| /* x86 specific support for ELF | 
 |    Copyright (C) 2017-2024 Free Software Foundation, Inc. | 
 |  | 
 |    This file is part of BFD, the Binary File Descriptor library. | 
 |  | 
 |    This program is free software; you can redistribute it and/or modify | 
 |    it under the terms of the GNU General Public License as published by | 
 |    the Free Software Foundation; either version 3 of the License, or | 
 |    (at your option) any later version. | 
 |  | 
 |    This program is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |    GNU General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU General Public License | 
 |    along with this program; if not, write to the Free Software | 
 |    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | 
 |    MA 02110-1301, USA.  */ | 
 |  | 
 | #include "elfxx-x86.h" | 
 | #include "elf-vxworks.h" | 
 | #include "objalloc.h" | 
 |  | 
 | /* The name of the dynamic interpreter.  This is put in the .interp | 
 |    section.  */ | 
 |  | 
 | #define ELF32_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" | 
 | #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1" | 
 | #define ELFX32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1" | 
 |  | 
 | bool | 
 | _bfd_x86_elf_mkobject (bfd *abfd) | 
 | { | 
 |   return bfd_elf_allocate_object (abfd, | 
 | 				  sizeof (struct elf_x86_obj_tdata), | 
 | 				  get_elf_backend_data (abfd)->target_id); | 
 | } | 
 |  | 
 | /* _TLS_MODULE_BASE_ needs to be treated especially when linking | 
 |    executables.  Rather than setting it to the beginning of the TLS | 
 |    section, we have to set it to the end.    This function may be called | 
 |    multiple times, it is idempotent.  */ | 
 |  | 
 | void | 
 | _bfd_x86_elf_set_tls_module_base (struct bfd_link_info *info) | 
 | { | 
 |   struct elf_x86_link_hash_table *htab; | 
 |   struct bfd_link_hash_entry *base; | 
 |   const struct elf_backend_data *bed; | 
 |  | 
 |   if (!bfd_link_executable (info)) | 
 |     return; | 
 |  | 
 |   bed = get_elf_backend_data (info->output_bfd); | 
 |   htab = elf_x86_hash_table (info, bed->target_id); | 
 |   if (htab == NULL) | 
 |     return; | 
 |  | 
 |   base = htab->tls_module_base; | 
 |   if (base == NULL) | 
 |     return; | 
 |  | 
 |   base->u.def.value = htab->elf.tls_size; | 
 | } | 
 |  | 
 | /* Return the base VMA address which should be subtracted from real addresses | 
 |    when resolving @dtpoff relocation. | 
 |    This is PT_TLS segment p_vaddr.  */ | 
 |  | 
 | bfd_vma | 
 | _bfd_x86_elf_dtpoff_base (struct bfd_link_info *info) | 
 | { | 
 |   /* If tls_sec is NULL, we should have signalled an error already.  */ | 
 |   if (elf_hash_table (info)->tls_sec == NULL) | 
 |     return 0; | 
 |   return elf_hash_table (info)->tls_sec->vma; | 
 | } | 
 |  | 
 | /* Allocate space in .plt, .got and associated reloc sections for | 
 |    dynamic relocs.  */ | 
 |  | 
 | static bool | 
 | elf_x86_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) | 
 | { | 
 |   struct bfd_link_info *info; | 
 |   struct elf_x86_link_hash_table *htab; | 
 |   struct elf_x86_link_hash_entry *eh; | 
 |   struct elf_dyn_relocs *p; | 
 |   unsigned int plt_entry_size; | 
 |   bool resolved_to_zero; | 
 |   const struct elf_backend_data *bed; | 
 |  | 
 |   if (h->root.type == bfd_link_hash_indirect) | 
 |     return true; | 
 |  | 
 |   eh = (struct elf_x86_link_hash_entry *) h; | 
 |  | 
 |   info = (struct bfd_link_info *) inf; | 
 |   bed = get_elf_backend_data (info->output_bfd); | 
 |   htab = elf_x86_hash_table (info, bed->target_id); | 
 |   if (htab == NULL) | 
 |     return false; | 
 |  | 
 |   plt_entry_size = htab->plt.plt_entry_size; | 
 |  | 
 |   resolved_to_zero = UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, eh); | 
 |  | 
 |   /* We can't use the GOT PLT if pointer equality is needed since | 
 |      finish_dynamic_symbol won't clear symbol value and the dynamic | 
 |      linker won't update the GOT slot.  We will get into an infinite | 
 |      loop at run-time.  */ | 
 |   if (htab->plt_got != NULL | 
 |       && h->type != STT_GNU_IFUNC | 
 |       && !h->pointer_equality_needed | 
 |       && h->plt.refcount > 0 | 
 |       && h->got.refcount > 0) | 
 |     { | 
 |       /* Don't use the regular PLT if there are both GOT and GOTPLT | 
 | 	 reloctions.  */ | 
 |       h->plt.offset = (bfd_vma) -1; | 
 |  | 
 |       /* Use the GOT PLT.  */ | 
 |       eh->plt_got.refcount = 1; | 
 |     } | 
 |  | 
 |   /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it | 
 |      here if it is defined and referenced in a non-shared object.  */ | 
 |   if (h->type == STT_GNU_IFUNC | 
 |       && h->def_regular) | 
 |     { | 
 |       /* GOTOFF relocation needs PLT.  */ | 
 |       if (eh->gotoff_ref) | 
 | 	h->plt.refcount = 1; | 
 |  | 
 |       if (_bfd_elf_allocate_ifunc_dyn_relocs (info, h, &h->dyn_relocs, | 
 | 					      plt_entry_size, | 
 | 					      (htab->plt.has_plt0 | 
 | 					       * plt_entry_size), | 
 | 					       htab->got_entry_size, | 
 | 					       true)) | 
 | 	{ | 
 | 	  asection *s = htab->plt_second; | 
 | 	  if (h->plt.offset != (bfd_vma) -1 && s != NULL) | 
 | 	    { | 
 | 	      /* Use the second PLT section if it is created.  */ | 
 | 	      eh->plt_second.offset = s->size; | 
 |  | 
 | 	      /* Make room for this entry in the second PLT section.  */ | 
 | 	      s->size += htab->non_lazy_plt->plt_entry_size; | 
 | 	    } | 
 |  | 
 | 	  return true; | 
 | 	} | 
 |       else | 
 | 	return false; | 
 |     } | 
 |   /* Don't create the PLT entry if there are only function pointer | 
 |      relocations which can be resolved at run-time.  */ | 
 |   else if (htab->elf.dynamic_sections_created | 
 | 	   && (h->plt.refcount > 0 | 
 | 	       || eh->plt_got.refcount > 0)) | 
 |     { | 
 |       bool use_plt_got = eh->plt_got.refcount > 0; | 
 |  | 
 |       /* Make sure this symbol is output as a dynamic symbol. | 
 | 	 Undefined weak syms won't yet be marked as dynamic.  */ | 
 |       if (h->dynindx == -1 | 
 | 	  && !h->forced_local | 
 | 	  && !resolved_to_zero | 
 | 	  && h->root.type == bfd_link_hash_undefweak) | 
 | 	{ | 
 | 	  if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       if (bfd_link_pic (info) | 
 | 	  || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) | 
 | 	{ | 
 | 	  asection *s = htab->elf.splt; | 
 | 	  asection *second_s = htab->plt_second; | 
 | 	  asection *got_s = htab->plt_got; | 
 | 	  bool use_plt; | 
 |  | 
 | 	  /* If this is the first .plt entry, make room for the special | 
 | 	     first entry.  The .plt section is used by prelink to undo | 
 | 	     prelinking for dynamic relocations.  */ | 
 | 	  if (s->size == 0) | 
 | 	    s->size = htab->plt.has_plt0 * plt_entry_size; | 
 |  | 
 | 	  if (use_plt_got) | 
 | 	    eh->plt_got.offset = got_s->size; | 
 | 	  else | 
 | 	    { | 
 | 	      h->plt.offset = s->size; | 
 | 	      if (second_s) | 
 | 		eh->plt_second.offset = second_s->size; | 
 | 	    } | 
 |  | 
 | 	  /* If this symbol is not defined in a regular file, and we are | 
 | 	     generating PDE, then set the symbol to this location in the | 
 | 	     .plt.  This is required to make function pointers compare | 
 | 	     as equal between PDE and the shared library. | 
 |  | 
 | 	     NB: If PLT is PC-relative, we can use the .plt in PIE for | 
 | 	     function address. */ | 
 | 	  if (h->def_regular) | 
 | 	    use_plt = false; | 
 | 	  else if (htab->pcrel_plt) | 
 | 	    use_plt = ! bfd_link_dll (info); | 
 | 	  else | 
 | 	    use_plt = bfd_link_pde (info); | 
 | 	  if (use_plt) | 
 | 	    { | 
 | 	      if (use_plt_got) | 
 | 		{ | 
 | 		  /* We need to make a call to the entry of the GOT PLT | 
 | 		     instead of regular PLT entry.  */ | 
 | 		  h->root.u.def.section = got_s; | 
 | 		  h->root.u.def.value = eh->plt_got.offset; | 
 | 		} | 
 | 	      else | 
 | 		{ | 
 | 		  if (second_s) | 
 | 		    { | 
 | 		      /* We need to make a call to the entry of the | 
 | 			 second PLT instead of regular PLT entry.  */ | 
 | 		      h->root.u.def.section = second_s; | 
 | 		      h->root.u.def.value = eh->plt_second.offset; | 
 | 		    } | 
 | 		  else | 
 | 		    { | 
 | 		      h->root.u.def.section = s; | 
 | 		      h->root.u.def.value = h->plt.offset; | 
 | 		    } | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  /* Make room for this entry.  */ | 
 | 	  if (use_plt_got) | 
 | 	    got_s->size += htab->non_lazy_plt->plt_entry_size; | 
 | 	  else | 
 | 	    { | 
 | 	      s->size += plt_entry_size; | 
 | 	      if (second_s) | 
 | 		second_s->size += htab->non_lazy_plt->plt_entry_size; | 
 |  | 
 | 	      /* We also need to make an entry in the .got.plt section, | 
 | 		 which will be placed in the .got section by the linker | 
 | 		 script.  */ | 
 | 	      htab->elf.sgotplt->size += htab->got_entry_size; | 
 |  | 
 | 	      /* There should be no PLT relocation against resolved | 
 | 		 undefined weak symbol in executable.  */ | 
 | 	      if (!resolved_to_zero) | 
 | 		{ | 
 | 		  /* We also need to make an entry in the .rel.plt | 
 | 		     section.  */ | 
 | 		  htab->elf.srelplt->size += htab->sizeof_reloc; | 
 | 		  htab->elf.srelplt->reloc_count++; | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  if (htab->elf.target_os == is_vxworks && !bfd_link_pic (info)) | 
 | 	    { | 
 | 	      /* VxWorks has a second set of relocations for each PLT entry | 
 | 		 in executables.  They go in a separate relocation section, | 
 | 		 which is processed by the kernel loader.  */ | 
 |  | 
 | 	      /* There are two relocations for the initial PLT entry: an | 
 | 		 R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 4 and an | 
 | 		 R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 8.  */ | 
 |  | 
 | 	      asection *srelplt2 = htab->srelplt2; | 
 | 	      if (h->plt.offset == plt_entry_size) | 
 | 		srelplt2->size += (htab->sizeof_reloc * 2); | 
 |  | 
 | 	      /* There are two extra relocations for each subsequent PLT entry: | 
 | 		 an R_386_32 relocation for the GOT entry, and an R_386_32 | 
 | 		 relocation for the PLT entry.  */ | 
 |  | 
 | 	      srelplt2->size += (htab->sizeof_reloc * 2); | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  eh->plt_got.offset = (bfd_vma) -1; | 
 | 	  h->plt.offset = (bfd_vma) -1; | 
 | 	  h->needs_plt = 0; | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       eh->plt_got.offset = (bfd_vma) -1; | 
 |       h->plt.offset = (bfd_vma) -1; | 
 |       h->needs_plt = 0; | 
 |     } | 
 |  | 
 |   eh->tlsdesc_got = (bfd_vma) -1; | 
 |  | 
 |   /* For i386, if R_386_TLS_{IE_32,IE,GOTIE} symbol is now local to the | 
 |      binary, make it a R_386_TLS_LE_32 requiring no TLS entry.  For | 
 |      x86-64, if R_X86_64_GOTTPOFF symbol is now local to the binary, | 
 |      make it a R_X86_64_TPOFF32 requiring no GOT entry.  */ | 
 |   if (h->got.refcount > 0 | 
 |       && bfd_link_executable (info) | 
 |       && h->dynindx == -1 | 
 |       && (elf_x86_hash_entry (h)->tls_type & GOT_TLS_IE)) | 
 |     h->got.offset = (bfd_vma) -1; | 
 |   else if (h->got.refcount > 0) | 
 |     { | 
 |       asection *s; | 
 |       bool dyn; | 
 |       int tls_type = elf_x86_hash_entry (h)->tls_type; | 
 |  | 
 |       /* Make sure this symbol is output as a dynamic symbol. | 
 | 	 Undefined weak syms won't yet be marked as dynamic.  */ | 
 |       if (h->dynindx == -1 | 
 | 	  && !h->forced_local | 
 | 	  && !resolved_to_zero | 
 | 	  && h->root.type == bfd_link_hash_undefweak) | 
 | 	{ | 
 | 	  if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       s = htab->elf.sgot; | 
 |       if (GOT_TLS_GDESC_P (tls_type)) | 
 | 	{ | 
 | 	  eh->tlsdesc_got = htab->elf.sgotplt->size | 
 | 	    - elf_x86_compute_jump_table_size (htab); | 
 | 	  htab->elf.sgotplt->size += 2 * htab->got_entry_size; | 
 | 	  h->got.offset = (bfd_vma) -2; | 
 | 	} | 
 |       if (! GOT_TLS_GDESC_P (tls_type) | 
 | 	  || GOT_TLS_GD_P (tls_type)) | 
 | 	{ | 
 | 	  h->got.offset = s->size; | 
 | 	  s->size += htab->got_entry_size; | 
 | 	  /* R_386_TLS_GD and R_X86_64_TLSGD need 2 consecutive GOT | 
 | 	     slots.  */ | 
 | 	  if (GOT_TLS_GD_P (tls_type) || tls_type == GOT_TLS_IE_BOTH) | 
 | 	    s->size += htab->got_entry_size; | 
 | 	} | 
 |       dyn = htab->elf.dynamic_sections_created; | 
 |       /* R_386_TLS_IE_32 needs one dynamic relocation, | 
 | 	 R_386_TLS_IE resp. R_386_TLS_GOTIE needs one dynamic relocation, | 
 | 	 (but if both R_386_TLS_IE_32 and R_386_TLS_IE is present, we | 
 | 	 need two), R_386_TLS_GD and R_X86_64_TLSGD need one if local | 
 | 	 symbol and two if global.  No dynamic relocation against | 
 | 	 resolved undefined weak symbol in executable.  No dynamic | 
 | 	 relocation against non-preemptible absolute symbol.  */ | 
 |       if (tls_type == GOT_TLS_IE_BOTH) | 
 | 	htab->elf.srelgot->size += 2 * htab->sizeof_reloc; | 
 |       else if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1) | 
 | 	       || (tls_type & GOT_TLS_IE)) | 
 | 	htab->elf.srelgot->size += htab->sizeof_reloc; | 
 |       else if (GOT_TLS_GD_P (tls_type)) | 
 | 	htab->elf.srelgot->size += 2 * htab->sizeof_reloc; | 
 |       else if (! GOT_TLS_GDESC_P (tls_type) | 
 | 	       && ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | 
 | 		    && !resolved_to_zero) | 
 | 		   || h->root.type != bfd_link_hash_undefweak) | 
 | 	       && ((bfd_link_pic (info) | 
 | 		    && !(h->dynindx == -1 | 
 | 			 && ABS_SYMBOL_P (h))) | 
 | 		   || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) | 
 | 	htab->elf.srelgot->size += htab->sizeof_reloc; | 
 |       if (GOT_TLS_GDESC_P (tls_type)) | 
 | 	{ | 
 | 	  htab->elf.srelplt->size += htab->sizeof_reloc; | 
 | 	  if (bed->target_id == X86_64_ELF_DATA) | 
 | 	    htab->elf.tlsdesc_plt = (bfd_vma) -1; | 
 | 	} | 
 |     } | 
 |   else | 
 |     h->got.offset = (bfd_vma) -1; | 
 |  | 
 |   if (h->dyn_relocs == NULL) | 
 |     return true; | 
 |  | 
 |   /* In the shared -Bsymbolic case, discard space allocated for | 
 |      dynamic pc-relative relocs against symbols which turn out to be | 
 |      defined in regular objects.  For the normal shared case, discard | 
 |      space for pc-relative relocs that have become local due to symbol | 
 |      visibility changes.  */ | 
 |  | 
 |   if (bfd_link_pic (info)) | 
 |     { | 
 |       /* Relocs that use pc_count are those that appear on a call | 
 | 	 insn, or certain REL relocs that can generated via assembly. | 
 | 	 We want calls to protected symbols to resolve directly to the | 
 | 	 function rather than going via the plt.  If people want | 
 | 	 function pointer comparisons to work as expected then they | 
 | 	 should avoid writing weird assembly.  */ | 
 |       if (SYMBOL_CALLS_LOCAL (info, h)) | 
 | 	{ | 
 | 	  struct elf_dyn_relocs **pp; | 
 |  | 
 | 	  for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) | 
 | 	    { | 
 | 	      p->count -= p->pc_count; | 
 | 	      p->pc_count = 0; | 
 | 	      if (p->count == 0) | 
 | 		*pp = p->next; | 
 | 	      else | 
 | 		pp = &p->next; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if (htab->elf.target_os == is_vxworks) | 
 | 	{ | 
 | 	  struct elf_dyn_relocs **pp; | 
 | 	  for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) | 
 | 	    { | 
 | 	      if (strcmp (p->sec->output_section->name, ".tls_vars") == 0) | 
 | 		*pp = p->next; | 
 | 	      else | 
 | 		pp = &p->next; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       /* Also discard relocs on undefined weak syms with non-default | 
 | 	 visibility or in PIE.  */ | 
 |       if (h->dyn_relocs != NULL) | 
 | 	{ | 
 | 	  if (h->root.type == bfd_link_hash_undefweak) | 
 | 	    { | 
 | 	      /* Undefined weak symbol is never bound locally in shared | 
 | 		 library.  */ | 
 | 	      if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | 
 | 		  || resolved_to_zero) | 
 | 		{ | 
 | 		  if (bed->target_id == I386_ELF_DATA | 
 | 		      && h->non_got_ref) | 
 | 		    { | 
 | 		      /* Keep dynamic non-GOT/non-PLT relocation so | 
 | 			 that we can branch to 0 without PLT.  */ | 
 | 		      struct elf_dyn_relocs **pp; | 
 |  | 
 | 		      for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) | 
 | 			if (p->pc_count == 0) | 
 | 			  *pp = p->next; | 
 | 			else | 
 | 			  { | 
 | 			    /* Remove non-R_386_PC32 relocation.  */ | 
 | 			    p->count = p->pc_count; | 
 | 			    pp = &p->next; | 
 | 			  } | 
 |  | 
 | 		      /* Make sure undefined weak symbols are output | 
 | 			 as dynamic symbols in PIEs for dynamic non-GOT | 
 | 			 non-PLT reloations.  */ | 
 | 		      if (h->dyn_relocs != NULL | 
 | 			  && !bfd_elf_link_record_dynamic_symbol (info, h)) | 
 | 			return false; | 
 | 		    } | 
 | 		  else | 
 | 		    h->dyn_relocs = NULL; | 
 | 		} | 
 | 	      else if (h->dynindx == -1 | 
 | 		       && !h->forced_local | 
 | 		       && !bfd_elf_link_record_dynamic_symbol (info, h)) | 
 | 		return false; | 
 | 	    } | 
 | 	  else if (bfd_link_executable (info) | 
 | 		   && (h->needs_copy || eh->needs_copy) | 
 | 		   && h->def_dynamic | 
 | 		   && !h->def_regular) | 
 | 	    { | 
 | 	      /* NB: needs_copy is set only for x86-64.  For PIE, | 
 | 		 discard space for pc-relative relocs against symbols | 
 | 		 which turn out to need copy relocs.  */ | 
 | 	      struct elf_dyn_relocs **pp; | 
 |  | 
 | 	      for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) | 
 | 		{ | 
 | 		  if (p->pc_count != 0) | 
 | 		    *pp = p->next; | 
 | 		  else | 
 | 		    pp = &p->next; | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   else if (ELIMINATE_COPY_RELOCS) | 
 |     { | 
 |       /* For the non-shared case, discard space for relocs against | 
 | 	 symbols which turn out to need copy relocs or are not | 
 | 	 dynamic.  Keep dynamic relocations for run-time function | 
 | 	 pointer initialization.  */ | 
 |  | 
 |       if ((!h->non_got_ref | 
 | 	   || (h->root.type == bfd_link_hash_undefweak | 
 | 	       && !resolved_to_zero)) | 
 | 	  && ((h->def_dynamic | 
 | 	       && !h->def_regular) | 
 | 	      || (htab->elf.dynamic_sections_created | 
 | 		  && (h->root.type == bfd_link_hash_undefweak | 
 | 		      || h->root.type == bfd_link_hash_undefined)))) | 
 | 	{ | 
 | 	  /* Make sure this symbol is output as a dynamic symbol. | 
 | 	     Undefined weak syms won't yet be marked as dynamic.  */ | 
 | 	  if (h->dynindx == -1 | 
 | 	      && !h->forced_local | 
 | 	      && !resolved_to_zero | 
 | 	      && h->root.type == bfd_link_hash_undefweak | 
 | 	      && ! bfd_elf_link_record_dynamic_symbol (info, h)) | 
 | 	    return false; | 
 |  | 
 | 	  /* If that succeeded, we know we'll be keeping all the | 
 | 	     relocs.  */ | 
 | 	  if (h->dynindx != -1) | 
 | 	    goto keep; | 
 | 	} | 
 |  | 
 |       h->dyn_relocs = NULL; | 
 |  | 
 |     keep: ; | 
 |     } | 
 |  | 
 |   /* Finally, allocate space.  */ | 
 |   for (p = h->dyn_relocs; p != NULL; p = p->next) | 
 |     { | 
 |       asection *sreloc; | 
 |  | 
 |       if (eh->def_protected && bfd_link_executable (info)) | 
 | 	{ | 
 | 	  /* Disallow copy relocation against non-copyable protected | 
 | 	     symbol.  */ | 
 | 	  asection *s = p->sec->output_section; | 
 | 	  if (s != NULL && (s->flags & SEC_READONLY) != 0) | 
 | 	    { | 
 | 	      info->callbacks->einfo | 
 | 		/* xgettext:c-format */ | 
 | 		(_("%F%P: %pB: copy relocation against non-copyable " | 
 | 		   "protected symbol `%s' in %pB\n"), | 
 | 		 p->sec->owner, h->root.root.string, | 
 | 		 h->root.u.def.section->owner); | 
 | 	      return false; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       sreloc = elf_section_data (p->sec)->sreloc; | 
 |  | 
 |       BFD_ASSERT (sreloc != NULL); | 
 |       sreloc->size += p->count * htab->sizeof_reloc; | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Allocate space in .plt, .got and associated reloc sections for | 
 |    local dynamic relocs.  */ | 
 |  | 
 | static int | 
 | elf_x86_allocate_local_dynreloc (void **slot, void *inf) | 
 | { | 
 |   struct elf_link_hash_entry *h | 
 |     = (struct elf_link_hash_entry *) *slot; | 
 |  | 
 |   if (h->type != STT_GNU_IFUNC | 
 |       || !h->def_regular | 
 |       || !h->ref_regular | 
 |       || !h->forced_local | 
 |       || h->root.type != bfd_link_hash_defined) | 
 |     abort (); | 
 |  | 
 |   return elf_x86_allocate_dynrelocs (h, inf); | 
