| /* tc-i386.c -- Assemble code for the Intel 80386 |
| Copyright (C) 1989-2024 Free Software Foundation, Inc. |
| |
| This file is part of GAS, the GNU Assembler. |
| |
| GAS is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GAS is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GAS; see the file COPYING. If not, write to the Free |
| Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA |
| 02110-1301, USA. */ |
| |
| /* Intel 80386 machine specific gas. |
| Written by Eliot Dresselhaus (eliot@mgm.mit.edu). |
| x86_64 support by Jan Hubicka (jh@suse.cz) |
| VIA PadLock support by Michal Ludvig (mludvig@suse.cz) |
| Bugs & suggestions are completely welcome. This is free software. |
| Please help us make it better. */ |
| |
| #include "as.h" |
| #include "safe-ctype.h" |
| #include "subsegs.h" |
| #include "dwarf2dbg.h" |
| #include "dw2gencfi.h" |
| #include "scfi.h" |
| #include "gen-sframe.h" |
| #include "sframe.h" |
| #include "elf/x86-64.h" |
| #include "opcodes/i386-init.h" |
| #include "opcodes/i386-mnem.h" |
| #include <limits.h> |
| |
| #ifndef INFER_ADDR_PREFIX |
| #define INFER_ADDR_PREFIX 1 |
| #endif |
| |
| #ifndef DEFAULT_ARCH |
| #define DEFAULT_ARCH "i386" |
| #endif |
| |
| #ifndef INLINE |
| #if __GNUC__ >= 2 |
| #define INLINE __inline__ |
| #else |
| #define INLINE |
| #endif |
| #endif |
| |
| /* Prefixes will be emitted in the order defined below. |
| WAIT_PREFIX must be the first prefix since FWAIT is really is an |
| instruction, and so must come before any prefixes. |
| The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX, |
| REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */ |
| #define WAIT_PREFIX 0 |
| #define SEG_PREFIX 1 |
| #define ADDR_PREFIX 2 |
| #define DATA_PREFIX 3 |
| #define REP_PREFIX 4 |
| #define HLE_PREFIX REP_PREFIX |
| #define BND_PREFIX REP_PREFIX |
| #define LOCK_PREFIX 5 |
| #define REX_PREFIX 6 /* must come last. */ |
| #define MAX_PREFIXES 7 /* max prefixes per opcode */ |
| |
| /* we define the syntax here (modulo base,index,scale syntax) */ |
| #define REGISTER_PREFIX '%' |
| #define IMMEDIATE_PREFIX '$' |
| #define ABSOLUTE_PREFIX '*' |
| |
| /* these are the instruction mnemonic suffixes in AT&T syntax or |
| memory operand size in Intel syntax. */ |
| #define WORD_MNEM_SUFFIX 'w' |
| #define BYTE_MNEM_SUFFIX 'b' |
| #define SHORT_MNEM_SUFFIX 's' |
| #define LONG_MNEM_SUFFIX 'l' |
| #define QWORD_MNEM_SUFFIX 'q' |
| |
| #define END_OF_INSN '\0' |
| |
| #define OPERAND_TYPE_NONE { .bitfield = { .class = ClassNone } } |
| |
| /* This matches the C -> StaticRounding alias in the opcode table. */ |
| #define commutative staticrounding |
| |
| /* |
| 'templates' is for grouping together 'template' structures for opcodes |
| of the same name. This is only used for storing the insns in the grand |
| ole hash table of insns. |
| The templates themselves start at START and range up to (but not including) |
| END. |
| */ |
| typedef struct |
| { |
| const insn_template *start; |
| const insn_template *end; |
| } |
| templates; |
| |
| /* 386 operand encoding bytes: see 386 book for details of this. */ |
| typedef struct |
| { |
| unsigned int regmem; /* codes register or memory operand */ |
| unsigned int reg; /* codes register operand (or extended opcode) */ |
| unsigned int mode; /* how to interpret regmem & reg */ |
| } |
| modrm_byte; |
| |
| /* x86-64 extension prefix. */ |
| typedef int rex_byte; |
| |
| /* 386 opcode byte to code indirect addressing. */ |
| typedef struct |
| { |
| unsigned base; |
| unsigned index; |
| unsigned scale; |
| } |
| sib_byte; |
| |
| /* x86 arch names, types and features */ |
| typedef struct |
| { |
| const char *name; /* arch name */ |
| unsigned int len:8; /* arch string length */ |
| bool skip:1; /* show_arch should skip this. */ |
| enum processor_type type; /* arch type */ |
| enum { vsz_none, vsz_set, vsz_reset } vsz; /* vector size control */ |
| i386_cpu_flags enable; /* cpu feature enable flags */ |
| i386_cpu_flags disable; /* cpu feature disable flags */ |
| } |
| arch_entry; |
| |
| /* Modes for parse_insn() to operate in. */ |
| enum parse_mode { |
| parse_all, |
| parse_prefix, |
| parse_pseudo_prefix, |
| }; |
| |
| static void update_code_flag (int, int); |
| static void s_insn (int); |
| static void s_noopt (int); |
| static void set_code_flag (int); |
| static void set_16bit_gcc_code_flag (int); |
| static void set_intel_syntax (int); |
| static void set_intel_mnemonic (int); |
| static void set_allow_index_reg (int); |
| static void set_check (int); |
| static void set_cpu_arch (int); |
| #ifdef TE_PE |
| static void pe_directive_secrel (int); |
| static void pe_directive_secidx (int); |
| #endif |
| static void signed_cons (int); |
| static char *output_invalid (int c); |
| static int i386_finalize_immediate (segT, expressionS *, i386_operand_type, |
| const char *); |
| static int i386_finalize_displacement (segT, expressionS *, i386_operand_type, |
| const char *); |
| static int i386_att_operand (char *); |
| static int i386_intel_operand (char *, int); |
| static int i386_intel_simplify (expressionS *); |
| static int i386_intel_parse_name (const char *, expressionS *); |
| static const reg_entry *parse_register (const char *, char **); |
| static const char *parse_insn (const char *, char *, enum parse_mode); |
| static char *parse_operands (char *, const char *); |
| static void swap_operands (void); |
| static void swap_2_operands (unsigned int, unsigned int); |
| static enum i386_flag_code i386_addressing_mode (void); |
| static void optimize_imm (void); |
| static bool optimize_disp (const insn_template *t); |
| static const insn_template *match_template (char); |
| static int check_string (void); |
| static int process_suffix (const insn_template *); |
| static int check_byte_reg (void); |
| static int check_long_reg (void); |
| static int check_qword_reg (void); |
| static int check_word_reg (void); |
| static int finalize_imm (void); |
| static int process_operands (void); |
| static const reg_entry *build_modrm_byte (void); |
| static void output_insn (const struct last_insn *); |
| static void output_imm (fragS *, offsetT); |
| static void output_disp (fragS *, offsetT); |
| #ifdef OBJ_AOUT |
| static void s_bss (int); |
| #endif |
| #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) |
| static void handle_large_common (int small ATTRIBUTE_UNUSED); |
| |
| /* GNU_PROPERTY_X86_ISA_1_USED. */ |
| static unsigned int x86_isa_1_used; |
| /* GNU_PROPERTY_X86_FEATURE_2_USED. */ |
| static unsigned int x86_feature_2_used; |
| /* Generate x86 used ISA and feature properties. */ |
| static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE; |
| #endif |
| |
| static const char *default_arch = DEFAULT_ARCH; |
| |
| /* parse_register() returns this when a register alias cannot be used. */ |
| static const reg_entry bad_reg = { "<bad>", OPERAND_TYPE_NONE, 0, 0, |
| { Dw2Inval, Dw2Inval } }; |
| |
| static const reg_entry *reg_eax; |
| static const reg_entry *reg_ds; |
| static const reg_entry *reg_es; |
| static const reg_entry *reg_ss; |
| static const reg_entry *reg_st0; |
| static const reg_entry *reg_k0; |
| |
| /* VEX prefix. */ |
| typedef struct |
| { |
| /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */ |
| unsigned char bytes[4]; |
| unsigned int length; |
| /* Destination or source register specifier. */ |
| const reg_entry *register_specifier; |
| } vex_prefix; |
| |
| /* 'md_assemble ()' gathers together information and puts it into a |
| i386_insn. */ |
| |
| union i386_op |
| { |
| expressionS *disps; |
| expressionS *imms; |
| const reg_entry *regs; |
| }; |
| |
| enum i386_error |
| { |
| no_error, /* Must be first. */ |
| operand_size_mismatch, |
| operand_type_mismatch, |
| register_type_mismatch, |
| number_of_operands_mismatch, |
| invalid_instruction_suffix, |
| bad_imm4, |
| unsupported_with_intel_mnemonic, |
| unsupported_syntax, |
| unsupported_EGPR_for_addressing, |
| unsupported_nf, |
| unsupported, |
| unsupported_on_arch, |
| unsupported_64bit, |
| no_vex_encoding, |
| no_evex_encoding, |
| invalid_sib_address, |
| invalid_vsib_address, |
| invalid_vector_register_set, |
| invalid_tmm_register_set, |
| invalid_dest_and_src_register_set, |
| invalid_dest_register_set, |
| invalid_pseudo_prefix, |
| unsupported_vector_index_register, |
| unsupported_broadcast, |
| broadcast_needed, |
| unsupported_masking, |
| mask_not_on_destination, |
| no_default_mask, |
| unsupported_rc_sae, |
| unsupported_vector_size, |
| unsupported_rsp_register, |
| internal_error, |
| }; |
| |
| struct _i386_insn |
| { |
| /* TM holds the template for the insn were currently assembling. */ |
| insn_template tm; |
| |
| /* SUFFIX holds the instruction size suffix for byte, word, dword |
| or qword, if given. */ |
| char suffix; |
| |
| /* OPCODE_LENGTH holds the number of base opcode bytes. */ |
| unsigned char opcode_length; |
| |
| /* OPERANDS gives the number of given operands. */ |
| unsigned int operands; |
| |
| /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number |
| of given register, displacement, memory operands and immediate |
| operands. */ |
| unsigned int reg_operands, disp_operands, mem_operands, imm_operands; |
| |
| /* TYPES [i] is the type (see above #defines) which tells us how to |
| use OP[i] for the corresponding operand. */ |
| i386_operand_type types[MAX_OPERANDS]; |
| |
| /* Displacement expression, immediate expression, or register for each |
| operand. */ |
| union i386_op op[MAX_OPERANDS]; |
| |
| /* Flags for operands. */ |
| unsigned int flags[MAX_OPERANDS]; |
| #define Operand_PCrel 1 |
| #define Operand_Mem 2 |
| #define Operand_Signed 4 /* .insn only */ |
| |
| /* Relocation type for operand */ |
| enum bfd_reloc_code_real reloc[MAX_OPERANDS]; |
| |
| /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode |
| the base index byte below. */ |
| const reg_entry *base_reg; |
| const reg_entry *index_reg; |
| unsigned int log2_scale_factor; |
| |
| /* SEG gives the seg_entries of this insn. They are zero unless |
| explicit segment overrides are given. */ |
| const reg_entry *seg[2]; |
| |
| /* PREFIX holds all the given prefix opcodes (usually null). |
| PREFIXES is the number of prefix opcodes. */ |
| unsigned int prefixes; |
| unsigned char prefix[MAX_PREFIXES]; |
| |
| /* .insn allows for reserved opcode spaces. */ |
| unsigned char insn_opcode_space; |
| |
| /* .insn also allows (requires) specifying immediate size. */ |
| unsigned char imm_bits[MAX_OPERANDS]; |
| |
| /* Register is in low 3 bits of opcode. */ |
| bool short_form; |
| |
| /* The operand to a branch insn indicates an absolute branch. */ |
| bool jumpabsolute; |
| |
| /* The operand to a branch insn indicates a far branch. */ |
| bool far_branch; |
| |
| /* There is a memory operand of (%dx) which should be only used |
| with input/output instructions. */ |
| bool input_output_operand; |
| |
| /* Extended states. */ |
| enum |
| { |
| /* Use MMX state. */ |
| xstate_mmx = 1 << 0, |
| /* Use XMM state. */ |
| xstate_xmm = 1 << 1, |
| /* Use YMM state. */ |
| xstate_ymm = 1 << 2 | xstate_xmm, |
| /* Use ZMM state. */ |
| xstate_zmm = 1 << 3 | xstate_ymm, |
| /* Use TMM state. */ |
| xstate_tmm = 1 << 4, |
| /* Use MASK state. */ |
| xstate_mask = 1 << 5 |
| } xstate; |
| |
| /* Has GOTPC or TLS relocation. */ |
| bool has_gotpc_tls_reloc; |
| |
| /* RM and SIB are the modrm byte and the sib byte where the |
| addressing modes of this insn are encoded. */ |
| modrm_byte rm; |
| rex_byte rex; |
| rex_byte vrex; |
| rex_byte rex2; |
| sib_byte sib; |
| vex_prefix vex; |
| |
| /* Masking attributes. |
| |
| The struct describes masking, applied to OPERAND in the instruction. |
| REG is a pointer to the corresponding mask register. ZEROING tells |
| whether merging or zeroing mask is used. */ |
| struct Mask_Operation |
| { |
| const reg_entry *reg; |
| unsigned int zeroing; |
| /* The operand where this operation is associated. */ |
| unsigned int operand; |
| } mask; |
| |
| /* Rounding control and SAE attributes. */ |
| struct RC_Operation |
| { |
| enum rc_type |
| { |
| rc_none = -1, |
| rne, |
| rd, |
| ru, |
| rz, |
| saeonly |
| } type; |
| /* In Intel syntax the operand modifier form is supposed to be used, but |
| we continue to accept the immediate forms as well. */ |
| bool modifier; |
| } rounding; |
| |
| /* Broadcasting attributes. |
| |
| The struct describes broadcasting, applied to OPERAND. TYPE is |
| expresses the broadcast factor. */ |
| struct Broadcast_Operation |
| { |
| /* Type of broadcast: {1to2}, {1to4}, {1to8}, {1to16} or {1to32}. */ |
| unsigned int type; |
| |
| /* Index of broadcasted operand. */ |
| unsigned int operand; |
| |
| /* Number of bytes to broadcast. */ |
| unsigned int bytes; |
| } broadcast; |
| |
| /* Compressed disp8*N attribute. */ |
| unsigned int memshift; |
| |
| /* SCC = EVEX.[SC3,SC2,SC1,SC0]. */ |
| unsigned int scc; |
| |
| /* Store 4 bits of EVEX.[OF,SF,ZF,CF]. */ |
| #define OSZC_CF 1 |
| #define OSZC_ZF 2 |
| #define OSZC_SF 4 |
| #define OSZC_OF 8 |
| unsigned int oszc_flags; |
| |
| /* Invert the condition encoded in a base opcode. */ |
| bool invert_cond; |
| |
| /* REP prefix. */ |
| const char *rep_prefix; |
| |
| /* HLE prefix. */ |
| const char *hle_prefix; |
| |
| /* Have BND prefix. */ |
| const char *bnd_prefix; |
| |
| /* Have NOTRACK prefix. */ |
| const char *notrack_prefix; |
| |
| /* Error message. */ |
| enum i386_error error; |
| }; |
| |
| typedef struct _i386_insn i386_insn; |
| |
| /* Pseudo-prefix recording state, separate from i386_insn. */ |
| static struct pseudo_prefixes { |
| /* How to encode instructions. */ |
| enum { |
| encoding_default = 0, |
| encoding_vex, |
| encoding_vex3, |
| encoding_egpr, /* REX2 or EVEX. */ |
| encoding_evex, |
| encoding_evex512, |
| encoding_error |
| } encoding; |
| |
| /* Prefer load or store in encoding. */ |
| enum { |
| dir_encoding_default = 0, |
| dir_encoding_load, |
| dir_encoding_store, |
| dir_encoding_swap |
| } dir_encoding; |
| |
| /* Prefer 8bit, 16bit, 32bit displacement in encoding. */ |
| enum { |
| disp_encoding_default = 0, |
| disp_encoding_8bit, |
| disp_encoding_16bit, |
| disp_encoding_32bit |
| } disp_encoding; |
| |
| /* Prefer the REX byte in encoding. */ |
| bool rex_encoding; |
| |
| /* Prefer the REX2 prefix in encoding. */ |
| bool rex2_encoding; |
| |
| /* No CSPAZO flags update. */ |
| bool has_nf; |
| |
| /* Disable instruction size optimization. */ |
| bool no_optimize; |
| } pp; |
| |
| /* Link RC type with corresponding string, that'll be looked for in |
| asm. */ |
| struct RC_name |
| { |
| enum rc_type type; |
| const char *name; |
| unsigned int len; |
| }; |
| |
| static const struct RC_name RC_NamesTable[] = |
| { |
| { rne, STRING_COMMA_LEN ("rn-sae") }, |
| { rd, STRING_COMMA_LEN ("rd-sae") }, |
| { ru, STRING_COMMA_LEN ("ru-sae") }, |
| { rz, STRING_COMMA_LEN ("rz-sae") }, |
| { saeonly, STRING_COMMA_LEN ("sae") }, |
| }; |
| |
| /* To be indexed by segment register number. */ |
| static const unsigned char i386_seg_prefixes[] = { |
| ES_PREFIX_OPCODE, |
| CS_PREFIX_OPCODE, |
| SS_PREFIX_OPCODE, |
| DS_PREFIX_OPCODE, |
| FS_PREFIX_OPCODE, |
| GS_PREFIX_OPCODE |
| }; |
| |
| /* List of chars besides those in app.c:symbol_chars that can start an |
| operand. Used to prevent the scrubber eating vital white-space. */ |
| const char extra_symbol_chars[] = "*%-([" |
| #ifdef LEX_AT |
| "@" |
| #endif |
| #ifdef LEX_QM |
| "?" |
| #endif |
| ; |
| |
| #if ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \ |
| && !defined (TE_GNU) \ |
| && !defined (TE_LINUX) \ |
| && !defined (TE_Haiku) \ |
| && !defined (TE_FreeBSD) \ |
| && !defined (TE_DragonFly) \ |
| && !defined (TE_NetBSD)) |
| /* This array holds the chars that always start a comment. If the |
| pre-processor is disabled, these aren't very useful. The option |
| --divide will remove '/' from this list. */ |
| const char *i386_comment_chars = "#/"; |
| #define SVR4_COMMENT_CHARS 1 |
| #define PREFIX_SEPARATOR '\\' |
| |
| #else |
| const char *i386_comment_chars = "#"; |
| #define PREFIX_SEPARATOR '/' |
| #endif |
| |
| /* This array holds the chars that only start a comment at the beginning of |
| a line. If the line seems to have the form '# 123 filename' |
| .line and .file directives will appear in the pre-processed output. |
| Note that input_file.c hand checks for '#' at the beginning of the |
| first line of the input file. This is because the compiler outputs |
| #NO_APP at the beginning of its output. |
| Also note that comments started like this one will always work if |
| '/' isn't otherwise defined. */ |
| const char line_comment_chars[] = "#/"; |
| |
| const char line_separator_chars[] = ";"; |
| |
| /* Chars that can be used to separate mant from exp in floating point |
| nums. */ |
| const char EXP_CHARS[] = "eE"; |
| |
| /* Chars that mean this number is a floating point constant |
| As in 0f12.456 |
| or 0d1.2345e12. */ |
| const char FLT_CHARS[] = "fFdDxXhHbB"; |
| |
| /* Tables for lexical analysis. */ |
| static char mnemonic_chars[256]; |
| static char register_chars[256]; |
| static char operand_chars[256]; |
| |
| /* Lexical macros. */ |
| #define is_operand_char(x) (operand_chars[(unsigned char) x]) |
| #define is_register_char(x) (register_chars[(unsigned char) x]) |
| #define is_space_char(x) ((x) == ' ') |
| |
| /* All non-digit non-letter characters that may occur in an operand and |
| which aren't already in extra_symbol_chars[]. */ |
| static const char operand_special_chars[] = "$+,)._~/<>|&^!=:@]{}"; |
| |
| /* md_assemble() always leaves the strings it's passed unaltered. To |
| effect this we maintain a stack of saved characters that we've smashed |
| with '\0's (indicating end of strings for various sub-fields of the |
| assembler instruction). */ |
| static char save_stack[32]; |
| static char *save_stack_p; |
| #define END_STRING_AND_SAVE(s) \ |
| do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0) |
| #define RESTORE_END_STRING(s) \ |
| do { *(s) = *--save_stack_p; } while (0) |
| |
| /* The instruction we're assembling. */ |
| static i386_insn i; |
| |
| /* Possible templates for current insn. */ |
| static templates current_templates; |
| |
| /* Per instruction expressionS buffers: max displacements & immediates. */ |
| static expressionS disp_expressions[MAX_MEMORY_OPERANDS]; |
| static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS]; |
| |
| /* Current operand we are working on. */ |
| static int this_operand = -1; |
| |
| /* Are we processing a .insn directive? */ |
| #define dot_insn() (i.tm.mnem_off == MN__insn) |
| |
| enum i386_flag_code i386_flag_code; |
| #define flag_code i386_flag_code /* Permit to continue using original name. */ |
| static unsigned int object_64bit; |
| static unsigned int disallow_64bit_reloc; |
| static int use_rela_relocations = 0; |
| /* __tls_get_addr/___tls_get_addr symbol for TLS. */ |
| static const char *tls_get_addr; |
| |
| #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) |
| |
| /* The ELF ABI to use. */ |
| enum x86_elf_abi |
| { |
| I386_ABI, |
| X86_64_ABI, |
| X86_64_X32_ABI |
| }; |
| |
| static enum x86_elf_abi x86_elf_abi = I386_ABI; |
| #endif |
| |
| #if defined (TE_PE) || defined (TE_PEP) |
| /* Use big object file format. */ |
| static int use_big_obj = 0; |
| #endif |
| |
| #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) |
| /* 1 if generating code for a shared library. */ |
| static int shared = 0; |
| |
| unsigned int x86_sframe_cfa_sp_reg; |
| /* The other CFA base register for SFrame stack trace info. */ |
| unsigned int x86_sframe_cfa_fp_reg; |
| |
| static ginsnS *x86_ginsn_new (const symbolS *, enum ginsn_gen_mode); |
| #endif |
| |
| /* 1 for intel syntax, |
| 0 if att syntax. */ |
| static int intel_syntax = 0; |
| |
| static enum x86_64_isa |
| { |
| amd64 = 1, /* AMD64 ISA. */ |
| intel64 /* Intel64 ISA. */ |
| } isa64; |
| |
| /* 1 for intel mnemonic, |
| 0 if att mnemonic. */ |
| static int intel_mnemonic = !SYSV386_COMPAT; |
| |
| /* 1 if pseudo registers are permitted. */ |
| static int allow_pseudo_reg = 0; |
| |
| /* 1 if register prefix % not required. */ |
| static int allow_naked_reg = 0; |
| |
| /* 1 if the assembler should add BND prefix for all control-transferring |
| instructions supporting it, even if this prefix wasn't specified |
| explicitly. */ |
| static int add_bnd_prefix = 0; |
| |
| /* 1 if pseudo index register, eiz/riz, is allowed . */ |
| static int allow_index_reg = 0; |
| |
| /* 1 if the assembler should ignore LOCK prefix, even if it was |
| specified explicitly. */ |
| static int omit_lock_prefix = 0; |
| |
| /* 1 if the assembler should encode lfence, mfence, and sfence as |
| "lock addl $0, (%{re}sp)". */ |
| static int avoid_fence = 0; |
| |
| /* 1 if lfence should be inserted after every load. */ |
| static int lfence_after_load = 0; |
| |
| /* Non-zero if lfence should be inserted before indirect branch. */ |
| static enum lfence_before_indirect_branch_kind |
| { |
| lfence_branch_none = 0, |
| lfence_branch_register, |
| lfence_branch_memory, |
| lfence_branch_all |
| } |
| lfence_before_indirect_branch; |
| |
| /* Non-zero if lfence should be inserted before ret. */ |
| static enum lfence_before_ret_kind |
| { |
| lfence_before_ret_none = 0, |
| lfence_before_ret_not, |
| lfence_before_ret_or, |
| lfence_before_ret_shl |
| } |
| lfence_before_ret; |
| |
| /* 1 if the assembler should generate relax relocations. */ |
| |
| static int generate_relax_relocations |
| = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS; |
| |
| static enum check_kind |
| { |
| check_none = 0, |
| check_warning, |
| check_error |
| } |
| sse_check, operand_check = check_warning; |
| |
| /* Non-zero if branches should be aligned within power of 2 boundary. */ |
| static int align_branch_power = 0; |
| |
| /* Types of branches to align. */ |
| enum align_branch_kind |
| { |
| align_branch_none = 0, |
| align_branch_jcc = 1, |
| align_branch_fused = 2, |
| align_branch_jmp = 3, |
| align_branch_call = 4, |
| align_branch_indirect = 5, |
| align_branch_ret = 6 |
| }; |
| |
| /* Type bits of branches to align. */ |
| enum align_branch_bit |
| { |
| align_branch_jcc_bit = 1 << align_branch_jcc, |
| align_branch_fused_bit = 1 << align_branch_fused, |
| align_branch_jmp_bit = 1 << align_branch_jmp, |
| align_branch_call_bit = 1 << align_branch_call, |
| align_branch_indirect_bit = 1 << align_branch_indirect, |
| align_branch_ret_bit = 1 << align_branch_ret |
| }; |
| |
| static unsigned int align_branch = (align_branch_jcc_bit |
| | align_branch_fused_bit |
| | align_branch_jmp_bit); |
| |
| /* Types of condition jump used by macro-fusion. */ |
| enum mf_jcc_kind |
| { |
| mf_jcc_jo = 0, /* base opcode 0x70 */ |
| mf_jcc_jc, /* base opcode 0x72 */ |
| mf_jcc_je, /* base opcode 0x74 */ |
| mf_jcc_jna, /* base opcode 0x76 */ |
| mf_jcc_js, /* base opcode 0x78 */ |
| mf_jcc_jp, /* base opcode 0x7a */ |
| mf_jcc_jl, /* base opcode 0x7c */ |
| mf_jcc_jle, /* base opcode 0x7e */ |
| }; |
| |
| /* Types of compare flag-modifying insntructions used by macro-fusion. */ |
| enum mf_cmp_kind |
| { |
| mf_cmp_test_and, /* test/cmp */ |
| mf_cmp_alu_cmp, /* add/sub/cmp */ |
| mf_cmp_incdec /* inc/dec */ |
| }; |
| |
| /* The maximum padding size for fused jcc. CMP like instruction can |
| be 9 bytes and jcc can be 6 bytes. Leave room just in case for |
| prefixes. */ |
| #define MAX_FUSED_JCC_PADDING_SIZE 20 |
| |
| /* The maximum number of prefixes added for an instruction. */ |
| static unsigned int align_branch_prefix_size = 5; |
| |
| /* Optimization: |
| 1. Clear the REX_W bit with register operand if possible. |
| 2. Above plus use 128bit vector instruction to clear the full vector |
| register. |
| */ |
| static int optimize = 0; |
| |
| /* Optimization: |
| 1. Clear the REX_W bit with register operand if possible. |
| 2. Above plus use 128bit vector instruction to clear the full vector |
| register. |
| 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to |
| "testb $imm7,%r8". |
| */ |
| static int optimize_for_space = 0; |
| |
| /* Register prefix used for error message. */ |
| static const char *register_prefix = "%"; |
| |
| /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter, |
| leave, push, and pop instructions so that gcc has the same stack |
| frame as in 32 bit mode. */ |
| static char stackop_size = '\0'; |
| |
| /* Non-zero to optimize code alignment. */ |
| int optimize_align_code = 1; |
| |
| /* Non-zero to quieten some warnings. */ |
| static int quiet_warnings = 0; |
| |
| /* Guard to avoid repeated warnings about non-16-bit code on 16-bit CPUs. */ |
| static bool pre_386_16bit_warned; |
| |
| /* CPU name. */ |
| static const char *cpu_arch_name = NULL; |
| static char *cpu_sub_arch_name = NULL; |
| |
| /* CPU feature flags. */ |
| i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS; |
| |
| /* ISA extensions available in 64-bit mode only. */ |
| static const i386_cpu_flags cpu_64_flags = CPU_ANY_64_FLAGS; |
| |
| /* If we have selected a cpu we are generating instructions for. */ |
| static int cpu_arch_tune_set = 0; |
| |
| /* Cpu we are generating instructions for. */ |
| enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN; |
| |
| /* CPU instruction set architecture used. */ |
| enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN; |
| |
| /* CPU feature flags of instruction set architecture used. */ |
| i386_cpu_flags cpu_arch_isa_flags; |
| |
| /* If set, conditional jumps are not automatically promoted to handle |
| larger than a byte offset. */ |
| static bool no_cond_jump_promotion = false; |
| |
| /* This will be set from an expression parser hook if there's any |
| applicable operator involved in an expression. */ |
| static enum { |
| expr_operator_none, |
| expr_operator_present, |
| expr_large_value, |
| } expr_mode; |
| |
| /* Encode SSE instructions with VEX prefix. */ |
| static unsigned int sse2avx; |
| |
| /* Encode aligned vector move as unaligned vector move. */ |
| static unsigned int use_unaligned_vector_move; |
| |
| /* Maximum permitted vector size. */ |
| #define VSZ128 0 |
| #define VSZ256 1 |
| #define VSZ512 2 |
| #define VSZ_DEFAULT VSZ512 |
| static unsigned int vector_size = VSZ_DEFAULT; |
| |
| /* Encode scalar AVX instructions with specific vector length. */ |
| static enum |
| { |
| vex128 = 0, |
| vex256 |
| } avxscalar; |
| |
| /* Encode VEX WIG instructions with specific vex.w. */ |
| static enum |
| { |
| vexw0 = 0, |
| vexw1 |
| } vexwig; |
| |
| /* Encode scalar EVEX LIG instructions with specific vector length. */ |
| static enum |
| { |
| evexl128 = 0, |
| evexl256, |
| evexl512 |
| } evexlig; |
| |
| /* Encode EVEX WIG instructions with specific evex.w. */ |
| static enum |
| { |
| evexw0 = 0, |
| evexw1 |
| } evexwig; |
| |
| /* Value to encode in EVEX RC bits, for SAE-only instructions. */ |
| static enum rc_type evexrcig = rne; |
| |
| /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */ |
| static symbolS *GOT_symbol; |
| |
| /* The dwarf2 return column, adjusted for 32 or 64 bit. */ |
| unsigned int x86_dwarf2_return_column; |
| |
| /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */ |
| int x86_cie_data_alignment; |
| |
| /* Interface to relax_segment. |
| There are 3 major relax states for 386 jump insns because the |
| different types of jumps add different sizes to frags when we're |
| figuring out what sort of jump to choose to reach a given label. |
| |
| BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align |
| branches which are handled by md_estimate_size_before_relax() and |
| i386_generic_table_relax_frag(). */ |
| |
| /* Types. */ |
| #define UNCOND_JUMP 0 |
| #define COND_JUMP 1 |
| #define COND_JUMP86 2 |
| #define BRANCH_PADDING 3 |
| #define BRANCH_PREFIX 4 |
| #define FUSED_JCC_PADDING 5 |
| |
| /* Sizes. */ |
| #define CODE16 1 |
| #define SMALL 0 |
| #define SMALL16 (SMALL | CODE16) |
| #define BIG 2 |
| #define BIG16 (BIG | CODE16) |
| |
| #ifndef INLINE |
| #ifdef __GNUC__ |
| #define INLINE __inline__ |
| #else |
| #define INLINE |
| #endif |
| #endif |
| |
| #define ENCODE_RELAX_STATE(type, size) \ |
| ((relax_substateT) (((type) << 2) | (size))) |
| #define TYPE_FROM_RELAX_STATE(s) \ |
| ((s) >> 2) |
| #define DISP_SIZE_FROM_RELAX_STATE(s) \ |
| ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1))) |
| |
| /* This table is used by relax_frag to promote short jumps to long |
| ones where necessary. SMALL (short) jumps may be promoted to BIG |
| (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We |
| don't allow a short jump in a 32 bit code segment to be promoted to |
| a 16 bit offset jump because it's slower (requires data size |
| prefix), and doesn't work, unless the destination is in the bottom |
| 64k of the code segment (The top 16 bits of eip are zeroed). */ |
| |
| const relax_typeS md_relax_table[] = |
| { |
| /* The fields are: |
| 1) most positive reach of this state, |
| 2) most negative reach of this state, |
| 3) how many bytes this mode will have in the variable part of the frag |
| 4) which index into the table to try if we can't fit into this one. */ |
| |
| /* UNCOND_JUMP states. */ |
| {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)}, |
| {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)}, |
| /* dword jmp adds 4 bytes to frag: |
| 0 extra opcode bytes, 4 displacement bytes. */ |
| {0, 0, 4, 0}, |
| /* word jmp adds 2 byte2 to frag: |
| 0 extra opcode bytes, 2 displacement bytes. */ |
| {0, 0, 2, 0}, |
| |
| /* COND_JUMP states. */ |
| {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)}, |
| {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)}, |
| /* dword conditionals adds 5 bytes to frag: |
| 1 extra opcode byte, 4 displacement bytes. */ |
| {0, 0, 5, 0}, |
| /* word conditionals add 3 bytes to frag: |
| 1 extra opcode byte, 2 displacement bytes. */ |
| {0, 0, 3, 0}, |
| |
| /* COND_JUMP86 states. */ |
| {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)}, |
| {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)}, |
| /* dword conditionals adds 5 bytes to frag: |
| 1 extra opcode byte, 4 displacement bytes. */ |
| {0, 0, 5, 0}, |
| /* word conditionals add 4 bytes to frag: |
| 1 displacement byte and a 3 byte long branch insn. */ |
| {0, 0, 4, 0} |
| }; |
| |
| #define ARCH(n, t, f, s) \ |
| { STRING_COMMA_LEN (#n), s, PROCESSOR_ ## t, vsz_none, CPU_ ## f ## _FLAGS, \ |
| CPU_NONE_FLAGS } |
| #define SUBARCH(n, e, d, s) \ |
| { STRING_COMMA_LEN (#n), s, PROCESSOR_NONE, vsz_none, CPU_ ## e ## _FLAGS, \ |
| CPU_ ## d ## _FLAGS } |
| #define VECARCH(n, e, d, v) \ |
| { STRING_COMMA_LEN (#n), false, PROCESSOR_NONE, vsz_ ## v, \ |
| CPU_ ## e ## _FLAGS, CPU_ ## d ## _FLAGS } |
| |
| static const arch_entry cpu_arch[] = |
| { |
| /* Do not replace the first two entries - i386_target_format() and |
| set_cpu_arch() rely on them being there in this order. */ |
| ARCH (generic32, GENERIC32, GENERIC32, false), |
| ARCH (generic64, GENERIC64, GENERIC64, false), |
| ARCH (i8086, UNKNOWN, NONE, false), |
| ARCH (i186, UNKNOWN, 186, false), |
| ARCH (i286, UNKNOWN, 286, false), |
| ARCH (i386, I386, 386, false), |
| ARCH (i486, I486, 486, false), |
| ARCH (i586, PENTIUM, 586, false), |
| ARCH (pentium, PENTIUM, 586, false), |
| ARCH (i686, I686, 686, false), |
| ARCH (pentiumpro, PENTIUMPRO, PENTIUMPRO, false), |
| ARCH (pentiumii, PENTIUMPRO, P2, false), |
| ARCH (pentiumiii, PENTIUMPRO, P3, false), |
| ARCH (pentium4, PENTIUM4, P4, false), |
| ARCH (prescott, NOCONA, CORE, false), |
| ARCH (nocona, NOCONA, NOCONA, false), |
| ARCH (yonah, CORE, CORE, true), |
| ARCH (core, CORE, CORE, false), |
| ARCH (merom, CORE2, CORE2, true), |
| ARCH (core2, CORE2, CORE2, false), |
| ARCH (corei7, COREI7, COREI7, false), |
| ARCH (iamcu, IAMCU, IAMCU, false), |
| ARCH (k6, K6, K6, false), |
| ARCH (k6_2, K6, K6_2, false), |
| ARCH (athlon, ATHLON, ATHLON, false), |
| ARCH (sledgehammer, K8, K8, true), |
| ARCH (opteron, K8, K8, false), |
| ARCH (k8, K8, K8, false), |
| ARCH (amdfam10, AMDFAM10, AMDFAM10, false), |
| ARCH (bdver1, BD, BDVER1, false), |
| ARCH (bdver2, BD, BDVER2, false), |
| ARCH (bdver3, BD, BDVER3, false), |
| ARCH (bdver4, BD, BDVER4, false), |
| ARCH (znver1, ZNVER, ZNVER1, false), |
| ARCH (znver2, ZNVER, ZNVER2, false), |
| ARCH (znver3, ZNVER, ZNVER3, false), |
| ARCH (znver4, ZNVER, ZNVER4, false), |
| ARCH (znver5, ZNVER, ZNVER5, false), |
| ARCH (btver1, BT, BTVER1, false), |
| ARCH (btver2, BT, BTVER2, false), |
| |
| SUBARCH (8087, 8087, ANY_8087, false), |
| SUBARCH (87, NONE, ANY_8087, false), /* Disable only! */ |
| SUBARCH (287, 287, ANY_287, false), |
| SUBARCH (387, 387, ANY_387, false), |
| SUBARCH (687, 687, ANY_687, false), |
| SUBARCH (cmov, CMOV, CMOV, false), |
| SUBARCH (fxsr, FXSR, ANY_FXSR, false), |
| SUBARCH (mmx, MMX, ANY_MMX, false), |
| SUBARCH (sse, SSE, ANY_SSE, false), |
| SUBARCH (sse2, SSE2, ANY_SSE2, false), |
| SUBARCH (sse3, SSE3, ANY_SSE3, false), |
| SUBARCH (sse4a, SSE4A, ANY_SSE4A, false), |
| SUBARCH (ssse3, SSSE3, ANY_SSSE3, false), |
| SUBARCH (sse4.1, SSE4_1, ANY_SSE4_1, false), |
| SUBARCH (sse4.2, SSE4_2, ANY_SSE4_2, false), |
| SUBARCH (sse4, SSE4_2, ANY_SSE4_1, false), |
| VECARCH (avx, AVX, ANY_AVX, reset), |
| VECARCH (avx2, AVX2, ANY_AVX2, reset), |
| VECARCH (avx512f, AVX512F, ANY_AVX512F, reset), |
| VECARCH (avx512cd, AVX512CD, ANY_AVX512CD, reset), |
| VECARCH (avx512er, AVX512ER, ANY_AVX512ER, reset), |
| VECARCH (avx512pf, AVX512PF, ANY_AVX512PF, reset), |
| VECARCH (avx512dq, AVX512DQ, ANY_AVX512DQ, reset), |
| VECARCH (avx512bw, AVX512BW, ANY_AVX512BW, reset), |
| VECARCH (avx512vl, AVX512VL, ANY_AVX512VL, reset), |
| SUBARCH (monitor, MONITOR, MONITOR, false), |
| SUBARCH (vmx, VMX, ANY_VMX, false), |
| SUBARCH (vmfunc, VMFUNC, ANY_VMFUNC, false), |
| SUBARCH (smx, SMX, SMX, false), |
| SUBARCH (xsave, XSAVE, ANY_XSAVE, false), |
| SUBARCH (xsaveopt, XSAVEOPT, ANY_XSAVEOPT, false), |
| SUBARCH (xsavec, XSAVEC, ANY_XSAVEC, false), |
| SUBARCH (xsaves, XSAVES, ANY_XSAVES, false), |
| SUBARCH (aes, AES, ANY_AES, false), |
| SUBARCH (pclmul, PCLMULQDQ, ANY_PCLMULQDQ, false), |
| SUBARCH (clmul, PCLMULQDQ, ANY_PCLMULQDQ, true), |
| SUBARCH (fsgsbase, FSGSBASE, FSGSBASE, false), |
| SUBARCH (rdrnd, RDRND, RDRND, false), |
| SUBARCH (f16c, F16C, ANY_F16C, false), |
| SUBARCH (bmi2, BMI2, BMI2, false), |
| SUBARCH (fma, FMA, ANY_FMA, false), |
| SUBARCH (fma4, FMA4, ANY_FMA4, false), |
| SUBARCH (xop, XOP, ANY_XOP, false), |
| SUBARCH (lwp, LWP, ANY_LWP, false), |
| SUBARCH (movbe, MOVBE, MOVBE, false), |
| SUBARCH (cx16, CX16, CX16, false), |
| SUBARCH (lahf_sahf, LAHF_SAHF, LAHF_SAHF, false), |
| SUBARCH (ept, EPT, ANY_EPT, false), |
| SUBARCH (lzcnt, LZCNT, LZCNT, false), |
| SUBARCH (popcnt, POPCNT, POPCNT, false), |
| SUBARCH (hle, HLE, HLE, false), |
| SUBARCH (rtm, RTM, ANY_RTM, false), |
| SUBARCH (tsx, TSX, TSX, false), |
| SUBARCH (invpcid, INVPCID, INVPCID, false), |
| SUBARCH (clflush, CLFLUSH, CLFLUSH, false), |
| SUBARCH (nop, NOP, NOP, false), |
| SUBARCH (syscall, SYSCALL, SYSCALL, false), |
| SUBARCH (rdtscp, RDTSCP, RDTSCP, false), |
| SUBARCH (3dnow, 3DNOW, ANY_3DNOW, false), |
| SUBARCH (3dnowa, 3DNOWA, ANY_3DNOWA, false), |
| SUBARCH (padlock, PADLOCK, PADLOCK, false), |
| SUBARCH (pacifica, SVME, ANY_SVME, true), |
| SUBARCH (svme, SVME, ANY_SVME, false), |
| SUBARCH (abm, ABM, ABM, false), |
| SUBARCH (bmi, BMI, BMI, false), |
| SUBARCH (tbm, TBM, TBM, false), |
| SUBARCH (adx, ADX, ADX, false), |
| SUBARCH (rdseed, RDSEED, RDSEED, false), |
| SUBARCH (prfchw, PRFCHW, PRFCHW, false), |
| SUBARCH (smap, SMAP, SMAP, false), |
| SUBARCH (mpx, MPX, ANY_MPX, false), |
| SUBARCH (sha, SHA, ANY_SHA, false), |
| SUBARCH (clflushopt, CLFLUSHOPT, CLFLUSHOPT, false), |
| SUBARCH (prefetchwt1, PREFETCHWT1, PREFETCHWT1, false), |
| SUBARCH (se1, SE1, SE1, false), |
| SUBARCH (clwb, CLWB, CLWB, false), |
| VECARCH (avx512ifma, AVX512IFMA, ANY_AVX512IFMA, reset), |
| VECARCH (avx512vbmi, AVX512VBMI, ANY_AVX512VBMI, reset), |
| VECARCH (avx512_4fmaps, AVX512_4FMAPS, ANY_AVX512_4FMAPS, reset), |
| VECARCH (avx512_4vnniw, AVX512_4VNNIW, ANY_AVX512_4VNNIW, reset), |
| VECARCH (avx512_vpopcntdq, AVX512_VPOPCNTDQ, ANY_AVX512_VPOPCNTDQ, reset), |
| VECARCH (avx512_vbmi2, AVX512_VBMI2, ANY_AVX512_VBMI2, reset), |
| VECARCH (avx512_vnni, AVX512_VNNI, ANY_AVX512_VNNI, reset), |
| VECARCH (avx512_bitalg, AVX512_BITALG, ANY_AVX512_BITALG, reset), |
| VECARCH (avx_vnni, AVX_VNNI, ANY_AVX_VNNI, reset), |
| SUBARCH (clzero, CLZERO, CLZERO, false), |
| SUBARCH (mwaitx, MWAITX, MWAITX, false), |
| SUBARCH (ospke, OSPKE, ANY_OSPKE, false), |
| SUBARCH (rdpid, RDPID, RDPID, false), |
| SUBARCH (ptwrite, PTWRITE, PTWRITE, false), |
| SUBARCH (ibt, IBT, IBT, false), |
| SUBARCH (shstk, SHSTK, SHSTK, false), |
| SUBARCH (gfni, GFNI, ANY_GFNI, false), |
| VECARCH (vaes, VAES, ANY_VAES, reset), |
| VECARCH (vpclmulqdq, VPCLMULQDQ, ANY_VPCLMULQDQ, reset), |
| SUBARCH (wbnoinvd, WBNOINVD, WBNOINVD, false), |
| SUBARCH (pconfig, PCONFIG, PCONFIG, false), |
| SUBARCH (waitpkg, WAITPKG, WAITPKG, false), |
| SUBARCH (cldemote, CLDEMOTE, CLDEMOTE, false), |
| SUBARCH (amx_int8, AMX_INT8, ANY_AMX_INT8, false), |
| SUBARCH (amx_bf16, AMX_BF16, ANY_AMX_BF16, false), |
| SUBARCH (amx_fp16, AMX_FP16, ANY_AMX_FP16, false), |
| SUBARCH (amx_complex, AMX_COMPLEX, ANY_AMX_COMPLEX, false), |
| SUBARCH (amx_tile, AMX_TILE, ANY_AMX_TILE, false), |
| SUBARCH (movdiri, MOVDIRI, MOVDIRI, false), |
| SUBARCH (movdir64b, MOVDIR64B, MOVDIR64B, false), |
| VECARCH (avx512_bf16, AVX512_BF16, ANY_AVX512_BF16, reset), |
| VECARCH (avx512_vp2intersect, AVX512_VP2INTERSECT, |
| ANY_AVX512_VP2INTERSECT, reset), |
| SUBARCH (tdx, TDX, TDX, false), |
| SUBARCH (enqcmd, ENQCMD, ENQCMD, false), |
| SUBARCH (serialize, SERIALIZE, SERIALIZE, false), |
| SUBARCH (rdpru, RDPRU, RDPRU, false), |
| SUBARCH (mcommit, MCOMMIT, MCOMMIT, false), |
| SUBARCH (sev_es, SEV_ES, ANY_SEV_ES, false), |
| SUBARCH (tsxldtrk, TSXLDTRK, ANY_TSXLDTRK, false), |
| SUBARCH (kl, KL, ANY_KL, false), |
| SUBARCH (widekl, WIDEKL, ANY_WIDEKL, false), |
| SUBARCH (uintr, UINTR, UINTR, false), |
| SUBARCH (hreset, HRESET, HRESET, false), |
| VECARCH (avx512_fp16, AVX512_FP16, ANY_AVX512_FP16, reset), |
| SUBARCH (prefetchi, PREFETCHI, PREFETCHI, false), |
| VECARCH (avx_ifma, AVX_IFMA, ANY_AVX_IFMA, reset), |
| VECARCH (avx_vnni_int8, AVX_VNNI_INT8, ANY_AVX_VNNI_INT8, reset), |
| SUBARCH (cmpccxadd, CMPCCXADD, CMPCCXADD, false), |
| SUBARCH (wrmsrns, WRMSRNS, WRMSRNS, false), |
| SUBARCH (msrlist, MSRLIST, MSRLIST, false), |
| VECARCH (avx_ne_convert, AVX_NE_CONVERT, ANY_AVX_NE_CONVERT, reset), |
| SUBARCH (rao_int, RAO_INT, RAO_INT, false), |
| SUBARCH (rmpquery, RMPQUERY, ANY_RMPQUERY, false), |
| SUBARCH (fred, FRED, ANY_FRED, false), |
| SUBARCH (lkgs, LKGS, ANY_LKGS, false), |
| VECARCH (avx_vnni_int16, AVX_VNNI_INT16, ANY_AVX_VNNI_INT16, reset), |
| VECARCH (sha512, SHA512, ANY_SHA512, reset), |
| VECARCH (sm3, SM3, ANY_SM3, reset), |
| VECARCH (sm4, SM4, ANY_SM4, reset), |
| SUBARCH (pbndkb, PBNDKB, PBNDKB, false), |
| VECARCH (avx10.1, AVX10_1, ANY_AVX512F, set), |
| SUBARCH (user_msr, USER_MSR, USER_MSR, false), |
| SUBARCH (apx_f, APX_F, APX_F, false), |
| VECARCH (avx10.2, AVX10_2, ANY_AVX10_2, set), |
| }; |
| |
| #undef SUBARCH |
| #undef ARCH |
| |
| #ifdef I386COFF |
| /* Like s_lcomm_internal in gas/read.c but the alignment string |
| is allowed to be optional. */ |
| |
| static symbolS * |
| pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size) |
| { |
| addressT align = 0; |
| |
| SKIP_WHITESPACE (); |
| |
| if (needs_align |
| && *input_line_pointer == ',') |
| { |
| align = parse_align (needs_align - 1); |
| |
| if (align == (addressT) -1) |
| return NULL; |
| } |
| else |
| { |
| if (size >= 8) |
| align = 3; |
| else if (size >= 4) |
| align = 2; |
| else if (size >= 2) |
| align = 1; |
| else |
| align = 0; |
| } |
| |
| bss_alloc (symbolP, size, align); |
| return symbolP; |
| } |
| |
| static void |
| pe_lcomm (int needs_align) |
| { |
| s_comm_internal (needs_align * 2, pe_lcomm_internal); |
| } |
| #endif |
| |
| const pseudo_typeS md_pseudo_table[] = |
| { |
| #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO) |
| {"align", s_align_bytes, 0}, |
| #else |
| {"align", s_align_ptwo, 0}, |
| #endif |
| {"arch", set_cpu_arch, 0}, |
| #ifdef OBJ_AOUT |
| {"bss", s_bss, 0}, |
| #endif |
| #ifdef I386COFF |
| {"lcomm", pe_lcomm, 1}, |
| #endif |
| {"ffloat", float_cons, 'f'}, |
| {"dfloat", float_cons, 'd'}, |
| {"tfloat", float_cons, 'x'}, |
| {"hfloat", float_cons, 'h'}, |
| {"bfloat16", float_cons, 'b'}, |
| {"value", cons, 2}, |
| {"slong", signed_cons, 4}, |
| {"insn", s_insn, 0}, |
| {"noopt", s_noopt, 0}, |
| {"optim", s_ignore, 0}, |
| {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT}, |
| {"code16", set_code_flag, CODE_16BIT}, |
| {"code32", set_code_flag, CODE_32BIT}, |
| #ifdef BFD64 |
| {"code64", set_code_flag, CODE_64BIT}, |
| #endif |
| {"intel_syntax", set_intel_syntax, 1}, |
| {"att_syntax", set_intel_syntax, 0}, |
| {"intel_mnemonic", set_intel_mnemonic, 1}, |
| {"att_mnemonic", set_intel_mnemonic, 0}, |
| {"allow_index_reg", set_allow_index_reg, 1}, |
| {"disallow_index_reg", set_allow_index_reg, 0}, |
| {"sse_check", set_check, 0}, |
| {"operand_check", set_check, 1}, |
| #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) |
| {"largecomm", handle_large_common, 0}, |
| #else |
| {"file", dwarf2_directive_file, 0}, |
| {"loc", dwarf2_directive_loc, 0}, |
| {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0}, |
| #endif |
| #ifdef TE_PE |
| {"secrel32", pe_directive_secrel, 0}, |
| {"secidx", pe_directive_secidx, 0}, |
| #endif |
| {0, 0, 0} |
| }; |
| |
| /* For interface with expression (). */ |
| extern char *input_line_pointer; |
| |
| /* Hash table for instruction mnemonic lookup. */ |
| static htab_t op_hash; |
| |
| /* Hash table for register lookup. */ |
| static htab_t reg_hash; |
| |
| static const struct |
| { |
| const char *str; |
| unsigned int len; |
| const enum bfd_reloc_code_real rel[2]; |
| const i386_operand_type types64; |
| bool need_GOT_symbol; |
| } |
| gotrel[] = |
| { |
| #define OPERAND_TYPE_IMM32_32S_DISP32 { .bitfield = \ |
| { .imm32 = 1, .imm32s = 1, .disp32 = 1 } } |
| #define OPERAND_TYPE_IMM32_32S_64_DISP32 { .bitfield = \ |
| { .imm32 = 1, .imm32s = 1, .imm64 = 1, .disp32 = 1 } } |
| #define OPERAND_TYPE_IMM32_32S_64_DISP32_64 { .bitfield = \ |
| { .imm32 = 1, .imm32s = 1, .imm64 = 1, .disp32 = 1, .disp64 = 1 } } |
| #define OPERAND_TYPE_IMM64_DISP64 { .bitfield = \ |
| { .imm64 = 1, .disp64 = 1 } } |
| |
| #ifndef TE_PE |
| #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) |
| { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32, |
| BFD_RELOC_SIZE32 }, |
| { .bitfield = { .imm32 = 1, .imm64 = 1 } }, false }, |
| #endif |
| { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real, |
| BFD_RELOC_X86_64_PLTOFF64 }, |
| { .bitfield = { .imm64 = 1 } }, true }, |
| { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32, |
| BFD_RELOC_X86_64_PLT32 }, |
| OPERAND_TYPE_IMM32_32S_DISP32, false }, |
| { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real, |
| BFD_RELOC_X86_64_GOTPLT64 }, |
| OPERAND_TYPE_IMM64_DISP64, true }, |
| { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF, |
| BFD_RELOC_X86_64_GOTOFF64 }, |
| OPERAND_TYPE_IMM64_DISP64, true }, |
| { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real, |
| BFD_RELOC_X86_64_GOTPCREL }, |
| OPERAND_TYPE_IMM32_32S_DISP32, true }, |
| { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD, |
| BFD_RELOC_X86_64_TLSGD }, |
| OPERAND_TYPE_IMM32_32S_DISP32, true }, |
| { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM, |
| _dummy_first_bfd_reloc_code_real }, |
| OPERAND_TYPE_NONE, true }, |
| { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real, |
| BFD_RELOC_X86_64_TLSLD }, |
| OPERAND_TYPE_IMM32_32S_DISP32, true }, |
| { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32, |
| BFD_RELOC_X86_64_GOTTPOFF }, |
| OPERAND_TYPE_IMM32_32S_DISP32, true }, |
| { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32, |
| BFD_RELOC_X86_64_TPOFF32 }, |
| OPERAND_TYPE_IMM32_32S_64_DISP32_64, true }, |
| { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE, |
| _dummy_first_bfd_reloc_code_real }, |
| OPERAND_TYPE_NONE, true }, |
| { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32, |
| BFD_RELOC_X86_64_DTPOFF32 }, |
| OPERAND_TYPE_IMM32_32S_64_DISP32_64, true }, |
| { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE, |
| _dummy_first_bfd_reloc_code_real }, |
| OPERAND_TYPE_NONE, true }, |
| { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE, |
| _dummy_first_bfd_reloc_code_real }, |
| OPERAND_TYPE_NONE, true }, |
| { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32, |
| BFD_RELOC_X86_64_GOT32 }, |
| OPERAND_TYPE_IMM32_32S_64_DISP32, true }, |
| { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC, |
| BFD_RELOC_X86_64_GOTPC32_TLSDESC }, |
| OPERAND_TYPE_IMM32_32S_DISP32, true }, |
| { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL, |
| BFD_RELOC_X86_64_TLSDESC_CALL }, |
| OPERAND_TYPE_IMM32_32S_DISP32, true }, |
| #else /* TE_PE */ |
| { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL, |
| BFD_RELOC_32_SECREL }, |
| OPERAND_TYPE_IMM32_32S_64_DISP32_64, false }, |
| #endif |
| |
| #undef OPERAND_TYPE_IMM32_32S_DISP32 |
| #undef OPERAND_TYPE_IMM32_32S_64_DISP32 |
| #undef OPERAND_TYPE_IMM32_32S_64_DISP32_64 |
| #undef OPERAND_TYPE_IMM64_DISP64 |
| }; |
| |
| /* Various efficient no-op patterns for aligning code labels. |
| Note: Don't try to assemble the instructions in the comments. |
| 0L and 0w are not legal. */ |
| static const unsigned char f32_1[] = |
| {0x90}; /* nop */ |
| static const unsigned char f32_2[] = |
| {0x66,0x90}; /* xchg %ax,%ax */ |
| static const unsigned char f32_3[] = |
| {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */ |
| #define f32_4 (f32_5 + 1) /* leal 0(%esi,%eiz),%esi */ |
| static const unsigned char f32_5[] = |
| {0x2e,0x8d,0x74,0x26,0x00}; /* leal %cs:0(%esi,%eiz),%esi */ |
| static const unsigned char f32_6[] = |
| {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */ |
| #define f32_7 (f32_8 + 1) /* leal 0L(%esi,%eiz),%esi */ |
| static const unsigned char f32_8[] = |
| {0x2e,0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal %cs:0L(%esi,%eiz),%esi */ |
| static const unsigned char f64_3[] = |
| {0x48,0x89,0xf6}; /* mov %rsi,%rsi */ |
| static const unsigned char f64_4[] = |
| {0x48,0x8d,0x76,0x00}; /* lea 0(%rsi),%rsi */ |
| #define f64_5 (f64_6 + 1) /* lea 0(%rsi,%riz),%rsi */ |
| static const unsigned char f64_6[] = |
| {0x2e,0x48,0x8d,0x74,0x26,0x00}; /* lea %cs:0(%rsi,%riz),%rsi */ |
| static const unsigned char f64_7[] = |
| {0x48,0x8d,0xb6,0x00,0x00,0x00,0x00}; /* lea 0L(%rsi),%rsi */ |
| #define f64_8 (f64_9 + 1) /* lea 0L(%rsi,%riz),%rsi */ |
| static const unsigned char f64_9[] = |
| {0x2e,0x48,0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* lea %cs:0L(%rsi,%riz),%rsi */ |
| #define f16_2 (f64_3 + 1) /* mov %si,%si */ |
| static const unsigned char f16_3[] = |
| {0x8d,0x74,0x00}; /* lea 0(%si),%si */ |
| #define f16_4 (f16_5 + 1) /* lea 0W(%si),%si */ |
| static const unsigned char f16_5[] = |
| {0x2e,0x8d,0xb4,0x00,0x00}; /* lea %cs:0W(%si),%si */ |
| static const unsigned char jump_disp8[] = |
| {0xeb}; /* jmp disp8 */ |
| static const unsigned char jump32_disp32[] = |
| {0xe9}; /* jmp disp32 */ |
| static const unsigned char jump16_disp32[] = |
| {0x66,0xe9}; /* jmp disp32 */ |
| /* 32-bit NOPs patterns. */ |
| static const unsigned char *const f32_patt[] = { |
| f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8 |
| }; |
| /* 64-bit NOPs patterns. */ |
| static const unsigned char *const f64_patt[] = { |
| f32_1, f32_2, f64_3, f64_4, f64_5, f64_6, f64_7, f64_8, f64_9 |
| }; |
| /* 16-bit NOPs patterns. */ |
| static const unsigned char *const f16_patt[] = { |
| f32_1, f16_2, f16_3, f16_4, f16_5 |
| }; |
| /* nopl (%[re]ax) */ |
| static const unsigned char alt_3[] = |
| {0x0f,0x1f,0x00}; |
| /* nopl 0(%[re]ax) */ |
| static const unsigned char alt_4[] = |
| {0x0f,0x1f,0x40,0x00}; |
| /* nopl 0(%[re]ax,%[re]ax,1) */ |
| #define alt_5 (alt_6 + 1) |
| /* nopw 0(%[re]ax,%[re]ax,1) */ |
| static const unsigned char alt_6[] = |
| {0x66,0x0f,0x1f,0x44,0x00,0x00}; |
| /* nopl 0L(%[re]ax) */ |
| static const unsigned char alt_7[] = |
| {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00}; |
| /* nopl 0L(%[re]ax,%[re]ax,1) */ |
| #define alt_8 (alt_9 + 1) |
| /* nopw 0L(%[re]ax,%[re]ax,1) */ |
| static const unsigned char alt_9[] = |
| {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00}; |
| /* nopw %cs:0L(%[re]ax,%[re]ax,1) */ |
| #define alt_10 (alt_11 + 1) |
| /* data16 nopw %cs:0L(%eax,%eax,1) */ |
| static const unsigned char alt_11[] = |
| {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00}; |
| /* 32-bit and 64-bit NOPs patterns. */ |
| static const unsigned char *const alt_patt[] = { |
| f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8, |
| alt_9, alt_10, alt_11 |
| }; |
| #define alt64_9 (alt64_15 + 6) /* nopq 0L(%rax,%rax,1) */ |
| #define alt64_10 (alt64_15 + 5) /* cs nopq 0L(%rax,%rax,1) */ |
| /* data16 cs nopq 0L(%rax,%rax,1) */ |
| #define alt64_11 (alt64_15 + 4) |
| /* data16 data16 cs nopq 0L(%rax,%rax,1) */ |
| #define alt64_12 (alt64_15 + 3) |
| /* data16 data16 data16 cs nopq 0L(%rax,%rax,1) */ |
| #define alt64_13 (alt64_15 + 2) |
| /* data16 data16 data16 data16 cs nopq 0L(%rax,%rax,1) */ |
| #define alt64_14 (alt64_15 + 1) |
| /* data16 data16 data16 data16 data16 cs nopq 0L(%rax,%rax,1) */ |
| static const unsigned char alt64_15[] = |
| {0x66,0x66,0x66,0x66,0x66,0x2e,0x48, |
| 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00}; |
| /* Long 64-bit NOPs patterns. */ |
| static const unsigned char *const alt64_patt[] = { |
| f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8, |
| alt64_9, alt64_10, alt64_11,alt64_12, alt64_13, alt64_14, alt64_15 |
| }; |
| |
| /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum |
| size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */ |
| |
| static void |
| i386_output_nops (char *where, const unsigned char *const *patt, |
| int count, int max_single_nop_size) |
| |
| { |
| /* Place the longer NOP first. */ |
| int last; |
| int offset; |
| const unsigned char *nops; |
| |
| if (max_single_nop_size < 1) |
| { |
| as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"), |
| max_single_nop_size); |
| return; |
| } |
| |
| nops = patt[max_single_nop_size - 1]; |
| last = count % max_single_nop_size; |
| |
| count -= last; |
| for (offset = 0; offset < count; offset += max_single_nop_size) |
| memcpy (where + offset, nops, max_single_nop_size); |
| |
| if (last) |
| { |
| nops = patt[last - 1]; |
| memcpy (where + offset, nops, last); |
| } |
| } |
| |
| static INLINE int |
| fits_in_imm7 (offsetT num) |
| { |
| return (num & 0x7f) == num; |
| } |
| |
| static INLINE int |
| fits_in_imm31 (offsetT num) |
| { |
| return (num & 0x7fffffff) == num; |
| } |
| |
| /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a |
| single NOP instruction LIMIT. */ |
| |
| void |
| i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit) |
| { |
| const unsigned char *const *patt = NULL; |
| int max_single_nop_size; |
| /* Maximum number of NOPs before switching to jump over NOPs. */ |
| int max_number_of_nops; |
| |
| switch (fragP->fr_type) |
