pv_add_constant (reg[regnum], -addend); | 
|  | } | 
|  | else if (opc.id == RLO_mov | 
|  | && opc.size == RL78_Word | 
|  | && opc.op[0].type == RL78_Operand_Indirect | 
|  | && opc.op[0].addend == RL78_SP_ADDR | 
|  | && opc.op[1].type == RL78_Operand_Register) | 
|  | { | 
|  | reg[RL78_SP_REGNUM] | 
|  | = reg[opc_reg_to_gdb_regnum (opc.op[1].reg)]; | 
|  | after_last_frame_setup_insn = next_pc; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Terminate the prologue scan.  */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | pc = next_pc; | 
|  | } | 
|  |  | 
|  | /* Is the frame size (offset, really) a known constant?  */ | 
|  | if (pv_is_register (reg[RL78_SP_REGNUM], RL78_SP_REGNUM)) | 
|  | result->frame_size = reg[RL78_SP_REGNUM].k; | 
|  |  | 
|  | /* Record where all the registers were saved.  */ | 
|  | stack.scan (check_for_saved, (void *) result); | 
|  |  | 
|  | result->prologue_end = after_last_frame_setup_insn; | 
|  | } | 
|  |  | 
|  | /* Implement the "addr_bits_remove" gdbarch method.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | rl78_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr) | 
|  | { | 
|  | return addr & 0xffffff; | 
|  | } | 
|  |  | 
|  | /* Implement the "address_to_pointer" gdbarch method.  */ | 
|  |  | 
|  | static void | 
|  | rl78_address_to_pointer (struct gdbarch *gdbarch, | 
|  | struct type *type, gdb_byte *buf, CORE_ADDR addr) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | store_unsigned_integer (buf, type->length (), byte_order, | 
|  | addr & 0xffffff); | 
|  | } | 
|  |  | 
|  | /* Implement the "pointer_to_address" gdbarch method.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | rl78_pointer_to_address (struct gdbarch *gdbarch, | 
|  | struct type *type, const gdb_byte *buf) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR addr | 
|  | = extract_unsigned_integer (buf, type->length (), byte_order); | 
|  |  | 
|  | /* Is it a code address?  */ | 
|  | if (type->target_type ()->code () == TYPE_CODE_FUNC | 
|  | || type->target_type ()->code () == TYPE_CODE_METHOD | 
|  | || TYPE_CODE_SPACE (type->target_type ()) | 
|  | || type->length () == 4) | 
|  | return rl78_make_instruction_address (addr); | 
|  | else | 
|  | return rl78_make_data_address (addr); | 
|  | } | 
|  |  | 
|  | /* Implement the "skip_prologue" gdbarch method.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | rl78_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | const char *name; | 
|  | CORE_ADDR func_addr, func_end; | 
|  | struct rl78_prologue p; | 
|  |  | 
|  | /* Try to find the extent of the function that contains PC.  */ | 
|  | if (!find_pc_partial_function (pc, &name, &func_addr, &func_end)) | 
|  | return pc; | 
|  |  | 
|  | rl78_analyze_prologue (pc, func_end, &p); | 
|  | return p.prologue_end; | 
|  | } | 
|  |  | 
|  | /* Implement the "unwind_pc" gdbarch method.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | rl78_unwind_pc (struct gdbarch *arch, frame_info_ptr next_frame) | 
|  | { | 
|  | return rl78_addr_bits_remove | 
|  | (arch, frame_unwind_register_unsigned (next_frame, | 
|  | RL78_PC_REGNUM)); | 
|  | } | 
|  |  | 
|  | /* Given a frame described by THIS_FRAME, decode the prologue of its | 
|  | associated function if there is not cache entry as specified by | 
|  | THIS_PROLOGUE_CACHE.  Save the decoded prologue in the cache and | 
|  | return that struct as the value of this function.  */ | 
|  |  | 
|  | static struct rl78_prologue * | 
|  | rl78_analyze_frame_prologue (frame_info_ptr this_frame, | 
|  | void **this_prologue_cache) | 