 | } | 
 |  | 
 | /* Find and/or create a hash entry for local symbol.  */ | 
 |  | 
 | struct elf_link_hash_entry * | 
 | _bfd_elf_x86_get_local_sym_hash (struct elf_x86_link_hash_table *htab, | 
 | 				 bfd *abfd, const Elf_Internal_Rela *rel, | 
 | 				 bool create) | 
 | { | 
 |   struct elf_x86_link_hash_entry e, *ret; | 
 |   asection *sec = abfd->sections; | 
 |   hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id, | 
 | 				       htab->r_sym (rel->r_info)); | 
 |   void **slot; | 
 |  | 
 |   e.elf.indx = sec->id; | 
 |   e.elf.dynstr_index = htab->r_sym (rel->r_info); | 
 |   slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h, | 
 | 				   create ? INSERT : NO_INSERT); | 
 |  | 
 |   if (!slot) | 
 |     return NULL; | 
 |  | 
 |   if (*slot) | 
 |     { | 
 |       ret = (struct elf_x86_link_hash_entry *) *slot; | 
 |       return &ret->elf; | 
 |     } | 
 |  | 
 |   ret = (struct elf_x86_link_hash_entry *) | 
 | 	objalloc_alloc ((struct objalloc *) htab->loc_hash_memory, | 
 | 			sizeof (struct elf_x86_link_hash_entry)); | 
 |   if (ret) | 
 |     { | 
 |       memset (ret, 0, sizeof (*ret)); | 
 |       ret->elf.indx = sec->id; | 
 |       ret->elf.dynstr_index = htab->r_sym (rel->r_info); | 
 |       ret->elf.dynindx = -1; | 
 |       ret->plt_got.offset = (bfd_vma) -1; | 
 |       *slot = ret; | 
 |     } | 
 |   return &ret->elf; | 
 | } | 
 |  | 
 | /* Create an entry in a x86 ELF linker hash table.  NB: THIS MUST BE IN | 
 |    SYNC WITH _bfd_elf_link_hash_newfunc.  */ | 
 |  | 
 | struct bfd_hash_entry * | 
 | _bfd_x86_elf_link_hash_newfunc (struct bfd_hash_entry *entry, | 
 | 				struct bfd_hash_table *table, | 
 | 				const char *string) | 
 | { | 
 |   /* Allocate the structure if it has not already been allocated by a | 
 |      subclass.  */ | 
 |   if (entry == NULL) | 
 |     { | 
 |       entry = (struct bfd_hash_entry *) | 
 | 	bfd_hash_allocate (table, | 
 | 			   sizeof (struct elf_x86_link_hash_entry)); | 
 |       if (entry == NULL) | 
 | 	return entry; | 
 |     } | 
 |  | 
 |   /* Call the allocation method of the superclass.  */ | 
 |   entry = _bfd_link_hash_newfunc (entry, table, string); | 
 |   if (entry != NULL) | 
 |     { | 
 |       struct elf_x86_link_hash_entry *eh | 
 |        = (struct elf_x86_link_hash_entry *) entry; | 
 |       struct elf_link_hash_table *htab | 
 | 	= (struct elf_link_hash_table *) table; | 
 |  | 
 |       memset (&eh->elf.size, 0, | 
 | 	      (sizeof (struct elf_x86_link_hash_entry) | 
 | 	       - offsetof (struct elf_link_hash_entry, size))); | 
 |       /* Set local fields.  */ | 
 |       eh->elf.indx = -1; | 
 |       eh->elf.dynindx = -1; | 
 |       eh->elf.got = htab->init_got_refcount; | 
 |       eh->elf.plt = htab->init_plt_refcount; | 
 |       /* Assume that we have been called by a non-ELF symbol reader. | 
 | 	 This flag is then reset by the code which reads an ELF input | 
 | 	 file.  This ensures that a symbol created by a non-ELF symbol | 
 | 	 reader will have the flag set correctly.  */ | 
 |       eh->elf.non_elf = 1; | 
 |       eh->plt_second.offset = (bfd_vma) -1; | 
 |       eh->plt_got.offset = (bfd_vma) -1; | 
 |       eh->tlsdesc_got = (bfd_vma) -1; | 
 |       eh->zero_undefweak = 1; | 
 |     } | 
 |  | 
 |   return entry; | 
 | } | 
 |  | 
 | /* Compute a hash of a local hash entry.  We use elf_link_hash_entry | 
 |   for local symbol so that we can handle local STT_GNU_IFUNC symbols | 
 |   as global symbol.  We reuse indx and dynstr_index for local symbol | 
 |   hash since they aren't used by global symbols in this backend.  */ | 
 |  | 
 | hashval_t | 
 | _bfd_x86_elf_local_htab_hash (const void *ptr) | 
 | { | 
 |   struct elf_link_hash_entry *h | 
 |     = (struct elf_link_hash_entry *) ptr; | 
 |   return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index); | 
 | } | 
 |  | 
 | /* Compare local hash entries.  */ | 
 |  | 
 | int | 
 | _bfd_x86_elf_local_htab_eq (const void *ptr1, const void *ptr2) | 
 | { | 
 |   struct elf_link_hash_entry *h1 | 
 |      = (struct elf_link_hash_entry *) ptr1; | 
 |   struct elf_link_hash_entry *h2 | 
 |     = (struct elf_link_hash_entry *) ptr2; | 
 |  | 
 |   return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index; | 
 | } | 
 |  | 
 | /* Destroy an x86 ELF linker hash table.  */ | 
 |  | 
 | static void | 
 | elf_x86_link_hash_table_free (bfd *obfd) | 
 | { | 
 |   struct elf_x86_link_hash_table *htab | 
 |     = (struct elf_x86_link_hash_table *) obfd->link.hash; | 
 |  | 
 |   if (htab->loc_hash_table) | 
 |     htab_delete (htab->loc_hash_table); | 
 |   if (htab->loc_hash_memory) | 
 |     objalloc_free ((struct objalloc *) htab->loc_hash_memory); | 
 |   _bfd_elf_link_hash_table_free (obfd); | 
 | } | 
 |  | 
 | static bool | 
 | elf_i386_is_reloc_section (const char *secname) | 
 | { | 
 |   return startswith (secname, ".rel"); | 
 | } | 
 |  | 
 | static bool | 
 | elf_x86_64_is_reloc_section (const char *secname) | 
 | { | 
 |   return startswith (secname, ".rela"); | 
 | } | 
 |  | 
 | /* Create an x86 ELF linker hash table.  */ | 
 |  | 
 | struct bfd_link_hash_table * | 
 | _bfd_x86_elf_link_hash_table_create (bfd *abfd) | 
 | { | 
 |   struct elf_x86_link_hash_table *ret; | 
 |   const struct elf_backend_data *bed; | 
 |   size_t amt = sizeof (struct elf_x86_link_hash_table); | 
 |  | 
 |   ret = (struct elf_x86_link_hash_table *) bfd_zmalloc (amt); | 
 |   if (ret == NULL) | 
 |     return NULL; | 
 |  | 
 |   bed = get_elf_backend_data (abfd); | 
 |   if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, | 
 | 				      _bfd_x86_elf_link_hash_newfunc, | 
 | 				      sizeof (struct elf_x86_link_hash_entry), | 
 | 				      bed->target_id)) | 
 |     { | 
 |       free (ret); | 
 |       return NULL; | 
 |     } | 
 |  | 
 |   if (bed->target_id == X86_64_ELF_DATA) | 
 |     { | 
 |       ret->is_reloc_section = elf_x86_64_is_reloc_section; | 
 |       ret->got_entry_size = 8; | 
 |       ret->pcrel_plt = true; | 
 |       ret->tls_get_addr = "__tls_get_addr"; | 
 |       ret->relative_r_type = R_X86_64_RELATIVE; | 
 |       ret->relative_r_name = "R_X86_64_RELATIVE"; | 
 |       ret->elf_append_reloc = elf_append_rela; | 
 |       ret->elf_write_addend_in_got = _bfd_elf64_write_addend; | 
 |     } | 
 |   if (ABI_64_P (abfd)) | 
 |     { | 
 |       ret->sizeof_reloc = sizeof (Elf64_External_Rela); | 
 |       ret->pointer_r_type = R_X86_64_64; | 
 |       ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER; | 
 |       ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER; | 
 |       ret->elf_write_addend = _bfd_elf64_write_addend; | 
 |     } | 
 |   else | 
 |     { | 
 |       if (bed->target_id == X86_64_ELF_DATA) | 
 | 	{ | 
 | 	  ret->sizeof_reloc = sizeof (Elf32_External_Rela); | 
 | 	  ret->pointer_r_type = R_X86_64_32; | 
 | 	  ret->dynamic_interpreter = ELFX32_DYNAMIC_INTERPRETER; | 
 | 	  ret->dynamic_interpreter_size | 
 | 	    = sizeof ELFX32_DYNAMIC_INTERPRETER; | 
 | 	  ret->elf_write_addend = _bfd_elf32_write_addend; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  ret->is_reloc_section = elf_i386_is_reloc_section; | 
 | 	  ret->sizeof_reloc = sizeof (Elf32_External_Rel); | 
 | 	  ret->got_entry_size = 4; | 
 | 	  ret->pcrel_plt = false; | 
 | 	  ret->pointer_r_type = R_386_32; | 
 | 	  ret->relative_r_type = R_386_RELATIVE; | 
 | 	  ret->relative_r_name = "R_386_RELATIVE"; | 
 | 	  ret->elf_append_reloc = elf_append_rel; | 
 | 	  ret->elf_write_addend = _bfd_elf32_write_addend; | 
 | 	  ret->elf_write_addend_in_got = _bfd_elf32_write_addend; | 
 | 	  ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER; | 
 | 	  ret->dynamic_interpreter_size | 
 | 	    = sizeof ELF32_DYNAMIC_INTERPRETER; | 
 | 	  ret->tls_get_addr = "___tls_get_addr"; | 
 | 	} | 
 |     } | 
 |  | 
 |   ret->loc_hash_table = htab_try_create (1024, | 
 | 					 _bfd_x86_elf_local_htab_hash, | 
 | 					 _bfd_x86_elf_local_htab_eq, | 
 | 					 NULL); | 
 |   ret->loc_hash_memory = objalloc_create (); | 
 |   if (!ret->loc_hash_table || !ret->loc_hash_memory) | 
 |     { | 
 |       elf_x86_link_hash_table_free (abfd); | 
 |       return NULL; | 
 |     } | 
 |   ret->elf.root.hash_table_free = elf_x86_link_hash_table_free; | 
 |  | 
 |   return &ret->elf.root; | 
 | } | 
 |  | 
 | /* Sort relocs into address order.  */ | 
 |  | 
 | int | 
 | _bfd_x86_elf_compare_relocs (const void *ap, const void *bp) | 
 | { | 
 |   const arelent *a = * (const arelent **) ap; | 
 |   const arelent *b = * (const arelent **) bp; | 
 |  | 
 |   if (a->address > b->address) | 
 |     return 1; | 
 |   else if (a->address < b->address) | 
 |     return -1; | 
 |   else | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Mark symbol, NAME, as locally defined by linker if it is referenced | 
 |    and not defined in a relocatable object file.  */ | 
 |  | 
 | static void | 
 | elf_x86_linker_defined (struct bfd_link_info *info, const char *name) | 
 | { | 
 |   struct elf_link_hash_entry *h; | 
 |  | 
 |   h = elf_link_hash_lookup (elf_hash_table (info), name, | 
 | 			    false, false, false); | 
 |   if (h == NULL) | 
 |     return; | 
 |  | 
 |   while (h->root.type == bfd_link_hash_indirect) | 
 |     h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 |  | 
 |   if (h->root.type == bfd_link_hash_new | 
 |       || h->root.type == bfd_link_hash_undefined | 
 |       || h->root.type == bfd_link_hash_undefweak | 
 |       || h->root.type == bfd_link_hash_common | 
 |       || (!h->def_regular && h->def_dynamic)) | 
 |     { | 
 |       elf_x86_hash_entry (h)->local_ref = 2; | 
 |       elf_x86_hash_entry (h)->linker_def = 1; | 
 |     } | 
 | } | 
 |  | 
 | /* Hide a linker-defined symbol, NAME, with hidden visibility.  */ | 
 |  | 
 | static void | 
 | elf_x86_hide_linker_defined (struct bfd_link_info *info, | 
 | 			     const char *name) | 
 | { | 
 |   struct elf_link_hash_entry *h; | 
 |  | 
 |   h = elf_link_hash_lookup (elf_hash_table (info), name, | 
 | 			    false, false, false); | 
 |   if (h == NULL) | 
 |     return; | 
 |  | 
 |   while (h->root.type == bfd_link_hash_indirect) | 
 |     h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 |  | 
 |   if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL | 
 |       || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) | 
 |     _bfd_elf_link_hash_hide_symbol (info, h, true); | 
 | } | 
 |  | 
 | bool | 
 | _bfd_x86_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info) | 
 | { | 
 |   if (!bfd_link_relocatable (info)) | 
 |     { | 
 |       /* Check for __tls_get_addr reference.  */ | 
 |       struct elf_x86_link_hash_table *htab; | 
 |       const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |       htab = elf_x86_hash_table (info, bed->target_id); | 
 |       if (htab) | 
 | 	{ | 
 | 	  struct elf_link_hash_entry *h; | 
 |  | 
 | 	  h = elf_link_hash_lookup (elf_hash_table (info), | 
 | 				    htab->tls_get_addr, | 
 | 				    false, false, false); | 
 | 	  if (h != NULL) | 
 | 	    { | 
 | 	      elf_x86_hash_entry (h)->tls_get_addr = 1; | 
 |  | 
 | 	      /* Check the versioned __tls_get_addr symbol.  */ | 
 | 	      while (h->root.type == bfd_link_hash_indirect) | 
 | 		{ | 
 | 		  h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 | 		  elf_x86_hash_entry (h)->tls_get_addr = 1; | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  /* "__ehdr_start" will be defined by linker as a hidden symbol | 
 | 	     later if it is referenced and not defined.  */ | 
 | 	  elf_x86_linker_defined (info, "__ehdr_start"); | 
 |  | 
 | 	  if (bfd_link_executable (info)) | 
 | 	    { | 
 | 	      /* References to __bss_start, _end and _edata should be | 
 | 		 locally resolved within executables.  */ | 
 | 	      elf_x86_linker_defined (info, "__bss_start"); | 
 | 	      elf_x86_linker_defined (info, "_end"); | 
 | 	      elf_x86_linker_defined (info, "_edata"); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      /* Hide hidden __bss_start, _end and _edata in shared | 
 | 		 libraries.  */ | 
 | 	      elf_x86_hide_linker_defined (info, "__bss_start"); | 
 | 	      elf_x86_hide_linker_defined (info, "_end"); | 
 | 	      elf_x86_hide_linker_defined (info, "_edata"); | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Invoke the regular ELF backend linker to do all the work.  */ | 
 |   return _bfd_elf_link_check_relocs (abfd, info); | 
 | } | 
 |  | 
 | /* Look through the relocs for a section before allocation to make the | 
 |    dynamic reloc section.  */ | 
 |  | 
 | bool | 
 | _bfd_x86_elf_check_relocs (bfd *abfd, | 
 | 			   struct bfd_link_info *info, | 
 | 			   asection *sec, | 
 | 			   const Elf_Internal_Rela *relocs) | 
 | { | 
 |   struct elf_x86_link_hash_table *htab; | 
 |   Elf_Internal_Shdr *symtab_hdr; | 
 |   struct elf_link_hash_entry **sym_hashes; | 
 |   const Elf_Internal_Rela *rel; | 
 |   const Elf_Internal_Rela *rel_end; | 
 |   asection *sreloc; | 
 |   const struct elf_backend_data *bed; | 
 |   bool is_x86_64; | 
 |  | 
 |   if (bfd_link_relocatable (info)) | 
 |     return true; | 
 |  | 
 |   bed = get_elf_backend_data (abfd); | 
 |   htab = elf_x86_hash_table (info, bed->target_id); | 
 |   if (htab == NULL) | 
 |     { | 
 |       sec->check_relocs_failed = 1; | 
 |       return false; | 
 |     } | 
 |  | 
 |   is_x86_64 = bed->target_id == X86_64_ELF_DATA; | 
 |  | 
 |   symtab_hdr = &elf_symtab_hdr (abfd); | 
 |   sym_hashes = elf_sym_hashes (abfd); | 
 |  | 
 |   rel_end = relocs + sec->reloc_count; | 
 |   for (rel = relocs; rel < rel_end; rel++) | 
 |     { | 
 |       unsigned int r_type; | 
 |       unsigned int r_symndx; | 
 |       struct elf_link_hash_entry *h; | 
 |  | 
 |       r_symndx = htab->r_sym (rel->r_info); | 
 |       r_type = ELF32_R_TYPE (rel->r_info); | 
 |  | 
 |       if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) | 
 | 	{ | 
 | 	  /* xgettext:c-format */ | 
 | 	  _bfd_error_handler (_("%pB: bad symbol index: %d"), | 
 | 			      abfd, r_symndx); | 
 | 	  goto error_return; | 
 | 	} | 
 |  | 
 |       if (r_symndx < symtab_hdr->sh_info) | 
 | 	h = NULL; | 
 |       else | 
 | 	{ | 
 | 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | 
 | 	  while (h->root.type == bfd_link_hash_indirect | 
 | 		 || h->root.type == bfd_link_hash_warning) | 
 | 	    h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 | 	} | 
 |  | 
 |       if (X86_NEED_DYNAMIC_RELOC_TYPE_P (is_x86_64, r_type) | 
 | 	  && NEED_DYNAMIC_RELOCATION_P (is_x86_64, info, true, h, sec, | 
 | 					r_type, htab->pointer_r_type)) | 
 | 	{ | 
 | 	  /* We may copy these reloc types into the output file. | 
 | 	     Create a reloc section in dynobj and make room for | 
 | 	     this reloc.  */ | 
 | 	  sreloc = _bfd_elf_make_dynamic_reloc_section | 
 | 	    (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2, | 
 | 	     abfd, sec->use_rela_p); | 
 |  | 
 | 	  if (sreloc != NULL) | 
 | 	    return true; | 
 |  | 
 |   error_return: | 
 | 	  sec->check_relocs_failed = 1; | 
 | 	  return false; | 
 | 	} | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Add an entry to the relative reloc record.  */ | 
 |  | 
 | static bool | 
 | elf_x86_relative_reloc_record_add | 
 |   (struct bfd_link_info *info, | 
 |    struct elf_x86_relative_reloc_data *relative_reloc, | 
 |    Elf_Internal_Rela *rel, asection *sec, | 
 |    asection *sym_sec, struct elf_link_hash_entry *h, | 
 |    Elf_Internal_Sym *sym, bfd_vma offset, bool *keep_symbuf_p) | 
 | { | 
 |   bfd_size_type newidx; | 
 |  | 
 |   if (relative_reloc->data == NULL) | 
 |     { | 
 |       relative_reloc->data = bfd_malloc | 
 | 	(sizeof (struct elf_x86_relative_reloc_record)); | 
 |       relative_reloc->count = 0; | 
 |       relative_reloc->size = 1; | 
 |     } | 
 |  | 
 |   newidx = relative_reloc->count++; | 
 |  | 
 |   if (relative_reloc->count > relative_reloc->size) | 
 |     { | 
 |       relative_reloc->size <<= 1; | 
 |       relative_reloc->data = bfd_realloc | 
 | 	(relative_reloc->data, | 
 | 	 (relative_reloc->size | 
 | 	  * sizeof (struct elf_x86_relative_reloc_record))); | 
 |     } | 
 |  | 
 |   if (relative_reloc->data == NULL) | 
 |     { | 
 |       info->callbacks->einfo | 
 | 	/* xgettext:c-format */ | 
 | 	(_("%F%P: %pB: failed to allocate relative reloc record\n"), | 
 | 	 info->output_bfd); | 
 |       return false; | 
 |     } | 
 |  | 
 |   relative_reloc->data[newidx].rel = *rel; | 
 |   relative_reloc->data[newidx].sec = sec; | 
 |   if (h != NULL) | 
 |     { | 
 |       /* Set SYM to NULL to indicate a global symbol.  */ | 
 |       relative_reloc->data[newidx].sym = NULL; | 
 |       relative_reloc->data[newidx].u.h = h; | 
 |     } | 
 |   else | 
 |     { | 
 |       relative_reloc->data[newidx].sym = sym; | 
 |       relative_reloc->data[newidx].u.sym_sec = sym_sec; | 
 |       /* We must keep the symbol buffer since SYM will be used later.  */ | 
 |       *keep_symbuf_p = true; | 
 |     } | 
 |   relative_reloc->data[newidx].offset = offset; | 
 |   relative_reloc->data[newidx].address = 0; | 
 |   return true; | 
 | } | 
 |  | 
 | /* After input sections have been mapped to output sections and | 
 |    addresses of output sections are set initiallly, scan input | 
 |    relocations with the same logic in relocate_section to determine | 
 |    if a relative relocation should be generated.  Save the relative | 
 |    relocation candidate information for sizing the DT_RELR section | 
 |    later after all symbols addresses can be determined.  */ | 
 |  | 
 | bool | 
 | _bfd_x86_elf_link_relax_section (bfd *abfd ATTRIBUTE_UNUSED, | 
 | 				 asection *input_section, | 
 | 				 struct bfd_link_info *info, | 
 | 				 bool *again) | 
 | { | 
 |   Elf_Internal_Shdr *symtab_hdr; | 
 |   Elf_Internal_Rela *internal_relocs; | 
 |   Elf_Internal_Rela *irel, *irelend; | 
 |   Elf_Internal_Sym *isymbuf = NULL; | 
 |   struct elf_link_hash_entry **sym_hashes; | 
 |   const struct elf_backend_data *bed; | 
 |   struct elf_x86_link_hash_table *htab; | 
 |   bfd_vma *local_got_offsets; | 
 |   bool is_x86_64; | 
 |   bool unaligned_section; | 
 |   bool return_status = false; | 
 |   bool keep_symbuf = false; | 
 |  | 
 |   if (bfd_link_relocatable (info)) | 
 |     return true; | 
 |  | 
 |   /* Assume we're not going to change any sizes, and we'll only need | 
 |      one pass.  */ | 
 |   *again = false; | 
 |  | 
 |   bed = get_elf_backend_data (abfd); | 
 |   htab = elf_x86_hash_table (info, bed->target_id); | 
 |   if (htab == NULL) | 
 |     return true; | 
 |  | 
 |   /* Nothing to do if there are no relocations or relative relocations | 
 |      have been packed.  */ | 
 |   if (input_section == htab->elf.srelrdyn | 
 |       || input_section->relative_reloc_packed | 
 |       || ((input_section->flags & (SEC_RELOC | SEC_ALLOC)) | 
 | 	  != (SEC_RELOC | SEC_ALLOC)) | 
 |       || (input_section->flags & SEC_DEBUGGING) != 0 | 
 |       || input_section->reloc_count == 0) | 
 |     return true; | 
 |  | 
 |   /* Skip if the section isn't aligned.  */ | 
 |   unaligned_section = input_section->alignment_power == 0; | 
 |  | 
 |   is_x86_64 = bed->target_id == X86_64_ELF_DATA; | 
 |  | 
 |   symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
 |   sym_hashes = elf_sym_hashes (abfd); | 
 |   local_got_offsets = elf_local_got_offsets (abfd); | 
 |  | 
 |   /* Load the relocations for this section.  */ | 
 |   internal_relocs = | 
 |     _bfd_elf_link_info_read_relocs (abfd, info, input_section, NULL, | 
 | 				    (Elf_Internal_Rela *) NULL, | 
 | 				    info->keep_memory); | 
 |   if (internal_relocs == NULL) | 
 |     return false; | 
 |  | 
 |   irelend = internal_relocs + input_section->reloc_count; | 
 |   for (irel = internal_relocs; irel < irelend; irel++) | 
 |     { | 
 |       unsigned int r_type; | 
 |       unsigned int r_symndx; | 
 |       Elf_Internal_Sym *isym; | 
 |       struct elf_link_hash_entry *h; | 
 |       struct elf_x86_link_hash_entry *eh; | 
 |       bfd_vma offset; | 
 |       bool resolved_to_zero; | 
 |       bool need_copy_reloc_in_pie; | 
 |       bool pc32_reloc; | 
 |       asection *sec; | 
 |       /* Offset must be a multiple of 2.  */ | 
 |       bool unaligned_offset = (irel->r_offset & 1) != 0; | 
 |       /* True if there is a relative relocation against a dynamic | 