| { |
| case rs_fill_nop: |
| case rs_align_code: |
| break; |
| case rs_machine_dependent: |
| /* Allow NOP padding for jumps and calls. */ |
| if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING |
| || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING) |
| break; |
| /* Fall through. */ |
| default: |
| return; |
| } |
| |
| /* We need to decide which NOP sequence to use for 32bit and |
| 64bit. When -mtune= is used: |
| |
| 1. For PROCESSOR_I?86, PROCESSOR_PENTIUM, PROCESSOR_IAMCU, and |
| PROCESSOR_GENERIC32, f32_patt will be used. |
| 2. For the rest, alt_patt will be used. |
| |
| When -mtune= isn't used, alt_patt will be used if |
| cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt/f64_patt will |
| be used. |
| |
| When -march= or .arch is used, we can't use anything beyond |
| cpu_arch_isa_flags. */ |
| |
| if (fragP->tc_frag_data.code == CODE_16BIT) |
| { |
| patt = f16_patt; |
| max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]); |
| /* Limit number of NOPs to 2 in 16-bit mode. */ |
| max_number_of_nops = 2; |
| } |
| else |
| { |
| patt = fragP->tc_frag_data.code == CODE_64BIT ? f64_patt : f32_patt; |
| if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN) |
| { |
| /* PROCESSOR_UNKNOWN means that all ISAs may be used, unless |
| explicitly disabled. */ |
| switch (fragP->tc_frag_data.tune) |
| { |
| case PROCESSOR_UNKNOWN: |
| /* We use cpu_arch_isa_flags to check if we SHOULD |
| optimize with nops. */ |
| if (fragP->tc_frag_data.isanop) |
| patt = alt_patt; |
| break; |
| |
| case PROCESSOR_CORE: |
| case PROCESSOR_CORE2: |
| case PROCESSOR_COREI7: |
| if (fragP->tc_frag_data.cpunop) |
| { |
| if (fragP->tc_frag_data.code == CODE_64BIT) |
| patt = alt64_patt; |
| else |
| patt = alt_patt; |
| } |
| break; |
| |
| case PROCESSOR_PENTIUMPRO: |
| case PROCESSOR_PENTIUM4: |
| case PROCESSOR_NOCONA: |
| case PROCESSOR_GENERIC64: |
| case PROCESSOR_K6: |
| case PROCESSOR_ATHLON: |
| case PROCESSOR_K8: |
| case PROCESSOR_AMDFAM10: |
| case PROCESSOR_BD: |
| case PROCESSOR_ZNVER: |
| case PROCESSOR_BT: |
| if (fragP->tc_frag_data.cpunop) |
| patt = alt_patt; |
| break; |
| |
| case PROCESSOR_I386: |
| case PROCESSOR_I486: |
| case PROCESSOR_PENTIUM: |
| case PROCESSOR_I686: |
| case PROCESSOR_IAMCU: |
| case PROCESSOR_GENERIC32: |
| break; |
| case PROCESSOR_NONE: |
| abort (); |
| } |
| } |
| else |
| { |
| switch (fragP->tc_frag_data.tune) |
| { |
| case PROCESSOR_UNKNOWN: |
| /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be |
| PROCESSOR_UNKNOWN. */ |
| abort (); |
| break; |
| |
| default: |
| /* We use cpu_arch_isa_flags to check if we CAN optimize |
| with nops. */ |
| if (fragP->tc_frag_data.isanop) |
| patt = alt_patt; |
| break; |
| |
| case PROCESSOR_NONE: |
| abort (); |
| } |
| } |
| |
| if (patt != alt_patt && patt != alt64_patt) |
| { |
| max_single_nop_size = patt == f32_patt ? ARRAY_SIZE (f32_patt) |
| : ARRAY_SIZE (f64_patt); |
| /* Limit number of NOPs to 2 for older processors. */ |
| max_number_of_nops = 2; |
| } |
| else |
| { |
| max_single_nop_size = patt == alt_patt |
| ? ARRAY_SIZE (alt_patt) |
| : ARRAY_SIZE (alt64_patt); |
| /* Limit number of NOPs to 7 for newer processors. */ |
| max_number_of_nops = 7; |
| } |
| } |
| |
| if (limit == 0) |
| limit = max_single_nop_size; |
| |
| if (fragP->fr_type == rs_fill_nop) |
| { |
| /* Output NOPs for .nop directive. */ |
| if (limit > max_single_nop_size) |
| { |
| as_bad_where (fragP->fr_file, fragP->fr_line, |
| _("invalid single nop size: %d " |
| "(expect within [0, %d])"), |
| limit, max_single_nop_size); |
| return; |
| } |
| } |
| else if (fragP->fr_type != rs_machine_dependent) |
| fragP->fr_var = count; |
| |
| /* Emit a plain NOP first when the last thing we saw may not have been |
| a proper instruction (e.g. a stand-alone prefix or .byte). */ |
| if (!fragP->tc_frag_data.last_insn_normal) |
| { |
| *where++ = 0x90; |
| --count; |
| } |
| |
| if ((count / max_single_nop_size) > max_number_of_nops) |
| { |
| /* Generate jump over NOPs. */ |
| offsetT disp = count - 2; |
| if (fits_in_imm7 (disp)) |
| { |
| /* Use "jmp disp8" if possible. */ |
| count = disp; |
| where[0] = jump_disp8[0]; |
| where[1] = count; |
| where += 2; |
| } |
| else |
| { |
| unsigned int size_of_jump; |
| |
| if (flag_code == CODE_16BIT) |
| { |
| where[0] = jump16_disp32[0]; |
| where[1] = jump16_disp32[1]; |
| size_of_jump = 2; |
| } |
| else |
| { |
| where[0] = jump32_disp32[0]; |
| size_of_jump = 1; |
| } |
| |
| count -= size_of_jump + 4; |
| if (!fits_in_imm31 (count)) |
| { |
| as_bad_where (fragP->fr_file, fragP->fr_line, |
| _("jump over nop padding out of range")); |
| return; |
| } |
| |
| md_number_to_chars (where + size_of_jump, count, 4); |
| where += size_of_jump + 4; |
| } |
| } |
| |
| /* Generate multiple NOPs. */ |
| i386_output_nops (where, patt, count, limit); |
| } |
| |
| static INLINE int |
| operand_type_all_zero (const union i386_operand_type *x) |
| { |
| switch (ARRAY_SIZE(x->array)) |
| { |
| case 3: |
| if (x->array[2]) |
| return 0; |
| /* Fall through. */ |
| case 2: |
| if (x->array[1]) |
| return 0; |
| /* Fall through. */ |
| case 1: |
| return !x->array[0]; |
| default: |
| abort (); |
| } |
| } |
| |
| static INLINE void |
| operand_type_set (union i386_operand_type *x, unsigned int v) |
| { |
| switch (ARRAY_SIZE(x->array)) |
| { |
| case 3: |
| x->array[2] = v; |
| /* Fall through. */ |
| case 2: |
| x->array[1] = v; |
| /* Fall through. */ |
| case 1: |
| x->array[0] = v; |
| /* Fall through. */ |
| break; |
| default: |
| abort (); |
| } |
| |
| x->bitfield.class = ClassNone; |
| x->bitfield.instance = InstanceNone; |
| } |
| |
| static INLINE int |
| operand_type_equal (const union i386_operand_type *x, |
| const union i386_operand_type *y) |
| { |
| switch (ARRAY_SIZE(x->array)) |
| { |
| case 3: |
| if (x->array[2] != y->array[2]) |
| return 0; |
| /* Fall through. */ |
| case 2: |
| if (x->array[1] != y->array[1]) |
| return 0; |
| /* Fall through. */ |
| case 1: |
| return x->array[0] == y->array[0]; |
| break; |
| default: |
| abort (); |
| } |
| } |
| |
| static INLINE bool |
| _is_cpu (const i386_cpu_attr *a, enum i386_cpu cpu) |
| { |
| switch (cpu) |
| { |
| case Cpu287: return a->bitfield.cpu287; |
| case Cpu387: return a->bitfield.cpu387; |
| case Cpu3dnow: return a->bitfield.cpu3dnow; |
| case Cpu3dnowA: return a->bitfield.cpu3dnowa; |
| case CpuAVX: return a->bitfield.cpuavx; |
| case CpuHLE: return a->bitfield.cpuhle; |
| case CpuAVX512F: return a->bitfield.cpuavx512f; |
| case CpuAVX512VL: return a->bitfield.cpuavx512vl; |
| case CpuAPX_F: return a->bitfield.cpuapx_f; |
| case Cpu64: return a->bitfield.cpu64; |
| case CpuNo64: return a->bitfield.cpuno64; |
| default: |
| gas_assert (cpu < CpuAttrEnums); |
| } |
| return a->bitfield.isa == cpu + 1u; |
| } |
| |
| static INLINE bool |
| is_cpu (const insn_template *t, enum i386_cpu cpu) |
| { |
| return _is_cpu(&t->cpu, cpu); |
| } |
| |
| static INLINE bool |
| maybe_cpu (const insn_template *t, enum i386_cpu cpu) |
| { |
| return _is_cpu(&t->cpu_any, cpu); |
| } |
| |
| static i386_cpu_flags cpu_flags_from_attr (i386_cpu_attr a) |
| { |
| const unsigned int bps = sizeof (a.array[0]) * CHAR_BIT; |
| i386_cpu_flags f = { .array[0] = 0 }; |
| |
| switch (ARRAY_SIZE (a.array)) |
| { |
| case 1: |
| f.array[CpuAttrEnums / bps] |
| #ifndef WORDS_BIGENDIAN |
| |= (a.array[0] >> CpuIsaBits) << (CpuAttrEnums % bps); |
| #else |
| |= (a.array[0] << CpuIsaBits) >> (CpuAttrEnums % bps); |
| #endif |
| if (CpuMax / bps > CpuAttrEnums / bps) |
| f.array[CpuAttrEnums / bps + 1] |
| #ifndef WORDS_BIGENDIAN |
| = (a.array[0] >> CpuIsaBits) >> (bps - CpuAttrEnums % bps); |
| #else |
| = (a.array[0] << CpuIsaBits) << (bps - CpuAttrEnums % bps); |
| #endif |
| break; |
| |
| default: |
| abort (); |
| } |
| |
| if (a.bitfield.isa) |
| #ifndef WORDS_BIGENDIAN |
| f.array[(a.bitfield.isa - 1) / bps] |= 1u << ((a.bitfield.isa - 1) % bps); |
| #else |
| f.array[(a.bitfield.isa - 1) / bps] |= 1u << (~(a.bitfield.isa - 1) % bps); |
| #endif |
| |
| return f; |
| } |
| |
| static INLINE int |
| cpu_flags_all_zero (const union i386_cpu_flags *x) |
| { |
| switch (ARRAY_SIZE(x->array)) |
| { |
| case 5: |
| if (x->array[4]) |
| return 0; |
| /* Fall through. */ |
| case 4: |
| if (x->array[3]) |
| return 0; |
| /* Fall through. */ |
| case 3: |
| if (x->array[2]) |
| return 0; |
| /* Fall through. */ |
| case 2: |
| if (x->array[1]) |
| return 0; |
| /* Fall through. */ |
| case 1: |
| return !x->array[0]; |
| default: |
| abort (); |
| } |
| } |
| |
| static INLINE int |
| cpu_flags_equal (const union i386_cpu_flags *x, |
| const union i386_cpu_flags *y) |
| { |
| switch (ARRAY_SIZE(x->array)) |
| { |
| case 5: |
| if (x->array[4] != y->array[4]) |
| return 0; |
| /* Fall through. */ |
| case 4: |
| if (x->array[3] != y->array[3]) |
| return 0; |
| /* Fall through. */ |
| case 3: |
| if (x->array[2] != y->array[2]) |
| return 0; |
| /* Fall through. */ |
| case 2: |
| if (x->array[1] != y->array[1]) |
| return 0; |
| /* Fall through. */ |
| case 1: |
| return x->array[0] == y->array[0]; |
| break; |
| default: |
| abort (); |
| } |
| } |
| |
| static INLINE int |
| cpu_flags_check_cpu64 (const insn_template *t) |
| { |
| return flag_code == CODE_64BIT |
| ? !t->cpu.bitfield.cpuno64 |
| : !t->cpu.bitfield.cpu64; |
| } |
| |
| static INLINE i386_cpu_flags |
| cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y) |
| { |
| switch (ARRAY_SIZE (x.array)) |
| { |
| case 5: |
| x.array [4] &= y.array [4]; |
| /* Fall through. */ |
| case 4: |
| x.array [3] &= y.array [3]; |
| /* Fall through. */ |
| case 3: |
| x.array [2] &= y.array [2]; |
| /* Fall through. */ |
| case 2: |
| x.array [1] &= y.array [1]; |
| /* Fall through. */ |
| case 1: |
| x.array [0] &= y.array [0]; |
| break; |
| default: |
| abort (); |
| } |
| return x; |
| } |
| |
| static INLINE i386_cpu_flags |
| cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y) |
| { |
| switch (ARRAY_SIZE (x.array)) |
| { |
| case 5: |
| x.array [4] |= y.array [4]; |
| /* Fall through. */ |
| case 4: |
| x.array [3] |= y.array [3]; |
| /* Fall through. */ |
| case 3: |
| x.array [2] |= y.array [2]; |
| /* Fall through. */ |
| case 2: |
| x.array [1] |= y.array [1]; |
| /* Fall through. */ |
| case 1: |
| x.array [0] |= y.array [0]; |
| break; |
| default: |
| abort (); |
| } |
| return x; |
| } |
| |
| static INLINE i386_cpu_flags |
| cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y) |
| { |
| switch (ARRAY_SIZE (x.array)) |
| { |
| case 5: |
| x.array [4] &= ~y.array [4]; |
| /* Fall through. */ |
| case 4: |
| x.array [3] &= ~y.array [3]; |
| /* Fall through. */ |
| case 3: |
| x.array [2] &= ~y.array [2]; |
| /* Fall through. */ |
| case 2: |
| x.array [1] &= ~y.array [1]; |
| /* Fall through. */ |
| case 1: |
| x.array [0] &= ~y.array [0]; |
| break; |
| default: |
| abort (); |
| } |
| return x; |
| } |
| |
| static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS; |
| |
| static INLINE bool need_evex_encoding (const insn_template *t) |
| { |
| return pp.encoding == encoding_evex |
| || pp.encoding == encoding_evex512 |
| || pp.has_nf |
| || (t->opcode_modifier.vex && pp.encoding == encoding_egpr) |
| || i.mask.reg; |
| } |
| |
| #define CPU_FLAGS_ARCH_MATCH 0x1 |
| #define CPU_FLAGS_64BIT_MATCH 0x2 |
| |
| #define CPU_FLAGS_PERFECT_MATCH \ |
| (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH) |
| |
| static INLINE bool set_oszc_flags (unsigned int oszc_shift) |
| { |
| if (i.oszc_flags & oszc_shift) |
| { |
| as_bad (_("same oszc flag used twice")); |
| return false; |
| } |
| i.oszc_flags |= oszc_shift; |
| return true; |
| } |
| |
| /* Handle SCC OSZC flags. */ |
| |
| static int |
| check_Scc_OszcOperations (const char *l) |
| { |
| const char *suffix_string = l; |
| |
| while (is_space_char (*suffix_string)) |
| suffix_string++; |
| |
| /* If {oszc flags} is absent, just return. */ |
| if (*suffix_string != '{') |
| return 0; |
| |
| /* Skip '{'. */ |
| suffix_string++; |
| |
| /* Parse 'dfv='. */ |
| while (is_space_char (*suffix_string)) |
| suffix_string++; |
| |
| if (strncasecmp (suffix_string, "dfv", 3) == 0) |
| suffix_string += 3; |
| else |
| { |
| as_bad (_("unrecognized pseudo-suffix")); |
| return -1; |
| } |
| |
| while (is_space_char (*suffix_string)) |
| suffix_string++; |
| |
| if (*suffix_string == '=') |
| suffix_string++; |
| else |
| { |
| as_bad (_("unrecognized pseudo-suffix")); |
| return -1; |
| } |
| |
| /* Parse 'of, sf, zf, cf}'. */ |
| while (*suffix_string) |
| { |
| while (is_space_char (*suffix_string)) |
| suffix_string++; |
| |
| /* Return for '{dfv=}'. */ |
| if (*suffix_string == '}') |
| return suffix_string + 1 - l; |
| |
| if (strncasecmp (suffix_string, "of", 2) == 0) |
| { |
| if (!set_oszc_flags (OSZC_OF)) |
| return -1; |
| } |
| else if (strncasecmp (suffix_string, "sf", 2) == 0) |
| { |
| if (!set_oszc_flags (OSZC_SF)) |
| return -1; |
| } |
| else if (strncasecmp (suffix_string, "zf", 2) == 0) |
| { |
| if (!set_oszc_flags (OSZC_ZF)) |
| return -1; |
| } |
| else if (strncasecmp (suffix_string, "cf", 2) == 0) |
| { |
| if (!set_oszc_flags (OSZC_CF)) |
| return -1; |
| } |
| else |
| { |
| as_bad (_("unrecognized oszc flags or illegal `,' in pseudo-suffix")); |
| return -1; |
| } |
| |
| suffix_string += 2; |
| |
| while (is_space_char (*suffix_string)) |
| suffix_string++; |
| |
| if (*suffix_string == '}') |
| return ++suffix_string - l; |
| |
| if (*suffix_string != ',') |
| break; |
| suffix_string ++; |
| } |
| |
| as_bad (_("missing `}' or `,' in pseudo-suffix")); |
| return -1; |
| } |
| |
| /* Return CPU flags match bits. */ |
| |
| static int |
| cpu_flags_match (const insn_template *t) |
| { |
| i386_cpu_flags cpu, active, all = cpu_flags_from_attr (t->cpu); |
| i386_cpu_flags any = cpu_flags_from_attr (t->cpu_any); |
| int match = cpu_flags_check_cpu64 (t) ? CPU_FLAGS_64BIT_MATCH : 0; |
| |
| all.bitfield.cpu64 = 0; |
| all.bitfield.cpuno64 = 0; |
| gas_assert (!any.bitfield.cpu64); |
| gas_assert (!any.bitfield.cpuno64); |
| |
| if (cpu_flags_all_zero (&all) && cpu_flags_all_zero (&any)) |
| { |
| /* This instruction is available on all archs. */ |
| return match | CPU_FLAGS_ARCH_MATCH; |
| } |
| |
| /* This instruction is available only on some archs. */ |
| |
| /* Dual VEX/EVEX templates may need stripping of one of the flags. */ |
| if (t->opcode_modifier.vex && t->opcode_modifier.evex) |
| { |
| /* Dual AVX/AVX512 templates need to retain AVX512* only if we already |
| know that EVEX encoding will be needed. */ |
| if ((any.bitfield.cpuavx || any.bitfield.cpuavx2 || any.bitfield.cpufma) |
| && (any.bitfield.cpuavx512f || any.bitfield.cpuavx512vl)) |
| { |
| if (need_evex_encoding (t)) |
| { |
| any.bitfield.cpuavx = 0; |
| any.bitfield.cpuavx2 = 0; |
| any.bitfield.cpufma = 0; |
| } |
| /* need_evex_encoding(t) isn't reliable before operands were |
| parsed. */ |
| else if (i.operands) |
| { |
| any.bitfield.cpuavx512f = 0; |
| any.bitfield.cpuavx512vl = 0; |
| } |
| } |
| |
| /* Dual non-APX/APX templates need massaging from what APX_F() in the |
| opcode table has produced. While the direct transformation of the |
| incoming cpuid&(cpuid|APX_F) would be to cpuid&(cpuid) / cpuid&(APX_F) |
| respectively, it's cheaper to move to just cpuid / cpuid&APX_F |
| instead. */ |
| if (any.bitfield.cpuapx_f |
| && (any.bitfield.cpubmi || any.bitfield.cpubmi2 |
| || any.bitfield.cpuavx512f || any.bitfield.cpuavx512bw |
| || any.bitfield.cpuavx512dq || any.bitfield.cpuamx_tile |
| || any.bitfield.cpucmpccxadd || any.bitfield.cpuuser_msr)) |
| { |
| /* These checks (verifying that APX_F() was properly used in the |
| opcode table entry) make sure there's no need for an "else" to |
| the "if()" below. */ |
| gas_assert (!cpu_flags_all_zero (&all)); |
| cpu = cpu_flags_and (all, any); |
| gas_assert (cpu_flags_equal (&cpu, &all)); |
| |
| if (need_evex_encoding (t)) |
| all = any; |
| |
| memset (&any, 0, sizeof (any)); |
| } |
| } |
| |
| if (flag_code != CODE_64BIT) |
| active = cpu_flags_and_not (cpu_arch_flags, cpu_64_flags); |
| else |
| active = cpu_arch_flags; |
| cpu = cpu_flags_and (all, active); |
| if (cpu_flags_equal (&cpu, &all)) |
| { |
| /* AVX and AVX2 present at the same time express an operand size |
| dependency - strip AVX2 for the purposes here. The operand size |
| dependent check occurs in check_vecOperands(). */ |
| if (any.bitfield.cpuavx && any.bitfield.cpuavx2) |
| any.bitfield.cpuavx2 = 0; |
| |
| cpu = cpu_flags_and (any, active); |
| if (cpu_flags_all_zero (&any) || !cpu_flags_all_zero (&cpu)) |
| match |= CPU_FLAGS_ARCH_MATCH; |
| } |
| return match; |
| } |
| |
| static INLINE i386_operand_type |
| operand_type_and (i386_operand_type x, i386_operand_type y) |
| { |
| if (x.bitfield.class != y.bitfield.class) |
| x.bitfield.class = ClassNone; |
| if (x.bitfield.instance != y.bitfield.instance) |
| x.bitfield.instance = InstanceNone; |
| |
| switch (ARRAY_SIZE (x.array)) |
| { |
| case 3: |
| x.array [2] &= y.array [2]; |
| /* Fall through. */ |
| case 2: |
| x.array [1] &= y.array [1]; |
| /* Fall through. */ |
| case 1: |
| x.array [0] &= y.array [0]; |
| break; |
| default: |
| abort (); |
| } |
| return x; |
| } |
| |
| static INLINE i386_operand_type |
| operand_type_and_not (i386_operand_type x, i386_operand_type y) |
| { |
| gas_assert (y.bitfield.class == ClassNone); |
| gas_assert (y.bitfield.instance == InstanceNone); |
| |
| switch (ARRAY_SIZE (x.array)) |
| { |
| case 3: |
| x.array [2] &= ~y.array [2]; |
| /* Fall through. */ |
| case 2: |
| x.array [1] &= ~y.array [1]; |
| /* Fall through. */ |
| case 1: |
| x.array [0] &= ~y.array [0]; |
| break; |
| default: |
| abort (); |
| } |
| return x; |
| } |
| |
| static INLINE i386_operand_type |
| operand_type_or (i386_operand_type x, i386_operand_type y) |
| { |
| gas_assert (x.bitfield.class == ClassNone || |
| y.bitfield.class == ClassNone || |
| x.bitfield.class == y.bitfield.class); |
| gas_assert (x.bitfield.instance == InstanceNone || |
| y.bitfield.instance == InstanceNone || |
| x.bitfield.instance == y.bitfield.instance); |
| |
| switch (ARRAY_SIZE (x.array)) |
| { |
| case 3: |
| x.array [2] |= y.array [2]; |
| /* Fall through. */ |
| case 2: |
| x.array [1] |= y.array [1]; |
| /* Fall through. */ |
| case 1: |
| x.array [0] |= y.array [0]; |
| break; |
| default: |
| abort (); |
| } |
| return x; |
| } |
| |
| static INLINE i386_operand_type |
| operand_type_xor (i386_operand_type x, i386_operand_type y) |
| { |
| gas_assert (y.bitfield.class == ClassNone); |
| gas_assert (y.bitfield.instance == InstanceNone); |
| |
| switch (ARRAY_SIZE (x.array)) |
| { |
| case 3: |
| x.array [2] ^= y.array [2]; |
| /* Fall through. */ |
| case 2: |
| x.array [1] ^= y.array [1]; |
| /* Fall through. */ |
| case 1: |
| x.array [0] ^= y.array [0]; |
| break; |
| default: |
| abort (); |
| } |
| return x; |
| } |
| |
| static const i386_operand_type anydisp = { |
| .bitfield = { .disp8 = 1, .disp16 = 1, .disp32 = 1, .disp64 = 1 } |
| }; |
| |
| enum operand_type |
| { |
| reg, |
| imm, |
| disp, |
| anymem |
| }; |
| |
| static INLINE int |
| operand_type_check (i386_operand_type t, enum operand_type c) |
| { |
| switch (c) |
| { |
| case reg: |
| return t.bitfield.class == Reg; |
| |
| case imm: |
| return (t.bitfield.imm8 |
| || t.bitfield.imm8s |
| || t.bitfield.imm16 |
| || t.bitfield.imm32 |
| || t.bitfield.imm32s |
| || t.bitfield.imm64); |
| |
| case disp: |
| return (t.bitfield.disp8 |
| || t.bitfield.disp16 |
| || t.bitfield.disp32 |
| || t.bitfield.disp64); |
| |
| case anymem: |
| return (t.bitfield.disp8 |
| || t.bitfield.disp16 |
| || t.bitfield.disp32 |
| || t.bitfield.disp64 |
| || t.bitfield.baseindex); |
| |
| default: |
| abort (); |
| } |
| |
| return 0; |
| } |
| |
| /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size |
| between operand GIVEN and opeand WANTED for instruction template T. */ |
| |
| static INLINE int |
| match_operand_size (const insn_template *t, unsigned int wanted, |
| unsigned int given) |
| { |
| return !((i.types[given].bitfield.byte |
| && !t->operand_types[wanted].bitfield.byte) |
| || (i.types[given].bitfield.word |
| && !t->operand_types[wanted].bitfield.word) |
| || (i.types[given].bitfield.dword |
| && !t->operand_types[wanted].bitfield.dword) |
| || (i.types[given].bitfield.qword |
| && (!t->operand_types[wanted].bitfield.qword |
| /* Don't allow 64-bit (memory) operands outside of 64-bit |
| mode, when they're used where a 64-bit GPR could also |
| be used. Checking is needed for Intel Syntax only. */ |
| || (intel_syntax |
| && flag_code != CODE_64BIT |
| && (t->operand_types[wanted].bitfield.class == Reg |
| || t->operand_types[wanted].bitfield.class == Accum |
| || t->opcode_modifier.isstring)))) |
| || (i.types[given].bitfield.tbyte |
| && !t->operand_types[wanted].bitfield.tbyte)); |
| } |
| |
| /* Return 1 if there is no conflict in SIMD register between operand |
| GIVEN and opeand WANTED for instruction template T. */ |
| |
| static INLINE int |
| match_simd_size (const insn_template *t, unsigned int wanted, |
| unsigned int given) |
| { |
| return !((i.types[given].bitfield.xmmword |
| && !t->operand_types[wanted].bitfield.xmmword) |
| || (i.types[given].bitfield.ymmword |
| && !t->operand_types[wanted].bitfield.ymmword) |
| || (i.types[given].bitfield.zmmword |
| && !t->operand_types[wanted].bitfield.zmmword) |
| || (i.types[given].bitfield.tmmword |
| && !t->operand_types[wanted].bitfield.tmmword)); |
| } |
| |
| /* Return 1 if there is no conflict in any size between operand GIVEN |
| and opeand WANTED for instruction template T. */ |
| |
| static INLINE int |
| match_mem_size (const insn_template *t, unsigned int wanted, |
| unsigned int given) |
| { |
| return (match_operand_size (t, wanted, given) |
| && !((i.types[given].bitfield.unspecified |
| && !i.broadcast.type |
| && !i.broadcast.bytes |
| && !t->operand_types[wanted].bitfield.unspecified) |
| || (i.types[given].bitfield.fword |
| && !t->operand_types[wanted].bitfield.fword) |
| /* For scalar opcode templates to allow register and memory |
| operands at the same time, some special casing is needed |
| here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and |
| down-conversion vpmov*. */ |
| || ((t->operand_types[wanted].bitfield.class == RegSIMD |
| && t->operand_types[wanted].bitfield.byte |
| + t->operand_types[wanted].bitfield.word |
| + t->operand_types[wanted].bitfield.dword |
| + t->operand_types[wanted].bitfield.qword |
| > !!t->opcode_modifier.broadcast) |
| ? (i.types[given].bitfield.xmmword |
| || i.types[given].bitfield.ymmword |
| || i.types[given].bitfield.zmmword) |
| : !match_simd_size(t, wanted, given)))); |
| } |
| |
| /* Return value has MATCH_STRAIGHT set if there is no size conflict on any |
| operands for instruction template T, and it has MATCH_REVERSE set if there |
| is no size conflict on any operands for the template with operands reversed |
| (and the template allows for reversing in the first place). */ |
| |
| #define MATCH_STRAIGHT 1 |
| #define MATCH_REVERSE 2 |
| |
| static INLINE unsigned int |
| operand_size_match (const insn_template *t) |
| { |
| unsigned int j, match = MATCH_STRAIGHT; |
| |
| /* Don't check non-absolute jump instructions. */ |
| if (t->opcode_modifier.jump |
| && t->opcode_modifier.jump != JUMP_ABSOLUTE) |
| return match; |
| |
| /* Check memory and accumulator operand size. */ |
| for (j = 0; j < i.operands; j++) |
| { |
| if (i.types[j].bitfield.class != Reg |
| && i.types[j].bitfield.class != RegSIMD |
| && t->opcode_modifier.operandconstraint == ANY_SIZE) |
| continue; |
| |
| if (t->operand_types[j].bitfield.class == Reg |
| && !match_operand_size (t, j, j)) |
| { |
| match = 0; |
| break; |
| } |
| |
| if (t->operand_types[j].bitfield.class == RegSIMD |
| && !match_simd_size (t, j, j)) |
| { |
| match = 0; |
| break; |
| } |
| |
| if (t->operand_types[j].bitfield.instance == Accum |
| && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j))) |
| { |
| match = 0; |
| break; |
| } |
| |
| if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j)) |
| { |
| match = 0; |
| break; |
| } |
| } |
| |
| if (!t->opcode_modifier.d) |
| return match; |
| |
| /* Check reverse. */ |
| gas_assert (i.operands >= 2); |
| |
| for (j = 0; j < i.operands; j++) |
| { |
| unsigned int given = i.operands - j - 1; |
| |
| /* For FMA4 and XOP insns VEX.W controls just the first two |
| register operands. And APX_F insns just swap the two source operands, |
| with the 3rd one being the destination. */ |
| if (is_cpu (t, CpuFMA4) || is_cpu (t, CpuXOP) |
| || is_cpu (t, CpuAPX_F)) |
| given = j < 2 ? 1 - j : j; |
| |
| if (t->operand_types[j].bitfield.class == Reg |
| && !match_operand_size (t, j, given)) |
| return match; |
| |
| if (t->operand_types[j].bitfield.class == RegSIMD |
| && !match_simd_size (t, j, given)) |
| return match; |
| |
| if (t->operand_types[j].bitfield.instance == Accum |
| && (!match_operand_size (t, j, given) |
| || !match_simd_size (t, j, given))) |
| return match; |
| |
| if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given)) |
| return match; |
| } |
| |
| return match | MATCH_REVERSE; |
| } |
| |
| static INLINE int |
| operand_type_match (i386_operand_type overlap, |
| i386_operand_type given) |
| { |
| i386_operand_type temp = overlap; |
| |
| temp.bitfield.unspecified = 0; |
| temp.bitfield.byte = 0; |
| temp.bitfield.word = 0; |
| temp.bitfield.dword = 0; |
| temp.bitfield.fword = 0; |
| temp.bitfield.qword = 0; |
| temp.bitfield.tbyte = 0; |
| temp.bitfield.xmmword = 0; |
| temp.bitfield.ymmword = 0; |
| temp.bitfield.zmmword = 0; |
| temp.bitfield.tmmword = 0; |
| if (operand_type_all_zero (&temp)) |
| goto mismatch; |
| |
| if (given.bitfield.baseindex == overlap.bitfield.baseindex) |
| return 1; |
| |
| mismatch: |
| i.error = operand_type_mismatch; |
| return 0; |
| } |
| |
| /* If given types g0 and g1 are registers they must be of the same type |
| unless the expected operand type register overlap is null. |
| Intel syntax sized memory operands are also checked here. */ |
| |
| static INLINE int |
| operand_type_register_match (i386_operand_type g0, |
| i386_operand_type t0, |
| i386_operand_type g1, |
| i386_operand_type t1) |
| { |
| if (g0.bitfield.class != Reg |
| && g0.bitfield.class != RegSIMD |
| && (g0.bitfield.unspecified |
| || !operand_type_check (g0, anymem))) |
| return 1; |
| |
| if (g1.bitfield.class != Reg |
| && g1.bitfield.class != RegSIMD |
| && (g1.bitfield.unspecified |
| || !operand_type_check (g1, anymem))) |
| return 1; |
| |
| if (g0.bitfield.byte == g1.bitfield.byte |
| && g0.bitfield.word == g1.bitfield.word |
| && g0.bitfield.dword == g1.bitfield.dword |
| && g0.bitfield.qword == g1.bitfield.qword |
| && g0.bitfield.xmmword == g1.bitfield.xmmword |
| && g0.bitfield.ymmword == g1.bitfield.ymmword |
| && g0.bitfield.zmmword == g1.bitfield.zmmword) |
| return 1; |
| |
| /* If expectations overlap in no more than a single size, all is fine. */ |
| g0 = operand_type_and (t0, t1); |
| if (g0.bitfield.byte |
| + g0.bitfield.word |
| + g0.bitfield.dword |
| + g0.bitfield.qword |
| + g0.bitfield.xmmword |
| + g0.bitfield.ymmword |
| + g0.bitfield.zmmword <= 1) |
| return 1; |
| |
| i.error = register_type_mismatch; |
| |
| return 0; |
| } |
| |
| static INLINE unsigned int |
| register_number (const reg_entry *r) |
| { |
| unsigned int nr = r->reg_num; |
| |
| if (r->reg_flags & RegRex) |
| nr += 8; |
| |
| if (r->reg_flags & (RegVRex | RegRex2)) |
| nr += 16; |
| |
| return nr; |
| } |
| |
| static INLINE unsigned int |
| mode_from_disp_size (i386_operand_type t) |
| { |
| if (t.bitfield.disp8) |
| return 1; |
| else if (t.bitfield.disp16 |
| || t.bitfield.disp32) |
| return 2; |
| else |
| return 0; |
| } |
| |
| static INLINE int |
| fits_in_signed_byte (addressT num) |
| { |
| return num + 0x80 <= 0xff; |
| } |
| |
| static INLINE int |
| fits_in_unsigned_byte (addressT num) |
| { |
| return num <= 0xff; |
| } |
| |
| static INLINE int |
| fits_in_unsigned_word (addressT num) |
| { |
| return num <= 0xffff; |
| } |
| |
| static INLINE int |
| fits_in_signed_word (addressT num) |
| { |
| return num + 0x8000 <= 0xffff; |
| } |
| |
| static INLINE int |
| fits_in_signed_long (addressT num ATTRIBUTE_UNUSED) |
| { |
| #ifndef BFD64 |
| return 1; |
| #else |
| return num + 0x80000000 <= 0xffffffff; |
| #endif |
| } /* fits_in_signed_long() */ |
| |
| static INLINE int |
| fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED) |
| { |
| #ifndef BFD64 |
| return 1; |
| #else |
| return num <= 0xffffffff; |
| #endif |
| } /* fits_in_unsigned_long() */ |
| |
| static INLINE valueT extend_to_32bit_address (addressT num) |
| { |
| #ifdef BFD64 |
| if (fits_in_unsigned_long(num)) |
| return (num ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31); |
| |
| if (!fits_in_signed_long (num)) |
| return num & 0xffffffff; |
| #endif |
| |
| return num; |
| } |
| |
| static INLINE int |
| fits_in_disp8 (offsetT num) |
| { |
| int shift = i.memshift; |
| unsigned int mask; |
| |
| if (shift == -1) |
| abort (); |
| |
| mask = (1 << shift) - 1; |
| |
| /* Return 0 if NUM isn't properly aligned. */ |
| if ((num & mask)) |
| return 0; |
| |
| /* Check if NUM will fit in 8bit after shift. */ |
| return fits_in_signed_byte (num >> shift); |
| } |
| |
| static INLINE int |
| fits_in_imm4 (offsetT num) |
| { |
| /* Despite the name, check for imm3 if we're dealing with EVEX. */ |
| return (num & (pp.encoding != encoding_evex |
| && pp.encoding != encoding_egpr ? 0xf : 7)) == num; |
| } |
| |
| static i386_operand_type |
| smallest_imm_type (offsetT num) |
| { |
| i386_operand_type t; |
| |
| operand_type_set (&t, 0); |
| t.bitfield.imm64 = 1; |
| |
| if (cpu_arch_tune != PROCESSOR_I486 && num == 1) |
| { |
| /* This code is disabled on the 486 because all the Imm1 forms |
| in the opcode table are slower on the i486. They're the |
| versions with the implicitly specified single-position |
| displacement, which has another syntax if you really want to |
| use that form. */ |
| t.bitfield.imm1 = 1; |
| t.bitfield.imm8 = 1; |
| t.bitfield.imm8s = 1; |
| t.bitfield.imm16 = 1; |
| t.bitfield.imm32 = 1; |
| t.bitfield.imm32s = 1; |
| } |
| else if (fits_in_signed_byte (num)) |
| { |
| if (fits_in_unsigned_byte (num)) |
| t.bitfield.imm8 = 1; |
| t.bitfield.imm8s = 1; |
| t.bitfield.imm16 = 1; |
| if (flag_code != CODE_64BIT || fits_in_unsigned_long (num)) |
| t.bitfield.imm32 = 1; |
| t.bitfield.imm32s = 1; |
| } |
| else if (fits_in_unsigned_byte (num)) |
| { |
| t.bitfield.imm8 = 1; |
| t.bitfield.imm16 = 1; |
| t.bitfield.imm32 = 1; |
| t.bitfield.imm32s = 1; |
| } |
| else if (fits_in_signed_word (num) || fits_in_unsigned_word (num)) |
| { |
| t.bitfield.imm16 = 1; |
| if (flag_code != CODE_64BIT || fits_in_unsigned_long (num)) |
| t.bitfield.imm32 = 1; |
| t.bitfield.imm32s = 1; |
| } |
| else if (fits_in_signed_long (num)) |
| { |
| if (flag_code != CODE_64BIT || fits_in_unsigned_long (num)) |
| t.bitfield.imm32 = 1; |
| t.bitfield.imm32s = 1; |
| } |
| else if (fits_in_unsigned_long (num)) |
| t.bitfield.imm32 = 1; |
| |
| return t; |
| } |
| |
| static offsetT |
| offset_in_range (offsetT val, int size) |
| { |
| addressT mask; |
| |
| switch (size) |
| { |
| case 1: mask = ((addressT) 1 << 8) - 1; break; |
| case 2: mask = ((addressT) 1 << 16) - 1; break; |
| #ifdef BFD64 |
| case 4: mask = ((addressT) 1 << 32) - 1; break; |
| #endif |
| case sizeof (val): return val; |
| default: abort (); |
| } |
| |
| if ((val & ~mask) != 0 && (-val & ~mask) != 0) |
| as_warn (_("0x%" PRIx64 " shortened to 0x%" PRIx64), |
| (uint64_t) val, (uint64_t) (val & mask)); |
| |
| return val & mask; |
| } |
| |
| static INLINE const char *insn_name (const insn_template *t) |
| { |
| return &i386_mnemonics[t->mnem_off]; |
| } |
| |
| enum PREFIX_GROUP |
| { |
| PREFIX_EXIST = 0, |
| PREFIX_LOCK, |
| PREFIX_REP, |
| PREFIX_DS, |
| PREFIX_OTHER |
| }; |
| |
| /* Returns |
| a. PREFIX_EXIST if attempting to add a prefix where one from the |
| same class already exists. |
| b. PREFIX_LOCK if lock prefix is added. |
| c. PREFIX_REP if rep/repne prefix is added. |
| d. PREFIX_DS if ds prefix is added. |
| e. PREFIX_OTHER if other prefix is added. |
| */ |
| |
| static enum PREFIX_GROUP |
| add_prefix (unsigned int prefix) |
| { |
| enum PREFIX_GROUP ret = PREFIX_OTHER; |
| unsigned int q; |
| |
| if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16 |
| && flag_code == CODE_64BIT) |
| { |
| if ((i.prefix[REX_PREFIX] & prefix & REX_W) |
| || (i.prefix[REX_PREFIX] & prefix & REX_R) |
| || (i.prefix[REX_PREFIX] & prefix & REX_X) |
| || (i.prefix[REX_PREFIX] & prefix & REX_B)) |
| ret = PREFIX_EXIST; |
| q = REX_PREFIX; |
| } |
| else |
| { |
| switch (prefix) |
| { |
| default: |
| abort (); |
| |
| case DS_PREFIX_OPCODE: |
| ret = PREFIX_DS; |
| /* Fall through. */ |
| case CS_PREFIX_OPCODE: |
| case ES_PREFIX_OPCODE: |
| case FS_PREFIX_OPCODE: |
| case GS_PREFIX_OPCODE: |
| case SS_PREFIX_OPCODE: |
| q = SEG_PREFIX; |
| break; |
| |
| case REPNE_PREFIX_OPCODE: |
| case REPE_PREFIX_OPCODE: |
| q = REP_PREFIX; |
| ret = PREFIX_REP; |
| break; |
| |
| case LOCK_PREFIX_OPCODE: |
| q = LOCK_PREFIX; |
| ret = PREFIX_LOCK; |
| break; |
| |
| case FWAIT_OPCODE: |
| q = WAIT_PREFIX; |
| break; |
| |
| case ADDR_PREFIX_OPCODE: |
| q = ADDR_PREFIX; |
| break; |
| |
| case DATA_PREFIX_OPCODE: |
| q = DATA_PREFIX; |
| break; |
| } |
| if (i.prefix[q] != 0) |
| ret = PREFIX_EXIST; |
| } |
| |
| if (ret) |
| { |
| if (!i.prefix[q]) |
| ++i.prefixes; |
| i.prefix[q] |= prefix; |
| } |
| else |
| as_bad (_("same type of prefix used twice")); |
| |
| return ret; |
| } |
| |
| static void |
| update_code_flag (int value, int check) |
| { |
| PRINTF_LIKE ((*as_error)) = check ? as_fatal : as_bad; |
| |
| if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpu64 ) |
| { |
| as_error (_("64bit mode not supported on `%s'."), |
| cpu_arch_name ? cpu_arch_name : default_arch); |
| return; |
| } |
| |
| if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386) |
| { |
| as_error (_("32bit mode not supported on `%s'."), |
| cpu_arch_name ? cpu_arch_name : default_arch); |
| return; |
| } |
| |
| flag_code = (enum flag_code) value; |
| |
| stackop_size = '\0'; |
| } |
| |
| static void |
| set_code_flag (int value) |
| { |
| update_code_flag (value, 0); |
| } |
| |
| static void |
| set_16bit_gcc_code_flag (int new_code_flag) |
| { |
| flag_code = (enum flag_code) new_code_flag; |
| if (flag_code != CODE_16BIT) |
| abort (); |
| stackop_size = LONG_MNEM_SUFFIX; |
| } |
| |
| static void |
| _set_intel_syntax (int syntax_flag) |
| { |
| intel_syntax = syntax_flag; |
| |
| expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0); |
| |
| register_prefix = allow_naked_reg ? "" : "%"; |
| } |
| |
| static void |
| set_intel_syntax (int syntax_flag) |
| { |
| /* Find out if register prefixing is specified. */ |
| int ask_naked_reg = 0; |
| |
| SKIP_WHITESPACE (); |
| if (!is_end_of_line[(unsigned char) *input_line_pointer]) |
| { |
| char *string; |
| int e = get_symbol_name (&string); |
| |
| if (strcmp (string, "prefix") == 0) |
| ask_naked_reg = 1; |
| else if (strcmp (string, "noprefix") == 0) |
| ask_naked_reg = -1; |
| else |
| as_bad (_("bad argument to syntax directive.")); |
| (void) restore_line_pointer (e); |
| } |
| demand_empty_rest_of_line (); |
| |
| if (ask_naked_reg == 0) |
| allow_naked_reg = (syntax_flag |
| && (bfd_get_symbol_leading_char (stdoutput) != '\0')); |
| else |
| allow_naked_reg = (ask_naked_reg < 0); |
| |
| _set_intel_syntax (syntax_flag); |
| } |
| |
| static void |
| set_intel_mnemonic (int mnemonic_flag) |
| { |
| intel_mnemonic = mnemonic_flag; |
| } |
| |
| static void |
| set_allow_index_reg (int flag) |
| { |
| allow_index_reg = flag; |
| } |
| |
| static void |
| set_check (int what) |
| { |
| enum check_kind *kind; |
| const char *str; |
| |
| if (what) |
| { |
| kind = &operand_check; |
| str = "operand"; |
| } |
| else |
| { |
| kind = &sse_check; |
| str = "sse"; |
| } |
| |
| SKIP_WHITESPACE (); |
| |
| if (!is_end_of_line[(unsigned char) *input_line_pointer]) |
| { |
| char *string; |
| int e = get_symbol_name (&string); |
| |
| if (strcmp (string, "none") == 0) |
| *kind = check_none; |
| else if (strcmp (string, "warning") == 0) |
| *kind = check_warning; |
| else if (strcmp (string, "error") == 0) |
| *kind = check_error; |
| else |
| as_bad (_("bad argument to %s_check directive."), str); |
| (void) restore_line_pointer (e); |
| } |
| else |
| as_bad (_("missing argument for %s_check directive"), str); |
| |
| demand_empty_rest_of_line (); |
| } |
| |
| static void |
| check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED, |
| i386_cpu_flags new_flag ATTRIBUTE_UNUSED) |
| { |
| #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) |
| static const char *arch; |
| |
| /* Intel MCU is only supported on ELF. */ |
| if (!IS_ELF) |
| return; |
| |
| if (!arch) |
| { |
| /* Use cpu_arch_name if it is set in md_parse_option. Otherwise |
| use default_arch. */ |
| arch = cpu_arch_name; |
| if (!arch) |
| arch = default_arch; |
| } |
| |
| /* If we are targeting Intel MCU, we must enable it. */ |
| if ((get_elf_backend_data (stdoutput)->elf_machine_code == EM_IAMCU) |
| == new_flag.bitfield.cpuiamcu) |
| return; |
| |
| as_bad (_("`%s' is not supported on `%s'"), name, arch); |
| #endif |
| } |
| |
| static void |
| extend_cpu_sub_arch_name (const char *pfx, const char *name) |
| { |
| if (cpu_sub_arch_name) |
| cpu_sub_arch_name = reconcat (cpu_sub_arch_name, cpu_sub_arch_name, |
| pfx, name, (const char *) NULL); |
| else |
| cpu_sub_arch_name = concat (pfx, name, (const char *) NULL); |
| } |
| |
| static void isa_enable (unsigned int idx) |
| { |
| i386_cpu_flags flags = cpu_flags_or (cpu_arch_flags, cpu_arch[idx].enable); |
| |
| if (!cpu_flags_equal (&flags, &cpu_arch_flags)) |
| { |
| extend_cpu_sub_arch_name (".", cpu_arch[idx].name); |
| cpu_arch_flags = flags; |
| } |
| |
| cpu_arch_isa_flags = cpu_flags_or (cpu_arch_isa_flags, cpu_arch[idx].enable); |
| } |
| |
| static void isa_disable (unsigned int idx) |
| { |
| i386_cpu_flags flags |
| = cpu_flags_and_not (cpu_arch_flags, cpu_arch[idx].disable); |
| |
| if (!cpu_flags_equal (&flags, &cpu_arch_flags)) |
| { |
| extend_cpu_sub_arch_name (".no", cpu_arch[idx].name); |
| cpu_arch_flags = flags; |
| } |
| |
| cpu_arch_isa_flags |
| = cpu_flags_and_not (cpu_arch_isa_flags, cpu_arch[idx].disable); |
| } |
| |
| static void |
| set_cpu_arch (int dummy ATTRIBUTE_UNUSED) |
| { |
| typedef struct arch_stack_entry |
| { |
| const struct arch_stack_entry *prev; |
| const char *name; |
| char *sub_name; |
| i386_cpu_flags flags; |
| i386_cpu_flags isa_flags; |
| enum processor_type isa; |
| enum flag_code flag_code; |
| unsigned int vector_size; |
| char stackop_size; |
| bool no_cond_jump_promotion; |
| } arch_stack_entry; |
| static const arch_stack_entry *arch_stack_top; |
| char *s; |
| int e; |
| const char *string; |
| unsigned int j = 0; |
| |
| SKIP_WHITESPACE (); |
| |
| if (is_end_of_line[(unsigned char) *input_line_pointer]) |
| { |
| as_bad (_("missing cpu architecture")); |
| input_line_pointer++; |
| return; |
| } |
| |
| e = get_symbol_name (&s); |
| string = s; |
| |
| if (strcmp (string, "push") == 0) |
| { |
| arch_stack_entry *top = XNEW (arch_stack_entry); |
| |
| top->name = cpu_arch_name; |
| if (cpu_sub_arch_name) |
| top->sub_name = xstrdup (cpu_sub_arch_name); |
| else |
| top->sub_name = NULL; |
| top->flags = cpu_arch_flags; |
| top->isa = cpu_arch_isa; |
| top->isa_flags = cpu_arch_isa_flags; |
| top->flag_code = flag_code; |
| top->vector_size = vector_size; |
| top->stackop_size = stackop_size; |
| top->no_cond_jump_promotion = no_cond_jump_promotion; |
| |
| top->prev = arch_stack_top; |
| arch_stack_top = top; |
| |
| (void) restore_line_pointer (e); |
| demand_empty_rest_of_line (); |
| return; |
| } |
| |
| if (strcmp (string, "pop") == 0) |
| { |
| const arch_stack_entry *top = arch_stack_top; |
| |
| if (!top) |
| { |
| as_bad (_(".arch stack is empty")); |
| restore_bad: |
| (void) restore_line_pointer (e); |
| ignore_rest_of_line (); |
| return; |
| } |
| |
| if (top->flag_code != flag_code |
| || top->stackop_size != stackop_size) |
| { |
| static const unsigned int bits[] = { |
| [CODE_16BIT] = 16, |
| [CODE_32BIT] = 32, |
| [CODE_64BIT] = 64, |
| }; |
| |
| as_bad (_("this `.arch pop' requires `.code%u%s' to be in effect"), |
| bits[top->flag_code], |
| top->stackop_size == LONG_MNEM_SUFFIX ? "gcc" : ""); |
| goto restore_bad; |
| } |
| |
| arch_stack_top = top->prev; |
| |
| cpu_arch_name = top->name; |
| free (cpu_sub_arch_name); |
| cpu_sub_arch_name = top->sub_name; |
| cpu_arch_flags = top->flags; |
| cpu_arch_isa = top->isa; |
| cpu_arch_isa_flags = top->isa_flags; |
| vector_size = top->vector_size; |
| no_cond_jump_promotion = top->no_cond_jump_promotion; |
| |
| XDELETE (top); |
| |
| (void) restore_line_pointer (e); |
| demand_empty_rest_of_line (); |
| return; |
| } |
| |
| if (strcmp (string, "default") == 0) |
| { |
| if (strcmp (default_arch, "iamcu") == 0) |
| string = default_arch; |
| else |
| { |
| static const i386_cpu_flags cpu_unknown_flags = CPU_UNKNOWN_FLAGS; |
| |
| cpu_arch_name = NULL; |
| free (cpu_sub_arch_name); |
| cpu_sub_arch_name = NULL; |
| cpu_arch_flags = cpu_unknown_flags; |
| cpu_arch_isa = PROCESSOR_UNKNOWN; |
| cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].enable; |
| if (!cpu_arch_tune_set) |
| cpu_arch_tune = PROCESSOR_UNKNOWN; |
| |
| vector_size = VSZ_DEFAULT; |
| |
| j = ARRAY_SIZE (cpu_arch) + 1; |
| } |
| } |
| |
| for (; j < ARRAY_SIZE (cpu_arch); j++) |
| { |
| if (strcmp (string + (*string == '.'), cpu_arch[j].name) == 0 |
| && (*string == '.') == (cpu_arch[j].type == PROCESSOR_NONE)) |
| { |
| if (*string != '.') |
| { |
| check_cpu_arch_compatible (string, cpu_arch[j].enable); |
| |
| if (flag_code == CODE_64BIT && !cpu_arch[j].enable.bitfield.cpu64 ) |
| { |
| as_bad (_("64bit mode not supported on `%s'."), |
| cpu_arch[j].name); |
| goto restore_bad; |
| } |
| |
| if (flag_code == CODE_32BIT && !cpu_arch[j].enable.bitfield.cpui386) |
| { |
| as_bad (_("32bit mode not supported on `%s'."), |
| cpu_arch[j].name); |
| goto restore_bad; |
| } |
| |
| cpu_arch_name = cpu_arch[j].name; |
| free (cpu_sub_arch_name); |
| cpu_sub_arch_name = NULL; |
| cpu_arch_flags = cpu_arch[j].enable; |
| cpu_arch_isa = cpu_arch[j].type; |
| cpu_arch_isa_flags = cpu_arch[j].enable; |
| if (!cpu_arch_tune_set) |
| cpu_arch_tune = cpu_arch_isa; |
| |
| vector_size = VSZ_DEFAULT; |
| |
| pre_386_16bit_warned = false; |
| break; |
| } |
| |
| if (cpu_flags_all_zero (&cpu_arch[j].enable)) |
| continue; |
| |
| isa_enable (j); |
| |
| (void) restore_line_pointer (e); |
| |
| switch (cpu_arch[j].vsz) |
| { |
| default: |
| break; |
| |
| case vsz_set: |
| #ifdef SVR4_COMMENT_CHARS |
| if (*input_line_pointer == ':' || *input_line_pointer == '/') |
| #else |
| if (*input_line_pointer == '/') |
| #endif |
| { |
| ++input_line_pointer; |
| switch (get_absolute_expression ()) |
| { |
| case 512: vector_size = VSZ512; break; |
| case 256: vector_size = VSZ256; break; |
| case 128: vector_size = VSZ128; break; |
| default: |
| as_bad (_("Unrecognized vector size specifier")); |
| ignore_rest_of_line (); |
| return; |
| } |
| break; |
| } |
| /* Fall through. */ |
| case vsz_reset: |
| vector_size = VSZ_DEFAULT; |
| break; |
| } |
| |
| demand_empty_rest_of_line (); |
| return; |
| } |
| } |
| |
| if (startswith (string, ".no") && j >= ARRAY_SIZE (cpu_arch)) |
| { |
| /* Disable an ISA extension. */ |
| for (j = 0; j < ARRAY_SIZE (cpu_arch); j++) |
| if (cpu_arch[j].type == PROCESSOR_NONE |
| && strcmp (string + 3, cpu_arch[j].name) == 0) |
| { |
| isa_disable (j); |
| |
| if (cpu_arch[j].vsz == vsz_set) |
| vector_size = VSZ_DEFAULT; |
| |
| (void) restore_line_pointer (e); |
| demand_empty_rest_of_line (); |
| return; |
| } |
| } |
| |
| if (j == ARRAY_SIZE (cpu_arch)) |
| { |
| as_bad (_("no such architecture: `%s'"), string); |
| goto restore_bad; |
| } |
| |
| no_cond_jump_promotion = 0; |
| if (restore_line_pointer (e) == ',' |
| && !is_end_of_line[(unsigned char) input_line_pointer[1]]) |
| { |
| ++input_line_pointer; |
| e = get_symbol_name (&s); |
| string = s; |
| |
| if (strcmp (string, "nojumps") == 0) |
| no_cond_jump_promotion = 1; |
| else if (strcmp (string, "jumps") != 0) |
| { |
| as_bad (_("no such architecture modifier: `%s'"), string); |
| goto restore_bad; |
| } |
| |
| (void) restore_line_pointer (e); |
| } |
| |
| demand_empty_rest_of_line (); |
| } |
| |
| enum bfd_architecture |
| i386_arch (void) |
| { |
| if (cpu_arch_isa == PROCESSOR_IAMCU) |
| { |
| if (!IS_ELF || flag_code == CODE_64BIT) |
| as_fatal (_("Intel MCU is 32bit ELF only")); |
| return bfd_arch_iamcu; |
| } |
| else |
| return bfd_arch_i386; |
| } |
| |
| unsigned long |
| i386_mach (void) |
| { |
| if (startswith (default_arch, "x86_64")) |
| { |
| if (default_arch[6] == '\0') |
| return bfd_mach_x86_64; |
| else |
| return bfd_mach_x64_32; |
| } |
| else if (!strcmp (default_arch, "i386") |
| || !strcmp (default_arch, "iamcu")) |
| { |
| if (cpu_arch_isa == PROCESSOR_IAMCU) |
| { |
| if (!IS_ELF) |
| as_fatal (_("Intel MCU is 32bit ELF only")); |
| return bfd_mach_i386_iamcu; |
| } |
| else |
| return bfd_mach_i386_i386; |
| } |
| else |
| as_fatal (_("unknown architecture")); |
| } |
| |
| #include "opcodes/i386-tbl.h" |
| |
| static void |
| op_lookup (const char *mnemonic) |
| { |
| i386_op_off_t *pos = str_hash_find (op_hash, mnemonic); |
| |
| if (pos != NULL) |
| { |
| current_templates.start = &i386_optab[pos[0]]; |
| current_templates.end = &i386_optab[pos[1]]; |
| } |
| else |
| current_templates.end = current_templates.start = NULL; |
| } |
| |
| void |
| md_begin (void) |
| { |
| /* Make sure possible padding space is clear. */ |
| memset (&pp, 0, sizeof (pp)); |
| |
| /* Initialize op_hash hash table. */ |
| op_hash = str_htab_create (); |
| |
| { |
| const i386_op_off_t *cur = i386_op_sets; |
| const i386_op_off_t *end = cur + ARRAY_SIZE (i386_op_sets) - 1; |
| |
| for (; cur < end; ++cur) |
| if (str_hash_insert (op_hash, insn_name (&i386_optab[*cur]), cur, 0)) |
| as_fatal (_("duplicate %s"), insn_name (&i386_optab[*cur])); |
| } |
| |
| /* Initialize reg_hash hash table. */ |
| reg_hash = str_htab_create (); |
| { |
| const reg_entry *regtab; |
| unsigned int regtab_size = i386_regtab_size; |
| |
| for (regtab = i386_regtab; regtab_size--; regtab++) |
| { |
| switch (regtab->reg_type.bitfield.class) |
| { |
| case Reg: |
| if (regtab->reg_type.bitfield.dword) |
| { |
| if (regtab->reg_type.bitfield.instance == Accum) |
| reg_eax = regtab; |
| } |
| else if (regtab->reg_type.bitfield.tbyte) |
| { |
| /* There's no point inserting st(<N>) in the hash table, as |
| parentheses aren't included in register_chars[] anyway. */ |
| if (regtab->reg_type.bitfield.instance != Accum) |
| continue; |
| reg_st0 = regtab; |
| } |
| break; |
| |
| case SReg: |
| switch (regtab->reg_num) |
| { |
| case 0: reg_es = regtab; break; |
| case 2: reg_ss = regtab; break; |
| case 3: reg_ds = regtab; break; |
| } |
| break; |
| |
| case RegMask: |
| if (!regtab->reg_num) |
| reg_k0 = regtab; |
| break; |
| } |
| |
| if (str_hash_insert (reg_hash, regtab->reg_name, regtab, 0) != NULL) |
| as_fatal (_("duplicate %s"), regtab->reg_name); |
| } |
| } |
| |
| /* Fill in lexical tables: mnemonic_chars, operand_chars. */ |
| { |
| int c; |
| const char *p; |
| |
| for (c = 0; c < 256; c++) |
| { |
| if (ISDIGIT (c) || ISLOWER (c)) |
| { |
| mnemonic_chars[c] = c; |
| register_chars[c] = c; |
| operand_chars[c] = c; |
| } |
| else if (ISUPPER (c)) |
| { |
| mnemonic_chars[c] = TOLOWER (c); |
| register_chars[c] = mnemonic_chars[c]; |
| operand_chars[c] = c; |
| } |
| #ifdef SVR4_COMMENT_CHARS |
| else if (c == '\\' && strchr (i386_comment_chars, '/')) |
| operand_chars[c] = c; |
| #endif |
| |
| if (c >= 128) |
| operand_chars[c] = c; |
| } |
| |
| mnemonic_chars['_'] = '_'; |
| mnemonic_chars['-'] = '-'; |
| mnemonic_chars['.'] = '.'; |
| |
| for (p = extra_symbol_chars; *p != '\0'; p++) |
| operand_chars[(unsigned char) *p] = *p; |
| for (p = operand_special_chars; *p != '\0'; p++) |
| operand_chars[(unsigned char) *p] = *p; |
| } |
| |
| if (object_64bit) |
| { |
| #if defined (OBJ_COFF) && defined (TE_PE) |
| x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour |
| ? 32 : 16); |
| #else |
| x86_dwarf2_return_column = 16; |
| #endif |
| x86_cie_data_alignment = -8; |
| #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) |
| x86_sframe_cfa_sp_reg = REG_SP; |
| x86_sframe_cfa_fp_reg = REG_FP; |
| #endif |
| } |
| else |
| { |
| x86_dwarf2_return_column = 8; |
| x86_cie_data_alignment = -4; |
| } |
| |
| /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it |
| can be turned into BRANCH_PREFIX frag. */ |
| if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE) |
| abort (); |
| } |
| |
| void |
| i386_print_statistics (FILE *file) |
| { |
| htab_print_statistics (file, "i386 opcode", op_hash); |
| htab_print_statistics (file, "i386 register", reg_hash); |
| } |
| |
| void |
| i386_md_end (void) |
| { |
| htab_delete (op_hash); |
| htab_delete (reg_hash); |
| } |
| |
| #ifdef DEBUG386 |
| |
| /* Debugging routines for md_assemble. */ |
| static void pte (insn_template *); |
| static void pt (i386_operand_type); |
| static void pe (expressionS *); |
| static void ps (symbolS *); |
| |
| static void |
| pi (const char *line, i386_insn *x) |
| { |
| unsigned int j; |
| |
| fprintf (stdout, "%s: template ", line); |
| pte (&x->tm); |
| fprintf (stdout, " address: base %s index %s scale %x\n", |
| x->base_reg ? x->base_reg->reg_name : "none", |
| x->index_reg ? x->index_reg->reg_name : "none", |
| x->log2_scale_factor); |
| fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n", |
| x->rm.mode, x->rm.reg, x->rm.regmem); |
| fprintf (stdout, " sib: base %x index %x scale %x\n", |
| x->sib.base, x->sib.index, x->sib.scale); |
| fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n", |
| (x->rex & REX_W) != 0, |
| (x->rex & REX_R) != 0, |
| (x->rex & REX_X) != 0, |
| (x->rex & REX_B) != 0); |
| for (j = 0; j < x->operands; j++) |
| { |
| fprintf (stdout, " #%d: ", j + 1); |
| pt (x->types[j]); |
| fprintf (stdout, "\n"); |
| if (x->types[j].bitfield.class == Reg |
| || x->types[j].bitfield.class == RegMMX |
| || x->types[j].bitfield.class == RegSIMD |
| || x->types[j].bitfield.class == RegMask |
| || x->types[j].bitfield.class == SReg |
| || x->types[j].bitfield.class == RegCR |
| || x->types[j].bitfield.class == RegDR |
| || x->types[j].bitfield.class == RegTR |
| || x->types[j].bitfield.class == RegBND) |
| fprintf (stdout, "%s\n", x->op[j].regs->reg_name); |
| if (operand_type_check (x->types[j], imm)) |
| pe (x->op[j].imms); |
| if (operand_type_check (x->types[j], disp)) |
| pe (x->op[j].disps); |
| } |
| } |
| |
| static void |
| pte (insn_template *t) |
| { |
| static const unsigned char opc_pfx[] = { 0, 0x66, 0xf3, 0xf2 }; |
| static const char *const opc_spc[] = { |
| NULL, "0f", "0f38", "0f3a", NULL, "evexmap5", "evexmap6", NULL, |
| "XOP08", "XOP09", "XOP0A", |
| }; |
| unsigned int j; |
| |
| fprintf (stdout, " %d operands ", t->operands); |
| if (opc_pfx[t->opcode_modifier.opcodeprefix]) |
| fprintf (stdout, "pfx %x ", opc_pfx[t->opcode_modifier.opcodeprefix]); |
| if (opc_spc[t->opcode_space]) |
| fprintf (stdout, "space %s ", opc_spc[t->opcode_space]); |