|  | { | 
|  | if (!*this_prologue_cache) | 
|  | { | 
|  | CORE_ADDR func_start, stop_addr; | 
|  |  | 
|  | *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rl78_prologue); | 
|  |  | 
|  | func_start = get_frame_func (this_frame); | 
|  | stop_addr = get_frame_pc (this_frame); | 
|  |  | 
|  | /* If we couldn't find any function containing the PC, then | 
|  | just initialize the prologue cache, but don't do anything.  */ | 
|  | if (!func_start) | 
|  | stop_addr = func_start; | 
|  |  | 
|  | rl78_analyze_prologue (func_start, stop_addr, | 
|  | (struct rl78_prologue *) *this_prologue_cache); | 
|  | } | 
|  |  | 
|  | return (struct rl78_prologue *) *this_prologue_cache; | 
|  | } | 
|  |  | 
|  | /* Given a frame and a prologue cache, return this frame's base.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | rl78_frame_base (frame_info_ptr this_frame, void **this_prologue_cache) | 
|  | { | 
|  | struct rl78_prologue *p | 
|  | = rl78_analyze_frame_prologue (this_frame, this_prologue_cache); | 
|  | CORE_ADDR sp = get_frame_register_unsigned (this_frame, RL78_SP_REGNUM); | 
|  |  | 
|  | return rl78_make_data_address (sp - p->frame_size); | 
|  | } | 
|  |  | 
|  | /* Implement the "frame_this_id" method for unwinding frames.  */ | 
|  |  | 
|  | static void | 
|  | rl78_this_id (frame_info_ptr this_frame, | 
|  | void **this_prologue_cache, struct frame_id *this_id) | 
|  | { | 
|  | *this_id = frame_id_build (rl78_frame_base (this_frame, | 
|  | this_prologue_cache), | 
|  | get_frame_func (this_frame)); | 
|  | } | 
|  |  | 
|  | /* Implement the "frame_prev_register" method for unwinding frames.  */ | 
|  |  | 
|  | static struct value * | 
|  | rl78_prev_register (frame_info_ptr this_frame, | 
|  | void **this_prologue_cache, int regnum) | 
|  | { | 
|  | struct rl78_prologue *p | 
|  | = rl78_analyze_frame_prologue (this_frame, this_prologue_cache); | 
|  | CORE_ADDR frame_base = rl78_frame_base (this_frame, this_prologue_cache); | 
|  |  | 
|  | if (regnum == RL78_SP_REGNUM) | 
|  | return frame_unwind_got_constant (this_frame, regnum, frame_base); | 
|  |  | 
|  | else if (regnum == RL78_SPL_REGNUM) | 
|  | return frame_unwind_got_constant (this_frame, regnum, | 
|  | (frame_base & 0xff)); | 
|  |  | 
|  | else if (regnum == RL78_SPH_REGNUM) | 
|  | return frame_unwind_got_constant (this_frame, regnum, | 
|  | ((frame_base >> 8) & 0xff)); | 
|  |  | 
|  | /* If prologue analysis says we saved this register somewhere, | 
|  | return a description of the stack slot holding it.  */ | 
|  | else if (p->reg_offset[regnum] != 1) | 
|  | { | 
|  | struct value *rv = | 
|  | frame_unwind_got_memory (this_frame, regnum, | 
|  | frame_base + p->reg_offset[regnum]); | 
|  |  | 
|  | if (regnum == RL78_PC_REGNUM) | 
|  | { | 
|  | ULONGEST pc = rl78_make_instruction_address (value_as_long (rv)); | 
|  |  | 
|  | return frame_unwind_got_constant (this_frame, regnum, pc); | 
|  | } | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | /* Otherwise, presume we haven't changed the value of this | 
|  | register, and get it from the next frame.  */ | 
|  | else | 
|  | return frame_unwind_got_register (this_frame, regnum, regnum); | 
|  | } | 
|  |  | 
|  | static const struct frame_unwind rl78_unwind = | 
|  | { | 
|  | "rl78 prologue", | 
|  | NORMAL_FRAME, | 
|  | default_frame_unwind_stop_reason, | 
|  | rl78_this_id, | 
|  | rl78_prev_register, | 
|  | NULL, | 
|  | default_frame_sniffer | 
|  | }; | 
|  |  | 
