| /* nto-tdep.c - general QNX Neutrino target functionality. | 
 |  | 
 |    Copyright (C) 2003-2022 Free Software Foundation, Inc. | 
 |  | 
 |    Contributed by QNX Software Systems Ltd. | 
 |  | 
 |    This file is part of GDB. | 
 |  | 
 |    This program is free software; you can redistribute it and/or modify | 
 |    it under the terms of the GNU General Public License as published by | 
 |    the Free Software Foundation; either version 3 of the License, or | 
 |    (at your option) any later version. | 
 |  | 
 |    This program is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |    GNU General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU General Public License | 
 |    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "defs.h" | 
 | #include <sys/stat.h> | 
 | #include "nto-tdep.h" | 
 | #include "top.h" | 
 | #include "inferior.h" | 
 | #include "infrun.h" | 
 | #include "gdbarch.h" | 
 | #include "bfd.h" | 
 | #include "elf-bfd.h" | 
 | #include "solib-svr4.h" | 
 | #include "gdbcore.h" | 
 | #include "objfiles.h" | 
 | #include "source.h" | 
 | #include "gdbsupport/pathstuff.h" | 
 |  | 
 | #define QNX_NOTE_NAME	"QNX" | 
 | #define QNX_INFO_SECT_NAME "QNX_info" | 
 |  | 
 | #ifdef __CYGWIN__ | 
 | #include <sys/cygwin.h> | 
 | #endif | 
 |  | 
 | #ifdef __CYGWIN__ | 
 | static char default_nto_target[] = "C:\\QNXsdk\\target\\qnx6"; | 
 | #elif defined(__sun__) || defined(linux) | 
 | static char default_nto_target[] = "/opt/QNXsdk/target/qnx6"; | 
 | #else | 
 | static char default_nto_target[] = ""; | 
 | #endif | 
 |  | 
 | struct nto_target_ops current_nto_target; | 
 |  | 
 | static const struct inferior_key<struct nto_inferior_data> | 
 |   nto_inferior_data_reg; | 
 |  | 
 | static char * | 
 | nto_target (void) | 
 | { | 
 |   char *p = getenv ("QNX_TARGET"); | 
 |  | 
 | #ifdef __CYGWIN__ | 
 |   static char buf[PATH_MAX]; | 
 |   if (p) | 
 |     cygwin_conv_path (CCP_WIN_A_TO_POSIX, p, buf, PATH_MAX); | 
 |   else | 
 |     cygwin_conv_path (CCP_WIN_A_TO_POSIX, default_nto_target, buf, PATH_MAX); | 
 |   return buf; | 
 | #else | 
 |   return p ? p : default_nto_target; | 
 | #endif | 
 | } | 
 |  | 
 | /* Take a string such as i386, rs6000, etc. and map it onto CPUTYPE_X86, | 
 |    CPUTYPE_PPC, etc. as defined in nto-share/dsmsgs.h.  */ | 
 | int | 
 | nto_map_arch_to_cputype (const char *arch) | 
 | { | 
 |   if (!strcmp (arch, "i386") || !strcmp (arch, "x86")) | 
 |     return CPUTYPE_X86; | 
 |   if (!strcmp (arch, "rs6000") || !strcmp (arch, "powerpc")) | 
 |     return CPUTYPE_PPC; | 
 |   if (!strcmp (arch, "mips")) | 
 |     return CPUTYPE_MIPS; | 
 |   if (!strcmp (arch, "arm")) | 
 |     return CPUTYPE_ARM; | 
 |   if (!strcmp (arch, "sh")) | 
 |     return CPUTYPE_SH; | 
 |   return CPUTYPE_UNKNOWN; | 
 | } | 
 |  | 
 | int | 
 | nto_find_and_open_solib (const char *solib, unsigned o_flags, | 
 | 			 gdb::unique_xmalloc_ptr<char> *temp_pathname) | 
 | { | 
 |   char *buf, *arch_path, *nto_root; | 
 |   const char *endian; | 
 |   const char *base; | 
 |   const char *arch; | 
 |   int arch_len, len, ret; | 
 | #define PATH_FMT \ | 
 |   "%s/lib:%s/usr/lib:%s/usr/photon/lib:%s/usr/photon/dll:%s/lib/dll" | 
 |  | 
