| ///////////////////////// ankerl::unordered_dense::{map, set} ///////////////////////// | 
 |  | 
 | // A fast & densely stored hashmap and hashset based on robin-hood backward shift deletion. | 
 | // Version 4.4.0 | 
 | // https://github.com/martinus/unordered_dense | 
 | // | 
 | // Licensed under the MIT License <http://opensource.org/licenses/MIT>. | 
 | // SPDX-License-Identifier: MIT | 
 | // Copyright (c) 2022-2023 Martin Leitner-Ankerl <martin.ankerl@gmail.com> | 
 | // | 
 | // Permission is hereby granted, free of charge, to any person obtaining a copy | 
 | // of this software and associated documentation files (the "Software"), to deal | 
 | // in the Software without restriction, including without limitation the rights | 
 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
 | // copies of the Software, and to permit persons to whom the Software is | 
 | // furnished to do so, subject to the following conditions: | 
 | // | 
 | // The above copyright notice and this permission notice shall be included in all | 
 | // copies or substantial portions of the Software. | 
 | // | 
 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | 
 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
 | // SOFTWARE. | 
 |  | 
 | #ifndef ANKERL_UNORDERED_DENSE_H | 
 | #define ANKERL_UNORDERED_DENSE_H | 
 |  | 
 | // see https://semver.org/spec/v2.0.0.html | 
 | #define ANKERL_UNORDERED_DENSE_VERSION_MAJOR 4 // NOLINT(cppcoreguidelines-macro-usage) incompatible API changes | 
 | #define ANKERL_UNORDERED_DENSE_VERSION_MINOR 4 // NOLINT(cppcoreguidelines-macro-usage) backwards compatible functionality | 
 | #define ANKERL_UNORDERED_DENSE_VERSION_PATCH 0 // NOLINT(cppcoreguidelines-macro-usage) backwards compatible bug fixes | 
 |  | 
 | // API versioning with inline namespace, see https://www.foonathan.net/2018/11/inline-namespaces/ | 
 |  | 
 | // NOLINTNEXTLINE(cppcoreguidelines-macro-usage) | 
 | #define ANKERL_UNORDERED_DENSE_VERSION_CONCAT1(major, minor, patch) v##major##_##minor##_##patch | 
 | // NOLINTNEXTLINE(cppcoreguidelines-macro-usage) | 
 | #define ANKERL_UNORDERED_DENSE_VERSION_CONCAT(major, minor, patch) ANKERL_UNORDERED_DENSE_VERSION_CONCAT1(major, minor, patch) | 
 | #define ANKERL_UNORDERED_DENSE_NAMESPACE   \ | 
 |     ANKERL_UNORDERED_DENSE_VERSION_CONCAT( \ | 
 |         ANKERL_UNORDERED_DENSE_VERSION_MAJOR, ANKERL_UNORDERED_DENSE_VERSION_MINOR, ANKERL_UNORDERED_DENSE_VERSION_PATCH) | 
 |  | 
 | #if defined(_MSVC_LANG) | 
 | #    define ANKERL_UNORDERED_DENSE_CPP_VERSION _MSVC_LANG | 
 | #else | 
 | #    define ANKERL_UNORDERED_DENSE_CPP_VERSION __cplusplus | 
 | #endif | 
 |  | 
 | #if defined(__GNUC__) | 
 | // NOLINTNEXTLINE(cppcoreguidelines-macro-usage) | 
 | #    define ANKERL_UNORDERED_DENSE_PACK(decl) decl __attribute__((__packed__)) | 
 | #elif defined(_MSC_VER) | 
 | // NOLINTNEXTLINE(cppcoreguidelines-macro-usage) | 
 | #    define ANKERL_UNORDERED_DENSE_PACK(decl) __pragma(pack(push, 1)) decl __pragma(pack(pop)) | 
 | #endif | 
 |  | 
 | // exceptions | 
 | #if defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND) | 
 | #    define ANKERL_UNORDERED_DENSE_HAS_EXCEPTIONS() 1 // NOLINT(cppcoreguidelines-macro-usage) | 
 | #else | 
 | #    define ANKERL_UNORDERED_DENSE_HAS_EXCEPTIONS() 0 // NOLINT(cppcoreguidelines-macro-usage) | 
 | #endif | 
 | #ifdef _MSC_VER | 
 | #    define ANKERL_UNORDERED_DENSE_NOINLINE __declspec(noinline) | 
 | #else | 
 | #    define ANKERL_UNORDERED_DENSE_NOINLINE __attribute__((noinline)) | 
 | #endif | 
 |  | 
 | // defined in unordered_dense.cpp | 
 | #if !defined(ANKERL_UNORDERED_DENSE_EXPORT) | 
 | #    define ANKERL_UNORDERED_DENSE_EXPORT | 
 | #endif | 
 |  | 
 | #if ANKERL_UNORDERED_DENSE_CPP_VERSION < 201703L | 
 | #    error ankerl::unordered_dense requires C++17 or higher | 