|  | /* Implement the "dwarf_reg_to_regnum" gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | rl78_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) | 
|  | { | 
|  | if (0 <= reg && reg <= 31) | 
|  | { | 
|  | if ((reg & 1) == 0) | 
|  | /* Map even registers to their 16-bit counterparts which have a | 
|  | pointer type.  This is usually what is required from the DWARF | 
|  | info.  */ | 
|  | return (reg >> 1) + RL78_BANK0_RP0_PTR_REGNUM; | 
|  | else | 
|  | return reg; | 
|  | } | 
|  | else if (reg == 32) | 
|  | return RL78_SP_REGNUM; | 
|  | else if (reg == 33) | 
|  | return -1;			/* ap */ | 
|  | else if (reg == 34) | 
|  | return RL78_PSW_REGNUM; | 
|  | else if (reg == 35) | 
|  | return RL78_ES_REGNUM; | 
|  | else if (reg == 36) | 
|  | return RL78_CS_REGNUM; | 
|  | else if (reg == 37) | 
|  | return RL78_PC_REGNUM; | 
|  | else | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Implement the `register_sim_regno' gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | rl78_register_sim_regno (struct gdbarch *gdbarch, int regnum) | 
|  | { | 
|  | gdb_assert (regnum < RL78_NUM_REGS); | 
|  |  | 
|  | /* So long as regnum is in [0, RL78_NUM_REGS), it's valid.  We | 
|  | just want to override the default here which disallows register | 
|  | numbers which have no names.  */ | 
|  | return regnum; | 
|  | } | 
|  |  | 
|  | /* Implement the "return_value" gdbarch method.  */ | 
|  |  | 
|  | static enum return_value_convention | 
|  | rl78_return_value (struct gdbarch *gdbarch, | 
|  | struct value *function, | 
|  | struct type *valtype, | 
|  | struct regcache *regcache, | 
|  | gdb_byte *readbuf, const gdb_byte *writebuf) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | ULONGEST valtype_len = valtype->length (); | 
|  | rl78_gdbarch_tdep *tdep = gdbarch_tdep<rl78_gdbarch_tdep> (gdbarch); | 
|  | int is_g10 = tdep->elf_flags & E_FLAG_RL78_G10; | 
|  |  | 
|  | if (valtype_len > 8) | 
|  | return RETURN_VALUE_STRUCT_CONVENTION; | 
|  |  | 
|  | if (readbuf) | 
|  | { | 
|  | ULONGEST u; | 
|  | int argreg = RL78_RAW_BANK1_R0_REGNUM; | 
|  | CORE_ADDR g10_raddr = 0xffec8; | 
|  | int offset = 0; | 
|  |  | 
|  | while (valtype_len > 0) | 
|  | { | 
|  | if (is_g10) | 
|  | u = read_memory_integer (g10_raddr, 1, | 
|  | gdbarch_byte_order (gdbarch)); | 
|  | else | 
|  | regcache_cooked_read_unsigned (regcache, argreg, &u); | 
|  | store_unsigned_integer (readbuf + offset, 1, byte_order, u); | 
|  | valtype_len -= 1; | 
|  | offset += 1; | 
|  | argreg++; | 
|  | g10_raddr++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (writebuf) | 
|  | { | 
|  | ULONGEST u; | 
|  | int argreg = RL78_RAW_BANK1_R0_REGNUM; | 
|  | CORE_ADDR g10_raddr = 0xffec8; | 
|  | int offset = 0; | 
|  |  | 
|  | while (valtype_len > 0) | 
|  | { | 
|  | u = extract_unsigned_integer (writebuf + offset, 1, byte_order); | 
|  | if (is_g10) { | 
|  | gdb_byte b = u & 0xff; | 
|  | write_memory (g10_raddr, &b, 1); | 
|  | } | 
|  | else | 
|  | regcache_cooked_write_unsigned (regcache, argreg, u); | 
|  | valtype_len -= 1; | 
|  | offset += 1; | 
|  | argreg++; | 
|  | g10_raddr++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return RETURN_VALUE_REGISTER_CONVENTION; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Implement the "frame_align" gdbarch method.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | rl78_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | 
|  | { | 
|  | return rl78_make_data_address (align_down (sp, 2)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Implement the "dummy_id" gdbarch method.  */ | 
|  |  | 
|  | static struct frame_id | 