 |   nto_root = nto_target (); | 
 |   if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, "i386") == 0) | 
 |     { | 
 |       arch = "x86"; | 
 |       endian = ""; | 
 |     } | 
 |   else if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, | 
 | 		   "rs6000") == 0 | 
 | 	   || strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, | 
 | 		   "powerpc") == 0) | 
 |     { | 
 |       arch = "ppc"; | 
 |       endian = "be"; | 
 |     } | 
 |   else | 
 |     { | 
 |       arch = gdbarch_bfd_arch_info (target_gdbarch ())->arch_name; | 
 |       endian = gdbarch_byte_order (target_gdbarch ()) | 
 | 	       == BFD_ENDIAN_BIG ? "be" : "le"; | 
 |     } | 
 |  | 
 |   /* In case nto_root is short, add strlen(solib) | 
 |      so we can reuse arch_path below.  */ | 
 |  | 
 |   arch_len = (strlen (nto_root) + strlen (arch) + strlen (endian) + 2 | 
 | 	      + strlen (solib)); | 
 |   arch_path = (char *) alloca (arch_len); | 
 |   xsnprintf (arch_path, arch_len, "%s/%s%s", nto_root, arch, endian); | 
 |  | 
 |   len = strlen (PATH_FMT) + strlen (arch_path) * 5 + 1; | 
 |   buf = (char *) alloca (len); | 
 |   xsnprintf (buf, len, PATH_FMT, arch_path, arch_path, arch_path, arch_path, | 
 | 	     arch_path); | 
 |  | 
 |   base = lbasename (solib); | 
 |   ret = openp (buf, OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, base, o_flags, | 
 | 	       temp_pathname); | 
 |   if (ret < 0 && base != solib) | 
 |     { | 
 |       xsnprintf (arch_path, arch_len, "/%s", solib); | 
 |       ret = open (arch_path, o_flags, 0); | 
 |       if (temp_pathname) | 
 | 	{ | 
 | 	  if (ret >= 0) | 
 | 	    *temp_pathname = gdb_realpath (arch_path); | 
 | 	  else | 
 | 	    temp_pathname->reset (NULL); | 
 | 	} | 
 |     } | 
 |   return ret; | 
 | } | 
 |  | 
 | void | 
 | nto_init_solib_absolute_prefix (void) | 
 | { | 
 |   char buf[PATH_MAX * 2], arch_path[PATH_MAX]; | 
 |   char *nto_root; | 
 |   const char *endian; | 
 |   const char *arch; | 
 |  | 
 |   nto_root = nto_target (); | 
 |   if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, "i386") == 0) | 
 |     { | 
 |       arch = "x86"; | 
 |       endian = ""; | 
 |     } | 
 |   else if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, | 
 | 		   "rs6000") == 0 | 
 | 	   || strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, | 
 | 		   "powerpc") == 0) | 
 |     { | 
 |       arch = "ppc"; | 
 |       endian = "be"; | 
 |     } | 
 |   else | 
 |     { | 
 |       arch = gdbarch_bfd_arch_info (target_gdbarch ())->arch_name; | 
 |       endian = gdbarch_byte_order (target_gdbarch ()) | 
 | 	       == BFD_ENDIAN_BIG ? "be" : "le"; | 
 |     } | 
 |  | 
 |   xsnprintf (arch_path, sizeof (arch_path), "%s/%s%s", nto_root, arch, endian); | 
 |  | 
 |   xsnprintf (buf, sizeof (buf), "set solib-absolute-prefix %s", arch_path); | 
 |   execute_command (buf, 0); | 
 | } | 
 |  | 
 | char ** | 
 | nto_parse_redirection (char *pargv[], const char **pin, const char **pout,  | 
 | 		       const char **perr) | 
 | { | 
 |   char **argv; | 
 |   const char *in, *out, *err, *p; | 
 |   int argc, i, n; | 
 |  | 
 |   for (n = 0; pargv[n]; n++); | 
 |   if (n == 0) | 
 |     return NULL; | 
 |   in = ""; | 