 | 	 symbol.  */ | 
 |       bool dynamic_relative_reloc_p; | 
 |  | 
 |       /* Get the value of the symbol referred to by the reloc.  */ | 
 |       r_symndx = htab->r_sym (irel->r_info); | 
 |  | 
 |       r_type = ELF32_R_TYPE (irel->r_info); | 
 |       /* Clear the R_X86_64_converted_reloc_bit bit.  */ | 
 |       r_type &= ~R_X86_64_converted_reloc_bit; | 
 |  | 
 |       sec = NULL; | 
 |       h = NULL; | 
 |       dynamic_relative_reloc_p = false; | 
 |  | 
 |       if (r_symndx < symtab_hdr->sh_info) | 
 | 	{ | 
 | 	  /* Read this BFD's local symbols.  */ | 
 | 	  if (isymbuf == NULL) | 
 | 	    { | 
 | 	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | 
 | 	      if (isymbuf == NULL) | 
 | 		{ | 
 | 		  isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, | 
 | 						  symtab_hdr->sh_info, | 
 | 						  0, NULL, NULL, NULL); | 
 | 		  if (isymbuf == NULL) | 
 | 		    goto error_return; | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  isym = isymbuf + r_symndx; | 
 | 	  switch (isym->st_shndx) | 
 | 	    { | 
 | 	    case SHN_ABS: | 
 | 	      sec = bfd_abs_section_ptr; | 
 | 	      break; | 
 | 	    case SHN_COMMON: | 
 | 	      sec = bfd_com_section_ptr; | 
 | 	      break; | 
 | 	    case SHN_X86_64_LCOMMON: | 
 | 	      if (!is_x86_64) | 
 | 		abort (); | 
 | 	      sec = &_bfd_elf_large_com_section; | 
 | 	      break; | 
 | 	    default: | 
 | 	      sec = bfd_section_from_elf_index (abfd, isym->st_shndx); | 
 | 	      break; | 
 | 	    } | 
 |  | 
 | 	  /* Skip relocation against local STT_GNU_IFUNC symbol.  */ | 
 | 	  if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) | 
 | 	    continue; | 
 |  | 
 | 	  eh = (struct elf_x86_link_hash_entry *) h; | 
 | 	  resolved_to_zero = false; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  /* Get H and SEC for GENERATE_DYNAMIC_RELOCATION_P below.  */ | 
 | 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | 
 | 	  while (h->root.type == bfd_link_hash_indirect | 
 | 		 || h->root.type == bfd_link_hash_warning) | 
 | 	    h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 |  | 
 | 	  if (h->root.type == bfd_link_hash_defined | 
 | 	      || h->root.type == bfd_link_hash_defweak) | 
 | 	    sec = h->root.u.def.section; | 
 |  | 
 | 	  /* Skip relocation against STT_GNU_IFUNC symbol.  */ | 
 | 	  if (h->type == STT_GNU_IFUNC) | 
 | 	    continue; | 
 |  | 
 | 	  eh = (struct elf_x86_link_hash_entry *) h; | 
 | 	  resolved_to_zero = UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, eh); | 
 |  | 
 | 	  /* NB: See how elf_backend_finish_dynamic_symbol is called | 
 | 	     from elf_link_output_extsym.  */ | 
 | 	  if ((h->dynindx != -1 || h->forced_local) | 
 | 	      && ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | 
 | 		   || h->root.type != bfd_link_hash_undefweak) | 
 | 		  || !h->forced_local) | 
 | 	      && h->got.offset != (bfd_vma) -1 | 
 | 	      && ! GOT_TLS_GD_ANY_P (elf_x86_hash_entry (h)->tls_type) | 
 | 	      && elf_x86_hash_entry (h)->tls_type != GOT_TLS_IE | 
 | 	      && !resolved_to_zero | 
 | 	      && SYMBOL_REFERENCES_LOCAL_P (info, h) | 
 | 	      && SYMBOL_DEFINED_NON_SHARED_P (h)) | 
 | 	    dynamic_relative_reloc_p = true; | 
 |  | 
 | 	  isym = NULL; | 
 | 	} | 
 |  | 
 |       if (X86_GOT_TYPE_P (is_x86_64, r_type)) | 
 | 	{ | 
 | 	  /* Pack GOT relative relocations.  There should be only a | 
 | 	     single R_*_RELATIVE relocation in GOT.  */ | 
 | 	  if (eh != NULL) | 
 | 	    { | 
 | 	      if (eh->got_relative_reloc_done) | 
 | 		continue; | 
 |  | 
 | 	      if (!(dynamic_relative_reloc_p | 
 | 		    || (RESOLVED_LOCALLY_P (info, h, htab) | 
 | 			&& GENERATE_RELATIVE_RELOC_P (info, h)))) | 
 | 		continue; | 
 |  | 
 | 	      if (!dynamic_relative_reloc_p) | 
 | 		eh->no_finish_dynamic_symbol = 1; | 
 | 	      eh->got_relative_reloc_done = 1; | 
 | 	      offset = h->got.offset; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      if (elf_x86_relative_reloc_done (abfd)[r_symndx]) | 
 | 		continue; | 
 |  | 
 | 	      if (!X86_LOCAL_GOT_RELATIVE_RELOC_P (is_x86_64, info, | 
 | 						   isym)) | 
 | 		continue; | 
 |  | 
 | 	      elf_x86_relative_reloc_done (abfd)[r_symndx] = 1; | 
 | 	      offset = local_got_offsets[r_symndx]; | 
 | 	    } | 
 |  | 
 | 	  if (!elf_x86_relative_reloc_record_add (info, | 
 | 						  &htab->relative_reloc, | 
 | 						  irel, htab->elf.sgot, | 
 | 						  sec, h, isym, offset, | 
 | 						  &keep_symbuf)) | 
 | 	    goto error_return; | 
 |  | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       if (is_x86_64 | 
 | 	  && irel->r_addend == 0 | 
 | 	  && !ABI_64_P (info->output_bfd)) | 
 | 	{ | 
 | 	  /* For x32, if addend is zero, treat R_X86_64_64 like | 
 | 	     R_X86_64_32 and R_X86_64_SIZE64 like R_X86_64_SIZE32.  */ | 
 | 	  if (r_type == R_X86_64_64) | 
 | 	    r_type = R_X86_64_32; | 
 | 	  else if (r_type == R_X86_64_SIZE64) | 
 | 	    r_type = R_X86_64_SIZE32; | 
 | 	} | 
 |  | 
 |       if (!X86_RELATIVE_RELOC_TYPE_P (is_x86_64, r_type)) | 
 | 	continue; | 
 |  | 
 |       /* Pack non-GOT relative relocations.  */ | 
 |       if (is_x86_64) | 
 | 	{ | 
 | 	  need_copy_reloc_in_pie = | 
 | 	    (bfd_link_pie (info) | 
 | 	     && h != NULL | 
 | 	     && (h->needs_copy | 
 | 		 || eh->needs_copy | 
 | 		 || (h->root.type == bfd_link_hash_undefined)) | 
 | 	     && (X86_PCREL_TYPE_P (true, r_type) | 
 | 		 || X86_SIZE_TYPE_P (true, r_type))); | 
 | 	  pc32_reloc = false; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  need_copy_reloc_in_pie = false; | 
 | 	  pc32_reloc = r_type == R_386_PC32; | 
 | 	} | 
 |  | 
 |       if (GENERATE_DYNAMIC_RELOCATION_P (is_x86_64, info, eh, r_type, | 
 | 					 sec, need_copy_reloc_in_pie, | 
 | 					 resolved_to_zero, pc32_reloc)) | 
 | 	{ | 
 | 	  /* When generating a shared object, these relocations | 
 | 	     are copied into the output file to be resolved at run | 
 | 	     time.	*/ | 
 | 	  offset = _bfd_elf_section_offset (info->output_bfd, info, | 
 | 					    input_section, | 
 | 					    irel->r_offset); | 
 | 	  if (offset == (bfd_vma) -1 | 
 | 	      || offset == (bfd_vma) -2 | 
 | 	      || COPY_INPUT_RELOC_P (is_x86_64, info, h, r_type)) | 
 | 	    continue; | 
 |  | 
 | 	  /* This symbol is local, or marked to become local.  When | 
 | 	     relocation overflow check is disabled, we convert | 
 | 	     R_X86_64_32 to dynamic R_X86_64_RELATIVE.  */ | 
 | 	  if (is_x86_64 | 
 | 	      && !(r_type == htab->pointer_r_type | 
 | 		   || (r_type == R_X86_64_32 | 
 | 		       && htab->params->no_reloc_overflow_check))) | 
 | 	    continue; | 
 |  | 
 | 	  if (!elf_x86_relative_reloc_record_add | 
 | 	        (info, | 
 | 		 ((unaligned_section || unaligned_offset) | 
 | 		  ? &htab->unaligned_relative_reloc | 
 | 		  : &htab->relative_reloc), | 
 | 		 irel, input_section, sec, h, isym, offset, | 
 | 		 &keep_symbuf)) | 
 | 	    goto error_return; | 
 | 	} | 
 |     } | 
 |  | 
 |   input_section->relative_reloc_packed = 1; | 
 |  | 
 |   return_status = true; | 
 |  | 
 | error_return: | 
 |   if ((unsigned char *) isymbuf != symtab_hdr->contents) | 
 |     { | 
 |       /* Cache the symbol buffer if it must be kept.  */ | 
 |       if (keep_symbuf) | 
 | 	symtab_hdr->contents = (unsigned char *) isymbuf; | 
 |       else | 
 | 	free (isymbuf); | 
 |     } | 
 |   if (elf_section_data (input_section)->relocs != internal_relocs) | 
 |     free (internal_relocs); | 
 |   return return_status; | 
 | } | 
 |  | 
 | /* Add an entry to the 64-bit DT_RELR bitmap.  */ | 
 |  | 
 | static void | 
 | elf64_dt_relr_bitmap_add | 
 |   (struct bfd_link_info *info, struct elf_dt_relr_bitmap *bitmap, | 
 |    uint64_t entry) | 
 | { | 
 |   bfd_size_type newidx; | 
 |  | 
 |   if (bitmap->u.elf64 == NULL) | 
 |     { | 
 |       bitmap->u.elf64 = bfd_malloc (sizeof (uint64_t)); | 
 |       bitmap->count = 0; | 
 |       bitmap->size = 1; | 
 |     } | 
 |  | 
 |   newidx = bitmap->count++; | 
 |  | 
 |   if (bitmap->count > bitmap->size) | 
 |     { | 
 |       bitmap->size <<= 1; | 
 |       bitmap->u.elf64 = bfd_realloc (bitmap->u.elf64, | 
 | 				     (bitmap->size * sizeof (uint64_t))); | 
 |     } | 
 |  | 
 |   if (bitmap->u.elf64 == NULL) | 
 |     { | 
 |       info->callbacks->einfo | 
 | 	/* xgettext:c-format */ | 
 | 	(_("%F%P: %pB: failed to allocate 64-bit DT_RELR bitmap\n"), | 
 | 	 info->output_bfd); | 
 |     } | 
 |  | 
 |   bitmap->u.elf64[newidx] = entry; | 
 | } | 
 |  | 
 | /* Add an entry to the 32-bit DT_RELR bitmap.  */ | 
 |  | 
 | static void | 
 | elf32_dt_relr_bitmap_add | 
 |   (struct bfd_link_info *info, struct elf_dt_relr_bitmap *bitmap, | 
 |    uint32_t entry) | 
 | { | 
 |   bfd_size_type newidx; | 
 |  | 
 |   if (bitmap->u.elf32 == NULL) | 
 |     { | 
 |       bitmap->u.elf32 = bfd_malloc (sizeof (uint32_t)); | 
 |       bitmap->count = 0; | 
 |       bitmap->size = 1; | 
 |     } | 
 |  | 
 |   newidx = bitmap->count++; | 
 |  | 
 |   if (bitmap->count > bitmap->size) | 
 |     { | 
 |       bitmap->size <<= 1; | 
 |       bitmap->u.elf32 = bfd_realloc (bitmap->u.elf32, | 
 | 				     (bitmap->size * sizeof (uint32_t))); | 
 |     } | 
 |  | 
 |   if (bitmap->u.elf32 == NULL) | 
 |     { | 
 |       info->callbacks->einfo | 
 | 	/* xgettext:c-format */ | 
 | 	(_("%F%P: %pB: failed to allocate 32-bit DT_RELR bitmap\n"), | 
 | 	 info->output_bfd); | 
 |     } | 
 |  | 
 |   bitmap->u.elf32[newidx] = entry; | 
 | } | 
 |  | 
 | void | 
 | _bfd_elf32_write_addend (bfd *abfd, uint64_t value, void *addr) | 
 | { | 
 |   bfd_put_32 (abfd, value, addr); | 
 | } | 
 |  | 
 | void | 
 | _bfd_elf64_write_addend (bfd *abfd, uint64_t value, void *addr) | 
 | { | 
 |   bfd_put_64 (abfd, value, addr); | 
 | } | 
 |  | 
 | /* Size or finish relative relocations to determine the run-time | 
 |    addresses for DT_RELR bitmap computation later.  OUTREL is set | 
 |    to NULL in the sizing phase and non-NULL in the finising phase | 
 |    where the regular relative relocations will be written out.  */ | 
 |  | 
 | static void | 
 | elf_x86_size_or_finish_relative_reloc | 
 |   (bool is_x86_64, struct bfd_link_info *info, | 
 |    struct elf_x86_link_hash_table *htab, bool unaligned, | 
 |    Elf_Internal_Rela *outrel) | 
 | { | 
 |   unsigned int align_mask; | 
 |   bfd_size_type i, count; | 
 |   asection *sec, *srel; | 
 |   struct elf_link_hash_entry *h; | 
 |   bfd_vma offset; | 
 |   Elf_Internal_Sym *sym; | 
 |   asection *sym_sec; | 
 |   asection *sgot = htab->elf.sgot; | 
 |   asection *srelgot = htab->elf.srelgot; | 
 |   struct elf_x86_relative_reloc_data *relative_reloc; | 
 |  | 
 |   if (unaligned) | 
 |     { | 
 |       align_mask = 0; | 
 |       relative_reloc = &htab->unaligned_relative_reloc; | 
 |     } | 
 |   else | 
 |     { | 
 |       align_mask = 1; | 
 |       relative_reloc = &htab->relative_reloc; | 
 |     } | 
 |  | 
 |   count = relative_reloc->count; | 
 |   for (i = 0; i < count; i++) | 
 |     { | 
 |       sec = relative_reloc->data[i].sec; | 
 |       sym = relative_reloc->data[i].sym; | 
 |  | 
 |       /* If SYM is NULL, it must be a global symbol.  */ | 
 |       if (sym == NULL) | 
 | 	h = relative_reloc->data[i].u.h; | 
 |       else | 
 | 	h = NULL; | 
 |  | 
 |       if (is_x86_64) | 
 | 	{ | 
 | 	  bfd_vma relocation; | 
 | 	  /* This function may be called more than once and REL may be | 
 | 	     updated by _bfd_elf_rela_local_sym below.  */ | 
 | 	  Elf_Internal_Rela rel = relative_reloc->data[i].rel; | 
 |  | 
 | 	  if (h != NULL) | 
 | 	    { | 
 | 	      if (h->root.type == bfd_link_hash_defined | 
 | 		  || h->root.type == bfd_link_hash_defweak) | 
 | 		{ | 
 | 		  sym_sec = h->root.u.def.section; | 
 | 		  relocation = (h->root.u.def.value | 
 | 				+ sym_sec->output_section->vma | 
 | 				+ sym_sec->output_offset); | 
 | 		} | 
 | 	      else | 
 | 		{ | 
 | 		  /* Allow undefined symbol only at the sizing phase. | 
 | 		     Otherwise skip undefined symbol here.  Undefined | 
 | 		     symbol will be reported by relocate_section.  */ | 
 | 		  if (outrel == NULL) | 
 | 		    relocation = 0; | 
 | 		  else | 
 | 		    continue; | 
 | 		} | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      sym_sec = relative_reloc->data[i].u.sym_sec; | 
 | 	      relocation = _bfd_elf_rela_local_sym | 
 | 		(info->output_bfd, sym, &sym_sec, &rel); | 
 | 	    } | 
 |  | 
 | 	  if (outrel != NULL) | 
 | 	    { | 
 | 	      outrel->r_addend = relocation; | 
 | 	      if (sec == sgot) | 
 | 		{ | 
 | 		  if (h != NULL && h->needs_plt) | 
 | 		    abort (); | 
 | 		} | 
 | 	      else | 
 | 		outrel->r_addend += rel.r_addend; | 
 |  | 
 | 	      /* Write the implicit addend if ALIGN_MASK isn't 0.  */ | 
 | 	      if (align_mask) | 
 | 		{ | 
 | 		  if (sec == sgot) | 
 | 		    { | 
 | 		      if (relative_reloc->data[i].offset >= sec->size) | 
 | 			abort (); | 
 | 		      htab->elf_write_addend_in_got | 
 | 			(info->output_bfd, outrel->r_addend, | 
 | 			 sec->contents + relative_reloc->data[i].offset); | 
 | 		    } | 
 | 		  else | 
 | 		    { | 
 | 		      bfd_byte *contents; | 
 |  | 
 | 		      if (rel.r_offset >= sec->size) | 
 | 			abort (); | 
 |  | 
 | 		      if (elf_section_data (sec)->this_hdr.contents | 
 | 			  != NULL) | 
 | 			contents | 
 | 			  = elf_section_data (sec)->this_hdr.contents; | 
 | 		      else | 
 | 			{ | 
 | 			  if (!_bfd_elf_mmap_section_contents (sec->owner, | 
 | 							       sec, | 
 | 							       &contents)) | 
 | 			    info->callbacks->einfo | 
 | 			      /* xgettext:c-format */ | 
 | 			      (_("%F%P: %pB: failed to allocate memory for section `%pA'\n"), | 
 | 			       info->output_bfd, sec); | 
 |  | 
 | 			  /* Cache the section contents for | 
 | 			     elf_link_input_bfd.  */ | 
 | 			  elf_section_data (sec)->this_hdr.contents | 
 | 			    = contents; | 
 | 			} | 
 | 		      htab->elf_write_addend | 
 | 			(info->output_bfd, outrel->r_addend, | 
 | 			 contents + rel.r_offset); | 
 | 		    } | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if (sec == sgot) | 
 | 	srel = srelgot; | 
 |       else | 
 | 	srel = elf_section_data (sec)->sreloc; | 
 |       offset = (sec->output_section->vma + sec->output_offset | 
 | 		+ relative_reloc->data[i].offset); | 
 |       relative_reloc->data[i].address = offset; | 
 |       if (outrel != NULL) | 
 | 	{ | 
 | 	  outrel->r_offset = offset; | 
 |  | 
 | 	  if ((outrel->r_offset & align_mask) != 0) | 
 | 	    abort (); | 
 |  | 
 | 	  if (htab->params->report_relative_reloc) | 
 | 	    _bfd_x86_elf_link_report_relative_reloc | 
 | 	      (info, sec, h, sym, htab->relative_r_name, outrel); | 
 |  | 
 | 	  /* Generate regular relative relocation if ALIGN_MASK is 0.  */ | 
 | 	  if (align_mask == 0) | 
 | 	    htab->elf_append_reloc (info->output_bfd, srel, outrel); | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | /* Compute the DT_RELR section size.  Set NEED_PLAYOUT to true if | 
 |    the DT_RELR section size has been increased.  */ | 
 |  | 
 | static void | 
 | elf_x86_compute_dl_relr_bitmap | 
 |   (struct bfd_link_info *info, struct elf_x86_link_hash_table *htab, | 
 |    bool *need_layout) | 
 | { | 
 |   bfd_vma base; | 
 |   bfd_size_type i, count, new_count; | 
 |   struct elf_x86_relative_reloc_data *relative_reloc = | 
 |     &htab->relative_reloc; | 
 |   /* Save the old DT_RELR bitmap count.  Don't shrink the DT_RELR bitmap | 
 |      if the new DT_RELR bitmap count is smaller than the old one.  Pad | 
 |      with trailing 1s which won't be decoded to more relocations.  */ | 
 |   bfd_size_type dt_relr_bitmap_count = htab->dt_relr_bitmap.count; | 
 |  | 
 |   /* Clear the DT_RELR bitmap count.  */ | 
 |   htab->dt_relr_bitmap.count = 0; | 
 |  | 
 |   count = relative_reloc->count; | 
 |  | 
 |   if (ABI_64_P (info->output_bfd)) | 
 |     { | 
 |       /* Compute the 64-bit DT_RELR bitmap.  */ | 
 |       i = 0; | 
 |       while (i < count) | 
 | 	{ | 
 | 	  if ((relative_reloc->data[i].address % 1) != 0) | 
 | 	    abort (); | 
 |  | 
 | 	  elf64_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap, | 
 | 				    relative_reloc->data[i].address); | 
 |  | 
 | 	  base = relative_reloc->data[i].address + 8; | 
 | 	  i++; | 
 |  | 
 | 	  while (i < count) | 
 | 	    { | 
 | 	      uint64_t bitmap = 0; | 
 | 	      for (; i < count; i++) | 
 | 		{ | 
 | 		  bfd_vma delta = (relative_reloc->data[i].address | 
 | 				   - base); | 
 | 		  /* Stop if it is too far from base.  */ | 
 | 		  if (delta >= 63 * 8) | 
 | 		    break; | 
 | 		  /* Stop if it isn't a multiple of 8.  */ | 
 | 		  if ((delta % 8) != 0) | 
 | 		    break; | 
 | 		  bitmap |= 1ULL << (delta / 8); | 
 | 		} | 
 |  | 
 | 	      if (bitmap == 0) | 
 | 		break; | 
 |  | 
 | 	      elf64_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap, | 
 | 					(bitmap << 1) | 1); | 
 |  | 
 | 	      base += 63 * 8; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       new_count = htab->dt_relr_bitmap.count; | 
 |       if (dt_relr_bitmap_count > new_count) | 
 | 	{ | 
 | 	  /* Don't shrink the DT_RELR section size to avoid section | 
 | 	     layout oscillation.  Instead, pad the DT_RELR bitmap with | 
 | 	     1s which do not decode to more relocations.  */ | 
 |  | 
 | 	  htab->dt_relr_bitmap.count = dt_relr_bitmap_count; | 
 | 	  count = dt_relr_bitmap_count - new_count; | 
 | 	  for (i = 0; i < count; i++) | 
 | 	    htab->dt_relr_bitmap.u.elf64[new_count + i] = 1; | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       /* Compute the 32-bit DT_RELR bitmap.  */ | 
 |       i = 0; | 
 |       while (i < count) | 
 | 	{ | 
 | 	  if ((relative_reloc->data[i].address % 1) != 0) | 
 | 	    abort (); | 
 |  | 
 | 	  elf32_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap, | 
 | 				    relative_reloc->data[i].address); | 
 |  | 
 | 	  base = relative_reloc->data[i].address + 4; | 
 | 	  i++; | 
 |  | 
 | 	  while (i < count) | 
 | 	    { | 
 | 	      uint32_t bitmap = 0; | 
 | 	      for (; i < count; i++) | 
 | 		{ | 
 | 		  bfd_vma delta = (relative_reloc->data[i].address | 
 | 				   - base); | 
 | 		  /* Stop if it is too far from base.  */ | 
 | 		  if (delta >= 31 * 4) | 
 | 		    break; | 
 | 		  /* Stop if it isn't a multiple of 4.  */ | 
 | 		  if ((delta % 4) != 0) | 
 | 		    break; | 
 | 		  bitmap |= 1ULL << (delta / 4); | 
 | 		} | 
 |  | 
 | 	      if (bitmap == 0) | 
 | 		break; | 
 |  | 
 | 	      elf32_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap, | 
 | 					(bitmap << 1) | 1); | 
 |  | 
 | 	      base += 31 * 4; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       new_count = htab->dt_relr_bitmap.count; | 
 |       if (dt_relr_bitmap_count > new_count) | 
 | 	{ | 
 | 	  /* Don't shrink the DT_RELR section size to avoid section | 
 | 	     layout oscillation.  Instead, pad the DT_RELR bitmap with | 
 | 	     1s which do not decode to more relocations.  */ | 
 |  | 
 | 	  htab->dt_relr_bitmap.count = dt_relr_bitmap_count; | 
 | 	  count = dt_relr_bitmap_count - new_count; | 
 | 	  for (i = 0; i < count; i++) | 
 | 	    htab->dt_relr_bitmap.u.elf32[new_count + i] = 1; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (htab->dt_relr_bitmap.count != dt_relr_bitmap_count) | 
 |     { | 
 |       if (need_layout) | 
 | 	{ | 
 | 	  /* The .relr.dyn section size is changed.  Update the section | 
 | 	     size and tell linker to layout sections again.  */ | 
 | 	  htab->elf.srelrdyn->size = | 
 | 	    (htab->dt_relr_bitmap.count | 
 | 	     * (ABI_64_P (info->output_bfd) ? 8 : 4)); | 
 |  | 
 | 	  *need_layout = true; | 
 | 	} | 
 |       else | 
 | 	info->callbacks->einfo | 
 | 	  /* xgettext:c-format */ | 
 | 	  (_("%F%P: %pB: size of compact relative reloc section is " | 
 | 	     "changed: new (%lu) != old (%lu)\n"), | 
 | 	   info->output_bfd, htab->dt_relr_bitmap.count, | 
 | 	   dt_relr_bitmap_count); | 
 |     } | 
 | } | 
 |  | 
 | /* Write out the DT_RELR section.  */ | 
 |  | 
 | static void | 
 | elf_x86_write_dl_relr_bitmap (struct bfd_link_info *info, | 
 | 			      struct elf_x86_link_hash_table *htab) | 
 | { | 
 |   asection *sec = htab->elf.srelrdyn; | 
 |   bfd_size_type size = sec->size; | 
 |   bfd_size_type i; | 
 |   unsigned char *contents; | 
 |  | 
 |   contents = (unsigned char *) bfd_alloc (sec->owner, size); | 
 |   if (contents == NULL) | 
 |     info->callbacks->einfo | 