|  | rl78_dummy_id (struct gdbarch *gdbarch, frame_info_ptr this_frame) | 
|  | { | 
|  | return | 
|  | frame_id_build (rl78_make_data_address | 
|  | (get_frame_register_unsigned | 
|  | (this_frame, RL78_SP_REGNUM)), | 
|  | get_frame_pc (this_frame)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Implement the "push_dummy_call" gdbarch method.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | rl78_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | 
|  | struct regcache *regcache, CORE_ADDR bp_addr, | 
|  | int nargs, struct value **args, CORE_ADDR sp, | 
|  | function_call_return_method return_method, | 
|  | CORE_ADDR struct_addr) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | gdb_byte buf[4]; | 
|  | int i; | 
|  |  | 
|  | /* Push arguments in reverse order.  */ | 
|  | for (i = nargs - 1; i >= 0; i--) | 
|  | { | 
|  | struct type *value_type = args[i]->enclosing_type (); | 
|  | int len = value_type->length (); | 
|  | int container_len = (len + 1) & ~1; | 
|  |  | 
|  | sp -= container_len; | 
|  | write_memory (rl78_make_data_address (sp), | 
|  | args[i]->contents_all ().data (), len); | 
|  | } | 
|  |  | 
|  | /* Store struct value address.  */ | 
|  | if (return_method == return_method_struct) | 
|  | { | 
|  | store_unsigned_integer (buf, 2, byte_order, struct_addr); | 
|  | sp -= 2; | 
|  | write_memory (rl78_make_data_address (sp), buf, 2); | 
|  | } | 
|  |  | 
|  | /* Store return address.  */ | 
|  | sp -= 4; | 
|  | store_unsigned_integer (buf, 4, byte_order, bp_addr); | 
|  | write_memory (rl78_make_data_address (sp), buf, 4); | 
|  |  | 
|  | /* Finally, update the stack pointer...  */ | 
|  | regcache_cooked_write_unsigned (regcache, RL78_SP_REGNUM, sp); | 
|  |  | 
|  | /* DWARF2/GCC uses the stack address *before* the function call as a | 
|  | frame's CFA.  */ | 
|  | return rl78_make_data_address (sp + 4); | 
|  | } | 
|  |  | 
|  | /* Allocate and initialize a gdbarch object.  */ | 
|  |  | 
|  | static struct gdbarch * | 
|  | rl78_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | 
|  | { | 
|  | int elf_flags; | 
|  |  | 
|  | /* Extract the elf_flags if available.  */ | 
|  | if (info.abfd != NULL | 
|  | && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | 
|  | elf_flags = elf_elfheader (info.abfd)->e_flags; | 
|  | else | 
|  | elf_flags = 0; | 
|  |  | 
|  |  | 
|  | /* Try to find the architecture in the list of already defined | 
|  | architectures.  */ | 
|  | for (arches = gdbarch_list_lookup_by_info (arches, &info); | 
|  | arches != NULL; | 
|  | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | 
|  | { | 
|  | rl78_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<rl78_gdbarch_tdep> (arches->gdbarch); | 
|  |  | 
|  | if (tdep->elf_flags != elf_flags) | 
|  | continue; | 
|  |  | 
|  | return arches->gdbarch; | 
|  | } | 
|  |  | 
|  | /* None found, create a new architecture from the information | 
|  | provided.  */ | 
|  | gdbarch *gdbarch | 
|  | = gdbarch_alloc (&info, gdbarch_tdep_up (new rl78_gdbarch_tdep)); | 
|  | rl78_gdbarch_tdep *tdep = gdbarch_tdep<rl78_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | tdep->elf_flags = elf_flags; | 
|  |  | 
|  | /* Initialize types.  */ | 
|  | type_allocator alloc (gdbarch); | 
|  | tdep->rl78_void = alloc.new_type (TYPE_CODE_VOID, TARGET_CHAR_BIT, "void"); | 
|  | tdep->rl78_uint8 = init_integer_type (alloc, 8, 1, "uint8_t"); | 
|  | tdep->rl78_int8 = init_integer_type (alloc, 8, 0, "int8_t"); | 
|  | tdep->rl78_uint16 = init_integer_type (alloc, 16, 1, "uint16_t"); | 