 | #else | 
 | #    include <array>            // for array | 
 | #    include <cstdint>          // for uint64_t, uint32_t, uint8_t, UINT64_C | 
 | #    include <cstring>          // for size_t, memcpy, memset | 
 | #    include <functional>       // for equal_to, hash | 
 | #    include <initializer_list> // for initializer_list | 
 | #    include <iterator>         // for pair, distance | 
 | #    include <limits>           // for numeric_limits | 
 | #    include <memory>           // for allocator, allocator_traits, shared_ptr | 
 | #    include <optional>         // for optional | 
 | #    include <stdexcept>        // for out_of_range | 
 | #    include <string>           // for basic_string | 
 | #    include <string_view>      // for basic_string_view, hash | 
 | #    include <tuple>            // for forward_as_tuple | 
 | #    include <type_traits>      // for enable_if_t, declval, conditional_t, ena... | 
 | #    include <utility>          // for forward, exchange, pair, as_const, piece... | 
 | #    include <vector>           // for vector | 
 | #    if ANKERL_UNORDERED_DENSE_HAS_EXCEPTIONS() == 0 | 
 | #        include <cstdlib> // for abort | 
 | #    endif | 
 |  | 
 | #    if defined(__has_include) | 
 | #        if __has_include(<memory_resource>) | 
 | #            define ANKERL_UNORDERED_DENSE_PMR std::pmr // NOLINT(cppcoreguidelines-macro-usage) | 
 | #            include <memory_resource>                  // for polymorphic_allocator | 
 | #        elif __has_include(<experimental/memory_resource>) | 
 | #            define ANKERL_UNORDERED_DENSE_PMR std::experimental::pmr // NOLINT(cppcoreguidelines-macro-usage) | 
 | #            include <experimental/memory_resource>                   // for polymorphic_allocator | 
 | #        endif | 
 | #    endif | 
 |  | 
 | #    if defined(_MSC_VER) && defined(_M_X64) | 
 | #        include <intrin.h> | 
 | #        pragma intrinsic(_umul128) | 
 | #    endif | 
 |  | 
 | #    if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__) | 
 | #        define ANKERL_UNORDERED_DENSE_LIKELY(x) __builtin_expect(x, 1)   // NOLINT(cppcoreguidelines-macro-usage) | 
 | #        define ANKERL_UNORDERED_DENSE_UNLIKELY(x) __builtin_expect(x, 0) // NOLINT(cppcoreguidelines-macro-usage) | 
 | #    else | 
 | #        define ANKERL_UNORDERED_DENSE_LIKELY(x) (x)   // NOLINT(cppcoreguidelines-macro-usage) | 
 | #        define ANKERL_UNORDERED_DENSE_UNLIKELY(x) (x) // NOLINT(cppcoreguidelines-macro-usage) | 
 | #    endif | 
 |  | 
 | namespace ankerl::unordered_dense { | 
 | inline namespace ANKERL_UNORDERED_DENSE_NAMESPACE { | 
 |  | 
 | namespace detail { | 
 |  | 
 | #    if ANKERL_UNORDERED_DENSE_HAS_EXCEPTIONS() | 
 |  | 
 | // make sure this is not inlined as it is slow and dramatically enlarges code, thus making other | 
 | // inlinings more difficult. Throws are also generally the slow path. | 
 | [[noreturn]] inline ANKERL_UNORDERED_DENSE_NOINLINE void on_error_key_not_found() { | 
 |     throw std::out_of_range("ankerl::unordered_dense::map::at(): key not found"); | 
 | } | 
 | [[noreturn]] inline ANKERL_UNORDERED_DENSE_NOINLINE void on_error_bucket_overflow() { | 
 |     throw std::overflow_error("ankerl::unordered_dense: reached max bucket size, cannot increase size"); | 
 | } | 
 | [[noreturn]] inline ANKERL_UNORDERED_DENSE_NOINLINE void on_error_too_many_elements() { | 
 |     throw std::out_of_range("ankerl::unordered_dense::map::replace(): too many elements"); | 
 | } | 
 |  | 
 | #    else | 
 |  | 
 | [[noreturn]] inline void on_error_key_not_found() { | 
 |     abort(); | 
 | } | 
 | [[noreturn]] inline void on_error_bucket_overflow() { | 
 |     abort(); | 
 | } | 
 | [[noreturn]] inline void on_error_too_many_elements() { | 
 |     abort(); | 
 | } | 
 |  | 
 | #    endif | 
 |  | 