| fprintf (stdout, "opcode %x ", t->base_opcode); |
| if (t->extension_opcode != None) |
| fprintf (stdout, "ext %x ", t->extension_opcode); |
| if (t->opcode_modifier.d) |
| fprintf (stdout, "D"); |
| if (t->opcode_modifier.w) |
| fprintf (stdout, "W"); |
| fprintf (stdout, "\n"); |
| for (j = 0; j < t->operands; j++) |
| { |
| fprintf (stdout, " #%d type ", j + 1); |
| pt (t->operand_types[j]); |
| fprintf (stdout, "\n"); |
| } |
| } |
| |
| static void |
| pe (expressionS *e) |
| { |
| fprintf (stdout, " operation %d\n", e->X_op); |
| fprintf (stdout, " add_number %" PRId64 " (%" PRIx64 ")\n", |
| (int64_t) e->X_add_number, (uint64_t) (valueT) e->X_add_number); |
| if (e->X_add_symbol) |
| { |
| fprintf (stdout, " add_symbol "); |
| ps (e->X_add_symbol); |
| fprintf (stdout, "\n"); |
| } |
| if (e->X_op_symbol) |
| { |
| fprintf (stdout, " op_symbol "); |
| ps (e->X_op_symbol); |
| fprintf (stdout, "\n"); |
| } |
| } |
| |
| static void |
| ps (symbolS *s) |
| { |
| fprintf (stdout, "%s type %s%s", |
| S_GET_NAME (s), |
| S_IS_EXTERNAL (s) ? "EXTERNAL " : "", |
| segment_name (S_GET_SEGMENT (s))); |
| } |
| |
| static struct type_name |
| { |
| i386_operand_type mask; |
| const char *name; |
| } |
| const type_names[] = |
| { |
| { { .bitfield = { .class = Reg, .byte = 1 } }, "r8" }, |
| { { .bitfield = { .class = Reg, .word = 1 } }, "r16" }, |
| { { .bitfield = { .class = Reg, .dword = 1 } }, "r32" }, |
| { { .bitfield = { .class = Reg, .qword = 1 } }, "r64" }, |
| { { .bitfield = { .instance = Accum, .byte = 1 } }, "acc8" }, |
| { { .bitfield = { .instance = Accum, .word = 1 } }, "acc16" }, |
| { { .bitfield = { .instance = Accum, .dword = 1 } }, "acc32" }, |
| { { .bitfield = { .instance = Accum, .qword = 1 } }, "acc64" }, |
| { { .bitfield = { .imm8 = 1 } }, "i8" }, |
| { { .bitfield = { .imm8s = 1 } }, "i8s" }, |
| { { .bitfield = { .imm16 = 1 } }, "i16" }, |
| { { .bitfield = { .imm32 = 1 } }, "i32" }, |
| { { .bitfield = { .imm32s = 1 } }, "i32s" }, |
| { { .bitfield = { .imm64 = 1 } }, "i64" }, |
| { { .bitfield = { .imm1 = 1 } }, "i1" }, |
| { { .bitfield = { .baseindex = 1 } }, "BaseIndex" }, |
| { { .bitfield = { .disp8 = 1 } }, "d8" }, |
| { { .bitfield = { .disp16 = 1 } }, "d16" }, |
| { { .bitfield = { .disp32 = 1 } }, "d32" }, |
| { { .bitfield = { .disp64 = 1 } }, "d64" }, |
| { { .bitfield = { .instance = RegD, .word = 1 } }, "InOutPortReg" }, |
| { { .bitfield = { .instance = RegC, .byte = 1 } }, "ShiftCount" }, |
| { { .bitfield = { .class = RegCR } }, "control reg" }, |
| { { .bitfield = { .class = RegTR } }, "test reg" }, |
| { { .bitfield = { .class = RegDR } }, "debug reg" }, |
| { { .bitfield = { .class = Reg, .tbyte = 1 } }, "FReg" }, |
| { { .bitfield = { .instance = Accum, .tbyte = 1 } }, "FAcc" }, |
| { { .bitfield = { .class = SReg } }, "SReg" }, |
| { { .bitfield = { .class = RegMMX } }, "rMMX" }, |
| { { .bitfield = { .class = RegSIMD, .xmmword = 1 } }, "rXMM" }, |
| { { .bitfield = { .class = RegSIMD, .ymmword = 1 } }, "rYMM" }, |
| { { .bitfield = { .class = RegSIMD, .zmmword = 1 } }, "rZMM" }, |
| { { .bitfield = { .class = RegSIMD, .tmmword = 1 } }, "rTMM" }, |
| { { .bitfield = { .class = RegMask } }, "Mask reg" }, |
| }; |
| |
| static void |
| pt (i386_operand_type t) |
| { |
| unsigned int j; |
| i386_operand_type a; |
| |
| for (j = 0; j < ARRAY_SIZE (type_names); j++) |
| { |
| a = operand_type_and (t, type_names[j].mask); |
| if (operand_type_equal (&a, &type_names[j].mask)) |
| fprintf (stdout, "%s, ", type_names[j].name); |
| } |
| fflush (stdout); |
| } |
| |
| #endif /* DEBUG386 */ |
| |
| static bfd_reloc_code_real_type |
| reloc (unsigned int size, |
| int pcrel, |
| int sign, |
| bfd_reloc_code_real_type other) |
| { |
| if (other != NO_RELOC) |
| { |
| reloc_howto_type *rel; |
| |
| if (size == 8) |
| switch (other) |
| { |
| case BFD_RELOC_X86_64_GOT32: |
| return BFD_RELOC_X86_64_GOT64; |
| break; |
| case BFD_RELOC_X86_64_GOTPLT64: |
| return BFD_RELOC_X86_64_GOTPLT64; |
| break; |
| case BFD_RELOC_X86_64_PLTOFF64: |
| return BFD_RELOC_X86_64_PLTOFF64; |
| break; |
| case BFD_RELOC_X86_64_GOTPC32: |
| other = BFD_RELOC_X86_64_GOTPC64; |
| break; |
| case BFD_RELOC_X86_64_GOTPCREL: |
| other = BFD_RELOC_X86_64_GOTPCREL64; |
| break; |
| case BFD_RELOC_X86_64_TPOFF32: |
| other = BFD_RELOC_X86_64_TPOFF64; |
| break; |
| case BFD_RELOC_X86_64_DTPOFF32: |
| other = BFD_RELOC_X86_64_DTPOFF64; |
| break; |
| default: |
| break; |
| } |
| |
| #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) |
| if (other == BFD_RELOC_SIZE32) |
| { |
| if (size == 8) |
| other = BFD_RELOC_SIZE64; |
| if (pcrel) |
| { |
| as_bad (_("there are no pc-relative size relocations")); |
| return NO_RELOC; |
| } |
| } |
| #endif |
| |
| /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */ |
| if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc)) |
| sign = -1; |
| |
| rel = bfd_reloc_type_lookup (stdoutput, other); |
| if (!rel) |
| as_bad (_("unknown relocation (%u)"), other); |
| else if (size != bfd_get_reloc_size (rel)) |
| as_bad (_("%u-byte relocation cannot be applied to %u-byte field"), |
| bfd_get_reloc_size (rel), |
| size); |
| else if (pcrel && !rel->pc_relative) |
| as_bad (_("non-pc-relative relocation for pc-relative field")); |
| else if ((rel->complain_on_overflow == complain_overflow_signed |
| && !sign) |
| || (rel->complain_on_overflow == complain_overflow_unsigned |
| && sign > 0)) |
| as_bad (_("relocated field and relocation type differ in signedness")); |
| else |
| return other; |
| return NO_RELOC; |
| } |
| |
| if (pcrel) |
| { |
| if (!sign) |
| as_bad (_("there are no unsigned pc-relative relocations")); |
| switch (size) |
| { |
| case 1: return BFD_RELOC_8_PCREL; |
| case 2: return BFD_RELOC_16_PCREL; |
| case 4: return BFD_RELOC_32_PCREL; |
| case 8: return BFD_RELOC_64_PCREL; |
| } |
| as_bad (_("cannot do %u byte pc-relative relocation"), size); |
| } |
| else |
| { |
| if (sign > 0) |
| switch (size) |
| { |
| case 4: return BFD_RELOC_X86_64_32S; |
| } |
| else |
| switch (size) |
| { |
| case 1: return BFD_RELOC_8; |
| case 2: return BFD_RELOC_16; |
| case 4: return BFD_RELOC_32; |
| case 8: return BFD_RELOC_64; |
| } |
| as_bad (_("cannot do %s %u byte relocation"), |
| sign > 0 ? "signed" : "unsigned", size); |
| } |
| |
| return NO_RELOC; |
| } |
| |
| #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) |
| /* Here we decide which fixups can be adjusted to make them relative to |
| the beginning of the section instead of the symbol. Basically we need |
| to make sure that the dynamic relocations are done correctly, so in |
| some cases we force the original symbol to be used. */ |
| |
| int |
| tc_i386_fix_adjustable (fixS *fixP) |
| { |
| if (!IS_ELF) |
| return 1; |
| |
| /* Don't adjust pc-relative references to merge sections in 64-bit |
| mode. */ |
| if (use_rela_relocations |
| && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0 |
| && fixP->fx_pcrel) |
| return 0; |
| |
| /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations |
| and changed later by validate_fix. */ |
| if (GOT_symbol && fixP->fx_subsy == GOT_symbol |
| && fixP->fx_r_type == BFD_RELOC_32_PCREL) |
| return 0; |
| |
| /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol |
| for size relocations. */ |
| if (fixP->fx_r_type == BFD_RELOC_SIZE32 |
| || fixP->fx_r_type == BFD_RELOC_SIZE64 |
| || fixP->fx_r_type == BFD_RELOC_386_GOTOFF |
| || fixP->fx_r_type == BFD_RELOC_386_GOT32 |
| || fixP->fx_r_type == BFD_RELOC_386_GOT32X |
| || fixP->fx_r_type == BFD_RELOC_386_TLS_GD |
| || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM |
| || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32 |
| || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32 |
| || fixP->fx_r_type == BFD_RELOC_386_TLS_IE |
| || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE |
| || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32 |
| || fixP->fx_r_type == BFD_RELOC_386_TLS_LE |
| || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC |
| || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL |
| || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32 |
| || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL |
| || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX |
| || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX |
| || fixP->fx_r_type == BFD_RELOC_X86_64_CODE_4_GOTPCRELX |
| || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD |
| || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD |
| || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32 |
| || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64 |
| || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF |
| || fixP->fx_r_type == BFD_RELOC_X86_64_CODE_4_GOTTPOFF |
| || fixP->fx_r_type == BFD_RELOC_X86_64_CODE_6_GOTTPOFF |
| || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32 |
| || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64 |
| || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64 |
| || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC |
| || fixP->fx_r_type == BFD_RELOC_X86_64_CODE_4_GOTPC32_TLSDESC |
| || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL |
| || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT |
| || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY) |
| return 0; |
| return 1; |
| } |
| #endif |
| |
| static INLINE bool |
| want_disp32 (const insn_template *t) |
| { |
| return flag_code != CODE_64BIT |
| || i.prefix[ADDR_PREFIX] |
| || ((t->mnem_off == MN_lea |
| || (i.tm.base_opcode == 0x8d && i.tm.opcode_space == SPACE_BASE)) |
| && (!i.types[1].bitfield.qword |
| || t->opcode_modifier.size == SIZE32)); |
| } |
| |
| static int |
| intel_float_operand (const char *mnemonic) |
| { |
| /* Note that the value returned is meaningful only for opcodes with (memory) |
| operands, hence the code here is free to improperly handle opcodes that |
| have no operands (for better performance and smaller code). */ |
| |
| if (mnemonic[0] != 'f') |
| return 0; /* non-math */ |
| |
| switch (mnemonic[1]) |
| { |
| /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and |
| the fs segment override prefix not currently handled because no |
| call path can make opcodes without operands get here */ |
| case 'i': |
| return 2 /* integer op */; |
| case 'l': |
| if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e')) |
| return 3; /* fldcw/fldenv */ |
| break; |
| case 'n': |
| if (mnemonic[2] != 'o' /* fnop */) |
| return 3; /* non-waiting control op */ |
| break; |
| case 'r': |
| if (mnemonic[2] == 's') |
| return 3; /* frstor/frstpm */ |
| break; |
| case 's': |
| if (mnemonic[2] == 'a') |
| return 3; /* fsave */ |
| if (mnemonic[2] == 't') |
| { |
| switch (mnemonic[3]) |
| { |
| case 'c': /* fstcw */ |
| case 'd': /* fstdw */ |
| case 'e': /* fstenv */ |
| case 's': /* fsts[gw] */ |
| return 3; |
| } |
| } |
| break; |
| case 'x': |
| if (mnemonic[2] == 'r' || mnemonic[2] == 's') |
| return 0; /* fxsave/fxrstor are not really math ops */ |
| break; |
| } |
| |
| return 1; |
| } |
| |
| static INLINE void |
| install_template (const insn_template *t) |
| { |
| unsigned int l; |
| |
| i.tm = *t; |
| |
| /* Dual VEX/EVEX templates need stripping one of the possible variants. */ |
| if (t->opcode_modifier.vex && t->opcode_modifier.evex) |
| { |
| if ((maybe_cpu (t, CpuAVX) || maybe_cpu (t, CpuAVX2) |
| || maybe_cpu (t, CpuFMA)) |
| && (maybe_cpu (t, CpuAVX512F) || maybe_cpu (t, CpuAVX512VL))) |
| { |
| if (need_evex_encoding (t)) |
| { |
| i.tm.opcode_modifier.vex = 0; |
| i.tm.cpu.bitfield.cpuavx512f = i.tm.cpu_any.bitfield.cpuavx512f; |
| i.tm.cpu.bitfield.cpuavx512vl = i.tm.cpu_any.bitfield.cpuavx512vl; |
| } |
| else |
| { |
| i.tm.opcode_modifier.evex = 0; |
| if (i.tm.cpu_any.bitfield.cpuavx) |
| i.tm.cpu.bitfield.cpuavx = 1; |
| else if (!i.tm.cpu.bitfield.isa) |
| i.tm.cpu.bitfield.isa = i.tm.cpu_any.bitfield.isa; |
| else |
| gas_assert (i.tm.cpu.bitfield.isa == i.tm.cpu_any.bitfield.isa); |
| } |
| } |
| |
| if ((maybe_cpu (t, CpuCMPCCXADD) || maybe_cpu (t, CpuAMX_TILE) |
| || maybe_cpu (t, CpuAVX512F) || maybe_cpu (t, CpuAVX512DQ) |
| || maybe_cpu (t, CpuAVX512BW) || maybe_cpu (t, CpuBMI) |
| || maybe_cpu (t, CpuBMI2) || maybe_cpu (t, CpuUSER_MSR)) |
| && maybe_cpu (t, CpuAPX_F)) |
| { |
| if (need_evex_encoding (t)) |
| i.tm.opcode_modifier.vex = 0; |
| else |
| i.tm.opcode_modifier.evex = 0; |
| } |
| } |
| |
| /* For CCMP and CTEST the template has EVEX.SCC in base_opcode. Move it out of |
| there, to then adjust base_opcode to obtain its normal meaning. */ |
| if (i.tm.opcode_modifier.operandconstraint == SCC) |
| { |
| /* Get EVEX.SCC value from the lower 4 bits of base_opcode. */ |
| i.scc = i.tm.base_opcode & 0xf; |
| i.tm.base_opcode >>= 8; |
| } |
| |
| /* For CMOVcc having undergone NDD-to-legacy optimization with its source |
| operands being swapped, we need to invert the encoded condition. */ |
| if (i.invert_cond) |
| i.tm.base_opcode ^= 1; |
| |
| /* Note that for pseudo prefixes this produces a length of 1. But for them |
| the length isn't interesting at all. */ |
| for (l = 1; l < 4; ++l) |
| if (!(i.tm.base_opcode >> (8 * l))) |
| break; |
| |
| i.opcode_length = l; |
| } |
| |
| /* Build the VEX prefix. */ |
| |
| static void |
| build_vex_prefix (const insn_template *t) |
| { |
| unsigned int register_specifier; |
| unsigned int vector_length; |
| bool w; |
| |
| /* Check register specifier. */ |
| if (i.vex.register_specifier) |
| { |
| register_specifier = |
| ~register_number (i.vex.register_specifier) & 0xf; |
| gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0); |
| } |
| else |
| register_specifier = 0xf; |
| |
| /* Use 2-byte VEX prefix by swapping destination and source operand |
| if there are more than 1 register operand. */ |
| if (i.reg_operands > 1 |
| && pp.encoding != encoding_vex3 |
| && pp.dir_encoding == dir_encoding_default |
| && i.operands == i.reg_operands |
| && operand_type_equal (&i.types[0], &i.types[i.operands - 1]) |
| && i.tm.opcode_space == SPACE_0F |
| && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d) |
| && i.rex == REX_B) |
| { |
| unsigned int xchg; |
| |
| swap_2_operands (0, i.operands - 1); |
| |
| gas_assert (i.rm.mode == 3); |
| |
| i.rex = REX_R; |
| xchg = i.rm.regmem; |
| i.rm.regmem = i.rm.reg; |
| i.rm.reg = xchg; |
| |
| if (i.tm.opcode_modifier.d) |
| i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e |
| ? Opcode_ExtD : Opcode_SIMD_IntD; |
| else /* Use the next insn. */ |
| install_template (&t[1]); |
| } |
| |
| /* Use 2-byte VEX prefix by swapping commutative source operands if there |
| are no memory operands and at least 3 register ones. */ |
| if (i.reg_operands >= 3 |
| && pp.encoding != encoding_vex3 |
| && i.reg_operands == i.operands - i.imm_operands |
| && i.tm.opcode_modifier.vex |
| && i.tm.opcode_modifier.commutative |
| /* .commutative aliases .staticrounding; disambiguate. */ |
| && !i.tm.opcode_modifier.sae |
| && (i.tm.opcode_modifier.sse2avx |
| || (optimize > 1 && !pp.no_optimize)) |
| && i.rex == REX_B |
| && i.vex.register_specifier |
| && !(i.vex.register_specifier->reg_flags & RegRex)) |
| { |
| unsigned int xchg = i.operands - i.reg_operands; |
| |
| gas_assert (i.tm.opcode_space == SPACE_0F); |
| gas_assert (!i.tm.opcode_modifier.sae); |
| gas_assert (operand_type_equal (&i.types[i.operands - 2], |
| &i.types[i.operands - 3])); |
| gas_assert (i.rm.mode == 3); |
| |
| swap_2_operands (xchg, xchg + 1); |
| |
| i.rex = 0; |
| xchg = i.rm.regmem | 8; |
| i.rm.regmem = ~register_specifier & 0xf; |
| gas_assert (!(i.rm.regmem & 8)); |
| i.vex.register_specifier += xchg - i.rm.regmem; |
| register_specifier = ~xchg & 0xf; |
| } |
| |
| if (i.tm.opcode_modifier.vex == VEXScalar) |
| vector_length = avxscalar; |
| else if (i.tm.opcode_modifier.vex == VEX256) |
| vector_length = 1; |
| else if (dot_insn () && i.tm.opcode_modifier.vex == VEX128) |
| vector_length = 0; |
| else |
| { |
| unsigned int op; |
| |
| /* Determine vector length from the last multi-length vector |
| operand. */ |
| vector_length = 0; |
| for (op = t->operands; op--;) |
| if (t->operand_types[op].bitfield.xmmword |
| && t->operand_types[op].bitfield.ymmword |
| && i.types[op].bitfield.ymmword) |
| { |
| vector_length = 1; |
| break; |
| } |
| } |
| |
| /* Check the REX.W bit and VEXW. */ |
| if (i.tm.opcode_modifier.vexw == VEXWIG) |
| w = vexwig == vexw1 || (i.rex & REX_W); |
| else if (i.tm.opcode_modifier.vexw && !(i.rex & REX_W)) |
| w = i.tm.opcode_modifier.vexw == VEXW1; |
| else |
| w = flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1; |
| |
| /* Use 2-byte VEX prefix if possible. */ |
| if (w == 0 |
| && pp.encoding != encoding_vex3 |
| && i.tm.opcode_space == SPACE_0F |
| && (i.rex & (REX_W | REX_X | REX_B)) == 0) |
| { |
| /* 2-byte VEX prefix. */ |
| bool r; |
| |
| i.vex.length = 2; |
| i.vex.bytes[0] = 0xc5; |
| |
| /* Check the REX.R bit. */ |
| r = !(i.rex & REX_R); |
| i.vex.bytes[1] = (r << 7 |
| | register_specifier << 3 |
| | vector_length << 2 |
| | i.tm.opcode_modifier.opcodeprefix); |
| } |
| else |
| { |
| /* 3-byte VEX prefix. */ |
| i.vex.length = 3; |
| |
| switch (i.tm.opcode_space) |
| { |
| case SPACE_0F: |
| case SPACE_0F38: |
| case SPACE_0F3A: |
| case SPACE_VEXMAP7: |
| i.vex.bytes[0] = 0xc4; |
| break; |
| case SPACE_XOP08: |
| case SPACE_XOP09: |
| case SPACE_XOP0A: |
| i.vex.bytes[0] = 0x8f; |
| break; |
| default: |
| abort (); |
| } |
| |
| /* The high 3 bits of the second VEX byte are 1's compliment |
| of RXB bits from REX. */ |
| i.vex.bytes[1] = ((~i.rex & 7) << 5) |
| | (!dot_insn () ? i.tm.opcode_space |
| : i.insn_opcode_space); |
| |
| i.vex.bytes[2] = (w << 7 |
| | register_specifier << 3 |
| | vector_length << 2 |
| | i.tm.opcode_modifier.opcodeprefix); |
| } |
| } |
| |
| static INLINE bool |
| is_any_vex_encoding (const insn_template *t) |
| { |
| return t->opcode_modifier.vex || t->opcode_modifier.evex; |
| } |
| |
| /* We can use this function only when the current encoding is evex. */ |
| static INLINE bool |
| is_apx_evex_encoding (void) |
| { |
| return i.rex2 || i.tm.opcode_space == SPACE_EVEXMAP4 || pp.has_nf |
| || (i.vex.register_specifier |
| && (i.vex.register_specifier->reg_flags & RegRex2)); |
| } |
| |
| static INLINE bool |
| is_apx_rex2_encoding (void) |
| { |
| return i.rex2 || pp.rex2_encoding |
| || i.tm.opcode_modifier.rex2; |
| } |
| |
| static unsigned int |
| get_broadcast_bytes (const insn_template *t, bool diag) |
| { |
| unsigned int op, bytes; |
| const i386_operand_type *types; |
| |
| if (i.broadcast.type) |
| return (1 << (t->opcode_modifier.broadcast - 1)) * i.broadcast.type; |
| |
| gas_assert (intel_syntax); |
| |
| for (op = 0; op < t->operands; ++op) |
| if (t->operand_types[op].bitfield.baseindex) |
| break; |
| |
| gas_assert (op < t->operands); |
| |
| if (t->opcode_modifier.evex != EVEXDYN) |
| switch (i.broadcast.bytes) |
| { |
| case 1: |
| if (t->operand_types[op].bitfield.word) |
| return 2; |
| /* Fall through. */ |
| case 2: |
| if (t->operand_types[op].bitfield.dword) |
| return 4; |
| /* Fall through. */ |
| case 4: |
| if (t->operand_types[op].bitfield.qword) |
| return 8; |
| /* Fall through. */ |
| case 8: |
| if (t->operand_types[op].bitfield.xmmword) |
| return 16; |
| if (t->operand_types[op].bitfield.ymmword) |
| return 32; |
| if (t->operand_types[op].bitfield.zmmword) |
| return 64; |
| /* Fall through. */ |
| default: |
| abort (); |
| } |
| |
| gas_assert (op + 1 < t->operands); |
| |
| if (t->operand_types[op + 1].bitfield.xmmword |
| + t->operand_types[op + 1].bitfield.ymmword |
| + t->operand_types[op + 1].bitfield.zmmword > 1) |
| { |
| types = &i.types[op + 1]; |
| diag = false; |
| } |
| else /* Ambiguous - guess with a preference to non-AVX512VL forms. */ |
| types = &t->operand_types[op]; |
| |
| if (types->bitfield.zmmword) |
| bytes = 64; |
| else if (types->bitfield.ymmword) |
| bytes = 32; |
| else |
| bytes = 16; |
| |
| if (diag) |
| as_warn (_("ambiguous broadcast for `%s', using %u-bit form"), |
| insn_name (t), bytes * 8); |
| |
| return bytes; |
| } |
| |
| /* Build the EVEX prefix. */ |
| |
| static void |
| build_evex_prefix (void) |
| { |
| unsigned int register_specifier; |
| bool w, u; |
| rex_byte vrex_used = 0; |
| |
| /* Check register specifier. */ |
| if (i.vex.register_specifier) |
| { |
| gas_assert ((i.vrex & REX_X) == 0); |
| |
| register_specifier = i.vex.register_specifier->reg_num; |
| if ((i.vex.register_specifier->reg_flags & RegRex)) |
| register_specifier += 8; |
| /* The upper 16 registers are encoded in the fourth byte of the |
| EVEX prefix. */ |
| if (!(i.vex.register_specifier->reg_flags & RegVRex)) |
| i.vex.bytes[3] = 0x8; |
| register_specifier = ~register_specifier & 0xf; |
| } |
| else |
| { |
| register_specifier = 0xf; |
| |
| /* Encode upper 16 vector index register in the fourth byte of |
| the EVEX prefix. */ |
| if (!(i.vrex & REX_X)) |
| i.vex.bytes[3] = 0x8; |
| else |
| vrex_used |= REX_X; |
| } |
| |
| /* 4 byte EVEX prefix. */ |
| i.vex.length = 4; |
| i.vex.bytes[0] = 0x62; |
| |
| /* The high 3 bits of the second EVEX byte are 1's compliment of RXB |
| bits from REX. */ |
| gas_assert (i.tm.opcode_space >= SPACE_0F); |
| gas_assert (i.tm.opcode_space <= SPACE_VEXMAP7); |
| i.vex.bytes[1] = ((~i.rex & 7) << 5) |
| | (!dot_insn () ? i.tm.opcode_space |
| : i.insn_opcode_space); |
| |
| /* The fifth bit of the second EVEX byte is 1's compliment of the |
| REX_R bit in VREX. */ |
| if (!(i.vrex & REX_R)) |
| i.vex.bytes[1] |= 0x10; |
| else |
| vrex_used |= REX_R; |
| |
| if ((i.reg_operands + i.imm_operands) == i.operands) |
| { |
| /* When all operands are registers, the REX_X bit in REX is not |
| used. We reuse it to encode the upper 16 registers, which is |
| indicated by the REX_B bit in VREX. The REX_X bit is encoded |
| as 1's compliment. */ |
| if ((i.vrex & REX_B)) |
| { |
| vrex_used |= REX_B; |
| i.vex.bytes[1] &= ~0x40; |
| } |
| } |
| |
| /* EVEX instructions shouldn't need the REX prefix. */ |
| i.vrex &= ~vrex_used; |
| gas_assert (i.vrex == 0); |
| |
| /* Check the REX.W bit and VEXW. */ |
| if (i.tm.opcode_modifier.vexw == VEXWIG) |
| w = evexwig == evexw1 || (i.rex & REX_W); |
| else if (i.tm.opcode_modifier.vexw && !(i.rex & REX_W)) |
| w = i.tm.opcode_modifier.vexw == VEXW1; |
| else |
| w = flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1; |
| |
| if (i.tm.opcode_modifier.evex == EVEXDYN) |
| { |
| unsigned int op; |
| |
| /* Determine vector length from the last multi-length vector operand. */ |
| for (op = i.operands; op--;) |
| if (i.tm.operand_types[op].bitfield.xmmword |
| + i.tm.operand_types[op].bitfield.ymmword |
| + i.tm.operand_types[op].bitfield.zmmword > 1) |
| { |
| if (i.types[op].bitfield.zmmword) |
| { |
| i.tm.opcode_modifier.evex = EVEX512; |
| break; |
| } |
| else if (i.types[op].bitfield.ymmword) |
| { |
| i.tm.opcode_modifier.evex = EVEX256; |
| break; |
| } |
| else if (i.types[op].bitfield.xmmword) |
| { |
| i.tm.opcode_modifier.evex = EVEX128; |
| break; |
| } |
| else if ((i.broadcast.type || i.broadcast.bytes) |
| && op == i.broadcast.operand) |
| { |
| switch (get_broadcast_bytes (&i.tm, true)) |
| { |
| case 64: |
| i.tm.opcode_modifier.evex = EVEX512; |
| break; |
| case 32: |
| i.tm.opcode_modifier.evex = EVEX256; |
| break; |
| case 16: |
| i.tm.opcode_modifier.evex = EVEX128; |
| break; |
| default: |
| abort (); |
| } |
| break; |
| } |
| } |
| |
| if (op >= MAX_OPERANDS) |
| abort (); |
| } |
| |
| u = i.rounding.type == rc_none || i.tm.opcode_modifier.evex != EVEX256; |
| |
| /* The third byte of the EVEX prefix. */ |
| i.vex.bytes[2] = ((w << 7) |
| | (register_specifier << 3) |
| | (u << 2) |
| | i.tm.opcode_modifier.opcodeprefix); |
| |
| /* The fourth byte of the EVEX prefix. */ |
| /* The zeroing-masking bit. */ |
| if (i.mask.reg && i.mask.zeroing) |
| i.vex.bytes[3] |= 0x80; |
| |
| /* Don't always set the broadcast bit if there is no RC. */ |
| if (i.rounding.type == rc_none) |
| { |
| /* Encode the vector length. */ |
| unsigned int vec_length; |
| |
| switch (i.tm.opcode_modifier.evex) |
| { |
| case EVEXLIG: /* LL' is ignored */ |
| vec_length = evexlig << 5; |
| break; |
| case EVEX128: |
| vec_length = 0 << 5; |
| break; |
| case EVEX256: |
| vec_length = 1 << 5; |
| break; |
| case EVEX512: |
| vec_length = 2 << 5; |
| break; |
| case EVEX_L3: |
| if (dot_insn ()) |
| { |
| vec_length = 3 << 5; |
| break; |
| } |
| /* Fall through. */ |
| default: |
| abort (); |
| break; |
| } |
| i.vex.bytes[3] |= vec_length; |
| /* Encode the broadcast bit. */ |
| if (i.broadcast.type || i.broadcast.bytes) |
| i.vex.bytes[3] |= 0x10; |
| } |
| else if (i.rounding.type != saeonly) |
| i.vex.bytes[3] |= 0x10 | (i.rounding.type << 5); |
| else |
| i.vex.bytes[3] |= 0x10 | (evexrcig << 5); |
| |
| if (i.mask.reg) |
| i.vex.bytes[3] |= i.mask.reg->reg_num; |
| } |
| |
| /* Build (2 bytes) rex2 prefix. |
| | D5h | |
| | m | R4 X4 B4 | W R X B | |
| |
| Rex2 reuses i.vex as they both encode i.tm.opcode_space in their prefixes. |
| */ |
| static void |
| build_rex2_prefix (void) |
| { |
| i.vex.length = 2; |
| i.vex.bytes[0] = 0xd5; |
| /* For the W R X B bits, the variables of rex prefix will be reused. */ |
| i.vex.bytes[1] = ((i.tm.opcode_space << 7) |
| | (i.rex2 << 4) | i.rex); |
| } |
| |
| /* Build the EVEX prefix (4-byte) for evex insn |
| | 62h | |
| | `R`X`B`R' | B'mmm | |
| | W | v`v`v`v | `x' | pp | |
| | z| L'L | b | `v | aaa | |
| */ |
| static bool |
| build_apx_evex_prefix (void) |
| { |
| /* To mimic behavior for legacy insns, transform use of DATA16 and REX64 into |
| their embedded-prefix representations. */ |
| if (i.tm.opcode_space == SPACE_EVEXMAP4) |
| { |
| if (i.prefix[DATA_PREFIX]) |
| { |
| if (i.tm.opcode_modifier.opcodeprefix) |
| { |
| as_bad (i.tm.opcode_modifier.opcodeprefix == PREFIX_0X66 |
| ? _("same type of prefix used twice") |
| : _("conflicting use of `data16' prefix")); |
| return false; |
| } |
| i.tm.opcode_modifier.opcodeprefix = PREFIX_0X66; |
| i.prefix[DATA_PREFIX] = 0; |
| } |
| if (i.prefix[REX_PREFIX] & REX_W) |
| { |
| if (i.suffix == QWORD_MNEM_SUFFIX) |
| { |
| as_bad (_("same type of prefix used twice")); |
| return false; |
| } |
| i.tm.opcode_modifier.vexw = VEXW1; |
| i.prefix[REX_PREFIX] = 0; |
| } |
| } |
| |
| build_evex_prefix (); |
| if (i.rex2 & REX_R) |
| i.vex.bytes[1] &= ~0x10; |
| if (i.rex2 & REX_B) |
| i.vex.bytes[1] |= 0x08; |
| if (i.rex2 & REX_X) |
| { |
| gas_assert (i.rm.mode != 3); |
| i.vex.bytes[2] &= ~0x04; |
| } |
| if (i.vex.register_specifier |
| && i.vex.register_specifier->reg_flags & RegRex2) |
| i.vex.bytes[3] &= ~0x08; |
| |
| /* Encode the NDD bit of the instruction promoted from the legacy |
| space. ZU shares the same bit with NDD. */ |
| if ((i.vex.register_specifier && i.tm.opcode_space == SPACE_EVEXMAP4) |
| || i.tm.opcode_modifier.operandconstraint == ZERO_UPPER) |
| i.vex.bytes[3] |= 0x10; |
| |
| /* Encode SCC and oszc flags bits. */ |
| if (i.tm.opcode_modifier.operandconstraint == SCC) |
| { |
| /* The default value of vvvv is 1111 and needs to be cleared. */ |
| i.vex.bytes[2] &= ~0x78; |
| i.vex.bytes[2] |= (i.oszc_flags << 3); |
| /* ND and aaa bits shold be 0. */ |
| know (!(i.vex.bytes[3] & 0x17)); |
| /* The default value of V' is 1 and needs to be cleared. */ |
| i.vex.bytes[3] = (i.vex.bytes[3] & ~0x08) | i.scc; |
| } |
| |
| /* Encode the NF bit. */ |
| if (pp.has_nf || i.tm.opcode_modifier.operandconstraint == EVEX_NF) |
| i.vex.bytes[3] |= 0x04; |
| |
| return true; |
| } |
| |
| static void establish_rex (void) |
| { |
| /* Note that legacy encodings have at most 2 non-immediate operands. */ |
| unsigned int first = i.imm_operands; |
| unsigned int last = i.operands > first ? i.operands - first - 1 : first; |
| |
| /* Respect a user-specified REX prefix. */ |
| i.rex |= i.prefix[REX_PREFIX] & REX_OPCODE; |
| |
| /* For 8 bit RegRex64 registers without a prefix, we need an empty rex prefix. */ |
| if (((i.types[first].bitfield.class == Reg |
| && (i.op[first].regs->reg_flags & RegRex64) != 0) |
| || (i.types[last].bitfield.class == Reg |
| && (i.op[last].regs->reg_flags & RegRex64) != 0)) |
| && !is_apx_rex2_encoding () && !is_any_vex_encoding (&i.tm)) |
| i.rex |= REX_OPCODE; |
| |
| /* For REX/REX2/EVEX prefix instructions, we need to convert old registers |
| (AL, CL, DL and BL) to new ones (AXL, CXL, DXL and BXL) and reject AH, |
| CH, DH and BH. */ |
| if (i.rex || i.rex2 || i.tm.opcode_modifier.evex) |
| { |
| for (unsigned int x = first; x <= last; x++) |
| { |
| /* Look for 8 bit operand that uses old registers. */ |
| if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte |
| && !(i.op[x].regs->reg_flags & (RegRex | RegRex2 | RegRex64))) |
| { |
| /* In case it is "hi" register, give up. */ |
| if (i.op[x].regs->reg_num > 3) |
| as_bad (_("can't encode register '%s%s' in an " |
| "instruction requiring %s prefix"), |
| register_prefix, i.op[x].regs->reg_name, |
| i.tm.opcode_modifier.evex ? "EVEX" : "REX/REX2"); |
| |
| /* Otherwise it is equivalent to the extended register. |
| Since the encoding doesn't change this is merely |
| cosmetic cleanup for debug output. */ |
| i.op[x].regs += 8; |
| } |
| } |
| } |
| |
| if (i.rex == 0 && i.rex2 == 0 && (pp.rex_encoding || pp.rex2_encoding)) |
| { |
| /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand |
| that uses legacy register. If it is "hi" register, don't add |
| rex and rex2 prefix. */ |
| unsigned int x; |
| |
| for (x = first; x <= last; x++) |
| if (i.types[x].bitfield.class == Reg |
| && i.types[x].bitfield.byte |
| && !(i.op[x].regs->reg_flags & (RegRex | RegRex2 | RegRex64)) |
| && i.op[x].regs->reg_num > 3) |
| { |
| pp.rex_encoding = false; |
| pp.rex2_encoding = false; |
| break; |
| } |
| |
| if (pp.rex_encoding) |
| i.rex = REX_OPCODE; |
| } |
| |
| if (is_apx_rex2_encoding ()) |
| { |
| build_rex2_prefix (); |
| /* The individual REX.RXBW bits got consumed. */ |
| i.rex &= REX_OPCODE; |
| } |
| else if (i.rex != 0) |
| add_prefix (REX_OPCODE | i.rex); |
| } |
| |
| static void |
| process_immext (void) |
| { |
| expressionS *exp; |
| |
| /* These AMD 3DNow! and SSE2 instructions have an opcode suffix |
| which is coded in the same place as an 8-bit immediate field |
| would be. Here we fake an 8-bit immediate operand from the |
| opcode suffix stored in tm.extension_opcode. |
| |
| AVX instructions also use this encoding, for some of |
| 3 argument instructions. */ |
| |
| gas_assert (i.imm_operands <= 1 |
| && (i.operands <= 2 |
| || (is_any_vex_encoding (&i.tm) |
| && i.operands <= 4))); |
| |
| exp = &im_expressions[i.imm_operands++]; |
| i.op[i.operands].imms = exp; |
| i.types[i.operands].bitfield.imm8 = 1; |
| i.operands++; |
| exp->X_op = O_constant; |
| exp->X_add_number = i.tm.extension_opcode; |
| i.tm.extension_opcode = None; |
| } |
| |
| |
| static int |
| check_hle (void) |
| { |
| switch (i.tm.opcode_modifier.prefixok) |
| { |
| default: |
| abort (); |
| case PrefixLock: |
| case PrefixNone: |
| case PrefixNoTrack: |
| case PrefixRep: |
| as_bad (_("invalid instruction `%s' after `%s'"), |
| insn_name (&i.tm), i.hle_prefix); |
| return 0; |
| case PrefixHLELock: |
| if (i.prefix[LOCK_PREFIX]) |
| return 1; |
| as_bad (_("missing `lock' with `%s'"), i.hle_prefix); |
| return 0; |
| case PrefixHLEAny: |
| return 1; |
| case PrefixHLERelease: |
| if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE) |
| { |
| as_bad (_("instruction `%s' after `xacquire' not allowed"), |
| insn_name (&i.tm)); |
| return 0; |
| } |
| if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem)) |
| { |
| as_bad (_("memory destination needed for instruction `%s'" |
| " after `xrelease'"), insn_name (&i.tm)); |
| return 0; |
| } |
| return 1; |
| } |
| } |
| |
| /* Helper for optimization (running ahead of process_suffix()), to make sure we |
| convert only well-formed insns. @OP is the sized operand to cross check |
| against (typically a register). Checking against a single operand typically |
| suffices, as match_template() has already honored CheckOperandSize. */ |
| |
| static bool is_plausible_suffix (unsigned int op) |
| { |
| return !i.suffix |
| || (i.suffix == BYTE_MNEM_SUFFIX && i.types[op].bitfield.byte) |
| || (i.suffix == WORD_MNEM_SUFFIX && i.types[op].bitfield.word) |
| || (i.suffix == LONG_MNEM_SUFFIX && i.types[op].bitfield.dword) |
| || (i.suffix == QWORD_MNEM_SUFFIX && i.types[op].bitfield.qword); |
| } |
| |
| /* Encode aligned vector move as unaligned vector move. */ |
| |
| static void |
| encode_with_unaligned_vector_move (void) |
| { |
| switch (i.tm.base_opcode) |
| { |
| case 0x28: /* Load instructions. */ |
| case 0x29: /* Store instructions. */ |
| /* movaps/movapd/vmovaps/vmovapd. */ |
| if (i.tm.opcode_space == SPACE_0F |
| && i.tm.opcode_modifier.opcodeprefix <= PREFIX_0X66) |
| i.tm.base_opcode = 0x10 | (i.tm.base_opcode & 1); |
| break; |
| case 0x6f: /* Load instructions. */ |
| case 0x7f: /* Store instructions. */ |
| /* movdqa/vmovdqa/vmovdqa64/vmovdqa32. */ |
| if (i.tm.opcode_space == SPACE_0F |
| && i.tm.opcode_modifier.opcodeprefix == PREFIX_0X66) |
| i.tm.opcode_modifier.opcodeprefix = PREFIX_0XF3; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* Try the shortest encoding by shortening operand size. */ |
| |
| static void |
| optimize_encoding (void) |
| { |
| unsigned int j; |
| |
| if (i.tm.mnem_off == MN_lea) |
| { |
| /* Optimize: -O: |
| lea symbol, %rN -> mov $symbol, %rN |
| lea (%rM), %rN -> mov %rM, %rN |
| lea (,%rM,1), %rN -> mov %rM, %rN |
| |
| and in 32-bit mode for 16-bit addressing |
| |
| lea (%rM), %rN -> movzx %rM, %rN |
| |
| and in 64-bit mode zap 32-bit addressing in favor of using a |
| 32-bit (or less) destination. |
| */ |
| if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX]) |
| { |
| if (!i.op[1].regs->reg_type.bitfield.word) |
| i.tm.opcode_modifier.size = SIZE32; |
| i.prefix[ADDR_PREFIX] = 0; |
| } |
| |
| if (!i.index_reg && !i.base_reg) |
| { |
| /* Handle: |
| lea symbol, %rN -> mov $symbol, %rN |
| */ |
| if (flag_code == CODE_64BIT) |
| { |
| /* Don't transform a relocation to a 16-bit one. */ |
| if (i.op[0].disps |
| && i.op[0].disps->X_op != O_constant |
| && i.op[1].regs->reg_type.bitfield.word) |
| return; |
| |
| if (!i.op[1].regs->reg_type.bitfield.qword |
| || i.tm.opcode_modifier.size == SIZE32) |
| { |
| i.tm.base_opcode = 0xb8; |
| i.tm.opcode_modifier.modrm = 0; |
| if (!i.op[1].regs->reg_type.bitfield.word) |
| i.types[0].bitfield.imm32 = 1; |
| else |
| { |
| i.tm.opcode_modifier.size = SIZE16; |
| i.types[0].bitfield.imm16 = 1; |
| } |
| } |
| else |
| { |
| /* Subject to further optimization below. */ |
| i.tm.base_opcode = 0xc7; |
| i.tm.extension_opcode = 0; |
| i.types[0].bitfield.imm32s = 1; |
| i.types[0].bitfield.baseindex = 0; |
| } |
| } |
| /* Outside of 64-bit mode address and operand sizes have to match if |
| a relocation is involved, as otherwise we wouldn't (currently) or |
| even couldn't express the relocation correctly. */ |
| else if (i.op[0].disps |
| && i.op[0].disps->X_op != O_constant |
| && ((!i.prefix[ADDR_PREFIX]) |
| != (flag_code == CODE_32BIT |
| ? i.op[1].regs->reg_type.bitfield.dword |
| : i.op[1].regs->reg_type.bitfield.word))) |
| return; |
| /* In 16-bit mode converting LEA with 16-bit addressing and a 32-bit |
| destination is going to grow encoding size. */ |
| else if (flag_code == CODE_16BIT |
| && (optimize <= 1 || optimize_for_space) |
| && !i.prefix[ADDR_PREFIX] |
| && i.op[1].regs->reg_type.bitfield.dword) |
| return; |
| else |
| { |
| i.tm.base_opcode = 0xb8; |
| i.tm.opcode_modifier.modrm = 0; |
| if (i.op[1].regs->reg_type.bitfield.dword) |
| i.types[0].bitfield.imm32 = 1; |
| else |
| i.types[0].bitfield.imm16 = 1; |
| |
| if (i.op[0].disps |
| && i.op[0].disps->X_op == O_constant |
| && i.op[1].regs->reg_type.bitfield.dword |
| /* NB: Add () to !i.prefix[ADDR_PREFIX] to silence |
| GCC 5. */ |
| && (!i.prefix[ADDR_PREFIX]) != (flag_code == CODE_32BIT)) |
| i.op[0].disps->X_add_number &= 0xffff; |
| } |
| |
| i.tm.operand_types[0] = i.types[0]; |
| i.imm_operands = 1; |
| if (!i.op[0].imms) |
| { |
| i.op[0].imms = &im_expressions[0]; |
| i.op[0].imms->X_op = O_absent; |
| } |
| } |
| else if (i.op[0].disps |
| && (i.op[0].disps->X_op != O_constant |
| || i.op[0].disps->X_add_number)) |
| return; |
| else |
| { |
| /* Handle: |
| lea (%rM), %rN -> mov %rM, %rN |
| lea (,%rM,1), %rN -> mov %rM, %rN |
| lea (%rM), %rN -> movzx %rM, %rN |
| */ |
| const reg_entry *addr_reg; |
| |
| if (!i.index_reg && i.base_reg->reg_num != RegIP) |
| addr_reg = i.base_reg; |
| else if (!i.base_reg |
| && i.index_reg->reg_num != RegIZ |
| && !i.log2_scale_factor) |
| addr_reg = i.index_reg; |
| else |
| return; |
| |
| if (addr_reg->reg_type.bitfield.word |
| && i.op[1].regs->reg_type.bitfield.dword) |
| { |
| if (flag_code != CODE_32BIT) |
| return; |
| i.tm.opcode_space = SPACE_0F; |
| i.tm.base_opcode = 0xb7; |
| } |
| else |
| i.tm.base_opcode = 0x8b; |
| |
| if (addr_reg->reg_type.bitfield.dword |
| && i.op[1].regs->reg_type.bitfield.qword) |
| i.tm.opcode_modifier.size = SIZE32; |
| |
| i.op[0].regs = addr_reg; |
| i.reg_operands = 2; |
| } |
| |
| i.mem_operands = 0; |
| i.disp_operands = 0; |
| i.prefix[ADDR_PREFIX] = 0; |
| i.prefix[SEG_PREFIX] = 0; |
| i.seg[0] = NULL; |
| } |
| |
| if (optimize_for_space |
| && (i.tm.mnem_off == MN_test |
| || (i.tm.base_opcode == 0xf6 |
| && i.tm.opcode_space == SPACE_EVEXMAP4)) |
| && i.reg_operands == 1 |
| && i.imm_operands == 1 |
| && !i.types[1].bitfield.byte |
| && is_plausible_suffix (1) |
| && i.op[0].imms->X_op == O_constant |
| && fits_in_imm7 (i.op[0].imms->X_add_number)) |
| { |
| /* Optimize: -Os: |
| test $imm7, %r64/%r32/%r16 -> test $imm7, %r8 |
| ctest<cc> $imm7, %r64/%r32/%r16 -> ctest<cc> $imm7, %r8 |
| */ |
| unsigned int base_regnum = i.op[1].regs->reg_num; |
| |
| gas_assert (!i.tm.opcode_modifier.modrm || i.tm.extension_opcode == 0); |
| |
| if (flag_code == CODE_64BIT || base_regnum < 4) |
| { |
| i.types[1].bitfield.byte = 1; |
| /* Squash the suffix. */ |
| i.suffix = 0; |
| /* Convert to byte registers. 8-bit registers are special, |
| RegRex64 and non-RegRex* each have 8 registers. */ |
| if (i.types[1].bitfield.word) |
| /* 32 (or 40) 8-bit registers. */ |
| j = 32; |
| else if (i.types[1].bitfield.dword) |
| /* 32 (or 40) 8-bit registers + 32 16-bit registers. */ |
| j = 64; |
| else |
| /* 32 (or 40) 8-bit registers + 32 16-bit registers |
| + 32 32-bit registers. */ |
| j = 96; |
| |
| /* In 64-bit mode, the following byte registers cannot be accessed |
| if using the Rex and Rex2 prefix: AH, BH, CH, DH */ |
| if (!(i.op[1].regs->reg_flags & (RegRex | RegRex2)) && base_regnum < 4) |
| j += 8; |
| i.op[1].regs -= j; |
| } |
| } |
| else if (flag_code == CODE_64BIT |
| && i.tm.opcode_space == SPACE_BASE |
| && i.types[i.operands - 1].bitfield.qword |
| && ((i.reg_operands == 1 |
| && i.imm_operands == 1 |
| && i.op[0].imms->X_op == O_constant |
| && ((i.tm.base_opcode == 0xb8 |
| && i.tm.extension_opcode == None |
| && fits_in_unsigned_long (i.op[0].imms->X_add_number)) |
| || (fits_in_imm31 (i.op[0].imms->X_add_number) |
| && (i.tm.base_opcode == 0x24 |
| || (((i.tm.base_opcode == 0x80 |
| && i.tm.extension_opcode == 0x4) |
| || i.tm.mnem_off == MN_test) |
| && !(i.op[1].regs->reg_flags |
| & (RegRex | RegRex2))) |
| || ((i.tm.base_opcode | 1) == 0xc7 |
| && i.tm.extension_opcode == 0x0))) |
| || (fits_in_imm7 (i.op[0].imms->X_add_number) |
| && i.tm.base_opcode == 0x83 |
| && i.tm.extension_opcode == 0x4 |
| && !(i.op[1].regs->reg_flags & (RegRex | RegRex2))))) |
| || ((i.reg_operands == 2 |
| && i.op[0].regs == i.op[1].regs |
| && (i.tm.mnem_off == MN_xor |
| || i.tm.mnem_off == MN_sub)) |
| || i.tm.mnem_off == MN_clr))) |
| { |
| /* Optimize: -O: |
| andq $imm31, %r64 -> andl $imm31, %r32 |
| andq $imm7, %r64 -> andl $imm7, %r32 |
| testq $imm31, %r64 -> testl $imm31, %r32 |
| xorq %r64, %r64 -> xorl %r32, %r32 |
| clrq %r64 -> clrl %r32 |
| subq %r64, %r64 -> subl %r32, %r32 |
| movq $imm31, %r64 -> movl $imm31, %r32 |
| movq $imm32, %r64 -> movl $imm32, %r32 |
| */ |
| i.tm.opcode_modifier.size = SIZE32; |
| if (i.imm_operands) |
| { |
| i.types[0].bitfield.imm32 = 1; |
| i.types[0].bitfield.imm32s = 0; |
| i.types[0].bitfield.imm64 = 0; |
| } |
| else |
| { |
| i.types[0].bitfield.dword = 1; |
| i.types[0].bitfield.qword = 0; |
| } |
| i.types[1].bitfield.dword = 1; |
| i.types[1].bitfield.qword = 0; |
| if (i.tm.mnem_off == MN_mov || i.tm.mnem_off == MN_lea) |
| { |
| /* Handle |
| movq $imm31, %r64 -> movl $imm31, %r32 |
| movq $imm32, %r64 -> movl $imm32, %r32 |
| */ |
| i.tm.operand_types[0].bitfield.imm32 = 1; |
| i.tm.operand_types[0].bitfield.imm32s = 0; |
| i.tm.operand_types[0].bitfield.imm64 = 0; |
| if ((i.tm.base_opcode | 1) == 0xc7) |
| { |
| /* Handle |
| movq $imm31, %r64 -> movl $imm31, %r32 |
| */ |
| i.tm.base_opcode = 0xb8; |
| i.tm.extension_opcode = None; |
| i.tm.opcode_modifier.w = 0; |
| i.tm.opcode_modifier.modrm = 0; |
| } |
| } |
| } |
| else if (i.reg_operands == 3 |
| && i.op[0].regs == i.op[1].regs |
| && pp.encoding != encoding_evex |
| && (i.tm.mnem_off == MN_xor |
| || i.tm.mnem_off == MN_sub)) |
| { |
| /* Optimize: -O: |
| xorb %rNb, %rNb, %rMb -> xorl %rMd, %rMd |
| xorw %rNw, %rNw, %rMw -> xorl %rMd, %rMd |
| xorl %rNd, %rNd, %rMd -> xorl %rMd, %rMd |
| xorq %rN, %rN, %rM -> xorl %rMd, %rMd |
| subb %rNb, %rNb, %rMb -> subl %rMd, %rMd |
| subw %rNw, %rNw, %rMw -> subl %rMd, %rMd |
| subl %rNd, %rNd, %rMd -> subl %rMd, %rMd |
| subq %rN, %rN, %rM -> subl %rMd, %rMd |
| */ |
| i.tm.opcode_space = SPACE_BASE; |
| i.tm.opcode_modifier.evex = 0; |
| i.tm.opcode_modifier.size = SIZE32; |
| i.types[0].bitfield.byte = 0; |
| i.types[0].bitfield.word = 0; |
| i.types[0].bitfield.dword = 1; |
| i.types[0].bitfield.qword = 0; |
| i.op[0].regs = i.op[2].regs; |
| i.types[1] = i.types[0]; |
| i.op[1].regs = i.op[2].regs; |
| i.reg_operands = 2; |
| } |
| else if (optimize > 1 |
| && !optimize_for_space |
| && i.reg_operands == 2 |
| && i.op[0].regs == i.op[1].regs |
| && (i.tm.mnem_off == MN_and || i.tm.mnem_off == MN_or) |
| && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword)) |
| { |
| /* Optimize: -O2: |
| andb %rN, %rN -> testb %rN, %rN |
| andw %rN, %rN -> testw %rN, %rN |
| andq %rN, %rN -> testq %rN, %rN |
| orb %rN, %rN -> testb %rN, %rN |
| orw %rN, %rN -> testw %rN, %rN |
| orq %rN, %rN -> testq %rN, %rN |
| |
| and outside of 64-bit mode |
| |
| andl %rN, %rN -> testl %rN, %rN |
| orl %rN, %rN -> testl %rN, %rN |
| */ |
| i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1); |
| } |
| else if (!optimize_for_space |
| && i.tm.base_opcode == 0xd0 |
| && i.tm.extension_opcode == 4 |
| && (i.tm.opcode_space == SPACE_BASE |
| || i.tm.opcode_space == SPACE_EVEXMAP4) |
| && !i.mem_operands) |
| { |
| /* Optimize: -O: |
| shlb $1, %rN -> addb %rN, %rN |
| shlw $1, %rN -> addw %rN, %rN |
| shll $1, %rN -> addl %rN, %rN |
| shlq $1, %rN -> addq %rN, %rN |
| |
| shlb $1, %rN, %rM -> addb %rN, %rN, %rM |
| shlw $1, %rN, %rM -> addw %rN, %rN, %rM |
| shll $1, %rN, %rM -> addl %rN, %rN, %rM |
| shlq $1, %rN, %rM -> addq %rN, %rN, %rM |
| */ |
| i.tm.base_opcode = 0x00; |
| i.tm.extension_opcode = None; |
| if (i.operands >= 2) |
| { |
| i.tm.operand_types[0] = i.tm.operand_types[1]; |
| i.op[0].regs = i.op[1].regs; |
| i.types[0] = i.types[1]; |
| } |
| else |
| { |
| /* Legacy form with omitted shift count operand. */ |
| i.tm.operand_types[1] = i.tm.operand_types[0]; |
| i.op[1].regs = i.op[0].regs; |
| i.types[1] = i.types[0]; |
| i.operands = 2; |
| } |
| i.reg_operands++; |
| i.imm_operands = 0; |
| } |
| else if (i.tm.base_opcode == 0xba |
| && i.tm.opcode_space == SPACE_0F |
| && i.reg_operands == 1 |
| && i.op[0].imms->X_op == O_constant |
| && i.op[0].imms->X_add_number >= 0) |
| { |
| /* Optimize: -O: |
| btw $n, %rN -> btl $n, %rN (outside of 16-bit mode, n < 16) |
| btq $n, %rN -> btl $n, %rN (in 64-bit mode, n < 32, N < 8) |
| btl $n, %rN -> btw $n, %rN (in 16-bit mode, n < 16) |
| |
| With <BT> one of bts, btr, and bts also: |
| <BT>w $n, %rN -> btl $n, %rN (in 32-bit mode, n < 16) |
| <BT>l $n, %rN -> btw $n, %rN (in 16-bit mode, n < 16) |
| */ |
| switch (flag_code) |
| { |
| case CODE_64BIT: |
| if (i.tm.extension_opcode != 4) |
| break; |
| if (i.types[1].bitfield.qword |
| && i.op[0].imms->X_add_number < 32 |
| && !(i.op[1].regs->reg_flags & RegRex)) |
| i.tm.opcode_modifier.size = SIZE32; |
| /* Fall through. */ |
| case CODE_32BIT: |
| if (i.types[1].bitfield.word |
| && i.op[0].imms->X_add_number < 16) |
| i.tm.opcode_modifier.size = SIZE32; |
| break; |
| case CODE_16BIT: |
| if (i.op[0].imms->X_add_number < 16) |
| i.tm.opcode_modifier.size = SIZE16; |
| break; |
| } |
| } |
| else if (optimize > 1 |
| && (i.tm.base_opcode | 0xf) == 0x4f |
| && i.tm.opcode_space == SPACE_EVEXMAP4 |
| && i.reg_operands == 3 |
| && i.tm.opcode_modifier.operandconstraint == EVEX_NF |
| && !i.types[0].bitfield.word) |
| { |
| /* Optimize: -O2: |
| cfcmov<cc> %rM, %rN, %rN -> cmov<cc> %rM, %rN |
| cfcmov<cc> %rM, %rN, %rM -> cmov<!cc> %rN, %rM |
| cfcmov<cc> %rN, %rN, %rN -> nop %rN |
| */ |
| if (i.op[0].regs == i.op[2].regs) |
| { |
| i.tm.base_opcode ^= 1; |
| i.op[0].regs = i.op[1].regs; |
| i.op[1].regs = i.op[2].regs; |
| } |
| else if (i.op[1].regs != i.op[2].regs) |
| return; |
| |
| i.tm.opcode_space = SPACE_0F; |
| i.tm.opcode_modifier.evex = 0; |
| i.tm.opcode_modifier.vexvvvv = 0; |
| i.tm.opcode_modifier.operandconstraint = 0; |
| i.reg_operands = 2; |
| |
| /* While at it, convert to NOP if all three regs match. */ |
| if (i.op[0].regs == i.op[1].regs) |
| { |
| i.tm.base_opcode = 0x1f; |
| i.tm.extension_opcode = 0; |
| i.reg_operands = 1; |
| } |
| } |
| else if (i.reg_operands == 3 |
| && i.op[0].regs == i.op[1].regs |
| && !i.types[2].bitfield.xmmword |
| && (i.tm.opcode_modifier.vex |
| || ((!i.mask.reg || i.mask.zeroing) |
| && i.tm.opcode_modifier.evex |
| && (pp.encoding != encoding_evex |
| || cpu_arch_isa_flags.bitfield.cpuavx512vl |
| || is_cpu (&i.tm, CpuAVX512VL) |
| || (i.tm.operand_types[2].bitfield.zmmword |
| && i.types[2].bitfield.ymmword)))) |
| && i.tm.opcode_space == SPACE_0F |
| && ((i.tm.base_opcode | 2) == 0x57 |
| || i.tm.base_opcode == 0xdf |
| || i.tm.base_opcode == 0xef |
| || (i.tm.base_opcode | 3) == 0xfb |
| || i.tm.base_opcode == 0x42 |
| || i.tm.base_opcode == 0x47)) |
| { |
| /* Optimize: -O1: |
| VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd, |
| vpsubq and vpsubw: |
| EVEX VOP %zmmM, %zmmM, %zmmN |
| -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16) |
| -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2) |
| EVEX VOP %ymmM, %ymmM, %ymmN |
| -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16) |
| -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2) |
| VEX VOP %ymmM, %ymmM, %ymmN |
| -> VEX VOP %xmmM, %xmmM, %xmmN |
| VOP, one of vpandn and vpxor: |
| VEX VOP %ymmM, %ymmM, %ymmN |
| -> VEX VOP %xmmM, %xmmM, %xmmN |
| VOP, one of vpandnd and vpandnq: |
| EVEX VOP %zmmM, %zmmM, %zmmN |
| -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16) |
| -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2) |
| EVEX VOP %ymmM, %ymmM, %ymmN |
| -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16) |
| -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2) |
| VOP, one of vpxord and vpxorq: |
| EVEX VOP %zmmM, %zmmM, %zmmN |
| -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16) |
| -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2) |
| EVEX VOP %ymmM, %ymmM, %ymmN |
| -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16) |
| -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2) |
| VOP, one of kxord and kxorq: |
| VEX VOP %kM, %kM, %kN |
| -> VEX kxorw %kM, %kM, %kN |
| VOP, one of kandnd and kandnq: |
| VEX VOP %kM, %kM, %kN |
| -> VEX kandnw %kM, %kM, %kN |
| */ |
| if (i.tm.opcode_modifier.evex) |
| { |
| if (pp.encoding != encoding_evex) |
| { |
| i.tm.opcode_modifier.vex = VEX128; |
| i.tm.opcode_modifier.vexw = VEXW0; |
| i.tm.opcode_modifier.evex = 0; |
| pp.encoding = encoding_vex; |
| i.mask.reg = NULL; |
| } |
| else if (optimize > 1) |
| i.tm.opcode_modifier.evex = EVEX128; |
| else |
| return; |
| } |
| else if (i.tm.operand_types[0].bitfield.class == RegMask) |
| { |
| i.tm.opcode_modifier.opcodeprefix = PREFIX_NONE; |
| i.tm.opcode_modifier.vexw = VEXW0; |
| } |
| else |
| i.tm.opcode_modifier.vex = VEX128; |
| |
| if (i.tm.opcode_modifier.vex) |
| for (j = 0; j < 3; j++) |
| { |
| i.types[j].bitfield.xmmword = 1; |
| i.types[j].bitfield.ymmword = 0; |
| } |
| } |
| else if (pp.encoding != encoding_evex |
| && pp.encoding != encoding_egpr |
| && !i.types[0].bitfield.zmmword |
| && !i.types[1].bitfield.zmmword |
| && !i.mask.reg |
| && !i.broadcast.type |
| && !i.broadcast.bytes |
| && i.tm.opcode_modifier.evex |
| && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x6f |
| || (i.tm.base_opcode & ~4) == 0xdb |
| || (i.tm.base_opcode & ~4) == 0xeb) |
| && i.tm.extension_opcode == None) |
| { |
| /* Optimize: -O1: |
| VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16, |
| vmovdqu32 and vmovdqu64: |
| EVEX VOP %xmmM, %xmmN |
| -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16) |
| EVEX VOP %ymmM, %ymmN |
| -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16) |
| EVEX VOP %xmmM, mem |
| -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16) |
| EVEX VOP %ymmM, mem |
| -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16) |
| EVEX VOP mem, %xmmN |
| -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16) |
| EVEX VOP mem, %ymmN |
| -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16) |
| VOP, one of vpand, vpandn, vpor, vpxor: |
| EVEX VOP{d,q} %xmmL, %xmmM, %xmmN |
| -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16) |
| EVEX VOP{d,q} %ymmL, %ymmM, %ymmN |
| -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16) |
| EVEX VOP{d,q} mem, %xmmM, %xmmN |
| -> VEX VOP mem, %xmmM, %xmmN (M and N < 16) |
| EVEX VOP{d,q} mem, %ymmM, %ymmN |
| -> VEX VOP mem, %ymmM, %ymmN (M and N < 16) |
| */ |
| for (j = 0; j < i.operands; j++) |
| if (operand_type_check (i.types[j], disp) |
| && i.op[j].disps->X_op == O_constant) |
| { |
| /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix |
| has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4 |
| bytes, we choose EVEX Disp8 over VEX Disp32. */ |
| int evex_disp8, vex_disp8; |
| unsigned int memshift = i.memshift; |
| offsetT n = i.op[j].disps->X_add_number; |
| |
| evex_disp8 = fits_in_disp8 (n); |
| i.memshift = 0; |
| vex_disp8 = fits_in_disp8 (n); |
| if (evex_disp8 != vex_disp8) |
| { |
| i.memshift = memshift; |
| return; |
| } |
| |
| i.types[j].bitfield.disp8 = vex_disp8; |
| break; |
| } |
| if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x6f |
| && i.tm.opcode_modifier.opcodeprefix == PREFIX_0XF2) |
| i.tm.opcode_modifier.opcodeprefix = PREFIX_0XF3; |
| i.tm.opcode_modifier.vex |
| = i.types[0].bitfield.ymmword ? VEX256 : VEX128; |
| i.tm.opcode_modifier.vexw = VEXW0; |
| /* VPAND, VPOR, and VPXOR are commutative. */ |
| if (i.reg_operands == 3 && i.tm.base_opcode != 0xdf) |
| i.tm.opcode_modifier.commutative = 1; |
| i.tm.opcode_modifier.evex = 0; |
| i.tm.opcode_modifier.masking = 0; |
| i.tm.opcode_modifier.broadcast = 0; |
| i.tm.opcode_modifier.disp8memshift = 0; |
| i.memshift = 0; |
| if (j < i.operands) |
| i.types[j].bitfield.disp8 |
| = fits_in_disp8 (i.op[j].disps->X_add_number); |