 |       /* xgettext:c-format */ | 
 |       (_("%F%P: %pB: failed to allocate compact relative reloc section\n"), | 
 |        info->output_bfd); | 
 |  | 
 |   /* Cache the section contents for elf_link_input_bfd.  */ | 
 |   sec->contents = contents; | 
 |  | 
 |   if (ABI_64_P (info->output_bfd)) | 
 |     for (i = 0; i < htab->dt_relr_bitmap.count; i++, contents += 8) | 
 |       bfd_put_64 (info->output_bfd, htab->dt_relr_bitmap.u.elf64[i], | 
 | 		  contents); | 
 |   else | 
 |     for (i = 0; i < htab->dt_relr_bitmap.count; i++, contents += 4) | 
 |       bfd_put_32 (info->output_bfd, htab->dt_relr_bitmap.u.elf32[i], | 
 | 		  contents); | 
 | } | 
 |  | 
 | /* Sort relative relocations by address.  */ | 
 |  | 
 | static int | 
 | elf_x86_relative_reloc_compare (const void *pa, const void *pb) | 
 | { | 
 |   struct elf_x86_relative_reloc_record *a = | 
 |     (struct elf_x86_relative_reloc_record *) pa; | 
 |   struct elf_x86_relative_reloc_record *b = | 
 |     (struct elf_x86_relative_reloc_record *) pb; | 
 |   if (a->address < b->address) | 
 |     return -1; | 
 |   if (a->address > b->address) | 
 |     return 1; | 
 |   return 0; | 
 | } | 
 |  | 
 | enum dynobj_sframe_plt_type | 
 | { | 
 |   SFRAME_PLT = 1, | 
 |   SFRAME_PLT_SEC = 2 | 
 | }; | 
 |  | 
 | /* Create SFrame stack trace info for the plt entries in the .plt section | 
 |    of type PLT_SEC_TYPE.  */ | 
 |  | 
 | static bool | 
 | _bfd_x86_elf_create_sframe_plt (bfd *output_bfd, | 
 | 				struct bfd_link_info *info, | 
 | 				unsigned int plt_sec_type) | 
 | { | 
 |   struct elf_x86_link_hash_table *htab; | 
 |   const struct elf_backend_data *bed; | 
 |  | 
 |   bool plt0_generated_p; | 
 |   unsigned int plt0_entry_size; | 
 |   unsigned char func_info; | 
 |   uint32_t fre_type; | 
 |   /* The dynamic plt section for which .sframe stack trace information is being | 
 |      created.  */ | 
 |   asection *dpltsec; | 
 |  | 
 |   int err = 0; | 
 |  | 
 |   sframe_encoder_ctx **ectx = NULL; | 
 |   unsigned plt_entry_size = 0; | 
 |   unsigned int num_pltn_fres = 0; | 
 |   unsigned int num_pltn_entries = 0; | 
 |  | 
 |   bed = get_elf_backend_data (output_bfd); | 
 |   htab = elf_x86_hash_table (info, bed->target_id); | 
 |   /* Whether SFrame stack trace info for plt0 is to be generated.  */ | 
 |   plt0_generated_p = htab->plt.has_plt0; | 
 |   plt0_entry_size | 
 |     = (plt0_generated_p) ? htab->sframe_plt->plt0_entry_size : 0; | 
 |  | 
 |   switch (plt_sec_type) | 
 |     { | 
 |     case SFRAME_PLT: | 
 | 	{ | 
 | 	  ectx = &htab->plt_cfe_ctx; | 
 | 	  dpltsec = htab->elf.splt; | 
 |  | 
 | 	  plt_entry_size = htab->plt.plt_entry_size; | 
 | 	  num_pltn_fres = htab->sframe_plt->pltn_num_fres; | 
 | 	  num_pltn_entries | 
 | 	    = (dpltsec->size - plt0_entry_size) / plt_entry_size; | 
 |  | 
 | 	  break; | 
 | 	} | 
 |     case SFRAME_PLT_SEC: | 
 | 	{ | 
 | 	  ectx = &htab->plt_second_cfe_ctx; | 
 | 	  /* FIXME - this or htab->plt_second_sframe ?  */ | 
 | 	  dpltsec = htab->plt_second_eh_frame; | 
 |  | 
 | 	  plt_entry_size = htab->sframe_plt->sec_pltn_entry_size; | 
 | 	  num_pltn_fres = htab->sframe_plt->sec_pltn_num_fres; | 
 | 	  num_pltn_entries = dpltsec->size / plt_entry_size; | 
 | 	  break; | 
 | 	} | 
 |     default: | 
 |       /* No other value is possible.  */ | 
 |       return false; | 
 |       break; | 
 |     } | 
 |  | 
 |   *ectx = sframe_encode (SFRAME_VERSION_2, | 
 | 			 0, | 
 | 			 SFRAME_ABI_AMD64_ENDIAN_LITTLE, | 
 | 			 SFRAME_CFA_FIXED_FP_INVALID, | 
 | 			 -8, /*  Fixed RA offset.  */ | 
 | 			 &err); | 
 |  | 
 |   /* FRE type is dependent on the size of the function.  */ | 
 |   fre_type = sframe_calc_fre_type (dpltsec->size); | 
 |   func_info = sframe_fde_create_func_info (fre_type, SFRAME_FDE_TYPE_PCINC); | 
 |  | 
 |   /* Add SFrame FDE and the associated FREs for plt0 if plt0 has been | 
 |      generated.  */ | 
 |   if (plt0_generated_p) | 
 |     { | 
 |       /* Add SFrame FDE for plt0, the function start address is updated later | 
 | 	 at _bfd_elf_merge_section_sframe time.  */ | 
 |       sframe_encoder_add_funcdesc_v2 (*ectx, | 
 | 				      0, /* func start addr.  */ | 
 | 				      plt0_entry_size, | 
 | 				      func_info, | 
 | 				      16, | 
 | 				      0 /* Num FREs.  */); | 
 |       sframe_frame_row_entry plt0_fre; | 
 |       unsigned int num_plt0_fres = htab->sframe_plt->plt0_num_fres; | 
 |       for (unsigned int j = 0; j < num_plt0_fres; j++) | 
 | 	{ | 
 | 	  plt0_fre = *(htab->sframe_plt->plt0_fres[j]); | 
 | 	  sframe_encoder_add_fre (*ectx, 0, &plt0_fre); | 
 | 	} | 
 |     } | 
 |  | 
 |  | 
 |   if (num_pltn_entries) | 
 |     { | 
 |       /* pltn entries use an SFrame FDE of type | 
 | 	 SFRAME_FDE_TYPE_PCMASK to exploit the repetitive | 
 | 	 pattern of the instructions in these entries.  Using this SFrame FDE | 
 | 	 type helps in keeping the SFrame stack trace info for pltn entries | 
 | 	 compact.  */ | 
 |       func_info	= sframe_fde_create_func_info (fre_type, | 
 | 					       SFRAME_FDE_TYPE_PCMASK); | 
 |       /* Add the SFrame FDE for all PCs starting at the first pltn entry (hence, | 
 | 	 function start address = plt0_entry_size.  As usual, this will be | 
 | 	 updated later at _bfd_elf_merge_section_sframe, by when the | 
 | 	 sections are relocated.  */ | 
 |       sframe_encoder_add_funcdesc_v2 (*ectx, | 
 | 				      plt0_entry_size, /* func start addr.  */ | 
 | 				      dpltsec->size - plt0_entry_size, | 
 | 				      func_info, | 
 | 				      16, | 
 | 				      0 /* Num FREs.  */); | 
 |  | 
 |       sframe_frame_row_entry pltn_fre; | 
 |       /* Now add the FREs for pltn.  Simply adding the two FREs suffices due | 
 | 	 to the usage of SFRAME_FDE_TYPE_PCMASK above.  */ | 
 |       for (unsigned int j = 0; j < num_pltn_fres; j++) | 
 | 	{ | 
 | 	  pltn_fre = *(htab->sframe_plt->pltn_fres[j]); | 
 | 	  sframe_encoder_add_fre (*ectx, 1, &pltn_fre); | 
 | 	} | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Put contents of the .sframe section corresponding to the specified | 
 |    PLT_SEC_TYPE.  */ | 
 |  | 
 | static bool | 
 | _bfd_x86_elf_write_sframe_plt (bfd *output_bfd, | 
 | 			       struct bfd_link_info *info, | 
 | 			       unsigned int plt_sec_type) | 
 | { | 
 |   struct elf_x86_link_hash_table *htab; | 
 |   const struct elf_backend_data *bed; | 
 |   sframe_encoder_ctx *ectx; | 
 |   size_t sec_size; | 
 |   asection *sec; | 
 |   bfd *dynobj; | 
 |  | 
 |   int err = 0; | 
 |  | 
 |   bed = get_elf_backend_data (output_bfd); | 
 |   htab = elf_x86_hash_table (info, bed->target_id); | 
 |   dynobj = htab->elf.dynobj; | 
 |  | 
 |   switch (plt_sec_type) | 
 |     { | 
 |     case SFRAME_PLT: | 
 |       ectx = htab->plt_cfe_ctx; | 
 |       sec = htab->plt_sframe; | 
 |       break; | 
 |     case SFRAME_PLT_SEC: | 
 |       ectx = htab->plt_second_cfe_ctx; | 
 |       sec = htab->plt_second_sframe; | 
 |       break; | 
 |     default: | 
 |       /* No other value is possible.  */ | 
 |       return false; | 
 |       break; | 
 |     } | 
 |  | 
 |   BFD_ASSERT (ectx); | 
 |  | 
 |   void *contents = sframe_encoder_write (ectx, &sec_size, &err); | 
 |  | 
 |   sec->size = (bfd_size_type) sec_size; | 
 |   sec->contents = (unsigned char *) bfd_zalloc (dynobj, sec->size); | 
 |   memcpy (sec->contents, contents, sec_size); | 
 |  | 
 |   sframe_encoder_free (&ectx); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool | 
 | _bfd_elf_x86_size_relative_relocs (struct bfd_link_info *info, | 
 | 				   bool *need_layout) | 
 | { | 
 |   struct elf_x86_link_hash_table *htab; | 
 |   const struct elf_backend_data *bed; | 
 |   bool is_x86_64; | 
 |   bfd_size_type i, count, unaligned_count; | 
 |   asection *sec, *srel; | 
 |  | 
 |   /* Do nothing for ld -r.  */ | 
 |   if (bfd_link_relocatable (info)) | 
 |     return true; | 
 |  | 
 |   bed = get_elf_backend_data (info->output_bfd); | 
 |   htab = elf_x86_hash_table (info, bed->target_id); | 
 |   if (htab == NULL) | 
 |     return false; | 
 |  | 
 |   count = htab->relative_reloc.count; | 
 |   unaligned_count = htab->unaligned_relative_reloc.count; | 
 |   if (count == 0) | 
 |     { | 
 |       if (htab->generate_relative_reloc_pass == 0 | 
 | 	  && htab->elf.srelrdyn != NULL) | 
 | 	{ | 
 | 	  /* Remove the empty .relr.dyn sections now.  */ | 
 | 	  if (!bfd_is_abs_section (htab->elf.srelrdyn->output_section)) | 
 | 	    { | 
 | 	      bfd_section_list_remove | 
 | 		(info->output_bfd, htab->elf.srelrdyn->output_section); | 
 | 	      info->output_bfd->section_count--; | 
 | 	    } | 
 | 	  bfd_section_list_remove (htab->elf.srelrdyn->owner, | 
 | 				   htab->elf.srelrdyn); | 
 | 	  htab->elf.srelrdyn->owner->section_count--; | 
 | 	} | 
 |       if (unaligned_count == 0) | 
 | 	{ | 
 | 	  htab->generate_relative_reloc_pass++; | 
 | 	  return true; | 
 | 	} | 
 |     } | 
 |  | 
 |   is_x86_64 = bed->target_id == X86_64_ELF_DATA; | 
 |  | 
 |   /* Size relative relocations.  */ | 
 |   if (htab->generate_relative_reloc_pass) | 
 |     { | 
 |       /* Reset the regular relative relocation count.  */ | 
 |       for (i = 0; i < unaligned_count; i++) | 
 | 	{ | 
 | 	  sec = htab->unaligned_relative_reloc.data[i].sec; | 
 | 	  srel = elf_section_data (sec)->sreloc; | 
 | 	  srel->reloc_count = 0; | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       /* Remove the reserved space for compact relative relocations.  */ | 
 |       if (count) | 
 | 	{ | 
 | 	  asection *sgot = htab->elf.sgot; | 
 | 	  asection *srelgot = htab->elf.srelgot; | 
 |  | 
 | 	  for (i = 0; i < count; i++) | 
 | 	    { | 
 | 	      sec = htab->relative_reloc.data[i].sec; | 
 | 	      if (sec == sgot) | 
 | 		srel = srelgot; | 
 | 	      else | 
 | 		srel = elf_section_data (sec)->sreloc; | 
 | 	      srel->size -= htab->sizeof_reloc; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Size unaligned relative relocations.  */ | 
 |   if (unaligned_count) | 
 |     elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab, | 
 | 					   true, NULL); | 
 |  | 
 |   if (count) | 
 |     { | 
 |       elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab, | 
 | 					     false, NULL); | 
 |  | 
 |       /* Sort relative relocations by addresses.  We only need to | 
 | 	 sort them in the first pass since the relative positions | 
 | 	 won't change.  */ | 
 |       if (htab->generate_relative_reloc_pass == 0) | 
 | 	qsort (htab->relative_reloc.data, count, | 
 | 	       sizeof (struct elf_x86_relative_reloc_record), | 
 | 	       elf_x86_relative_reloc_compare); | 
 |  | 
 |       elf_x86_compute_dl_relr_bitmap (info, htab, need_layout); | 
 |     } | 
 |  | 
 |   htab->generate_relative_reloc_pass++; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool | 
 | _bfd_elf_x86_finish_relative_relocs (struct bfd_link_info *info) | 
 | { | 
 |   struct elf_x86_link_hash_table *htab; | 
 |   const struct elf_backend_data *bed; | 
 |   Elf_Internal_Rela outrel; | 
 |   bool is_x86_64; | 
 |   bfd_size_type count; | 
 |  | 
 |   /* Do nothing for ld -r.  */ | 
 |   if (bfd_link_relocatable (info)) | 
 |     return true; | 
 |  | 
 |   bed = get_elf_backend_data (info->output_bfd); | 
 |   htab = elf_x86_hash_table (info, bed->target_id); | 
 |   if (htab == NULL) | 
 |     return false; | 
 |  | 
 |   is_x86_64 = bed->target_id == X86_64_ELF_DATA; | 
 |  | 
 |   outrel.r_info = htab->r_info (0, htab->relative_r_type); | 
 |  | 
 |   if (htab->unaligned_relative_reloc.count) | 
 |     elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab, | 
 | 					   true, &outrel); | 
 |  | 
 |   count = htab->relative_reloc.count; | 
 |   if (count) | 
 |     { | 
 |       elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab, | 
 | 					     false, &outrel); | 
 |  | 
 |       elf_x86_compute_dl_relr_bitmap (info, htab, NULL); | 
 |  | 
 |       elf_x86_write_dl_relr_bitmap (info, htab); | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool | 
 | _bfd_elf_x86_valid_reloc_p (asection *input_section, | 
 | 			    struct bfd_link_info *info, | 
 | 			    struct elf_x86_link_hash_table *htab, | 
 | 			    const Elf_Internal_Rela *rel, | 
 | 			    struct elf_link_hash_entry *h, | 
 | 			    Elf_Internal_Sym *sym, | 
 | 			    Elf_Internal_Shdr *symtab_hdr, | 
 | 			    bool *no_dynreloc_p) | 
 | { | 
 |   bool valid_p = true; | 
 |  | 
 |   *no_dynreloc_p = false; | 
 |  | 
 |   /* Check If relocation against non-preemptible absolute symbol is | 
 |      valid in PIC.  FIXME: Can't use SYMBOL_REFERENCES_LOCAL_P since | 
 |      it may call _bfd_elf_link_hide_sym_by_version and result in | 
 |      ld-elfvers/ vers21 test failure.  */ | 
 |   if (bfd_link_pic (info) | 
 |       && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h))) | 
 |     { | 
 |       const struct elf_backend_data *bed; | 
 |       unsigned int r_type; | 
 |       Elf_Internal_Rela irel; | 
 |  | 
 |       /* Skip non-absolute symbol.  */ | 
 |       if (h) | 
 | 	{ | 
 | 	  if (!ABS_SYMBOL_P (h)) | 
 | 	    return valid_p; | 
 | 	} | 
 |       else if (sym->st_shndx != SHN_ABS) | 
 | 	return valid_p; | 
 |  | 
 |       bed = get_elf_backend_data (input_section->owner); | 
 |       r_type = ELF32_R_TYPE (rel->r_info); | 
 |       irel = *rel; | 
 |  | 
 |       /* Only allow relocations against absolute symbol, which can be | 
 | 	 resolved as absolute value + addend.  GOTPCREL and GOT32 | 
 | 	 relocations are allowed since absolute value + addend is | 
 | 	 stored in the GOT slot.  */ | 
 |       if (bed->target_id == X86_64_ELF_DATA) | 
 | 	{ | 
 | 	  r_type &= ~R_X86_64_converted_reloc_bit; | 
 | 	  valid_p = (r_type == R_X86_64_64 | 
 | 		     || r_type == R_X86_64_32 | 
 | 		     || r_type == R_X86_64_32S | 
 | 		     || r_type == R_X86_64_16 | 
 | 		     || r_type == R_X86_64_8 | 
 | 		     || r_type == R_X86_64_GOTPCREL | 
 | 		     || r_type == R_X86_64_GOTPCRELX | 
 | 		     || r_type == R_X86_64_REX_GOTPCRELX); | 
 | 	  if (!valid_p) | 
 | 	    { | 
 | 	      unsigned int r_symndx = htab->r_sym (rel->r_info); | 
 | 	      irel.r_info = htab->r_info (r_symndx, r_type); | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	valid_p = (r_type == R_386_32 | 
 | 		   || r_type == R_386_16 | 
 | 		   || r_type == R_386_8 | 
 | 		   || r_type == R_386_GOT32 | 
 | 		   || r_type == R_386_GOT32X); | 
 |  | 
 |       if (valid_p) | 
 | 	*no_dynreloc_p = true; | 
 |       else | 
 | 	{ | 
 | 	  const char *name; | 
 | 	  arelent internal_reloc; | 
 |  | 
 | 	  if (!bed->elf_info_to_howto (input_section->owner, | 
 | 				       &internal_reloc, &irel) | 
 | 	      || internal_reloc.howto == NULL) | 
 | 	    abort (); | 
 |  | 
 | 	  if (h) | 
 | 	    name = h->root.root.string; | 
 | 	  else | 
 | 	    name = bfd_elf_sym_name (input_section->owner, symtab_hdr, | 
 | 				     sym, NULL); | 
 | 	  info->callbacks->einfo | 
 | 	    /* xgettext:c-format */ | 
 | 	    (_("%F%P: %pB: relocation %s against absolute symbol " | 
 | 	       "`%s' in section `%pA' is disallowed\n"), | 
 | 	     input_section->owner, internal_reloc.howto->name, name, | 
 | 	     input_section); | 
 | 	  bfd_set_error (bfd_error_bad_value); | 
 | 	} | 
 |     } | 
 |  | 
 |   return valid_p; | 
 | } | 
 |  | 
 | /* Set the sizes of the dynamic sections.  */ | 
 |  | 
 | bool | 
 | _bfd_x86_elf_late_size_sections (bfd *output_bfd, | 
 | 				    struct bfd_link_info *info) | 
 | { | 
 |   struct elf_x86_link_hash_table *htab; | 
 |   bfd *dynobj; | 
 |   asection *s; | 
 |   bool relocs; | 
 |   bfd *ibfd; | 
 |   const struct elf_backend_data *bed | 
 |     = get_elf_backend_data (output_bfd); | 
 |  | 
 |   htab = elf_x86_hash_table (info, bed->target_id); | 
 |   if (htab == NULL) | 
 |     return false; | 
 |   dynobj = htab->elf.dynobj; | 
 |   if (dynobj == NULL) | 
 |     return true; | 
 |  | 
 |   /* Set up .got offsets for local syms, and space for local dynamic | 
 |      relocs.  */ | 
 |   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) | 
 |     { | 
 |       bfd_signed_vma *local_got; | 
 |       bfd_signed_vma *end_local_got; | 
 |       char *local_tls_type; | 
 |       bfd_vma *local_tlsdesc_gotent; | 
 |       bfd_size_type locsymcount; | 
 |       Elf_Internal_Shdr *symtab_hdr; | 
 |       asection *srel; | 
 |  | 
 |       if (! is_x86_elf (ibfd, htab)) | 
 | 	continue; | 
 |  | 
 |       for (s = ibfd->sections; s != NULL; s = s->next) | 
 | 	{ | 
 | 	  struct elf_dyn_relocs *p; | 
 |  | 
 | 	  for (p = ((struct elf_dyn_relocs *) | 
 | 		     elf_section_data (s)->local_dynrel); | 
 | 	       p != NULL; | 
 | 	       p = p->next) | 
 | 	    { | 
 | 	      if (!bfd_is_abs_section (p->sec) | 
 | 		  && bfd_is_abs_section (p->sec->output_section)) | 
 | 		{ | 
 | 		  /* Input section has been discarded, either because | 
 | 		     it is a copy of a linkonce section or due to | 
 | 		     linker script /DISCARD/, so we'll be discarding | 
 | 		     the relocs too.  */ | 
 | 		} | 
 | 	      else if (htab->elf.target_os == is_vxworks | 
 | 		       && strcmp (p->sec->output_section->name, | 
 | 				  ".tls_vars") == 0) | 
 | 		{ | 
 | 		  /* Relocations in vxworks .tls_vars sections are | 
 | 		     handled specially by the loader.  */ | 
 | 		} | 
 | 	      else if (p->count != 0) | 
 | 		{ | 
 | 		  srel = elf_section_data (p->sec)->sreloc; | 
 | 		  srel->size += p->count * htab->sizeof_reloc; | 
 | 		  if ((p->sec->output_section->flags & SEC_READONLY) != 0 | 
 | 		      && (info->flags & DF_TEXTREL) == 0) | 
 | 		    { | 
 | 		      info->flags |= DF_TEXTREL; | 
 | 		      if (bfd_link_textrel_check (info)) | 
 | 			/* xgettext:c-format */ | 
 | 			info->callbacks->einfo | 
 | 			  (_("%P: %pB: warning: relocation " | 
 | 			     "in read-only section `%pA'\n"), | 
 | 			   p->sec->owner, p->sec); | 
 | 		    } | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |  | 
 |       local_got = elf_local_got_refcounts (ibfd); | 
 |       if (!local_got) | 
 | 	continue; | 
 |  | 
 |       symtab_hdr = &elf_symtab_hdr (ibfd); | 
 |       locsymcount = symtab_hdr->sh_info; | 
 |       end_local_got = local_got + locsymcount; | 
 |       local_tls_type = elf_x86_local_got_tls_type (ibfd); | 
 |       local_tlsdesc_gotent = elf_x86_local_tlsdesc_gotent (ibfd); | 
 |       s = htab->elf.sgot; | 
 |       srel = htab->elf.srelgot; | 
 |       for (; local_got < end_local_got; | 
 | 	   ++local_got, ++local_tls_type, ++local_tlsdesc_gotent) | 
 | 	{ | 
 | 	  *local_tlsdesc_gotent = (bfd_vma) -1; | 
 | 	  if (*local_got > 0) | 
 | 	    { | 
 | 	      if (GOT_TLS_GDESC_P (*local_tls_type)) | 
 | 		{ | 
 | 		  *local_tlsdesc_gotent = htab->elf.sgotplt->size | 
 | 		    - elf_x86_compute_jump_table_size (htab); | 
 | 		  htab->elf.sgotplt->size += 2 * htab->got_entry_size; | 
 | 		  *local_got = (bfd_vma) -2; | 
 | 		} | 
 | 	      if (! GOT_TLS_GDESC_P (*local_tls_type) | 
 | 		  || GOT_TLS_GD_P (*local_tls_type)) | 
 | 		{ | 
 | 		  *local_got = s->size; | 
 | 		  s->size += htab->got_entry_size; | 
 | 		  if (GOT_TLS_GD_P (*local_tls_type) | 
 | 		      || *local_tls_type == GOT_TLS_IE_BOTH) | 
 | 		    s->size += htab->got_entry_size; | 
 | 		} | 
 | 	      if ((bfd_link_pic (info) && *local_tls_type != GOT_ABS) | 
 | 		  || GOT_TLS_GD_ANY_P (*local_tls_type) | 
 | 		  || (*local_tls_type & GOT_TLS_IE)) | 
 | 		{ | 
 | 		  if (*local_tls_type == GOT_TLS_IE_BOTH) | 
 | 		    srel->size += 2 * htab->sizeof_reloc; | 
 | 		  else if (GOT_TLS_GD_P (*local_tls_type) | 
 | 			   || ! GOT_TLS_GDESC_P (*local_tls_type)) | 
 | 		    srel->size += htab->sizeof_reloc; | 
 | 		  if (GOT_TLS_GDESC_P (*local_tls_type)) | 
 | 		    { | 
 | 		      htab->elf.srelplt->size += htab->sizeof_reloc; | 
 | 		      if (bed->target_id == X86_64_ELF_DATA) | 
 | 			htab->elf.tlsdesc_plt = (bfd_vma) -1; | 
 | 		    } | 
 | 		} | 
 | 	    } | 
 | 	  else | 
 | 	    *local_got = (bfd_vma) -1; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (htab->tls_ld_or_ldm_got.refcount > 0) | 
 |     { | 
 |       /* Allocate 2 got entries and 1 dynamic reloc for R_386_TLS_LDM | 
 | 	 or R_X86_64_TLSLD relocs.  */ | 
 |       htab->tls_ld_or_ldm_got.offset = htab->elf.sgot->size; | 
 |       htab->elf.sgot->size += 2 * htab->got_entry_size; | 
 |       htab->elf.srelgot->size += htab->sizeof_reloc; | 
 |     } | 
 |   else | 
 |     htab->tls_ld_or_ldm_got.offset = -1; | 
 |  | 