 | } // namespace detail | 
 |  | 
 | // hash /////////////////////////////////////////////////////////////////////// | 
 |  | 
 | // This is a stripped-down implementation of wyhash: https://github.com/wangyi-fudan/wyhash | 
 | // No big-endian support (because different values on different machines don't matter), | 
 | // hardcodes seed and the secret, reformats the code, and clang-tidy fixes. | 
 | namespace detail::wyhash { | 
 |  | 
 | inline void mum(uint64_t* a, uint64_t* b) { | 
 | #    if defined(__SIZEOF_INT128__) | 
 |     __uint128_t r = *a; | 
 |     r *= *b; | 
 |     *a = static_cast<uint64_t>(r); | 
 |     *b = static_cast<uint64_t>(r >> 64U); | 
 | #    elif defined(_MSC_VER) && defined(_M_X64) | 
 |     *a = _umul128(*a, *b, b); | 
 | #    else | 
 |     uint64_t ha = *a >> 32U; | 
 |     uint64_t hb = *b >> 32U; | 
 |     uint64_t la = static_cast<uint32_t>(*a); | 
 |     uint64_t lb = static_cast<uint32_t>(*b); | 
 |     uint64_t hi{}; | 
 |     uint64_t lo{}; | 
 |     uint64_t rh = ha * hb; | 
 |     uint64_t rm0 = ha * lb; | 
 |     uint64_t rm1 = hb * la; | 
 |     uint64_t rl = la * lb; | 
 |     uint64_t t = rl + (rm0 << 32U); | 
 |     auto c = static_cast<uint64_t>(t < rl); | 
 |     lo = t + (rm1 << 32U); | 
 |     c += static_cast<uint64_t>(lo < t); | 
 |     hi = rh + (rm0 >> 32U) + (rm1 >> 32U) + c; | 
 |     *a = lo; | 
 |     *b = hi; | 
 | #    endif | 
 | } | 
 |  | 
 | // multiply and xor mix function, aka MUM | 
 | [[nodiscard]] inline auto mix(uint64_t a, uint64_t b) -> uint64_t { | 
 |     mum(&a, &b); | 
 |     return a ^ b; | 
 | } | 
 |  | 
 | // read functions. WARNING: we don't care about endianness, so results are different on big endian! | 
 | [[nodiscard]] inline auto r8(const uint8_t* p) -> uint64_t { | 
 |     uint64_t v{}; | 
 |     std::memcpy(&v, p, 8U); | 
 |     return v; | 
 | } | 
 |  | 
 | [[nodiscard]] inline auto r4(const uint8_t* p) -> uint64_t { | 
 |     uint32_t v{}; | 
 |     std::memcpy(&v, p, 4); | 
 |     return v; | 
 | } | 
 |  | 
 | // reads 1, 2, or 3 bytes | 
 | [[nodiscard]] inline auto r3(const uint8_t* p, size_t k) -> uint64_t { | 
 |     return (static_cast<uint64_t>(p[0]) << 16U) | (static_cast<uint64_t>(p[k >> 1U]) << 8U) | p[k - 1]; | 
 | } | 
 |  | 
 | [[maybe_unused]] [[nodiscard]] inline auto hash(void const* key, size_t len) -> uint64_t { | 
 |     static constexpr auto secret = std::array{UINT64_C(0xa0761d6478bd642f), | 
 |                                               UINT64_C(0xe7037ed1a0b428db), | 
 |                                               UINT64_C(0x8ebc6af09c88c6e3), | 
 |                                               UINT64_C(0x589965cc75374cc3)}; | 
 |  | 
 |     auto const* p = static_cast<uint8_t const*>(key); | 
 |     uint64_t seed = secret[0]; | 
 |     uint64_t a{}; | 
 |     uint64_t b{}; | 
 |     if (ANKERL_UNORDERED_DENSE_LIKELY(len <= 16)) { | 
 |         if (ANKERL_UNORDERED_DENSE_LIKELY(len >= 4)) { | 
 |             a = (r4(p) << 32U) | r4(p + ((len >> 3U) << 2U)); | 
 |             b = (r4(p + len - 4) << 32U) | r4(p + len - 4 - ((len >> 3U) << 2U)); | 
 |         } else if (ANKERL_UNORDERED_DENSE_LIKELY(len > 0)) { | 
 |             a = r3(p, len); | 
 |             b = 0; | 
 |         } else { | 
 |             a = 0; | 
 |             b = 0; | 
 |         } | 
 |     } else { | 
 |         size_t i = len; | 
 |         if (ANKERL_UNORDERED_DENSE_UNLIKELY(i > 48)) { | 
 |             uint64_t see1 = seed; | 
 |             uint64_t see2 = seed; | 
 |             do { | 
 |                 seed = mix(r8(p) ^ secret[1], r8(p + 8) ^ seed); | 
 |                 see1 = mix(r8(p + 16) ^ secret[2], r8(p + 24) ^ see1); | 
 |                 see2 = mix(r8(p + 32) ^ secret[3], r8(p + 40) ^ see2); | 
 |                 p += 48; | 
 |                 i -= 48; | 