| } |
| else if (optimize_for_space |
| && i.tm.base_opcode == 0x29 |
| && i.tm.opcode_space == SPACE_0F38 |
| && i.operands == i.reg_operands |
| && i.op[0].regs == i.op[1].regs |
| && (!i.tm.opcode_modifier.vex |
| || !(i.op[0].regs->reg_flags & RegRex)) |
| && !i.tm.opcode_modifier.evex) |
| { |
| /* Optimize: -Os: |
| pcmpeqq %xmmN, %xmmN -> pcmpeqd %xmmN, %xmmN |
| vpcmpeqq %xmmN, %xmmN, %xmmM -> vpcmpeqd %xmmN, %xmmN, %xmmM (N < 8) |
| vpcmpeqq %ymmN, %ymmN, %ymmM -> vpcmpeqd %ymmN, %ymmN, %ymmM (N < 8) |
| */ |
| i.tm.opcode_space = SPACE_0F; |
| i.tm.base_opcode = 0x76; |
| } |
| else if (((i.tm.base_opcode >= 0x64 |
| && i.tm.base_opcode <= 0x66 |
| && i.tm.opcode_space == SPACE_0F) |
| || (i.tm.base_opcode == 0x37 |
| && i.tm.opcode_space == SPACE_0F38)) |
| && i.operands == i.reg_operands |
| && i.op[0].regs == i.op[1].regs |
| && !i.tm.opcode_modifier.evex) |
| { |
| /* Optimize: -O: |
| pcmpgt[bwd] %mmN, %mmN -> pxor %mmN, %mmN |
| pcmpgt[bwdq] %xmmN, %xmmN -> pxor %xmmN, %xmmN |
| vpcmpgt[bwdq] %xmmN, %xmmN, %xmmM -> vpxor %xmmN, %xmmN, %xmmM (N < 8) |
| vpcmpgt[bwdq] %xmmN, %xmmN, %xmmM -> vpxor %xmm0, %xmm0, %xmmM (N > 7) |
| vpcmpgt[bwdq] %ymmN, %ymmN, %ymmM -> vpxor %ymmN, %ymmN, %ymmM (N < 8) |
| vpcmpgt[bwdq] %ymmN, %ymmN, %ymmM -> vpxor %ymm0, %ymm0, %ymmM (N > 7) |
| */ |
| i.tm.opcode_space = SPACE_0F; |
| i.tm.base_opcode = 0xef; |
| if (i.tm.opcode_modifier.vex && (i.op[0].regs->reg_flags & RegRex)) |
| { |
| if (i.operands == 2) |
| { |
| gas_assert (i.tm.opcode_modifier.sse2avx); |
| |
| i.operands = 3; |
| i.reg_operands = 3; |
| i.tm.operands = 3; |
| |
| i.op[2].regs = i.op[0].regs; |
| i.types[2] = i.types[0]; |
| i.flags[2] = i.flags[0]; |
| i.tm.operand_types[2] = i.tm.operand_types[0]; |
| |
| i.tm.opcode_modifier.sse2avx = 0; |
| } |
| i.op[0].regs -= i.op[0].regs->reg_num + 8; |
| i.op[1].regs = i.op[0].regs; |
| } |
| } |
| else if (i.tm.extension_opcode == 6 |
| && i.tm.base_opcode >= 0x71 |
| && i.tm.base_opcode <= 0x73 |
| && i.tm.opcode_space == SPACE_0F |
| && i.op[0].imms->X_op == O_constant |
| && i.op[0].imms->X_add_number == 1 |
| && !i.mem_operands) |
| { |
| /* Optimize: -O: |
| psllw $1, %mmxN -> paddw %mmxN, %mmxN |
| psllw $1, %xmmN -> paddw %xmmN, %xmmN |
| vpsllw $1, %xmmN, %xmmM -> vpaddw %xmmN, %xmmN, %xmmM |
| vpsllw $1, %ymmN, %ymmM -> vpaddw %ymmN, %ymmN, %ymmM |
| vpsllw $1, %zmmN, %zmmM -> vpaddw %zmmN, %zmmN, %zmmM |
| |
| pslld $1, %mmxN -> paddd %mmxN, %mmxN |
| pslld $1, %xmmN -> paddd %xmmN, %xmmN |
| vpslld $1, %xmmN, %xmmM -> vpaddd %xmmN, %xmmN, %xmmM |
| vpslld $1, %ymmN, %ymmM -> vpaddd %ymmN, %ymmN, %ymmM |
| vpslld $1, %zmmN, %zmmM -> vpaddd %zmmN, %zmmN, %zmmM |
| |
| psllq $1, %xmmN -> paddq %xmmN, %xmmN |
| vpsllq $1, %xmmN, %xmmM -> vpaddq %xmmN, %xmmN, %xmmM |
| vpsllq $1, %ymmN, %ymmM -> vpaddq %ymmN, %ymmN, %ymmM |
| vpsllq $1, %zmmN, %zmmM -> vpaddq %zmmN, %zmmN, %zmmM |
| */ |
| if (i.tm.base_opcode != 0x73) |
| i.tm.base_opcode |= 0xfc; /* {,v}padd{w,d} */ |
| else |
| { |
| gas_assert (i.tm.operand_types[1].bitfield.class != RegMMX); |
| i.tm.base_opcode = 0xd4; /* {,v}paddq */ |
| } |
| i.tm.extension_opcode = None; |
| if (i.tm.opcode_modifier.vexvvvv) |
| i.tm.opcode_modifier.vexvvvv = VexVVVV_SRC1; |
| i.tm.operand_types[0] = i.tm.operand_types[1]; |
| i.op[0].regs = i.op[1].regs; |
| i.types[0] = i.types[1]; |
| i.reg_operands++; |
| i.imm_operands = 0; |
| } |
| else if (optimize_for_space |
| && i.tm.base_opcode == 0x59 |
| && i.tm.opcode_space == SPACE_0F38 |
| && i.operands == i.reg_operands |
| && i.tm.opcode_modifier.vex |
| && !(i.op[0].regs->reg_flags & RegRex) |
| && i.op[0].regs->reg_type.bitfield.xmmword |
| && pp.encoding != encoding_vex3) |
| { |
| /* Optimize: -Os: |
| vpbroadcastq %xmmN, %xmmM -> vpunpcklqdq %xmmN, %xmmN, %xmmM (N < 8) |
| */ |
| i.tm.opcode_space = SPACE_0F; |
| i.tm.base_opcode = 0x6c; |
| i.tm.opcode_modifier.vexvvvv = VexVVVV_SRC1; |
| |
| ++i.operands; |
| ++i.reg_operands; |
| ++i.tm.operands; |
| |
| i.op[2].regs = i.op[0].regs; |
| i.types[2] = i.types[0]; |
| i.flags[2] = i.flags[0]; |
| i.tm.operand_types[2] = i.tm.operand_types[0]; |
| |
| swap_2_operands (1, 2); |
| } |
| else if (i.tm.base_opcode == 0x16 |
| && i.tm.opcode_space == SPACE_0F3A |
| && i.op[0].imms->X_op == O_constant |
| && i.op[0].imms->X_add_number == 0) |
| { |
| /* Optimize: -O: |
| pextrd $0, %xmmN, ... -> movd %xmmN, ... |
| pextrq $0, %xmmN, ... -> movq %xmmN, ... |
| vpextrd $0, %xmmN, ... -> vmovd %xmmN, ... |
| vpextrq $0, %xmmN, ... -> vmovq %xmmN, ... |
| */ |
| i.tm.opcode_space = SPACE_0F; |
| if (!i.mem_operands |
| || i.tm.opcode_modifier.evex |
| || (i.tm.opcode_modifier.vexw != VEXW1 |
| && i.tm.opcode_modifier.size != SIZE64)) |
| i.tm.base_opcode = 0x7e; |
| else |
| { |
| i.tm.base_opcode = 0xd6; |
| i.tm.opcode_modifier.size = 0; |
| i.tm.opcode_modifier.vexw |
| = i.tm.opcode_modifier.sse2avx ? VEXW0 : VEXWIG; |
| } |
| |
| i.op[0].regs = i.op[1].regs; |
| i.types[0] = i.types[1]; |
| i.flags[0] = i.flags[1]; |
| i.tm.operand_types[0] = i.tm.operand_types[1]; |
| |
| i.op[1].regs = i.op[2].regs; |
| i.types[1] = i.types[2]; |
| i.flags[1] = i.flags[2]; |
| i.tm.operand_types[1] = i.tm.operand_types[2]; |
| |
| i.operands = 2; |
| i.imm_operands = 0; |
| } |
| } |
| |
| /* Check whether the promoted (to address size) register is usable as index |
| register in ModR/M SIB addressing. */ |
| |
| static bool is_index (const reg_entry *r) |
| { |
| gas_assert (flag_code == CODE_64BIT); |
| |
| if (r->reg_type.bitfield.byte) |
| { |
| if (!(r->reg_flags & (RegRex | RegRex2 | RegRex64))) |
| { |
| if (r->reg_num >= 4) |
| return false; |
| r += 8; |
| } |
| r += 32; |
| } |
| if (r->reg_type.bitfield.word) |
| r += 32; |
| /* No need to further check .dword here. */ |
| |
| return r->reg_type.bitfield.baseindex; |
| } |
| |
| /* Try to shorten {nf} encodings, by shortening operand size or switching to |
| functionally identical encodings. */ |
| |
| static void |
| optimize_nf_encoding (void) |
| { |
| if (i.tm.base_opcode == 0x80 |
| && (i.tm.extension_opcode == 0 || i.tm.extension_opcode == 5) |
| && i.suffix != BYTE_MNEM_SUFFIX |
| && !i.types[1].bitfield.byte |
| && !i.types[2].bitfield.byte |
| && i.op[0].imms->X_op == O_constant |
| && i.op[0].imms->X_add_number == 0x80) |
| { |
| /* Optimize: -O: |
| {nf} addw $0x80, ... -> {nf} subw $-0x80, ... |
| {nf} addl $0x80, ... -> {nf} subl $-0x80, ... |
| {nf} addq $0x80, ... -> {nf} subq $-0x80, ... |
| |
| {nf} subw $0x80, ... -> {nf} addw $-0x80, ... |
| {nf} subl $0x80, ... -> {nf} addl $-0x80, ... |
| {nf} subq $0x80, ... -> {nf} addq $-0x80, ... |
| */ |
| i.tm.base_opcode |= 3; |
| i.tm.extension_opcode ^= 5; |
| i.tm.opcode_modifier.w = 0; |
| i.op[0].imms->X_add_number = -i.op[0].imms->X_add_number; |
| |
| i.tm.operand_types[0].bitfield.imm8 = 0; |
| i.tm.operand_types[0].bitfield.imm8s = 1; |
| i.tm.operand_types[0].bitfield.imm16 = 0; |
| i.tm.operand_types[0].bitfield.imm32 = 0; |
| i.tm.operand_types[0].bitfield.imm32s = 0; |
| |
| i.types[0] = i.tm.operand_types[0]; |
| } |
| else if ((i.tm.base_opcode | 3) == 0x83 |
| && (i.tm.extension_opcode == 0 || i.tm.extension_opcode == 5) |
| && i.op[0].imms->X_op == O_constant |
| && (i.op[0].imms->X_add_number == 1 |
| || i.op[0].imms->X_add_number == -1 |
| /* While for wider than byte operations immediates were suitably |
| adjusted earlier on, 0xff in the byte case needs covering |
| explicitly. */ |
| || (i.op[0].imms->X_add_number == 0xff |
| && (i.suffix == BYTE_MNEM_SUFFIX |
| || i.types[i.operands - 1].bitfield.byte)))) |
| { |
| /* Optimize: -O: |
| {nf} add $1, ... -> {nf} inc ... |
| {nf} add $-1, ... -> {nf} dec ... |
| {nf} add $0xf...f, ... -> {nf} dec ... |
| |
| {nf} sub $1, ... -> {nf} dec ... |
| {nf} sub $-1, ... -> {nf} inc ... |
| {nf} sub $0xf...f, ... -> {nf} inc ... |
| */ |
| i.tm.base_opcode = 0xfe; |
| i.tm.extension_opcode |
| = (i.op[0].imms->X_add_number == 1) != (i.tm.extension_opcode == 0); |
| i.tm.opcode_modifier.w = 1; |
| |
| i.types[0] = i.types[1]; |
| i.types[1] = i.types[2]; |
| i.tm.operand_types[0] = i.tm.operand_types[1]; |
| i.tm.operand_types[1] = i.tm.operand_types[2]; |
| i.op[0] = i.op[1]; |
| i.op[1] = i.op[2]; |
| i.flags[0] = i.flags[1]; |
| i.flags[1] = i.flags[2]; |
| i.reloc[0] = i.reloc[1]; |
| i.reloc[1] = NO_RELOC; |
| |
| i.imm_operands = 0; |
| --i.operands; |
| } |
| else if (i.tm.base_opcode == 0xc0 |
| && i.op[0].imms->X_op == O_constant |
| && i.op[0].imms->X_add_number |
| == (i.types[i.operands - 1].bitfield.byte |
| || i.suffix == BYTE_MNEM_SUFFIX |
| ? 7 : i.types[i.operands - 1].bitfield.word |
| || i.suffix == WORD_MNEM_SUFFIX |
| ? 15 : 63 >> (i.types[i.operands - 1].bitfield.dword |
| || i.suffix == LONG_MNEM_SUFFIX))) |
| { |
| /* Optimize: -O: |
| {nf} rol $osz-1, ... -> {nf} ror $1, ... |
| {nf} ror $osz-1, ... -> {nf} rol $1, ... |
| */ |
| gas_assert (i.tm.extension_opcode <= 1); |
| i.tm.extension_opcode ^= 1; |
| i.tm.base_opcode = 0xd0; |
| i.tm.operand_types[0].bitfield.imm1 = 1; |
| i.imm_operands = 0; |
| } |
| else if ((i.tm.base_opcode | 2) == 0x6b |
| && i.op[0].imms->X_op == O_constant |
| && (i.op[0].imms->X_add_number > 0 |
| ? !(i.op[0].imms->X_add_number & (i.op[0].imms->X_add_number - 1)) |
| /* optimize_imm() converts to sign-extended representation where |
| possible (and input can also come with these specific numbers). */ |
| : (i.types[i.operands - 1].bitfield.word |
| && i.op[0].imms->X_add_number == -0x8000) |
| || (i.types[i.operands - 1].bitfield.dword |
| && i.op[0].imms->X_add_number + 1 == -0x7fffffff)) |
| /* 16-bit 3-operand non-ZU forms need leaviong alone, to prevent |
| zero-extension of the result. Unless, of course, both non- |
| immediate operands match (which can be converted to the non-NDD |
| form). */ |
| && (i.operands < 3 |
| || !i.types[2].bitfield.word |
| || i.tm.mnem_off == MN_imulzu |
| || i.op[2].regs == i.op[1].regs) |
| /* When merely optimizing for size, exclude cases where we'd convert |
| from Imm8S to Imm8 encoding, thus not actually reducing size. */ |
| && (!optimize_for_space |
| || i.tm.base_opcode == 0x69 |
| || !(i.op[0].imms->X_add_number & 0x7d))) |
| { |
| /* Optimize: -O: |
| {nf} imul $1<<N, ... -> {nf} shl $N, ... |
| {nf} imulzu $1<<N, ... -> {nf} shl $N, ... |
| */ |
| if (i.op[0].imms->X_add_number != 2) |
| { |
| i.tm.base_opcode = 0xc0; |
| i.op[0].imms->X_add_number = ffs (i.op[0].imms->X_add_number) - 1; |
| i.tm.operand_types[0].bitfield.imm8 = 1; |
| i.tm.operand_types[0].bitfield.imm16 = 0; |
| i.tm.operand_types[0].bitfield.imm32 = 0; |
| i.tm.operand_types[0].bitfield.imm32s = 0; |
| } |
| else |
| { |
| i.tm.base_opcode = 0xd0; |
| i.tm.operand_types[0].bitfield.imm1 = 1; |
| } |
| i.types[0] = i.tm.operand_types[0]; |
| i.tm.extension_opcode = 4; |
| i.tm.opcode_modifier.w = 1; |
| i.tm.opcode_modifier.operandconstraint = 0; |
| if (i.operands == 3) |
| { |
| if (i.op[2].regs == i.op[1].regs && i.tm.mnem_off != MN_imulzu) |
| { |
| /* Convert to non-NDD form. This is required for 16-bit insns |
| (to prevent zero-extension) and benign for others. */ |
| i.operands = 2; |
| i.reg_operands = 1; |
| } |
| else |
| i.tm.opcode_modifier.vexvvvv = VexVVVV_DST; |
| } |
| else if (i.tm.mnem_off == MN_imulzu) |
| { |
| /* Convert to NDD form, to effect zero-extension of the result. */ |
| i.tm.opcode_modifier.vexvvvv = VexVVVV_DST; |
| i.operands = 3; |
| i.reg_operands = 2; |
| i.op[2].regs = i.op[1].regs; |
| i.tm.operand_types[2] = i.tm.operand_types[1]; |
| i.types[2] = i.types[1]; |
| } |
| } |
| |
| if (optimize_for_space |
| && pp.encoding != encoding_evex |
| && (i.tm.base_opcode == 0x00 |
| || (i.tm.base_opcode == 0xd0 && i.tm.extension_opcode == 4)) |
| && !i.mem_operands |
| && !i.types[1].bitfield.byte |
| /* 16-bit operand size has extra restrictions: If REX2 was needed, |
| no size reduction would be possible. Plus 3-operand forms zero- |
| extend the result, which can't be expressed with LEA. */ |
| && (!i.types[1].bitfield.word |
| || (i.operands == 2 && pp.encoding != encoding_egpr)) |
| && is_plausible_suffix (1) |
| /* %rsp can't be the index. */ |
| && (is_index (i.op[1].regs) |
| || (i.imm_operands == 0 && is_index (i.op[0].regs))) |
| /* While %rbp, %r13, %r21, and %r29 can be made the index in order to |
| avoid the otherwise necessary Disp8, if the other operand is also |
| from that set and REX2 would be required to encode the insn, the |
| resulting encoding would be no smaller than the EVEX one. */ |
| && (i.op[1].regs->reg_num != 5 |
| || pp.encoding != encoding_egpr |
| || i.imm_operands > 0 |
| || i.op[0].regs->reg_num != 5)) |
| { |
| /* Optimize: -Os: |
| {nf} addw %N, %M -> leaw (%rM,%rN), %M |
| {nf} addl %eN, %eM -> leal (%rM,%rN), %eM |
| {nf} addq %rN, %rM -> leaq (%rM,%rN), %rM |
| |
| {nf} shlw $1, %N -> leaw (%rN,%rN), %N |
| {nf} shll $1, %eN -> leal (%rN,%rN), %eN |
| {nf} shlq $1, %rN -> leaq (%rN,%rN), %rN |
| |
| {nf} addl %eK, %eN, %eM -> leal (%rN,%rK), %eM |
| {nf} addq %rK, %rN, %rM -> leaq (%rN,%rK), %rM |
| |
| {nf} shll $1, %eN, %eM -> leal (%rN,%rN), %eM |
| {nf} shlq $1, %rN, %rM -> leaq (%rN,%rN), %rM |
| */ |
| i.tm.opcode_space = SPACE_BASE; |
| i.tm.base_opcode = 0x8d; |
| i.tm.extension_opcode = None; |
| i.tm.opcode_modifier.evex = 0; |
| i.tm.opcode_modifier.vexvvvv = 0; |
| if (i.imm_operands != 0) |
| i.index_reg = i.base_reg = i.op[1].regs; |
| else if (!is_index (i.op[0].regs) |
| || (i.op[1].regs->reg_num == 5 |
| && i.op[0].regs->reg_num != 5)) |
| { |
| i.base_reg = i.op[0].regs; |
| i.index_reg = i.op[1].regs; |
| } |
| else |
| { |
| i.base_reg = i.op[1].regs; |
| i.index_reg = i.op[0].regs; |
| } |
| if (i.types[1].bitfield.word) |
| { |
| /* NB: No similar adjustment is needed when operand size is 32-bit. */ |
| i.base_reg += 64; |
| i.index_reg += 64; |
| } |
| i.op[1].regs = i.op[i.operands - 1].regs; |
| |
| operand_type_set (&i.types[0], 0); |
| i.types[0].bitfield.baseindex = 1; |
| i.tm.operand_types[0] = i.types[0]; |
| i.op[0].disps = NULL; |
| i.flags[0] = Operand_Mem; |
| |
| i.operands = 2; |
| i.mem_operands = i.reg_operands = 1; |
| i.imm_operands = 0; |
| pp.has_nf = false; |
| } |
| else if (optimize_for_space |
| && pp.encoding != encoding_evex |
| && (i.tm.base_opcode == 0x80 || i.tm.base_opcode == 0x83) |
| && (i.tm.extension_opcode == 0 |
| || (i.tm.extension_opcode == 5 |
| && i.op[0].imms->X_op == O_constant |
| /* Subtraction of -0x80 will end up smaller only if neither |
| operand size nor REX/REX2 prefixes are needed. */ |
| && (i.op[0].imms->X_add_number != -0x80 |
| || (i.types[1].bitfield.dword |
| && !(i.op[1].regs->reg_flags & RegRex) |
| && !(i.op[i.operands - 1].regs->reg_flags & RegRex) |
| && pp.encoding != encoding_egpr)))) |
| && !i.mem_operands |
| && !i.types[1].bitfield.byte |
| /* 16-bit operand size has extra restrictions: If REX2 was needed, |
| no size reduction would be possible. Plus 3-operand forms zero- |
| extend the result, which can't be expressed with LEA. */ |
| && (!i.types[1].bitfield.word |
| || (i.operands == 2 && pp.encoding != encoding_egpr)) |
| && is_plausible_suffix (1)) |
| { |
| /* Optimize: -Os: |
| {nf} addw $N, %M -> leaw N(%rM), %M |
| {nf} addl $N, %eM -> leal N(%rM), %eM |
| {nf} addq $N, %rM -> leaq N(%rM), %rM |
| |
| {nf} subw $N, %M -> leaw -N(%rM), %M |
| {nf} subl $N, %eM -> leal -N(%rM), %eM |
| {nf} subq $N, %rM -> leaq -N(%rM), %rM |
| |
| {nf} addl $N, %eK, %eM -> leal N(%rK), %eM |
| {nf} addq $N, %rK, %rM -> leaq N(%rK), %rM |
| |
| {nf} subl $N, %eK, %eM -> leal -N(%rK), %eM |
| {nf} subq $N, %rK, %rM -> leaq -N(%rK), %rM |
| */ |
| i.tm.opcode_space = SPACE_BASE; |
| i.tm.base_opcode = 0x8d; |
| if (i.tm.extension_opcode == 5) |
| i.op[0].imms->X_add_number = -i.op[0].imms->X_add_number; |
| i.tm.extension_opcode = None; |
| i.tm.opcode_modifier.evex = 0; |
| i.tm.opcode_modifier.vexvvvv = 0; |
| i.base_reg = i.op[1].regs; |
| if (i.types[1].bitfield.word) |
| { |
| /* NB: No similar adjustment is needed when operand size is 32-bit. */ |
| i.base_reg += 64; |
| } |
| i.op[1].regs = i.op[i.operands - 1].regs; |
| |
| operand_type_set (&i.types[0], 0); |
| i.types[0].bitfield.baseindex = 1; |
| i.types[0].bitfield.disp32 = 1; |
| i.op[0].disps = i.op[0].imms; |
| i.flags[0] = Operand_Mem; |
| optimize_disp (&i.tm); |
| i.tm.operand_types[0] = i.types[0]; |
| |
| i.operands = 2; |
| i.disp_operands = i.mem_operands = i.reg_operands = 1; |
| i.imm_operands = 0; |
| pp.has_nf = false; |
| } |
| else if (i.tm.base_opcode == 0x6b |
| && !i.mem_operands |
| && pp.encoding != encoding_evex |
| && i.tm.mnem_off != MN_imulzu |
| && is_plausible_suffix (1) |
| /* %rsp can't be the index. */ |
| && is_index (i.op[1].regs) |
| /* There's no reduction in size for 16-bit forms requiring Disp8 and |
| REX2. */ |
| && (!optimize_for_space |
| || !i.types[1].bitfield.word |
| || i.op[1].regs->reg_num != 5 |
| || pp.encoding != encoding_egpr) |
| && i.op[0].imms->X_op == O_constant |
| && (i.op[0].imms->X_add_number == 3 |
| || i.op[0].imms->X_add_number == 5 |
| || i.op[0].imms->X_add_number == 9)) |
| { |
| /* Optimize: -O: |
| For n one of 3, 5, or 9 |
| {nf} imulw $n, %N, %M -> leaw (%rN,%rN,n-1), %M |
| {nf} imull $n, %eN, %eM -> leal (%rN,%rN,n-1), %eM |
| {nf} imulq $n, %rN, %rM -> leaq (%rN,%rN,n-1), %rM |
| |
| {nf} imulw $n, %N -> leaw (%rN,%rN,s), %N |
| {nf} imull $n, %eN -> leal (%rN,%rN,s), %eN |
| {nf} imulq $n, %rN -> leaq (%rN,%rN,s), %rN |
| */ |
| i.tm.opcode_space = SPACE_BASE; |
| i.tm.base_opcode = 0x8d; |
| i.tm.extension_opcode = None; |
| i.tm.opcode_modifier.evex = 0; |
| i.base_reg = i.op[1].regs; |
| /* NB: No similar adjustment is needed when operand size is 32 bits. */ |
| if (i.types[1].bitfield.word) |
| i.base_reg += 64; |
| i.index_reg = i.base_reg; |
| i.log2_scale_factor = i.op[0].imms->X_add_number == 9 |
| ? 3 : i.op[0].imms->X_add_number >> 1; |
| |
| operand_type_set (&i.types[0], 0); |
| i.types[0].bitfield.baseindex = 1; |
| i.tm.operand_types[0] = i.types[0]; |
| i.op[0].disps = NULL; |
| i.flags[0] = Operand_Mem; |
| |
| i.tm.operand_types[1] = i.tm.operand_types[i.operands - 1]; |
| i.op[1].regs = i.op[i.operands - 1].regs; |
| i.types[1] = i.types[i.operands - 1]; |
| |
| i.operands = 2; |
| i.mem_operands = i.reg_operands = 1; |
| i.imm_operands = 0; |
| pp.has_nf = false; |
| } |
| else if (cpu_arch_isa_flags.bitfield.cpubmi2 |
| && pp.encoding == encoding_default |
| && (i.operands > 2 || !i.mem_operands) |
| && (i.types[i.operands - 1].bitfield.dword |
| || i.types[i.operands - 1].bitfield.qword)) |
| { |
| if (i.tm.base_opcode == 0xd2) |
| { |
| /* Optimize: -O: |
| <OP> one of sal, sar, shl, shr: |
| {nf} <OP> %cl, %rN -> <OP>x %{e,r}cx, %rN, %rN (N < 16) |
| {nf} <OP> %cl, ..., %rN -> <OP>x %{e,r}cx, ..., %rN (no eGPR used) |
| */ |
| gas_assert (i.tm.extension_opcode & 4); |
| i.tm.operand_types[0] = i.tm.operand_types[i.operands - 1]; |
| /* NB: i.op[0].regs specifying %cl is good enough. */ |
| i.types[0] = i.types[i.operands - 1]; |
| if (i.operands == 2) |
| { |
| i.tm.operand_types[0].bitfield.baseindex = 0; |
| i.tm.operand_types[2] = i.tm.operand_types[0]; |
| i.op[2].regs = i.op[1].regs; |
| i.types[2] = i.types[1]; |
| i.reg_operands = i.operands = 3; |
| } |
| pp.has_nf = false; |
| i.tm.opcode_modifier.w = 0; |
| i.tm.opcode_modifier.evex = 0; |
| i.tm.opcode_modifier.vex = VEX128; |
| i.tm.opcode_modifier.vexvvvv = VexVVVV_SRC2; |
| i.tm.opcode_space = SPACE_0F38; |
| i.tm.base_opcode = 0xf7; |
| i.tm.opcode_modifier.opcodeprefix |
| = !(i.tm.extension_opcode & 1) |
| ? PREFIX_0X66 /* shlx */ |
| : i.tm.extension_opcode & 2 |
| ? PREFIX_0XF3 /* sarx */ |
| : PREFIX_0XF2 /* shrx */; |
| i.tm.extension_opcode = None; |
| } |
| else if (i.tm.base_opcode == 0xc0 |
| && i.tm.extension_opcode <= 1 |
| && i.op[0].imms->X_op == O_constant) |
| { |
| /* Optimize: -O: |
| {nf} rol $I, %rN -> rorx $osz-I, %rN, %rN (I != osz-1, N < 16) |
| {nf} rol $I, ..., %rN -> rorx $osz-I, ..., %rN (I != osz-1, no eGPR used) |
| {nf} ror $I, %rN -> rorx $I, %rN, %rN (I != 1, N < 16) |
| {nf} ror $I, ..., %rN -> rorx $I,..., %rN (I != 1, no eGPR used) |
| NB: rol -> ror transformation for I == osz-1 was already handled above. |
| NB2: ror with an immediate of 1 uses a different base opcode. |
| */ |
| if (i.operands == 2) |
| { |
| i.tm.operand_types[2] = i.tm.operand_types[1]; |
| i.tm.operand_types[2].bitfield.baseindex = 0; |
| i.op[2].regs = i.op[1].regs; |
| i.types[2] = i.types[1]; |
| i.reg_operands = 2; |
| i.operands = 3; |
| } |
| pp.has_nf = false; |
| i.tm.opcode_modifier.w = 0; |
| i.tm.opcode_modifier.evex = 0; |
| i.tm.opcode_modifier.vex = VEX128; |
| i.tm.opcode_modifier.vexvvvv = 0; |
| i.tm.opcode_space = SPACE_0F3A; |
| i.tm.base_opcode = 0xf0; |
| i.tm.opcode_modifier.opcodeprefix = PREFIX_0XF2; |
| if (!i.tm.extension_opcode) |
| i.op[0].imms->X_add_number = |
| (i.types[i.operands - 1].bitfield.byte |
| ? 8 : i.types[i.operands - 1].bitfield.word |
| ? 16 : 64 >> i.types[i.operands - 1].bitfield.dword) |
| - i.op[0].imms->X_add_number; |
| i.tm.extension_opcode = None; |
| } |
| else if (i.tm.base_opcode == 0xf6 |
| && i.tm.extension_opcode == 4 |
| && !i.mem_operands |
| && i.op[0].regs->reg_num == 2 |
| && !(i.op[0].regs->reg_flags & RegRex) ) |
| { |
| /* Optimize: -O: |
| {nf} mul %edx -> mulx %eax, %eax, %edx |
| {nf} mul %rdx -> mulx %rax, %rax, %rdx |
| */ |
| i.tm.operand_types[1] = i.tm.operand_types[0]; |
| i.tm.operand_types[1].bitfield.baseindex = 0; |
| i.tm.operand_types[2] = i.tm.operand_types[1]; |
| i.op[2].regs = i.op[0].regs; |
| /* NB: %eax is good enough also for 64-bit operand size. */ |
| i.op[1].regs = i.op[0].regs = reg_eax; |
| i.types[2] = i.types[1] = i.types[0]; |
| i.reg_operands = i.operands = 3; |
| |
| pp.has_nf = false; |
| i.tm.opcode_modifier.w = 0; |
| i.tm.opcode_modifier.evex = 0; |
| i.tm.opcode_modifier.vex = VEX128; |
| i.tm.opcode_modifier.vexvvvv = VexVVVV_SRC1; |
| i.tm.opcode_space = SPACE_0F38; |
| i.tm.base_opcode = 0xf6; |
| i.tm.opcode_modifier.opcodeprefix = PREFIX_0XF2; |
| i.tm.extension_opcode = None; |
| } |
| } |
| } |
| |
| static void |
| s_noopt (int dummy ATTRIBUTE_UNUSED) |
| { |
| if (!is_it_end_of_statement ()) |
| as_warn (_("`.noopt' arguments ignored")); |
| |
| optimize = 0; |
| optimize_for_space = 0; |
| |
| ignore_rest_of_line (); |
| } |
| |
| /* Return non-zero for load instruction. */ |
| |
| static int |
| load_insn_p (void) |
| { |
| unsigned int dest; |
| int any_vex_p = is_any_vex_encoding (&i.tm); |
| unsigned int base_opcode = i.tm.base_opcode | 1; |
| |
| if (!any_vex_p) |
| { |
| /* Anysize insns: lea, invlpg, clflush, prefetch*, bndmk, bndcl, bndcu, |
| bndcn, bndstx, bndldx, clflushopt, clwb, cldemote. */ |
| if (i.tm.opcode_modifier.operandconstraint == ANY_SIZE) |
| return 0; |
| |
| /* pop. */ |
| if (i.tm.mnem_off == MN_pop) |
| return 1; |
| } |
| |
| if (i.tm.opcode_space == SPACE_BASE) |
| { |
| /* popf, popa. */ |
| if (i.tm.base_opcode == 0x9d |
| || i.tm.base_opcode == 0x61) |
| return 1; |
| |
| /* movs, cmps, lods, scas. */ |
| if ((i.tm.base_opcode | 0xb) == 0xaf) |
| return 1; |
| |
| /* outs, xlatb. */ |
| if (base_opcode == 0x6f |
| || i.tm.base_opcode == 0xd7) |
| return 1; |
| /* NB: For AMD-specific insns with implicit memory operands, |
| they're intentionally not covered. */ |
| } |
| |
| /* No memory operand. */ |
| if (!i.mem_operands) |
| return 0; |
| |
| if (any_vex_p) |
| { |
| if (i.tm.mnem_off == MN_vldmxcsr) |
| return 1; |
| } |
| else if (i.tm.opcode_space == SPACE_BASE) |
| { |
| /* test, not, neg, mul, imul, div, idiv. */ |
| if (base_opcode == 0xf7 && i.tm.extension_opcode != 1) |
| return 1; |
| |
| /* inc, dec. */ |
| if (base_opcode == 0xff && i.tm.extension_opcode <= 1) |
| return 1; |
| |
| /* add, or, adc, sbb, and, sub, xor, cmp. */ |
| if (i.tm.base_opcode >= 0x80 && i.tm.base_opcode <= 0x83) |
| return 1; |
| |
| /* rol, ror, rcl, rcr, shl/sal, shr, sar. */ |
| if ((base_opcode == 0xc1 || (base_opcode | 2) == 0xd3) |
| && i.tm.extension_opcode != 6) |
| return 1; |
| |
| /* Check for x87 instructions. */ |
| if ((base_opcode | 6) == 0xdf) |
| { |
| /* Skip fst, fstp, fstenv, fstcw. */ |
| if (i.tm.base_opcode == 0xd9 |
| && (i.tm.extension_opcode == 2 |
| || i.tm.extension_opcode == 3 |
| || i.tm.extension_opcode == 6 |
| || i.tm.extension_opcode == 7)) |
| return 0; |
| |
| /* Skip fisttp, fist, fistp, fstp. */ |
| if (i.tm.base_opcode == 0xdb |
| && (i.tm.extension_opcode == 1 |
| || i.tm.extension_opcode == 2 |
| || i.tm.extension_opcode == 3 |
| || i.tm.extension_opcode == 7)) |
| return 0; |
| |
| /* Skip fisttp, fst, fstp, fsave, fstsw. */ |
| if (i.tm.base_opcode == 0xdd |
| && (i.tm.extension_opcode == 1 |
| || i.tm.extension_opcode == 2 |
| || i.tm.extension_opcode == 3 |
| || i.tm.extension_opcode == 6 |
| || i.tm.extension_opcode == 7)) |
| return 0; |
| |
| /* Skip fisttp, fist, fistp, fbstp, fistp. */ |
| if (i.tm.base_opcode == 0xdf |
| && (i.tm.extension_opcode == 1 |
| || i.tm.extension_opcode == 2 |
| || i.tm.extension_opcode == 3 |
| || i.tm.extension_opcode == 6 |
| || i.tm.extension_opcode == 7)) |
| return 0; |
| |
| return 1; |
| } |
| } |
| else if (i.tm.opcode_space == SPACE_0F) |
| { |
| /* bt, bts, btr, btc. */ |
| if (i.tm.base_opcode == 0xba |
| && (i.tm.extension_opcode | 3) == 7) |
| return 1; |
| |
| /* cmpxchg8b, cmpxchg16b, xrstors, vmptrld. */ |
| if (i.tm.base_opcode == 0xc7 |
| && i.tm.opcode_modifier.opcodeprefix == PREFIX_NONE |
| && (i.tm.extension_opcode == 1 || i.tm.extension_opcode == 3 |
| || i.tm.extension_opcode == 6)) |
| return 1; |
| |
| /* fxrstor, ldmxcsr, xrstor. */ |
| if (i.tm.base_opcode == 0xae |
| && (i.tm.extension_opcode == 1 |
| || i.tm.extension_opcode == 2 |
| || i.tm.extension_opcode == 5)) |
| return 1; |
| |
| /* lgdt, lidt, lmsw. */ |
| if (i.tm.base_opcode == 0x01 |
| && (i.tm.extension_opcode == 2 |
| || i.tm.extension_opcode == 3 |
| || i.tm.extension_opcode == 6)) |
| return 1; |
| } |
| |
| dest = i.operands - 1; |
| |
| /* Check fake imm8 operand and 3 source operands. */ |
| if ((i.tm.opcode_modifier.immext |
| || i.reg_operands + i.mem_operands == 4) |
| && i.types[dest].bitfield.imm8) |
| dest--; |
| |
| /* add, or, adc, sbb, and, sub, xor, cmp, test, xchg. */ |
| if (i.tm.opcode_space == SPACE_BASE |
| && ((base_opcode | 0x38) == 0x39 |
| || (base_opcode | 2) == 0x87)) |
| return 1; |
| |
| if (i.tm.mnem_off == MN_xadd) |
| return 1; |
| |
| /* Check for load instruction. */ |
| return (i.types[dest].bitfield.class != ClassNone |
| || i.types[dest].bitfield.instance == Accum); |
| } |
| |
| /* Output lfence, 0xfaee8, after instruction. */ |
| |
| static void |
| insert_lfence_after (void) |
| { |
| if (lfence_after_load && load_insn_p ()) |
| { |
| /* There are also two REP string instructions that require |
| special treatment. Specifically, the compare string (CMPS) |
| and scan string (SCAS) instructions set EFLAGS in a manner |
| that depends on the data being compared/scanned. When used |
| with a REP prefix, the number of iterations may therefore |
| vary depending on this data. If the data is a program secret |
| chosen by the adversary using an LVI method, |
| then this data-dependent behavior may leak some aspect |
| of the secret. */ |
| if (((i.tm.base_opcode | 0x9) == 0xaf) |
| && i.prefix[REP_PREFIX]) |
| { |
| as_warn (_("`%s` changes flags which would affect control flow behavior"), |
| insn_name (&i.tm)); |
| } |
| char *p = frag_more (3); |
| *p++ = 0xf; |
| *p++ = 0xae; |
| *p = 0xe8; |
| } |
| } |
| |
| /* Output lfence, 0xfaee8, before instruction. */ |
| |
| static void |
| insert_lfence_before (const struct last_insn *last_insn) |
| { |
| char *p; |
| |
| if (i.tm.opcode_space != SPACE_BASE) |
| return; |
| |
| if (i.tm.base_opcode == 0xff |
| && (i.tm.extension_opcode == 2 || i.tm.extension_opcode == 4)) |
| { |
| /* Insert lfence before indirect branch if needed. */ |
| |
| if (lfence_before_indirect_branch == lfence_branch_none) |
| return; |
| |
| if (i.operands != 1) |
| abort (); |
| |
| if (i.reg_operands == 1) |
| { |
| /* Indirect branch via register. Don't insert lfence with |
| -mlfence-after-load=yes. */ |
| if (lfence_after_load |
| || lfence_before_indirect_branch == lfence_branch_memory) |
| return; |
| } |
| else if (i.mem_operands == 1 |
| && lfence_before_indirect_branch != lfence_branch_register) |
| { |
| as_warn (_("indirect `%s` with memory operand should be avoided"), |
| insn_name (&i.tm)); |
| return; |
| } |
| else |
| return; |
| |
| if (last_insn->kind != last_insn_other) |
| { |
| as_warn_where (last_insn->file, last_insn->line, |
| _("`%s` skips -mlfence-before-indirect-branch on `%s`"), |
| last_insn->name, insn_name (&i.tm)); |
| return; |
| } |
| |
| p = frag_more (3); |
| *p++ = 0xf; |
| *p++ = 0xae; |
| *p = 0xe8; |
| return; |
| } |
| |
| /* Output or/not/shl and lfence before near ret. */ |
| if (lfence_before_ret != lfence_before_ret_none |
| && (i.tm.base_opcode | 1) == 0xc3) |
| { |
| if (last_insn->kind != last_insn_other) |
| { |
| as_warn_where (last_insn->file, last_insn->line, |
| _("`%s` skips -mlfence-before-ret on `%s`"), |
| last_insn->name, insn_name (&i.tm)); |
| return; |
| } |
| |
| /* Near ret ingore operand size override under CPU64. */ |
| char prefix = flag_code == CODE_64BIT |
| ? 0x48 |
| : i.prefix[DATA_PREFIX] ? 0x66 : 0x0; |
| |
| if (lfence_before_ret == lfence_before_ret_not) |
| { |
| /* not: 0xf71424, may add prefix |
| for operand size override or 64-bit code. */ |
| p = frag_more ((prefix ? 2 : 0) + 6 + 3); |
| if (prefix) |
| *p++ = prefix; |
| *p++ = 0xf7; |
| *p++ = 0x14; |
| *p++ = 0x24; |
| if (prefix) |
| *p++ = prefix; |
| *p++ = 0xf7; |
| *p++ = 0x14; |
| *p++ = 0x24; |
| } |
| else |
| { |
| p = frag_more ((prefix ? 1 : 0) + 4 + 3); |
| if (prefix) |
| *p++ = prefix; |
| if (lfence_before_ret == lfence_before_ret_or) |
| { |
| /* or: 0x830c2400, may add prefix |
| for operand size override or 64-bit code. */ |
| *p++ = 0x83; |
| *p++ = 0x0c; |
| } |
| else |
| { |
| /* shl: 0xc1242400, may add prefix |
| for operand size override or 64-bit code. */ |
| *p++ = 0xc1; |
| *p++ = 0x24; |
| } |
| |
| *p++ = 0x24; |
| *p++ = 0x0; |
| } |
| |
| *p++ = 0xf; |
| *p++ = 0xae; |
| *p = 0xe8; |
| } |
| } |
| |
| /* Shared helper for md_assemble() and s_insn(). */ |
| static void init_globals (void) |
| { |
| unsigned int j; |
| |
| memset (&i, '\0', sizeof (i)); |
| i.rounding.type = rc_none; |
| for (j = 0; j < MAX_OPERANDS; j++) |
| i.reloc[j] = NO_RELOC; |
| memset (disp_expressions, '\0', sizeof (disp_expressions)); |
| memset (im_expressions, '\0', sizeof (im_expressions)); |
| save_stack_p = save_stack; |
| } |
| |
| /* Helper for md_assemble() to decide whether to prepare for a possible 2nd |
| parsing pass. Instead of introducing a rarely used new insn attribute this |
| utilizes a common pattern between affected templates. It is deemed |
| acceptable that this will lead to unnecessary pass 2 preparations in a |
| limited set of cases. */ |
| static INLINE bool may_need_pass2 (const insn_template *t) |
| { |
| return t->opcode_modifier.sse2avx |
| /* Note that all SSE2AVX templates have at least one operand. */ |
| ? t->operand_types[t->operands - 1].bitfield.class == RegSIMD |
| : (t->opcode_space == SPACE_0F |
| && (t->base_opcode | 1) == 0xbf) |
| || (t->opcode_space == SPACE_BASE |
| && t->base_opcode == 0x63) |
| || (intel_syntax /* shld / shrd may mean suffixed shl / shr. */ |
| && t->opcode_space == SPACE_EVEXMAP4 |
| && (t->base_opcode | 8) == 0x2c); |
| } |
| |
| /* This is the guts of the machine-dependent assembler. LINE points to a |
| machine dependent instruction. This function is supposed to emit |
| the frags/bytes it assembles to. */ |
| |
| static void |
| i386_assemble (char *line) |
| { |
| unsigned int j; |
| char mnemonic[MAX_MNEM_SIZE], mnem_suffix = 0, *copy = NULL; |
| char *xstrdup_copy = NULL; |
| const char *end, *pass1_mnem = NULL; |
| enum i386_error pass1_err = 0; |
| struct pseudo_prefixes orig_pp = pp; |
| const insn_template *t; |
| struct last_insn *last_insn |
| = &seg_info(now_seg)->tc_segment_info_data.last_insn; |
| |
| /* Initialize globals. */ |
| current_templates.end = current_templates.start = NULL; |
| retry: |
| init_globals (); |
| |
| /* Suppress optimization when the last thing we saw may not have been |
| a proper instruction (e.g. a stand-alone prefix or .byte). */ |
| if (last_insn->kind != last_insn_other) |
| pp.no_optimize = true; |
| |
| /* First parse an instruction mnemonic & call i386_operand for the operands. |
| We assume that the scrubber has arranged it so that line[0] is the valid |
| start of a (possibly prefixed) mnemonic. */ |
| |
| end = parse_insn (line, mnemonic, parse_all); |
| if (end == NULL) |
| { |
| if (pass1_mnem != NULL) |
| goto match_error; |
| if (i.error != no_error) |
| { |
| gas_assert (current_templates.start != NULL); |
| if (may_need_pass2 (current_templates.start) && !i.suffix) |
| goto no_match; |
| /* No point in trying a 2nd pass - it'll only find the same suffix |
| again. */ |
| mnem_suffix = i.suffix; |
| goto match_error; |
| } |
| return; |
| } |
| t = current_templates.start; |
| /* NB: LINE may be change to be the same as XSTRDUP_COPY. */ |
| if (xstrdup_copy != line && may_need_pass2 (t)) |
| { |
| /* Make a copy of the full line in case we need to retry. */ |
| xstrdup_copy = xstrdup (line); |
| copy = xstrdup_copy; |
| } |
| line += end - line; |
| mnem_suffix = i.suffix; |
| |
| line = parse_operands (line, mnemonic); |
| this_operand = -1; |
| if (line == NULL) |
| { |
| free (xstrdup_copy); |
| return; |
| } |
| |
| /* Now we've parsed the mnemonic into a set of templates, and have the |
| operands at hand. */ |
| |
| /* All Intel opcodes have reversed operands except for "bound", "enter", |
| "invlpg*", "monitor*", "mwait*", "tpause", "umwait", "pvalidate", |
| "rmpadjust", "rmpupdate", and "rmpquery". We also don't reverse |
| intersegment "jmp" and "call" instructions with 2 immediate operands so |
| that the immediate segment precedes the offset consistently in Intel and |
| AT&T modes. */ |
| if (intel_syntax |
| && i.operands > 1 |
| && (t->mnem_off != MN_bound) |
| && !startswith (mnemonic, "invlpg") |
| && !startswith (mnemonic, "monitor") |
| && !startswith (mnemonic, "mwait") |
| && (t->mnem_off != MN_pvalidate) |
| && !startswith (mnemonic, "rmp") |
| && (t->mnem_off != MN_tpause) |
| && (t->mnem_off != MN_umwait) |
| && !(i.operands == 2 |
| && operand_type_check (i.types[0], imm) |
| && operand_type_check (i.types[1], imm))) |
| swap_operands (); |
| |
| /* The order of the immediates should be reversed for 2-immediates EXTRQ |
| and INSERTQ instructions. Also UWRMSR wants its immediate to be in the |
| "canonical" place (first), despite it appearing last (in AT&T syntax, or |
| because of the swapping above) in the incoming set of operands. */ |
| if ((i.imm_operands == 2 |
| && (t->mnem_off == MN_extrq || t->mnem_off == MN_insertq)) |
| || (t->mnem_off == MN_uwrmsr && i.imm_operands |
| && i.operands > i.imm_operands)) |
| swap_2_operands (0, 1); |
| |
| if (i.imm_operands) |
| { |
| /* For USER_MSR instructions, imm32 stands for the name of an model specific |
| register (MSR). That's an unsigned quantity, whereas all other insns with |
| 32-bit immediate and 64-bit operand size use sign-extended |
| immediates (imm32s). Therefore these insns are special-cased, bypassing |
| the normal handling of immediates here. */ |
| if (is_cpu(current_templates.start, CpuUSER_MSR)) |
| { |
| for (j = 0; j < i.operands; j++) |
| { |
| if (operand_type_check(i.types[j], imm)) |
| i.types[j] = smallest_imm_type (i.op[j].imms->X_add_number); |
| } |
| } |
| else |
| optimize_imm (); |
| } |
| |
| if (i.disp_operands && !optimize_disp (t)) |
| return; |
| |
| /* Next, we find a template that matches the given insn, |
| making sure the overlap of the given operands types is consistent |
| with the template operand types. */ |
| |
| if (!(t = match_template (mnem_suffix))) |
| { |
| const char *err_msg; |
| |
| if (copy && !mnem_suffix) |
| { |
| line = copy; |
| copy = NULL; |
| no_match: |
| pass1_err = i.error; |
| pass1_mnem = insn_name (current_templates.start); |
| pp = orig_pp; |
| goto retry; |
| } |
| |
| /* If a non-/only-64bit template (group) was found in pass 1, and if |
| _some_ template (group) was found in pass 2, squash pass 1's |
| error. */ |
| if (pass1_err == unsupported_64bit) |
| pass1_mnem = NULL; |
| |
| match_error: |
| free (xstrdup_copy); |
| |
| switch (pass1_mnem ? pass1_err : i.error) |
| { |
| default: |
| abort (); |
| case operand_size_mismatch: |
| err_msg = _("operand size mismatch"); |
| break; |
| case operand_type_mismatch: |
| err_msg = _("operand type mismatch"); |
| break; |
| case register_type_mismatch: |
| err_msg = _("register type mismatch"); |
| break; |
| case number_of_operands_mismatch: |
| err_msg = _("number of operands mismatch"); |
| break; |
| case invalid_instruction_suffix: |
| err_msg = _("invalid instruction suffix"); |
| break; |
| case bad_imm4: |
| err_msg = _("constant doesn't fit in 4 bits"); |
| break; |
| case unsupported_with_intel_mnemonic: |
| err_msg = _("unsupported with Intel mnemonic"); |
| break; |
| case unsupported_syntax: |
| err_msg = _("unsupported syntax"); |
| break; |
| case unsupported_EGPR_for_addressing: |
| err_msg = _("extended GPR cannot be used as base/index"); |
| break; |
| case unsupported_nf: |
| err_msg = _("{nf} unsupported"); |
| break; |
| case unsupported: |
| as_bad (_("unsupported instruction `%s'"), |
| pass1_mnem ? pass1_mnem : insn_name (current_templates.start)); |
| return; |
| case unsupported_on_arch: |
| as_bad (_("`%s' is not supported on `%s%s'"), |
| pass1_mnem ? pass1_mnem : insn_name (current_templates.start), |
| cpu_arch_name ? cpu_arch_name : default_arch, |
| cpu_sub_arch_name ? cpu_sub_arch_name : ""); |
| return; |
| case unsupported_64bit: |
| if (ISLOWER (mnem_suffix)) |
| { |
| if (flag_code == CODE_64BIT) |
| as_bad (_("`%s%c' is not supported in 64-bit mode"), |
| pass1_mnem ? pass1_mnem : insn_name (current_templates.start), |
| mnem_suffix); |
| else |
| as_bad (_("`%s%c' is only supported in 64-bit mode"), |
| pass1_mnem ? pass1_mnem : insn_name (current_templates.start), |
| mnem_suffix); |
| } |
| else |
| { |
| if (flag_code == CODE_64BIT) |
| as_bad (_("`%s' is not supported in 64-bit mode"), |
| pass1_mnem ? pass1_mnem : insn_name (current_templates.start)); |
| else |
| as_bad (_("`%s' is only supported in 64-bit mode"), |
| pass1_mnem ? pass1_mnem : insn_name (current_templates.start)); |
| } |
| return; |
| case no_vex_encoding: |
| err_msg = _("no VEX/XOP encoding"); |
| break; |
| case no_evex_encoding: |
| err_msg = _("no EVEX encoding"); |
| break; |
| case invalid_sib_address: |
| err_msg = _("invalid SIB address"); |
| break; |
| case invalid_vsib_address: |
| err_msg = _("invalid VSIB address"); |
| break; |
| case invalid_vector_register_set: |
| err_msg = _("mask, index, and destination registers must be distinct"); |
| break; |
| case invalid_tmm_register_set: |
| err_msg = _("all tmm registers must be distinct"); |
| break; |
| case invalid_dest_and_src_register_set: |
| err_msg = _("destination and source registers must be distinct"); |
| break; |
| case invalid_dest_register_set: |
| err_msg = _("two dest registers must be distinct"); |
| break; |
| case invalid_pseudo_prefix: |
| err_msg = _("rex2 pseudo prefix cannot be used"); |
| break; |
| case unsupported_vector_index_register: |
| err_msg = _("unsupported vector index register"); |
| break; |
| case unsupported_broadcast: |
| err_msg = _("unsupported broadcast"); |
| break; |
| case broadcast_needed: |
| err_msg = _("broadcast is needed for operand of such type"); |
| break; |
| case unsupported_masking: |
| err_msg = _("unsupported masking"); |
| break; |
| case mask_not_on_destination: |
| err_msg = _("mask not on destination operand"); |
| break; |
| case no_default_mask: |
| err_msg = _("default mask isn't allowed"); |
| break; |
| case unsupported_rc_sae: |
| err_msg = _("unsupported static rounding/sae"); |
| break; |
| case unsupported_vector_size: |
| as_bad (_("vector size above %u required for `%s'"), 128u << vector_size, |
| pass1_mnem ? pass1_mnem : insn_name (current_templates.start)); |
| return; |
| case unsupported_rsp_register: |
| err_msg = _("'rsp' register cannot be used"); |
| break; |
| case internal_error: |
| err_msg = _("internal error"); |
| break; |
| } |
| as_bad (_("%s for `%s'"), err_msg, |
| pass1_mnem ? pass1_mnem : insn_name (current_templates.start)); |
| return; |
| } |
| |
| free (xstrdup_copy); |
| |
| if (sse_check != check_none |
| /* The opcode space check isn't strictly needed; it's there only to |
| bypass the logic below when easily possible. */ |
| && t->opcode_space >= SPACE_0F |
| && t->opcode_space <= SPACE_0F3A |
| && !is_cpu (&i.tm, CpuSSE4a) |
| && !is_any_vex_encoding (t)) |
| { |
| /* Some KL and all WideKL insns have only implicit %xmm operands. */ |
| bool simd = is_cpu (t, CpuKL) || is_cpu (t, CpuWideKL); |
| |
| for (j = 0; j < t->operands; ++j) |
| { |
| if (t->operand_types[j].bitfield.class == RegMMX) |
| break; |
| if (t->operand_types[j].bitfield.class == RegSIMD) |
| simd = true; |
| } |
| |
| if (j >= t->operands && simd) |
| (sse_check == check_warning |
| ? as_warn |
| : as_bad) (_("SSE instruction `%s' is used"), insn_name (&i.tm)); |
| } |
| |
| if (i.tm.opcode_modifier.fwait) |
| if (!add_prefix (FWAIT_OPCODE)) |
| return; |
| |
| /* Check if REP prefix is OK. */ |
| if (i.rep_prefix && i.tm.opcode_modifier.prefixok != PrefixRep) |
| { |
| as_bad (_("invalid instruction `%s' after `%s'"), |
| insn_name (&i.tm), i.rep_prefix); |
| return; |
| } |
| |
| /* Check for lock without a lockable instruction. Destination operand |
| must be memory unless it is xchg (0x86). */ |
| if (i.prefix[LOCK_PREFIX]) |
| { |
| if (i.tm.opcode_modifier.prefixok < PrefixLock |
| || i.mem_operands == 0 |
| || (i.tm.base_opcode != 0x86 |
| && !(i.flags[i.operands - 1] & Operand_Mem))) |
| { |
| as_bad (_("expecting lockable instruction after `lock'")); |
| return; |
| } |
| |
| /* Zap the redundant prefix from XCHG when optimizing. */ |
| if (i.tm.base_opcode == 0x86 && optimize && !pp.no_optimize) |
| i.prefix[LOCK_PREFIX] = 0; |
| } |
| |
| if ((is_any_vex_encoding (&i.tm) && i.tm.opcode_space != SPACE_EVEXMAP4) |
| || i.tm.operand_types[i.imm_operands].bitfield.class >= RegMMX |
| || i.tm.operand_types[i.imm_operands + 1].bitfield.class >= RegMMX) |
| { |
| /* Check for data size prefix on VEX/XOP/EVEX encoded and SIMD insns. */ |
| if (i.prefix[DATA_PREFIX]) |
| { |
| as_bad (_("data size prefix invalid with `%s'"), insn_name (&i.tm)); |
| return; |
| } |
| |
| /* Don't allow e.g. KMOV in TLS code sequences which will trigger |
| linker error later. */ |
| for (j = i.imm_operands; j < i.operands; ++j) |
| switch (i.reloc[j]) |
| { |
| case BFD_RELOC_X86_64_GOTTPOFF: |
| case BFD_RELOC_386_TLS_GOTIE: |
| case BFD_RELOC_X86_64_TLSLD: |
| for (unsigned int k = 0; k < ARRAY_SIZE (gotrel); k++) |
| { |
| if (gotrel[k].rel[object_64bit] == i.reloc[j]) |
| { |
| as_bad (_("@%s operator cannot be used with `%s'"), |
| gotrel[k].str, insn_name (&i.tm)); |
| return; |
| } |
| } |
| abort (); |
| default: |
| break; |
| } |
| } |
| |
| /* Check if HLE prefix is OK. */ |
| if (i.hle_prefix && !check_hle ()) |
| return; |
| |
| /* Check BND prefix. */ |
| if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok) |
| as_bad (_("expecting valid branch instruction after `bnd'")); |
| |
| /* Check NOTRACK prefix. */ |
| if (i.notrack_prefix && i.tm.opcode_modifier.prefixok != PrefixNoTrack) |
| as_bad (_("expecting indirect branch instruction after `notrack'")); |
| |
| if (is_cpu (&i.tm, CpuMPX)) |
| { |
| if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX]) |
| as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions.")); |
| else if (flag_code != CODE_16BIT |
| ? i.prefix[ADDR_PREFIX] |
| : i.mem_operands && !i.prefix[ADDR_PREFIX]) |
| as_bad (_("16-bit address isn't allowed in MPX instructions")); |
| } |
| |
| /* Insert BND prefix. */ |
| if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok) |
| { |
| if (!i.prefix[BND_PREFIX]) |
| add_prefix (BND_PREFIX_OPCODE); |
| else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE) |
| { |
| as_warn (_("replacing `rep'/`repe' prefix by `bnd'")); |
| i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE; |
| } |
| } |
| |
| /* Check string instruction segment overrides. */ |
| if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0) |
| { |
| gas_assert (i.mem_operands); |
| if (!check_string ()) |
| return; |
| i.disp_operands = 0; |
| } |
| |
| /* The memory operand of (%dx) should be only used with input/output |
| instructions (base opcodes: 0x6c, 0x6e, 0xec, 0xee). */ |
| if (i.input_output_operand |
| && ((i.tm.base_opcode | 0x82) != 0xee |
| || i.tm.opcode_space != SPACE_BASE)) |
| { |
| as_bad (_("input/output port address isn't allowed with `%s'"), |
| insn_name (&i.tm)); |
| return; |
| } |
| |
| if (optimize && !pp.no_optimize && i.tm.opcode_modifier.optimize) |
| { |
| if (pp.has_nf) |
| optimize_nf_encoding (); |
| optimize_encoding (); |
| } |
| |
| /* Past optimization there's no need to distinguish encoding_evex, |
| encoding_evex512, and encoding_egpr anymore. */ |
| if (pp.encoding == encoding_evex512) |
| pp.encoding = encoding_evex; |
| else if (pp.encoding == encoding_egpr) |
| pp.encoding = is_any_vex_encoding (&i.tm) ? encoding_evex |
| : encoding_default; |
| |
| /* Similarly {nf} can now be taken to imply {evex}. */ |
| if (pp.has_nf && pp.encoding == encoding_default) |
| pp.encoding = encoding_evex; |
| |
| if (use_unaligned_vector_move) |
| encode_with_unaligned_vector_move (); |
| |
| if (!process_suffix (t)) |
| return; |
| |
| /* Check if IP-relative addressing requirements can be satisfied. */ |
| if (is_cpu (&i.tm, CpuPREFETCHI) |
| && !(i.base_reg && i.base_reg->reg_num == RegIP)) |
| as_warn (_("'%s' only supports RIP-relative address"), insn_name (&i.tm)); |
| |
| /* Update operand types and check extended states. */ |
| for (j = 0; j < i.operands; j++) |
| { |
| i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]); |
| switch (i.tm.operand_types[j].bitfield.class) |
| { |
| default: |
| break; |
| case RegMMX: |
| i.xstate |= xstate_mmx; |
| break; |
| case RegMask: |
| i.xstate |= xstate_mask; |
| break; |
| case RegSIMD: |
| if (i.tm.operand_types[j].bitfield.tmmword) |
| i.xstate |= xstate_tmm; |
| else if (i.tm.operand_types[j].bitfield.zmmword |
| && !i.tm.opcode_modifier.vex |
| && vector_size >= VSZ512) |
| i.xstate |= xstate_zmm; |
| else if (i.tm.operand_types[j].bitfield.ymmword |
| && vector_size >= VSZ256) |
| i.xstate |= xstate_ymm; |
| else if (i.tm.operand_types[j].bitfield.xmmword) |
| i.xstate |= xstate_xmm; |
| break; |
| } |
| } |
| |
| /* Make still unresolved immediate matches conform to size of immediate |
| given in i.suffix. */ |
| if (!finalize_imm ()) |
| return; |
| |
| if (i.types[0].bitfield.imm1) |
| i.imm_operands = 0; /* kludge for shift insns. */ |
| |
| /* For insns with operands there are more diddles to do to the opcode. */ |
| if (i.operands) |
| { |
| if (!process_operands ()) |
| return; |
| } |
| else if (!quiet_warnings && i.tm.opcode_modifier.operandconstraint == UGH) |
| { |
| /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */ |
| as_warn (_("translating to `%sp'"), insn_name (&i.tm)); |
| } |
| |
| if (is_any_vex_encoding (&i.tm)) |
| { |
| if (!cpu_arch_flags.bitfield.cpui286) |
| { |
| as_bad (_("instruction `%s' isn't supported outside of protected mode."), |
| insn_name (&i.tm)); |
| return; |
| } |
| |
| /* Check for explicit REX prefix. */ |
| if ((i.prefix[REX_PREFIX] |
| && (i.tm.opcode_space != SPACE_EVEXMAP4 |
| /* To mimic behavior for legacy insns, permit use of REX64 for promoted |
| legacy instructions. */ |
| || i.prefix[REX_PREFIX] != (REX_OPCODE | REX_W))) |
| || pp.rex_encoding) |
| { |
| as_bad (_("REX prefix invalid with `%s'"), insn_name (&i.tm)); |
| return; |
| } |
| |
| /* Check for explicit REX2 prefix. */ |
| if (pp.rex2_encoding) |
| { |
| as_bad (_("{rex2} prefix invalid with `%s'"), insn_name (&i.tm)); |
| return; |
| } |
| |
| if (is_apx_evex_encoding ()) |
| { |
| if (!build_apx_evex_prefix ()) |
| return; |
| } |
| else if (i.tm.opcode_modifier.vex) |
| build_vex_prefix (t); |
| else |
| build_evex_prefix (); |
| |
| /* The individual REX.RXBW bits got consumed. */ |
| i.rex &= REX_OPCODE; |
| |
| /* The rex2 bits got consumed. */ |
| i.rex2 = 0; |
| } |
| |
| /* Handle conversion of 'int $3' --> special int3 insn. */ |
| if (i.tm.mnem_off == MN_int |
| && i.op[0].imms->X_add_number == 3) |
| { |
| i.tm.base_opcode = INT3_OPCODE; |
| i.imm_operands = 0; |
| } |
| |
| if ((i.tm.opcode_modifier.jump == JUMP |
| || i.tm.opcode_modifier.jump == JUMP_BYTE |
| || i.tm.opcode_modifier.jump == JUMP_DWORD) |
| && i.op[0].disps->X_op == O_constant) |
| { |
| /* Convert "jmp constant" (and "call constant") to a jump (call) to |
| the absolute address given by the constant. Since ix86 jumps and |
| calls are pc relative, we need to generate a reloc. */ |
| i.op[0].disps->X_add_symbol = &abs_symbol; |
| i.op[0].disps->X_op = O_symbol; |
| } |
| |
| establish_rex (); |
| |
| insert_lfence_before (last_insn); |
| |
| /* We are ready to output the insn. */ |
| output_insn (last_insn); |
| |
| #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF) |
| /* PS: SCFI is enabled only for System V AMD64 ABI. The ABI check has been |
| performed in i386_target_format. */ |
| if (IS_ELF && flag_synth_cfi) |
| { |
| ginsnS *ginsn; |
| ginsn = x86_ginsn_new (symbol_temp_new_now (), frch_ginsn_gen_mode ()); |
| frch_ginsn_data_append (ginsn); |
| } |
| #endif |
| |
| insert_lfence_after (); |
| |
| if (i.tm.opcode_modifier.isprefix) |
| { |
| last_insn->kind = last_insn_prefix; |
| last_insn->name = insn_name (&i.tm); |
| last_insn->file = as_where (&last_insn->line); |
| } |
| else |
| last_insn->kind = last_insn_other; |
| } |
| |
| void |
| md_assemble (char *line) |
| { |
| i386_assemble (line); |
| current_templates.start = NULL; |
| memset (&pp, 0, sizeof (pp)); |
| } |
| |
| /* The Q suffix is generally valid only in 64-bit mode, with very few |
| exceptions: fild, fistp, fisttp, and cmpxchg8b. Note that for fild |
| and fisttp only one of their two templates is matched below: That's |
| sufficient since other relevant attributes are the same between both |
| respective templates. */ |
| static INLINE bool q_suffix_allowed(const insn_template *t) |
| { |
| return flag_code == CODE_64BIT |
| || (t->opcode_space == SPACE_BASE |
| && t->base_opcode == 0xdf |
| && (t->extension_opcode & 1)) /* fild / fistp / fisttp */ |
| || t->mnem_off == MN_cmpxchg8b; |
| } |
| |
| static const char * |
| parse_insn (const char *line, char *mnemonic, enum parse_mode mode) |
| { |
| const char *l = line, *token_start = l; |
| char *mnem_p; |
| bool pass1 = !current_templates.start; |
| int supported; |
| const insn_template *t; |
| char *dot_p = NULL; |
| |
| while (1) |
| { |
| const char *split; |
| |
| mnem_p = mnemonic; |
| /* Pseudo-prefixes start with an opening figure brace. */ |
| if ((*mnem_p = *l) == '{') |
| { |
| ++mnem_p; |
| ++l; |
| if (is_space_char (*l)) |
| ++l; |
| } |
| else if (mode == parse_pseudo_prefix) |
| break; |
| while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0) |
| { |