 |   /* Allocate global sym .plt and .got entries, and space for global | 
 |      sym dynamic relocs.  */ | 
 |   elf_link_hash_traverse (&htab->elf, elf_x86_allocate_dynrelocs, | 
 | 			  info); | 
 |  | 
 |   /* Allocate .plt and .got entries, and space for local symbols.  */ | 
 |   htab_traverse (htab->loc_hash_table, elf_x86_allocate_local_dynreloc, | 
 | 		 info); | 
 |  | 
 |   /* For every jump slot reserved in the sgotplt, reloc_count is | 
 |      incremented.  However, when we reserve space for TLS descriptors, | 
 |      it's not incremented, so in order to compute the space reserved | 
 |      for them, it suffices to multiply the reloc count by the jump | 
 |      slot size. | 
 |  | 
 |      PR ld/13302: We start next_irelative_index at the end of .rela.plt | 
 |      so that R_{386,X86_64}_IRELATIVE entries come last.  */ | 
 |   if (htab->elf.srelplt) | 
 |     { | 
 |       htab->next_tls_desc_index = htab->elf.srelplt->reloc_count; | 
 |       htab->sgotplt_jump_table_size | 
 | 	= elf_x86_compute_jump_table_size (htab); | 
 |       htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1; | 
 |     } | 
 |   else if (htab->elf.irelplt) | 
 |     htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1; | 
 |  | 
 |   if (htab->elf.tlsdesc_plt) | 
 |     { | 
 |       /* NB: tlsdesc_plt is set only for x86-64.  If we're not using | 
 | 	 lazy TLS relocations, don't generate the PLT and GOT entries | 
 | 	 they require.  */ | 
 |       if ((info->flags & DF_BIND_NOW)) | 
 | 	htab->elf.tlsdesc_plt = 0; | 
 |       else | 
 | 	{ | 
 | 	  htab->elf.tlsdesc_got = htab->elf.sgot->size; | 
 | 	  htab->elf.sgot->size += htab->got_entry_size; | 
 | 	  /* Reserve room for the initial entry. | 
 | 	     FIXME: we could probably do away with it in this case.  */ | 
 | 	  if (htab->elf.splt->size == 0) | 
 | 	    htab->elf.splt->size = htab->plt.plt_entry_size; | 
 | 	  htab->elf.tlsdesc_plt = htab->elf.splt->size; | 
 | 	  htab->elf.splt->size += htab->plt.plt_entry_size; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (htab->elf.sgotplt) | 
 |     { | 
 |       /* Don't allocate .got.plt section if there are no GOT nor PLT | 
 | 	 entries and there is no reference to _GLOBAL_OFFSET_TABLE_.  */ | 
 |       if ((htab->elf.hgot == NULL | 
 | 	   || !htab->got_referenced) | 
 | 	  && (htab->elf.sgotplt->size == bed->got_header_size) | 
 | 	  && (htab->elf.splt == NULL | 
 | 	      || htab->elf.splt->size == 0) | 
 | 	  && (htab->elf.sgot == NULL | 
 | 	      || htab->elf.sgot->size == 0) | 
 | 	  && (htab->elf.iplt == NULL | 
 | 	      || htab->elf.iplt->size == 0) | 
 | 	  && (htab->elf.igotplt == NULL | 
 | 	      || htab->elf.igotplt->size == 0)) | 
 | 	{ | 
 | 	  htab->elf.sgotplt->size = 0; | 
 | 	  /* Solaris requires to keep _GLOBAL_OFFSET_TABLE_ even if it | 
 | 	     isn't used.  */ | 
 | 	  if (htab->elf.hgot != NULL | 
 | 	      && htab->elf.target_os != is_solaris) | 
 | 	    { | 
 | 	      /* Remove the unused _GLOBAL_OFFSET_TABLE_ from symbol | 
 | 		 table. */ | 
 | 	      htab->elf.hgot->root.type = bfd_link_hash_undefined; | 
 | 	      htab->elf.hgot->root.u.undef.abfd | 
 | 		= htab->elf.hgot->root.u.def.section->owner; | 
 | 	      htab->elf.hgot->root.linker_def = 0; | 
 | 	      htab->elf.hgot->ref_regular = 0; | 
 | 	      htab->elf.hgot->def_regular = 0; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   if (_bfd_elf_eh_frame_present (info)) | 
 |     { | 
 |       if (htab->plt_eh_frame != NULL | 
 | 	  && htab->elf.splt != NULL | 
 | 	  && htab->elf.splt->size != 0 | 
 | 	  && !bfd_is_abs_section (htab->elf.splt->output_section)) | 
 | 	htab->plt_eh_frame->size = htab->plt.eh_frame_plt_size; | 
 |  | 
 |       if (htab->plt_got_eh_frame != NULL | 
 | 	  && htab->plt_got != NULL | 
 | 	  && htab->plt_got->size != 0 | 
 | 	  && !bfd_is_abs_section (htab->plt_got->output_section)) | 
 | 	htab->plt_got_eh_frame->size | 
 | 	  = htab->non_lazy_plt->eh_frame_plt_size; | 
 |  | 
 |       /* Unwind info for the second PLT and .plt.got sections are | 
 | 	 identical.  */ | 
 |       if (htab->plt_second_eh_frame != NULL | 
 | 	  && htab->plt_second != NULL | 
 | 	  && htab->plt_second->size != 0 | 
 | 	  && !bfd_is_abs_section (htab->plt_second->output_section)) | 
 | 	htab->plt_second_eh_frame->size | 
 | 	  = htab->non_lazy_plt->eh_frame_plt_size; | 
 |     } | 
 |  | 
 |   /* No need to size the .sframe section explicitly because the write-out | 
 |      mechanism is different.  Simply prep up the FDE/FRE for the | 
 |      .plt section.  */ | 
 |   if (_bfd_elf_sframe_present (info)) | 
 |     { | 
 |       if (htab->plt_sframe != NULL | 
 | 	  && htab->elf.splt != NULL | 
 | 	  && htab->elf.splt->size != 0 | 
 | 	  && !bfd_is_abs_section (htab->elf.splt->output_section)) | 
 | 	{ | 
 | 	  _bfd_x86_elf_create_sframe_plt (output_bfd, info, SFRAME_PLT); | 
 | 	  /* FIXME - Dirty Hack.  Set the size to something non-zero for now, | 
 | 	     so that the section does not get stripped out below.  The precise | 
 | 	     size of this section is known only when the contents are | 
 | 	     serialized in _bfd_x86_elf_write_sframe_plt.  */ | 
 | 	  htab->plt_sframe->size = sizeof (sframe_header) + 1; | 
 | 	} | 
 |  | 
 |       /* FIXME - generate for .plt.got ?  */ | 
 |  | 
 |       if (htab->plt_second_sframe != NULL | 
 | 	  && htab->plt_second != NULL | 
 | 	  && htab->plt_second->size != 0 | 
 | 	  && !bfd_is_abs_section (htab->plt_second->output_section)) | 
 | 	{ | 
 | 	  /* SFrame stack trace info for the second PLT.  */ | 
 | 	  _bfd_x86_elf_create_sframe_plt (output_bfd, info, SFRAME_PLT_SEC); | 
 | 	  /* FIXME - Dirty Hack.  Set the size to something non-zero for now, | 
 | 	     so that the section does not get stripped out below.  The precise | 
 | 	     size of this section is known only when the contents are | 
 | 	     serialized in _bfd_x86_elf_write_sframe_plt.  */ | 
 | 	  htab->plt_second_sframe->size = sizeof (sframe_header) + 1; | 
 | 	} | 
 |     } | 
 |  | 
 |   asection *resolved_plt = NULL; | 
 |  | 
 |   if (htab->params->mark_plt && htab->elf.dynamic_sections_created) | 
 |     { | 
 |       if (htab->plt_second != NULL) | 
 | 	resolved_plt = htab->plt_second; | 
 |       else | 
 | 	resolved_plt = htab->elf.splt; | 
 |  | 
 |       if (resolved_plt != NULL && resolved_plt->size == 0) | 
 | 	resolved_plt = NULL; | 
 |     } | 
 |  | 
 |   /* We now have determined the sizes of the various dynamic sections. | 
 |      Allocate memory for them.  */ | 
 |   relocs = false; | 
 |   for (s = dynobj->sections; s != NULL; s = s->next) | 
 |     { | 
 |       bool strip_section = true; | 
 |  | 
 |       if ((s->flags & SEC_LINKER_CREATED) == 0) | 
 | 	continue; | 
 |  | 
 |       /* The .relr.dyn section for compact relative relocation will | 
 | 	 be filled later.  */ | 
 |       if (s == htab->elf.srelrdyn) | 
 | 	continue; | 
 |  | 
 |       if (s == htab->elf.splt | 
 | 	  || s == htab->elf.sgot) | 
 | 	{ | 
 | 	  /* Strip this section if we don't need it; see the | 
 | 	     comment below.  */ | 
 | 	  /* We'd like to strip these sections if they aren't needed, but if | 
 | 	     we've exported dynamic symbols from them we must leave them. | 
 | 	     It's too late to tell BFD to get rid of the symbols.  */ | 
 |  | 
 | 	  if (htab->elf.hplt != NULL) | 
 | 	    strip_section = false; | 
 | 	} | 
 |       else if (s == htab->elf.sgotplt | 
 | 	       || s == htab->elf.iplt | 
 | 	       || s == htab->elf.igotplt | 
 | 	       || s == htab->plt_second | 
 | 	       || s == htab->plt_got | 
 | 	       || s == htab->plt_eh_frame | 
 | 	       || s == htab->plt_got_eh_frame | 
 | 	       || s == htab->plt_second_eh_frame | 
 | 	       || s == htab->plt_sframe | 
 | 	       || s == htab->plt_second_sframe | 
 | 	       || s == htab->elf.sdynbss | 
 | 	       || s == htab->elf.sdynrelro) | 
 | 	{ | 
 | 	  /* Strip these too.  */ | 
 | 	} | 
 |       else if (htab->is_reloc_section (bfd_section_name (s))) | 
 | 	{ | 
 | 	  if (s->size != 0 | 
 | 	      && s != htab->elf.srelplt | 
 | 	      && s != htab->srelplt2) | 
 | 	    relocs = true; | 
 |  | 
 | 	  /* We use the reloc_count field as a counter if we need | 
 | 	     to copy relocs into the output file.  */ | 
 | 	  if (s != htab->elf.srelplt) | 
 | 	    s->reloc_count = 0; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  /* It's not one of our sections, so don't allocate space.  */ | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       if (s->size == 0) | 
 | 	{ | 
 | 	  /* If we don't need this section, strip it from the | 
 | 	     output file.  This is mostly to handle .rel.bss and | 
 | 	     .rel.plt.  We must create both sections in | 
 | 	     create_dynamic_sections, because they must be created | 
 | 	     before the linker maps input sections to output | 
 | 	     sections.  The linker does that before | 
 | 	     adjust_dynamic_symbol is called, and it is that | 
 | 	     function which decides whether anything needs to go | 
 | 	     into these sections.  */ | 
 | 	  if (strip_section) | 
 | 	    s->flags |= SEC_EXCLUDE; | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       if ((s->flags & SEC_HAS_CONTENTS) == 0) | 
 | 	continue; | 
 |  | 
 |       /* Skip allocating contents for .sframe section as it is written | 
 | 	 out differently.  See below.  */ | 
 |       if ((s == htab->plt_sframe) || (s == htab->plt_second_sframe)) | 
 | 	continue; | 
 |  | 
 |       /* NB: Initially, the iplt section has minimal alignment to | 
 | 	 avoid moving dot of the following section backwards when | 
 | 	 it is empty.  Update its section alignment now since it | 
 | 	 is non-empty.  */ | 
 |       if (s == htab->elf.iplt) | 
 | 	bfd_set_section_alignment (s, htab->plt.iplt_alignment); | 
 |  | 
 |       /* Allocate memory for the section contents.  We use bfd_zalloc | 
 | 	 here in case unused entries are not reclaimed before the | 
 | 	 section's contents are written out.  This should not happen, | 
 | 	 but this way if it does, we get a R_386_NONE or R_X86_64_NONE | 
 | 	 reloc instead of garbage.  */ | 
 |       s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size); | 
 |       if (s->contents == NULL) | 
 | 	return false; | 
 |     } | 
 |  | 
 |   if (htab->plt_eh_frame != NULL | 
 |       && htab->plt_eh_frame->contents != NULL) | 
 |     { | 
 |       memcpy (htab->plt_eh_frame->contents, | 
 | 	      htab->plt.eh_frame_plt, | 
 | 	      htab->plt_eh_frame->size); | 
 |       bfd_put_32 (dynobj, htab->elf.splt->size, | 
 | 		  htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET); | 
 |     } | 
 |  | 
 |   if (htab->plt_got_eh_frame != NULL | 
 |       && htab->plt_got_eh_frame->contents != NULL) | 
 |     { | 
 |       memcpy (htab->plt_got_eh_frame->contents, | 
 | 	      htab->non_lazy_plt->eh_frame_plt, | 
 | 	      htab->plt_got_eh_frame->size); | 
 |       bfd_put_32 (dynobj, htab->plt_got->size, | 
 | 		  (htab->plt_got_eh_frame->contents | 
 | 		   + PLT_FDE_LEN_OFFSET)); | 
 |     } | 
 |  | 
 |   if (htab->plt_second_eh_frame != NULL | 
 |       && htab->plt_second_eh_frame->contents != NULL) | 
 |     { | 
 |       memcpy (htab->plt_second_eh_frame->contents, | 
 | 	      htab->non_lazy_plt->eh_frame_plt, | 
 | 	      htab->plt_second_eh_frame->size); | 
 |       bfd_put_32 (dynobj, htab->plt_second->size, | 
 | 		  (htab->plt_second_eh_frame->contents | 
 | 		   + PLT_FDE_LEN_OFFSET)); | 
 |     } | 
 |  | 
 |   if (_bfd_elf_sframe_present (info)) | 
 |     { | 
 |       if (htab->plt_sframe != NULL | 
 | 	  && htab->elf.splt != NULL | 
 | 	  && htab->elf.splt->size != 0 | 
 | 	  && htab->plt_sframe->contents == NULL) | 
 | 	_bfd_x86_elf_write_sframe_plt (output_bfd, info, SFRAME_PLT); | 
 |  | 
 |       if (htab->plt_second_sframe != NULL | 
 | 	  && htab->elf.splt != NULL | 
 | 	  && htab->elf.splt->size != 0 | 
 | 	  && htab->plt_second_sframe->contents == NULL) | 
 | 	_bfd_x86_elf_write_sframe_plt (output_bfd, info, SFRAME_PLT_SEC); | 
 |     } | 
 |  | 
 |   if (resolved_plt != NULL | 
 |       && (!_bfd_elf_add_dynamic_entry (info, DT_X86_64_PLT, 0) | 
 | 	  || !_bfd_elf_add_dynamic_entry (info, DT_X86_64_PLTSZ, 0) | 
 | 	  || !_bfd_elf_add_dynamic_entry (info, DT_X86_64_PLTENT, 0))) | 
 |     return false; | 
 |  | 
 |   return _bfd_elf_maybe_vxworks_add_dynamic_tags (output_bfd, info, | 
 | 						  relocs); | 
 | } | 
 |  | 
 | /* Finish up the x86 dynamic sections.  */ | 
 |  | 
 | struct elf_x86_link_hash_table * | 
 | _bfd_x86_elf_finish_dynamic_sections (bfd *output_bfd, | 
 | 				      struct bfd_link_info *info) | 
 | { | 
 |   struct elf_x86_link_hash_table *htab; | 
 |   const struct elf_backend_data *bed; | 
 |   bfd *dynobj; | 
 |   asection *sdyn; | 
 |   bfd_byte *dyncon, *dynconend; | 
 |   bfd_size_type sizeof_dyn; | 
 |  | 
 |   bed = get_elf_backend_data (output_bfd); | 
 |   htab = elf_x86_hash_table (info, bed->target_id); | 
 |   if (htab == NULL) | 
 |     return htab; | 
 |  | 
 |   dynobj = htab->elf.dynobj; | 
 |   sdyn = htab->elf.dynamic; | 
 |  | 
 |   /* GOT is always created in setup_gnu_properties.  But it may not be | 
 |      needed.  .got.plt section may be needed for static IFUNC.  */ | 
 |   if (htab->elf.sgotplt && htab->elf.sgotplt->size > 0) | 
 |     { | 
 |       bfd_vma dynamic_addr; | 
 |  | 
 |       if (bfd_is_abs_section (htab->elf.sgotplt->output_section)) | 
 | 	{ | 
 | 	  _bfd_error_handler | 
 | 	    (_("discarded output section: `%pA'"), htab->elf.sgotplt); | 
 | 	  return NULL; | 
 | 	} | 
 |  | 
 |       elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize | 
 | 	= htab->got_entry_size; | 
 |  | 
 |       dynamic_addr = (sdyn == NULL | 
 | 		      ? (bfd_vma) 0 | 
 | 		      : sdyn->output_section->vma + sdyn->output_offset); | 
 |  | 
 |       /* Set the first entry in the global offset table to the address | 
 | 	 of the dynamic section.  Write GOT[1] and GOT[2], needed for | 
 | 	 the dynamic linker.  */ | 
 |       if (htab->got_entry_size == 8) | 
 | 	{ | 
 | 	  bfd_put_64 (output_bfd, dynamic_addr, | 
 | 		      htab->elf.sgotplt->contents); | 
 | 	  bfd_put_64 (output_bfd, (bfd_vma) 0, | 
 | 		      htab->elf.sgotplt->contents + 8); | 
 | 	  bfd_put_64 (output_bfd, (bfd_vma) 0, | 
 | 		      htab->elf.sgotplt->contents + 8*2); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  bfd_put_32 (output_bfd, dynamic_addr, | 
 | 		      htab->elf.sgotplt->contents); | 
 | 	  bfd_put_32 (output_bfd, 0, | 
 | 		      htab->elf.sgotplt->contents + 4); | 
 | 	  bfd_put_32 (output_bfd, 0, | 
 | 		      htab->elf.sgotplt->contents + 4*2); | 
 | 	} | 
 |     } | 
 |  | 
 |   if (!htab->elf.dynamic_sections_created) | 
 |     return htab; | 
 |  | 
 |   if (sdyn == NULL || htab->elf.sgot == NULL) | 
 |     abort (); | 
 |  | 
 |   asection *resolved_plt; | 
 |   if (htab->plt_second != NULL) | 
 |     resolved_plt = htab->plt_second; | 
 |   else | 
 |     resolved_plt = htab->elf.splt; | 
 |  | 
 |   sizeof_dyn = bed->s->sizeof_dyn; | 
 |   dyncon = sdyn->contents; | 
 |   dynconend = sdyn->contents + sdyn->size; | 
 |   for (; dyncon < dynconend; dyncon += sizeof_dyn) | 
 |     { | 
 |       Elf_Internal_Dyn dyn; | 
 |       asection *s; | 
 |  | 
 |       (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn); | 
 |  | 
 |       switch (dyn.d_tag) | 
 | 	{ | 
 | 	default: | 
 | 	  if (htab->elf.target_os == is_vxworks | 
 | 	      && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) | 
 | 	    break; | 
 | 	  continue; | 
 |  | 
 | 	case DT_PLTGOT: | 
 | 	  s = htab->elf.sgotplt; | 
 | 	  dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | 
 | 	  break; | 
 |  | 
 | 	case DT_JMPREL: | 
 | 	  s = htab->elf.srelplt; | 
 | 	  dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | 
 | 	  break; | 
 |  | 
 | 	case DT_PLTRELSZ: | 
 | 	  s = htab->elf.srelplt; | 
 | 	  dyn.d_un.d_val = s->size; | 
 | 	  break; | 
 |  | 
 | 	case DT_TLSDESC_PLT: | 
 | 	  s = htab->elf.splt; | 
 | 	  dyn.d_un.d_ptr = s->output_section->vma + s->output_offset | 
 | 	    + htab->elf.tlsdesc_plt; | 
 | 	  break; | 
 |  | 
 | 	case DT_TLSDESC_GOT: | 
 | 	  s = htab->elf.sgot; | 
 | 	  dyn.d_un.d_ptr = s->output_section->vma + s->output_offset | 
 | 	    + htab->elf.tlsdesc_got; | 
 | 	  break; | 
 |  | 
 | 	case DT_X86_64_PLT: | 
 | 	  s = resolved_plt->output_section; | 
 | 	  dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | 
 | 	  break; | 
 |  | 
 | 	case DT_X86_64_PLTSZ: | 
 | 	  dyn.d_un.d_val = resolved_plt->size; | 
 | 	  break; | 
 |  | 
 | 	case DT_X86_64_PLTENT: | 
 | 	  dyn.d_un.d_ptr = htab->plt.plt_entry_size; | 
 | 	  break; | 
 | 	} | 
 |  | 
 |       (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon); | 
 |     } | 
 |  | 
 |   if (htab->plt_got != NULL && htab->plt_got->size > 0) | 
 |     elf_section_data (htab->plt_got->output_section) | 
 |       ->this_hdr.sh_entsize = htab->non_lazy_plt->plt_entry_size; | 
 |  | 
 |   if (htab->plt_second != NULL && htab->plt_second->size > 0) | 
 |     elf_section_data (htab->plt_second->output_section) | 
 |       ->this_hdr.sh_entsize = htab->non_lazy_plt->plt_entry_size; | 
 |  | 
 |   /* Adjust .eh_frame for .plt section.  */ | 
 |   if (htab->plt_eh_frame != NULL | 
 |       && htab->plt_eh_frame->contents != NULL) | 
 |     { | 
 |       if (htab->elf.splt != NULL | 
 | 	  && htab->elf.splt->size != 0 | 
 | 	  && (htab->elf.splt->flags & SEC_EXCLUDE) == 0 | 
 | 	  && htab->elf.splt->output_section != NULL | 
 | 	  && htab->plt_eh_frame->output_section != NULL) | 
 | 	{ | 
 | 	  bfd_vma plt_start = htab->elf.splt->output_section->vma; | 
 | 	  bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma | 
 | 				   + htab->plt_eh_frame->output_offset | 
 | 				   + PLT_FDE_START_OFFSET; | 
 | 	  bfd_put_signed_32 (dynobj, plt_start - eh_frame_start, | 
 | 			     htab->plt_eh_frame->contents | 
 | 			     + PLT_FDE_START_OFFSET); | 
 | 	} | 
 |  | 
 |       if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME) | 
 | 	{ | 
 | 	  if (! _bfd_elf_write_section_eh_frame (output_bfd, info, | 
 | 						 htab->plt_eh_frame, | 
 | 						 htab->plt_eh_frame->contents)) | 
 | 	    return NULL; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Adjust .eh_frame for .plt.got section.  */ | 
 |   if (htab->plt_got_eh_frame != NULL | 
 |       && htab->plt_got_eh_frame->contents != NULL) | 
 |     { | 
 |       if (htab->plt_got != NULL | 
 | 	  && htab->plt_got->size != 0 | 
 | 	  && (htab->plt_got->flags & SEC_EXCLUDE) == 0 | 
 | 	  && htab->plt_got->output_section != NULL | 
 | 	  && htab->plt_got_eh_frame->output_section != NULL) | 
 | 	{ | 
 | 	  bfd_vma plt_start = htab->plt_got->output_section->vma; | 
 | 	  bfd_vma eh_frame_start = htab->plt_got_eh_frame->output_section->vma | 
 | 				   + htab->plt_got_eh_frame->output_offset | 
 | 				   + PLT_FDE_START_OFFSET; | 
 | 	  bfd_put_signed_32 (dynobj, plt_start - eh_frame_start, | 
 | 			     htab->plt_got_eh_frame->contents | 
 | 			     + PLT_FDE_START_OFFSET); | 
 | 	} | 
 |       if (htab->plt_got_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME) | 
 | 	{ | 
 | 	  if (! _bfd_elf_write_section_eh_frame (output_bfd, info, | 
 | 						 htab->plt_got_eh_frame, | 
 | 						 htab->plt_got_eh_frame->contents)) | 
 | 	    return NULL; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Adjust .eh_frame for the second PLT section.  */ | 
 |   if (htab->plt_second_eh_frame != NULL | 
 |       && htab->plt_second_eh_frame->contents != NULL) | 
 |     { | 
 |       if (htab->plt_second != NULL | 
 | 	  && htab->plt_second->size != 0 | 
 | 	  && (htab->plt_second->flags & SEC_EXCLUDE) == 0 | 
 | 	  && htab->plt_second->output_section != NULL | 
 | 	  && htab->plt_second_eh_frame->output_section != NULL) | 
 | 	{ | 
 | 	  bfd_vma plt_start = htab->plt_second->output_section->vma; | 
 | 	  bfd_vma eh_frame_start | 
 | 	    = (htab->plt_second_eh_frame->output_section->vma | 
 | 	       + htab->plt_second_eh_frame->output_offset | 
 | 	       + PLT_FDE_START_OFFSET); | 
 | 	  bfd_put_signed_32 (dynobj, plt_start - eh_frame_start, | 
 | 			     htab->plt_second_eh_frame->contents | 
 | 			     + PLT_FDE_START_OFFSET); | 
 | 	} | 
 |       if (htab->plt_second_eh_frame->sec_info_type | 
 | 	  == SEC_INFO_TYPE_EH_FRAME) | 
 | 	{ | 
 | 	  if (! _bfd_elf_write_section_eh_frame (output_bfd, info, | 