 |             } while (ANKERL_UNORDERED_DENSE_LIKELY(i > 48)); | 
 |             seed ^= see1 ^ see2; | 
 |         } | 
 |         while (ANKERL_UNORDERED_DENSE_UNLIKELY(i > 16)) { | 
 |             seed = mix(r8(p) ^ secret[1], r8(p + 8) ^ seed); | 
 |             i -= 16; | 
 |             p += 16; | 
 |         } | 
 |         a = r8(p + i - 16); | 
 |         b = r8(p + i - 8); | 
 |     } | 
 |  | 
 |     return mix(secret[1] ^ len, mix(a ^ secret[1], b ^ seed)); | 
 | } | 
 |  | 
 | [[nodiscard]] inline auto hash(uint64_t x) -> uint64_t { | 
 |     return detail::wyhash::mix(x, UINT64_C(0x9E3779B97F4A7C15)); | 
 | } | 
 |  | 
 | } /* namespace detail::wyhash */ | 
 |  | 
 | ANKERL_UNORDERED_DENSE_EXPORT template <typename T, typename Enable = void> | 
 | struct hash { | 
 |     auto operator()(T const& obj) const noexcept(noexcept(std::declval<std::hash<T>>().operator()(std::declval<T const&>()))) | 
 |         -> uint64_t { | 
 |         return std::hash<T>{}(obj); | 
 |     } | 
 | }; | 
 |  | 
 | template <typename CharT> | 
 | struct hash<std::basic_string<CharT>> { | 
 |     using is_avalanching = void; | 
 |     auto operator()(std::basic_string<CharT> const& str) const noexcept -> uint64_t { | 
 |         return detail::wyhash::hash(str.data(), sizeof(CharT) * str.size()); | 
 |     } | 
 | }; | 
 |  | 
 | template <typename CharT> | 
 | struct hash<std::basic_string_view<CharT>> { | 
 |     using is_avalanching = void; | 
 |     auto operator()(std::basic_string_view<CharT> const& sv) const noexcept -> uint64_t { | 
 |         return detail::wyhash::hash(sv.data(), sizeof(CharT) * sv.size()); | 
 |     } | 
 | }; | 
 |  | 
 | template <class T> | 
 | struct hash<T*> { | 
 |     using is_avalanching = void; | 
 |     auto operator()(T* ptr) const noexcept -> uint64_t { | 
 |         // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) | 
 |         return detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr)); | 
 |     } | 
 | }; | 
 |  | 
 | template <class T> | 
 | struct hash<std::unique_ptr<T>> { | 
 |     using is_avalanching = void; | 
 |     auto operator()(std::unique_ptr<T> const& ptr) const noexcept -> uint64_t { | 
 |         // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) | 
 |         return detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr.get())); | 
 |     } | 
 | }; | 
 |  | 
 | template <class T> | 
 | struct hash<std::shared_ptr<T>> { | 
 |     using is_avalanching = void; | 
 |     auto operator()(std::shared_ptr<T> const& ptr) const noexcept -> uint64_t { | 
 |         // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) | 
 |         return detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr.get())); | 
 |     } | 
 | }; | 
 |  | 
 | template <typename Enum> | 
 | struct hash<Enum, typename std::enable_if<std::is_enum<Enum>::value>::type> { | 
 |     using is_avalanching = void; | 
 |     auto operator()(Enum e) const noexcept -> uint64_t { | 
 |         using underlying = typename std::underlying_type_t<Enum>; | 
 |         return detail::wyhash::hash(static_cast<underlying>(e)); | 
 |     } | 
 | }; | 
 |  | 
 | template <typename... Args> | 
 | struct tuple_hash_helper { | 
 |     // Converts the value into 64bit. If it is an integral type, just cast it. Mixing is doing the rest. | 
 |     // If it isn't an integral we need to hash it. | 
 |     template <typename Arg> | 
 |     [[nodiscard]] constexpr static auto to64(Arg const& arg) -> uint64_t { | 
 |         if constexpr (std::is_integral_v<Arg> || std::is_enum_v<Arg>) { | 
 |             return static_cast<uint64_t>(arg); | 
 |         } else { | 
 |             return hash<Arg>{}(arg); | 
 |         } | 
 |     } | 
 |  | 
 |     [[nodiscard]] static auto mix64(uint64_t state, uint64_t v) -> uint64_t { | 