 |   out = ""; | 
 |   err = ""; | 
 |  | 
 |   argv = XCNEWVEC (char *, n + 1); | 
 |   argc = n; | 
 |   for (i = 0, n = 0; n < argc; n++) | 
 |     { | 
 |       p = pargv[n]; | 
 |       if (*p == '>') | 
 | 	{ | 
 | 	  p++; | 
 | 	  if (*p) | 
 | 	    out = p; | 
 | 	  else | 
 | 	    out = pargv[++n]; | 
 | 	} | 
 |       else if (*p == '<') | 
 | 	{ | 
 | 	  p++; | 
 | 	  if (*p) | 
 | 	    in = p; | 
 | 	  else | 
 | 	    in = pargv[++n]; | 
 | 	} | 
 |       else if (*p++ == '2' && *p++ == '>') | 
 | 	{ | 
 | 	  if (*p == '&' && *(p + 1) == '1') | 
 | 	    err = out; | 
 | 	  else if (*p) | 
 | 	    err = p; | 
 | 	  else | 
 | 	    err = pargv[++n]; | 
 | 	} | 
 |       else | 
 | 	argv[i++] = pargv[n]; | 
 |     } | 
 |   *pin = in; | 
 |   *pout = out; | 
 |   *perr = err; | 
 |   return argv; | 
 | } | 
 |  | 
 | static CORE_ADDR | 
 | lm_addr (struct so_list *so) | 
 | { | 
 |   lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; | 
 |  | 
 |   return li->l_addr; | 
 | } | 
 |  | 
 | static CORE_ADDR | 
 | nto_truncate_ptr (CORE_ADDR addr) | 
 | { | 
 |   if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8) | 
 |     /* We don't need to truncate anything, and the bit twiddling below | 
 |        will fail due to overflow problems.  */ | 
 |     return addr; | 
 |   else | 
 |     return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1); | 
 | } | 
 |  | 
 | static Elf_Internal_Phdr * | 
 | find_load_phdr (bfd *abfd) | 
 | { | 
 |   Elf_Internal_Phdr *phdr; | 
 |   unsigned int i; | 
 |  | 
 |   if (!elf_tdata (abfd)) | 
 |     return NULL; | 
 |  | 
 |   phdr = elf_tdata (abfd)->phdr; | 
 |   for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) | 
 |     { | 
 |       if (phdr->p_type == PT_LOAD && (phdr->p_flags & PF_X)) | 
 | 	return phdr; | 
 |     } | 
 |   return NULL; | 
 | } | 
 |  | 
 | void | 
 | nto_relocate_section_addresses (struct so_list *so, struct target_section *sec) | 
 | { | 
 |   /* Neutrino treats the l_addr base address field in link.h as different than | 
 |      the base address in the System V ABI and so the offset needs to be | 
 |      calculated and applied to relocations.  */ | 
 |   Elf_Internal_Phdr *phdr = find_load_phdr (sec->the_bfd_section->owner); | 
 |   unsigned vaddr = phdr ? phdr->p_vaddr : 0; | 
 |  | 
 |   sec->addr = nto_truncate_ptr (sec->addr + lm_addr (so) - vaddr); | 
 |   sec->endaddr = nto_truncate_ptr (sec->endaddr + lm_addr (so) - vaddr); | 
 | } | 
 |  | 
 | /* This is cheating a bit because our linker code is in libc.so.  If we | 
 |    ever implement lazy linking, this may need to be re-examined.  */ | 
 | int | 
 | nto_in_dynsym_resolve_code (CORE_ADDR pc) | 
 | { | 
 |   if (in_plt_section (pc)) | 
 |     return 1; | 
 |   return 0; | 
 | } | 
 |  | 
 | void | 
 | nto_dummy_supply_regset (struct regcache *regcache, char *regs) | 
 | { | 
 |   /* Do nothing.  */ | 
 | } | 
 |  | 
 | static void | 
 | nto_sniff_abi_note_section (bfd *abfd, asection *sect, void *obj) | 
 | { | 
 |   const char *sectname; | 
 |   unsigned int sectsize; | 
 |   /* Buffer holding the section contents.  */ | 
 |   char *note; | 
 |   unsigned int namelen; | 
 |   const char *name; | 
 |   const unsigned sizeof_Elf_Nhdr = 12; | 