| if (*mnem_p == '.') |
| dot_p = mnem_p; |
| mnem_p++; |
| if (mnem_p >= mnemonic + MAX_MNEM_SIZE) |
| { |
| too_long: |
| as_bad (_("no such instruction: `%s'"), token_start); |
| return NULL; |
| } |
| l++; |
| } |
| split = l; |
| if (is_space_char (*l)) |
| ++l; |
| /* Pseudo-prefixes end with a closing figure brace. */ |
| if (*mnemonic == '{' && *l == '}') |
| { |
| *mnem_p++ = *l++; |
| if (mnem_p >= mnemonic + MAX_MNEM_SIZE) |
| goto too_long; |
| *mnem_p = '\0'; |
| |
| if (is_space_char (*l)) |
| ++l; |
| } |
| else if (l == split |
| && *l != END_OF_INSN |
| && (intel_syntax |
| || (*l != PREFIX_SEPARATOR && *l != ','))) |
| { |
| if (mode != parse_all) |
| break; |
| as_bad (_("invalid character %s in mnemonic"), |
| output_invalid (*split)); |
| return NULL; |
| } |
| if (token_start == l) |
| { |
| if (!intel_syntax && *l == PREFIX_SEPARATOR) |
| as_bad (_("expecting prefix; got nothing")); |
| else |
| as_bad (_("expecting mnemonic; got nothing")); |
| return NULL; |
| } |
| |
| /* Look up instruction (or prefix) via hash table. */ |
| op_lookup (mnemonic); |
| |
| if (*l != END_OF_INSN |
| && current_templates.start |
| && current_templates.start->opcode_modifier.isprefix) |
| { |
| supported = cpu_flags_match (current_templates.start); |
| if (!(supported & CPU_FLAGS_64BIT_MATCH)) |
| { |
| as_bad ((flag_code != CODE_64BIT |
| ? _("`%s' is only supported in 64-bit mode") |
| : _("`%s' is not supported in 64-bit mode")), |
| insn_name (current_templates.start)); |
| return NULL; |
| } |
| if (supported != CPU_FLAGS_PERFECT_MATCH) |
| { |
| as_bad (_("`%s' is not supported on `%s%s'"), |
| insn_name (current_templates.start), |
| cpu_arch_name ? cpu_arch_name : default_arch, |
| cpu_sub_arch_name ? cpu_sub_arch_name : ""); |
| return NULL; |
| } |
| /* If we are in 16-bit mode, do not allow addr16 or data16. |
| Similarly, in 32-bit mode, do not allow addr32 or data32. */ |
| if ((current_templates.start->opcode_modifier.size == SIZE16 |
| || current_templates.start->opcode_modifier.size == SIZE32) |
| && flag_code != CODE_64BIT |
| && ((current_templates.start->opcode_modifier.size == SIZE32) |
| ^ (flag_code == CODE_16BIT))) |
| { |
| as_bad (_("redundant %s prefix"), |
| insn_name (current_templates.start)); |
| return NULL; |
| } |
| |
| if (current_templates.start->base_opcode == PSEUDO_PREFIX) |
| { |
| /* Handle pseudo prefixes. */ |
| switch (current_templates.start->extension_opcode) |
| { |
| case Prefix_Disp8: |
| /* {disp8} */ |
| pp.disp_encoding = disp_encoding_8bit; |
| break; |
| case Prefix_Disp16: |
| /* {disp16} */ |
| pp.disp_encoding = disp_encoding_16bit; |
| break; |
| case Prefix_Disp32: |
| /* {disp32} */ |
| pp.disp_encoding = disp_encoding_32bit; |
| break; |
| case Prefix_Load: |
| /* {load} */ |
| pp.dir_encoding = dir_encoding_load; |
| break; |
| case Prefix_Store: |
| /* {store} */ |
| pp.dir_encoding = dir_encoding_store; |
| break; |
| case Prefix_VEX: |
| /* {vex} */ |
| pp.encoding = encoding_vex; |
| break; |
| case Prefix_VEX3: |
| /* {vex3} */ |
| pp.encoding = encoding_vex3; |
| break; |
| case Prefix_EVEX: |
| /* {evex} */ |
| pp.encoding = encoding_evex; |
| break; |
| case Prefix_REX: |
| /* {rex} */ |
| pp.rex_encoding = true; |
| break; |
| case Prefix_REX2: |
| /* {rex2} */ |
| pp.rex2_encoding = true; |
| break; |
| case Prefix_NF: |
| /* {nf} */ |
| pp.has_nf = true; |
| break; |
| case Prefix_NoOptimize: |
| /* {nooptimize} */ |
| pp.no_optimize = true; |
| break; |
| default: |
| abort (); |
| } |
| if (pp.has_nf |
| && pp.encoding != encoding_default |
| && pp.encoding != encoding_evex) |
| { |
| as_bad (_("{nf} cannot be combined with {vex}/{vex3}")); |
| return NULL; |
| } |
| } |
| else |
| { |
| /* Add prefix, checking for repeated prefixes. */ |
| switch (add_prefix (current_templates.start->base_opcode)) |
| { |
| case PREFIX_EXIST: |
| return NULL; |
| case PREFIX_DS: |
| if (is_cpu (current_templates.start, CpuIBT)) |
| i.notrack_prefix = insn_name (current_templates.start); |
| break; |
| case PREFIX_REP: |
| if (is_cpu (current_templates.start, CpuHLE)) |
| i.hle_prefix = insn_name (current_templates.start); |
| else if (is_cpu (current_templates.start, CpuMPX)) |
| i.bnd_prefix = insn_name (current_templates.start); |
| else |
| i.rep_prefix = insn_name (current_templates.start); |
| break; |
| default: |
| break; |
| } |
| } |
| /* Skip past PREFIX_SEPARATOR and reset token_start. */ |
| l += (!intel_syntax && *l == PREFIX_SEPARATOR); |
| if (is_space_char (*l)) |
| ++l; |
| token_start = l; |
| } |
| else |
| break; |
| } |
| |
| if (mode != parse_all) |
| return token_start; |
| |
| if (!current_templates.start) |
| { |
| /* Deprecated functionality (new code should use pseudo-prefixes instead): |
| Check if we should swap operand or force 32bit displacement in |
| encoding. */ |
| if (mnem_p - 2 == dot_p && dot_p[1] == 's') |
| { |
| if (pp.dir_encoding == dir_encoding_default) |
| pp.dir_encoding = dir_encoding_swap; |
| else |
| as_warn (_("ignoring `.s' suffix due to earlier `{%s}'"), |
| pp.dir_encoding == dir_encoding_load ? "load" : "store"); |
| } |
| else if (mnem_p - 3 == dot_p |
| && dot_p[1] == 'd' |
| && dot_p[2] == '8') |
| { |
| if (pp.disp_encoding == disp_encoding_default) |
| pp.disp_encoding = disp_encoding_8bit; |
| else if (pp.disp_encoding != disp_encoding_8bit) |
| as_warn (_("ignoring `.d8' suffix due to earlier `{disp<N>}'")); |
| } |
| else if (mnem_p - 4 == dot_p |
| && dot_p[1] == 'd' |
| && dot_p[2] == '3' |
| && dot_p[3] == '2') |
| { |
| if (pp.disp_encoding == disp_encoding_default) |
| pp.disp_encoding = disp_encoding_32bit; |
| else if (pp.disp_encoding != disp_encoding_32bit) |
| as_warn (_("ignoring `.d32' suffix due to earlier `{disp<N>}'")); |
| } |
| else |
| goto check_suffix; |
| mnem_p = dot_p; |
| *dot_p = '\0'; |
| op_lookup (mnemonic); |
| } |
| |
| if (!current_templates.start || !pass1) |
| { |
| current_templates.start = NULL; |
| |
| check_suffix: |
| if (mnem_p > mnemonic) |
| { |
| /* See if we can get a match by trimming off a suffix. */ |
| switch (mnem_p[-1]) |
| { |
| case WORD_MNEM_SUFFIX: |
| if (intel_syntax && (intel_float_operand (mnemonic) & 2)) |
| i.suffix = SHORT_MNEM_SUFFIX; |
| else |
| /* Fall through. */ |
| case BYTE_MNEM_SUFFIX: |
| case QWORD_MNEM_SUFFIX: |
| i.suffix = mnem_p[-1]; |
| mnem_p[-1] = '\0'; |
| op_lookup (mnemonic); |
| break; |
| case SHORT_MNEM_SUFFIX: |
| case LONG_MNEM_SUFFIX: |
| if (!intel_syntax) |
| { |
| i.suffix = mnem_p[-1]; |
| mnem_p[-1] = '\0'; |
| op_lookup (mnemonic); |
| } |
| break; |
| |
| /* Intel Syntax. */ |
| case 'd': |
| if (intel_syntax) |
| { |
| if (intel_float_operand (mnemonic) == 1) |
| i.suffix = SHORT_MNEM_SUFFIX; |
| else |
| i.suffix = LONG_MNEM_SUFFIX; |
| mnem_p[-1] = '\0'; |
| op_lookup (mnemonic); |
| } |
| /* For compatibility reasons accept MOVSD and CMPSD without |
| operands even in AT&T mode. */ |
| else if (*l == END_OF_INSN) |
| { |
| mnem_p[-1] = '\0'; |
| op_lookup (mnemonic); |
| if (current_templates.start != NULL |
| /* MOVS or CMPS */ |
| && (current_templates.start->base_opcode | 2) == 0xa6 |
| && current_templates.start->opcode_space |
| == SPACE_BASE |
| && mnem_p[-2] == 's') |
| { |
| as_warn (_("found `%sd'; assuming `%sl' was meant"), |
| mnemonic, mnemonic); |
| i.suffix = LONG_MNEM_SUFFIX; |
| } |
| else |
| { |
| current_templates.start = NULL; |
| mnem_p[-1] = 'd'; |
| } |
| } |
| break; |
| } |
| } |
| |
| if (!current_templates.start) |
| { |
| if (pass1) |
| as_bad (_("no such instruction: `%s'"), token_start); |
| return NULL; |
| } |
| } |
| |
| /* Handle SCC OSZC flgs. */ |
| if (current_templates.start->opcode_modifier.operandconstraint == SCC) |
| { |
| int length = check_Scc_OszcOperations (l); |
| if (length < 0) |
| return NULL; |
| l += length; |
| } |
| |
| if ((current_templates.start->opcode_modifier.jump == JUMP |
| || current_templates.start->opcode_modifier.jump == JUMP_BYTE) |
| && *l == ',') |
| { |
| /* Check for a branch hint. We allow ",pt" and ",pn" for |
| predict taken and predict not taken respectively. |
| I'm not sure that branch hints actually do anything on loop |
| and jcxz insns (JumpByte) for current Pentium4 chips. They |
| may work in the future and it doesn't hurt to accept them |
| now. */ |
| token_start = l++; |
| if (is_space_char (*l)) |
| ++l; |
| if (TOLOWER (*l) == 'p' && ISALPHA (l[1]) |
| && (l[2] == END_OF_INSN || is_space_char (l[2]))) |
| { |
| if (TOLOWER (l[1]) == 't') |
| { |
| if (!add_prefix (DS_PREFIX_OPCODE)) |
| return NULL; |
| l += 2; |
| } |
| else if (TOLOWER (l[1]) == 'n') |
| { |
| if (!add_prefix (CS_PREFIX_OPCODE)) |
| return NULL; |
| l += 2; |
| } |
| else |
| l = token_start; |
| } |
| else |
| l = token_start; |
| } |
| /* Any other comma loses. */ |
| if (*l == ',') |
| { |
| as_bad (_("invalid character %s in mnemonic"), |
| output_invalid (*l)); |
| return NULL; |
| } |
| |
| /* Check if instruction is supported on specified architecture. */ |
| supported = 0; |
| for (t = current_templates.start; t < current_templates.end; ++t) |
| { |
| supported |= cpu_flags_match (t); |
| |
| if (i.suffix == QWORD_MNEM_SUFFIX && !q_suffix_allowed (t)) |
| supported &= ~CPU_FLAGS_64BIT_MATCH; |
| |
| if (supported == CPU_FLAGS_PERFECT_MATCH) |
| return l; |
| } |
| |
| if (pass1) |
| { |
| if (supported & CPU_FLAGS_64BIT_MATCH) |
| i.error = unsupported_on_arch; |
| else |
| i.error = unsupported_64bit; |
| } |
| |
| return NULL; |
| } |
| |
| static char * |
| parse_operands (char *l, const char *mnemonic) |
| { |
| char *token_start; |
| |
| /* 1 if operand is pending after ','. */ |
| unsigned int expecting_operand = 0; |
| |
| while (*l != END_OF_INSN) |
| { |
| /* Non-zero if operand parens not balanced. */ |
| unsigned int paren_not_balanced = 0; |
| /* True if inside double quotes. */ |
| bool in_quotes = false; |
| |
| /* Skip optional white space before operand. */ |
| if (is_space_char (*l)) |
| ++l; |
| if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"') |
| { |
| as_bad (_("invalid character %s before operand %d"), |
| output_invalid (*l), |
| i.operands + 1); |
| return NULL; |
| } |
| token_start = l; /* After white space. */ |
| while (in_quotes || paren_not_balanced || *l != ',') |
| { |
| if (*l == END_OF_INSN) |
| { |
| if (in_quotes) |
| { |
| as_bad (_("unbalanced double quotes in operand %d."), |
| i.operands + 1); |
| return NULL; |
| } |
| if (paren_not_balanced) |
| { |
| know (!intel_syntax); |
| as_bad (_("unbalanced parenthesis in operand %d."), |
| i.operands + 1); |
| return NULL; |
| } |
| else |
| break; /* we are done */ |
| } |
| else if (*l == '\\' && l[1] == '"') |
| ++l; |
| else if (*l == '"') |
| in_quotes = !in_quotes; |
| else if (!in_quotes && !is_operand_char (*l) && !is_space_char (*l)) |
| { |
| as_bad (_("invalid character %s in operand %d"), |
| output_invalid (*l), |
| i.operands + 1); |
| return NULL; |
| } |
| if (!intel_syntax && !in_quotes) |
| { |
| if (*l == '(') |
| ++paren_not_balanced; |
| if (*l == ')') |
| --paren_not_balanced; |
| } |
| l++; |
| } |
| if (l != token_start) |
| { /* Yes, we've read in another operand. */ |
| unsigned int operand_ok; |
| this_operand = i.operands++; |
| if (i.operands > MAX_OPERANDS) |
| { |
| as_bad (_("spurious operands; (%d operands/instruction max)"), |
| MAX_OPERANDS); |
| return NULL; |
| } |
| i.types[this_operand].bitfield.unspecified = 1; |
| /* Now parse operand adding info to 'i' as we go along. */ |
| END_STRING_AND_SAVE (l); |
| |
| if (i.mem_operands > 1) |
| { |
| as_bad (_("too many memory references for `%s'"), |
| mnemonic); |
| return 0; |
| } |
| |
| if (intel_syntax) |
| operand_ok = |
| i386_intel_operand (token_start, |
| intel_float_operand (mnemonic)); |
| else |
| operand_ok = i386_att_operand (token_start); |
| |
| RESTORE_END_STRING (l); |
| if (!operand_ok) |
| return NULL; |
| } |
| else |
| { |
| if (expecting_operand) |
| { |
| expecting_operand_after_comma: |
| as_bad (_("expecting operand after ','; got nothing")); |
| return NULL; |
| } |
| if (*l == ',') |
| { |
| as_bad (_("expecting operand before ','; got nothing")); |
| return NULL; |
| } |
| } |
| |
| /* Now *l must be either ',' or END_OF_INSN. */ |
| if (*l == ',') |
| { |
| if (*++l == END_OF_INSN) |
| { |
| /* Just skip it, if it's \n complain. */ |
| goto expecting_operand_after_comma; |
| } |
| expecting_operand = 1; |
| } |
| } |
| return l; |
| } |
| |
| static void |
| swap_2_operands (unsigned int xchg1, unsigned int xchg2) |
| { |
| union i386_op temp_op; |
| i386_operand_type temp_type; |
| unsigned int temp_flags; |
| enum bfd_reloc_code_real temp_reloc; |
| |
| temp_type = i.types[xchg2]; |
| i.types[xchg2] = i.types[xchg1]; |
| i.types[xchg1] = temp_type; |
| |
| temp_flags = i.flags[xchg2]; |
| i.flags[xchg2] = i.flags[xchg1]; |
| i.flags[xchg1] = temp_flags; |
| |
| temp_op = i.op[xchg2]; |
| i.op[xchg2] = i.op[xchg1]; |
| i.op[xchg1] = temp_op; |
| |
| temp_reloc = i.reloc[xchg2]; |
| i.reloc[xchg2] = i.reloc[xchg1]; |
| i.reloc[xchg1] = temp_reloc; |
| |
| temp_flags = i.imm_bits[xchg2]; |
| i.imm_bits[xchg2] = i.imm_bits[xchg1]; |
| i.imm_bits[xchg1] = temp_flags; |
| |
| if (i.mask.reg) |
| { |
| if (i.mask.operand == xchg1) |
| i.mask.operand = xchg2; |
| else if (i.mask.operand == xchg2) |
| i.mask.operand = xchg1; |
| } |
| if (i.broadcast.type || i.broadcast.bytes) |
| { |
| if (i.broadcast.operand == xchg1) |
| i.broadcast.operand = xchg2; |
| else if (i.broadcast.operand == xchg2) |
| i.broadcast.operand = xchg1; |
| } |
| } |
| |
| static void |
| swap_operands (void) |
| { |
| switch (i.operands) |
| { |
| case 5: |
| case 4: |
| swap_2_operands (1, i.operands - 2); |
| /* Fall through. */ |
| case 3: |
| case 2: |
| swap_2_operands (0, i.operands - 1); |
| break; |
| default: |
| abort (); |
| } |
| |
| if (i.mem_operands == 2) |
| { |
| const reg_entry *temp_seg; |
| temp_seg = i.seg[0]; |
| i.seg[0] = i.seg[1]; |
| i.seg[1] = temp_seg; |
| } |
| } |
| |
| /* Try to ensure constant immediates are represented in the smallest |
| opcode possible. */ |
| static void |
| optimize_imm (void) |
| { |
| char guess_suffix = 0; |
| int op; |
| |
| if (i.suffix) |
| guess_suffix = i.suffix; |
| else if (i.reg_operands) |
| { |
| /* Figure out a suffix from the last register operand specified. |
| We can't do this properly yet, i.e. excluding special register |
| instances, but the following works for instructions with |
| immediates. In any case, we can't set i.suffix yet. */ |
| for (op = i.operands; --op >= 0;) |
| if (i.types[op].bitfield.class != Reg) |
| continue; |
| else if (i.types[op].bitfield.byte) |
| { |
| guess_suffix = BYTE_MNEM_SUFFIX; |
| break; |
| } |
| else if (i.types[op].bitfield.word) |
| { |
| guess_suffix = WORD_MNEM_SUFFIX; |
| break; |
| } |
| else if (i.types[op].bitfield.dword) |
| { |
| guess_suffix = LONG_MNEM_SUFFIX; |
| break; |
| } |
| else if (i.types[op].bitfield.qword) |
| { |
| guess_suffix = QWORD_MNEM_SUFFIX; |
| break; |
| } |
| } |
| else if ((flag_code == CODE_16BIT) |
| ^ (i.prefix[DATA_PREFIX] != 0 && !(i.prefix[REX_PREFIX] & REX_W))) |
| guess_suffix = WORD_MNEM_SUFFIX; |
| else if (flag_code != CODE_64BIT |
| || (!(i.prefix[REX_PREFIX] & REX_W) |
| /* A more generic (but also more involved) way of dealing |
| with the special case(s) would be to go look for |
| DefaultSize attributes on any of the templates. */ |
| && current_templates.start->mnem_off != MN_push)) |
| guess_suffix = LONG_MNEM_SUFFIX; |
| |
| for (op = i.operands; --op >= 0;) |
| if (operand_type_check (i.types[op], imm)) |
| { |
| switch (i.op[op].imms->X_op) |
| { |
| case O_constant: |
| /* If a suffix is given, this operand may be shortened. */ |
| switch (guess_suffix) |
| { |
| case LONG_MNEM_SUFFIX: |
| i.types[op].bitfield.imm32 = 1; |
| i.types[op].bitfield.imm64 = 1; |
| break; |
| case WORD_MNEM_SUFFIX: |
| i.types[op].bitfield.imm16 = 1; |
| i.types[op].bitfield.imm32 = 1; |
| i.types[op].bitfield.imm32s = 1; |
| i.types[op].bitfield.imm64 = 1; |
| break; |
| case BYTE_MNEM_SUFFIX: |
| i.types[op].bitfield.imm8 = 1; |
| i.types[op].bitfield.imm8s = 1; |
| i.types[op].bitfield.imm16 = 1; |
| i.types[op].bitfield.imm32 = 1; |
| i.types[op].bitfield.imm32s = 1; |
| i.types[op].bitfield.imm64 = 1; |
| break; |
| } |
| |
| /* If this operand is at most 16 bits, convert it |
| to a signed 16 bit number before trying to see |
| whether it will fit in an even smaller size. |
| This allows a 16-bit operand such as $0xffe0 to |
| be recognised as within Imm8S range. */ |
| if ((i.types[op].bitfield.imm16) |
| && fits_in_unsigned_word (i.op[op].imms->X_add_number)) |
| { |
| i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number |
| ^ 0x8000) - 0x8000); |
| } |
| #ifdef BFD64 |
| /* Store 32-bit immediate in 64-bit for 64-bit BFD. */ |
| if ((i.types[op].bitfield.imm32) |
| && fits_in_unsigned_long (i.op[op].imms->X_add_number)) |
| { |
| i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number |
| ^ ((offsetT) 1 << 31)) |
| - ((offsetT) 1 << 31)); |
| } |
| #endif |
| i.types[op] |
| = operand_type_or (i.types[op], |
| smallest_imm_type (i.op[op].imms->X_add_number)); |
| |
| /* We must avoid matching of Imm32 templates when 64bit |
| only immediate is available. */ |
| if (guess_suffix == QWORD_MNEM_SUFFIX) |
| i.types[op].bitfield.imm32 = 0; |
| break; |
| |
| case O_absent: |
| case O_register: |
| abort (); |
| |
| /* Symbols and expressions. */ |
| default: |
| /* Convert symbolic operand to proper sizes for matching, but don't |
| prevent matching a set of insns that only supports sizes other |
| than those matching the insn suffix. */ |
| { |
| i386_operand_type mask, allowed; |
| const insn_template *t = current_templates.start; |
| |
| operand_type_set (&mask, 0); |
| switch (guess_suffix) |
| { |
| case QWORD_MNEM_SUFFIX: |
| mask.bitfield.imm64 = 1; |
| mask.bitfield.imm32s = 1; |
| break; |
| case LONG_MNEM_SUFFIX: |
| mask.bitfield.imm32 = 1; |
| break; |
| case WORD_MNEM_SUFFIX: |
| mask.bitfield.imm16 = 1; |
| break; |
| case BYTE_MNEM_SUFFIX: |
| mask.bitfield.imm8 = 1; |
| break; |
| default: |
| break; |
| } |
| |
| allowed = operand_type_and (t->operand_types[op], mask); |
| while (++t < current_templates.end) |
| { |
| allowed = operand_type_or (allowed, t->operand_types[op]); |
| allowed = operand_type_and (allowed, mask); |
| } |
| |
| if (!operand_type_all_zero (&allowed)) |
| i.types[op] = operand_type_and (i.types[op], mask); |
| } |
| break; |
| } |
| } |
| } |
| |
| /* Try to use the smallest displacement type too. */ |
| static bool |
| optimize_disp (const insn_template *t) |
| { |
| unsigned int op; |
| |
| if (!want_disp32 (t) |
| && (!t->opcode_modifier.jump |
| || i.jumpabsolute || i.types[0].bitfield.baseindex)) |
| { |
| for (op = 0; op < i.operands; ++op) |
| { |
| const expressionS *exp = i.op[op].disps; |
| |
| if (!operand_type_check (i.types[op], disp)) |
| continue; |
| |
| if (exp->X_op != O_constant) |
| continue; |
| |
| /* Since displacement is signed extended to 64bit, don't allow |
| disp32 if it is out of range. */ |
| if (fits_in_signed_long (exp->X_add_number)) |
| continue; |
| |
| i.types[op].bitfield.disp32 = 0; |
| if (i.types[op].bitfield.baseindex) |
| { |
| as_bad (_("0x%" PRIx64 " out of range of signed 32bit displacement"), |
| (uint64_t) exp->X_add_number); |
| return false; |
| } |
| } |
| } |
| |
| /* Don't optimize displacement for movabs since it only takes 64bit |
| displacement. */ |
| if (pp.disp_encoding > disp_encoding_8bit |
| || (flag_code == CODE_64BIT && t->mnem_off == MN_movabs)) |
| return true; |
| |
| for (op = i.operands; op-- > 0;) |
| if (operand_type_check (i.types[op], disp)) |
| { |
| if (i.op[op].disps->X_op == O_constant) |
| { |
| offsetT op_disp = i.op[op].disps->X_add_number; |
| |
| if (!op_disp && i.types[op].bitfield.baseindex) |
| { |
| i.types[op] = operand_type_and_not (i.types[op], anydisp); |
| i.op[op].disps = NULL; |
| i.disp_operands--; |
| continue; |
| } |
| |
| if (i.types[op].bitfield.disp16 |
| && fits_in_unsigned_word (op_disp)) |
| { |
| /* If this operand is at most 16 bits, convert |
| to a signed 16 bit number and don't use 64bit |
| displacement. */ |
| op_disp = ((op_disp ^ 0x8000) - 0x8000); |
| i.types[op].bitfield.disp64 = 0; |
| } |
| |
| #ifdef BFD64 |
| /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */ |
| if ((flag_code != CODE_64BIT |
| ? i.types[op].bitfield.disp32 |
| : want_disp32 (t) |
| && (!t->opcode_modifier.jump |
| || i.jumpabsolute || i.types[op].bitfield.baseindex)) |
| && fits_in_unsigned_long (op_disp)) |
| { |
| /* If this operand is at most 32 bits, convert |
| to a signed 32 bit number and don't use 64bit |
| displacement. */ |
| op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31); |
| i.types[op].bitfield.disp64 = 0; |
| i.types[op].bitfield.disp32 = 1; |
| } |
| |
| if (flag_code == CODE_64BIT && fits_in_signed_long (op_disp)) |
| { |
| i.types[op].bitfield.disp64 = 0; |
| i.types[op].bitfield.disp32 = 1; |
| } |
| #endif |
| if ((i.types[op].bitfield.disp32 |
| || i.types[op].bitfield.disp16) |
| && fits_in_disp8 (op_disp)) |
| i.types[op].bitfield.disp8 = 1; |
| |
| i.op[op].disps->X_add_number = op_disp; |
| } |
| else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL |
| || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL) |
| { |
| fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0, |
| i.op[op].disps, 0, i.reloc[op]); |
| i.types[op] = operand_type_and_not (i.types[op], anydisp); |
| } |
| else |
| /* We only support 64bit displacement on constants. */ |
| i.types[op].bitfield.disp64 = 0; |
| } |
| |
| return true; |
| } |
| |
| /* Return 1 if there is a match in broadcast bytes between operand |
| GIVEN and instruction template T. */ |
| |
| static INLINE int |
| match_broadcast_size (const insn_template *t, unsigned int given) |
| { |
| return ((t->opcode_modifier.broadcast == BYTE_BROADCAST |
| && i.types[given].bitfield.byte) |
| || (t->opcode_modifier.broadcast == WORD_BROADCAST |
| && i.types[given].bitfield.word) |
| || (t->opcode_modifier.broadcast == DWORD_BROADCAST |
| && i.types[given].bitfield.dword) |
| || (t->opcode_modifier.broadcast == QWORD_BROADCAST |
| && i.types[given].bitfield.qword)); |
| } |
| |
| /* Check if operands are valid for the instruction. */ |
| |
| static int |
| check_VecOperands (const insn_template *t) |
| { |
| unsigned int op; |
| i386_cpu_flags cpu; |
| |
| /* Templates allowing for ZMMword as well as YMMword and/or XMMword for |
| any one operand are implicity requiring AVX512VL support if the actual |
| operand size is YMMword or XMMword. Since this function runs after |
| template matching, there's no need to check for YMMword/XMMword in |
| the template. */ |
| cpu = cpu_flags_and (cpu_flags_from_attr (t->cpu), avx512); |
| if (!cpu_flags_all_zero (&cpu) |
| && !is_cpu (t, CpuAVX512VL) |
| && !cpu_arch_flags.bitfield.cpuavx512vl |
| && (!t->opcode_modifier.vex || need_evex_encoding (t))) |
| { |
| for (op = 0; op < t->operands; ++op) |
| { |
| if (t->operand_types[op].bitfield.zmmword |
| && (i.types[op].bitfield.ymmword |
| || i.types[op].bitfield.xmmword)) |
| { |
| i.error = operand_size_mismatch; |
| return 1; |
| } |
| } |
| } |
| |
| /* Somewhat similarly, templates specifying both AVX and AVX2 are |
| requiring AVX2 support if the actual operand size is YMMword. */ |
| if (maybe_cpu (t, CpuAVX) && maybe_cpu (t, CpuAVX2) |
| && !cpu_arch_flags.bitfield.cpuavx2) |
| { |
| for (op = 0; op < t->operands; ++op) |
| { |
| if (t->operand_types[op].bitfield.xmmword |
| && i.types[op].bitfield.ymmword) |
| { |
| i.error = operand_size_mismatch; |
| return 1; |
| } |
| } |
| } |
| |
| /* Without VSIB byte, we can't have a vector register for index. */ |
| if (!t->opcode_modifier.sib |
| && i.index_reg |
| && (i.index_reg->reg_type.bitfield.xmmword |
| || i.index_reg->reg_type.bitfield.ymmword |
| || i.index_reg->reg_type.bitfield.zmmword)) |
| { |
| i.error = unsupported_vector_index_register; |
| return 1; |
| } |
| |
| /* Check if default mask is allowed. */ |
| if (t->opcode_modifier.operandconstraint == NO_DEFAULT_MASK |
| && (!i.mask.reg || i.mask.reg->reg_num == 0)) |
| { |
| i.error = no_default_mask; |
| return 1; |
| } |
| |
| /* For VSIB byte, we need a vector register for index, and all vector |
| registers must be distinct. */ |
| if (t->opcode_modifier.sib && t->opcode_modifier.sib != SIBMEM) |
| { |
| if (!i.index_reg |
| || !((t->opcode_modifier.sib == VECSIB128 |
| && i.index_reg->reg_type.bitfield.xmmword) |
| || (t->opcode_modifier.sib == VECSIB256 |
| && i.index_reg->reg_type.bitfield.ymmword) |
| || (t->opcode_modifier.sib == VECSIB512 |
| && i.index_reg->reg_type.bitfield.zmmword))) |
| { |
| i.error = invalid_vsib_address; |
| return 1; |
| } |
| |
| gas_assert (i.reg_operands == 2 || i.mask.reg); |
| if (i.reg_operands == 2 && !i.mask.reg) |
| { |
| gas_assert (i.types[0].bitfield.class == RegSIMD); |
| gas_assert (i.types[0].bitfield.xmmword |
| || i.types[0].bitfield.ymmword); |
| gas_assert (i.types[2].bitfield.class == RegSIMD); |
| gas_assert (i.types[2].bitfield.xmmword |
| || i.types[2].bitfield.ymmword); |
| if (operand_check == check_none) |
| return 0; |
| if (register_number (i.op[0].regs) |
| != register_number (i.index_reg) |
| && register_number (i.op[2].regs) |
| != register_number (i.index_reg) |
| && register_number (i.op[0].regs) |
| != register_number (i.op[2].regs)) |
| return 0; |
| if (operand_check == check_error) |
| { |
| i.error = invalid_vector_register_set; |
| return 1; |
| } |
| as_warn (_("mask, index, and destination registers should be distinct")); |
| } |
| else if (i.reg_operands == 1 && i.mask.reg) |
| { |
| if (i.types[1].bitfield.class == RegSIMD |
| && (i.types[1].bitfield.xmmword |
| || i.types[1].bitfield.ymmword |
| || i.types[1].bitfield.zmmword) |
| && (register_number (i.op[1].regs) |
| == register_number (i.index_reg))) |
| { |
| if (operand_check == check_error) |
| { |
| i.error = invalid_vector_register_set; |
| return 1; |
| } |
| if (operand_check != check_none) |
| as_warn (_("index and destination registers should be distinct")); |
| } |
| } |
| } |
| |
| /* For AMX instructions with 3 TMM register operands, all operands |
| must be distinct. */ |
| if (i.reg_operands == 3 |
| && t->operand_types[0].bitfield.tmmword |
| && (i.op[0].regs == i.op[1].regs |
| || i.op[0].regs == i.op[2].regs |
| || i.op[1].regs == i.op[2].regs)) |
| { |
| i.error = invalid_tmm_register_set; |
| return 1; |
| } |
| |
| /* For some special instructions require that destination must be distinct |
| from source registers. */ |
| if (t->opcode_modifier.operandconstraint == DISTINCT_DEST) |
| { |
| unsigned int dest_reg = i.operands - 1; |
| |
| know (i.operands >= 3); |
| |
| /* #UD if dest_reg == src1_reg or dest_reg == src2_reg. */ |
| if (i.op[dest_reg - 1].regs == i.op[dest_reg].regs |
| || (i.reg_operands > 2 |
| && i.op[dest_reg - 2].regs == i.op[dest_reg].regs)) |
| { |
| i.error = invalid_dest_and_src_register_set; |
| return 1; |
| } |
| } |
| |
| /* Check if broadcast is supported by the instruction and is applied |
| to the memory operand. */ |
| if (i.broadcast.type || i.broadcast.bytes) |
| { |
| i386_operand_type type, overlap; |
| |
| /* Check if specified broadcast is supported in this instruction, |
| and its broadcast bytes match the memory operand. */ |
| op = i.broadcast.operand; |
| if (!t->opcode_modifier.broadcast |
| || !(i.flags[op] & Operand_Mem) |
| || (!i.types[op].bitfield.unspecified |
| && !match_broadcast_size (t, op))) |
| { |
| bad_broadcast: |
| i.error = unsupported_broadcast; |
| return 1; |
| } |
| |
| operand_type_set (&type, 0); |
| switch (get_broadcast_bytes (t, false)) |
| { |
| case 2: |
| type.bitfield.word = 1; |
| break; |
| case 4: |
| type.bitfield.dword = 1; |
| break; |
| case 8: |
| type.bitfield.qword = 1; |
| break; |
| case 16: |
| type.bitfield.xmmword = 1; |
| break; |
| case 32: |
| if (vector_size < VSZ256) |
| goto bad_broadcast; |
| type.bitfield.ymmword = 1; |
| break; |
| case 64: |
| if (vector_size < VSZ512) |
| goto bad_broadcast; |
| type.bitfield.zmmword = 1; |
| break; |
| default: |
| goto bad_broadcast; |
| } |
| |
| overlap = operand_type_and (type, t->operand_types[op]); |
| if (t->operand_types[op].bitfield.class == RegSIMD |
| && t->operand_types[op].bitfield.byte |
| + t->operand_types[op].bitfield.word |
| + t->operand_types[op].bitfield.dword |
| + t->operand_types[op].bitfield.qword > 1) |
| { |
| overlap.bitfield.xmmword = 0; |
| overlap.bitfield.ymmword = 0; |
| overlap.bitfield.zmmword = 0; |
| } |
| if (operand_type_all_zero (&overlap)) |
| goto bad_broadcast; |
| |
| if (t->opcode_modifier.checkoperandsize) |
| { |
| unsigned int j; |
| |
| type.bitfield.baseindex = 1; |
| for (j = 0; j < i.operands; ++j) |
| { |
| if (j != op |
| && !operand_type_register_match(i.types[j], |
| t->operand_types[j], |
| type, |
| t->operand_types[op])) |
| goto bad_broadcast; |
| } |
| } |
| } |
| /* If broadcast is supported in this instruction, we need to check if |
| operand of one-element size isn't specified without broadcast. */ |
| else if (t->opcode_modifier.broadcast && i.mem_operands) |
| { |
| /* Find memory operand. */ |
| for (op = 0; op < i.operands; op++) |
| if (i.flags[op] & Operand_Mem) |
| break; |
| gas_assert (op < i.operands); |
| /* Check size of the memory operand. */ |
| if (match_broadcast_size (t, op)) |
| { |
| i.error = broadcast_needed; |
| return 1; |
| } |
| } |
| else |
| op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */ |
| |
| /* Check if requested masking is supported. */ |
| if (i.mask.reg) |
| { |
| if (!t->opcode_modifier.masking) |
| { |
| i.error = unsupported_masking; |
| return 1; |
| } |
| |
| /* Common rules for masking: |
| - mask register destinations permit only zeroing-masking, without |
| that actually being expressed by a {z} operand suffix or EVEX.z, |
| - memory destinations allow only merging-masking, |
| - scatter/gather insns (i.e. ones using vSIB) only allow merging- |
| masking. */ |
| if (i.mask.zeroing |
| && (t->operand_types[t->operands - 1].bitfield.class == RegMask |
| || (i.flags[t->operands - 1] & Operand_Mem) |
| || t->opcode_modifier.sib)) |
| { |
| i.error = unsupported_masking; |
| return 1; |
| } |
| } |
| |
| /* Check if masking is applied to dest operand. */ |
| if (i.mask.reg && (i.mask.operand != i.operands - 1)) |
| { |
| i.error = mask_not_on_destination; |
| return 1; |
| } |
| |
| /* Check RC/SAE. */ |
| if (i.rounding.type != rc_none) |
| { |
| if (!t->opcode_modifier.sae |
| || ((i.rounding.type != saeonly) != t->opcode_modifier.staticrounding) |
| || i.mem_operands) |
| { |
| i.error = unsupported_rc_sae; |
| return 1; |
| } |
| |
| /* Non-EVEX.{LIG,512,256} forms need to have a ZMM or YMM register as at |
| least one operand. For YMM register or EVEX256, we will need AVX10.2 |
| enabled. There's no need to check all operands, though: Either of the |
| last two operands will be of the right size in all relevant templates. */ |
| if (t->opcode_modifier.evex != EVEXLIG |
| && t->opcode_modifier.evex != EVEX512 |
| && (t->opcode_modifier.evex != EVEX256 |
| || !cpu_arch_flags.bitfield.cpuavx10_2) |
| && !i.types[t->operands - 1].bitfield.zmmword |
| && !i.types[t->operands - 2].bitfield.zmmword |
| && ((!i.types[t->operands - 1].bitfield.ymmword |
| && !i.types[t->operands - 2].bitfield.ymmword) |
| || !cpu_arch_flags.bitfield.cpuavx10_2)) |
| { |
| i.error = operand_size_mismatch; |
| return 1; |
| } |
| } |
| |
| /* Check the special Imm4 cases; must be the first operand. */ |
| if ((is_cpu (t, CpuXOP) && t->operands == 5) |
| || (t->opcode_space == SPACE_0F3A |
| && (t->base_opcode | 3) == 0x0b |
| && (is_cpu (t, CpuAPX_F) |
| || (t->opcode_modifier.sse2avx && t->opcode_modifier.evex |
| && (!t->opcode_modifier.vex |
| || (pp.encoding != encoding_default |
| && pp.encoding != encoding_vex |
| && pp.encoding != encoding_vex3)))))) |
| { |
| if (i.op[0].imms->X_op != O_constant |
| || !fits_in_imm4 (i.op[0].imms->X_add_number)) |
| { |
| i.error = bad_imm4; |
| return 1; |
| } |
| |
| /* Turn off Imm<N> so that update_imm won't complain. */ |
| if (t->operands == 5) |
| operand_type_set (&i.types[0], 0); |
| } |
| |
| /* Check vector Disp8 operand. */ |
| if (t->opcode_modifier.disp8memshift |
| && (!t->opcode_modifier.vex |
| || need_evex_encoding (t)) |
| && pp.disp_encoding <= disp_encoding_8bit) |
| { |
| if (i.broadcast.type || i.broadcast.bytes) |
| i.memshift = t->opcode_modifier.broadcast - 1; |
| else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL) |
| i.memshift = t->opcode_modifier.disp8memshift; |
| else |
| { |
| const i386_operand_type *type = NULL, *fallback = NULL; |
| |
| i.memshift = 0; |
| for (op = 0; op < i.operands; op++) |
| if (i.flags[op] & Operand_Mem) |
| { |
| if (t->opcode_modifier.evex == EVEXLIG) |
| i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX); |
| else if (t->operand_types[op].bitfield.xmmword |
| + t->operand_types[op].bitfield.ymmword |
| + t->operand_types[op].bitfield.zmmword <= 1) |
| type = &t->operand_types[op]; |
| else if (!i.types[op].bitfield.unspecified) |
| type = &i.types[op]; |
| else /* Ambiguities get resolved elsewhere. */ |
| fallback = &t->operand_types[op]; |
| } |
| else if (i.types[op].bitfield.class == RegSIMD |
| && t->opcode_modifier.evex != EVEXLIG) |
| { |
| if (i.types[op].bitfield.zmmword) |
| i.memshift = 6; |
| else if (i.types[op].bitfield.ymmword && i.memshift < 5) |
| i.memshift = 5; |
| else if (i.types[op].bitfield.xmmword && i.memshift < 4) |
| i.memshift = 4; |
| } |
| |
| if (!type && !i.memshift) |
| type = fallback; |
| if (type) |
| { |
| if (type->bitfield.zmmword) |
| i.memshift = 6; |
| else if (type->bitfield.ymmword) |
| i.memshift = 5; |
| else if (type->bitfield.xmmword) |
| i.memshift = 4; |
| } |
| |
| /* For the check in fits_in_disp8(). */ |
| if (i.memshift == 0) |
| i.memshift = -1; |
| } |
| |
| for (op = 0; op < i.operands; op++) |
| if (operand_type_check (i.types[op], disp) |
| && i.op[op].disps->X_op == O_constant) |
| { |
| /* Make sure to leave i.types[op].bitfield.disp8 alone upon |
| secondary invocations of match_template(). */ |
| if (fits_in_disp8 (i.op[op].disps->X_add_number)) |
| { |
| if (!i.tm.mnem_off) |
| i.types[op].bitfield.disp8 = 1; |
| return 0; |
| } |
| if (!i.tm.mnem_off) |
| i.types[op].bitfield.disp8 = 0; |
| } |
| } |
| |
| i.memshift = 0; |
| |
| return 0; |
| } |
| |
| /* Check if encoding requirements are met by the instruction. */ |
| |
| static int |
| VEX_check_encoding (const insn_template *t) |
| { |
| if (pp.encoding == encoding_error) |
| { |
| i.error = unsupported; |
| return 1; |
| } |
| |
| /* Vector size restrictions. */ |
| if ((vector_size < VSZ512 |
| && t->opcode_modifier.evex == EVEX512) |
| || (vector_size < VSZ256 |
| && (t->opcode_modifier.evex == EVEX256 |
| || t->opcode_modifier.vex == VEX256))) |
| { |
| i.error = unsupported_vector_size; |
| return 1; |
| } |
| |
| switch (pp.encoding) |
| { |
| case encoding_vex: |
| case encoding_vex3: |
| /* This instruction must be encoded with VEX prefix. */ |
| if (!t->opcode_modifier.vex) |
| { |
| i.error = no_vex_encoding; |
| return 1; |
| } |
| break; |
| |
| case encoding_default: |
| if (!pp.has_nf) |
| break; |
| /* Fall through. */ |
| case encoding_evex: |
| case encoding_evex512: |
| /* This instruction must be encoded with EVEX prefix. */ |
| if (!t->opcode_modifier.evex) |
| { |
| i.error = no_evex_encoding; |
| return 1; |
| } |
| break; |
| |
| case encoding_egpr: |
| /* This instruction must be encoded with REX2 or EVEX prefix. */ |
| if (t->opcode_modifier.vex && !t->opcode_modifier.evex) |
| { |
| i.error = no_evex_encoding; |
| return 1; |
| } |
| break; |
| |
| default: |
| abort (); |
| } |
| |
| return 0; |
| } |
| |
| /* Check if Egprs operands are valid for the instruction. */ |
| |
| static bool |
| check_EgprOperands (const insn_template *t) |
| { |
| if (!t->opcode_modifier.noegpr) |
| return false; |
| |
| for (unsigned int op = 0; op < i.operands; op++) |
| { |
| if (i.types[op].bitfield.class != Reg) |
| continue; |
| |
| if (i.op[op].regs->reg_flags & RegRex2) |
| { |
| i.error = register_type_mismatch; |
| return true; |
| } |
| } |
| |
| if ((i.index_reg && (i.index_reg->reg_flags & RegRex2)) |
| || (i.base_reg && (i.base_reg->reg_flags & RegRex2))) |
| { |
| i.error = unsupported_EGPR_for_addressing; |
| return true; |
| } |
| |
| /* Check if pseudo prefix {rex2} is valid. */ |
| if (pp.rex2_encoding && !t->opcode_modifier.sse2avx) |
| { |
| i.error = invalid_pseudo_prefix; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Check if APX operands are valid for the instruction. */ |
| static bool |
| check_APX_operands (const insn_template *t) |
| { |
| /* Push2* and Pop2* cannot use RSP and Pop2* cannot pop two same registers. |
| */ |
| switch (t->mnem_off) |
| { |
| case MN_pop2: |
| case MN_pop2p: |
| if (register_number (i.op[0].regs) == register_number (i.op[1].regs)) |
| { |
| i.error = invalid_dest_register_set; |
| return 1; |
| } |
| /* fall through */ |
| case MN_push2: |
| case MN_push2p: |
| if (register_number (i.op[0].regs) == 4 |
| || register_number (i.op[1].regs) == 4) |
| { |
| i.error = unsupported_rsp_register; |
| return 1; |
| } |
| break; |
| } |
| return 0; |
| } |
| |
| /* Check if the instruction use the REX registers or REX prefix. */ |
| static bool |
| check_Rex_required (void) |
| { |
| for (unsigned int op = 0; op < i.operands; op++) |
| { |
| if (i.types[op].bitfield.class != Reg) |
| continue; |
| |
| if (i.op[op].regs->reg_flags & (RegRex | RegRex64)) |
| return true; |
| } |
| |
| if ((i.index_reg && (i.index_reg->reg_flags & RegRex)) |
| || (i.base_reg && (i.base_reg->reg_flags & RegRex))) |
| return true; |
| |
| /* Check pseudo prefix {rex} are valid. */ |
| return pp.rex_encoding; |
| } |
| |
| /* Optimize APX NDD insns to legacy insns. */ |
| static unsigned int |
| can_convert_NDD_to_legacy (const insn_template *t) |
| { |
| unsigned int match_dest_op = ~0; |
| |
| if (!pp.has_nf && i.reg_operands >= 2) |
| { |
| unsigned int dest = i.operands - 1; |
| unsigned int src1 = i.operands - 2; |
| unsigned int src2 = (i.operands > 3) ? i.operands - 3 : 0; |
| |
| if (i.types[src1].bitfield.class == Reg |
| && i.op[src1].regs == i.op[dest].regs) |
| match_dest_op = src1; |
| /* If the first operand is the same as the third operand, |
| these instructions need to support the ability to commutative |
| the first two operands and still not change the semantics in order |
| to be optimized. */ |
| else if (optimize > 1 |
| && t->opcode_modifier.commutative |
| && i.types[src2].bitfield.class == Reg |
| && i.op[src2].regs == i.op[dest].regs) |
| match_dest_op = src2; |
| } |
| return match_dest_op; |
| } |
| |
| /* Helper function for the progress() macro in match_template(). */ |
| static INLINE enum i386_error progress (enum i386_error new, |
| enum i386_error last, |
| unsigned int line, unsigned int *line_p) |
| { |
| if (line <= *line_p) |
| return last; |
| *line_p = line; |
| return new; |
| } |
| |
| static const insn_template * |
| match_template (char mnem_suffix) |
| { |
| /* Points to template once we've found it. */ |
| const insn_template *t; |
| i386_operand_type overlap0, overlap1, overlap2, overlap3; |
| i386_operand_type overlap4; |
| unsigned int found_reverse_match; |
| i386_operand_type operand_types [MAX_OPERANDS]; |
| int addr_prefix_disp; |
| unsigned int j, size_match, check_register, errline = __LINE__; |
| enum i386_error specific_error = number_of_operands_mismatch; |
| #define progress(err) progress (err, specific_error, __LINE__, &errline) |
| |
| #if MAX_OPERANDS != 5 |
| # error "MAX_OPERANDS must be 5." |
| #endif |
| |
| found_reverse_match = 0; |
| addr_prefix_disp = -1; |
| |
| for (t = current_templates.start; t < current_templates.end; t++) |
| { |
| addr_prefix_disp = -1; |
| found_reverse_match = 0; |
| |
| /* Must have right number of operands. */ |
| if (i.operands != t->operands) |
| continue; |
| |
| /* Skip SSE2AVX templates when inapplicable. */ |
| if (t->opcode_modifier.sse2avx |
| && (!sse2avx || i.prefix[DATA_PREFIX])) |
| { |
| /* Another non-SSE2AVX template has to follow. */ |
| gas_assert (t + 1 < current_templates.end); |
| continue; |
| } |
| |
| /* Check processor support. */ |
| specific_error = progress (unsupported); |
| if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH) |
| continue; |
| |
| /* Check AT&T mnemonic. */ |
| specific_error = progress (unsupported_with_intel_mnemonic); |
| if (!intel_syntax && intel_mnemonic |
| && t->opcode_modifier.dialect == ATT_MNEMONIC) |
| continue; |
| |
| /* Check AT&T/Intel syntax. */ |
| specific_error = progress (unsupported_syntax); |
| if (intel_syntax |
| ? t->opcode_modifier.dialect >= ATT_SYNTAX |
| : t->opcode_modifier.dialect == INTEL_SYNTAX) |
| continue; |
| |
| /* Check NF support. */ |
| specific_error = progress (unsupported_nf); |
| if (pp.has_nf && !t->opcode_modifier.nf) |
| continue; |
| |
| /* Check Intel64/AMD64 ISA. */ |
| switch (isa64) |
| { |
| default: |
| /* Default: Don't accept Intel64. */ |
| if (t->opcode_modifier.isa64 == INTEL64) |
| continue; |
| break; |
| case amd64: |
| /* -mamd64: Don't accept Intel64 and Intel64 only. */ |
| if (t->opcode_modifier.isa64 >= INTEL64) |
| continue; |
| break; |
| case intel64: |
| /* -mintel64: Don't accept AMD64. */ |
| if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT) |
| continue; |
| break; |
| } |
| |
| /* Check the suffix. */ |
| specific_error = progress (invalid_instruction_suffix); |
| if ((t->opcode_modifier.no_bsuf && mnem_suffix == BYTE_MNEM_SUFFIX) |
| || (t->opcode_modifier.no_wsuf && mnem_suffix == WORD_MNEM_SUFFIX) |
| || (t->opcode_modifier.no_lsuf && mnem_suffix == LONG_MNEM_SUFFIX) |
| || (t->opcode_modifier.no_ssuf && mnem_suffix == SHORT_MNEM_SUFFIX) |
| || (t->opcode_modifier.no_qsuf && mnem_suffix == QWORD_MNEM_SUFFIX)) |
| continue; |
| |
| specific_error = progress (operand_size_mismatch); |
| size_match = operand_size_match (t); |
| if (!size_match) |
| continue; |
| |
| /* This is intentionally not |
| |
| if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)) |
| |
| as the case of a missing * on the operand is accepted (perhaps with |
| a warning, issued further down). */ |
| specific_error = progress (operand_type_mismatch); |
| if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE) |
| continue; |
| |
| /* In Intel syntax, normally we can check for memory operand size when |
| there is no mnemonic suffix. But jmp and call have 2 different |
| encodings with Dword memory operand size. Skip the "near" one |
| (permitting a register operand) when "far" was requested. */ |
| if (i.far_branch |
| && t->opcode_modifier.jump == JUMP_ABSOLUTE |
| && t->operand_types[0].bitfield.class == Reg) |
| continue; |
| |
| for (j = 0; j < MAX_OPERANDS; j++) |
| operand_types[j] = t->operand_types[j]; |
| |
| /* In general, don't allow 32-bit operands on pre-386. */ |
| specific_error = progress (mnem_suffix ? invalid_instruction_suffix |
| : operand_size_mismatch); |
| j = i.imm_operands + (t->operands > i.imm_operands + 1); |
| if (i.suffix == LONG_MNEM_SUFFIX |
| && !cpu_arch_flags.bitfield.cpui386 |
| && (intel_syntax |
| ? (t->opcode_modifier.mnemonicsize != IGNORESIZE |
| && !intel_float_operand (insn_name (t))) |
| : intel_float_operand (insn_name (t)) != 2) |
| && (t->operands == i.imm_operands |
| || (operand_types[i.imm_operands].bitfield.class != RegMMX |
| && operand_types[i.imm_operands].bitfield.class != RegSIMD |
| && operand_types[i.imm_operands].bitfield.class != RegMask) |
| || (operand_types[j].bitfield.class != RegMMX |
| && operand_types[j].bitfield.class != RegSIMD |
| && operand_types[j].bitfield.class != RegMask)) |
| && !t->opcode_modifier.sib) |
| continue; |
| |
| /* Do not verify operands when there are none. */ |
| if (!t->operands) |
| { |
| if (VEX_check_encoding (t)) |
| { |
| specific_error = progress (i.error); |
| continue; |
| } |
| |
| /* Check if pseudo prefix {rex2} is valid. */ |
| if (t->opcode_modifier.noegpr && pp.rex2_encoding) |
| { |
| specific_error = progress (invalid_pseudo_prefix); |
| continue; |
| } |
| |
| /* We've found a match; break out of loop. */ |
| break; |
| } |
| |
| if (!t->opcode_modifier.jump |
| || t->opcode_modifier.jump == JUMP_ABSOLUTE) |
| { |
| /* There should be only one Disp operand. */ |
| for (j = 0; j < MAX_OPERANDS; j++) |
| if (operand_type_check (operand_types[j], disp)) |
| break; |
| if (j < MAX_OPERANDS) |
| { |
| bool override = (i.prefix[ADDR_PREFIX] != 0); |
| |
| addr_prefix_disp = j; |
| |
| /* Address size prefix will turn Disp64 operand into Disp32 and |
| Disp32/Disp16 one into Disp16/Disp32 respectively. */ |
| switch (flag_code) |
| { |
| case CODE_16BIT: |
| override = !override; |
| /* Fall through. */ |
| case CODE_32BIT: |
| if (operand_types[j].bitfield.disp32 |
| && operand_types[j].bitfield.disp16) |
| { |
| operand_types[j].bitfield.disp16 = override; |
| operand_types[j].bitfield.disp32 = !override; |
| } |
| gas_assert (!operand_types[j].bitfield.disp64); |
| break; |
| |
| case CODE_64BIT: |
| if (operand_types[j].bitfield.disp64) |
| { |
| gas_assert (!operand_types[j].bitfield.disp32); |
| operand_types[j].bitfield.disp32 = override; |
| operand_types[j].bitfield.disp64 = !override; |
| } |
| operand_types[j].bitfield.disp16 = 0; |
| break; |
| } |
| } |
| } |
| |
| /* We check register size if needed. */ |
| if (t->opcode_modifier.checkoperandsize) |
| { |
| check_register = (1 << t->operands) - 1; |
| if (i.broadcast.type || i.broadcast.bytes) |
| check_register &= ~(1 << i.broadcast.operand); |
| } |
| else |
| check_register = 0; |
| |
| overlap0 = operand_type_and (i.types[0], operand_types[0]); |
| switch (t->operands) |
| { |
| case 1: |
| if (!operand_type_match (overlap0, i.types[0])) |
| continue; |
| |
| /* Allow the ModR/M encoding to be requested by using the {load} or |
| {store} pseudo prefix on an applicable insn. */ |
| if (!t->opcode_modifier.modrm |
| && i.reg_operands == 1 |
| && ((pp.dir_encoding == dir_encoding_load |
| && t->mnem_off != MN_pop) |
| || (pp.dir_encoding == dir_encoding_store |
| && t->mnem_off != MN_push)) |
| /* Avoid BSWAP. */ |
| && t->mnem_off != MN_bswap) |
| continue; |
| break; |
| |
| case 2: |
| /* xchg %eax, %eax is a special case. It is an alias for nop |
| only in 32bit mode and we can use opcode 0x90. In 64bit |
| mode, we can't use 0x90 for xchg %eax, %eax since it should |
| zero-extend %eax to %rax. */ |
| if (t->base_opcode == 0x90 |
| && t->opcode_space == SPACE_BASE) |
| { |
| if (flag_code == CODE_64BIT |
| && i.types[0].bitfield.instance == Accum |
| && i.types[0].bitfield.dword |
| && i.types[1].bitfield.instance == Accum) |
| continue; |
| |
| /* Allow the ModR/M encoding to be requested by using the |
| {load} or {store} pseudo prefix. */ |
| if (pp.dir_encoding == dir_encoding_load |
| || pp.dir_encoding == dir_encoding_store) |
| continue; |
| } |
| |
| if (t->base_opcode == MOV_AX_DISP32 |
| && t->opcode_space == SPACE_BASE |
| && t->mnem_off != MN_movabs) |
| { |
| /* Force 0x8b encoding for "mov foo@GOT, %eax". */ |
| if (i.reloc[0] == BFD_RELOC_386_GOT32) |
| continue; |
| |
| /* xrelease mov %eax, <disp> is another special case. It must not |
| match the accumulator-only encoding of mov. */ |
| if (i.hle_prefix) |
| continue; |
| |
| /* Allow the ModR/M encoding to be requested by using a suitable |
| {load} or {store} pseudo prefix. */ |
| if (pp.dir_encoding == (i.types[0].bitfield.instance == Accum |
| ? dir_encoding_store |
| : dir_encoding_load) |
| && !i.types[0].bitfield.disp64 |
| && !i.types[1].bitfield.disp64) |
| continue; |
| } |
| |
| /* Allow the ModR/M encoding to be requested by using the {load} or |
| {store} pseudo prefix on an applicable insn. */ |
| if (!t->opcode_modifier.modrm |
| && i.reg_operands == 1 |
| && i.imm_operands == 1 |
| && (pp.dir_encoding == dir_encoding_load |
| || pp.dir_encoding == dir_encoding_store) |
| && t->opcode_space == SPACE_BASE) |
| { |
| if (t->base_opcode == 0xb0 /* mov $imm, %reg */ |
| && pp.dir_encoding == dir_encoding_store) |
| continue; |
| |
| if ((t->base_opcode | 0x38) == 0x3c /* <alu> $imm, %acc */ |
| && (t->base_opcode != 0x3c /* cmp $imm, %acc */ |
| || pp.dir_encoding == dir_encoding_load)) |
| continue; |
| |
| if (t->base_opcode == 0xa8 /* test $imm, %acc */ |
| && pp.dir_encoding == dir_encoding_load) |
| continue; |
| } |
| /* Fall through. */ |
| |
| case 3: |
| if (!(size_match & MATCH_STRAIGHT)) |
| goto check_reverse; |
| /* Reverse direction of operands if swapping is possible in the first |
| place (operands need to be symmetric) and |
| - the load form is requested, and the template is a store form, |
| - the store form is requested, and the template is a load form, |
| - the non-default (swapped) form is requested. */ |
| overlap1 = operand_type_and (operand_types[0], operand_types[1]); |
| |
| j = i.operands - 1 - (t->opcode_space == SPACE_EVEXMAP4 |
| && t->opcode_modifier.vexvvvv); |
| |
| if (t->opcode_modifier.d && i.reg_operands == i.operands |
| && !operand_type_all_zero (&overlap1)) |
| switch (pp.dir_encoding) |
| { |
| case dir_encoding_load: |
| if (operand_type_check (operand_types[j], anymem) |
| || t->opcode_modifier.regmem) |
| goto check_reverse; |
| break; |
| |
| case dir_encoding_store: |
| if (!operand_type_check (operand_types[j], anymem) |
| && !t->opcode_modifier.regmem) |
| goto check_reverse; |
| break; |
| |
| case dir_encoding_swap: |
| goto check_reverse; |
| |
| case dir_encoding_default: |
| break; |
| } |
| |
| /* If we want store form, we skip the current load. */ |
| if ((pp.dir_encoding == dir_encoding_store |
| || pp.dir_encoding == dir_encoding_swap) |
| && i.mem_operands == 0 |
| && t->opcode_modifier.load) |
| continue; |
| /* Fall through. */ |
| case 4: |
| case 5: |
| overlap1 = operand_type_and (i.types[1], operand_types[1]); |
| if (!operand_type_match (overlap0, i.types[0]) |
| || !operand_type_match (overlap1, i.types[1]) |
| || ((check_register & 3) == 3 |
| && !operand_type_register_match (i.types[0], |
| operand_types[0], |
| i.types[1], |
| operand_types[1]))) |
| { |
| specific_error = progress (i.error); |
| |
| /* Check if other direction is valid ... */ |
| if (!t->opcode_modifier.d) |
| continue; |
| |
| check_reverse: |
| if (!(size_match & MATCH_REVERSE)) |
| continue; |
| /* Try reversing direction of operands. */ |
| j = is_cpu (t, CpuFMA4) |
| || is_cpu (t, CpuXOP) |
| || is_cpu (t, CpuAPX_F) ? 1 : i.operands - 1; |
| overlap0 = operand_type_and (i.types[0], operand_types[j]); |
| overlap1 = operand_type_and (i.types[j], operand_types[0]); |
| overlap2 = operand_type_and (i.types[1], operand_types[1]); |
| gas_assert (t->operands != 3 || !check_register |
| || is_cpu (t, CpuAPX_F)); |
| if (!operand_type_match (overlap0, i.types[0]) |
| || !operand_type_match (overlap1, i.types[j]) |
| || (t->operands == 3 |
| && !operand_type_match (overlap2, i.types[1])) |
| || (check_register |
| && !operand_type_register_match (i.types[0], |
| operand_types[j], |
| i.types[j], |
| operand_types[0]))) |
| { |
| /* Does not match either direction. */ |
| specific_error = progress (i.error); |
| continue; |
| } |
| /* found_reverse_match holds which variant of D |
| we've found. */ |
| if (!t->opcode_modifier.d) |
| found_reverse_match = 0; |
| else if (operand_types[0].bitfield.tbyte) |