 |         return detail::wyhash::mix(state + v, uint64_t{0x9ddfea08eb382d69}); | 
 |     } | 
 |  | 
 |     // Creates a buffer that holds all the data from each element of the tuple. If possible we memcpy the data directly. If | 
 |     // not, we hash the object and use this for the array. Size of the array is known at compile time, and memcpy is optimized | 
 |     // away, so filling the buffer is highly efficient. Finally, call wyhash with this buffer. | 
 |     template <typename T, std::size_t... Idx> | 
 |     [[nodiscard]] static auto calc_hash(T const& t, std::index_sequence<Idx...>) noexcept -> uint64_t { | 
 |         auto h = uint64_t{}; | 
 |         ((h = mix64(h, to64(std::get<Idx>(t)))), ...); | 
 |         return h; | 
 |     } | 
 | }; | 
 |  | 
 | template <typename... Args> | 
 | struct hash<std::tuple<Args...>> : tuple_hash_helper<Args...> { | 
 |     using is_avalanching = void; | 
 |     auto operator()(std::tuple<Args...> const& t) const noexcept -> uint64_t { | 
 |         return tuple_hash_helper<Args...>::calc_hash(t, std::index_sequence_for<Args...>{}); | 
 |     } | 
 | }; | 
 |  | 
 | template <typename A, typename B> | 
 | struct hash<std::pair<A, B>> : tuple_hash_helper<A, B> { | 
 |     using is_avalanching = void; | 
 |     auto operator()(std::pair<A, B> const& t) const noexcept -> uint64_t { | 
 |         return tuple_hash_helper<A, B>::calc_hash(t, std::index_sequence_for<A, B>{}); | 
 |     } | 
 | }; | 
 |  | 
 | // NOLINTNEXTLINE(cppcoreguidelines-macro-usage) | 
 | #    define ANKERL_UNORDERED_DENSE_HASH_STATICCAST(T)                    \ | 
 |         template <>                                                      \ | 
 |         struct hash<T> {                                                 \ | 
 |             using is_avalanching = void;                                 \ | 
 |             auto operator()(T const& obj) const noexcept -> uint64_t {   \ | 
 |                 return detail::wyhash::hash(static_cast<uint64_t>(obj)); \ | 
 |             }                                                            \ | 
 |         } | 
 |  | 
 | #    if defined(__GNUC__) && !defined(__clang__) | 
 | #        pragma GCC diagnostic push | 
 | #        pragma GCC diagnostic ignored "-Wuseless-cast" | 
 | #    endif | 
 | // see https://en.cppreference.com/w/cpp/utility/hash | 
 | ANKERL_UNORDERED_DENSE_HASH_STATICCAST(bool); | 
 | ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char); | 
 | ANKERL_UNORDERED_DENSE_HASH_STATICCAST(signed char); | 
 | ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned char); | 
 | #    if ANKERL_UNORDERED_DENSE_CPP_VERSION >= 202002L && defined(__cpp_char8_t) | 
 | ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char8_t); | 
 | #    endif | 
 | ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char16_t); | 
 | ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char32_t); | 
 | ANKERL_UNORDERED_DENSE_HASH_STATICCAST(wchar_t); | 
 | ANKERL_UNORDERED_DENSE_HASH_STATICCAST(short); | 
 | ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned short); | 
 | ANKERL_UNORDERED_DENSE_HASH_STATICCAST(int); | 
 | ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned int); | 
 | ANKERL_UNORDERED_DENSE_HASH_STATICCAST(long); | 
 | ANKERL_UNORDERED_DENSE_HASH_STATICCAST(long long); | 
 | ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned long); | 
 | ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned long long); | 
 |  | 
 | #    if defined(__GNUC__) && !defined(__clang__) | 
 | #        pragma GCC diagnostic pop | 
 | #    endif | 
 |  | 
 | // bucket_type ////////////////////////////////////////////////////////// | 
 |  | 
 | namespace bucket_type { | 
 |  | 
 | struct standard { | 
 |     static constexpr uint32_t dist_inc = 1U << 8U;             // skip 1 byte fingerprint | 