 | 						 htab->plt_second_eh_frame, | 
 | 						 htab->plt_second_eh_frame->contents)) | 
 | 	    return NULL; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Make any adjustment if necessary and merge .sframe section to | 
 |      create the final .sframe section for output_bfd.  */ | 
 |   if (htab->plt_sframe != NULL | 
 |       && htab->plt_sframe->contents != NULL) | 
 |     { | 
 |       if (htab->elf.splt != NULL | 
 | 	  && htab->elf.splt->size != 0 | 
 | 	  && (htab->elf.splt->flags & SEC_EXCLUDE) == 0 | 
 | 	  && htab->elf.splt->output_section != NULL | 
 | 	  && htab->plt_sframe->output_section != NULL) | 
 | 	{ | 
 | 	  bfd_vma plt_start = htab->elf.splt->output_section->vma; | 
 | 	  bfd_vma sframe_start = htab->plt_sframe->output_section->vma | 
 | 				   + htab->plt_sframe->output_offset | 
 | 				   + PLT_SFRAME_FDE_START_OFFSET; | 
 | #if 0 /* FIXME Testing only. Remove before review.  */ | 
 | 	  bfd_vma test_value = (plt_start - sframe_start) | 
 | 	    + htab->plt_sframe->output_section->vma | 
 | 	    + htab->plt_sframe->output_offset | 
 | 	    + PLT_SFRAME_FDE_START_OFFSET; | 
 | 	  bfd_put_signed_32 (dynobj, test_value, | 
 | #endif | 
 | 	  bfd_put_signed_32 (dynobj, plt_start - sframe_start, | 
 | 			     htab->plt_sframe->contents | 
 | 			     + PLT_SFRAME_FDE_START_OFFSET); | 
 | 	} | 
 |       if (htab->plt_sframe->sec_info_type == SEC_INFO_TYPE_SFRAME) | 
 | 	{ | 
 | 	  if (! _bfd_elf_merge_section_sframe (output_bfd, info, | 
 | 					       htab->plt_sframe, | 
 | 					       htab->plt_sframe->contents)) | 
 | 	    return NULL; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (htab->plt_second_sframe != NULL | 
 |       && htab->plt_second_sframe->contents != NULL) | 
 |     { | 
 |       if (htab->plt_second != NULL | 
 | 	  && htab->plt_second->size != 0 | 
 | 	  && (htab->plt_second->flags & SEC_EXCLUDE) == 0 | 
 | 	  && htab->plt_second->output_section != NULL | 
 | 	  && htab->plt_second_sframe->output_section != NULL) | 
 | 	{ | 
 | 	  bfd_vma plt_start = htab->plt_second->output_section->vma; | 
 | 	  bfd_vma sframe_start | 
 | 	    = (htab->plt_second_sframe->output_section->vma | 
 | 	       + htab->plt_second_sframe->output_offset | 
 | 	       + PLT_SFRAME_FDE_START_OFFSET); | 
 | #if 0 /* FIXME Testing only. Remove before review.  */ | 
 | 	  bfd_vma test_value = (plt_start - sframe_start) | 
 | 	    + htab->plt_second_sframe->output_section->vma | 
 | 	    + htab->plt_second_sframe->output_offset | 
 | 	    + PLT_SFRAME_FDE_START_OFFSET; | 
 | 	  bfd_put_signed_32 (dynobj, test_value, | 
 | #endif | 
 | 	  bfd_put_signed_32 (dynobj, plt_start - sframe_start, | 
 | 			     htab->plt_second_sframe->contents | 
 | 			     + PLT_SFRAME_FDE_START_OFFSET); | 
 | 	} | 
 |       if (htab->plt_second_sframe->sec_info_type == SEC_INFO_TYPE_SFRAME) | 
 | 	{ | 
 | 	  if (! _bfd_elf_merge_section_sframe (output_bfd, info, | 
 | 					       htab->plt_second_sframe, | 
 | 					       htab->plt_second_sframe->contents)) | 
 | 	    return NULL; | 
 | 	} | 
 |     } | 
 |   if (htab->elf.sgot && htab->elf.sgot->size > 0) | 
 |     elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize | 
 |       = htab->got_entry_size; | 
 |  | 
 |   return htab; | 
 | } | 
 |  | 
 |  | 
 | bool | 
 | _bfd_x86_elf_early_size_sections (bfd *output_bfd, | 
 | 				  struct bfd_link_info *info) | 
 | { | 
 |   asection *tls_sec = elf_hash_table (info)->tls_sec; | 
 |  | 
 |   if (tls_sec && !bfd_link_relocatable (info)) | 
 |     { | 
 |       struct elf_link_hash_entry *tlsbase; | 
 |  | 
 |       tlsbase = elf_link_hash_lookup (elf_hash_table (info), | 
 | 				      "_TLS_MODULE_BASE_", | 
 | 				      false, false, false); | 
 |  | 
 |       if (tlsbase && tlsbase->type == STT_TLS) | 
 | 	{ | 
 | 	  struct elf_x86_link_hash_table *htab; | 
 | 	  struct bfd_link_hash_entry *bh = NULL; | 
 | 	  const struct elf_backend_data *bed | 
 | 	    = get_elf_backend_data (output_bfd); | 
 |  | 
 | 	  htab = elf_x86_hash_table (info, bed->target_id); | 
 | 	  if (htab == NULL) | 
 | 	    return false; | 
 |  | 
 | 	  if (!(_bfd_generic_link_add_one_symbol | 
 | 		(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, | 
 | 		 tls_sec, 0, NULL, false, | 
 | 		 bed->collect, &bh))) | 
 | 	    return false; | 
 |  | 
 | 	  htab->tls_module_base = bh; | 
 |  | 
 | 	  tlsbase = (struct elf_link_hash_entry *)bh; | 
 | 	  tlsbase->def_regular = 1; | 
 | 	  tlsbase->other = STV_HIDDEN; | 
 | 	  tlsbase->root.linker_def = 1; | 
 | 	  (*bed->elf_backend_hide_symbol) (info, tlsbase, true); | 
 | 	} | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void | 
 | _bfd_x86_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, | 
 | 				     unsigned int st_other, | 
 | 				     bool definition, | 
 | 				     bool dynamic ATTRIBUTE_UNUSED) | 
 | { | 
 |   if (definition) | 
 |     { | 
 |       struct elf_x86_link_hash_entry *eh | 
 | 	= (struct elf_x86_link_hash_entry *) h; | 
 |       eh->def_protected = ELF_ST_VISIBILITY (st_other) == STV_PROTECTED; | 
 |     } | 
 | } | 
 |  | 
 | /* Copy the extra info we tack onto an elf_link_hash_entry.  */ | 
 |  | 
 | void | 
 | _bfd_x86_elf_copy_indirect_symbol (struct bfd_link_info *info, | 
 | 				   struct elf_link_hash_entry *dir, | 
 | 				   struct elf_link_hash_entry *ind) | 
 | { | 
 |   struct elf_x86_link_hash_entry *edir, *eind; | 
 |  | 
 |   edir = (struct elf_x86_link_hash_entry *) dir; | 
 |   eind = (struct elf_x86_link_hash_entry *) ind; | 
 |  | 
 |   if (ind->root.type == bfd_link_hash_indirect | 
 |       && dir->got.refcount <= 0) | 
 |     { | 
 |       edir->tls_type = eind->tls_type; | 
 |       eind->tls_type = GOT_UNKNOWN; | 
 |     } | 
 |  | 
 |   /* Copy gotoff_ref so that elf_i386_adjust_dynamic_symbol will | 
 |      generate a R_386_COPY reloc.  */ | 
 |   edir->gotoff_ref |= eind->gotoff_ref; | 
 |  | 
 |   edir->zero_undefweak |= eind->zero_undefweak; | 
 |  | 
 |   if (ELIMINATE_COPY_RELOCS | 
 |       && ind->root.type != bfd_link_hash_indirect | 
 |       && dir->dynamic_adjusted) | 
 |     { | 
 |       /* If called to transfer flags for a weakdef during processing | 
 | 	 of elf_adjust_dynamic_symbol, don't copy non_got_ref. | 
 | 	 We clear it ourselves for ELIMINATE_COPY_RELOCS.  */ | 
 |       if (dir->versioned != versioned_hidden) | 
 | 	dir->ref_dynamic |= ind->ref_dynamic; | 
 |       dir->ref_regular |= ind->ref_regular; | 
 |       dir->ref_regular_nonweak |= ind->ref_regular_nonweak; | 
 |       dir->needs_plt |= ind->needs_plt; | 
 |       dir->pointer_equality_needed |= ind->pointer_equality_needed; | 
 |     } | 
 |   else | 
 |     _bfd_elf_link_hash_copy_indirect (info, dir, ind); | 
 | } | 
 |  | 
 | /* Remove undefined weak symbol from the dynamic symbol table if it | 
 |    is resolved to 0.   */ | 
 |  | 
 | bool | 
 | _bfd_x86_elf_fixup_symbol (struct bfd_link_info *info, | 
 | 			   struct elf_link_hash_entry *h) | 
 | { | 
 |   if (h->dynindx != -1 | 
 |       && UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, elf_x86_hash_entry (h))) | 
 |     { | 
 |       h->dynindx = -1; | 
 |       _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, | 
 | 			      h->dynstr_index); | 
 |     } | 
 |   return true; | 
 | } | 
 |  | 
 | /* Change the STT_GNU_IFUNC symbol defined in position-dependent | 
 |    executable into the normal function symbol and set its address | 
 |    to its PLT entry, which should be resolved by R_*_IRELATIVE at | 
 |    run-time.  */ | 
 |  | 
 | void | 
 | _bfd_x86_elf_link_fixup_ifunc_symbol (struct bfd_link_info *info, | 
 | 				      struct elf_x86_link_hash_table *htab, | 
 | 				      struct elf_link_hash_entry *h, | 
 | 				      Elf_Internal_Sym *sym) | 
 | { | 
 |   if (bfd_link_pde (info) | 
 |       && h->def_regular | 
 |       && h->dynindx != -1 | 
 |       && h->plt.offset != (bfd_vma) -1 | 
 |       && h->type == STT_GNU_IFUNC) | 
 |     { | 
 |       asection *plt_s; | 
 |       bfd_vma plt_offset; | 
 |       bfd *output_bfd = info->output_bfd; | 
 |  | 
 |       if (htab->plt_second) | 
 | 	{ | 
 | 	  struct elf_x86_link_hash_entry *eh | 
 | 	    = (struct elf_x86_link_hash_entry *) h; | 
 |  | 
 | 	  plt_s = htab->plt_second; | 
 | 	  plt_offset = eh->plt_second.offset; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  plt_s = htab->elf.splt; | 
 | 	  plt_offset = h->plt.offset; | 
 | 	} | 
 |  | 
 |       sym->st_size = 0; | 
 |       sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC); | 
 |       sym->st_shndx | 
 | 	= _bfd_elf_section_from_bfd_section (output_bfd, | 
 | 					     plt_s->output_section); | 
 |       sym->st_value = (plt_s->output_section->vma | 
 | 		       + plt_s->output_offset + plt_offset); | 
 |     } | 
 | } | 
 |  | 
 | /* Report relative relocation.  */ | 
 |  | 
 | void | 
 | _bfd_x86_elf_link_report_relative_reloc | 
 |   (struct bfd_link_info *info, asection *asect, | 
 |    struct elf_link_hash_entry *h, Elf_Internal_Sym *sym, | 
 |    const char *reloc_name, const void *reloc) | 
 | { | 
 |   const char *name; | 
 |   bfd *abfd; | 
 |   const Elf_Internal_Rela *rel = (const Elf_Internal_Rela *) reloc; | 
 |  | 
 |   /* Use the output BFD for linker created sections.  */ | 
 |   if ((asect->flags & SEC_LINKER_CREATED) != 0) | 
 |     abfd = info->output_bfd; | 
 |   else | 
 |     abfd = asect->owner; | 
 |  | 
 |   if (h != NULL && h->root.root.string != NULL) | 
 |     name = h->root.root.string; | 
 |   else | 
 |     name = bfd_elf_sym_name (abfd, &elf_symtab_hdr (abfd), sym, NULL); | 
 |  | 
 |   if (asect->use_rela_p) | 
 |     info->callbacks->einfo | 
 |       (_("%pB: %s (offset: 0x%v, info: 0x%v, addend: 0x%v) against " | 
 | 	 "'%s' " "for section '%pA' in %pB\n"), | 
 |        info->output_bfd, reloc_name, rel->r_offset, rel->r_info, | 
 |        rel->r_addend, name, asect, abfd); | 
 |   else | 
 |     info->callbacks->einfo | 
 |       (_("%pB: %s (offset: 0x%v, info: 0x%v) against '%s' for section " | 
 | 	 "'%pA' in %pB\n"), | 
 |        info->output_bfd, reloc_name, rel->r_offset, rel->r_info, name, | 
 |        asect, abfd); | 
 | } | 
 |  | 
 | /* Return TRUE if symbol should be hashed in the `.gnu.hash' section.  */ | 
 |  | 
 | bool | 
 | _bfd_x86_elf_hash_symbol (struct elf_link_hash_entry *h) | 
 | { | 
 |   if (h->plt.offset != (bfd_vma) -1 | 
 |       && !h->def_regular | 
 |       && !h->pointer_equality_needed) | 
 |     return false; | 
 |  | 
 |   return _bfd_elf_hash_symbol (h); | 
 | } | 
 |  | 
 | /* Adjust a symbol defined by a dynamic object and referenced by a | 
 |    regular object.  The current definition is in some section of the | 
 |    dynamic object, but we're not including those sections.  We have to | 
 |    change the definition to something the rest of the link can | 
 |    understand.  */ | 
 |  | 
 | bool | 
 | _bfd_x86_elf_adjust_dynamic_symbol (struct bfd_link_info *info, | 
 | 				    struct elf_link_hash_entry *h) | 
 | { | 
 |   struct elf_x86_link_hash_table *htab; | 
 |   asection *s, *srel; | 
 |   struct elf_x86_link_hash_entry *eh; | 
 |   struct elf_dyn_relocs *p; | 
 |   const struct elf_backend_data *bed | 
 |     = get_elf_backend_data (info->output_bfd); | 
 |  | 
 |   eh = (struct elf_x86_link_hash_entry *) h; | 
 |  | 
 |   /* Clear GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS if it is turned | 
 |      on by an input relocatable file and there is a non-GOT/non-PLT | 
 |      reference from another relocatable file without it. | 
 |      NB: There can be non-GOT reference in data sections in input with | 
 |      GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS.  */ | 
 |   if (eh->non_got_ref_without_indirect_extern_access | 
 |       && info->indirect_extern_access == 1 | 
 |       && bfd_link_executable (info)) | 
 |     { | 
 |       unsigned int needed_1; | 
 |       info->indirect_extern_access = 0; | 
 |       /* Turn off nocopyreloc if implied by indirect_extern_access.  */ | 
 |       if (info->nocopyreloc == 2) | 
 | 	info->nocopyreloc = 0; | 
 |       needed_1 = bfd_h_get_32 (info->output_bfd, info->needed_1_p); | 
 |       needed_1 &= ~GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS; | 
 |       bfd_h_put_32 (info->output_bfd, needed_1, info->needed_1_p); | 
 |     } | 
 |  | 
 |   /* STT_GNU_IFUNC symbol must go through PLT. */ | 
 |   if (h->type == STT_GNU_IFUNC) | 
 |     { | 
 |       /* All local STT_GNU_IFUNC references must be treate as local | 
 | 	 calls via local PLT.  */ | 
 |       if (h->ref_regular | 
 | 	  && SYMBOL_CALLS_LOCAL (info, h)) | 
 | 	{ | 
 | 	  bfd_size_type pc_count = 0, count = 0; | 
 | 	  struct elf_dyn_relocs **pp; | 
 |  | 
 | 	  eh = (struct elf_x86_link_hash_entry *) h; | 
 | 	  for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) | 
 | 	    { | 
 | 	      pc_count += p->pc_count; | 
 | 	      p->count -= p->pc_count; | 
 | 	      p->pc_count = 0; | 
 | 	      count += p->count; | 
 | 	      if (p->count == 0) | 
 | 		*pp = p->next; | 
 | 	      else | 
 | 		pp = &p->next; | 
 | 	    } | 
 |  | 
 | 	  if (pc_count || count) | 
 | 	    { | 
 | 	      h->non_got_ref = 1; | 
 | 	      if (pc_count) | 
 | 		{ | 
 | 		  /* Increment PLT reference count only for PC-relative | 
 | 		     references.  */ | 
 | 		  h->needs_plt = 1; | 
 | 		  if (h->plt.refcount <= 0) | 
 | 		    h->plt.refcount = 1; | 
 | 		  else | 
 | 		    h->plt.refcount += 1; | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  /* GOTOFF relocation needs PLT.  */ | 
 | 	  if (eh->gotoff_ref) | 
 | 	    h->plt.refcount = 1; | 
 | 	} | 
 |  | 
 |       if (h->plt.refcount <= 0) | 
 | 	{ | 
 | 	  h->plt.offset = (bfd_vma) -1; | 
 | 	  h->needs_plt = 0; | 
 | 	} | 
 |       return true; | 
 |     } | 
 |  | 
 |   /* If this is a function, put it in the procedure linkage table.  We | 
 |      will fill in the contents of the procedure linkage table later, | 
 |      when we know the address of the .got section.  */ | 
 |   if (h->type == STT_FUNC | 
 |       || h->needs_plt) | 
 |     { | 
 |       if (h->plt.refcount <= 0 | 
 | 	  || SYMBOL_CALLS_LOCAL (info, h) | 
 | 	  || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | 
 | 	      && h->root.type == bfd_link_hash_undefweak)) | 
 | 	{ | 
 | 	  /* This case can occur if we saw a PLT32 reloc in an input | 
 | 	     file, but the symbol was never referred to by a dynamic | 
 | 	     object, or if all references were garbage collected.  In | 
 | 	     such a case, we don't actually need to build a procedure | 
 | 	     linkage table, and we can just do a PC32 reloc instead.  */ | 
 | 	  h->plt.offset = (bfd_vma) -1; | 
 | 	  h->needs_plt = 0; | 
 | 	} | 
 |  | 
 |       return true; | 
 |     } | 
 |   else | 
 |     /* It's possible that we incorrectly decided a .plt reloc was needed | 
 |      * for an R_386_PC32/R_X86_64_PC32 reloc to a non-function sym in | 
 |        check_relocs.  We can't decide accurately between function and | 
 |        non-function syms in check-relocs;  Objects loaded later in | 
 |        the link may change h->type.  So fix it now.  */ | 
 |     h->plt.offset = (bfd_vma) -1; | 
 |  | 
 |   /* If this is a weak symbol, and there is a real definition, the | 
 |      processor independent code will have arranged for us to see the | 
 |      real definition first, and we can just use the same value.  */ | 
 |   if (h->is_weakalias) | 
 |     { | 
 |       struct elf_link_hash_entry *def = weakdef (h); | 
 |       BFD_ASSERT (def->root.type == bfd_link_hash_defined); | 
 |       h->root.u.def.section = def->root.u.def.section; | 
 |       h->root.u.def.value = def->root.u.def.value; | 
 |       if (ELIMINATE_COPY_RELOCS | 
 | 	  || info->nocopyreloc | 
 | 	  || SYMBOL_NO_COPYRELOC (info, eh)) | 
 | 	{ | 
 | 	  /* NB: needs_copy is always 0 for i386.  */ | 
 | 	  h->non_got_ref = def->non_got_ref; | 
 | 	  eh->needs_copy = def->needs_copy; | 
 | 	} | 
 |       return true; | 
 |     } | 
 |  | 
 |   /* This is a reference to a symbol defined by a dynamic object which | 
 |      is not a function.  */ | 
 |  | 
 |   /* If we are creating a shared library, we must presume that the | 
 |      only references to the symbol are via the global offset table. | 
 |      For such cases we need not do anything here; the relocations will | 
 |      be handled correctly by relocate_section.  */ | 
 |   if (!bfd_link_executable (info)) | 
 |     return true; | 
 |  | 
 |   /* If there are no references to this symbol that do not use the | 
 |      GOT nor R_386_GOTOFF relocation, we don't need to generate a copy | 
 |      reloc.  NB: gotoff_ref is always 0 for x86-64.  */ | 
 |   if (!h->non_got_ref && !eh->gotoff_ref) | 
 |     return true; | 
 |  | 
 |   /* If -z nocopyreloc was given, we won't generate them either.  */ | 
 |   if (info->nocopyreloc || SYMBOL_NO_COPYRELOC (info, eh)) | 
 |     { | 
 |       h->non_got_ref = 0; | 
 |       return true; | 
 |     } | 
 |  | 
 |   htab = elf_x86_hash_table (info, bed->target_id); | 
 |   if (htab == NULL) | 
 |     return false; | 
 |  | 
 |   /* If there aren't any dynamic relocs in read-only sections nor | 
 |      R_386_GOTOFF relocation, then we can keep the dynamic relocs and | 
 |      avoid the copy reloc.  This doesn't work on VxWorks, where we can | 
 |      not have dynamic relocations (other than copy and jump slot | 
 |      relocations) in an executable.  */ | 
 |   if (ELIMINATE_COPY_RELOCS | 
 |       && (bed->target_id == X86_64_ELF_DATA | 
 | 	  || (!eh->gotoff_ref | 
 | 	      && htab->elf.target_os != is_vxworks))) | 
 |     { | 
 |       /* If we don't find any dynamic relocs in read-only sections, | 
 | 	 then we'll be keeping the dynamic relocs and avoiding the copy | 
 | 	 reloc.  */ | 
 |       if (!_bfd_elf_readonly_dynrelocs (h)) | 
 | 	{ | 
 | 	  h->non_got_ref = 0; | 
 | 	  return true; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* We must allocate the symbol in our .dynbss section, which will | 
 |      become part of the .bss section of the executable.  There will be | 
 |      an entry for this symbol in the .dynsym section.  The dynamic | 
 |      object will contain position independent code, so all references | 
 |      from the dynamic object to this symbol will go through the global | 
 |      offset table.  The dynamic linker will use the .dynsym entry to | 
 |      determine the address it must put in the global offset table, so | 
 |      both the dynamic object and the regular object will refer to the | 
 |      same memory location for the variable.  */ | 
 |  | 
 |   /* We must generate a R_386_COPY/R_X86_64_COPY reloc to tell the | 
 |      dynamic linker to copy the initial value out of the dynamic object | 
 |      and into the runtime process image.  */ | 
 |   if ((h->root.u.def.section->flags & SEC_READONLY) != 0) | 
 |     { | 
 |       s = htab->elf.sdynrelro; | 
 |       srel = htab->elf.sreldynrelro; | 
 |     } | 
 |   else | 
 |     { | 
 |       s = htab->elf.sdynbss; | 
 |       srel = htab->elf.srelbss; | 
 |     } | 
 |   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) | 
 |     { | 
 |       if (eh->def_protected && bfd_link_executable (info)) | 
 | 	for (p = h->dyn_relocs; p != NULL; p = p->next) | 
 | 	  { | 
 | 	    /* Disallow copy relocation against non-copyable protected | 
 | 	       symbol.  */ | 
 | 	    s = p->sec->output_section; | 
 | 	    if (s != NULL && (s->flags & SEC_READONLY) != 0) | 
 | 	      { | 
 | 		info->callbacks->einfo | 
 | 		  /* xgettext:c-format */ | 
 | 		  (_("%F%P: %pB: copy relocation against non-copyable " | 
 | 		     "protected symbol `%s' in %pB\n"), | 
 | 		   p->sec->owner, h->root.root.string, | 
 | 		   h->root.u.def.section->owner); | 
 | 		return false; | 
 | 	      } | 
 | 	  } | 
 |  | 
 |       srel->size += htab->sizeof_reloc; | 
 |       h->needs_copy = 1; | 
 |     } | 
 |  | 
 |   return _bfd_elf_adjust_dynamic_copy (info, h, s); | 
 | } | 
 |  | 
 | void | 
 | _bfd_x86_elf_hide_symbol (struct bfd_link_info *info, | 
 | 			  struct elf_link_hash_entry *h, | 
 | 			  bool force_local) | 
 | { | 
 |   if (h->root.type == bfd_link_hash_undefweak | 
 |       && info->nointerp | 
 |       && bfd_link_pie (info)) | 
 |     { | 
 |       /* When there is no dynamic interpreter in PIE, make the undefined | 
 | 	 weak symbol dynamic so that PC relative branch to the undefined | 