| { |
| if (t->opcode_modifier.operandconstraint != UGH) |
| found_reverse_match = Opcode_FloatD; |
| else |
| found_reverse_match = ~0; |
| /* FSUB{,R} and FDIV{,R} may need a 2nd bit flipped. */ |
| if ((t->extension_opcode & 4) |
| && (intel_syntax || intel_mnemonic)) |
| found_reverse_match |= Opcode_FloatR; |
| } |
| else if (is_cpu (t, CpuFMA4) || is_cpu (t, CpuXOP)) |
| { |
| found_reverse_match = Opcode_VexW; |
| goto check_operands_345; |
| } |
| else if (t->opcode_space == SPACE_EVEXMAP4 |
| && t->operands >= 3) |
| { |
| found_reverse_match = Opcode_D; |
| goto check_operands_345; |
| } |
| else if (t->opcode_modifier.commutative |
| /* CFCMOVcc also wants its major opcode unaltered. */ |
| || (t->opcode_space == SPACE_EVEXMAP4 |
| && (t->base_opcode | 0xf) == 0x4f)) |
| found_reverse_match = ~0; |
| else if (t->opcode_space != SPACE_BASE |
| && (t->opcode_space != SPACE_EVEXMAP4 |
| /* MOVBE, originating from SPACE_0F38, also |
| belongs here. */ |
| || t->mnem_off == MN_movbe) |
| && (t->opcode_space != SPACE_0F |
| /* MOV to/from CR/DR/TR, as an exception, follow |
| the base opcode space encoding model. */ |
| || (t->base_opcode | 7) != 0x27)) |
| found_reverse_match = (t->base_opcode & 0xee) != 0x6e |
| ? Opcode_ExtD : Opcode_SIMD_IntD; |
| else |
| found_reverse_match = Opcode_D; |
| } |
| else |
| { |
| /* Found a forward 2 operand match here. */ |
| check_operands_345: |
| switch (t->operands) |
| { |
| case 5: |
| overlap4 = operand_type_and (i.types[4], operand_types[4]); |
| if (!operand_type_match (overlap4, i.types[4]) |
| || !operand_type_register_match (i.types[3], |
| operand_types[3], |
| i.types[4], |
| operand_types[4])) |
| { |
| specific_error = progress (i.error); |
| continue; |
| } |
| /* Fall through. */ |
| case 4: |
| overlap3 = operand_type_and (i.types[3], operand_types[3]); |
| if (!operand_type_match (overlap3, i.types[3]) |
| || ((check_register & 0xa) == 0xa |
| && !operand_type_register_match (i.types[1], |
| operand_types[1], |
| i.types[3], |
| operand_types[3])) |
| || ((check_register & 0xc) == 0xc |
| && !operand_type_register_match (i.types[2], |
| operand_types[2], |
| i.types[3], |
| operand_types[3]))) |
| { |
| specific_error = progress (i.error); |
| continue; |
| } |
| /* Fall through. */ |
| case 3: |
| overlap2 = operand_type_and (i.types[2], operand_types[2]); |
| if (!operand_type_match (overlap2, i.types[2]) |
| || ((check_register & 5) == 5 |
| && !operand_type_register_match (i.types[0], |
| operand_types[0], |
| i.types[2], |
| operand_types[2])) |
| || ((check_register & 6) == 6 |
| && !operand_type_register_match (i.types[1], |
| operand_types[1], |
| i.types[2], |
| operand_types[2]))) |
| { |
| specific_error = progress (i.error); |
| continue; |
| } |
| break; |
| } |
| } |
| /* Found either forward/reverse 2, 3 or 4 operand match here: |
| slip through to break. */ |
| } |
| |
| /* Check if VEX/EVEX encoding requirements can be satisfied. */ |
| if (VEX_check_encoding (t)) |
| { |
| specific_error = progress (i.error); |
| continue; |
| } |
| |
| /* Check if EGPR operands(r16-r31) are valid. */ |
| if (check_EgprOperands (t)) |
| { |
| specific_error = progress (i.error); |
| continue; |
| } |
| |
| /* Check if vector operands are valid. */ |
| if (check_VecOperands (t)) |
| { |
| specific_error = progress (i.error); |
| continue; |
| } |
| |
| /* Check if APX operands are valid. */ |
| if (check_APX_operands (t)) |
| { |
| specific_error = progress (i.error); |
| continue; |
| } |
| |
| /* Check whether to use the shorter VEX encoding for certain insns where |
| the EVEX encoding comes first in the table. This requires the respective |
| AVX-* feature to be explicitly enabled. |
| |
| Most of the respective insns have just a single EVEX and a single VEX |
| template. The one that's presently different is generated using the |
| Vxy / Exy constructs: There are 3 suffix-less EVEX forms, the latter |
| two of which may fall back to their two corresponding VEX forms. */ |
| j = t->mnem_off != MN_vcvtneps2bf16 ? 1 : 2; |
| if ((t == current_templates.start || j > 1) |
| && t->opcode_modifier.disp8memshift |
| && !t->opcode_modifier.vex |
| && !need_evex_encoding (t) |
| && t + j < current_templates.end |
| && t[j].opcode_modifier.vex) |
| { |
| i386_cpu_flags cpu; |
| unsigned int memshift = i.memshift; |
| |
| i.memshift = 0; |
| cpu = cpu_flags_and (cpu_flags_from_attr (t[j].cpu), |
| cpu_arch_isa_flags); |
| if (!cpu_flags_all_zero (&cpu) |
| && (!i.types[0].bitfield.disp8 |
| || !operand_type_check (i.types[0], disp) |
| || i.op[0].disps->X_op != O_constant |
| || fits_in_disp8 (i.op[0].disps->X_add_number))) |
| { |
| specific_error = progress (internal_error); |
| t += j - 1; |
| continue; |
| } |
| i.memshift = memshift; |
| } |
| |
| /* If we can optimize a NDD insn to legacy insn, like |
| add %r16, %r8, %r8 -> add %r16, %r8, |
| add %r8, %r16, %r8 -> add %r16, %r8, then rematch template. |
| Note that the semantics have not been changed. */ |
| if (optimize |
| && !pp.no_optimize |
| && pp.encoding != encoding_evex |
| && ((t + 1 < current_templates.end |
| && !t[1].opcode_modifier.evex |
| && t[1].opcode_space <= SPACE_0F38 |
| && t->opcode_modifier.vexvvvv == VexVVVV_DST) |
| || t->mnem_off == MN_movbe) |
| && (i.types[i.operands - 1].bitfield.dword |
| || i.types[i.operands - 1].bitfield.qword)) |
| { |
| unsigned int match_dest_op = can_convert_NDD_to_legacy (t); |
| |
| if (match_dest_op != (unsigned int) ~0) |
| { |
| size_match = true; |
| /* We ensure that the next template has the same input |
| operands as the original matching template by the first |
| opernd (ATT). To avoid someone support new NDD insns and |
| put it in the wrong position. */ |
| overlap0 = operand_type_and (i.types[0], |
| t[1].operand_types[0]); |
| if (t->opcode_modifier.d) |
| overlap1 = operand_type_and (i.types[0], |
| t[1].operand_types[1]); |
| if (!operand_type_match (overlap0, i.types[0]) |
| && (!t->opcode_modifier.d |
| || !operand_type_match (overlap1, i.types[0]))) |
| size_match = false; |
| |
| if (size_match |
| && (t[1].opcode_space <= SPACE_0F |
| /* Some non-legacy-map0/1 insns can be shorter when |
| legacy-encoded and when no REX prefix is required. */ |
| || (!check_EgprOperands (t + 1) |
| && !check_Rex_required () |
| && !i.op[i.operands - 1].regs->reg_type.bitfield.qword))) |
| { |
| if (i.operands > 2 && match_dest_op == i.operands - 3) |
| { |
| swap_2_operands (match_dest_op, i.operands - 2); |
| |
| /* CMOVcc is marked commutative, but then also needs its |
| encoded condition inverted. */ |
| if ((t->base_opcode | 0xf) == 0x4f) |
| i.invert_cond = true; |
| } |
| |
| --i.operands; |
| --i.reg_operands; |
| |
| if (t->mnem_off == MN_movbe) |
| { |
| gas_assert (t[1].mnem_off == MN_bswap); |
| ++current_templates.end; |
| } |
| |
| specific_error = progress (internal_error); |
| continue; |
| } |
| |
| } |
| } |
| |
| /* We've found a match; break out of loop. */ |
| break; |
| } |
| |
| #undef progress |
| |
| if (t == current_templates.end) |
| { |
| /* We found no match. */ |
| i.error = specific_error; |
| return NULL; |
| } |
| |
| /* Don't emit diagnostics or install the template when one was already |
| installed, i.e. when called from process_suffix(). */ |
| if (i.tm.mnem_off) |
| return t; |
| |
| if (!quiet_warnings) |
| { |
| if (!intel_syntax |
| && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))) |
| as_warn (_("indirect %s without `*'"), insn_name (t)); |
| |
| if (t->opcode_modifier.isprefix |
| && t->opcode_modifier.mnemonicsize == IGNORESIZE) |
| { |
| /* Warn them that a data or address size prefix doesn't |
| affect assembly of the next line of code. */ |
| as_warn (_("stand-alone `%s' prefix"), insn_name (t)); |
| } |
| |
| if (intel_syntax && mnem_suffix && !t->opcode_modifier.intelsuffix) |
| { |
| static bool noticed; |
| |
| as_warn (_("mnemonic suffix used with `%s'"), insn_name (t)); |
| if (!noticed) |
| { |
| noticed = true; |
| as_warn (_( |
| "NOTE: Such forms are deprecated and will be rejected by a future version of the assembler")); |
| } |
| } |
| } |
| |
| /* Copy the template we found. */ |
| install_template (t); |
| |
| if (addr_prefix_disp != -1) |
| i.tm.operand_types[addr_prefix_disp] |
| = operand_types[addr_prefix_disp]; |
| |
| /* APX insns acting on byte operands are WIG, yet that can't be expressed |
| in the templates (they're also covering word/dword/qword operands). */ |
| if (t->opcode_space == SPACE_EVEXMAP4 && !t->opcode_modifier.vexw && |
| i.types[i.operands - 1].bitfield.byte) |
| { |
| gas_assert (t->opcode_modifier.w); |
| i.tm.opcode_modifier.vexw = VEXWIG; |
| } |
| |
| switch (found_reverse_match) |
| { |
| case 0: |
| break; |
| |
| case Opcode_FloatR: |
| case Opcode_FloatR | Opcode_FloatD: |
| i.tm.extension_opcode ^= Opcode_FloatR >> 3; |
| found_reverse_match &= Opcode_FloatD; |
| |
| /* Fall through. */ |
| default: |
| /* If we found a reverse match we must alter the opcode direction |
| bit and clear/flip the regmem modifier one. found_reverse_match |
| holds bits to change (different for int & float insns). */ |
| |
| i.tm.base_opcode ^= found_reverse_match; |
| |
| if (i.tm.opcode_space == SPACE_EVEXMAP4) |
| goto swap_first_2; |
| |
| /* Certain SIMD insns have their load forms specified in the opcode |
| table, and hence we need to _set_ RegMem instead of clearing it. |
| We need to avoid setting the bit though on insns like KMOVW. */ |
| i.tm.opcode_modifier.regmem |
| = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d |
| && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx |
| && !i.tm.opcode_modifier.regmem; |
| |
| /* Fall through. */ |
| case ~0: |
| if (i.tm.opcode_space == SPACE_EVEXMAP4 |
| && !t->opcode_modifier.commutative) |
| i.tm.opcode_modifier.operandconstraint = EVEX_NF; |
| i.tm.operand_types[0] = operand_types[i.operands - 1]; |
| i.tm.operand_types[i.operands - 1] = operand_types[0]; |
| break; |
| |
| case Opcode_VexW: |
| /* Only the first two register operands need reversing, alongside |
| flipping VEX.W. */ |
| i.tm.opcode_modifier.vexw ^= VEXW0 ^ VEXW1; |
| |
| /* In 3-operand insns XOP.W changes which operand goes into XOP.vvvv. */ |
| i.tm.opcode_modifier.vexvvvv = VexVVVV_SRC1; |
| |
| swap_first_2: |
| j = i.tm.operand_types[0].bitfield.imm8; |
| i.tm.operand_types[j] = operand_types[j + 1]; |
| i.tm.operand_types[j + 1] = operand_types[j]; |
| break; |
| } |
| |
| return t; |
| } |
| |
| static int |
| check_string (void) |
| { |
| unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0; |
| unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0; |
| |
| if (i.seg[op] != NULL && i.seg[op] != reg_es) |
| { |
| as_bad (_("`%s' operand %u must use `%ses' segment"), |
| insn_name (&i.tm), |
| intel_syntax ? i.tm.operands - es_op : es_op + 1, |
| register_prefix); |
| return 0; |
| } |
| |
| /* There's only ever one segment override allowed per instruction. |
| This instruction possibly has a legal segment override on the |
| second operand, so copy the segment to where non-string |
| instructions store it, allowing common code. */ |
| i.seg[op] = i.seg[1]; |
| |
| return 1; |
| } |
| |
| static int |
| process_suffix (const insn_template *t) |
| { |
| bool is_movx = false; |
| |
| /* If matched instruction specifies an explicit instruction mnemonic |
| suffix, use it. */ |
| if (i.tm.opcode_modifier.size == SIZE16) |
| i.suffix = WORD_MNEM_SUFFIX; |
| else if (i.tm.opcode_modifier.size == SIZE32) |
| i.suffix = LONG_MNEM_SUFFIX; |
| else if (i.tm.opcode_modifier.size == SIZE64) |
| i.suffix = QWORD_MNEM_SUFFIX; |
| else if (i.reg_operands |
| && (i.operands > 1 || i.types[0].bitfield.class == Reg) |
| && i.tm.opcode_modifier.operandconstraint != ADDR_PREFIX_OP_REG) |
| { |
| unsigned int numop = i.operands; |
| |
| /* MOVSX/MOVZX */ |
| is_movx = (i.tm.opcode_space == SPACE_0F |
| && (i.tm.base_opcode | 8) == 0xbe) |
| || (i.tm.opcode_space == SPACE_BASE |
| && i.tm.base_opcode == 0x63 |
| && is_cpu (&i.tm, Cpu64)); |
| |
| /* movsx/movzx want only their source operand considered here, for the |
| ambiguity checking below. The suffix will be replaced afterwards |
| to represent the destination (register). */ |
| if (is_movx && (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63)) |
| --i.operands; |
| |
| /* crc32 needs REX.W set regardless of suffix / source operand size. */ |
| if (i.tm.mnem_off == MN_crc32 && i.tm.operand_types[1].bitfield.qword) |
| i.rex |= REX_W; |
| |
| /* If there's no instruction mnemonic suffix we try to invent one |
| based on GPR operands. */ |
| if (!i.suffix) |
| { |
| /* We take i.suffix from the last register operand specified, |
| Destination register type is more significant than source |
| register type. crc32 in SSE4.2 prefers source register |
| type. */ |
| unsigned int op = i.tm.mnem_off == MN_crc32 ? 1 : i.operands; |
| |
| while (op--) |
| if (i.tm.operand_types[op].bitfield.instance == InstanceNone |
| || i.tm.operand_types[op].bitfield.instance == Accum) |
| { |
| if (i.types[op].bitfield.class != Reg) |
| continue; |
| if (i.types[op].bitfield.byte) |
| i.suffix = BYTE_MNEM_SUFFIX; |
| else if (i.types[op].bitfield.word) |
| i.suffix = WORD_MNEM_SUFFIX; |
| else if (i.types[op].bitfield.dword) |
| i.suffix = LONG_MNEM_SUFFIX; |
| else if (i.types[op].bitfield.qword) |
| i.suffix = QWORD_MNEM_SUFFIX; |
| else |
| continue; |
| break; |
| } |
| |
| /* As an exception, movsx/movzx silently default to a byte source |
| in AT&T mode. */ |
| if (is_movx && i.tm.opcode_modifier.w && !i.suffix && !intel_syntax) |
| i.suffix = BYTE_MNEM_SUFFIX; |
| } |
| else if (i.suffix == BYTE_MNEM_SUFFIX) |
| { |
| if (!check_byte_reg ()) |
| return 0; |
| } |
| else if (i.suffix == LONG_MNEM_SUFFIX) |
| { |
| if (!check_long_reg ()) |
| return 0; |
| } |
| else if (i.suffix == QWORD_MNEM_SUFFIX) |
| { |
| if (!check_qword_reg ()) |
| return 0; |
| } |
| else if (i.suffix == WORD_MNEM_SUFFIX) |
| { |
| if (!check_word_reg ()) |
| return 0; |
| } |
| else if (intel_syntax |
| && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE) |
| /* Do nothing if the instruction is going to ignore the prefix. */ |
| ; |
| else |
| abort (); |
| |
| /* Undo the movsx/movzx change done above. */ |
| i.operands = numop; |
| } |
| else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE |
| && !i.suffix) |
| { |
| i.suffix = stackop_size; |
| if (stackop_size == LONG_MNEM_SUFFIX) |
| { |
| /* stackop_size is set to LONG_MNEM_SUFFIX for the |
| .code16gcc directive to support 16-bit mode with |
| 32-bit address. For IRET without a suffix, generate |
| 16-bit IRET (opcode 0xcf) to return from an interrupt |
| handler. */ |
| if (i.tm.base_opcode == 0xcf) |
| { |
| i.suffix = WORD_MNEM_SUFFIX; |
| as_warn (_("generating 16-bit `iret' for .code16gcc directive")); |
| } |
| /* Warn about changed behavior for segment register push/pop. */ |
| else if ((i.tm.base_opcode | 1) == 0x07) |
| as_warn (_("generating 32-bit `%s', unlike earlier gas versions"), |
| insn_name (&i.tm)); |
| } |
| } |
| else if (!i.suffix |
| && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE |
| || i.tm.opcode_modifier.jump == JUMP_BYTE |
| || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT |
| || (i.tm.opcode_space == SPACE_0F |
| && i.tm.base_opcode == 0x01 /* [ls][gi]dt */ |
| && i.tm.extension_opcode <= 3))) |
| { |
| switch (flag_code) |
| { |
| case CODE_64BIT: |
| if (!i.tm.opcode_modifier.no_qsuf) |
| { |
| if (i.tm.opcode_modifier.jump == JUMP_BYTE |
| || i.tm.opcode_modifier.no_lsuf) |
| i.suffix = QWORD_MNEM_SUFFIX; |
| break; |
| } |
| /* Fall through. */ |
| case CODE_32BIT: |
| if (!i.tm.opcode_modifier.no_lsuf) |
| i.suffix = LONG_MNEM_SUFFIX; |
| break; |
| case CODE_16BIT: |
| if (!i.tm.opcode_modifier.no_wsuf) |
| i.suffix = WORD_MNEM_SUFFIX; |
| break; |
| } |
| } |
| |
| if (!i.suffix |
| && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE |
| /* Also cover lret/retf/iret in 64-bit mode. */ |
| || (flag_code == CODE_64BIT |
| && !i.tm.opcode_modifier.no_lsuf |
| && !i.tm.opcode_modifier.no_qsuf)) |
| && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE |
| /* Explicit sizing prefixes are assumed to disambiguate insns. */ |
| && !i.prefix[DATA_PREFIX] && !(i.prefix[REX_PREFIX] & REX_W) |
| /* Accept FLDENV et al without suffix. */ |
| && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf)) |
| { |
| unsigned int suffixes, evex = 0; |
| |
| suffixes = !i.tm.opcode_modifier.no_bsuf; |
| if (!i.tm.opcode_modifier.no_wsuf) |
| suffixes |= 1 << 1; |
| if (!i.tm.opcode_modifier.no_lsuf) |
| suffixes |= 1 << 2; |
| if (!i.tm.opcode_modifier.no_ssuf) |
| suffixes |= 1 << 4; |
| if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf) |
| suffixes |= 1 << 5; |
| |
| /* Operand size may be ambiguous only across multiple templates. Avoid |
| the extra effort though if we already know that multiple suffixes / |
| operand sizes are allowed. Also limit this to non-SIMD operand sizes |
| (i.e. ones expressable via suffixes) for now. |
| There's one special case though that needs excluding: Insns taking |
| Disp<N> operands also match templates permitting BaseIndex. JMP in |
| particular would thus wrongly trigger the check further down. Cover |
| JUMP_DWORD insns here as well, just in case. */ |
| if (i.tm.opcode_modifier.jump != JUMP |
| && i.tm.opcode_modifier.jump != JUMP_DWORD) |
| while (!(suffixes & (suffixes - 1))) |
| { |
| /* Sadly check_VecOperands(), running ahead of install_template(), |
| may update i.memshift. Save and restore the value here. */ |
| unsigned int memshift = i.memshift; |
| |
| current_templates.start = t + 1; |
| t = match_template (0); |
| i.memshift = memshift; |
| if (t == NULL) |
| break; |
| if (!t->opcode_modifier.no_bsuf) |
| suffixes |= 1 << 0; |
| if (!t->opcode_modifier.no_wsuf) |
| suffixes |= 1 << 1; |
| if (!t->opcode_modifier.no_lsuf) |
| suffixes |= 1 << 2; |
| if (!t->opcode_modifier.no_ssuf) |
| suffixes |= 1 << 4; |
| if (flag_code == CODE_64BIT && !t->opcode_modifier.no_qsuf) |
| suffixes |= 1 << 5; |
| } |
| |
| /* For [XYZ]MMWORD operands inspect operand sizes. While generally |
| also suitable for AT&T syntax mode, it was requested that this be |
| restricted to just Intel syntax. */ |
| if (intel_syntax && is_any_vex_encoding (&i.tm) |
| && !i.broadcast.type && !i.broadcast.bytes) |
| { |
| unsigned int op; |
| |
| for (op = 0; op < i.tm.operands; ++op) |
| { |
| if (vector_size < VSZ512) |
| { |
| i.tm.operand_types[op].bitfield.zmmword = 0; |
| if (vector_size < VSZ256) |
| { |
| i.tm.operand_types[op].bitfield.ymmword = 0; |
| if (i.tm.operand_types[op].bitfield.xmmword |
| && i.tm.opcode_modifier.evex == EVEXDYN) |
| i.tm.opcode_modifier.evex = EVEX128; |
| } |
| else if (i.tm.operand_types[op].bitfield.ymmword |
| && !i.tm.operand_types[op].bitfield.xmmword |
| && i.tm.opcode_modifier.evex == EVEXDYN) |
| i.tm.opcode_modifier.evex = EVEX256; |
| } |
| else if (i.tm.opcode_modifier.evex |
| && !cpu_arch_flags.bitfield.cpuavx512vl) |
| { |
| if (i.tm.operand_types[op].bitfield.ymmword) |
| i.tm.operand_types[op].bitfield.xmmword = 0; |
| if (i.tm.operand_types[op].bitfield.zmmword) |
| i.tm.operand_types[op].bitfield.ymmword = 0; |
| if (i.tm.opcode_modifier.evex == EVEXDYN) |
| i.tm.opcode_modifier.evex = EVEX512; |
| } |
| |
| if (i.tm.operand_types[op].bitfield.xmmword |
| + i.tm.operand_types[op].bitfield.ymmword |
| + i.tm.operand_types[op].bitfield.zmmword < 2) |
| continue; |
| |
| /* Any properly sized operand disambiguates the insn. */ |
| if (i.types[op].bitfield.xmmword |
| || i.types[op].bitfield.ymmword |
| || i.types[op].bitfield.zmmword) |
| { |
| suffixes &= ~(7 << 6); |
| evex = 0; |
| break; |
| } |
| |
| if ((i.flags[op] & Operand_Mem) |
| && i.tm.operand_types[op].bitfield.unspecified) |
| { |
| if (i.tm.operand_types[op].bitfield.xmmword) |
| suffixes |= 1 << 6; |
| if (i.tm.operand_types[op].bitfield.ymmword) |
| suffixes |= 1 << 7; |
| if (i.tm.operand_types[op].bitfield.zmmword) |
| suffixes |= 1 << 8; |
| if (i.tm.opcode_modifier.evex) |
| evex = EVEX512; |
| } |
| } |
| } |
| |
| /* Are multiple suffixes / operand sizes allowed? */ |
| if (suffixes & (suffixes - 1)) |
| { |
| if (intel_syntax |
| && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE |
| || operand_check == check_error)) |
| { |
| as_bad (_("ambiguous operand size for `%s'"), insn_name (&i.tm)); |
| return 0; |
| } |
| if (operand_check == check_error) |
| { |
| as_bad (_("no instruction mnemonic suffix given and " |
| "no register operands; can't size `%s'"), insn_name (&i.tm)); |
| return 0; |
| } |
| if (operand_check == check_warning) |
| as_warn (_("%s; using default for `%s'"), |
| intel_syntax |
| ? _("ambiguous operand size") |
| : _("no instruction mnemonic suffix given and " |
| "no register operands"), |
| insn_name (&i.tm)); |
| |
| if (i.tm.opcode_modifier.floatmf) |
| i.suffix = SHORT_MNEM_SUFFIX; |
| else if (is_movx) |
| /* handled below */; |
| else if (evex) |
| i.tm.opcode_modifier.evex = evex; |
| else if (flag_code == CODE_16BIT) |
| i.suffix = WORD_MNEM_SUFFIX; |
| else if (!i.tm.opcode_modifier.no_lsuf) |
| i.suffix = LONG_MNEM_SUFFIX; |
| else |
| i.suffix = QWORD_MNEM_SUFFIX; |
| } |
| } |
| |
| if (is_movx) |
| { |
| /* In Intel syntax, movsx/movzx must have a "suffix" (checked above). |
| In AT&T syntax, if there is no suffix (warned about above), the default |
| will be byte extension. */ |
| if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX) |
| i.tm.base_opcode |= 1; |
| |
| /* For further processing, the suffix should represent the destination |
| (register). This is already the case when one was used with |
| mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was |
| no suffix to begin with. */ |
| if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix) |
| { |
| if (i.types[1].bitfield.word) |
| i.suffix = WORD_MNEM_SUFFIX; |
| else if (i.types[1].bitfield.qword) |
| i.suffix = QWORD_MNEM_SUFFIX; |
| else |
| i.suffix = LONG_MNEM_SUFFIX; |
| |
| i.tm.opcode_modifier.w = 0; |
| } |
| } |
| |
| if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3) |
| i.short_form = (i.tm.operand_types[0].bitfield.class == Reg) |
| != (i.tm.operand_types[1].bitfield.class == Reg); |
| |
| /* Change the opcode based on the operand size given by i.suffix. */ |
| switch (i.suffix) |
| { |
| /* Size floating point instruction. */ |
| case LONG_MNEM_SUFFIX: |
| if (i.tm.opcode_modifier.floatmf) |
| { |
| i.tm.base_opcode ^= 4; |
| break; |
| } |
| /* fall through */ |
| case WORD_MNEM_SUFFIX: |
| case QWORD_MNEM_SUFFIX: |
| /* It's not a byte, select word/dword operation. */ |
| if (i.tm.opcode_modifier.w) |
| { |
| if (i.short_form) |
| i.tm.base_opcode |= 8; |
| else |
| i.tm.base_opcode |= 1; |
| } |
| |
| /* Set mode64 for an operand. */ |
| if (i.suffix == QWORD_MNEM_SUFFIX) |
| { |
| if (flag_code == CODE_64BIT |
| && !i.tm.opcode_modifier.norex64 |
| && !i.tm.opcode_modifier.vexw |
| /* Special case for xchg %rax,%rax. It is NOP and doesn't |
| need rex64. */ |
| && ! (i.operands == 2 |
| && i.tm.base_opcode == 0x90 |
| && i.tm.opcode_space == SPACE_BASE |
| && i.types[0].bitfield.instance == Accum |
| && i.types[1].bitfield.instance == Accum)) |
| i.rex |= REX_W; |
| |
| break; |
| } |
| |
| /* fall through */ |
| case SHORT_MNEM_SUFFIX: |
| /* Now select between word & dword operations via the operand |
| size prefix, except for instructions that will ignore this |
| prefix anyway. */ |
| if (i.tm.opcode_modifier.mnemonicsize != IGNORESIZE |
| && !i.tm.opcode_modifier.floatmf |
| && (!is_any_vex_encoding (&i.tm) |
| || i.tm.opcode_space == SPACE_EVEXMAP4) |
| && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT) |
| || (flag_code == CODE_64BIT |
| && i.tm.opcode_modifier.jump == JUMP_BYTE))) |
| { |
| unsigned int prefix = DATA_PREFIX_OPCODE; |
| |
| if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */ |
| prefix = ADDR_PREFIX_OPCODE; |
| |
| /* The DATA PREFIX of EVEX promoted from legacy APX instructions |
| needs to be adjusted. */ |
| if (i.tm.opcode_space == SPACE_EVEXMAP4) |
| { |
| gas_assert (!i.tm.opcode_modifier.opcodeprefix); |
| i.tm.opcode_modifier.opcodeprefix = PREFIX_0X66; |
| } |
| else if (!add_prefix (prefix)) |
| return 0; |
| } |
| |
| break; |
| |
| case 0: |
| /* Select word/dword/qword operation with explicit data sizing prefix |
| when there are no suitable register operands. */ |
| if (i.tm.opcode_modifier.w |
| && (i.prefix[DATA_PREFIX] || (i.prefix[REX_PREFIX] & REX_W)) |
| && (!i.reg_operands |
| || (i.reg_operands == 1 |
| /* ShiftCount */ |
| && (i.tm.operand_types[0].bitfield.instance == RegC |
| /* InOutPortReg */ |
| || i.tm.operand_types[0].bitfield.instance == RegD |
| || i.tm.operand_types[1].bitfield.instance == RegD |
| || i.tm.mnem_off == MN_crc32)))) |
| i.tm.base_opcode |= 1; |
| break; |
| } |
| |
| if (i.tm.opcode_modifier.operandconstraint == ADDR_PREFIX_OP_REG) |
| { |
| gas_assert (!i.suffix); |
| gas_assert (i.reg_operands); |
| |
| if (i.tm.operand_types[0].bitfield.instance == Accum |
| || i.operands == 1) |
| { |
| /* The address size override prefix changes the size of the |
| first operand. */ |
| if (flag_code == CODE_64BIT |
| && i.op[0].regs->reg_type.bitfield.word) |
| { |
| as_bad (_("16-bit addressing unavailable for `%s'"), |
| insn_name (&i.tm)); |
| return 0; |
| } |
| |
| if ((flag_code == CODE_32BIT |
| ? i.op[0].regs->reg_type.bitfield.word |
| : i.op[0].regs->reg_type.bitfield.dword) |
| && !add_prefix (ADDR_PREFIX_OPCODE)) |
| return 0; |
| } |
| else |
| { |
| /* Check invalid register operand when the address size override |
| prefix changes the size of register operands. */ |
| unsigned int op; |
| enum { need_word, need_dword, need_qword } need; |
| |
| /* Check the register operand for the address size prefix if |
| the memory operand has no real registers, like symbol, DISP |
| or bogus (x32-only) symbol(%rip) when symbol(%eip) is meant. */ |
| if (i.mem_operands == 1 |
| && i.reg_operands == 1 |
| && i.operands == 2 |
| && i.types[1].bitfield.class == Reg |
| && (flag_code == CODE_32BIT |
| ? i.op[1].regs->reg_type.bitfield.word |
| : i.op[1].regs->reg_type.bitfield.dword) |
| && ((i.base_reg == NULL && i.index_reg == NULL) |
| #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF) |
| || (x86_elf_abi == X86_64_X32_ABI |
| && i.base_reg |
| && i.base_reg->reg_num == RegIP |
| && i.base_reg->reg_type.bitfield.qword)) |
| #else |
| || 0) |
| #endif |
| && !add_prefix (ADDR_PREFIX_OPCODE)) |
| return 0; |
| |
| if (flag_code == CODE_32BIT) |
| need = i.prefix[ADDR_PREFIX] ? need_word : need_dword; |
| else if (i.prefix[ADDR_PREFIX]) |
| need = need_dword; |
| else |
| need = flag_code == CODE_64BIT ? need_qword : need_word; |
| |
| for (op = 0; op < i.operands; op++) |
| { |
| if (i.types[op].bitfield.class != Reg) |
| continue; |
| |
| switch (need) |
| { |
| case need_word: |
| if (i.op[op].regs->reg_type.bitfield.word) |
| continue; |
| break; |
| case need_dword: |
| if (i.op[op].regs->reg_type.bitfield.dword) |
| continue; |
| break; |
| case need_qword: |
| if (i.op[op].regs->reg_type.bitfield.qword) |
| continue; |
| break; |
| } |
| |
| as_bad (_("invalid register operand size for `%s'"), |
| insn_name (&i.tm)); |
| return 0; |
| } |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int |
| check_byte_reg (void) |
| { |
| int op; |
| |
| for (op = i.operands; --op >= 0;) |
| { |
| /* Skip non-register operands. */ |
| if (i.types[op].bitfield.class != Reg) |
| continue; |
| |
| /* If this is an eight bit register, it's OK. */ |
| if (i.types[op].bitfield.byte) |
| { |
| if (i.tm.opcode_modifier.checkoperandsize) |
| break; |
| continue; |
| } |
| |
| /* I/O port address operands are OK too. */ |
| if (i.tm.operand_types[op].bitfield.instance == RegD |
| && i.tm.operand_types[op].bitfield.word) |
| continue; |
| |
| /* crc32 only wants its source operand checked here. */ |
| if (i.tm.mnem_off == MN_crc32 && op != 0) |
| continue; |
| |
| /* Any other register is bad. */ |
| as_bad (_("`%s%s' not allowed with `%s%c'"), |
| register_prefix, i.op[op].regs->reg_name, |
| insn_name (&i.tm), i.suffix); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int |
| check_long_reg (void) |
| { |
| int op; |
| |
| for (op = i.operands; --op >= 0;) |
| /* Skip non-register operands. */ |
| if (i.types[op].bitfield.class != Reg) |
| continue; |
| /* Reject eight bit registers, except where the template requires |
| them. (eg. movzb) */ |
| else if (i.types[op].bitfield.byte |
| && (i.tm.operand_types[op].bitfield.word |
| || i.tm.operand_types[op].bitfield.dword |
| || i.tm.operand_types[op].bitfield.qword)) |
| { |
| as_bad (_("`%s%s' not allowed with `%s%c'"), |
| register_prefix, |
| i.op[op].regs->reg_name, |
| insn_name (&i.tm), |
| i.suffix); |
| return 0; |
| } |
| /* Error if the e prefix on a general reg is missing, or if the r |
| prefix on a general reg is present. */ |
| else if ((i.types[op].bitfield.word |
| || i.types[op].bitfield.qword) |
| && i.tm.operand_types[op].bitfield.dword) |
| { |
| as_bad (_("incorrect register `%s%s' used with `%c' suffix"), |
| register_prefix, i.op[op].regs->reg_name, |
| i.suffix); |
| return 0; |
| } |
| else if (i.tm.opcode_modifier.checkoperandsize) |
| break; |
| |
| return 1; |
| } |
| |
| static int |
| check_qword_reg (void) |
| { |
| int op; |
| |
| for (op = i.operands; --op >= 0; ) |
| /* Skip non-register operands. */ |
| if (i.types[op].bitfield.class != Reg) |
| continue; |
| /* Reject eight bit registers, except where the template requires |
| them. (eg. movzb) */ |
| else if (i.types[op].bitfield.byte |
| && (i.tm.operand_types[op].bitfield.word |
| || i.tm.operand_types[op].bitfield.dword |
| || i.tm.operand_types[op].bitfield.qword)) |
| { |
| as_bad (_("`%s%s' not allowed with `%s%c'"), |
| register_prefix, |
| i.op[op].regs->reg_name, |
| insn_name (&i.tm), |
| i.suffix); |
| return 0; |
| } |
| /* Error if the r prefix on a general reg is missing. */ |
| else if ((i.types[op].bitfield.word |
| || i.types[op].bitfield.dword) |
| && i.tm.operand_types[op].bitfield.qword) |
| { |
| as_bad (_("incorrect register `%s%s' used with `%c' suffix"), |
| register_prefix, i.op[op].regs->reg_name, i.suffix); |
| return 0; |
| } |
| else if (i.tm.opcode_modifier.checkoperandsize) |
| break; |
| |
| return 1; |
| } |
| |
| static int |
| check_word_reg (void) |
| { |
| int op; |
| for (op = i.operands; --op >= 0;) |
| /* Skip non-register operands. */ |
| if (i.types[op].bitfield.class != Reg) |
| continue; |
| /* Reject eight bit registers, except where the template requires |
| them. (eg. movzb) */ |
| else if (i.types[op].bitfield.byte |
| && (i.tm.operand_types[op].bitfield.word |
| || i.tm.operand_types[op].bitfield.dword |
| || i.tm.operand_types[op].bitfield.qword)) |
| { |
| as_bad (_("`%s%s' not allowed with `%s%c'"), |
| register_prefix, |
| i.op[op].regs->reg_name, |
| insn_name (&i.tm), |
| i.suffix); |
| return 0; |
| } |
| /* Error if the e or r prefix on a general reg is present. */ |
| else if ((i.types[op].bitfield.dword |
| || i.types[op].bitfield.qword) |
| && i.tm.operand_types[op].bitfield.word) |
| { |
| as_bad (_("incorrect register `%s%s' used with `%c' suffix"), |
| register_prefix, i.op[op].regs->reg_name, |
| i.suffix); |
| return 0; |
| } |
| else if (i.tm.opcode_modifier.checkoperandsize) |
| break; |
| |
| return 1; |
| } |
| |
| static int |
| update_imm (unsigned int j) |
| { |
| i386_operand_type overlap = i.types[j]; |
| |
| if (i.tm.operand_types[j].bitfield.imm8 |
| && i.tm.operand_types[j].bitfield.imm8s |
| && overlap.bitfield.imm8 && overlap.bitfield.imm8s) |
| { |
| /* This combination is used on 8-bit immediates where e.g. $~0 is |
| desirable to permit. We're past operand type matching, so simply |
| put things back in the shape they were before introducing the |
| distinction between Imm8, Imm8S, and Imm8|Imm8S. */ |
| overlap.bitfield.imm8s = 0; |
| } |
| |
| if (overlap.bitfield.imm8 |
| + overlap.bitfield.imm8s |
| + overlap.bitfield.imm16 |
| + overlap.bitfield.imm32 |
| + overlap.bitfield.imm32s |
| + overlap.bitfield.imm64 > 1) |
| { |
| static const i386_operand_type imm16 = { .bitfield = { .imm16 = 1 } }; |
| static const i386_operand_type imm32 = { .bitfield = { .imm32 = 1 } }; |
| static const i386_operand_type imm32s = { .bitfield = { .imm32s = 1 } }; |
| static const i386_operand_type imm16_32 = { .bitfield = |
| { .imm16 = 1, .imm32 = 1 } |
| }; |
| static const i386_operand_type imm16_32s = { .bitfield = |
| { .imm16 = 1, .imm32s = 1 } |
| }; |
| static const i386_operand_type imm16_32_32s = { .bitfield = |
| { .imm16 = 1, .imm32 = 1, .imm32s = 1 } |
| }; |
| |
| if (i.suffix) |
| { |
| i386_operand_type temp; |
| |
| operand_type_set (&temp, 0); |
| if (i.suffix == BYTE_MNEM_SUFFIX) |
| { |
| temp.bitfield.imm8 = overlap.bitfield.imm8; |
| temp.bitfield.imm8s = overlap.bitfield.imm8s; |
| } |
| else if (i.suffix == WORD_MNEM_SUFFIX) |
| temp.bitfield.imm16 = overlap.bitfield.imm16; |
| else if (i.suffix == QWORD_MNEM_SUFFIX) |
| { |
| temp.bitfield.imm64 = overlap.bitfield.imm64; |
| temp.bitfield.imm32s = overlap.bitfield.imm32s; |
| } |
| else |
| temp.bitfield.imm32 = overlap.bitfield.imm32; |
| overlap = temp; |
| } |
| else if (operand_type_equal (&overlap, &imm16_32_32s) |
| || operand_type_equal (&overlap, &imm16_32) |
| || operand_type_equal (&overlap, &imm16_32s)) |
| { |
| if ((flag_code == CODE_16BIT) |
| ^ (i.prefix[DATA_PREFIX] != 0 && !(i.prefix[REX_PREFIX] & REX_W))) |
| overlap = imm16; |
| else |
| overlap = imm32s; |
| } |
| else if (i.prefix[REX_PREFIX] & REX_W) |
| overlap = operand_type_and (overlap, imm32s); |
| else if (i.prefix[DATA_PREFIX]) |
| overlap = operand_type_and (overlap, |
| flag_code != CODE_16BIT ? imm16 : imm32); |
| if (overlap.bitfield.imm8 |
| + overlap.bitfield.imm8s |
| + overlap.bitfield.imm16 |
| + overlap.bitfield.imm32 |
| + overlap.bitfield.imm32s |
| + overlap.bitfield.imm64 != 1) |
| { |
| as_bad (_("no instruction mnemonic suffix given; " |
| "can't determine immediate size")); |
| return 0; |
| } |
| } |
| i.types[j] = overlap; |
| |
| return 1; |
| } |
| |
| static int |
| finalize_imm (void) |
| { |
| unsigned int j, n; |
| |
| /* Update the first 2 immediate operands. */ |
| n = i.operands > 2 ? 2 : i.operands; |
| if (n) |
| { |
| for (j = 0; j < n; j++) |
| if (update_imm (j) == 0) |
| return 0; |
| |
| /* The 3rd operand can't be immediate operand. */ |
| gas_assert (operand_type_check (i.types[2], imm) == 0); |
| } |
| |
| return 1; |
| } |
| |
| static INLINE void set_rex_vrex (const reg_entry *r, unsigned int rex_bit, |
| bool do_sse2avx) |
| { |
| if (r->reg_flags & RegRex) |
| { |
| if (i.rex & rex_bit) |
| as_bad (_("same type of prefix used twice")); |
| i.rex |= rex_bit; |
| } |
| else if (do_sse2avx && (i.rex & rex_bit) && i.vex.register_specifier) |
| { |
| gas_assert (i.vex.register_specifier == r); |
| i.vex.register_specifier += 8; |
| } |
| |
| if (r->reg_flags & RegVRex) |
| i.vrex |= rex_bit; |
| |
| if (r->reg_flags & RegRex2) |
| i.rex2 |= rex_bit; |
| } |
| |
| static INLINE void |
| set_rex_rex2 (const reg_entry *r, unsigned int rex_bit) |
| { |
| if ((r->reg_flags & RegRex) != 0) |
| i.rex |= rex_bit; |
| if ((r->reg_flags & RegRex2) != 0) |
| i.rex2 |= rex_bit; |
| } |
| |
| static int |
| process_operands (void) |
| { |
| /* Default segment register this instruction will use for memory |
| accesses. 0 means unknown. This is only for optimizing out |
| unnecessary segment overrides. */ |
| const reg_entry *default_seg = NULL; |
| |
| for (unsigned int j = 0; j < i.operands; j++) |
| if (i.types[j].bitfield.instance != InstanceNone) |
| i.reg_operands--; |
| |
| if (i.tm.opcode_modifier.sse2avx) |
| { |
| /* Legacy encoded insns allow explicit REX prefixes, so these prefixes |
| need converting. */ |
| i.rex |= i.prefix[REX_PREFIX] & (REX_W | REX_R | REX_X | REX_B); |
| i.prefix[REX_PREFIX] = 0; |
| pp.rex_encoding = 0; |
| pp.rex2_encoding = 0; |
| } |
| /* ImmExt should be processed after SSE2AVX. */ |
| else if (i.tm.opcode_modifier.immext) |
| process_immext (); |
| |
| /* TILEZERO is unusual in that it has a single operand encoded in ModR/M.reg, |
| not ModR/M.rm. To avoid special casing this in build_modrm_byte(), fake a |
| new destination operand here, while converting the source one to register |
| number 0. */ |
| if (i.tm.mnem_off == MN_tilezero) |
| { |
| i.op[1].regs = i.op[0].regs; |
| i.op[0].regs -= i.op[0].regs->reg_num; |
| i.types[1] = i.types[0]; |
| i.tm.operand_types[1] = i.tm.operand_types[0]; |
| i.flags[1] = i.flags[0]; |
| i.operands++; |
| i.reg_operands++; |
| i.tm.operands++; |
| } |
| |
| if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv) |
| { |
| static const i386_operand_type regxmm = { |
| .bitfield = { .class = RegSIMD, .xmmword = 1 } |
| }; |
| unsigned int dupl = i.operands; |
| unsigned int dest = dupl - 1; |
| unsigned int j; |
| |
| /* The destination must be an xmm register. */ |
| gas_assert (i.reg_operands |
| && MAX_OPERANDS > dupl |
| && operand_type_equal (&i.types[dest], ®xmm)); |
| |
| if (i.tm.operand_types[0].bitfield.instance == Accum |
| && i.tm.operand_types[0].bitfield.xmmword) |
| { |
| /* Keep xmm0 for instructions with VEX prefix and 3 |
| sources. */ |
| i.tm.operand_types[0].bitfield.instance = InstanceNone; |
| i.tm.operand_types[0].bitfield.class = RegSIMD; |
| i.reg_operands++; |
| goto duplicate; |
| } |
| |
| if (i.tm.opcode_modifier.operandconstraint == IMPLICIT_1ST_XMM0) |
| { |
| gas_assert ((MAX_OPERANDS - 1) > dupl); |
| |
| /* Add the implicit xmm0 for instructions with VEX prefix |
| and 3 sources. */ |
| for (j = i.operands; j > 0; j--) |
| { |
| i.op[j] = i.op[j - 1]; |
| i.types[j] = i.types[j - 1]; |
| i.tm.operand_types[j] = i.tm.operand_types[j - 1]; |
| i.flags[j] = i.flags[j - 1]; |
| } |
| i.op[0].regs |
| = (const reg_entry *) str_hash_find (reg_hash, "xmm0"); |
| i.types[0] = regxmm; |
| i.tm.operand_types[0] = regxmm; |
| |
| i.operands += 2; |
| i.reg_operands += 2; |
| i.tm.operands += 2; |
| |
| dupl++; |
| dest++; |
| i.op[dupl] = i.op[dest]; |
| i.types[dupl] = i.types[dest]; |
| i.tm.operand_types[dupl] = i.tm.operand_types[dest]; |
| i.flags[dupl] = i.flags[dest]; |
| } |
| else |
| { |
| duplicate: |
| i.operands++; |
| i.reg_operands++; |
| i.tm.operands++; |
| |
| i.op[dupl] = i.op[dest]; |
| i.types[dupl] = i.types[dest]; |
| i.tm.operand_types[dupl] = i.tm.operand_types[dest]; |
| i.flags[dupl] = i.flags[dest]; |
| } |
| |
| if (i.tm.opcode_modifier.immext) |
| process_immext (); |
| } |
| else if (i.tm.operand_types[0].bitfield.instance == Accum |
| && i.tm.opcode_modifier.modrm) |
| { |
| unsigned int j; |
| |
| for (j = 1; j < i.operands; j++) |
| { |
| i.op[j - 1] = i.op[j]; |
| i.types[j - 1] = i.types[j]; |
| |
| /* We need to adjust fields in i.tm since they are used by |
| build_modrm_byte. */ |
| i.tm.operand_types [j - 1] = i.tm.operand_types [j]; |
| |
| i.flags[j - 1] = i.flags[j]; |
| } |
| |
| /* No adjustment to i.reg_operands: This was already done at the top |
| of the function. */ |
| i.operands--; |
| i.tm.operands--; |
| } |
| else if (i.tm.opcode_modifier.operandconstraint == IMPLICIT_QUAD_GROUP) |
| { |
| unsigned int regnum, first_reg_in_group, last_reg_in_group; |
| |
| /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */ |
| gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD); |
| regnum = register_number (i.op[1].regs); |
| first_reg_in_group = regnum & ~3; |
| last_reg_in_group = first_reg_in_group + 3; |
| if (regnum != first_reg_in_group) |
| as_warn (_("source register `%s%s' implicitly denotes" |
| " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"), |
| register_prefix, i.op[1].regs->reg_name, |
| register_prefix, i.op[1].regs->reg_name, first_reg_in_group, |
| register_prefix, i.op[1].regs->reg_name, last_reg_in_group, |
| insn_name (&i.tm)); |
| } |
| else if (i.tm.opcode_modifier.operandconstraint == REG_KLUDGE) |
| { |
| /* The imul $imm, %reg instruction is converted into |
| imul $imm, %reg, %reg, and the clr %reg instruction |
| is converted into xor %reg, %reg. */ |
| |
| unsigned int first_reg_op; |
| |
| if (operand_type_check (i.types[0], reg)) |
| first_reg_op = 0; |
| else |
| first_reg_op = 1; |
| /* Pretend we saw the extra register operand. */ |
| gas_assert (i.reg_operands == 1 |
| && i.op[first_reg_op + 1].regs == 0); |
| i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs; |
| i.types[first_reg_op + 1] = i.types[first_reg_op]; |
| i.operands++; |
| i.reg_operands++; |
| |
| /* For IMULZU switch around the constraint. */ |
| if (i.tm.mnem_off == MN_imulzu) |
| i.tm.opcode_modifier.operandconstraint = ZERO_UPPER; |
| } |
| |
| if (i.tm.opcode_modifier.modrm) |
| { |
| /* The opcode is completed (modulo i.tm.extension_opcode which |
| must be put into the modrm byte). Now, we make the modrm and |
| index base bytes based on all the info we've collected. */ |
| |
| default_seg = build_modrm_byte (); |
| |
| if (!quiet_warnings && i.tm.opcode_modifier.operandconstraint == UGH) |
| { |
| /* Warn about some common errors, but press on regardless. */ |
| if (i.operands == 2) |
| { |
| /* Reversed arguments on faddp or fmulp. */ |
| as_warn (_("translating to `%s %s%s,%s%s'"), insn_name (&i.tm), |
| register_prefix, i.op[!intel_syntax].regs->reg_name, |
| register_prefix, i.op[intel_syntax].regs->reg_name); |
| } |
| else if (i.tm.opcode_modifier.mnemonicsize == IGNORESIZE) |
| { |
| /* Extraneous `l' suffix on fp insn. */ |
| as_warn (_("translating to `%s %s%s'"), insn_name (&i.tm), |
| register_prefix, i.op[0].regs->reg_name); |
| } |
| } |
| } |
| else if (i.types[0].bitfield.class == SReg && !dot_insn ()) |
| { |
| if (flag_code != CODE_64BIT |
| ? i.tm.base_opcode == POP_SEG_SHORT |
| && i.op[0].regs->reg_num == 1 |
| : (i.tm.base_opcode | 1) == (POP_SEG386_SHORT & 0xff) |
| && i.op[0].regs->reg_num < 4) |
| { |
| as_bad (_("you can't `%s %s%s'"), |
| insn_name (&i.tm), register_prefix, i.op[0].regs->reg_name); |
| return 0; |
| } |
| if (i.op[0].regs->reg_num > 3 |
| && i.tm.opcode_space == SPACE_BASE ) |
| { |
| i.tm.base_opcode ^= (POP_SEG_SHORT ^ POP_SEG386_SHORT) & 0xff; |
| i.tm.opcode_space = SPACE_0F; |
| } |
| i.tm.base_opcode |= (i.op[0].regs->reg_num << 3); |
| } |
| else if (i.tm.opcode_space == SPACE_BASE |
| && (i.tm.base_opcode & ~3) == MOV_AX_DISP32) |
| { |
| default_seg = reg_ds; |
| } |
| else if (i.tm.opcode_modifier.isstring) |
| { |
| /* For the string instructions that allow a segment override |
| on one of their operands, the default segment is ds. */ |
| default_seg = reg_ds; |
| } |
| else if (i.short_form) |
| { |
| /* The register operand is in the 1st or 2nd non-immediate operand. */ |
| const reg_entry *r = i.op[i.imm_operands].regs; |
| |
| if (!dot_insn () |
| && r->reg_type.bitfield.instance == Accum |
| && i.op[i.imm_operands + 1].regs) |
| r = i.op[i.imm_operands + 1].regs; |
| /* Register goes in low 3 bits of opcode. */ |
| i.tm.base_opcode |= r->reg_num; |
| set_rex_vrex (r, REX_B, false); |
| |
| if (dot_insn () && i.reg_operands == 2) |
| { |
| gas_assert (is_any_vex_encoding (&i.tm) |
| || pp.encoding != encoding_default); |
| i.vex.register_specifier = i.op[i.operands - 1].regs; |
| } |
| } |
| else if (i.reg_operands == 1 |
| && !i.flags[i.operands - 1] |
| && i.tm.operand_types[i.operands - 1].bitfield.instance |
| == InstanceNone) |
| { |
| gas_assert (is_any_vex_encoding (&i.tm) |
| || pp.encoding != encoding_default); |
| i.vex.register_specifier = i.op[i.operands - 1].regs; |
| } |
| |
| if ((i.seg[0] || i.prefix[SEG_PREFIX]) |
| && i.tm.mnem_off == MN_lea) |
| { |
| if (!quiet_warnings) |
| as_warn (_("segment override on `%s' is ineffectual"), insn_name (&i.tm)); |
| if (optimize && !pp.no_optimize) |
| { |
| i.seg[0] = NULL; |
| i.prefix[SEG_PREFIX] = 0; |
| } |
| } |
| |
| /* If a segment was explicitly specified, and the specified segment |
| is neither the default nor the one already recorded from a prefix, |
| use an opcode prefix to select it. If we never figured out what |
| the default segment is, then default_seg will be zero at this |
| point, and the specified segment prefix will always be used. */ |
| if (i.seg[0] |
| && i.seg[0] != default_seg |
| && i386_seg_prefixes[i.seg[0]->reg_num] != i.prefix[SEG_PREFIX]) |
| { |
| if (!add_prefix (i386_seg_prefixes[i.seg[0]->reg_num])) |
| return 0; |
| } |
| return 1; |
| } |
| |
| static const reg_entry * |
| build_modrm_byte (void) |
| { |
| const reg_entry *default_seg = NULL; |
| unsigned int source = i.imm_operands - i.tm.opcode_modifier.immext |
| /* Compensate for kludge in md_assemble(). */ |
| + i.tm.operand_types[0].bitfield.imm1; |
| unsigned int dest = i.operands - 1 - i.tm.opcode_modifier.immext; |
| unsigned int v, op, reg_slot; |
| |
| /* Accumulator (in particular %st), shift count (%cl), and alike need |
| to be skipped just like immediate operands do. */ |
| if (i.tm.operand_types[source].bitfield.instance) |
| ++source; |
| while (i.tm.operand_types[dest].bitfield.instance) |
| --dest; |
| |
| for (op = source; op < i.operands; ++op) |
| if (i.tm.operand_types[op].bitfield.baseindex) |
| break; |
| |
| if (i.reg_operands + i.mem_operands + (i.tm.extension_opcode != None) == 4) |
| { |
| expressionS *exp; |
| |
| /* There are 2 kinds of instructions: |
| 1. 5 operands: 4 register operands or 3 register operands |
| plus 1 memory operand plus one Imm4 operand, VexXDS, and |
| VexW0 or VexW1. The destination must be either XMM, YMM or |
| ZMM register. |
| 2. 4 operands: 4 register operands or 3 register operands |
| plus 1 memory operand, with VexXDS. |
| 3. Other equivalent combinations when coming from s_insn(). */ |
| gas_assert (i.tm.opcode_modifier.vexvvvv |
| && i.tm.opcode_modifier.vexw); |
| gas_assert (dot_insn () |
| || i.tm.operand_types[dest].bitfield.class == RegSIMD); |
| |
| /* Of the first two non-immediate operands the one with the template |
| not allowing for a memory one is encoded in the immediate operand. */ |
| if (source == op) |
| reg_slot = source + 1; |
| else |
| reg_slot = source++; |
| |
| if (!dot_insn ()) |
| { |
| gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD); |
| gas_assert (!(i.op[reg_slot].regs->reg_flags & RegVRex)); |
| } |
| else |
| gas_assert (i.tm.operand_types[reg_slot].bitfield.class != ClassNone); |
| |
| if (i.imm_operands == 0) |
| { |
| /* When there is no immediate operand, generate an 8bit |
| immediate operand to encode the first operand. */ |
| exp = &im_expressions[i.imm_operands++]; |
| i.op[i.operands].imms = exp; |
| i.types[i.operands].bitfield.imm8 = 1; |
| i.operands++; |
| |
| exp->X_op = O_constant; |
| } |
| else |
| { |
| gas_assert (i.imm_operands == 1); |
| gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number)); |
| gas_assert (!i.tm.opcode_modifier.immext); |
| |
| /* Turn on Imm8 again so that output_imm will generate it. */ |
| i.types[0].bitfield.imm8 = 1; |
| |
| exp = i.op[0].imms; |
| } |
| exp->X_add_number |= register_number (i.op[reg_slot].regs) |
| << (3 + !(i.tm.opcode_modifier.evex |
| || pp.encoding == encoding_evex)); |
| } |
| |
| switch (i.tm.opcode_modifier.vexvvvv) |
| { |
| /* VEX.vvvv encodes the last source register operand. */ |
| case VexVVVV_SRC2: |
| v = source++; |
| break; |
| /* VEX.vvvv encodes the first source register operand. */ |
| case VexVVVV_SRC1: |
| v = dest - 1; |
| break; |
| /* VEX.vvvv encodes the destination register operand. */ |
| case VexVVVV_DST: |
| v = dest--; |
| break; |
| default: |
| v = ~0; |
| break; |
| } |
| |
| if (dest == source) |
| dest = ~0; |
| |
| gas_assert (source < dest); |
| |
| if (v < MAX_OPERANDS) |
| { |
| gas_assert (i.tm.opcode_modifier.vexvvvv); |
| i.vex.register_specifier = i.op[v].regs; |
| } |
| |
| if (op < i.operands) |
| { |
| if (i.mem_operands) |
| { |
| unsigned int fake_zero_displacement = 0; |
| |
| gas_assert (i.flags[op] & Operand_Mem); |
| |
| if (i.tm.opcode_modifier.sib) |
| { |
| /* The index register of VSIB shouldn't be RegIZ. */ |
| if (i.tm.opcode_modifier.sib != SIBMEM |
| && i.index_reg->reg_num == RegIZ) |
| abort (); |
| |
| i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING; |
| if (!i.base_reg) |
| { |
| i.sib.base = NO_BASE_REGISTER; |
| i.sib.scale = i.log2_scale_factor; |
| i.types[op] = operand_type_and_not (i.types[op], anydisp); |
| i.types[op].bitfield.disp32 = 1; |
| } |
| |
| /* Since the mandatory SIB always has index register, so |
| the code logic remains unchanged. The non-mandatory SIB |
| without index register is allowed and will be handled |
| later. */ |
| if (i.index_reg) |
| { |
| if (i.index_reg->reg_num == RegIZ) |
| i.sib.index = NO_INDEX_REGISTER; |
| else |
| i.sib.index = i.index_reg->reg_num; |
| set_rex_vrex (i.index_reg, REX_X, false); |
| } |
| } |
| |
| default_seg = reg_ds; |
| |
| if (i.base_reg == 0) |
| { |
| i.rm.mode = 0; |
| if (!i.disp_operands) |
| fake_zero_displacement = 1; |
| if (i.index_reg == 0) |
| { |
| /* Both check for VSIB and mandatory non-vector SIB. */ |
| gas_assert (!i.tm.opcode_modifier.sib |
| || i.tm.opcode_modifier.sib == SIBMEM); |
| /* Operand is just <disp> */ |
| i.types[op] = operand_type_and_not (i.types[op], anydisp); |
| if (flag_code == CODE_64BIT) |
| { |
| /* 64bit mode overwrites the 32bit absolute |
| addressing by RIP relative addressing and |
| absolute addressing is encoded by one of the |
| redundant SIB forms. */ |
| i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING; |
| i.sib.base = NO_BASE_REGISTER; |
| i.sib.index = NO_INDEX_REGISTER; |
| i.types[op].bitfield.disp32 = 1; |
| } |
| else if ((flag_code == CODE_16BIT) |
| ^ (i.prefix[ADDR_PREFIX] != 0)) |
| { |
| i.rm.regmem = NO_BASE_REGISTER_16; |
| i.types[op].bitfield.disp16 = 1; |
| } |
| else |
| { |
| i.rm.regmem = NO_BASE_REGISTER; |
| i.types[op].bitfield.disp32 = 1; |
| } |
| } |
| else if (!i.tm.opcode_modifier.sib) |
| { |
| /* !i.base_reg && i.index_reg */ |
| if (i.index_reg->reg_num == RegIZ) |
| i.sib.index = NO_INDEX_REGISTER; |
| else |
| i.sib.index = i.index_reg->reg_num; |
| i.sib.base = NO_BASE_REGISTER; |
| i.sib.scale = i.log2_scale_factor; |
| i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING; |
| i.types[op] = operand_type_and_not (i.types[op], anydisp); |
| i.types[op].bitfield.disp32 = 1; |
| set_rex_rex2 (i.index_reg, REX_X); |
| } |
| } |
| /* RIP addressing for 64bit mode. */ |
| else if (i.base_reg->reg_num == RegIP) |
| { |
| gas_assert (!i.tm.opcode_modifier.sib); |
| i.rm.regmem = NO_BASE_REGISTER; |
| i.types[op].bitfield.disp8 = 0; |
| i.types[op].bitfield.disp16 = 0; |
| i.types[op].bitfield.disp32 = 1; |
| i.types[op].bitfield.disp64 = 0; |
| i.flags[op] |= Operand_PCrel; |
| if (! i.disp_operands) |
| fake_zero_displacement = 1; |
| } |
| else if (i.base_reg->reg_type.bitfield.word) |
| { |
| gas_assert (!i.tm.opcode_modifier.sib); |
| switch (i.base_reg->reg_num) |
| { |
| case 3: /* (%bx) */ |
| if (i.index_reg == 0) |
| i.rm.regmem = 7; |
| else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */ |
| i.rm.regmem = i.index_reg->reg_num - 6; |
| break; |
| case 5: /* (%bp) */ |
| default_seg = reg_ss; |
| if (i.index_reg == 0) |
| { |
| i.rm.regmem = 6; |
| if (operand_type_check (i.types[op], disp) == 0) |
| { |
| /* fake (%bp) into 0(%bp) */ |
| if (pp.disp_encoding == disp_encoding_16bit) |
| i.types[op].bitfield.disp16 = 1; |
| else |
| i.types[op].bitfield.disp8 = 1; |
| fake_zero_displacement = 1; |
| } |
| } |