 |  | 
 |   sectname = bfd_section_name (sect); | 
 |   sectsize = bfd_section_size (sect); | 
 |  | 
 |   if (sectsize > 128) | 
 |     sectsize = 128; | 
 |  | 
 |   if (sectname != NULL && strstr (sectname, QNX_INFO_SECT_NAME) != NULL) | 
 |     *(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO; | 
 |   else if (sectname != NULL && strstr (sectname, "note") != NULL | 
 | 	   && sectsize > sizeof_Elf_Nhdr) | 
 |     { | 
 |       note = XNEWVEC (char, sectsize); | 
 |       bfd_get_section_contents (abfd, sect, note, 0, sectsize); | 
 |       namelen = (unsigned int) bfd_h_get_32 (abfd, note); | 
 |       name = note + sizeof_Elf_Nhdr; | 
 |       if (sectsize >= namelen + sizeof_Elf_Nhdr | 
 | 	  && namelen == sizeof (QNX_NOTE_NAME) | 
 | 	  && 0 == strcmp (name, QNX_NOTE_NAME)) | 
 | 	*(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO; | 
 |  | 
 |       XDELETEVEC (note); | 
 |     } | 
 | } | 
 |  | 
 | enum gdb_osabi | 
 | nto_elf_osabi_sniffer (bfd *abfd) | 
 | { | 
 |   enum gdb_osabi osabi = GDB_OSABI_UNKNOWN; | 
 |  | 
 |   bfd_map_over_sections (abfd, | 
 | 			 nto_sniff_abi_note_section, | 
 | 			 &osabi); | 
 |  | 
 |   return osabi; | 
 | } | 
 |  | 
 | static const char * const nto_thread_state_str[] = | 
 | { | 
 |   "DEAD",		/* 0  0x00 */ | 
 |   "RUNNING",	/* 1  0x01 */ | 
 |   "READY",	/* 2  0x02 */ | 
 |   "STOPPED",	/* 3  0x03 */ | 
 |   "SEND",		/* 4  0x04 */ | 
 |   "RECEIVE",	/* 5  0x05 */ | 
 |   "REPLY",	/* 6  0x06 */ | 
 |   "STACK",	/* 7  0x07 */ | 
 |   "WAITTHREAD",	/* 8  0x08 */ | 
 |   "WAITPAGE",	/* 9  0x09 */ | 
 |   "SIGSUSPEND",	/* 10 0x0a */ | 
 |   "SIGWAITINFO",	/* 11 0x0b */ | 
 |   "NANOSLEEP",	/* 12 0x0c */ | 
 |   "MUTEX",	/* 13 0x0d */ | 
 |   "CONDVAR",	/* 14 0x0e */ | 
 |   "JOIN",		/* 15 0x0f */ | 
 |   "INTR",		/* 16 0x10 */ | 
 |   "SEM",		/* 17 0x11 */ | 
 |   "WAITCTX",	/* 18 0x12 */ | 
 |   "NET_SEND",	/* 19 0x13 */ | 
 |   "NET_REPLY"	/* 20 0x14 */ | 
 | }; | 
 |  | 
 | const char * | 
 | nto_extra_thread_info (struct target_ops *self, struct thread_info *ti) | 
 | { | 
 |   if (ti != NULL && ti->priv != NULL) | 
 |     { | 
 |       nto_thread_info *priv = get_nto_thread_info (ti); | 
 |  | 
 |       if (priv->state < ARRAY_SIZE (nto_thread_state_str)) | 
 | 	return nto_thread_state_str [priv->state]; | 
 |     } | 
 |   return ""; | 
 | } | 
 |  | 
 | void | 
 | nto_initialize_signals (void) | 
 | { | 
 |   /* We use SIG45 for pulses, or something, so nostop, noprint | 
 |      and pass them.  */ | 
 |   signal_stop_update (gdb_signal_from_name ("SIG45"), 0); | 
 |   signal_print_update (gdb_signal_from_name ("SIG45"), 0); | 
 |   signal_pass_update (gdb_signal_from_name ("SIG45"), 1); | 
 |  | 
 |   /* By default we don't want to stop on these two, but we do want to pass.  */ | 
 | #if defined(SIGSELECT) | 
 |   signal_stop_update (SIGSELECT, 0); | 
 |   signal_print_update (SIGSELECT, 0); | 
 |   signal_pass_update (SIGSELECT, 1); | 
 | #endif | 
 |  | 
 | #if defined(SIGPHOTON) | 
 |   signal_stop_update (SIGPHOTON, 0); | 
 |   signal_print_update (SIGPHOTON, 0); | 
 |   signal_pass_update (SIGPHOTON, 1); | 
 | #endif | 
 | } | 
 |  | 
 | /* Read AUXV from initial_stack.  */ | 