 |     static constexpr uint32_t fingerprint_mask = dist_inc - 1; // mask for 1 byte of fingerprint | 
 |  | 
 |     uint32_t m_dist_and_fingerprint; // upper 3 byte: distance to original bucket. lower byte: fingerprint from hash | 
 |     uint32_t m_value_idx;            // index into the m_values vector. | 
 | }; | 
 |  | 
 | ANKERL_UNORDERED_DENSE_PACK(struct big { | 
 |     static constexpr uint32_t dist_inc = 1U << 8U;             // skip 1 byte fingerprint | 
 |     static constexpr uint32_t fingerprint_mask = dist_inc - 1; // mask for 1 byte of fingerprint | 
 |  | 
 |     uint32_t m_dist_and_fingerprint; // upper 3 byte: distance to original bucket. lower byte: fingerprint from hash | 
 |     size_t m_value_idx;              // index into the m_values vector. | 
 | }); | 
 |  | 
 | } /* namespace bucket_type */ | 
 |  | 
 | namespace detail { | 
 |  | 
 | struct nonesuch {}; | 
 |  | 
 | template <class Default, class AlwaysVoid, template <class...> class Op, class... Args> | 
 | struct detector { | 
 |     using value_t = std::false_type; | 
 |     using type = Default; | 
 | }; | 
 |  | 
 | template <class Default, template <class...> class Op, class... Args> | 
 | struct detector<Default, std::void_t<Op<Args...>>, Op, Args...> { | 
 |     using value_t = std::true_type; | 
 |     using type = Op<Args...>; | 
 | }; | 
 |  | 
 | template <template <class...> class Op, class... Args> | 
 | using is_detected = typename detail::detector<detail::nonesuch, void, Op, Args...>::value_t; | 
 |  | 
 | template <template <class...> class Op, class... Args> | 
 | constexpr bool is_detected_v = is_detected<Op, Args...>::value; | 
 |  | 
 | template <typename T> | 
 | using detect_avalanching = typename T::is_avalanching; | 
 |  | 
 | template <typename T> | 
 | using detect_is_transparent = typename T::is_transparent; | 
 |  | 
 | template <typename T> | 
 | using detect_iterator = typename T::iterator; | 
 |  | 
 | template <typename T> | 
 | using detect_reserve = decltype(std::declval<T&>().reserve(size_t{})); | 
 |  | 
 | // enable_if helpers | 
 |  | 
 | template <typename Mapped> | 
 | constexpr bool is_map_v = !std::is_void_v<Mapped>; | 
 |  | 
 | // clang-format off | 
 | template <typename Hash, typename KeyEqual> | 
 | constexpr bool is_transparent_v = is_detected_v<detect_is_transparent, Hash> && is_detected_v<detect_is_transparent, KeyEqual>; | 
 | // clang-format on | 
 |  | 
 | template <typename From, typename To1, typename To2> | 
 | constexpr bool is_neither_convertible_v = !std::is_convertible_v<From, To1> && !std::is_convertible_v<From, To2>; | 
 |  | 
 | template <typename T> | 
 | constexpr bool has_reserve = is_detected_v<detect_reserve, T>; | 
 |  | 
 | // base type for map has mapped_type | 
 | template <class T> | 
 | struct base_table_type_map { | 
 |     using mapped_type = T; | 
 | }; | 
 |  | 
 | // base type for set doesn't have mapped_type | 
 | struct base_table_type_set {}; | 
 |  | 
 | } /* namespace detail */ | 
 |  | 
 | // Very much like std::deque, but faster for indexing (in most cases). As of now this doesn't implement the full std::vector | 
 | // API, but merely what's necessary to work as an underlying container for ankerl::unordered_dense::{map, set}. | 
 | // It allocates blocks of equal size and puts them into the m_blocks vector. That means it can grow simply by adding a new | 
 | // block to the back of m_blocks, and doesn't double its size like an std::vector. The disadvantage is that memory is not | 
 | // linear and thus there is one more indirection necessary for indexing. | 
 | template <typename T, typename Allocator = std::allocator<T>, size_t MaxSegmentSizeBytes = 4096> | 
 | class segmented_vector { | 
 |     template <bool IsConst> | 
 |     class iter_t; | 
 |  | 
 | public: | 