| else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */ |
| i.rm.regmem = i.index_reg->reg_num - 6 + 2; |
| break; |
| default: /* (%si) -> 4 or (%di) -> 5 */ |
| i.rm.regmem = i.base_reg->reg_num - 6 + 4; |
| } |
| if (!fake_zero_displacement |
| && !i.disp_operands |
| && pp.disp_encoding) |
| { |
| fake_zero_displacement = 1; |
| if (pp.disp_encoding == disp_encoding_8bit) |
| i.types[op].bitfield.disp8 = 1; |
| else |
| i.types[op].bitfield.disp16 = 1; |
| } |
| i.rm.mode = mode_from_disp_size (i.types[op]); |
| } |
| else /* i.base_reg and 32/64 bit mode */ |
| { |
| if (operand_type_check (i.types[op], disp)) |
| { |
| i.types[op].bitfield.disp16 = 0; |
| i.types[op].bitfield.disp64 = 0; |
| i.types[op].bitfield.disp32 = 1; |
| } |
| |
| if (!i.tm.opcode_modifier.sib) |
| i.rm.regmem = i.base_reg->reg_num; |
| set_rex_rex2 (i.base_reg, REX_B); |
| i.sib.base = i.base_reg->reg_num; |
| /* x86-64 ignores REX prefix bit here to avoid decoder |
| complications. */ |
| if (!(i.base_reg->reg_flags & RegRex) |
| && (i.base_reg->reg_num == EBP_REG_NUM |
| || i.base_reg->reg_num == ESP_REG_NUM)) |
| default_seg = reg_ss; |
| if (i.base_reg->reg_num == 5 && i.disp_operands == 0) |
| { |
| fake_zero_displacement = 1; |
| if (pp.disp_encoding == disp_encoding_32bit) |
| i.types[op].bitfield.disp32 = 1; |
| else |
| i.types[op].bitfield.disp8 = 1; |
| } |
| i.sib.scale = i.log2_scale_factor; |
| if (i.index_reg == 0) |
| { |
| /* Only check for VSIB. */ |
| gas_assert (i.tm.opcode_modifier.sib != VECSIB128 |
| && i.tm.opcode_modifier.sib != VECSIB256 |
| && i.tm.opcode_modifier.sib != VECSIB512); |
| |
| /* <disp>(%esp) becomes two byte modrm with no index |
| register. We've already stored the code for esp |
| in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. |
| Any base register besides %esp will not use the |
| extra modrm byte. */ |
| i.sib.index = NO_INDEX_REGISTER; |
| } |
| else if (!i.tm.opcode_modifier.sib) |
| { |
| if (i.index_reg->reg_num == RegIZ) |
| i.sib.index = NO_INDEX_REGISTER; |
| else |
| i.sib.index = i.index_reg->reg_num; |
| i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING; |
| set_rex_rex2 (i.index_reg, REX_X); |
| } |
| |
| if (i.disp_operands |
| && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL |
| || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)) |
| i.rm.mode = 0; |
| else |
| { |
| if (!fake_zero_displacement |
| && !i.disp_operands |
| && pp.disp_encoding) |
| { |
| fake_zero_displacement = 1; |
| if (pp.disp_encoding == disp_encoding_8bit) |
| i.types[op].bitfield.disp8 = 1; |
| else |
| i.types[op].bitfield.disp32 = 1; |
| } |
| i.rm.mode = mode_from_disp_size (i.types[op]); |
| } |
| } |
| |
| if (fake_zero_displacement) |
| { |
| /* Fakes a zero displacement assuming that i.types[op] |
| holds the correct displacement size. */ |
| expressionS *exp; |
| |
| gas_assert (i.op[op].disps == 0); |
| exp = &disp_expressions[i.disp_operands++]; |
| i.op[op].disps = exp; |
| exp->X_op = O_constant; |
| exp->X_add_number = 0; |
| exp->X_add_symbol = (symbolS *) 0; |
| exp->X_op_symbol = (symbolS *) 0; |
| } |
| } |
| else |
| { |
| i.rm.mode = 3; |
| i.rm.regmem = i.op[op].regs->reg_num; |
| set_rex_vrex (i.op[op].regs, REX_B, false); |
| } |
| |
| if (op == dest) |
| dest = ~0; |
| if (op == source) |
| source = ~0; |
| } |
| else |
| { |
| i.rm.mode = 3; |
| if (!i.tm.opcode_modifier.regmem) |
| { |
| gas_assert (source < MAX_OPERANDS); |
| i.rm.regmem = i.op[source].regs->reg_num; |
| set_rex_vrex (i.op[source].regs, REX_B, |
| dest >= MAX_OPERANDS && i.tm.opcode_modifier.sse2avx); |
| source = ~0; |
| } |
| else |
| { |
| gas_assert (dest < MAX_OPERANDS); |
| i.rm.regmem = i.op[dest].regs->reg_num; |
| set_rex_vrex (i.op[dest].regs, REX_B, i.tm.opcode_modifier.sse2avx); |
| dest = ~0; |
| } |
| } |
| |
| /* Fill in i.rm.reg field with extension opcode (if any) or the |
| appropriate register. */ |
| if (i.tm.extension_opcode != None) |
| i.rm.reg = i.tm.extension_opcode; |
| else if (!i.tm.opcode_modifier.regmem && dest < MAX_OPERANDS) |
| { |
| i.rm.reg = i.op[dest].regs->reg_num; |
| set_rex_vrex (i.op[dest].regs, REX_R, i.tm.opcode_modifier.sse2avx); |
| } |
| else |
| { |
| gas_assert (source < MAX_OPERANDS); |
| i.rm.reg = i.op[source].regs->reg_num; |
| set_rex_vrex (i.op[source].regs, REX_R, false); |
| } |
| |
| if (flag_code != CODE_64BIT && (i.rex & REX_R)) |
| { |
| gas_assert (i.types[!i.tm.opcode_modifier.regmem].bitfield.class == RegCR); |
| i.rex &= ~REX_R; |
| add_prefix (LOCK_PREFIX_OPCODE); |
| } |
| |
| return default_seg; |
| } |
| |
| static INLINE void |
| frag_opcode_byte (unsigned char byte) |
| { |
| if (now_seg != absolute_section) |
| FRAG_APPEND_1_CHAR (byte); |
| else |
| ++abs_section_offset; |
| } |
| |
| static unsigned int |
| flip_code16 (unsigned int code16) |
| { |
| gas_assert (i.tm.operands == 1); |
| |
| return !(i.prefix[REX_PREFIX] & REX_W) |
| && (code16 ? i.tm.operand_types[0].bitfield.disp32 |
| : i.tm.operand_types[0].bitfield.disp16) |
| ? CODE16 : 0; |
| } |
| |
| static void |
| output_branch (void) |
| { |
| char *p; |
| int size; |
| int code16; |
| int prefix; |
| relax_substateT subtype; |
| symbolS *sym; |
| offsetT off; |
| |
| if (now_seg == absolute_section) |
| { |
| as_bad (_("relaxable branches not supported in absolute section")); |
| return; |
| } |
| |
| code16 = flag_code == CODE_16BIT ? CODE16 : 0; |
| size = pp.disp_encoding > disp_encoding_8bit ? BIG : SMALL; |
| |
| prefix = 0; |
| if (i.prefix[DATA_PREFIX] != 0) |
| { |
| prefix = 1; |
| i.prefixes -= 1; |
| code16 ^= flip_code16(code16); |
| } |
| /* Pentium4 branch hints. */ |
| if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */ |
| || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */) |
| { |
| prefix++; |
| i.prefixes--; |
| } |
| if (i.prefix[REX_PREFIX] != 0) |
| { |
| prefix++; |
| i.prefixes--; |
| } |
| |
| /* BND prefixed jump. */ |
| if (i.prefix[BND_PREFIX] != 0) |
| { |
| prefix++; |
| i.prefixes--; |
| } |
| |
| if (i.prefixes != 0) |
| as_warn (_("skipping prefixes on `%s'"), insn_name (&i.tm)); |
| |
| /* It's always a symbol; End frag & setup for relax. |
| Make sure there is enough room in this frag for the largest |
| instruction we may generate in md_convert_frag. This is 2 |
| bytes for the opcode and room for the prefix and largest |
| displacement. */ |
| frag_grow (prefix + 2 + 4); |
| /* Prefix and 1 opcode byte go in fr_fix. */ |
| p = frag_more (prefix + 1); |
| if (i.prefix[DATA_PREFIX] != 0) |
| *p++ = DATA_PREFIX_OPCODE; |
| if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE |
| || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE) |
| *p++ = i.prefix[SEG_PREFIX]; |
| if (i.prefix[BND_PREFIX] != 0) |
| *p++ = BND_PREFIX_OPCODE; |
| if (i.prefix[REX_PREFIX] != 0) |
| *p++ = i.prefix[REX_PREFIX]; |
| *p = i.tm.base_opcode; |
| |
| if ((unsigned char) *p == JUMP_PC_RELATIVE) |
| subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size); |
| else if (cpu_arch_flags.bitfield.cpui386) |
| subtype = ENCODE_RELAX_STATE (COND_JUMP, size); |
| else |
| subtype = ENCODE_RELAX_STATE (COND_JUMP86, size); |
| subtype |= code16; |
| |
| sym = i.op[0].disps->X_add_symbol; |
| off = i.op[0].disps->X_add_number; |
| |
| if (i.op[0].disps->X_op != O_constant |
| && i.op[0].disps->X_op != O_symbol) |
| { |
| /* Handle complex expressions. */ |
| sym = make_expr_symbol (i.op[0].disps); |
| off = 0; |
| } |
| |
| /* 1 possible extra opcode + 4 byte displacement go in var part. |
| Pass reloc in fr_var. */ |
| frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p); |
| } |
| |
| #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) |
| /* Return TRUE iff PLT32 relocation should be used for branching to |
| symbol S. */ |
| |
| static bool |
| need_plt32_p (symbolS *s) |
| { |
| /* PLT32 relocation is ELF only. */ |
| if (!IS_ELF) |
| return false; |
| |
| #ifdef TE_SOLARIS |
| /* Don't emit PLT32 relocation on Solaris: neither native linker nor |
| krtld support it. */ |
| return false; |
| #endif |
| |
| /* Since there is no need to prepare for PLT branch on x86-64, we |
| can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can |
| be used as a marker for 32-bit PC-relative branches. */ |
| if (!object_64bit) |
| return false; |
| |
| if (s == NULL) |
| return false; |
| |
| /* Weak or undefined symbol need PLT32 relocation. */ |
| if (S_IS_WEAK (s) || !S_IS_DEFINED (s)) |
| return true; |
| |
| /* Non-global symbol doesn't need PLT32 relocation. */ |
| if (! S_IS_EXTERNAL (s)) |
| return false; |
| |
| /* Other global symbols need PLT32 relocation. NB: Symbol with |
| non-default visibilities are treated as normal global symbol |
| so that PLT32 relocation can be used as a marker for 32-bit |
| PC-relative branches. It is useful for linker relaxation. */ |
| return true; |
| } |
| #endif |
| |
| static void |
| output_jump (void) |
| { |
| char *p; |
| int size; |
| fixS *fixP; |
| bfd_reloc_code_real_type jump_reloc = i.reloc[0]; |
| |
| if (i.tm.opcode_modifier.jump == JUMP_BYTE) |
| { |
| /* This is a loop or jecxz type instruction. */ |
| size = 1; |
| if (i.prefix[ADDR_PREFIX] != 0) |
| { |
| frag_opcode_byte (ADDR_PREFIX_OPCODE); |
| i.prefixes -= 1; |
| } |
| /* Pentium4 branch hints. */ |
| if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */ |
| || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */) |
| { |
| frag_opcode_byte (i.prefix[SEG_PREFIX]); |
| i.prefixes--; |
| } |
| } |
| else |
| { |
| int code16; |
| |
| code16 = 0; |
| if (flag_code == CODE_16BIT) |
| code16 = CODE16; |
| |
| if (i.prefix[DATA_PREFIX] != 0) |
| { |
| frag_opcode_byte (DATA_PREFIX_OPCODE); |
| i.prefixes -= 1; |
| code16 ^= flip_code16(code16); |
| } |
| |
| size = 4; |
| if (code16) |
| size = 2; |
| } |
| |
| /* BND prefixed jump. */ |
| if (i.prefix[BND_PREFIX] != 0) |
| { |
| frag_opcode_byte (i.prefix[BND_PREFIX]); |
| i.prefixes -= 1; |
| } |
| |
| if (i.prefix[REX_PREFIX] != 0) |
| { |
| frag_opcode_byte (i.prefix[REX_PREFIX]); |
| i.prefixes -= 1; |
| } |
| |
| if (i.prefixes != 0) |
| as_warn (_("skipping prefixes on `%s'"), insn_name (&i.tm)); |
| |
| if (now_seg == absolute_section) |
| { |
| abs_section_offset += i.opcode_length + size; |
| return; |
| } |
| |
| p = frag_more (i.opcode_length + size); |
| switch (i.opcode_length) |
| { |
| case 2: |
| *p++ = i.tm.base_opcode >> 8; |
| /* Fall through. */ |
| case 1: |
| *p++ = i.tm.base_opcode; |
| break; |
| default: |
| abort (); |
| } |
| |
| #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) |
| if (flag_code == CODE_64BIT && size == 4 |
| && jump_reloc == NO_RELOC && i.op[0].disps->X_add_number == 0 |
| && need_plt32_p (i.op[0].disps->X_add_symbol)) |
| jump_reloc = BFD_RELOC_X86_64_PLT32; |
| #endif |
| |
| jump_reloc = reloc (size, 1, 1, jump_reloc); |
| |
| fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size, |
| i.op[0].disps, 1, jump_reloc); |
| |
| /* All jumps handled here are signed, but don't unconditionally use a |
| signed limit check for 32 and 16 bit jumps as we want to allow wrap |
| around at 4G (outside of 64-bit mode) and 64k (except for XBEGIN) |
| respectively. */ |
| switch (size) |
| { |
| case 1: |
| fixP->fx_signed = 1; |
| break; |
| |
| case 2: |
| if (i.tm.mnem_off == MN_xbegin) |
| fixP->fx_signed = 1; |
| break; |
| |
| case 4: |
| if (flag_code == CODE_64BIT) |
| fixP->fx_signed = 1; |
| break; |
| } |
| } |
| |
| static void |
| output_interseg_jump (void) |
| { |
| char *p; |
| int size; |
| int prefix; |
| int code16; |
| |
| code16 = 0; |
| if (flag_code == CODE_16BIT) |
| code16 = CODE16; |
| |
| prefix = 0; |
| if (i.prefix[DATA_PREFIX] != 0) |
| { |
| prefix = 1; |
| i.prefixes -= 1; |
| code16 ^= CODE16; |
| } |
| |
| gas_assert (!i.prefix[REX_PREFIX]); |
| |
| size = 4; |
| if (code16) |
| size = 2; |
| |
| if (i.prefixes != 0) |
| as_warn (_("skipping prefixes on `%s'"), insn_name (&i.tm)); |
| |
| if (now_seg == absolute_section) |
| { |
| abs_section_offset += prefix + 1 + 2 + size; |
| return; |
| } |
| |
| /* 1 opcode; 2 segment; offset */ |
| p = frag_more (prefix + 1 + 2 + size); |
| |
| if (i.prefix[DATA_PREFIX] != 0) |
| *p++ = DATA_PREFIX_OPCODE; |
| |
| if (i.prefix[REX_PREFIX] != 0) |
| *p++ = i.prefix[REX_PREFIX]; |
| |
| *p++ = i.tm.base_opcode; |
| if (i.op[1].imms->X_op == O_constant) |
| { |
| offsetT n = i.op[1].imms->X_add_number; |
| |
| if (size == 2 |
| && !fits_in_unsigned_word (n) |
| && !fits_in_signed_word (n)) |
| { |
| as_bad (_("16-bit jump out of range")); |
| return; |
| } |
| md_number_to_chars (p, n, size); |
| } |
| else |
| fix_new_exp (frag_now, p - frag_now->fr_literal, size, |
| i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1])); |
| |
| p += size; |
| if (i.op[0].imms->X_op == O_constant) |
| md_number_to_chars (p, (valueT) i.op[0].imms->X_add_number, 2); |
| else |
| fix_new_exp (frag_now, p - frag_now->fr_literal, 2, |
| i.op[0].imms, 0, reloc (2, 0, 0, i.reloc[0])); |
| } |
| |
| /* Hook used to reject pseudo-prefixes misplaced at the start of a line. */ |
| |
| void i386_start_line (void) |
| { |
| struct pseudo_prefixes last_pp; |
| |
| memcpy (&last_pp, &pp, sizeof (pp)); |
| memset (&pp, 0, sizeof (pp)); |
| if (memcmp (&pp, &last_pp, sizeof (pp))) |
| as_bad_where (frag_now->fr_file, frag_now->fr_line, |
| _("pseudo prefix without instruction")); |
| } |
| |
| /* Hook used to warn about pseudo-prefixes ahead of a label. */ |
| |
| bool i386_check_label (void) |
| { |
| struct pseudo_prefixes last_pp; |
| |
| memcpy (&last_pp, &pp, sizeof (pp)); |
| memset (&pp, 0, sizeof (pp)); |
| if (memcmp (&pp, &last_pp, sizeof (pp))) |
| as_warn (_("pseudo prefix ahead of label; ignoring")); |
| return true; |
| } |
| |
| /* Hook used to parse pseudo-prefixes off of the start of a line. */ |
| |
| int |
| i386_unrecognized_line (int ch) |
| { |
| char mnemonic[MAX_MNEM_SIZE]; |
| const char *end; |
| |
| if (ch != '{') |
| return 0; |
| |
| --input_line_pointer; |
| know (*input_line_pointer == ch); |
| |
| end = parse_insn (input_line_pointer, mnemonic, parse_pseudo_prefix); |
| if (end == NULL) |
| { |
| /* Diagnostic was already issued. */ |
| ignore_rest_of_line (); |
| memset (&pp, 0, sizeof (pp)); |
| return 1; |
| } |
| |
| if (end == input_line_pointer) |
| { |
| ++input_line_pointer; |
| return 0; |
| } |
| |
| input_line_pointer += end - input_line_pointer; |
| return 1; |
| } |
| |
| #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) |
| void |
| x86_cleanup (void) |
| { |
| char *p; |
| asection *seg = now_seg; |
| subsegT subseg = now_subseg; |
| asection *sec; |
| unsigned int alignment, align_size_1; |
| unsigned int isa_1_descsz, feature_2_descsz, descsz; |
| unsigned int isa_1_descsz_raw, feature_2_descsz_raw; |
| unsigned int padding; |
| |
| if (!IS_ELF || !x86_used_note) |
| return; |
| |
| x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86; |
| |
| /* The .note.gnu.property section layout: |
| |
| Field Length Contents |
| ---- ---- ---- |
| n_namsz 4 4 |
| n_descsz 4 The note descriptor size |
| n_type 4 NT_GNU_PROPERTY_TYPE_0 |
| n_name 4 "GNU" |
| n_desc n_descsz The program property array |
| .... .... .... |
| */ |
| |
| /* Create the .note.gnu.property section. */ |
| sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0); |
| bfd_set_section_flags (sec, |
| (SEC_ALLOC |
| | SEC_LOAD |
| | SEC_DATA |
| | SEC_HAS_CONTENTS |
| | SEC_READONLY)); |
| |
| if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64) |
| { |
| align_size_1 = 7; |
| alignment = 3; |
| } |
| else |
| { |
| align_size_1 = 3; |
| alignment = 2; |
| } |
| |
| bfd_set_section_alignment (sec, alignment); |
| elf_section_type (sec) = SHT_NOTE; |
| |
| /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size |
| + 4-byte data */ |
| isa_1_descsz_raw = 4 + 4 + 4; |
| /* Align GNU_PROPERTY_X86_ISA_1_USED. */ |
| isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1; |
| |
| feature_2_descsz_raw = isa_1_descsz; |
| /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size |
| + 4-byte data */ |
| feature_2_descsz_raw += 4 + 4 + 4; |
| /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */ |
| feature_2_descsz = ((feature_2_descsz_raw + align_size_1) |
| & ~align_size_1); |
| |
| descsz = feature_2_descsz; |
| /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */ |
| p = frag_more (4 + 4 + 4 + 4 + descsz); |
| |
| /* Write n_namsz. */ |
| md_number_to_chars (p, (valueT) 4, 4); |
| |
| /* Write n_descsz. */ |
| md_number_to_chars (p + 4, (valueT) descsz, 4); |
| |
| /* Write n_type. */ |
| md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4); |
| |
| /* Write n_name. */ |
| memcpy (p + 4 * 3, "GNU", 4); |
| |
| /* Write 4-byte type. */ |
| md_number_to_chars (p + 4 * 4, |
| (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4); |
| |
| /* Write 4-byte data size. */ |
| md_number_to_chars (p + 4 * 5, (valueT) 4, 4); |
| |
| /* Write 4-byte data. */ |
| md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4); |
| |
| /* Zero out paddings. */ |
| padding = isa_1_descsz - isa_1_descsz_raw; |
| if (padding) |
| memset (p + 4 * 7, 0, padding); |
| |
| /* Write 4-byte type. */ |
| md_number_to_chars (p + isa_1_descsz + 4 * 4, |
| (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4); |
| |
| /* Write 4-byte data size. */ |
| md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4); |
| |
| /* Write 4-byte data. */ |
| md_number_to_chars (p + isa_1_descsz + 4 * 6, |
| (valueT) x86_feature_2_used, 4); |
| |
| /* Zero out paddings. */ |
| padding = feature_2_descsz - feature_2_descsz_raw; |
| if (padding) |
| memset (p + isa_1_descsz + 4 * 7, 0, padding); |
| |
| /* We probably can't restore the current segment, for there likely |
| isn't one yet... */ |
| if (seg && subseg) |
| subseg_set (seg, subseg); |
| } |
| |
| #include "tc-i386-ginsn.c" |
| |
| /* Whether SFrame stack trace info is supported. */ |
| bool |
| x86_support_sframe_p (void) |
| { |
| /* At this time, SFrame stack trace is supported for AMD64 ABI only. */ |
| return (x86_elf_abi == X86_64_ABI); |
| } |
| |
| /* Whether SFrame return address tracking is needed. */ |
| bool |
| x86_sframe_ra_tracking_p (void) |
| { |
| /* In AMD64, return address is always stored on the stack at a fixed offset |
| from the CFA (provided via x86_sframe_cfa_ra_offset ()). |
| Do not track explicitly via an SFrame Frame Row Entry. */ |
| return false; |
| } |
| |
| /* The fixed offset from CFA for SFrame to recover the return address. |
| (useful only when SFrame RA tracking is not needed). */ |
| offsetT |
| x86_sframe_cfa_ra_offset (void) |
| { |
| gas_assert (x86_elf_abi == X86_64_ABI); |
| return (offsetT) -8; |
| } |
| |
| /* The abi/arch indentifier for SFrame. */ |
| unsigned char |
| x86_sframe_get_abi_arch (void) |
| { |
| unsigned char sframe_abi_arch = 0; |
| |
| if (x86_support_sframe_p ()) |
| { |
| gas_assert (!target_big_endian); |
| sframe_abi_arch = SFRAME_ABI_AMD64_ENDIAN_LITTLE; |
| } |
| |
| return sframe_abi_arch; |
| } |
| |
| #endif |
| |
| static unsigned int |
| encoding_length (const fragS *start_frag, offsetT start_off, |
| const char *frag_now_ptr) |
| { |
| unsigned int len = 0; |
| |
| if (start_frag != frag_now) |
| { |
| const fragS *fr = start_frag; |
| |
| do { |
| len += fr->fr_fix; |
| fr = fr->fr_next; |
| } while (fr && fr != frag_now); |
| } |
| |
| return len - start_off + (frag_now_ptr - frag_now->fr_literal); |
| } |
| |
| /* Return 1 for test, and, cmp, add, sub, inc and dec which may |
| be macro-fused with conditional jumps. |
| NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address, |
| or is one of the following format: |
| |
| cmp m, imm |
| add m, imm |
| sub m, imm |
| test m, imm |
| and m, imm |
| inc m |
| dec m |
| |
| it is unfusible. */ |
| |
| static int |
| maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p) |
| { |
| /* No RIP address. */ |
| if (i.base_reg && i.base_reg->reg_num == RegIP) |
| return 0; |
| |
| /* No opcodes outside of base encoding space. */ |
| if (i.tm.opcode_space != SPACE_BASE) |
| return 0; |
| |
| /* add, sub without add/sub m, imm. */ |
| if (i.tm.base_opcode <= 5 |
| || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d) |
| || ((i.tm.base_opcode | 3) == 0x83 |
| && (i.tm.extension_opcode == 0x5 |
| || i.tm.extension_opcode == 0x0))) |
| { |
| *mf_cmp_p = mf_cmp_alu_cmp; |
| return !(i.mem_operands && i.imm_operands); |
| } |
| |
| /* and without and m, imm. */ |
| if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25) |
| || ((i.tm.base_opcode | 3) == 0x83 |
| && i.tm.extension_opcode == 0x4)) |
| { |
| *mf_cmp_p = mf_cmp_test_and; |
| return !(i.mem_operands && i.imm_operands); |
| } |
| |
| /* test without test m imm. */ |
| if ((i.tm.base_opcode | 1) == 0x85 |
| || (i.tm.base_opcode | 1) == 0xa9 |
| || ((i.tm.base_opcode | 1) == 0xf7 |
| && i.tm.extension_opcode == 0)) |
| { |
| *mf_cmp_p = mf_cmp_test_and; |
| return !(i.mem_operands && i.imm_operands); |
| } |
| |
| /* cmp without cmp m, imm. */ |
| if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d) |
| || ((i.tm.base_opcode | 3) == 0x83 |
| && (i.tm.extension_opcode == 0x7))) |
| { |
| *mf_cmp_p = mf_cmp_alu_cmp; |
| return !(i.mem_operands && i.imm_operands); |
| } |
| |
| /* inc, dec without inc/dec m. */ |
| if ((is_cpu (&i.tm, CpuNo64) |
| && (i.tm.base_opcode | 0xf) == 0x4f) |
| || ((i.tm.base_opcode | 1) == 0xff |
| && i.tm.extension_opcode <= 0x1)) |
| { |
| *mf_cmp_p = mf_cmp_incdec; |
| return !i.mem_operands; |
| } |
| |
| return 0; |
| } |
| |
| /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */ |
| |
| static int |
| add_fused_jcc_padding_frag_p (enum mf_cmp_kind *mf_cmp_p, |
| const struct last_insn *last_insn) |
| { |
| /* NB: Don't work with COND_JUMP86 without i386. */ |
| if (!align_branch_power |
| || now_seg == absolute_section |
| || !cpu_arch_flags.bitfield.cpui386 |
| || !(align_branch & align_branch_fused_bit)) |
| return 0; |
| |
| if (maybe_fused_with_jcc_p (mf_cmp_p)) |
| { |
| if (last_insn->kind == last_insn_other) |
| return 1; |
| if (flag_debug) |
| as_warn_where (last_insn->file, last_insn->line, |
| _("`%s` skips -malign-branch-boundary on `%s`"), |
| last_insn->name, insn_name (&i.tm)); |
| } |
| |
| return 0; |
| } |
| |
| /* Return 1 if a BRANCH_PREFIX frag should be generated. */ |
| |
| static int |
| add_branch_prefix_frag_p (const struct last_insn *last_insn) |
| { |
| /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix |
| to PadLock instructions since they include prefixes in opcode. */ |
| if (!align_branch_power |
| || !align_branch_prefix_size |
| || now_seg == absolute_section |
| || is_cpu (&i.tm, CpuPadLock) |
| || !cpu_arch_flags.bitfield.cpui386) |
| return 0; |
| |
| /* Don't add prefix if it is a prefix or there is no operand in case |
| that segment prefix is special. */ |
| if (!i.operands || i.tm.opcode_modifier.isprefix) |
| return 0; |
| |
| if (last_insn->kind == last_insn_other) |
| return 1; |
| |
| if (flag_debug) |
| as_warn_where (last_insn->file, last_insn->line, |
| _("`%s` skips -malign-branch-boundary on `%s`"), |
| last_insn->name, insn_name (&i.tm)); |
| |
| return 0; |
| } |
| |
| /* Return 1 if a BRANCH_PADDING frag should be generated. */ |
| |
| static int |
| add_branch_padding_frag_p (enum align_branch_kind *branch_p, |
| enum mf_jcc_kind *mf_jcc_p, |
| const struct last_insn *last_insn) |
| { |
| int add_padding; |
| |
| /* NB: Don't work with COND_JUMP86 without i386. */ |
| if (!align_branch_power |
| || now_seg == absolute_section |
| || !cpu_arch_flags.bitfield.cpui386 |
| || i.tm.opcode_space != SPACE_BASE) |
| return 0; |
| |
| add_padding = 0; |
| |
| /* Check for jcc and direct jmp. */ |
| if (i.tm.opcode_modifier.jump == JUMP) |
| { |
| if (i.tm.base_opcode == JUMP_PC_RELATIVE) |
| { |
| *branch_p = align_branch_jmp; |
| add_padding = align_branch & align_branch_jmp_bit; |
| } |
| else |
| { |
| /* Because J<cc> and JN<cc> share same group in macro-fusible table, |
| igore the lowest bit. */ |
| *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1; |
| *branch_p = align_branch_jcc; |
| if ((align_branch & align_branch_jcc_bit)) |
| add_padding = 1; |
| } |
| } |
| else if ((i.tm.base_opcode | 1) == 0xc3) |
| { |
| /* Near ret. */ |
| *branch_p = align_branch_ret; |
| if ((align_branch & align_branch_ret_bit)) |
| add_padding = 1; |
| } |
| else |
| { |
| /* Check for indirect jmp, direct and indirect calls. */ |
| if (i.tm.base_opcode == 0xe8) |
| { |
| /* Direct call. */ |
| *branch_p = align_branch_call; |
| if ((align_branch & align_branch_call_bit)) |
| add_padding = 1; |
| } |
| else if (i.tm.base_opcode == 0xff |
| && (i.tm.extension_opcode == 2 |
| || i.tm.extension_opcode == 4)) |
| { |
| /* Indirect call and jmp. */ |
| *branch_p = align_branch_indirect; |
| if ((align_branch & align_branch_indirect_bit)) |
| add_padding = 1; |
| } |
| |
| if (add_padding |
| && i.disp_operands |
| && tls_get_addr |
| && (i.op[0].disps->X_op == O_symbol |
| || (i.op[0].disps->X_op == O_subtract |
| && i.op[0].disps->X_op_symbol == GOT_symbol))) |
| { |
| symbolS *s = i.op[0].disps->X_add_symbol; |
| /* No padding to call to global or undefined tls_get_addr. */ |
| if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s)) |
| && strcmp (S_GET_NAME (s), tls_get_addr) == 0) |
| return 0; |
| } |
| } |
| |
| if (add_padding |
| && last_insn->kind != last_insn_other) |
| { |
| if (flag_debug) |
| as_warn_where (last_insn->file, last_insn->line, |
| _("`%s` skips -malign-branch-boundary on `%s`"), |
| last_insn->name, insn_name (&i.tm)); |
| return 0; |
| } |
| |
| return add_padding; |
| } |
| |
| static void |
| output_insn (const struct last_insn *last_insn) |
| { |
| fragS *insn_start_frag; |
| offsetT insn_start_off; |
| fragS *fragP = NULL; |
| enum align_branch_kind branch = align_branch_none; |
| /* The initializer is arbitrary just to avoid uninitialized error. |
| it's actually either assigned in add_branch_padding_frag_p |
| or never be used. */ |
| enum mf_jcc_kind mf_jcc = mf_jcc_jo; |
| |
| #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) |
| if (IS_ELF && x86_used_note && now_seg != absolute_section) |
| { |
| if ((i.xstate & xstate_tmm) == xstate_tmm |
| || is_cpu (&i.tm, CpuAMX_TILE)) |
| x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_TMM; |
| |
| if (is_cpu (&i.tm, Cpu8087) |
| || is_cpu (&i.tm, Cpu287) |
| || is_cpu (&i.tm, Cpu387) |
| || is_cpu (&i.tm, Cpu687) |
| || is_cpu (&i.tm, CpuFISTTP)) |
| x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87; |
| |
| if ((i.xstate & xstate_mmx) |
| || i.tm.mnem_off == MN_emms |
| || i.tm.mnem_off == MN_femms) |
| x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX; |
| |
| if (i.index_reg) |
| { |
| if (i.index_reg->reg_type.bitfield.zmmword) |
| i.xstate |= xstate_zmm; |
| else if (i.index_reg->reg_type.bitfield.ymmword) |
| i.xstate |= xstate_ymm; |
| else if (i.index_reg->reg_type.bitfield.xmmword) |
| i.xstate |= xstate_xmm; |
| } |
| |
| /* vzeroall / vzeroupper */ |
| if (i.tm.base_opcode == 0x77 && is_cpu (&i.tm, CpuAVX)) |
| i.xstate |= xstate_ymm; |
| |
| if ((i.xstate & xstate_xmm) |
| /* ldmxcsr / stmxcsr / vldmxcsr / vstmxcsr */ |
| || (i.tm.base_opcode == 0xae |
| && (is_cpu (&i.tm, CpuSSE) |
| || is_cpu (&i.tm, CpuAVX))) |
| || is_cpu (&i.tm, CpuWideKL) |
| || is_cpu (&i.tm, CpuKL)) |
| x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM; |
| |
| if ((i.xstate & xstate_ymm) == xstate_ymm) |
| x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM; |
| if ((i.xstate & xstate_zmm) == xstate_zmm) |
| x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM; |
| if (i.mask.reg || (i.xstate & xstate_mask) == xstate_mask) |
| x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MASK; |
| if (is_cpu (&i.tm, CpuFXSR)) |
| x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR; |
| if (is_cpu (&i.tm, CpuXsave)) |
| x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE; |
| if (is_cpu (&i.tm, CpuXsaveopt)) |
| x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT; |
| if (is_cpu (&i.tm, CpuXSAVEC)) |
| x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC; |
| |
| if (x86_feature_2_used |
| || is_cpu (&i.tm, CpuCMOV) |
| || is_cpu (&i.tm, CpuSYSCALL) |
| || i.tm.mnem_off == MN_cmpxchg8b) |
| x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_BASELINE; |
| if (is_cpu (&i.tm, CpuSSE3) |
| || is_cpu (&i.tm, CpuSSSE3) |
| || is_cpu (&i.tm, CpuSSE4_1) |
| || is_cpu (&i.tm, CpuSSE4_2) |
| || is_cpu (&i.tm, CpuCX16) |
| || is_cpu (&i.tm, CpuPOPCNT) |
| /* LAHF-SAHF insns in 64-bit mode. */ |
| || (flag_code == CODE_64BIT |
| && (i.tm.base_opcode | 1) == 0x9f |
| && i.tm.opcode_space == SPACE_BASE)) |
| x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V2; |
| if (is_cpu (&i.tm, CpuAVX) |
| || is_cpu (&i.tm, CpuAVX2) |
| /* Any VEX encoded insns execpt for AVX512F, AVX512BW, AVX512DQ, |
| XOP, FMA4, LPW, TBM, and AMX. */ |
| || (i.tm.opcode_modifier.vex |
| && !is_cpu (&i.tm, CpuAVX512F) |
| && !is_cpu (&i.tm, CpuAVX512BW) |
| && !is_cpu (&i.tm, CpuAVX512DQ) |
| && !is_cpu (&i.tm, CpuXOP) |
| && !is_cpu (&i.tm, CpuFMA4) |
| && !is_cpu (&i.tm, CpuLWP) |
| && !is_cpu (&i.tm, CpuTBM) |
| && !(x86_feature_2_used & GNU_PROPERTY_X86_FEATURE_2_TMM)) |
| || is_cpu (&i.tm, CpuF16C) |
| || is_cpu (&i.tm, CpuFMA) |
| || is_cpu (&i.tm, CpuLZCNT) |
| || is_cpu (&i.tm, CpuMovbe) |
| || is_cpu (&i.tm, CpuXSAVES) |
| || (x86_feature_2_used |
| & (GNU_PROPERTY_X86_FEATURE_2_XSAVE |
| | GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT |
| | GNU_PROPERTY_X86_FEATURE_2_XSAVEC)) != 0) |
| x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V3; |
| if (is_cpu (&i.tm, CpuAVX512F) |
| || is_cpu (&i.tm, CpuAVX512BW) |
| || is_cpu (&i.tm, CpuAVX512DQ) |
| || is_cpu (&i.tm, CpuAVX512VL) |
| /* Any EVEX encoded insns except for AVX512ER, AVX512PF, |
| AVX512-4FMAPS, and AVX512-4VNNIW. */ |
| || (i.tm.opcode_modifier.evex |
| && !is_cpu (&i.tm, CpuAVX512ER) |
| && !is_cpu (&i.tm, CpuAVX512PF) |
| && !is_cpu (&i.tm, CpuAVX512_4FMAPS) |
| && !is_cpu (&i.tm, CpuAVX512_4VNNIW))) |
| x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V4; |
| } |
| #endif |
| |
| /* Tie dwarf2 debug info to the address at the start of the insn. |
| We can't do this after the insn has been output as the current |
| frag may have been closed off. eg. by frag_var. */ |
| dwarf2_emit_insn (0); |
| |
| insn_start_frag = frag_now; |
| insn_start_off = frag_now_fix (); |
| |
| if (add_branch_padding_frag_p (&branch, &mf_jcc, last_insn)) |
| { |
| char *p; |
| /* Branch can be 8 bytes. Leave some room for prefixes. */ |
| unsigned int max_branch_padding_size = 14; |
| |
| /* Align section to boundary. */ |
| record_alignment (now_seg, align_branch_power); |
| |
| /* Make room for padding. */ |
| frag_grow (max_branch_padding_size); |
| |
| /* Start of the padding. */ |
| p = frag_more (0); |
| |
| fragP = frag_now; |
| |
| frag_var (rs_machine_dependent, max_branch_padding_size, 0, |
| ENCODE_RELAX_STATE (BRANCH_PADDING, 0), |
| NULL, 0, p); |
| |
| fragP->tc_frag_data.mf_type = mf_jcc; |
| fragP->tc_frag_data.branch_type = branch; |
| fragP->tc_frag_data.max_bytes = max_branch_padding_size; |
| } |
| |
| if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT) |
| && !pre_386_16bit_warned) |
| { |
| as_warn (_("use .code16 to ensure correct addressing mode")); |
| pre_386_16bit_warned = true; |
| } |
| |
| /* Output jumps. */ |
| if (i.tm.opcode_modifier.jump == JUMP) |
| output_branch (); |
| else if (i.tm.opcode_modifier.jump == JUMP_BYTE |
| || i.tm.opcode_modifier.jump == JUMP_DWORD) |
| output_jump (); |
| else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT) |
| output_interseg_jump (); |
| else |
| { |
| /* Output normal instructions here. */ |
| char *p; |
| unsigned char *q; |
| unsigned int j; |
| enum mf_cmp_kind mf_cmp; |
| |
| if (avoid_fence |
| && (i.tm.base_opcode == 0xaee8 |
| || i.tm.base_opcode == 0xaef0 |
| || i.tm.base_opcode == 0xaef8)) |
| { |
| /* Encode lfence, mfence, and sfence as |
| f0 83 04 24 00 lock addl $0x0, (%{re}sp). */ |
| if (flag_code == CODE_16BIT) |
| as_bad (_("Cannot convert `%s' in 16-bit mode"), insn_name (&i.tm)); |
| else if (omit_lock_prefix) |
| as_bad (_("Cannot convert `%s' with `-momit-lock-prefix=yes' in effect"), |
| insn_name (&i.tm)); |
| else if (now_seg != absolute_section) |
| { |
| offsetT val = 0x240483f0ULL; |
| |
| p = frag_more (5); |
| md_number_to_chars (p, val, 5); |
| } |
| else |
| abs_section_offset += 5; |
| return; |
| } |
| |
| /* Some processors fail on LOCK prefix. This options makes |
| assembler ignore LOCK prefix and serves as a workaround. */ |
| if (omit_lock_prefix) |
| { |
| if (i.tm.base_opcode == LOCK_PREFIX_OPCODE |
| && i.tm.opcode_modifier.isprefix) |
| return; |
| i.prefix[LOCK_PREFIX] = 0; |
| } |
| |
| if (branch) |
| /* Skip if this is a branch. */ |
| ; |
| else if (add_fused_jcc_padding_frag_p (&mf_cmp, last_insn)) |
| { |
| /* Make room for padding. */ |
| frag_grow (MAX_FUSED_JCC_PADDING_SIZE); |
| p = frag_more (0); |
| |
| fragP = frag_now; |
| |
| frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0, |
| ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0), |
| NULL, 0, p); |
| |
| fragP->tc_frag_data.mf_type = mf_cmp; |
| fragP->tc_frag_data.branch_type = align_branch_fused; |
| fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE; |
| } |
| else if (add_branch_prefix_frag_p (last_insn)) |
| { |
| unsigned int max_prefix_size = align_branch_prefix_size; |
| |
| /* Make room for padding. */ |
| frag_grow (max_prefix_size); |
| p = frag_more (0); |
| |
| fragP = frag_now; |
| |
| frag_var (rs_machine_dependent, max_prefix_size, 0, |
| ENCODE_RELAX_STATE (BRANCH_PREFIX, 0), |
| NULL, 0, p); |
| |
| fragP->tc_frag_data.max_bytes = max_prefix_size; |
| } |
| |
| /* Since the VEX/EVEX prefix contains the implicit prefix, we |
| don't need the explicit prefix. */ |
| if (!is_any_vex_encoding (&i.tm)) |
| { |
| switch (i.tm.opcode_modifier.opcodeprefix) |
| { |
| case PREFIX_0X66: |
| add_prefix (0x66); |
| break; |
| case PREFIX_0XF2: |
| add_prefix (0xf2); |
| break; |
| case PREFIX_0XF3: |
| if (!is_cpu (&i.tm, CpuPadLock) |
| || (i.prefix[REP_PREFIX] != 0xf3)) |
| add_prefix (0xf3); |
| break; |
| case PREFIX_NONE: |
| switch (i.opcode_length) |
| { |
| case 2: |
| break; |
| case 1: |
| /* Check for pseudo prefixes. */ |
| if (!i.tm.opcode_modifier.isprefix || i.tm.base_opcode) |
| break; |
| as_bad_where (insn_start_frag->fr_file, |
| insn_start_frag->fr_line, |
| _("pseudo prefix without instruction")); |
| return; |
| default: |
| abort (); |
| } |
| break; |
| default: |
| abort (); |
| } |
| |
| #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF) |
| /* For x32, add a dummy REX_OPCODE prefix for mov/add with |
| R_X86_64_GOTTPOFF relocation so that linker can safely |
| perform IE->LE optimization. A dummy REX_OPCODE prefix |
| is also needed for lea with R_X86_64_GOTPC32_TLSDESC |
| relocation for GDesc -> IE/LE optimization. */ |
| if (x86_elf_abi == X86_64_X32_ABI |
| && !is_apx_rex2_encoding () |
| && i.operands == 2 |
| && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF |
| || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC) |
| && i.prefix[REX_PREFIX] == 0) |
| add_prefix (REX_OPCODE); |
| #endif |
| |
| /* The prefix bytes. */ |
| for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++) |
| if (*q) |
| frag_opcode_byte (*q); |
| |
| if (is_apx_rex2_encoding ()) |
| { |
| frag_opcode_byte (i.vex.bytes[0]); |
| frag_opcode_byte (i.vex.bytes[1]); |
| } |
| } |
| else |
| { |
| for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++) |
| if (*q) |
| switch (j) |
| { |
| case SEG_PREFIX: |
| case ADDR_PREFIX: |
| frag_opcode_byte (*q); |
| break; |
| default: |
| /* There should be no other prefixes for instructions |
| with VEX prefix. */ |
| abort (); |
| } |
| |
| /* For EVEX instructions i.vrex should become 0 after |
| build_evex_prefix. For VEX instructions upper 16 registers |
| aren't available, so VREX should be 0. */ |
| if (i.vrex) |
| abort (); |
| /* Now the VEX prefix. */ |
| if (now_seg != absolute_section) |
| { |
| p = frag_more (i.vex.length); |
| for (j = 0; j < i.vex.length; j++) |
| p[j] = i.vex.bytes[j]; |
| } |
| else |
| abs_section_offset += i.vex.length; |
| } |
| |
| /* Now the opcode; be careful about word order here! */ |
| j = i.opcode_length; |
| if (!i.vex.length) |
| switch (i.tm.opcode_space) |
| { |
| case SPACE_BASE: |
| break; |
| case SPACE_0F: |
| ++j; |
| break; |
| case SPACE_0F38: |
| case SPACE_0F3A: |
| j += 2; |
| break; |
| default: |
| abort (); |
| } |
| |
| if (now_seg == absolute_section) |
| abs_section_offset += j; |
| else if (j == 1) |
| { |
| FRAG_APPEND_1_CHAR (i.tm.base_opcode); |
| } |
| else |
| { |
| p = frag_more (j); |
| if (!i.vex.length |
| && i.tm.opcode_space != SPACE_BASE) |
| { |
| *p++ = 0x0f; |
| if (i.tm.opcode_space != SPACE_0F) |
| *p++ = i.tm.opcode_space == SPACE_0F38 |
| ? 0x38 : 0x3a; |
| } |
| |
| switch (i.opcode_length) |
| { |
| case 2: |
| /* Put out high byte first: can't use md_number_to_chars! */ |
| *p++ = (i.tm.base_opcode >> 8) & 0xff; |
| /* Fall through. */ |
| case 1: |
| *p = i.tm.base_opcode & 0xff; |
| break; |
| default: |
| abort (); |
| break; |
| } |
| |
| } |
| |
| /* Now the modrm byte and sib byte (if present). */ |
| if (i.tm.opcode_modifier.modrm) |
| { |
| frag_opcode_byte ((i.rm.regmem << 0) |
| | (i.rm.reg << 3) |
| | (i.rm.mode << 6)); |
| /* If i.rm.regmem == ESP (4) |
| && i.rm.mode != (Register mode) |
| && not 16 bit |
| ==> need second modrm byte. */ |
| if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING |
| && i.rm.mode != 3 |
| && !(i.base_reg && i.base_reg->reg_type.bitfield.word)) |
| frag_opcode_byte ((i.sib.base << 0) |
| | (i.sib.index << 3) |
| | (i.sib.scale << 6)); |
| } |
| |
| if (i.disp_operands) |
| output_disp (insn_start_frag, insn_start_off); |
| |
| if (i.imm_operands) |
| output_imm (insn_start_frag, insn_start_off); |
| |
| /* |
| * frag_now_fix () returning plain abs_section_offset when we're in the |
| * absolute section, and abs_section_offset not getting updated as data |
| * gets added to the frag breaks the logic below. |
| */ |
| if (now_seg != absolute_section) |
| { |
| j = encoding_length (insn_start_frag, insn_start_off, frag_more (0)); |
| if (j > 15) |
| { |
| if (dot_insn ()) |
| as_warn (_("instruction length of %u bytes exceeds the limit of 15"), |
| j); |
| else |
| as_bad (_("instruction length of %u bytes exceeds the limit of 15"), |
| j); |
| } |
| else if (fragP) |
| { |
| /* NB: Don't add prefix with GOTPC relocation since |
| output_disp() above depends on the fixed encoding |
| length. Can't add prefix with TLS relocation since |
| it breaks TLS linker optimization. */ |
| unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j; |
| /* Prefix count on the current instruction. */ |
| unsigned int count = i.vex.length; |
| unsigned int k; |
| for (k = 0; k < ARRAY_SIZE (i.prefix); k++) |
| /* REX byte is encoded in VEX/EVEX prefix. */ |
| if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length)) |
| count++; |
| |
| /* Count prefixes for extended opcode maps. */ |
| if (!i.vex.length) |
| switch (i.tm.opcode_space) |
| { |
| case SPACE_BASE: |
| break; |
| case SPACE_0F: |
| count++; |
| break; |
| case SPACE_0F38: |
| case SPACE_0F3A: |
| count += 2; |
| break; |
| default: |
| abort (); |
| } |
| |
| if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) |
| == BRANCH_PREFIX) |
| { |
| /* Set the maximum prefix size in BRANCH_PREFIX |
| frag. */ |
| if (fragP->tc_frag_data.max_bytes > max) |
| fragP->tc_frag_data.max_bytes = max; |
| if (fragP->tc_frag_data.max_bytes > count) |
| fragP->tc_frag_data.max_bytes -= count; |
| else |
| fragP->tc_frag_data.max_bytes = 0; |
| } |
| else |
| { |
| /* Remember the maximum prefix size in FUSED_JCC_PADDING |
| frag. */ |
| unsigned int max_prefix_size; |
| if (align_branch_prefix_size > max) |
| max_prefix_size = max; |
| else |
| max_prefix_size = align_branch_prefix_size; |
| if (max_prefix_size > count) |
| fragP->tc_frag_data.max_prefix_length |
| = max_prefix_size - count; |
| } |
| |
| /* Use existing segment prefix if possible. Use CS |
| segment prefix in 64-bit mode. In 32-bit mode, use SS |
| segment prefix with ESP/EBP base register and use DS |
| segment prefix without ESP/EBP base register. */ |
| if (i.prefix[SEG_PREFIX]) |
| fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX]; |
| else if (flag_code == CODE_64BIT) |
| fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE; |
| else if (i.base_reg |
| && (i.base_reg->reg_num == 4 |
| || i.base_reg->reg_num == 5)) |
| fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE; |
| else |
| fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE; |
| } |
| } |
| } |
| |
| /* NB: Don't work with COND_JUMP86 without i386. */ |
| if (align_branch_power |
| && now_seg != absolute_section |
| && cpu_arch_flags.bitfield.cpui386) |
| { |
| /* Terminate each frag so that we can add prefix and check for |
| fused jcc. */ |
| frag_wane (frag_now); |
| frag_new (0); |
| } |
| |
| #ifdef DEBUG386 |
| if (flag_debug) |
| { |
| pi ("" /*line*/, &i); |
| } |
| #endif /* DEBUG386 */ |
| } |
| |
| /* Return the size of the displacement operand N. */ |
| |
| static int |
| disp_size (unsigned int n) |
| { |
| int size = 4; |
| |
| if (i.types[n].bitfield.disp64) |
| size = 8; |
| else if (i.types[n].bitfield.disp8) |
| size = 1; |
| else if (i.types[n].bitfield.disp16) |
| size = 2; |
| return size; |
| } |
| |
| /* Return the size of the immediate operand N. */ |
| |
| static int |
| imm_size (unsigned int n) |
| { |
| int size = 4; |
| if (i.types[n].bitfield.imm64) |
| size = 8; |
| else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s) |
| size = 1; |
| else if (i.types[n].bitfield.imm16) |
| size = 2; |
| return size; |
| } |
| |
| static void |
| output_disp (fragS *insn_start_frag, offsetT insn_start_off) |
| { |
| char *p; |
| unsigned int n; |
| |
| for (n = 0; n < i.operands; n++) |
| { |
| if (operand_type_check (i.types[n], disp)) |
| { |
| int size = disp_size (n); |
| |
| if (now_seg == absolute_section) |
| abs_section_offset += size; |
| else if (i.op[n].disps->X_op == O_constant) |
| { |
| offsetT val = i.op[n].disps->X_add_number; |
| |
| val = offset_in_range (val >> (size == 1 ? i.memshift : 0), |
| size); |
| p = frag_more (size); |
| md_number_to_chars (p, val, size); |
| } |
| else |
| { |
| enum bfd_reloc_code_real reloc_type; |
| bool pcrel = (i.flags[n] & Operand_PCrel) != 0; |
| bool sign = (flag_code == CODE_64BIT && size == 4 |
| && (!want_disp32 (&i.tm) |
| || (i.tm.opcode_modifier.jump && !i.jumpabsolute |
| && !i.types[n].bitfield.baseindex))) |
| || pcrel; |
| fixS *fixP; |
| |
| /* We can't have 8 bit displacement here. */ |
| gas_assert (!i.types[n].bitfield.disp8); |
| |
| /* The PC relative address is computed relative |
| to the instruction boundary, so in case immediate |
| fields follows, we need to adjust the value. */ |
| if (pcrel && i.imm_operands) |
| { |
| unsigned int n1; |
| int sz = 0; |
| |
| for (n1 = 0; n1 < i.operands; n1++) |
| if (operand_type_check (i.types[n1], imm)) |
| { |
| /* Only one immediate is allowed for PC |
| relative address, except with .insn. */ |
| gas_assert (sz == 0 || dot_insn ()); |
| sz += imm_size (n1); |
| } |
| /* We should find at least one immediate. */ |
| gas_assert (sz != 0); |
| i.op[n].disps->X_add_number -= sz; |
| } |
| |
| p = frag_more (size); |
| reloc_type = reloc (size, pcrel, sign, i.reloc[n]); |
| if (GOT_symbol |
| && GOT_symbol == i.op[n].disps->X_add_symbol |
| && (((reloc_type == BFD_RELOC_32 |
| || reloc_type == BFD_RELOC_X86_64_32S |
| || (reloc_type == BFD_RELOC_64 |
| && object_64bit)) |
| && (i.op[n].disps->X_op == O_symbol |
| || (i.op[n].disps->X_op == O_add |
| && ((symbol_get_value_expression |
| (i.op[n].disps->X_op_symbol)->X_op) |
| == O_subtract)))) |
| || reloc_type == BFD_RELOC_32_PCREL)) |
| { |
| if (!object_64bit) |
| { |
| reloc_type = BFD_RELOC_386_GOTPC; |
| i.has_gotpc_tls_reloc = true; |
| i.op[n].disps->X_add_number += |
| encoding_length (insn_start_frag, insn_start_off, p); |
| } |
| else if (reloc_type == BFD_RELOC_64) |
| reloc_type = BFD_RELOC_X86_64_GOTPC64; |
| else |
| /* Don't do the adjustment for x86-64, as there |
| the pcrel addressing is relative to the _next_ |
| insn, and that is taken care of in other code. */ |
| reloc_type = BFD_RELOC_X86_64_GOTPC32; |
| } |
| else if (align_branch_power) |
| { |
| switch (reloc_type) |
| { |
| case BFD_RELOC_386_TLS_GD: |
| case BFD_RELOC_386_TLS_LDM: |
| case BFD_RELOC_386_TLS_IE: |
| case BFD_RELOC_386_TLS_IE_32: |
| case BFD_RELOC_386_TLS_GOTIE: |
| case BFD_RELOC_386_TLS_GOTDESC: |
| case BFD_RELOC_386_TLS_DESC_CALL: |
| case BFD_RELOC_X86_64_TLSGD: |
| case BFD_RELOC_X86_64_TLSLD: |
| case BFD_RELOC_X86_64_GOTTPOFF: |
| case BFD_RELOC_X86_64_CODE_4_GOTTPOFF: |
| case BFD_RELOC_X86_64_CODE_6_GOTTPOFF: |
| case BFD_RELOC_X86_64_GOTPC32_TLSDESC: |
| case BFD_RELOC_X86_64_CODE_4_GOTPC32_TLSDESC: |
| case BFD_RELOC_X86_64_TLSDESC_CALL: |
| i.has_gotpc_tls_reloc = true; |
| default: |
| break; |
| } |
| } |
| fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, |
| size, i.op[n].disps, pcrel, |
| reloc_type); |
| |
| if (flag_code == CODE_64BIT && size == 4 && pcrel |
| && !i.prefix[ADDR_PREFIX]) |
| fixP->fx_signed = 1; |
| |
| if (reloc_type == BFD_RELOC_X86_64_GOTTPOFF |
| && i.tm.opcode_space == SPACE_EVEXMAP4) |
| { |
| /* Only "add %reg1, foo@gottpoff(%rip), %reg2" is |
| allowed in md_assemble. Set fx_tcbit2 for EVEX |
| prefix. */ |
| fixP->fx_tcbit2 = 1; |
| continue; |
| } |
| |
| if (i.base_reg && i.base_reg->reg_num == RegIP) |
| { |
| if (reloc_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC) |
| { |
| /* Set fx_tcbit for REX2 prefix. */ |
| if (is_apx_rex2_encoding ()) |
| fixP->fx_tcbit = 1; |
| continue; |
| } |
| } |
| /* In 64-bit, i386_validate_fix updates only (%rip) |
| relocations. */ |
| else if (object_64bit) |
| continue; |
| |
| /* Check for "call/jmp *mem", "mov mem, %reg", |
| "test %reg, mem" and "binop mem, %reg" where binop |
| is one of adc, add, and, cmp, or, sbb, sub, xor |
| instructions without data prefix. Always generate |
| R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */ |
| if (i.prefix[DATA_PREFIX] == 0 |
| && (i.rm.mode == 2 |
| || (i.rm.mode == 0 && i.rm.regmem == 5)) |
| && i.tm.opcode_space == SPACE_BASE |
| && ((i.operands == 1 |
| && i.tm.base_opcode == 0xff |
| && (i.rm.reg == 2 || i.rm.reg == 4)) |
| || (i.operands == 2 |
| && (i.tm.base_opcode == 0x8b |
| || i.tm.base_opcode == 0x85 |
| || (i.tm.base_opcode & ~0x38) == 0x03)))) |
| { |
| if (object_64bit) |
| { |
| if (reloc_type == BFD_RELOC_X86_64_GOTTPOFF) |
| { |
| /* Set fx_tcbit for REX2 prefix. */ |
| if (is_apx_rex2_encoding ()) |
| fixP->fx_tcbit = 1; |
| } |
| else if (generate_relax_relocations) |
| { |
| /* Set fx_tcbit3 for REX2 prefix. */ |
| if (is_apx_rex2_encoding ()) |
| fixP->fx_tcbit3 = 1; |
| else if (i.rex) |
| fixP->fx_tcbit2 = 1; |
| else |
| fixP->fx_tcbit = 1; |
| } |
| } |
| else if (generate_relax_relocations |
| || (i.rm.mode == 0 && i.rm.regmem == 5)) |
| fixP->fx_tcbit2 = 1; |
| } |
| } |
| } |
| } |
| } |
| |
| static void |
| output_imm (fragS *insn_start_frag, offsetT insn_start_off) |
| { |
| char *p; |
| unsigned int n; |
| |
| for (n = 0; n < i.operands; n++) |
| { |
| if (operand_type_check (i.types[n], imm)) |
| { |
| int size = imm_size (n); |
| |
| if (now_seg == absolute_section) |
| abs_section_offset += size; |
| else if (i.op[n].imms->X_op == O_constant) |
| { |
| offsetT val; |
| |
| val = offset_in_range (i.op[n].imms->X_add_number, |
| size); |
| p = frag_more (size); |
| md_number_to_chars (p, val, size); |
| } |
| else |
| { |
| /* Not absolute_section. |
| Need a 32-bit fixup (don't support 8bit |
| non-absolute imms). Try to support other |
| sizes ... */ |
| enum bfd_reloc_code_real reloc_type; |
| int sign; |
| |
| if (i.types[n].bitfield.imm32s |
| && (i.suffix == QWORD_MNEM_SUFFIX |
| || (!i.suffix && i.tm.opcode_modifier.no_lsuf) |
| || (i.prefix[REX_PREFIX] & REX_W) |
| || dot_insn ())) |
| sign = 1; |
| else |
| sign = 0; |
| |
| p = frag_more (size); |
| reloc_type = reloc (size, 0, sign, i.reloc[n]); |
| |
| /* This is tough to explain. We end up with this one if we |
| * have operands that look like |
| * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to |
| * obtain the absolute address of the GOT, and it is strongly |
| * preferable from a performance point of view to avoid using |
| * a runtime relocation for this. The actual sequence of |
| * instructions often look something like: |
| * |
| * call .L66 |
| * .L66: |
| * popl %ebx |
| * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx |
| * |
| * The call and pop essentially return the absolute address |
| * of the label .L66 and store it in %ebx. The linker itself |
| * will ultimately change the first operand of the addl so |
| * that %ebx points to the GOT, but to keep things simple, the |
| * .o file must have this operand set so that it generates not |
| * the absolute address of .L66, but the absolute address of |
| * itself. This allows the linker itself simply treat a GOTPC |
| * relocation as asking for a pcrel offset to the GOT to be |
| * added in, and the addend of the relocation is stored in the |
| * operand field for the instruction itself. |
| * |
| * Our job here is to fix the operand so that it would add |
| * the correct offset so that %ebx would point to itself. The |
| * thing that is tricky is that .-.L66 will point to the |
| * beginning of the instruction, so we need to further modify |
| * the operand so that it will point to itself. There are |
| * other cases where you have something like: |
| * |
| * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66] |
| * |
| * and here no correction would be required. Internally in |
| * the assembler we treat operands of this form as not being |
| * pcrel since the '.' is explicitly mentioned, and I wonder |
| * whether it would simplify matters to do it this way. Who |
| * knows. In earlier versions of the PIC patches, the |
| * pcrel_adjust field was used to store the correction, but |
| * since the expression is not pcrel, I felt it would be |
| * confusing to do it this way. */ |
| |
| if ((reloc_type == BFD_RELOC_32 |
| || reloc_type == BFD_RELOC_X86_64_32S |
| || reloc_type == BFD_RELOC_64) |
| && GOT_symbol |
| && GOT_symbol == i.op[n].imms->X_add_symbol |
| && (i.op[n].imms->X_op == O_symbol |
| || (i.op[n].imms->X_op == O_add |
| && ((symbol_get_value_expression |
| (i.op[n].imms->X_op_symbol)->X_op) |
| == O_subtract)))) |
| { |
| if (!object_64bit) |
| reloc_type = BFD_RELOC_386_GOTPC; |
| else if (size == 4) |
| reloc_type = BFD_RELOC_X86_64_GOTPC32; |
| else if (size == 8) |
| reloc_type = BFD_RELOC_X86_64_GOTPC64; |
| i.has_gotpc_tls_reloc = true; |
| i.op[n].imms->X_add_number += |
| encoding_length (insn_start_frag, insn_start_off, p); |
| } |
| fix_new_exp (frag_now, p - frag_now->fr_literal, size, |
| i.op[n].imms, 0, reloc_type); |
| } |
| } |
| } |
| } |
| |
| /* x86_cons_fix_new is called via the expression parsing code when a |
| reloc is needed. We use this hook to get the correct .got reloc. */ |
| static int cons_sign = -1; |
| |
| void |
| x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len, |
| expressionS *exp, bfd_reloc_code_real_type r) |
| { |
| r = reloc (len, 0, cons_sign, r); |
| |
| #ifdef TE_PE |