 | LONGEST | 
 | nto_read_auxv_from_initial_stack (CORE_ADDR initial_stack, gdb_byte *readbuf, | 
 | 				  LONGEST len, size_t sizeof_auxv_t) | 
 | { | 
 |   gdb_byte targ32[4]; /* For 32 bit target values.  */ | 
 |   gdb_byte targ64[8]; /* For 64 bit target values.  */ | 
 |   CORE_ADDR data_ofs = 0; | 
 |   ULONGEST anint; | 
 |   LONGEST len_read = 0; | 
 |   gdb_byte *buff; | 
 |   enum bfd_endian byte_order; | 
 |   int ptr_size; | 
 |  | 
 |   if (sizeof_auxv_t == 16) | 
 |     ptr_size = 8; | 
 |   else | 
 |     ptr_size = 4; | 
 |  | 
 |   /* Skip over argc, argv and envp... Comment from ldd.c: | 
 |  | 
 |      The startup frame is set-up so that we have: | 
 |      auxv | 
 |      NULL | 
 |      ... | 
 |      envp2 | 
 |      envp1 <----- void *frame + (argc + 2) * sizeof(char *) | 
 |      NULL | 
 |      ... | 
 |      argv2 | 
 |      argv1 | 
 |      argc  <------ void * frame | 
 |  | 
 |      On entry to ldd, frame gives the address of argc on the stack.  */ | 
 |   /* Read argc. 4 bytes on both 64 and 32 bit arches and luckily little | 
 |    * endian. So we just read first 4 bytes.  */ | 
 |   if (target_read_memory (initial_stack + data_ofs, targ32, 4) != 0) | 
 |     return 0; | 
 |  | 
 |   byte_order = gdbarch_byte_order (target_gdbarch ()); | 
 |  | 
 |   anint = extract_unsigned_integer (targ32, sizeof (targ32), byte_order); | 
 |  | 
 |   /* Size of pointer is assumed to be 4 bytes (32 bit arch.) */ | 
 |   data_ofs += (anint + 2) * ptr_size; /* + 2 comes from argc itself and | 
 | 						NULL terminating pointer in | 
 | 						argv.  */ | 
 |  | 
 |   /* Now loop over env table:  */ | 
 |   anint = 0; | 
 |   while (target_read_memory (initial_stack + data_ofs, targ64, ptr_size) | 
 | 	 == 0) | 
 |     { | 
 |       if (extract_unsigned_integer (targ64, ptr_size, byte_order) == 0) | 
 | 	anint = 1; /* Keep looping until non-null entry is found.  */ | 
 |       else if (anint) | 
 | 	break; | 
 |       data_ofs += ptr_size; | 
 |     } | 
 |   initial_stack += data_ofs; | 
 |  | 
 |   memset (readbuf, 0, len); | 
 |   buff = readbuf; | 
 |   while (len_read <= len-sizeof_auxv_t) | 
 |     { | 
 |       if (target_read_memory (initial_stack + len_read, buff, sizeof_auxv_t) | 
 | 	  == 0) | 
 | 	{ | 
 | 	  /* Both 32 and 64 bit structures have int as the first field.  */ | 
 | 	  const ULONGEST a_type | 
 | 	    = extract_unsigned_integer (buff, sizeof (targ32), byte_order); | 
 |  | 
 | 	  if (a_type == AT_NULL) | 
 | 	    break; | 
 | 	  buff += sizeof_auxv_t; | 
 | 	  len_read += sizeof_auxv_t; | 
 | 	} | 
 |       else | 
 | 	break; | 
 |     } | 
 |   return len_read; | 
 | } | 
 |  | 
 | /* Return nto_inferior_data for the given INFERIOR.  If not yet created, | 
 |    construct it.  */ | 
 |  | 
 | struct nto_inferior_data * | 
 | nto_inferior_data (struct inferior *const inferior) | 
 | { | 
 |   struct inferior *const inf = inferior ? inferior : current_inferior (); | 
 |   struct nto_inferior_data *inf_data; | 
 |  | 
 |   gdb_assert (inf != NULL); | 
 |  | 
 |   inf_data = nto_inferior_data_reg.get (inf); | 
 |   if (inf_data == NULL) | 
 |     inf_data = nto_inferior_data_reg.emplace (inf); | 
 |  | 
 |   return inf_data; | 
 | } |