 | 	 weak symbol will land to address 0.  */ | 
 |       struct elf_x86_link_hash_entry *eh = elf_x86_hash_entry (h); | 
 |       if (h->plt.refcount > 0 | 
 | 	  || eh->plt_got.refcount > 0) | 
 | 	return; | 
 |     } | 
 |  | 
 |   _bfd_elf_link_hash_hide_symbol (info, h, force_local); | 
 | } | 
 |  | 
 | /* Return TRUE if a symbol is referenced locally.  It is similar to | 
 |    SYMBOL_REFERENCES_LOCAL, but it also checks version script.  It | 
 |    works in check_relocs.  */ | 
 |  | 
 | bool | 
 | _bfd_x86_elf_link_symbol_references_local (struct bfd_link_info *info, | 
 | 					   struct elf_link_hash_entry *h) | 
 | { | 
 |   struct elf_x86_link_hash_entry *eh = elf_x86_hash_entry (h); | 
 |   struct elf_x86_link_hash_table *htab | 
 |     = (struct elf_x86_link_hash_table *) info->hash; | 
 |  | 
 |   if (eh->local_ref > 1) | 
 |     return true; | 
 |  | 
 |   if (eh->local_ref == 1) | 
 |     return false; | 
 |  | 
 |   /* Unversioned symbols defined in regular objects can be forced local | 
 |      by linker version script.  A weak undefined symbol is forced local | 
 |      if | 
 |      1. It has non-default visibility.  Or | 
 |      2. When building executable, there is no dynamic linker.  Or | 
 |      3. or "-z nodynamic-undefined-weak" is used. | 
 |    */ | 
 |   if (_bfd_elf_symbol_refs_local_p (h, info, 1) | 
 |       || (h->root.type == bfd_link_hash_undefweak | 
 | 	  && (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | 
 | 	      || (bfd_link_executable (info) | 
 | 		  && htab->interp == NULL) | 
 | 	      || info->dynamic_undefined_weak == 0)) | 
 |       || ((h->def_regular || ELF_COMMON_DEF_P (h)) | 
 | 	  && info->version_info != NULL | 
 | 	  && _bfd_elf_link_hide_sym_by_version (info, h))) | 
 |     { | 
 |       eh->local_ref = 2; | 
 |       return true; | 
 |     } | 
 |  | 
 |   eh->local_ref = 1; | 
 |   return false; | 
 | } | 
 |  | 
 | /* Return the section that should be marked against GC for a given | 
 |    relocation.	*/ | 
 |  | 
 | asection * | 
 | _bfd_x86_elf_gc_mark_hook (asection *sec, | 
 | 			   struct bfd_link_info *info, | 
 | 			   Elf_Internal_Rela *rel, | 
 | 			   struct elf_link_hash_entry *h, | 
 | 			   Elf_Internal_Sym *sym) | 
 | { | 
 |   /* Compiler should optimize this out.  */ | 
 |   if (((unsigned int) R_X86_64_GNU_VTINHERIT | 
 |        != (unsigned int) R_386_GNU_VTINHERIT) | 
 |       || ((unsigned int) R_X86_64_GNU_VTENTRY | 
 | 	  != (unsigned int) R_386_GNU_VTENTRY)) | 
 |     abort (); | 
 |  | 
 |   if (h != NULL) | 
 |     switch (ELF32_R_TYPE (rel->r_info)) | 
 |       { | 
 |       case R_X86_64_GNU_VTINHERIT: | 
 |       case R_X86_64_GNU_VTENTRY: | 
 | 	return NULL; | 
 |       } | 
 |  | 
 |   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); | 
 | } | 
 |  | 
 | static bfd_vma | 
 | elf_i386_get_plt_got_vma (struct elf_x86_plt *plt_p ATTRIBUTE_UNUSED, | 
 | 			  bfd_vma off, | 
 | 			  bfd_vma offset ATTRIBUTE_UNUSED, | 
 | 			  bfd_vma got_addr) | 
 | { | 
 |   return got_addr + off; | 
 | } | 
 |  | 
 | static bfd_vma | 
 | elf_x86_64_get_plt_got_vma (struct elf_x86_plt *plt_p, | 
 | 			    bfd_vma off, | 
 | 			    bfd_vma offset, | 
 | 			    bfd_vma got_addr ATTRIBUTE_UNUSED) | 
 | { | 
 |   return plt_p->sec->vma + offset + off + plt_p->plt_got_insn_size; | 
 | } | 
 |  | 
 | static bool | 
 | elf_i386_valid_plt_reloc_p (unsigned int type) | 
 | { | 
 |   return (type == R_386_JUMP_SLOT | 
 | 	  || type == R_386_GLOB_DAT | 
 | 	  || type == R_386_IRELATIVE); | 
 | } | 
 |  | 
 | static bool | 
 | elf_x86_64_valid_plt_reloc_p (unsigned int type) | 
 | { | 
 |   return (type == R_X86_64_JUMP_SLOT | 
 | 	  || type == R_X86_64_GLOB_DAT | 
 | 	  || type == R_X86_64_IRELATIVE); | 
 | } | 
 |  | 
 | long | 
 | _bfd_x86_elf_get_synthetic_symtab (bfd *abfd, | 
 | 				   long count, | 
 | 				   long relsize, | 
 | 				   bfd_vma got_addr, | 
 | 				   struct elf_x86_plt plts[], | 
 | 				   asymbol **dynsyms, | 
 | 				   asymbol **ret) | 
 | { | 
 |   long size, i, n, len; | 
 |   int j; | 
 |   unsigned int plt_got_offset, plt_entry_size; | 
 |   asymbol *s; | 
 |   bfd_byte *plt_contents; | 
 |   long dynrelcount; | 
 |   arelent **dynrelbuf, *p; | 
 |   char *names; | 
 |   const struct elf_backend_data *bed; | 
 |   bfd_vma (*get_plt_got_vma) (struct elf_x86_plt *, bfd_vma, bfd_vma, | 
 | 			      bfd_vma); | 
 |   bool (*valid_plt_reloc_p) (unsigned int); | 
 |   unsigned int jump_slot_reloc; | 
 |  | 
 |   dynrelbuf = NULL; | 
 |   if (count == 0) | 
 |     goto bad_return; | 
 |  | 
 |   dynrelbuf = (arelent **) bfd_malloc (relsize); | 
 |   if (dynrelbuf == NULL) | 
 |     goto bad_return; | 
 |  | 
 |   dynrelcount = bfd_canonicalize_dynamic_reloc (abfd, dynrelbuf, | 
 | 						dynsyms); | 
 |   if (dynrelcount <= 0) | 
 |     goto bad_return; | 
 |  | 
 |   /* Sort the relocs by address.  */ | 
 |   qsort (dynrelbuf, dynrelcount, sizeof (arelent *), | 
 | 	 _bfd_x86_elf_compare_relocs); | 
 |  | 
 |   size = count * sizeof (asymbol); | 
 |  | 
 |   /* Allocate space for @plt suffixes.  */ | 
 |   n = 0; | 
 |   for (i = 0; i < dynrelcount; i++) | 
 |     { | 
 |       p = dynrelbuf[i]; | 
 |       size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt"); | 
 |       if (p->addend != 0) | 
 | 	size += sizeof ("+0x") - 1 + 8 + 8 * ABI_64_P (abfd); | 
 |     } | 
 |  | 
 |   s = *ret = (asymbol *) bfd_zmalloc (size); | 
 |   if (s == NULL) | 
 |     goto bad_return; | 
 |  | 
 |   bed = get_elf_backend_data (abfd); | 
 |  | 
 |   if (bed->target_id == X86_64_ELF_DATA) | 
 |     { | 
 |       get_plt_got_vma = elf_x86_64_get_plt_got_vma; | 
 |       valid_plt_reloc_p = elf_x86_64_valid_plt_reloc_p; | 
 |       jump_slot_reloc = R_X86_64_JUMP_SLOT; | 
 |     } | 
 |   else | 
 |     { | 
 |       get_plt_got_vma = elf_i386_get_plt_got_vma; | 
 |       valid_plt_reloc_p = elf_i386_valid_plt_reloc_p; | 
 |       jump_slot_reloc = R_386_JUMP_SLOT; | 
 |       if (got_addr) | 
 | 	{ | 
 | 	  /* Check .got.plt and then .got to get the _GLOBAL_OFFSET_TABLE_ | 
 | 	     address.  */ | 
 | 	  asection *sec = bfd_get_section_by_name (abfd, ".got.plt"); | 
 | 	  if (sec != NULL) | 
 | 	    got_addr = sec->vma; | 
 | 	  else | 
 | 	    { | 
 | 	      sec = bfd_get_section_by_name (abfd, ".got"); | 
 | 	      if (sec != NULL) | 
 | 		got_addr = sec->vma; | 
 | 	    } | 
 |  | 
 | 	  if (got_addr == (bfd_vma) -1) | 
 | 	    goto bad_return; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Check for each PLT section.  */ | 
 |   names = (char *) (s + count); | 
 |   size = 0; | 
 |   n = 0; | 
 |   for (j = 0; plts[j].name != NULL; j++) | 
 |     if ((plt_contents = plts[j].contents) != NULL) | 
 |       { | 
 | 	long k; | 
 | 	bfd_vma offset; | 
 | 	asection *plt; | 
 | 	struct elf_x86_plt *plt_p = &plts[j]; | 
 |  | 
 | 	plt_got_offset = plt_p->plt_got_offset; | 
 | 	plt_entry_size = plt_p->plt_entry_size; | 
 |  | 
 | 	plt = plt_p->sec; | 
 |  | 
 | 	if ((plt_p->type & plt_lazy)) | 
 | 	  { | 
 | 	    /* Skip PLT0 in lazy PLT.  */ | 
 | 	    k = 1; | 
 | 	    offset = plt_entry_size; | 
 | 	  } | 
 | 	else | 
 | 	  { | 
 | 	    k = 0; | 
 | 	    offset = 0; | 
 | 	  } | 
 |  | 
 | 	/* Check each PLT entry against dynamic relocations.  */ | 
 | 	for (; k < plt_p->count; k++) | 
 | 	  { | 
 | 	    int off; | 
 | 	    bfd_vma got_vma; | 
 | 	    long min, max, mid; | 
 |  | 
 | 	    /* Get the GOT offset for i386 or the PC-relative offset | 
 | 	       for x86-64, a signed 32-bit integer.  */ | 
 | 	    off = H_GET_32 (abfd, (plt_contents + offset | 
 | 				   + plt_got_offset)); | 
 | 	    got_vma = get_plt_got_vma (plt_p, off, offset, got_addr); | 
 |  | 
 | 	    /* Binary search.  */ | 
 | 	    p = dynrelbuf[0]; | 
 | 	    min = 0; | 
 | 	    max = dynrelcount; | 
 | 	    while ((min + 1) < max) | 
 | 	      { | 
 | 		arelent *r; | 
 |  | 
 | 		mid = (min + max) / 2; | 
 | 		r = dynrelbuf[mid]; | 
 | 		if (got_vma > r->address) | 
 | 		  min = mid; | 
 | 		else if (got_vma < r->address) | 
 | 		  max = mid; | 
 | 		else | 
 | 		  { | 
 | 		    p = r; | 
 | 		    break; | 
 | 		  } | 
 | 	      } | 
 |  | 
 | 	    /* Skip unknown relocation.  PR 17512: file: bc9d6cf5.  */ | 
 | 	    if (got_vma == p->address | 
 | 		&& p->howto != NULL | 
 | 		&& valid_plt_reloc_p (p->howto->type)) | 
 | 	      { | 
 | 		*s = **p->sym_ptr_ptr; | 
 | 		/* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL | 
 | 		   set.  Since we are defining a symbol, ensure one | 
 | 		   of them is set.  */ | 
 | 		if ((s->flags & BSF_LOCAL) == 0) | 
 | 		  s->flags |= BSF_GLOBAL; | 
 | 		s->flags |= BSF_SYNTHETIC; | 
 | 		/* This is no longer a section symbol.  */ | 
 | 		s->flags &= ~BSF_SECTION_SYM; | 
 | 		s->section = plt; | 
 | 		s->the_bfd = plt->owner; | 
 | 		s->value = offset; | 
 | 		s->udata.p = NULL; | 
 | 		s->name = names; | 
 | 		len = strlen ((*p->sym_ptr_ptr)->name); | 
 | 		memcpy (names, (*p->sym_ptr_ptr)->name, len); | 
 | 		names += len; | 
 | 		/* There may be JUMP_SLOT and IRELATIVE relocations. | 
 | 		   JUMP_SLOT r_addend should be ignored.  */ | 
 | 		if (p->addend != 0 && p->howto->type != jump_slot_reloc) | 
 | 		  { | 
 | 		    char buf[30], *a; | 
 |  | 
 | 		    memcpy (names, "+0x", sizeof ("+0x") - 1); | 
 | 		    names += sizeof ("+0x") - 1; | 
 | 		    bfd_sprintf_vma (abfd, buf, p->addend); | 
 | 		    for (a = buf; *a == '0'; ++a) | 
 | 		      ; | 
 | 		    size = strlen (a); | 
 | 		    memcpy (names, a, size); | 
 | 		    names += size; | 
 | 		  } | 
 | 		memcpy (names, "@plt", sizeof ("@plt")); | 
 | 		names += sizeof ("@plt"); | 
 | 		n++; | 
 | 		s++; | 
 | 		/* There should be only one entry in PLT for a given | 
 | 		   symbol.  Set howto to NULL after processing a PLT | 
 | 		   entry to guard against corrupted PLT.  */ | 
 | 		p->howto = NULL; | 
 | 	      } | 
 | 	    offset += plt_entry_size; | 
 | 	  } | 
 |       } | 
 |  | 
 |   /* PLT entries with R_386_TLS_DESC relocations are skipped.  */ | 
 |   if (n == 0) | 
 |     { | 
 |     bad_return: | 
 |       count = -1; | 
 |     } | 
 |   else | 
 |     count = n; | 
 |  | 
 |   for (j = 0; plts[j].name != NULL; j++) | 
 |     _bfd_elf_munmap_section_contents (plts[j].sec, plts[j].contents); | 
 |  | 
 |   free (dynrelbuf); | 
 |  | 
 |   return count; | 
 | } | 
 |  | 
 | /* Parse x86 GNU properties.  */ | 
 |  | 
 | enum elf_property_kind | 
 | _bfd_x86_elf_parse_gnu_properties (bfd *abfd, unsigned int type, | 
 | 				   bfd_byte *ptr, unsigned int datasz) | 
 | { | 
 |   elf_property *prop; | 
 |  | 
 |   if (type == GNU_PROPERTY_X86_COMPAT_ISA_1_USED | 
 |       || type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED | 
 |       || (type >= GNU_PROPERTY_X86_UINT32_AND_LO | 
 | 	  && type <= GNU_PROPERTY_X86_UINT32_AND_HI) | 
 |       || (type >= GNU_PROPERTY_X86_UINT32_OR_LO | 
 | 	  && type <= GNU_PROPERTY_X86_UINT32_OR_HI) | 
 |       || (type >= GNU_PROPERTY_X86_UINT32_OR_AND_LO | 
 | 	  && type <= GNU_PROPERTY_X86_UINT32_OR_AND_HI)) | 
 |     { | 
 |       if (datasz != 4) | 
 | 	{ | 
 | 	  _bfd_error_handler | 
 | 	    (_("error: %pB: <corrupt x86 property (0x%x) size: 0x%x>"), | 
 | 	     abfd, type, datasz); | 
 | 	  return property_corrupt; | 
 | 	} | 
 |       prop = _bfd_elf_get_property (abfd, type, datasz); | 
 |       prop->u.number |= bfd_h_get_32 (abfd, ptr); | 
 |       prop->pr_kind = property_number; | 
 |       return property_number; | 
 |     } | 
 |  | 
 |   return property_ignored; | 
 | } | 
 |  | 
 | /* Merge x86 GNU property BPROP with APROP.  If APROP isn't NULL, | 
 |    return TRUE if APROP is updated.  Otherwise, return TRUE if BPROP | 
 |    should be merged with ABFD.  */ | 
 |  | 
 | bool | 
 | _bfd_x86_elf_merge_gnu_properties (struct bfd_link_info *info, | 
 | 				   bfd *abfd ATTRIBUTE_UNUSED, | 
 | 				   bfd *bbfd ATTRIBUTE_UNUSED, | 
 | 				   elf_property *aprop, | 
 | 				   elf_property *bprop) | 
 | { | 
 |   unsigned int number, features; | 
 |   bool updated = false; | 
 |   const struct elf_backend_data *bed; | 
 |   struct elf_x86_link_hash_table *htab; | 
 |   unsigned int pr_type = aprop != NULL ? aprop->pr_type : bprop->pr_type; | 
 |  | 
 |   if (pr_type == GNU_PROPERTY_X86_COMPAT_ISA_1_USED | 
 |       || (pr_type >= GNU_PROPERTY_X86_UINT32_OR_AND_LO | 
 | 	  && pr_type <= GNU_PROPERTY_X86_UINT32_OR_AND_HI)) | 
 |     { | 
 |       if (aprop == NULL || bprop == NULL) | 
 | 	{ | 
 | 	  /* Only one of APROP and BPROP can be NULL.  */ | 
 | 	  if (aprop != NULL) | 
 | 	    { | 
 | 	      /* Remove this property since the other input file doesn't | 
 | 		 have it.  */ | 
 | 	      aprop->pr_kind = property_remove; | 
 | 	      updated = true; | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  number = aprop->u.number; | 
 | 	  aprop->u.number = number | bprop->u.number; | 
 | 	  updated = number != (unsigned int) aprop->u.number; | 
 | 	} | 
 |       return updated; | 
 |     } | 
 |   else if (pr_type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED | 
 | 	   || (pr_type >= GNU_PROPERTY_X86_UINT32_OR_LO | 
 | 	       && pr_type <= GNU_PROPERTY_X86_UINT32_OR_HI)) | 
 |     { | 
 |       features = 0; | 
 |       if (pr_type == GNU_PROPERTY_X86_ISA_1_NEEDED) | 
 | 	{ | 
 | 	  bed = get_elf_backend_data (info->output_bfd); | 
 | 	  htab = elf_x86_hash_table (info, bed->target_id); | 
 | 	  switch (htab->params->isa_level) | 
 | 	    { | 
 | 	    case 0: | 
 | 	      break; | 
 | 	    case 2: | 
 | 	      features = GNU_PROPERTY_X86_ISA_1_V2; | 
 | 	      break; | 
 | 	    case 3: | 
 | 	      features = GNU_PROPERTY_X86_ISA_1_V3; | 
 | 	      break; | 
 | 	    case 4: | 
 | 	      features = GNU_PROPERTY_X86_ISA_1_V4; | 
 | 	      break; | 
 | 	    default: | 
 | 	      abort (); | 
 | 	    } | 
 | 	} | 
 |       if (aprop != NULL && bprop != NULL) | 
 | 	{ | 
 | 	  number = aprop->u.number; | 
 | 	  aprop->u.number = number | bprop->u.number | features; | 
 | 	  /* Remove the property if all bits are empty.  */ | 
 | 	  if (aprop->u.number == 0) | 
 | 	    { | 
 | 	      aprop->pr_kind = property_remove; | 
 | 	      updated = true; | 
 | 	    } | 
 | 	  else | 
 | 	    updated = number != (unsigned int) aprop->u.number; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  /* Only one of APROP and BPROP can be NULL.  */ | 
 | 	  if (aprop != NULL) | 
 | 	    { | 
 | 	      aprop->u.number |= features; | 
 | 	      if (aprop->u.number == 0) | 
 | 		{ | 
 | 		  /* Remove APROP if all bits are empty.  */ | 
 | 		  aprop->pr_kind = property_remove; | 
 | 		  updated = true; | 
 | 		} | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      /* Return TRUE if APROP is NULL and all bits of BPROP | 
 | 		 aren't empty to indicate that BPROP should be added | 
 | 		 to ABFD.  */ | 
 | 	      bprop->u.number |= features; | 
 | 	      updated = bprop->u.number != 0; | 
 | 	    } | 
 | 	} | 
 |       return updated; | 
 |     } | 
 |   else if (pr_type >= GNU_PROPERTY_X86_UINT32_AND_LO | 
 | 	   && pr_type <= GNU_PROPERTY_X86_UINT32_AND_HI) | 
 |     { | 
 |       /* Only one of APROP and BPROP can be NULL: | 
 | 	 1. APROP & BPROP when both APROP and BPROP aren't NULL. | 
 | 	 2. If APROP is NULL, remove x86 feature. | 
 | 	 3. Otherwise, do nothing. | 
 |        */ | 
 |       bed = get_elf_backend_data (info->output_bfd); | 
 |       htab = elf_x86_hash_table (info, bed->target_id); | 
 |       if (!htab) | 
 | 	abort (); | 
 |       if (aprop != NULL && bprop != NULL) | 
 | 	{ | 
 | 	  number = aprop->u.number; | 
 | 	  aprop->u.number = number & bprop->u.number; | 
 | 	  if (pr_type == GNU_PROPERTY_X86_FEATURE_1_AND) | 
 | 	    { | 
 | 	      features = 0; | 
 | 	      if (htab->params->ibt) | 
 | 		features = GNU_PROPERTY_X86_FEATURE_1_IBT; | 
 | 	      if (htab->params->shstk) | 
 | 		features |= GNU_PROPERTY_X86_FEATURE_1_SHSTK; | 
 | 	      if (htab->params->lam_u48) | 
 | 		features |= (GNU_PROPERTY_X86_FEATURE_1_LAM_U48 | 
 | 			     | GNU_PROPERTY_X86_FEATURE_1_LAM_U57); | 
 | 	      else if (htab->params->lam_u57) | 
 | 		features |= GNU_PROPERTY_X86_FEATURE_1_LAM_U57; | 
 | 	      /* Add GNU_PROPERTY_X86_FEATURE_1_IBT, | 
 | 		 GNU_PROPERTY_X86_FEATURE_1_SHSTK, | 
 | 		 GNU_PROPERTY_X86_FEATURE_1_LAM_U48 and | 
 | 		 GNU_PROPERTY_X86_FEATURE_1_LAM_U57.  */ | 
 | 	      aprop->u.number |= features; | 
 | 	    } | 
 | 	  updated = number != (unsigned int) aprop->u.number; | 
 | 	  /* Remove the property if all feature bits are cleared.  */ | 
 | 	  if (aprop->u.number == 0) | 
 | 	    aprop->pr_kind = property_remove; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  /* There should be no AND properties since some input doesn't | 
 | 	     have them.  Set IBT and SHSTK properties for -z ibt and -z | 
 | 	     shstk if needed.  */ | 
 | 	  features = 0; | 
 | 	  if (pr_type == GNU_PROPERTY_X86_FEATURE_1_AND) | 
 | 	    { | 
 | 	      if (htab->params->ibt) | 
 | 		features = GNU_PROPERTY_X86_FEATURE_1_IBT; | 
 | 	      if (htab->params->shstk) | 
 | 		features |= GNU_PROPERTY_X86_FEATURE_1_SHSTK; | 
 | 	      if (htab->params->lam_u48) | 
 | 		features |= (GNU_PROPERTY_X86_FEATURE_1_LAM_U48 | 
 | 			     | GNU_PROPERTY_X86_FEATURE_1_LAM_U57); | 
 | 	      else if (htab->params->lam_u57) | 
 | 		features |= GNU_PROPERTY_X86_FEATURE_1_LAM_U57; | 
 | 	    } | 
 | 	  if (features) | 
 | 	    { | 
 | 	      if (aprop != NULL) | 
 | 		{ | 
 | 		  updated = features != (unsigned int) aprop->u.number; | 
 | 		  aprop->u.number = features; | 
 | 		} | 
 | 	      else | 
 | 		{ | 
 | 		  updated = true; | 
 | 		  bprop->u.number = features; | 
 | 		} | 
 | 	    } | 
 | 	  else if (aprop != NULL) | 
 | 	    { | 
 | 	      aprop->pr_kind = property_remove; | 
 | 	      updated = true; | 
 | 	    } | 
 | 	} | 
 |       return updated; | 
 |     } | 
 |   else | 
 |     { | 
 |       /* Never should happen.  */ | 
 |       abort (); | 
 |     } | 
 |  | 
 |   return updated; | 
 | } | 
 |  | 
 | /* Set up x86 GNU properties.  Return the first relocatable ELF input | 
 |    with GNU properties if found.  Otherwise, return NULL.  */ | 
 |  | 
 | bfd * | 
 | _bfd_x86_elf_link_setup_gnu_properties | 
 |   (struct bfd_link_info *info, struct elf_x86_init_table *init_table) | 
 | { | 
 |   bool normal_target; | 
 |   bool lazy_plt; | 
 |   asection *sec, *pltsec; | 
 |   bfd *dynobj; | 
 |   bool use_ibt_plt; | 
 |   unsigned int plt_alignment, features, isa_level; | 
 |   struct elf_x86_link_hash_table *htab; | 
 |   bfd *pbfd; | 
 |   bfd *ebfd = NULL; | 
 |   elf_property *prop; | 
 |   const struct elf_backend_data *bed; | 
 |   unsigned int class_align = ABI_64_P (info->output_bfd) ? 3 : 2; | 
 |   unsigned int got_align; | 
 |  | 
 |   /* Find a normal input file with GNU property note.  */ | 
 |   for (pbfd = info->input_bfds; | 
 |        pbfd != NULL; | 
 |        pbfd = pbfd->link.next) | 
 |     if (bfd_get_flavour (pbfd) == bfd_target_elf_flavour | 
 | 	&& bfd_count_sections (pbfd) != 0) | 
 |       { | 
 | 	ebfd = pbfd; | 
 |  | 
 | 	if (elf_properties (pbfd) != NULL) | 
 | 	  break; | 
 |       } | 
 |  | 
 |   bed = get_elf_backend_data (info->output_bfd); | 
 |  | 
 |   htab = elf_x86_hash_table (info, bed->target_id); | 
 |   if (htab == NULL) | 
 |     return pbfd; | 
 |  | 
 |   features = 0; | 
 |   if (htab->params->ibt) | 
 |     { | 
 |       features = GNU_PROPERTY_X86_FEATURE_1_IBT; | 
 |       htab->params->cet_report &= ~prop_report_ibt; | 
 |     } | 
 |   if (htab->params->shstk) | 
 |     { | 
 |       features |= GNU_PROPERTY_X86_FEATURE_1_SHSTK; | 
 |       htab->params->cet_report &= ~prop_report_shstk; | 
 |     } | 
 |   if (!(htab->params->cet_report & (prop_report_ibt | prop_report_shstk))) | 
 |     htab->params->cet_report = prop_report_none; | 
 |   if (htab->params->lam_u48) | 
 |     { | 
 |       features |= (GNU_PROPERTY_X86_FEATURE_1_LAM_U48 | 
 | 		   | GNU_PROPERTY_X86_FEATURE_1_LAM_U57); | 
 |       htab->params->lam_u48_report = prop_report_none; | 
 |       htab->params->lam_u57_report = prop_report_none; | 
 |     } | 
 |   else if (htab->params->lam_u57) | 
 |     { | 
 |       features |= GNU_PROPERTY_X86_FEATURE_1_LAM_U57; | 
 |       htab->params->lam_u57_report = prop_report_none; | 
 |     } | 
 |  | 
 |   switch (htab->params->isa_level) | 
 |     { | 
 |     case 0: | 
 |       isa_level = 0; | 
 |       break; | 
 |     case 1: | 