| if (exp->X_op == O_secrel) |
| { |
| exp->X_op = O_symbol; |
| r = BFD_RELOC_32_SECREL; |
| } |
| else if (exp->X_op == O_secidx) |
| r = BFD_RELOC_16_SECIDX; |
| #endif |
| |
| fix_new_exp (frag, off, len, exp, 0, r); |
| } |
| |
| /* Export the ABI address size for use by TC_ADDRESS_BYTES for the |
| purpose of the `.dc.a' internal pseudo-op. */ |
| |
| int |
| x86_address_bytes (void) |
| { |
| if ((stdoutput->arch_info->mach & bfd_mach_x64_32)) |
| return 4; |
| return stdoutput->arch_info->bits_per_address / 8; |
| } |
| |
| #if (!(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \ |
| || defined (LEX_AT)) && !defined (TE_PE) |
| # define lex_got(reloc, adjust, types) NULL |
| #else |
| /* Parse operands of the form |
| <symbol>@GOTOFF+<nnn> |
| and similar .plt or .got references. |
| |
| If we find one, set up the correct relocation in RELOC and copy the |
| input string, minus the `@GOTOFF' into a malloc'd buffer for |
| parsing by the calling routine. Return this buffer, and if ADJUST |
| is non-null set it to the length of the string we removed from the |
| input line. Otherwise return NULL. */ |
| static char * |
| lex_got (enum bfd_reloc_code_real *rel, |
| int *adjust, |
| i386_operand_type *types) |
| { |
| /* Some of the relocations depend on the size of what field is to |
| be relocated. But in our callers i386_immediate and i386_displacement |
| we don't yet know the operand size (this will be set by insn |
| matching). Hence we record the word32 relocation here, |
| and adjust the reloc according to the real size in reloc(). */ |
| char *cp; |
| unsigned int j; |
| |
| #if defined (OBJ_MAYBE_ELF) && !defined (TE_PE) |
| if (!IS_ELF) |
| return NULL; |
| #endif |
| |
| for (cp = input_line_pointer; *cp != '@'; cp++) |
| if (is_end_of_line[(unsigned char) *cp] || *cp == ',') |
| return NULL; |
| |
| for (j = 0; j < ARRAY_SIZE (gotrel); j++) |
| { |
| int len = gotrel[j].len; |
| if (strncasecmp (cp + 1, gotrel[j].str, len) == 0) |
| { |
| if (gotrel[j].rel[object_64bit] != 0) |
| { |
| int first, second; |
| char *tmpbuf, *past_reloc; |
| |
| *rel = gotrel[j].rel[object_64bit]; |
| |
| if (types) |
| { |
| if (flag_code != CODE_64BIT) |
| { |
| types->bitfield.imm32 = 1; |
| types->bitfield.disp32 = 1; |
| } |
| else |
| *types = gotrel[j].types64; |
| } |
| |
| if (gotrel[j].need_GOT_symbol && GOT_symbol == NULL) |
| GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME); |
| |
| /* The length of the first part of our input line. */ |
| first = cp - input_line_pointer; |
| |
| /* The second part goes from after the reloc token until |
| (and including) an end_of_line char or comma. */ |
| past_reloc = cp + 1 + len; |
| cp = past_reloc; |
| while (!is_end_of_line[(unsigned char) *cp] && *cp != ',') |
| ++cp; |
| second = cp + 1 - past_reloc; |
| |
| /* Allocate and copy string. The trailing NUL shouldn't |
| be necessary, but be safe. */ |
| tmpbuf = XNEWVEC (char, first + second + 2); |
| memcpy (tmpbuf, input_line_pointer, first); |
| if (second != 0 && *past_reloc != ' ') |
| /* Replace the relocation token with ' ', so that |
| errors like foo@GOTOFF1 will be detected. */ |
| tmpbuf[first++] = ' '; |
| else |
| /* Increment length by 1 if the relocation token is |
| removed. */ |
| len++; |
| if (adjust) |
| *adjust = len; |
| memcpy (tmpbuf + first, past_reloc, second); |
| tmpbuf[first + second] = '\0'; |
| return tmpbuf; |
| } |
| |
| as_bad (_("@%s reloc is not supported with %d-bit output format"), |
| gotrel[j].str, 1 << (5 + object_64bit)); |
| return NULL; |
| } |
| } |
| |
| /* Might be a symbol version string. Don't as_bad here. */ |
| return NULL; |
| } |
| #endif |
| |
| bfd_reloc_code_real_type |
| x86_cons (expressionS *exp, int size) |
| { |
| bfd_reloc_code_real_type got_reloc = NO_RELOC; |
| |
| intel_syntax = -intel_syntax; |
| exp->X_md = 0; |
| expr_mode = expr_operator_none; |
| |
| #if ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \ |
| && !defined (LEX_AT)) \ |
| || defined (TE_PE) |
| if (size == 4 || (object_64bit && size == 8)) |
| { |
| /* Handle @GOTOFF and the like in an expression. */ |
| char *save; |
| char *gotfree_input_line; |
| int adjust = 0; |
| |
| save = input_line_pointer; |
| gotfree_input_line = lex_got (&got_reloc, &adjust, NULL); |
| if (gotfree_input_line) |
| input_line_pointer = gotfree_input_line; |
| |
| expression (exp); |
| |
| if (gotfree_input_line) |
| { |
| /* expression () has merrily parsed up to the end of line, |
| or a comma - in the wrong buffer. Transfer how far |
| input_line_pointer has moved to the right buffer. */ |
| input_line_pointer = (save |
| + (input_line_pointer - gotfree_input_line) |
| + adjust); |
| free (gotfree_input_line); |
| if (exp->X_op == O_constant |
| || exp->X_op == O_absent |
| || exp->X_op == O_illegal |
| || exp->X_op == O_register |
| || exp->X_op == O_big) |
| { |
| char c = *input_line_pointer; |
| *input_line_pointer = 0; |
| as_bad (_("missing or invalid expression `%s'"), save); |
| *input_line_pointer = c; |
| } |
| else if ((got_reloc == BFD_RELOC_386_PLT32 |
| || got_reloc == BFD_RELOC_X86_64_PLT32) |
| && exp->X_op != O_symbol) |
| { |
| char c = *input_line_pointer; |
| *input_line_pointer = 0; |
| as_bad (_("invalid PLT expression `%s'"), save); |
| *input_line_pointer = c; |
| } |
| } |
| } |
| else |
| #endif |
| expression (exp); |
| |
| intel_syntax = -intel_syntax; |
| |
| if (intel_syntax) |
| i386_intel_simplify (exp); |
| |
| /* If not 64bit, massage value, to account for wraparound when !BFD64. */ |
| if (size <= 4 && expr_mode == expr_operator_present |
| && exp->X_op == O_constant && !object_64bit) |
| exp->X_add_number = extend_to_32bit_address (exp->X_add_number); |
| |
| return got_reloc; |
| } |
| |
| static void |
| signed_cons (int size) |
| { |
| if (object_64bit) |
| cons_sign = 1; |
| cons (size); |
| cons_sign = -1; |
| } |
| |
| static void |
| s_insn (int dummy ATTRIBUTE_UNUSED) |
| { |
| char mnemonic[MAX_MNEM_SIZE], *line = input_line_pointer, *ptr; |
| char *saved_ilp = find_end_of_line (line, false), saved_char; |
| const char *end; |
| unsigned int j; |
| valueT val; |
| bool vex = false, xop = false, evex = false; |
| struct last_insn *last_insn; |
| |
| init_globals (); |
| |
| saved_char = *saved_ilp; |
| *saved_ilp = 0; |
| |
| end = parse_insn (line, mnemonic, parse_prefix); |
| if (end == NULL) |
| { |
| bad: |
| *saved_ilp = saved_char; |
| ignore_rest_of_line (); |
| i.tm.mnem_off = 0; |
| memset (&pp, 0, sizeof (pp)); |
| return; |
| } |
| line += end - line; |
| |
| current_templates.start = &i.tm; |
| current_templates.end = &i.tm + 1; |
| i.tm.mnem_off = MN__insn; |
| i.tm.extension_opcode = None; |
| |
| if (startswith (line, "VEX") |
| && (line[3] == '.' || is_space_char (line[3]))) |
| { |
| vex = true; |
| line += 3; |
| } |
| else if (startswith (line, "XOP") && ISDIGIT (line[3])) |
| { |
| char *e; |
| unsigned long n = strtoul (line + 3, &e, 16); |
| |
| if (e == line + 5 && n >= 0x08 && n <= 0x1f |
| && (*e == '.' || is_space_char (*e))) |
| { |
| xop = true; |
| /* Arrange for build_vex_prefix() to emit 0x8f. */ |
| i.tm.opcode_space = SPACE_XOP08; |
| i.insn_opcode_space = n; |
| line = e; |
| } |
| } |
| else if (startswith (line, "EVEX") |
| && (line[4] == '.' || is_space_char (line[4]))) |
| { |
| evex = true; |
| line += 4; |
| } |
| |
| if (vex || xop |
| ? pp.encoding == encoding_evex |
| : evex |
| ? pp.encoding == encoding_vex |
| || pp.encoding == encoding_vex3 |
| : pp.encoding != encoding_default) |
| { |
| as_bad (_("pseudo-prefix conflicts with encoding specifier")); |
| goto bad; |
| } |
| |
| if (line > end && pp.encoding == encoding_default) |
| pp.encoding = evex ? encoding_evex : encoding_vex; |
| |
| if (pp.encoding != encoding_default) |
| { |
| /* Only address size and segment override prefixes are permitted with |
| VEX/XOP/EVEX encodings. */ |
| const unsigned char *p = i.prefix; |
| |
| for (j = 0; j < ARRAY_SIZE (i.prefix); ++j, ++p) |
| { |
| if (!*p) |
| continue; |
| |
| switch (j) |
| { |
| case SEG_PREFIX: |
| case ADDR_PREFIX: |
| break; |
| default: |
| as_bad (_("illegal prefix used with VEX/XOP/EVEX")); |
| goto bad; |
| } |
| } |
| } |
| |
| if (line > end && *line == '.') |
| { |
| /* Length specifier (VEX.L, XOP.L, EVEX.L'L). */ |
| switch (line[1]) |
| { |
| case 'L': |
| switch (line[2]) |
| { |
| case '0': |
| if (evex) |
| i.tm.opcode_modifier.evex = EVEX128; |
| else |
| i.tm.opcode_modifier.vex = VEX128; |
| break; |
| |
| case '1': |
| if (evex) |
| i.tm.opcode_modifier.evex = EVEX256; |
| else |
| i.tm.opcode_modifier.vex = VEX256; |
| break; |
| |
| case '2': |
| if (evex) |
| i.tm.opcode_modifier.evex = EVEX512; |
| break; |
| |
| case '3': |
| if (evex) |
| i.tm.opcode_modifier.evex = EVEX_L3; |
| break; |
| |
| case 'I': |
| if (line[3] == 'G') |
| { |
| if (evex) |
| i.tm.opcode_modifier.evex = EVEXLIG; |
| else |
| i.tm.opcode_modifier.vex = VEXScalar; /* LIG */ |
| ++line; |
| } |
| break; |
| } |
| |
| if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex) |
| line += 3; |
| break; |
| |
| case '1': |
| if (line[2] == '2' && line[3] == '8') |
| { |
| if (evex) |
| i.tm.opcode_modifier.evex = EVEX128; |
| else |
| i.tm.opcode_modifier.vex = VEX128; |
| line += 4; |
| } |
| break; |
| |
| case '2': |
| if (line[2] == '5' && line[3] == '6') |
| { |
| if (evex) |
| i.tm.opcode_modifier.evex = EVEX256; |
| else |
| i.tm.opcode_modifier.vex = VEX256; |
| line += 4; |
| } |
| break; |
| |
| case '5': |
| if (evex && line[2] == '1' && line[3] == '2') |
| { |
| i.tm.opcode_modifier.evex = EVEX512; |
| line += 4; |
| } |
| break; |
| } |
| } |
| |
| if (line > end && *line == '.') |
| { |
| /* embedded prefix (VEX.pp, XOP.pp, EVEX.pp). */ |
| switch (line[1]) |
| { |
| case 'N': |
| if (line[2] == 'P') |
| line += 3; |
| break; |
| |
| case '6': |
| if (line[2] == '6') |
| { |
| i.tm.opcode_modifier.opcodeprefix = PREFIX_0X66; |
| line += 3; |
| } |
| break; |
| |
| case 'F': case 'f': |
| if (line[2] == '3') |
| { |
| i.tm.opcode_modifier.opcodeprefix = PREFIX_0XF3; |
| line += 3; |
| } |
| else if (line[2] == '2') |
| { |
| i.tm.opcode_modifier.opcodeprefix = PREFIX_0XF2; |
| line += 3; |
| } |
| break; |
| } |
| } |
| |
| if (line > end && !xop && *line == '.') |
| { |
| /* Encoding space (VEX.mmmmm, EVEX.mmmm). */ |
| switch (line[1]) |
| { |
| case '0': |
| if (TOUPPER (line[2]) != 'F') |
| break; |
| if (line[3] == '.' || is_space_char (line[3])) |
| { |
| i.insn_opcode_space = SPACE_0F; |
| line += 3; |
| } |
| else if (line[3] == '3' |
| && (line[4] == '8' || TOUPPER (line[4]) == 'A') |
| && (line[5] == '.' || is_space_char (line[5]))) |
| { |
| i.insn_opcode_space = line[4] == '8' ? SPACE_0F38 : SPACE_0F3A; |
| line += 5; |
| } |
| break; |
| |
| case 'M': |
| if (ISDIGIT (line[2]) && line[2] != '0') |
| { |
| char *e; |
| unsigned long n = strtoul (line + 2, &e, 10); |
| |
| if (n <= (evex ? 15 : 31) |
| && (*e == '.' || is_space_char (*e))) |
| { |
| i.insn_opcode_space = n; |
| line = e; |
| } |
| } |
| break; |
| } |
| } |
| |
| if (line > end && *line == '.' && line[1] == 'W') |
| { |
| /* VEX.W, XOP.W, EVEX.W */ |
| switch (line[2]) |
| { |
| case '0': |
| i.tm.opcode_modifier.vexw = VEXW0; |
| break; |
| |
| case '1': |
| i.tm.opcode_modifier.vexw = VEXW1; |
| break; |
| |
| case 'I': |
| if (line[3] == 'G') |
| { |
| i.tm.opcode_modifier.vexw = VEXWIG; |
| ++line; |
| } |
| break; |
| } |
| |
| if (i.tm.opcode_modifier.vexw) |
| line += 3; |
| } |
| |
| if (line > end && *line && !is_space_char (*line)) |
| { |
| /* Improve diagnostic a little. */ |
| if (*line == '.' && line[1] && !is_space_char (line[1])) |
| ++line; |
| goto done; |
| } |
| |
| /* Before processing the opcode expression, find trailing "+r" or |
| "/<digit>" specifiers. */ |
| for (ptr = line; ; ++ptr) |
| { |
| unsigned long n; |
| char *e; |
| |
| ptr = strpbrk (ptr, "+/,"); |
| if (ptr == NULL || *ptr == ',') |
| break; |
| |
| if (*ptr == '+' && ptr[1] == 'r' |
| && (ptr[2] == ',' || (is_space_char (ptr[2]) && ptr[3] == ','))) |
| { |
| *ptr = ' '; |
| ptr[1] = ' '; |
| i.short_form = true; |
| break; |
| } |
| |
| if (*ptr == '/' && ISDIGIT (ptr[1]) |
| && (n = strtoul (ptr + 1, &e, 8)) < 8 |
| && e == ptr + 2 |
| && (ptr[2] == ',' || (is_space_char (ptr[2]) && ptr[3] == ','))) |
| { |
| *ptr = ' '; |
| ptr[1] = ' '; |
| i.tm.extension_opcode = n; |
| i.tm.opcode_modifier.modrm = 1; |
| break; |
| } |
| } |
| |
| input_line_pointer = line; |
| val = get_absolute_expression (); |
| line = input_line_pointer; |
| |
| if (i.short_form && (val & 7)) |
| as_warn ("`+r' assumes low three opcode bits to be clear"); |
| |
| for (j = 1; j < sizeof(val); ++j) |
| if (!(val >> (j * 8))) |
| break; |
| |
| /* Trim off a prefix if present. */ |
| if (j > 1 && !vex && !xop && !evex) |
| { |
| uint8_t byte = val >> ((j - 1) * 8); |
| |
| switch (byte) |
| { |
| case DATA_PREFIX_OPCODE: |
| case REPE_PREFIX_OPCODE: |
| case REPNE_PREFIX_OPCODE: |
| if (!add_prefix (byte)) |
| goto bad; |
| val &= ((uint64_t)1 << (--j * 8)) - 1; |
| break; |
| } |
| } |
| |
| /* Parse operands, if any, before evaluating encoding space. */ |
| if (*line == ',') |
| { |
| i.memshift = -1; |
| |
| ptr = parse_operands (line + 1, &i386_mnemonics[MN__insn]); |
| this_operand = -1; |
| if (!ptr) |
| goto bad; |
| line = ptr; |
| |
| if (!i.operands) |
| { |
| as_bad (_("expecting operand after ','; got nothing")); |
| goto done; |
| } |
| |
| if (i.mem_operands > 1) |
| { |
| as_bad (_("too many memory references for `%s'"), |
| &i386_mnemonics[MN__insn]); |
| goto done; |
| } |
| |
| /* No need to distinguish encoding_evex and encoding_evex512. */ |
| if (pp.encoding == encoding_evex512) |
| pp.encoding = encoding_evex; |
| } |
| |
| /* Trim off encoding space. */ |
| if (j > 1 && !i.insn_opcode_space && (val >> ((j - 1) * 8)) == 0x0f) |
| { |
| uint8_t byte = val >> ((--j - 1) * 8); |
| |
| i.insn_opcode_space = SPACE_0F; |
| switch (byte & -(j > 1 && !pp.rex2_encoding |
| && (pp.encoding != encoding_egpr || evex))) |
| { |
| case 0x38: |
| i.insn_opcode_space = SPACE_0F38; |
| --j; |
| break; |
| case 0x3a: |
| i.insn_opcode_space = SPACE_0F3A; |
| --j; |
| break; |
| } |
| i.tm.opcode_space = i.insn_opcode_space; |
| val &= ((uint64_t)1 << (j * 8)) - 1; |
| } |
| if (!i.tm.opcode_space && (vex || evex)) |
| /* Arrange for build_vex_prefix() to properly emit 0xC4/0xC5. |
| Also avoid hitting abort() there or in build_evex_prefix(). */ |
| i.tm.opcode_space = i.insn_opcode_space == SPACE_0F ? SPACE_0F |
| : SPACE_0F38; |
| |
| if (j > 2) |
| { |
| as_bad (_("opcode residual (%#"PRIx64") too wide"), (uint64_t) val); |
| goto done; |
| } |
| i.opcode_length = j; |
| |
| /* Handle operands, if any. */ |
| if (i.operands) |
| { |
| i386_operand_type combined; |
| expressionS *disp_exp = NULL; |
| bool changed; |
| |
| if (pp.encoding == encoding_egpr) |
| { |
| if (vex || xop) |
| { |
| as_bad (_("eGPR use conflicts with encoding specifier")); |
| goto done; |
| } |
| if (evex) |
| pp.encoding = encoding_evex; |
| else |
| pp.encoding = encoding_default; |
| } |
| |
| /* Are we to emit ModR/M encoding? */ |
| if (!i.short_form |
| && (i.mem_operands |
| || i.reg_operands > (pp.encoding != encoding_default) |
| || i.tm.extension_opcode != None)) |
| i.tm.opcode_modifier.modrm = 1; |
| |
| if (!i.tm.opcode_modifier.modrm |
| && (i.reg_operands |
| > i.short_form + 0U + (pp.encoding != encoding_default) |
| || i.mem_operands)) |
| { |
| as_bad (_("too many register/memory operands")); |
| goto done; |
| } |
| |
| /* Enforce certain constraints on operands. */ |
| switch (i.reg_operands + i.mem_operands |
| + (i.tm.extension_opcode != None)) |
| { |
| case 0: |
| if (i.short_form) |
| { |
| as_bad (_("too few register/memory operands")); |
| goto done; |
| } |
| /* Fall through. */ |
| case 1: |
| if (i.tm.opcode_modifier.modrm) |
| { |
| as_bad (_("too few register/memory operands")); |
| goto done; |
| } |
| break; |
| |
| case 2: |
| break; |
| |
| case 4: |
| if (i.imm_operands |
| && (i.op[0].imms->X_op != O_constant |
| || !fits_in_imm4 (i.op[0].imms->X_add_number))) |
| { |
| as_bad (_("constant doesn't fit in %d bits"), evex ? 3 : 4); |
| goto done; |
| } |
| /* Fall through. */ |
| case 3: |
| if (pp.encoding != encoding_default) |
| { |
| i.tm.opcode_modifier.vexvvvv = i.tm.extension_opcode == None |
| ? VexVVVV_SRC1 : VexVVVV_DST; |
| break; |
| } |
| /* Fall through. */ |
| default: |
| as_bad (_("too many register/memory operands")); |
| goto done; |
| } |
| |
| /* Bring operands into canonical order (imm, mem, reg). */ |
| do |
| { |
| changed = false; |
| |
| for (j = 1; j < i.operands; ++j) |
| { |
| if ((!operand_type_check (i.types[j - 1], imm) |
| && operand_type_check (i.types[j], imm)) |
| || (i.types[j - 1].bitfield.class != ClassNone |
| && i.types[j].bitfield.class == ClassNone)) |
| { |
| swap_2_operands (j - 1, j); |
| changed = true; |
| } |
| } |
| } |
| while (changed); |
| |
| /* For Intel syntax swap the order of register operands. */ |
| if (intel_syntax) |
| switch (i.reg_operands) |
| { |
| case 0: |
| case 1: |
| break; |
| |
| case 4: |
| swap_2_operands (i.imm_operands + i.mem_operands + 1, i.operands - 2); |
| /* Fall through. */ |
| case 3: |
| case 2: |
| swap_2_operands (i.imm_operands + i.mem_operands, i.operands - 1); |
| break; |
| |
| default: |
| abort (); |
| } |
| |
| /* Enforce constraints when using VSIB. */ |
| if (i.index_reg |
| && (i.index_reg->reg_type.bitfield.xmmword |
| || i.index_reg->reg_type.bitfield.ymmword |
| || i.index_reg->reg_type.bitfield.zmmword)) |
| { |
| if (pp.encoding == encoding_default) |
| { |
| as_bad (_("VSIB unavailable with legacy encoding")); |
| goto done; |
| } |
| |
| if (pp.encoding == encoding_evex |
| && i.reg_operands > 1) |
| { |
| /* We could allow two register operands, encoding the 2nd one in |
| an 8-bit immediate like for 4-register-operand insns, but that |
| would require ugly fiddling with process_operands() and/or |
| build_modrm_byte(). */ |
| as_bad (_("too many register operands with VSIB")); |
| goto done; |
| } |
| |
| i.tm.opcode_modifier.sib = 1; |
| } |
| |
| /* Establish operand size encoding. */ |
| operand_type_set (&combined, 0); |
| |
| for (j = i.imm_operands; j < i.operands; ++j) |
| { |
| /* Look for 8-bit operands that use old registers. */ |
| if (pp.encoding != encoding_default |
| && flag_code == CODE_64BIT |
| && i.types[j].bitfield.class == Reg |
| && i.types[j].bitfield.byte |
| && !(i.op[j].regs->reg_flags & (RegRex | RegRex2 | RegRex64)) |
| && i.op[j].regs->reg_num > 3) |
| as_bad (_("can't encode register '%s%s' with VEX/XOP/EVEX"), |
| register_prefix, i.op[j].regs->reg_name); |
| |
| i.types[j].bitfield.instance = InstanceNone; |
| |
| if (operand_type_check (i.types[j], disp)) |
| { |
| i.types[j].bitfield.baseindex = 1; |
| disp_exp = i.op[j].disps; |
| } |
| |
| if (evex && i.types[j].bitfield.baseindex) |
| { |
| unsigned int n = i.memshift; |
| |
| if (i.types[j].bitfield.byte) |
| n = 0; |
| else if (i.types[j].bitfield.word) |
| n = 1; |
| else if (i.types[j].bitfield.dword) |
| n = 2; |
| else if (i.types[j].bitfield.qword) |
| n = 3; |
| else if (i.types[j].bitfield.xmmword) |
| n = 4; |
| else if (i.types[j].bitfield.ymmword) |
| n = 5; |
| else if (i.types[j].bitfield.zmmword) |
| n = 6; |
| |
| if (i.memshift < 32 && n != i.memshift) |
| as_warn ("conflicting memory operand size specifiers"); |
| i.memshift = n; |
| } |
| |
| if ((i.broadcast.type || i.broadcast.bytes) |
| && j == i.broadcast.operand) |
| continue; |
| |
| combined = operand_type_or (combined, i.types[j]); |
| combined.bitfield.class = ClassNone; |
| } |
| |
| switch ((i.broadcast.type ? i.broadcast.type : 1) |
| << (i.memshift < 32 ? i.memshift : 0)) |
| { |
| case 64: combined.bitfield.zmmword = 1; break; |
| case 32: combined.bitfield.ymmword = 1; break; |
| case 16: combined.bitfield.xmmword = 1; break; |
| case 8: combined.bitfield.qword = 1; break; |
| case 4: combined.bitfield.dword = 1; break; |
| } |
| |
| if (pp.encoding == encoding_default) |
| { |
| if (flag_code == CODE_64BIT && combined.bitfield.qword) |
| i.rex |= REX_W; |
| else if ((flag_code == CODE_16BIT ? combined.bitfield.dword |
| : combined.bitfield.word) |
| && !add_prefix (DATA_PREFIX_OPCODE)) |
| goto done; |
| } |
| else if (!i.tm.opcode_modifier.vexw) |
| { |
| if (flag_code == CODE_64BIT) |
| { |
| if (combined.bitfield.qword) |
| i.tm.opcode_modifier.vexw = VEXW1; |
| else if (combined.bitfield.dword) |
| i.tm.opcode_modifier.vexw = VEXW0; |
| } |
| |
| if (!i.tm.opcode_modifier.vexw) |
| i.tm.opcode_modifier.vexw = VEXWIG; |
| } |
| |
| if (vex || xop) |
| { |
| if (!i.tm.opcode_modifier.vex) |
| { |
| if (combined.bitfield.ymmword) |
| i.tm.opcode_modifier.vex = VEX256; |
| else if (combined.bitfield.xmmword) |
| i.tm.opcode_modifier.vex = VEX128; |
| } |
| } |
| else if (evex) |
| { |
| if (!i.tm.opcode_modifier.evex) |
| { |
| /* Do _not_ consider AVX512VL here. */ |
| if (i.rounding.type != rc_none || combined.bitfield.zmmword) |
| i.tm.opcode_modifier.evex = EVEX512; |
| else if (combined.bitfield.ymmword) |
| i.tm.opcode_modifier.evex = EVEX256; |
| else if (combined.bitfield.xmmword) |
| i.tm.opcode_modifier.evex = EVEX128; |
| } |
| |
| if (i.memshift >= 32) |
| { |
| unsigned int n = 0; |
| |
| switch (i.tm.opcode_modifier.evex) |
| { |
| case EVEX512: n = 64; break; |
| case EVEX256: n = 32; break; |
| case EVEX128: n = 16; break; |
| } |
| |
| if (i.broadcast.type) |
| n /= i.broadcast.type; |
| |
| if (n > 0) |
| for (i.memshift = 0; !(n & 1); n >>= 1) |
| ++i.memshift; |
| else if (disp_exp != NULL && disp_exp->X_op == O_constant |
| && disp_exp->X_add_number != 0 |
| && pp.disp_encoding != disp_encoding_32bit) |
| { |
| if (!quiet_warnings) |
| as_warn ("cannot determine memory operand size"); |
| pp.disp_encoding = disp_encoding_32bit; |
| } |
| } |
| } |
| |
| if (i.memshift >= 32) |
| i.memshift = 0; |
| else if (!evex) |
| pp.encoding = encoding_error; |
| |
| if (i.disp_operands && !optimize_disp (&i.tm)) |
| goto done; |
| |
| /* Establish size for immediate operands. */ |
| for (j = 0; j < i.imm_operands; ++j) |
| { |
| expressionS *expP = i.op[j].imms; |
| |
| gas_assert (operand_type_check (i.types[j], imm)); |
| operand_type_set (&i.types[j], 0); |
| |
| if (i.imm_bits[j] > 32) |
| i.types[j].bitfield.imm64 = 1; |
| else if (i.imm_bits[j] > 16) |
| { |
| if (flag_code == CODE_64BIT && (i.flags[j] & Operand_Signed)) |
| i.types[j].bitfield.imm32s = 1; |
| else |
| i.types[j].bitfield.imm32 = 1; |
| } |
| else if (i.imm_bits[j] > 8) |
| i.types[j].bitfield.imm16 = 1; |
| else if (i.imm_bits[j] > 0) |
| { |
| if (i.flags[j] & Operand_Signed) |
| i.types[j].bitfield.imm8s = 1; |
| else |
| i.types[j].bitfield.imm8 = 1; |
| } |
| else if (expP->X_op == O_constant) |
| { |
| i.types[j] = smallest_imm_type (expP->X_add_number); |
| i.types[j].bitfield.imm1 = 0; |
| /* Oddly enough imm_size() checks imm64 first, so the bit needs |
| zapping since smallest_imm_type() sets it unconditionally. */ |
| if (flag_code != CODE_64BIT) |
| { |
| i.types[j].bitfield.imm64 = 0; |
| i.types[j].bitfield.imm32s = 0; |
| i.types[j].bitfield.imm32 = 1; |
| } |
| else if (i.types[j].bitfield.imm32 || i.types[j].bitfield.imm32s) |
| i.types[j].bitfield.imm64 = 0; |
| } |
| else |
| /* Non-constant expressions are sized heuristically. */ |
| switch (flag_code) |
| { |
| case CODE_64BIT: i.types[j].bitfield.imm32s = 1; break; |
| case CODE_32BIT: i.types[j].bitfield.imm32 = 1; break; |
| case CODE_16BIT: i.types[j].bitfield.imm16 = 1; break; |
| } |
| } |
| |
| for (j = 0; j < i.operands; ++j) |
| i.tm.operand_types[j] = i.types[j]; |
| |
| process_operands (); |
| } |
| |
| /* Don't set opcode until after processing operands, to avoid any |
| potential special casing there. */ |
| i.tm.base_opcode |= val; |
| |
| if (pp.encoding == encoding_error |
| || (pp.encoding != encoding_evex |
| ? i.broadcast.type || i.broadcast.bytes |
| || i.rounding.type != rc_none |
| || i.mask.reg |
| : (i.mem_operands && i.rounding.type != rc_none) |
| || ((i.broadcast.type || i.broadcast.bytes) |
| && !(i.flags[i.broadcast.operand] & Operand_Mem)))) |
| { |
| as_bad (_("conflicting .insn operands")); |
| goto done; |
| } |
| |
| if (vex || xop) |
| { |
| if (!i.tm.opcode_modifier.vex) |
| i.tm.opcode_modifier.vex = VEXScalar; /* LIG */ |
| |
| build_vex_prefix (NULL); |
| i.rex &= REX_OPCODE; |
| } |
| else if (evex) |
| { |
| if (!i.tm.opcode_modifier.evex) |
| i.tm.opcode_modifier.evex = EVEXLIG; |
| |
| build_evex_prefix (); |
| i.rex &= REX_OPCODE; |
| } |
| else |
| establish_rex (); |
| |
| last_insn = &seg_info(now_seg)->tc_segment_info_data.last_insn; |
| output_insn (last_insn); |
| last_insn->kind = last_insn_directive; |
| last_insn->name = ".insn directive"; |
| last_insn->file = as_where (&last_insn->line); |
| |
| #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF) |
| /* PS: SCFI is enabled only for System V AMD64 ABI. The ABI check has been |
| performed in i386_target_format. */ |
| if (IS_ELF && flag_synth_cfi) |
| as_bad (_("SCFI: hand-crafting instructions not supported")); |
| #endif |
| |
| done: |
| *saved_ilp = saved_char; |
| input_line_pointer = line; |
| |
| demand_empty_rest_of_line (); |
| |
| /* Make sure dot_insn() won't yield "true" anymore. */ |
| i.tm.mnem_off = 0; |
| |
| current_templates.start = NULL; |
| memset (&pp, 0, sizeof (pp)); |
| } |
| |
| #ifdef TE_PE |
| static void |
| pe_directive_secrel (int dummy ATTRIBUTE_UNUSED) |
| { |
| expressionS exp; |
| |
| do |
| { |
| expression (&exp); |
| if (exp.X_op == O_symbol) |
| exp.X_op = O_secrel; |
| |
| emit_expr (&exp, 4); |
| } |
| while (*input_line_pointer++ == ','); |
| |
| input_line_pointer--; |
| demand_empty_rest_of_line (); |
| } |
| |
| static void |
| pe_directive_secidx (int dummy ATTRIBUTE_UNUSED) |
| { |
| expressionS exp; |
| |
| do |
| { |
| expression (&exp); |
| if (exp.X_op == O_symbol) |
| exp.X_op = O_secidx; |
| |
| emit_expr (&exp, 2); |
| } |
| while (*input_line_pointer++ == ','); |
| |
| input_line_pointer--; |
| demand_empty_rest_of_line (); |
| } |
| #endif |
| |
| /* Handle Rounding Control / SAE specifiers. */ |
| |
| static char * |
| RC_SAE_specifier (const char *pstr) |
| { |
| unsigned int j; |
| |
| for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++) |
| { |
| if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len)) |
| { |
| if (i.rounding.type != rc_none) |
| { |
| as_bad (_("duplicated `{%s}'"), RC_NamesTable[j].name); |
| return NULL; |
| } |
| |
| switch (pp.encoding) |
| { |
| case encoding_default: |
| case encoding_egpr: |
| pp.encoding = encoding_evex512; |
| break; |
| case encoding_evex: |
| case encoding_evex512: |
| break; |
| default: |
| return NULL; |
| } |
| |
| i.rounding.type = RC_NamesTable[j].type; |
| |
| return (char *)(pstr + RC_NamesTable[j].len); |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* Handle Vector operations. */ |
| |
| static char * |
| check_VecOperations (char *op_string) |
| { |
| const reg_entry *mask; |
| const char *saved; |
| char *end_op; |
| |
| while (*op_string) |
| { |
| saved = op_string; |
| if (*op_string == '{') |
| { |
| op_string++; |
| if (is_space_char (*op_string)) |
| op_string++; |
| |
| /* Check broadcasts. */ |
| if (startswith (op_string, "1to")) |
| { |
| unsigned int bcst_type; |
| |
| if (i.broadcast.type) |
| goto duplicated_vec_op; |
| |
| op_string += 3; |
| if (*op_string == '8') |
| bcst_type = 8; |
| else if (*op_string == '4') |
| bcst_type = 4; |
| else if (*op_string == '2') |
| bcst_type = 2; |
| else if (*op_string == '1' |
| && *(op_string+1) == '6') |
| { |
| bcst_type = 16; |
| op_string++; |
| } |
| else if (*op_string == '3' |
| && *(op_string+1) == '2') |
| { |
| bcst_type = 32; |
| op_string++; |
| } |
| else |
| { |
| as_bad (_("Unsupported broadcast: `%s'"), saved); |
| return NULL; |
| } |
| op_string++; |
| |
| switch (pp.encoding) |
| { |
| case encoding_default: |
| case encoding_egpr: |
| pp.encoding = encoding_evex; |
| break; |
| case encoding_evex: |
| case encoding_evex512: |
| break; |
| default: |
| goto unknown_vec_op; |
| } |
| |
| i.broadcast.type = bcst_type; |
| i.broadcast.operand = this_operand; |
| |
| /* For .insn a data size specifier may be appended. */ |
| if (dot_insn () && *op_string == ':') |
| goto dot_insn_modifier; |
| } |
| /* Check .insn special cases. */ |
| else if (dot_insn () && *op_string == ':') |
| { |
| dot_insn_modifier: |
| switch (op_string[1]) |
| { |
| unsigned long n; |
| |
| case 'd': |
| if (i.memshift < 32) |
| goto duplicated_vec_op; |
| |
| n = strtoul (op_string + 2, &end_op, 0); |
| if (n) |
| for (i.memshift = 0; !(n & 1); n >>= 1) |
| ++i.memshift; |
| if (i.memshift < 32 && n == 1) |
| op_string = end_op; |
| break; |
| |
| case 's': case 'u': |
| /* This isn't really a "vector" operation, but a sign/size |
| specifier for immediate operands of .insn. Note that AT&T |
| syntax handles the same in i386_immediate(). */ |
| if (!intel_syntax) |
| break; |
| |
| if (i.imm_bits[this_operand]) |
| goto duplicated_vec_op; |
| |
| n = strtoul (op_string + 2, &end_op, 0); |
| if (n && n <= (flag_code == CODE_64BIT ? 64 : 32)) |
| { |
| i.imm_bits[this_operand] = n; |
| if (op_string[1] == 's') |
| i.flags[this_operand] |= Operand_Signed; |
| op_string = end_op; |
| } |
| break; |
| } |
| } |
| /* Check masking operation. */ |
| else if ((mask = parse_register (op_string, &end_op)) != NULL) |
| { |
| if (mask == &bad_reg) |
| return NULL; |
| |
| /* k0 can't be used for write mask. */ |
| if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num) |
| { |
| as_bad (_("`%s%s' can't be used for write mask"), |
| register_prefix, mask->reg_name); |
| return NULL; |
| } |
| |
| if (!i.mask.reg) |
| { |
| i.mask.reg = mask; |
| i.mask.operand = this_operand; |
| } |
| else if (i.mask.reg->reg_num) |
| goto duplicated_vec_op; |
| else |
| { |
| i.mask.reg = mask; |
| |
| /* Only "{z}" is allowed here. No need to check |
| zeroing mask explicitly. */ |
| if (i.mask.operand != (unsigned int) this_operand) |
| { |
| as_bad (_("invalid write mask `%s'"), saved); |
| return NULL; |
| } |
| } |
| |
| op_string = end_op; |
| } |
| /* Check zeroing-flag for masking operation. */ |
| else if (*op_string == 'z') |
| { |
| if (!i.mask.reg) |
| { |
| i.mask.reg = reg_k0; |
| i.mask.zeroing = 1; |
| i.mask.operand = this_operand; |
| } |
| else |
| { |
| if (i.mask.zeroing) |
| { |
| duplicated_vec_op: |
| as_bad (_("duplicated `%s'"), saved); |
| return NULL; |
| } |
| |
| i.mask.zeroing = 1; |
| |
| /* Only "{%k}" is allowed here. No need to check mask |
| register explicitly. */ |
| if (i.mask.operand != (unsigned int) this_operand) |
| { |
| as_bad (_("invalid zeroing-masking `%s'"), |
| saved); |
| return NULL; |
| } |
| } |
| |
| op_string++; |
| } |
| else if (intel_syntax |
| && (op_string = RC_SAE_specifier (op_string)) != NULL) |
| i.rounding.modifier = true; |
| else |
| goto unknown_vec_op; |
| |
| if (is_space_char (*op_string)) |
| op_string++; |
| if (*op_string != '}') |
| { |
| as_bad (_("missing `}' in `%s'"), saved); |
| return NULL; |
| } |
| op_string++; |
| |
| if (is_space_char (*op_string)) |
| ++op_string; |
| |
| continue; |
| } |
| unknown_vec_op: |
| /* We don't know this one. */ |
| as_bad (_("unknown vector operation: `%s'"), saved); |
| return NULL; |
| } |
| |
| if (i.mask.reg && i.mask.zeroing && !i.mask.reg->reg_num) |
| { |
| as_bad (_("zeroing-masking only allowed with write mask")); |
| return NULL; |
| } |
| |
| return op_string; |
| } |
| |
| static int |
| i386_immediate (char *imm_start) |
| { |
| char *save_input_line_pointer; |
| char *gotfree_input_line; |
| segT exp_seg = 0; |
| expressionS *exp; |
| i386_operand_type types; |
| |
| operand_type_set (&types, ~0); |
| |
| if (i.imm_operands == MAX_IMMEDIATE_OPERANDS) |
| { |
| as_bad (_("at most %d immediate operands are allowed"), |
| MAX_IMMEDIATE_OPERANDS); |
| return 0; |
| } |
| |
| exp = &im_expressions[i.imm_operands++]; |
| i.op[this_operand].imms = exp; |
| |
| if (is_space_char (*imm_start)) |
| ++imm_start; |
| |
| save_input_line_pointer = input_line_pointer; |
| input_line_pointer = imm_start; |
| |
| gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types); |
| if (gotfree_input_line) |
| input_line_pointer = gotfree_input_line; |
| |
| expr_mode = expr_operator_none; |
| exp_seg = expression (exp); |
| |
| /* For .insn immediates there may be a size specifier. */ |
| if (dot_insn () && *input_line_pointer == '{' && input_line_pointer[1] == ':' |
| && (input_line_pointer[2] == 's' || input_line_pointer[2] == 'u')) |
| { |
| char *e; |
| unsigned long n = strtoul (input_line_pointer + 3, &e, 0); |
| |
| if (*e == '}' && n && n <= (flag_code == CODE_64BIT ? 64 : 32)) |
| { |
| i.imm_bits[this_operand] = n; |
| if (input_line_pointer[2] == 's') |
| i.flags[this_operand] |= Operand_Signed; |
| input_line_pointer = e + 1; |
| } |
| } |
| |
| SKIP_WHITESPACE (); |
| if (*input_line_pointer) |
| as_bad (_("junk `%s' after expression"), input_line_pointer); |
| |
| input_line_pointer = save_input_line_pointer; |
| if (gotfree_input_line) |
| { |
| free (gotfree_input_line); |
| |
| if (exp->X_op == O_constant) |
| exp->X_op = O_illegal; |
| } |
| |
| if (exp_seg == reg_section) |
| { |
| as_bad (_("illegal immediate register operand %s"), imm_start); |
| return 0; |
| } |
| |
| return i386_finalize_immediate (exp_seg, exp, types, imm_start); |
| } |
| |
| static int |
| i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp, |
| i386_operand_type types, const char *imm_start) |
| { |
| if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big) |
| { |
| if (imm_start) |
| as_bad (_("missing or invalid immediate expression `%s'"), |
| imm_start); |
| return 0; |
| } |
| else if (exp->X_op == O_constant) |
| { |
| /* Size it properly later. */ |
| i.types[this_operand].bitfield.imm64 = 1; |
| |
| /* If not 64bit, sign/zero extend val, to account for wraparound |
| when !BFD64. */ |
| if (expr_mode == expr_operator_present |
| && flag_code != CODE_64BIT && !object_64bit) |
| exp->X_add_number = extend_to_32bit_address (exp->X_add_number); |
| } |
| #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT)) |
| else if (OUTPUT_FLAVOR == bfd_target_aout_flavour |
| && exp_seg != absolute_section |
| && exp_seg != text_section |
| && exp_seg != data_section |
| && exp_seg != bss_section |
| && exp_seg != undefined_section |
| && !bfd_is_com_section (exp_seg)) |
| { |
| as_bad (_("unimplemented segment %s in operand"), exp_seg->name); |
| return 0; |
| } |
| #endif |
| else |
| { |
| /* This is an address. The size of the address will be |
| determined later, depending on destination register, |
| suffix, or the default for the section. */ |
| i.types[this_operand].bitfield.imm8 = 1; |
| i.types[this_operand].bitfield.imm16 = 1; |
| i.types[this_operand].bitfield.imm32 = 1; |
| i.types[this_operand].bitfield.imm32s = 1; |
| i.types[this_operand].bitfield.imm64 = 1; |
| i.types[this_operand] = operand_type_and (i.types[this_operand], |
| types); |
| } |
| |
| return 1; |
| } |
| |
| static char * |
| i386_scale (char *scale) |
| { |
| offsetT val; |
| char *save = input_line_pointer; |
| |
| input_line_pointer = scale; |
| val = get_absolute_expression (); |
| |
| switch (val) |
| { |
| case 1: |
| i.log2_scale_factor = 0; |
| break; |
| case 2: |
| i.log2_scale_factor = 1; |
| break; |
| case 4: |
| i.log2_scale_factor = 2; |
| break; |
| case 8: |
| i.log2_scale_factor = 3; |
| break; |
| default: |
| { |
| char sep = *input_line_pointer; |
| |
| *input_line_pointer = '\0'; |
| as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"), |
| scale); |
| *input_line_pointer = sep; |
| input_line_pointer = save; |
| return NULL; |
| } |
| } |
| if (i.log2_scale_factor != 0 && i.index_reg == 0) |
| { |
| as_warn (_("scale factor of %d without an index register"), |
| 1 << i.log2_scale_factor); |
| i.log2_scale_factor = 0; |
| } |
| scale = input_line_pointer; |
| input_line_pointer = save; |
| return scale; |
| } |
| |
| static int |
| i386_displacement (char *disp_start, char *disp_end) |
| { |
| expressionS *exp; |
| segT exp_seg = 0; |
| char *save_input_line_pointer; |
| char *gotfree_input_line; |
| int override; |
| i386_operand_type bigdisp, types = anydisp; |
| int ret; |
| |
| if (i.disp_operands == MAX_MEMORY_OPERANDS) |
| { |
| as_bad (_("at most %d displacement operands are allowed"), |
| MAX_MEMORY_OPERANDS); |
| return 0; |
| } |
| |
| operand_type_set (&bigdisp, 0); |
| if (i.jumpabsolute |
| || i.types[this_operand].bitfield.baseindex |
| || (current_templates.start->opcode_modifier.jump != JUMP |
| && current_templates.start->opcode_modifier.jump != JUMP_DWORD)) |
| { |
| i386_addressing_mode (); |
| override = (i.prefix[ADDR_PREFIX] != 0); |
| if (flag_code == CODE_64BIT) |
| { |
| bigdisp.bitfield.disp32 = 1; |
| if (!override) |
| bigdisp.bitfield.disp64 = 1; |
| } |
| else if ((flag_code == CODE_16BIT) ^ override) |
| bigdisp.bitfield.disp16 = 1; |
| else |
| bigdisp.bitfield.disp32 = 1; |
| } |
| else |
| { |
| /* For PC-relative branches, the width of the displacement may be |
| dependent upon data size, but is never dependent upon address size. |
| Also make sure to not unintentionally match against a non-PC-relative |
| branch template. */ |
| const insn_template *t = current_templates.start; |
| bool has_intel64 = false; |
| |
| while (++t < current_templates.end) |
| { |
| if (t->opcode_modifier.jump |
| != current_templates.start->opcode_modifier.jump) |
| break; |
| if ((t->opcode_modifier.isa64 >= INTEL64)) |
| has_intel64 = true; |
| } |
| current_templates.end = t; |
| |
| override = (i.prefix[DATA_PREFIX] != 0); |
| if (flag_code == CODE_64BIT) |
| { |
| if ((override || i.suffix == WORD_MNEM_SUFFIX) |
| && (!intel64 || !has_intel64)) |
| bigdisp.bitfield.disp16 = 1; |
| else |
| bigdisp.bitfield.disp32 = 1; |
| } |
| else |
| { |
| if (!override) |
| override = (i.suffix == (flag_code != CODE_16BIT |
| ? WORD_MNEM_SUFFIX |
| : LONG_MNEM_SUFFIX)); |
| bigdisp.bitfield.disp32 = 1; |
| if ((flag_code == CODE_16BIT) ^ override) |
| { |
| bigdisp.bitfield.disp32 = 0; |
| bigdisp.bitfield.disp16 = 1; |
| } |
| } |
| } |
| i.types[this_operand] = operand_type_or (i.types[this_operand], |
| bigdisp); |
| |
| exp = &disp_expressions[i.disp_operands]; |
| i.op[this_operand].disps = exp; |
| i.disp_operands++; |
| save_input_line_pointer = input_line_pointer; |
| input_line_pointer = disp_start; |
| END_STRING_AND_SAVE (disp_end); |
| |
| #ifndef GCC_ASM_O_HACK |
| #define GCC_ASM_O_HACK 0 |
| #endif |
| #if GCC_ASM_O_HACK |
| END_STRING_AND_SAVE (disp_end + 1); |
| if (i.types[this_operand].bitfield.baseIndex |
| && displacement_string_end[-1] == '+') |
| { |
| /* This hack is to avoid a warning when using the "o" |
| constraint within gcc asm statements. |
| For instance: |
| |
| #define _set_tssldt_desc(n,addr,limit,type) \ |
| __asm__ __volatile__ ( \ |
| "movw %w2,%0\n\t" \ |
| "movw %w1,2+%0\n\t" \ |
| "rorl $16,%1\n\t" \ |
| "movb %b1,4+%0\n\t" \ |
| "movb %4,5+%0\n\t" \ |
| "movb $0,6+%0\n\t" \ |
| "movb %h1,7+%0\n\t" \ |
| "rorl $16,%1" \ |
| : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type)) |
| |
| This works great except that the output assembler ends |
| up looking a bit weird if it turns out that there is |
| no offset. You end up producing code that looks like: |
| |
| #APP |
| movw $235,(%eax) |
| movw %dx,2+(%eax) |
| rorl $16,%edx |
| movb %dl,4+(%eax) |
| movb $137,5+(%eax) |
| movb $0,6+(%eax) |
| movb %dh,7+(%eax) |
| rorl $16,%edx |
| #NO_APP |
| |
| So here we provide the missing zero. */ |
| |
| *displacement_string_end = '0'; |
| } |
| #endif |
| gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types); |
| if (gotfree_input_line) |
| input_line_pointer = gotfree_input_line; |
| |
| expr_mode = expr_operator_none; |
| exp_seg = expression (exp); |
| |
| SKIP_WHITESPACE (); |
| if (*input_line_pointer) |
| as_bad (_("junk `%s' after expression"), input_line_pointer); |
| #if GCC_ASM_O_HACK |
| RESTORE_END_STRING (disp_end + 1); |
| #endif |
| input_line_pointer = save_input_line_pointer; |
| if (gotfree_input_line) |
| { |
| free (gotfree_input_line); |
| |
| if (exp->X_op == O_constant || exp->X_op == O_register) |
| exp->X_op = O_illegal; |
| } |
| |
| ret = i386_finalize_displacement (exp_seg, exp, types, disp_start); |
| |
| RESTORE_END_STRING (disp_end); |
| |
| return ret; |
| } |
| |
| static int |
| i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp, |
| i386_operand_type types, const char *disp_start) |
| { |
| int ret = 1; |
| |
| /* We do this to make sure that the section symbol is in |
| the symbol table. We will ultimately change the relocation |
| to be relative to the beginning of the section. */ |
| if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF |
| || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL |
| || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64) |
| { |
| if (exp->X_op != O_symbol) |
| goto inv_disp; |
| |
| if (S_IS_LOCAL (exp->X_add_symbol) |
| && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section |
| && S_GET_SEGMENT (exp->X_add_symbol) != expr_section) |
| section_symbol (S_GET_SEGMENT (exp->X_add_symbol)); |
| exp->X_op = O_subtract; |
| exp->X_op_symbol = GOT_symbol; |
| if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL) |
| i.reloc[this_operand] = BFD_RELOC_32_PCREL; |
| else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64) |
| i.reloc[this_operand] = BFD_RELOC_64; |
| else |
| i.reloc[this_operand] = BFD_RELOC_32; |
| } |
| |
| else if (exp->X_op == O_absent |
| || exp->X_op == O_illegal |
| || exp->X_op == O_big) |
| { |
| inv_disp: |
| as_bad (_("missing or invalid displacement expression `%s'"), |
| disp_start); |
| ret = 0; |
| } |
| |
| else if (exp->X_op == O_constant) |
| { |
| /* Sizing gets taken care of by optimize_disp(). |
| |
| If not 64bit, sign/zero extend val, to account for wraparound |
| when !BFD64. */ |
| if (expr_mode == expr_operator_present |
| && flag_code != CODE_64BIT && !object_64bit) |
| exp->X_add_number = extend_to_32bit_address (exp->X_add_number); |
| } |
| |
| #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT)) |
| else if (OUTPUT_FLAVOR == bfd_target_aout_flavour |
| && exp_seg != absolute_section |
| && exp_seg != text_section |
| && exp_seg != data_section |
| && exp_seg != bss_section |
| && exp_seg != undefined_section |
| && !bfd_is_com_section (exp_seg)) |
| { |
| as_bad (_("unimplemented segment %s in operand"), exp_seg->name); |
| ret = 0; |
| } |
| #endif |
| |
| else if (current_templates.start->opcode_modifier.jump == JUMP_BYTE) |
| i.types[this_operand].bitfield.disp8 = 1; |
| |
| /* Check if this is a displacement only operand. */ |
| if (!i.types[this_operand].bitfield.baseindex) |
| i.types[this_operand] = |
| operand_type_or (operand_type_and_not (i.types[this_operand], anydisp), |
| operand_type_and (i.types[this_operand], types)); |
| |
| return ret; |
| } |
| |
| /* Return the active addressing mode, taking address override and |
| registers forming the address into consideration. Update the |
| address override prefix if necessary. */ |
| |
| static enum flag_code |
| i386_addressing_mode (void) |
| { |
| enum flag_code addr_mode; |
| |
| if (i.prefix[ADDR_PREFIX]) |
| addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT; |
| else if (flag_code == CODE_16BIT |
| && is_cpu (current_templates.start, CpuMPX) |
| /* Avoid replacing the "16-bit addressing not allowed" diagnostic |
| from md_assemble() by "is not a valid base/index expression" |
| when there is a base and/or index. */ |
| && !i.types[this_operand].bitfield.baseindex) |
| { |
| /* MPX insn memory operands with neither base nor index must be forced |
| to use 32-bit addressing in 16-bit mode. */ |
| addr_mode = CODE_32BIT; |
| i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE; |
| ++i.prefixes; |
| gas_assert (!i.types[this_operand].bitfield.disp16); |
| gas_assert (!i.types[this_operand].bitfield.disp32); |
| } |
| else |
| { |
| addr_mode = flag_code; |
| |
| #if INFER_ADDR_PREFIX |
| if (i.mem_operands == 0) |
| { |
| /* Infer address prefix from the first memory operand. */ |
| const reg_entry *addr_reg = i.base_reg; |
| |
| if (addr_reg == NULL) |
| addr_reg = i.index_reg; |
| |
| if (addr_reg) |
| { |
| if (addr_reg->reg_type.bitfield.dword) |
| addr_mode = CODE_32BIT; |
| else if (flag_code != CODE_64BIT |
| && addr_reg->reg_type.bitfield.word) |
| addr_mode = CODE_16BIT; |
| |
| if (addr_mode != flag_code) |
| { |
| i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE; |
| i.prefixes += 1; |
| /* Change the size of any displacement too. At most one |
| of Disp16 or Disp32 is set. |
| FIXME. There doesn't seem to be any real need for |
| separate Disp16 and Disp32 flags. The same goes for |
| Imm16 and Imm32. Removing them would probably clean |
| up the code quite a lot. */ |
| if (flag_code != CODE_64BIT |
| && (i.types[this_operand].bitfield.disp16 |
| || i.types[this_operand].bitfield.disp32)) |
| { |
| static const i386_operand_type disp16_32 = { |
| .bitfield = { .disp16 = 1, .disp32 = 1 } |
| }; |
| |
| i.types[this_operand] |
| = operand_type_xor (i.types[this_operand], disp16_32); |
| } |
| } |
| } |
| } |
| #endif |
| } |
| |
| return addr_mode; |
| } |
| |
| /* Make sure the memory operand we've been dealt is valid. |
| Return 1 on success, 0 on a failure. */ |
| |
| static int |
| i386_index_check (const char *operand_string) |
| { |
| const char *kind = "base/index"; |
| enum flag_code addr_mode = i386_addressing_mode (); |
| const insn_template *t = current_templates.end - 1; |
| |
| if (t->opcode_modifier.isstring) |
| { |
| /* Memory operands of string insns are special in that they only allow |
| a single register (rDI, rSI, or rBX) as their memory address. */ |
| const reg_entry *expected_reg; |
| static const char di_si[][2][4] = |
| { |
| { "esi", "edi" }, |
| { "si", "di" }, |
| { "rsi", "rdi" } |
| }; |
| static const char bx[][4] = { "ebx", "bx", "rbx" }; |
| |
| kind = "string address"; |
| |
| if (t->opcode_modifier.prefixok == PrefixRep) |
| { |
| int es_op = t->opcode_modifier.isstring - IS_STRING_ES_OP0; |
| int op = 0; |
| |
| if (!t->operand_types[0].bitfield.baseindex |
| || ((!i.mem_operands != !intel_syntax) |
| && t->operand_types[1].bitfield.baseindex)) |
| op = 1; |
| expected_reg |
| = (const reg_entry *) str_hash_find (reg_hash, |
| di_si[addr_mode][op == es_op]); |
| } |
| else |
| expected_reg |
| = (const reg_entry *)str_hash_find (reg_hash, bx[addr_mode]); |
| |
| if (i.base_reg != expected_reg |
| || i.index_reg |
| || operand_type_check (i.types[this_operand], disp)) |
| { |
| /* The second memory operand must have the same size as |
| the first one. */ |
| if (i.mem_operands |
| && i.base_reg |
| && !((addr_mode == CODE_64BIT |
| && i.base_reg->reg_type.bitfield.qword) |
| || (addr_mode == CODE_32BIT |
| ? i.base_reg->reg_type.bitfield.dword |
| : i.base_reg->reg_type.bitfield.word))) |
| goto bad_address; |
| |
| as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"), |
| operand_string, |
| intel_syntax ? '[' : '(', |
| register_prefix, |
| expected_reg->reg_name, |
| intel_syntax ? ']' : ')'); |
| return 1; |
| } |
| else |
| return 1; |
| |
| bad_address: |
| as_bad (_("`%s' is not a valid %s expression"), |
| operand_string, kind); |
| return 0; |
| } |
| else |
| { |
| t = current_templates.start; |
| |
| if (addr_mode != CODE_16BIT) |
| { |
| /* 32-bit/64-bit checks. */ |
| if (pp.disp_encoding == disp_encoding_16bit) |
| { |
| bad_disp: |
| as_bad (_("invalid `%s' prefix"), |
| addr_mode == CODE_16BIT ? "{disp32}" : "{disp16}"); |
| return 0; |
| } |
| |
| if ((i.base_reg |
| && ((addr_mode == CODE_64BIT |
| ? !i.base_reg->reg_type.bitfield.qword |
| : !i.base_reg->reg_type.bitfield.dword) |
| || (i.index_reg && i.base_reg->reg_num == RegIP) |
| || i.base_reg->reg_num == RegIZ)) |
| || (i.index_reg |
| && !i.index_reg->reg_type.bitfield.xmmword |
| && !i.index_reg->reg_type.bitfield.ymmword |
| && !i.index_reg->reg_type.bitfield.zmmword |
| && ((addr_mode == CODE_64BIT |
| ? !i.index_reg->reg_type.bitfield.qword |
| : !i.index_reg->reg_type.bitfield.dword) |
| || !i.index_reg->reg_type.bitfield.baseindex))) |
| goto bad_address; |
| |
| /* bndmk, bndldx, bndstx and mandatory non-vector SIB have special restrictions. */ |
| if (t->mnem_off == MN_bndmk |
| || t->mnem_off == MN_bndldx |
| || t->mnem_off == MN_bndstx |
| || t->opcode_modifier.sib == SIBMEM) |
| { |
| /* They cannot use RIP-relative addressing. */ |
| if (i.base_reg && i.base_reg->reg_num == RegIP) |
| { |
| as_bad (_("`%s' cannot be used here"), operand_string); |
| return 0; |
| } |
| |
| /* bndldx and bndstx ignore their scale factor. */ |
| if ((t->mnem_off == MN_bndldx || t->mnem_off == MN_bndstx) |
| && i.log2_scale_factor) |
| as_warn (_("register scaling is being ignored here")); |
| } |
| } |
| else |
| { |
| /* 16-bit checks. */ |
| if (pp.disp_encoding == disp_encoding_32bit) |
| goto bad_disp; |
| |
| if ((i.base_reg |
| && (!i.base_reg->reg_type.bitfield.word |
| || !i.base_reg->reg_type.bitfield.baseindex)) |
| || (i.index_reg |
| && (!i.index_reg->reg_type.bitfield.word |
| || !i.index_reg->reg_type.bitfield.baseindex |
| || !(i.base_reg |
| && i.base_reg->reg_num < 6 |
| && i.index_reg->reg_num >= 6 |
| && i.log2_scale_factor == 0)))) |
| goto bad_address; |
| } |
| } |
| return 1; |
| } |
| |
| /* Handle vector immediates. */ |
| |
| static int |
| RC_SAE_immediate (const char *imm_start) |
| { |
| const char *pstr = imm_start; |
| |
| if (*pstr != '{') |
| return 0; |
| |
| pstr++; |
| if (is_space_char (*pstr)) |
| pstr++; |
| |
| pstr = RC_SAE_specifier (pstr); |
| if (pstr == NULL) |
| return 0; |
| |
| if (is_space_char (*pstr)) |
| pstr++; |
| |
| if (*pstr++ != '}') |
| { |
| as_bad (_("Missing '}': '%s'"), imm_start); |
| return 0; |
| } |
| /* RC/SAE immediate string should contain nothing more. */; |
| if (*pstr != 0) |
| { |
| as_bad (_("Junk after '}': '%s'"), imm_start); |
| return 0; |
| } |
| |
| /* Internally this doesn't count as an operand. */ |
| --i.operands; |
| |
| return 1; |
| } |
| |
| static INLINE bool starts_memory_operand (char c) |
| { |
| return ISDIGIT (c) |
| || is_name_beginner (c) |
| || strchr ("([\"+-!~", c); |
| } |
| |
| /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero |
| on error. */ |
| |
| static int |
| i386_att_operand (char *operand_string) |
| { |
| const reg_entry *r; |
| char *end_op; |
| char *op_string = operand_string; |
| |
| if (is_space_char (*op_string)) |
| ++op_string; |
| |
| /* We check for an absolute prefix (differentiating, |
| for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */ |
| if (*op_string == ABSOLUTE_PREFIX |
| && current_templates.start->opcode_modifier.jump) |
| { |
| ++op_string; |
| if (is_space_char (*op_string)) |
| ++op_string; |
| i.jumpabsolute = true; |
| } |
| |
| /* Check if operand is a register. */ |
| if ((r = parse_register (op_string, &end_op)) != NULL) |
| { |
| i386_operand_type temp; |
| |
| if (r == &bad_reg) |
| return 0; |
| |
| /* Check for a segment override by searching for ':' after a |
| segment register. */ |
| op_string = end_op; |
| if (is_space_char (*op_string)) |
| ++op_string; |
| if (*op_string == ':' && r->reg_type.bitfield.class == SReg) |
| { |
| i.seg[i.mem_operands] = r; |
| |
| /* Skip the ':' and whitespace. */ |
|