 |     using allocator_type = Allocator; | 
 |     using pointer = typename std::allocator_traits<allocator_type>::pointer; | 
 |     using const_pointer = typename std::allocator_traits<allocator_type>::const_pointer; | 
 |     using difference_type = typename std::allocator_traits<allocator_type>::difference_type; | 
 |     using value_type = T; | 
 |     using size_type = std::size_t; | 
 |     using reference = T&; | 
 |     using const_reference = T const&; | 
 |     using iterator = iter_t<false>; | 
 |     using const_iterator = iter_t<true>; | 
 |  | 
 | private: | 
 |     using vec_alloc = typename std::allocator_traits<Allocator>::template rebind_alloc<pointer>; | 
 |     std::vector<pointer, vec_alloc> m_blocks{}; | 
 |     size_t m_size{}; | 
 |  | 
 |     // Calculates the maximum number for x in  (s << x) <= max_val | 
 |     static constexpr auto num_bits_closest(size_t max_val, size_t s) -> size_t { | 
 |         auto f = size_t{0}; | 
 |         while (s << (f + 1) <= max_val) { | 
 |             ++f; | 
 |         } | 
 |         return f; | 
 |     } | 
 |  | 
 |     using self_t = segmented_vector<T, Allocator, MaxSegmentSizeBytes>; | 
 |     static constexpr auto num_bits = num_bits_closest(MaxSegmentSizeBytes, sizeof(T)); | 
 |     static constexpr auto num_elements_in_block = 1U << num_bits; | 
 |     static constexpr auto mask = num_elements_in_block - 1U; | 
 |  | 
 |     /** | 
 |      * Iterator class doubles as const_iterator and iterator | 
 |      */ | 
 |     template <bool IsConst> | 
 |     class iter_t { | 
 |         using ptr_t = typename std::conditional_t<IsConst, segmented_vector::const_pointer const*, segmented_vector::pointer*>; | 
 |         ptr_t m_data{}; | 
 |         size_t m_idx{}; | 
 |  | 
 |         template <bool B> | 
 |         friend class iter_t; | 
 |  | 
 |     public: | 
 |         using difference_type = segmented_vector::difference_type; | 
 |         using value_type = T; | 
 |         using reference = typename std::conditional_t<IsConst, value_type const&, value_type&>; | 
 |         using pointer = typename std::conditional_t<IsConst, segmented_vector::const_pointer, segmented_vector::pointer>; | 
 |         using iterator_category = std::forward_iterator_tag; | 
 |  | 
 |         iter_t() noexcept = default; | 
 |  | 
 |         template <bool OtherIsConst, typename = typename std::enable_if<IsConst && !OtherIsConst>::type> | 
 |         // NOLINTNEXTLINE(google-explicit-constructor,hicpp-explicit-conversions) | 
 |         constexpr iter_t(iter_t<OtherIsConst> const& other) noexcept | 
 |             : m_data(other.m_data) | 
 |             , m_idx(other.m_idx) {} | 
 |  | 
 |         constexpr iter_t(ptr_t data, size_t idx) noexcept | 
 |             : m_data(data) | 
 |             , m_idx(idx) {} | 
 |  | 
 |         template <bool OtherIsConst, typename = typename std::enable_if<IsConst && !OtherIsConst>::type> | 
 |         constexpr auto operator=(iter_t<OtherIsConst> const& other) noexcept -> iter_t& { | 
 |             m_data = other.m_data; | 
 |             m_idx = other.m_idx; | 
 |             return *this; | 
 |         } | 
 |  | 
 |         constexpr auto operator++() noexcept -> iter_t& { | 
 |             ++m_idx; | 
 |             return *this; | 
 |         } | 
 |  | 
 |         constexpr auto operator+(difference_type diff) noexcept -> iter_t { | 
 |             return {m_data, static_cast<size_t>(static_cast<difference_type>(m_idx) + diff)}; | 
 |         } | 
 |  | 
 |         template <bool OtherIsConst> | 
 |         constexpr auto operator-(iter_t<OtherIsConst> const& other) noexcept -> difference_type { | 
 |             return static_cast<difference_type>(m_idx) - static_cast<difference_type>(other.m_idx); | 
 |         } | 
 |  | 
 |         constexpr auto operator*() const noexcept -> reference { | 