|  | tdep->rl78_int16 = init_integer_type (alloc, 16, 0, "int16_t"); | 
|  | tdep->rl78_uint32 = init_integer_type (alloc, 32, 1, "uint32_t"); | 
|  | tdep->rl78_int32 = init_integer_type (alloc, 32, 0, "int32_t"); | 
|  |  | 
|  | tdep->rl78_data_pointer | 
|  | = init_pointer_type (alloc, 16, "rl78_data_addr_t", tdep->rl78_void); | 
|  | tdep->rl78_code_pointer | 
|  | = init_pointer_type (alloc, 32, "rl78_code_addr_t", tdep->rl78_void); | 
|  |  | 
|  | /* Registers.  */ | 
|  | set_gdbarch_num_regs (gdbarch, RL78_NUM_REGS); | 
|  | set_gdbarch_num_pseudo_regs (gdbarch, RL78_NUM_PSEUDO_REGS); | 
|  | if (tdep->elf_flags & E_FLAG_RL78_G10) | 
|  | set_gdbarch_register_name (gdbarch, rl78_g10_register_name); | 
|  | else | 
|  | set_gdbarch_register_name (gdbarch, rl78_register_name); | 
|  | set_gdbarch_register_type (gdbarch, rl78_register_type); | 
|  | set_gdbarch_pc_regnum (gdbarch, RL78_PC_REGNUM); | 
|  | set_gdbarch_sp_regnum (gdbarch, RL78_SP_REGNUM); | 
|  | set_gdbarch_pseudo_register_read (gdbarch, rl78_pseudo_register_read); | 
|  | set_gdbarch_pseudo_register_write (gdbarch, rl78_pseudo_register_write); | 
|  | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rl78_dwarf_reg_to_regnum); | 
|  | set_gdbarch_register_reggroup_p (gdbarch, rl78_register_reggroup_p); | 
|  | set_gdbarch_register_sim_regno (gdbarch, rl78_register_sim_regno); | 
|  |  | 
|  | /* Data types.  */ | 
|  | set_gdbarch_char_signed (gdbarch, 0); | 
|  | set_gdbarch_short_bit (gdbarch, 16); | 
|  | set_gdbarch_int_bit (gdbarch, 16); | 
|  | set_gdbarch_long_bit (gdbarch, 32); | 
|  | set_gdbarch_long_long_bit (gdbarch, 64); | 
|  | set_gdbarch_ptr_bit (gdbarch, 16); | 
|  | set_gdbarch_addr_bit (gdbarch, 32); | 
|  | set_gdbarch_dwarf2_addr_size (gdbarch, 4); | 
|  | set_gdbarch_float_bit (gdbarch, 32); | 
|  | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); | 
|  | set_gdbarch_double_bit (gdbarch, 32); | 
|  | set_gdbarch_long_double_bit (gdbarch, 64); | 
|  | set_gdbarch_double_format (gdbarch, floatformats_ieee_single); | 
|  | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | 
|  | set_gdbarch_pointer_to_address (gdbarch, rl78_pointer_to_address); | 
|  | set_gdbarch_address_to_pointer (gdbarch, rl78_address_to_pointer); | 
|  | set_gdbarch_addr_bits_remove (gdbarch, rl78_addr_bits_remove); | 
|  |  | 
|  | /* Breakpoints.  */ | 
|  | set_gdbarch_breakpoint_kind_from_pc (gdbarch, rl78_breakpoint::kind_from_pc); | 
|  | set_gdbarch_sw_breakpoint_from_kind (gdbarch, rl78_breakpoint::bp_from_kind); | 
|  | set_gdbarch_decr_pc_after_break (gdbarch, 1); | 
|  |  | 
|  | /* Frames, prologues, etc.  */ | 
|  | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | 
|  | set_gdbarch_skip_prologue (gdbarch, rl78_skip_prologue); | 
|  | set_gdbarch_unwind_pc (gdbarch, rl78_unwind_pc); | 
|  | set_gdbarch_frame_align (gdbarch, rl78_frame_align); | 
|  |  | 
|  | dwarf2_append_unwinders (gdbarch); | 
|  | frame_unwind_append_unwinder (gdbarch, &rl78_unwind); | 
|  |  | 
|  | /* Dummy frames, return values.  */ | 
|  | set_gdbarch_dummy_id (gdbarch, rl78_dummy_id); | 
|  | set_gdbarch_push_dummy_call (gdbarch, rl78_push_dummy_call); | 
|  | set_gdbarch_return_value (gdbarch, rl78_return_value); | 
|  |  | 
|  | /* Virtual tables.  */ | 
|  | set_gdbarch_vbit_in_delta (gdbarch, 1); | 
|  |  | 
|  | return gdbarch; | 
|  | } | 
|  |  | 
|  | /* Register the above initialization routine.  */ | 
|  |  | 
|  | void _initialize_rl78_tdep (); | 
|  | void | 
|  | _initialize_rl78_tdep () | 
|  | { | 
|  | gdbarch_register (bfd_arch_rl78, rl78_gdbarch_init); | 
|  | } |