 |       isa_level = GNU_PROPERTY_X86_ISA_1_BASELINE; | 
 |       break; | 
 |     case 2: | 
 |       isa_level = GNU_PROPERTY_X86_ISA_1_V2; | 
 |       break; | 
 |     case 3: | 
 |       isa_level = GNU_PROPERTY_X86_ISA_1_V3; | 
 |       break; | 
 |     case 4: | 
 |       isa_level = GNU_PROPERTY_X86_ISA_1_V4; | 
 |       break; | 
 |     default: | 
 |       abort (); | 
 |     } | 
 |  | 
 |   if (ebfd != NULL) | 
 |     { | 
 |       prop = NULL; | 
 |       if (features) | 
 | 	{ | 
 | 	  /* If features is set, add GNU_PROPERTY_X86_FEATURE_1_IBT, | 
 | 	     GNU_PROPERTY_X86_FEATURE_1_SHSTK, | 
 | 	     GNU_PROPERTY_X86_FEATURE_1_LAM_U48 and | 
 | 	     GNU_PROPERTY_X86_FEATURE_1_LAM_U57.  */ | 
 | 	  prop = _bfd_elf_get_property (ebfd, | 
 | 					GNU_PROPERTY_X86_FEATURE_1_AND, | 
 | 					4); | 
 | 	  prop->u.number |= features; | 
 | 	  prop->pr_kind = property_number; | 
 | 	} | 
 |  | 
 |       if (isa_level) | 
 | 	{ | 
 | 	  /* If ISA level is set, add GNU_PROPERTY_X86_ISA_1_NEEDED.  */ | 
 | 	  prop = _bfd_elf_get_property (ebfd, | 
 | 					GNU_PROPERTY_X86_ISA_1_NEEDED, | 
 | 					4); | 
 | 	  prop->u.number |= isa_level; | 
 | 	  prop->pr_kind = property_number; | 
 | 	} | 
 |  | 
 |       /* Create the GNU property note section if needed.  */ | 
 |       if (prop != NULL && pbfd == NULL) | 
 | 	{ | 
 | 	  sec = bfd_make_section_with_flags (ebfd, | 
 | 					     NOTE_GNU_PROPERTY_SECTION_NAME, | 
 | 					     (SEC_ALLOC | 
 | 					      | SEC_LOAD | 
 | 					      | SEC_IN_MEMORY | 
 | 					      | SEC_READONLY | 
 | 					      | SEC_HAS_CONTENTS | 
 | 					      | SEC_DATA)); | 
 | 	  if (sec == NULL) | 
 | 	    info->callbacks->einfo (_("%F%P: failed to create GNU property section\n")); | 
 |  | 
 | 	  if (!bfd_set_section_alignment (sec, class_align)) | 
 | 	    { | 
 | 	    error_alignment: | 
 | 	      info->callbacks->einfo (_("%F%pA: failed to align section\n"), | 
 | 				      sec); | 
 | 	    } | 
 |  | 
 | 	  elf_section_type (sec) = SHT_NOTE; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (htab->params->cet_report | 
 |       || htab->params->lam_u48_report | 
 |       || htab->params->lam_u57_report) | 
 |     { | 
 |       /* Report missing IBT, SHSTK and LAM properties.  */ | 
 |       bfd *abfd; | 
 |       const char *warning_msg = _("%P: %pB: warning: missing %s\n"); | 
 |       const char *error_msg = _("%X%P: %pB: error: missing %s\n"); | 
 |       const char *cet_msg = NULL; | 
 |       const char *lam_u48_msg = NULL; | 
 |       const char *lam_u57_msg = NULL; | 
 |       const char *missing; | 
 |       elf_property_list *p; | 
 |       bool missing_ibt, missing_shstk; | 
 |       bool missing_lam_u48, missing_lam_u57; | 
 |       bool check_ibt | 
 | 	= (htab->params->cet_report | 
 | 	   && (htab->params->cet_report & prop_report_ibt)); | 
 |       bool check_shstk | 
 | 	= (htab->params->cet_report | 
 | 	   && (htab->params->cet_report & prop_report_shstk)); | 
 |  | 
 |       if (htab->params->cet_report) | 
 | 	{ | 
 | 	  if ((htab->params->cet_report & prop_report_warning)) | 
 | 	    cet_msg = warning_msg; | 
 | 	  else | 
 | 	    cet_msg = error_msg; | 
 | 	} | 
 |       if (htab->params->lam_u48_report) | 
 | 	{ | 
 | 	  if ((htab->params->lam_u48_report & prop_report_warning)) | 
 | 	    lam_u48_msg = warning_msg; | 
 | 	  else | 
 | 	    lam_u48_msg = error_msg; | 
 | 	} | 
 |       if (htab->params->lam_u57_report) | 
 | 	{ | 
 | 	  if ((htab->params->lam_u57_report & prop_report_warning)) | 
 | 	    lam_u57_msg = warning_msg; | 
 | 	  else | 
 | 	    lam_u57_msg = error_msg; | 
 | 	} | 
 |  | 
 |       for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) | 
 | 	if (!(abfd->flags & (DYNAMIC | BFD_PLUGIN | BFD_LINKER_CREATED)) | 
 | 	    && bfd_get_flavour (abfd) == bfd_target_elf_flavour) | 
 | 	  { | 
 | 	    for (p = elf_properties (abfd); p; p = p->next) | 
 | 	      if (p->property.pr_type == GNU_PROPERTY_X86_FEATURE_1_AND) | 
 | 		break; | 
 |  | 
 | 	    missing_ibt = check_ibt; | 
 | 	    missing_shstk = check_shstk; | 
 | 	    missing_lam_u48 = !!lam_u48_msg; | 
 | 	    missing_lam_u57 = !!lam_u57_msg; | 
 | 	    if (p) | 
 | 	      { | 
 | 		missing_ibt &= !(p->property.u.number | 
 | 				 & GNU_PROPERTY_X86_FEATURE_1_IBT); | 
 | 		missing_shstk &= !(p->property.u.number | 
 | 				   & GNU_PROPERTY_X86_FEATURE_1_SHSTK); | 
 | 		missing_lam_u48 &= !(p->property.u.number | 
 | 				     & GNU_PROPERTY_X86_FEATURE_1_LAM_U48); | 
 | 		missing_lam_u57 &= !(p->property.u.number | 
 | 				     & GNU_PROPERTY_X86_FEATURE_1_LAM_U57); | 
 | 	      } | 
 | 	    if (missing_ibt || missing_shstk) | 
 | 	      { | 
 | 		if (missing_ibt && missing_shstk) | 
 | 		  missing = _("IBT and SHSTK properties"); | 
 | 		else if (missing_ibt) | 
 | 		  missing = _("IBT property"); | 
 | 		else | 
 | 		  missing = _("SHSTK property"); | 
 | 		info->callbacks->einfo (cet_msg, abfd, missing); | 
 | 	      } | 
 | 	    if (missing_lam_u48) | 
 | 	      { | 
 | 		missing = _("LAM_U48 property"); | 
 | 		info->callbacks->einfo (lam_u48_msg, abfd, missing); | 
 | 	      } | 
 | 	    if (missing_lam_u57) | 
 | 	      { | 
 | 		missing = _("LAM_U57 property"); | 
 | 		info->callbacks->einfo (lam_u57_msg, abfd, missing); | 
 | 	      } | 
 | 	  } | 
 |     } | 
 |  | 
 |   pbfd = _bfd_elf_link_setup_gnu_properties (info); | 
 |  | 
 |   htab->r_info = init_table->r_info; | 
 |   htab->r_sym = init_table->r_sym; | 
 |  | 
 |   if (bfd_link_relocatable (info)) | 
 |     return pbfd; | 
 |  | 
 |   htab->plt0_pad_byte = init_table->plt0_pad_byte; | 
 |  | 
 |   use_ibt_plt = htab->params->ibtplt || htab->params->ibt; | 
 |   if (!use_ibt_plt && pbfd != NULL) | 
 |     { | 
 |       /* Check if GNU_PROPERTY_X86_FEATURE_1_IBT is on.  */ | 
 |       elf_property_list *p; | 
 |  | 
 |       /* The property list is sorted in order of type.  */ | 
 |       for (p = elf_properties (pbfd); p; p = p->next) | 
 | 	{ | 
 | 	  if (GNU_PROPERTY_X86_FEATURE_1_AND == p->property.pr_type) | 
 | 	    { | 
 | 	      use_ibt_plt = !!(p->property.u.number | 
 | 			       & GNU_PROPERTY_X86_FEATURE_1_IBT); | 
 | 	      break; | 
 | 	    } | 
 | 	  else if (GNU_PROPERTY_X86_FEATURE_1_AND < p->property.pr_type) | 
 | 	    break; | 
 | 	} | 
 |     } | 
 |  | 
 |   dynobj = htab->elf.dynobj; | 
 |  | 
 |   /* Set htab->elf.dynobj here so that there is no need to check and | 
 |      set it in check_relocs.  */ | 
 |   if (dynobj == NULL) | 
 |     { | 
 |       if (pbfd != NULL) | 
 | 	{ | 
 | 	  htab->elf.dynobj = pbfd; | 
 | 	  dynobj = pbfd; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  bfd *abfd; | 
 |  | 
 | 	  /* Find a normal input file to hold linker created | 
 | 	     sections.  */ | 
 | 	  for (abfd = info->input_bfds; | 
 | 	       abfd != NULL; | 
 | 	       abfd = abfd->link.next) | 
 | 	    if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | 
 | 		&& (abfd->flags | 
 | 		    & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0 | 
 | 		&& bed->relocs_compatible (abfd->xvec, | 
 | 					   info->output_bfd->xvec)) | 
 | 	      { | 
 | 		htab->elf.dynobj = abfd; | 
 | 		dynobj = abfd; | 
 | 		break; | 
 | 	      } | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Return if there are no normal input files.  */ | 
 |   if (dynobj == NULL) | 
 |     return pbfd; | 
 |  | 
 |   /* Even when lazy binding is disabled by "-z now", the PLT0 entry may | 
 |      still be used with LD_AUDIT or LD_PROFILE if PLT entry is used for | 
 |      canonical function address.  */ | 
 |   htab->plt.has_plt0 = 1; | 
 |   htab->plt.plt_indirect_branch_offset = 0; | 
 |   normal_target = htab->elf.target_os == is_normal; | 
 |  | 
 |   if (normal_target) | 
 |     { | 
 |       if (use_ibt_plt) | 
 | 	{ | 
 | 	  htab->lazy_plt = init_table->lazy_ibt_plt; | 
 | 	  htab->non_lazy_plt = init_table->non_lazy_ibt_plt; | 
 | 	  htab->plt.plt_indirect_branch_offset = 4; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  htab->lazy_plt = init_table->lazy_plt; | 
 | 	  htab->non_lazy_plt = init_table->non_lazy_plt; | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       htab->lazy_plt = init_table->lazy_plt; | 
 |       htab->non_lazy_plt = NULL; | 
 |     } | 
 |  | 
 |   pltsec = htab->elf.splt; | 
 |  | 
 |   if (htab->non_lazy_plt != NULL | 
 |       && (!htab->plt.has_plt0 || pltsec == NULL)) | 
 |     lazy_plt = false; | 
 |   else | 
 |     lazy_plt = true; | 
 |  | 
 |   if (normal_target) | 
 |     { | 
 |       if (use_ibt_plt) | 
 | 	{ | 
 | 	  if (lazy_plt) | 
 | 	    htab->sframe_plt = init_table->sframe_lazy_ibt_plt; | 
 | 	  else | 
 | 	    htab->sframe_plt = init_table->sframe_non_lazy_ibt_plt; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  if (lazy_plt) | 
 | 	    htab->sframe_plt = init_table->sframe_lazy_plt; | 
 | 	  else | 
 | 	    htab->sframe_plt = init_table->sframe_non_lazy_plt; | 
 | 	} | 
 |     } | 
 |   else | 
 |     htab->sframe_plt = NULL; | 
 |  | 
 |   /* If the non-lazy PLT is available, use it for all PLT entries if | 
 |      there are no PLT0 or no .plt section.  */ | 
 |   if (!lazy_plt) | 
 |     { | 
 |       if (bfd_link_pic (info)) | 
 | 	htab->plt.plt_entry = htab->non_lazy_plt->pic_plt_entry; | 
 |       else | 
 | 	htab->plt.plt_entry = htab->non_lazy_plt->plt_entry; | 
 |       htab->plt.plt_entry_size = htab->non_lazy_plt->plt_entry_size; | 
 |       htab->plt.plt_got_offset = htab->non_lazy_plt->plt_got_offset; | 
 |       htab->plt.plt_got_insn_size | 
 | 	= htab->non_lazy_plt->plt_got_insn_size; | 
 |       htab->plt.eh_frame_plt_size | 
 | 	= htab->non_lazy_plt->eh_frame_plt_size; | 
 |       htab->plt.eh_frame_plt = htab->non_lazy_plt->eh_frame_plt; | 
 |     } | 
 |   else | 
 |     { | 
 |       if (bfd_link_pic (info)) | 
 | 	{ | 
 | 	  htab->plt.plt0_entry = htab->lazy_plt->pic_plt0_entry; | 
 | 	  htab->plt.plt_entry = htab->lazy_plt->pic_plt_entry; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  htab->plt.plt0_entry = htab->lazy_plt->plt0_entry; | 
 | 	  htab->plt.plt_entry = htab->lazy_plt->plt_entry; | 
 | 	} | 
 |       htab->plt.plt_entry_size = htab->lazy_plt->plt_entry_size; | 
 |       htab->plt.plt_got_offset = htab->lazy_plt->plt_got_offset; | 
 |       htab->plt.plt_got_insn_size | 
 | 	= htab->lazy_plt->plt_got_insn_size; | 
 |       htab->plt.eh_frame_plt_size | 
 | 	= htab->lazy_plt->eh_frame_plt_size; | 
 |       htab->plt.eh_frame_plt = htab->lazy_plt->eh_frame_plt; | 
 |     } | 
 |  | 
 |   if (htab->elf.target_os == is_vxworks | 
 |       && !elf_vxworks_create_dynamic_sections (dynobj, info, | 
 | 					       &htab->srelplt2)) | 
 |     { | 
 |       info->callbacks->einfo (_("%F%P: failed to create VxWorks dynamic sections\n")); | 
 |       return pbfd; | 
 |     } | 
 |  | 
 |   /* Since create_dynamic_sections isn't always called, but GOT | 
 |      relocations need GOT relocations, create them here so that we | 
 |      don't need to do it in check_relocs.  */ | 
 |   if (htab->elf.sgot == NULL | 
 |       && !_bfd_elf_create_got_section (dynobj, info)) | 
 |     info->callbacks->einfo (_("%F%P: failed to create GOT sections\n")); | 
 |  | 
 |   got_align = (bed->target_id == X86_64_ELF_DATA) ? 3 : 2; | 
 |  | 
 |   /* Align .got and .got.plt sections to their entry size.  Do it here | 
 |      instead of in create_dynamic_sections so that they are always | 
 |      properly aligned even if create_dynamic_sections isn't called.  */ | 
 |   sec = htab->elf.sgot; | 
 |   if (!bfd_set_section_alignment (sec, got_align)) | 
 |     goto error_alignment; | 
 |  | 
 |   sec = htab->elf.sgotplt; | 
 |   if (!bfd_set_section_alignment (sec, got_align)) | 
 |     goto error_alignment; | 
 |  | 
 |   /* Create the ifunc sections here so that check_relocs can be | 
 |      simplified.  */ | 
 |   if (!_bfd_elf_create_ifunc_sections (dynobj, info)) | 
 |     info->callbacks->einfo (_("%F%P: failed to create ifunc sections\n")); | 
 |  | 
 |   plt_alignment = bfd_log2 (htab->plt.plt_entry_size); | 
 |  | 
 |   if (pltsec != NULL) | 
 |     { | 
 |       /* Whe creating executable, set the contents of the .interp | 
 | 	 section to the interpreter.  */ | 
 |       if (bfd_link_executable (info) && !info->nointerp) | 
 | 	{ | 
 | 	  asection *s = bfd_get_linker_section (dynobj, ".interp"); | 
 | 	  if (s == NULL) | 
 | 	    abort (); | 
 | 	  s->size = htab->dynamic_interpreter_size; | 
 | 	  s->contents = (unsigned char *) htab->dynamic_interpreter; | 
 | 	  htab->interp = s; | 
 | 	} | 
 |  | 
 |       if (normal_target) | 
 | 	{ | 
 | 	  flagword pltflags = (bed->dynamic_sec_flags | 
 | 			       | SEC_ALLOC | 
 | 			       | SEC_CODE | 
 | 			       | SEC_LOAD | 
 | 			       | SEC_READONLY); | 
 | 	  unsigned int non_lazy_plt_alignment | 
 | 	    = bfd_log2 (htab->non_lazy_plt->plt_entry_size); | 
 |  | 
 | 	  sec = pltsec; | 
 | 	  if (!bfd_set_section_alignment (sec, plt_alignment)) | 
 | 	    goto error_alignment; | 
 |  | 
 | 	  /* Create the GOT procedure linkage table.  */ | 
 | 	  sec = bfd_make_section_anyway_with_flags (dynobj, | 
 | 						    ".plt.got", | 
 | 						    pltflags); | 
 | 	  if (sec == NULL) | 
 | 	    info->callbacks->einfo (_("%F%P: failed to create GOT PLT section\n")); | 
 |  | 
 | 	  if (!bfd_set_section_alignment (sec, non_lazy_plt_alignment)) | 
 | 	    goto error_alignment; | 
 |  | 
 | 	  htab->plt_got = sec; | 
 |  | 
 | 	  if (lazy_plt) | 
 | 	    { | 
 | 	      sec = NULL; | 
 |  | 
 | 	      if (use_ibt_plt) | 
 | 		{ | 
 | 		  /* Create the second PLT for Intel IBT support.  IBT | 
 | 		     PLT is needed only for lazy binding.  */ | 
 | 		  sec = bfd_make_section_anyway_with_flags (dynobj, | 
 | 							    ".plt.sec", | 
 | 							    pltflags); | 
 | 		  if (sec == NULL) | 
 | 		    info->callbacks->einfo (_("%F%P: failed to create IBT-enabled PLT section\n")); | 
 |  | 
 | 		  if (!bfd_set_section_alignment (sec, plt_alignment)) | 
 | 		    goto error_alignment; | 
 | 		} | 
 |  | 
 | 	      htab->plt_second = sec; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if (!info->no_ld_generated_unwind_info) | 
 | 	{ | 
 | 	  flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | 
 | 			    | SEC_HAS_CONTENTS | SEC_IN_MEMORY | 
 | 			    | SEC_LINKER_CREATED); | 
 |  | 
 | 	  sec = bfd_make_section_anyway_with_flags (dynobj, | 
 | 						    ".eh_frame", | 
 | 						    flags); | 
 | 	  if (sec == NULL) | 
 | 	    info->callbacks->einfo (_("%F%P: failed to create PLT .eh_frame section\n")); | 
 |  | 
 | 	  if (!bfd_set_section_alignment (sec, class_align)) | 
 | 	    goto error_alignment; | 
 |  | 
 | 	  htab->plt_eh_frame = sec; | 
 |  | 
 | 	  if (htab->plt_got != NULL) | 
 | 	    { | 
 | 	      sec = bfd_make_section_anyway_with_flags (dynobj, | 
 | 							".eh_frame", | 
 | 							flags); | 
 | 	      if (sec == NULL) | 
 | 		info->callbacks->einfo (_("%F%P: failed to create GOT PLT .eh_frame section\n")); | 
 |  | 
 | 	      if (!bfd_set_section_alignment (sec, class_align)) | 
 | 		goto error_alignment; | 
 |  | 
 | 	      htab->plt_got_eh_frame = sec; | 
 | 	    } | 
 |  | 
 | 	  if (htab->plt_second != NULL) | 
 | 	    { | 
 | 	      sec = bfd_make_section_anyway_with_flags (dynobj, | 
 | 							".eh_frame", | 
 | 							flags); | 
 | 	      if (sec == NULL) | 
 | 		info->callbacks->einfo (_("%F%P: failed to create the second PLT .eh_frame section\n")); | 
 |  | 
 | 	      if (!bfd_set_section_alignment (sec, class_align)) | 
 | 		goto error_alignment; | 
 |  | 
 | 	      htab->plt_second_eh_frame = sec; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       /* .sframe sections are emitted for AMD64 ABI only.  */ | 
 |       if (ABI_64_P (info->output_bfd) && !info->no_ld_generated_unwind_info) | 
 | 	{ | 
 | 	  flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | 
 | 			    | SEC_HAS_CONTENTS | SEC_IN_MEMORY | 
 | 			    | SEC_LINKER_CREATED); | 
 |  | 
 | 	  sec = bfd_make_section_anyway_with_flags (dynobj, | 
 | 						    ".sframe", | 
 | 						    flags); | 
 | 	  if (sec == NULL) | 
 | 	    info->callbacks->einfo (_("%F%P: failed to create PLT .sframe section\n")); | 
 |  | 
 | 	  // FIXME check this | 
 | 	  // if (!bfd_set_section_alignment (sec, class_align)) | 
 | 	  //  goto error_alignment; | 
 |  | 
 | 	  htab->plt_sframe = sec; | 
 |  | 
 | 	  /* Second PLT is generated for Intel IBT + lazy plt.  */ | 
 | 	  if (htab->plt_second != NULL) | 
 | 	    { | 
 | 	      sec = bfd_make_section_anyway_with_flags (dynobj, | 
 | 							".sframe", | 
 | 							flags); | 
 | 	      if (sec == NULL) | 
 | 		info->callbacks->einfo (_("%F%P: failed to create second PLT .sframe section\n")); | 
 |  | 
 | 	      htab->plt_second_sframe = sec; | 
 | 	    } | 
 | 	  /* FIXME - add later for plt_got. */ | 
 | 	} | 
 |     } | 
 |  | 
 |   /* The .iplt section is used for IFUNC symbols in static | 
 |      executables.  */ | 
 |   sec = htab->elf.iplt; | 
 |   if (sec != NULL) | 
 |     { | 
 |       /* NB: Delay setting its alignment until we know it is non-empty. | 
 | 	 Otherwise an empty iplt section may change vma and lma of the | 
 | 	 following sections, which triggers moving dot of the following | 
 | 	 section backwards, resulting in a warning and section lma not | 
 | 	 being set properly.  It later leads to a "File truncated" | 
 | 	 error.  */ | 
 |       if (!bfd_set_section_alignment (sec, 0)) | 
 | 	goto error_alignment; | 
 |  | 
 |       htab->plt.iplt_alignment = (normal_target | 
 | 				  ? plt_alignment | 
 | 				  : bed->plt_alignment); | 
 |     } | 
 |  | 
 |   if (bfd_link_executable (info) | 
 |       && !info->nointerp | 
 |       && !htab->params->has_dynamic_linker | 
 |       && htab->params->static_before_all_inputs) | 
 |     { | 
 |       /* Report error for dynamic input objects if -static is passed at | 
 | 	 command-line before all input files without --dynamic-linker | 
 | 	 unless --no-dynamic-linker is used.  */ | 
 |       bfd *abfd; | 
 |  | 
 |       for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) | 
 | 	if ((abfd->flags & DYNAMIC)) | 
 | 	  info->callbacks->einfo | 
 | 	    (_("%X%P: attempted static link of dynamic object `%pB'\n"), | 
 | 	     abfd); | 
 |     } | 
 |  | 
 |   return pbfd; | 
 | } | 
 |  | 
 | /* Fix up x86 GNU properties.  */ | 
 |  | 
 | void | 
 | _bfd_x86_elf_link_fixup_gnu_properties | 
 |   (struct bfd_link_info *info, elf_property_list **listp) | 
 | { | 
 |   elf_property_list *p; | 
 |  | 
 |   for (p = *listp; p; p = p->next) | 
 |     { | 
 |       unsigned int type = p->property.pr_type; | 
 |       if (type == GNU_PROPERTY_X86_COMPAT_ISA_1_USED | 
 | 	  || type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED | 
 | 	  || (type >= GNU_PROPERTY_X86_UINT32_AND_LO | 
 | 	      && type <= GNU_PROPERTY_X86_UINT32_AND_HI) | 
 | 	  || (type >= GNU_PROPERTY_X86_UINT32_OR_LO | 
 | 	      && type <= GNU_PROPERTY_X86_UINT32_OR_HI) | 
 | 	  || (type >= GNU_PROPERTY_X86_UINT32_OR_AND_LO | 
 | 	      && type <= GNU_PROPERTY_X86_UINT32_OR_AND_HI)) | 
 | 	{ | 
 | 	  if (p->property.u.number == 0 | 
 | 	      && (type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED | 
 | 		  || (type >= GNU_PROPERTY_X86_UINT32_AND_LO | 
 | 		      && type <= GNU_PROPERTY_X86_UINT32_AND_HI) | 
 | 		  || (type >= GNU_PROPERTY_X86_UINT32_OR_LO | 
 | 		      && type <= GNU_PROPERTY_X86_UINT32_OR_HI))) | 
 | 	    { | 
 | 	      /* Remove empty property.  */ | 
 | 	      *listp = p->next; | 
 | 	      continue; | 
 | 	    } | 
 |  | 
 | 	  /* Keep LAM features only for 64-bit output.  */ | 
 | 	  if (type == GNU_PROPERTY_X86_FEATURE_1_AND | 
 | 	      && !ABI_64_P (info->output_bfd)) | 
 | 	    p->property.u.number &= ~(GNU_PROPERTY_X86_FEATURE_1_LAM_U48 | 
 | 				      | GNU_PROPERTY_X86_FEATURE_1_LAM_U57); | 
 |  | 
 | 	  listp = &p->next; | 
 | 	} | 
 |       else if (type > GNU_PROPERTY_HIPROC) | 
 | 	{ | 
 | 	  /* The property list is sorted in order of type.  */ | 
 | 	  break; | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | void | 
 | _bfd_elf_linker_x86_set_options (struct bfd_link_info * info, | 
 | 				 struct elf_linker_x86_params *params) | 
 | { | 
 |   const struct elf_backend_data *bed | 
 |     = get_elf_backend_data (info->output_bfd); | 
 |   struct elf_x86_link_hash_table *htab | 
 |     = elf_x86_hash_table (info, bed->target_id); | 
 |   if (htab != NULL) | 
 |     htab->params = params; | 
 | } |