 |             return m_data[m_idx >> num_bits][m_idx & mask]; | 
 |         } | 
 |  | 
 |         constexpr auto operator->() const noexcept -> pointer { | 
 |             return &m_data[m_idx >> num_bits][m_idx & mask]; | 
 |         } | 
 |  | 
 |         template <bool O> | 
 |         constexpr auto operator==(iter_t<O> const& o) const noexcept -> bool { | 
 |             return m_idx == o.m_idx; | 
 |         } | 
 |  | 
 |         template <bool O> | 
 |         constexpr auto operator!=(iter_t<O> const& o) const noexcept -> bool { | 
 |             return !(*this == o); | 
 |         } | 
 |     }; | 
 |  | 
 |     // slow path: need to allocate a new segment every once in a while | 
 |     void increase_capacity() { | 
 |         auto ba = Allocator(m_blocks.get_allocator()); | 
 |         pointer block = std::allocator_traits<Allocator>::allocate(ba, num_elements_in_block); | 
 |         m_blocks.push_back(block); | 
 |     } | 
 |  | 
 |     // Moves everything from other | 
 |     void append_everything_from(segmented_vector&& other) { | 
 |         reserve(size() + other.size()); | 
 |         for (auto&& o : other) { | 
 |             emplace_back(std::move(o)); | 
 |         } | 
 |     } | 
 |  | 
 |     // Copies everything from other | 
 |     void append_everything_from(segmented_vector const& other) { | 
 |         reserve(size() + other.size()); | 
 |         for (auto const& o : other) { | 
 |             emplace_back(o); | 
 |         } | 
 |     } | 
 |  | 
 |     void dealloc() { | 
 |         auto ba = Allocator(m_blocks.get_allocator()); | 
 |         for (auto ptr : m_blocks) { | 
 |             std::allocator_traits<Allocator>::deallocate(ba, ptr, num_elements_in_block); | 
 |         } | 
 |     } | 
 |  | 
 |     [[nodiscard]] static constexpr auto calc_num_blocks_for_capacity(size_t capacity) { | 
 |         return (capacity + num_elements_in_block - 1U) / num_elements_in_block; | 
 |     } | 
 |  | 
 | public: | 
 |     segmented_vector() = default; | 
 |  | 
 |     // NOLINTNEXTLINE(google-explicit-constructor,hicpp-explicit-conversions) | 
 |     segmented_vector(Allocator alloc) | 
 |         : m_blocks(vec_alloc(alloc)) {} | 
 |  | 
 |     segmented_vector(segmented_vector&& other, Allocator alloc) | 
 |         : segmented_vector(alloc) { | 
 |         *this = std::move(other); | 
 |     } | 
 |  | 
 |     segmented_vector(segmented_vector const& other, Allocator alloc) | 
 |         : m_blocks(vec_alloc(alloc)) { | 
 |         append_everything_from(other); | 
 |     } | 
 |  | 
 |     segmented_vector(segmented_vector&& other) noexcept | 
 |         : segmented_vector(std::move(other), get_allocator()) {} | 
 |  | 
 |     segmented_vector(segmented_vector const& other) { | 
 |         append_everything_from(other); | 
 |     } | 
 |  | 
 |     auto operator=(segmented_vector const& other) -> segmented_vector& { | 
 |         if (this == &other) { | 
 |             return *this; | 
 |         } | 
 |         clear(); | 
 |         append_everything_from(other); | 
 |         return *this; | 
 |     } | 
 |  | 
 |     auto operator=(segmented_vector&& other) noexcept -> segmented_vector& { | 
 |         clear(); | 
 |         dealloc(); | 
 |         if (other.get_allocator() == get_allocator()) { | 
 |             m_blocks = std::move(other.m_blocks); | 
 |             m_size = std::exchange(other.m_size, {}); | 
 |         } else { | 
 |             // make sure to construct with other's allocator! | 
 |             m_blocks = std::vector<pointer, vec_alloc>(vec_alloc(other.get_allocator())); | 
 |             append_everything_from(std::move(other)); | 
 |         } | 
 |         return *this; | 
 |     } | 
 |  | 
 |     ~segmented_vector() { | 
 |         clear(); | 
 |         dealloc(); | 
 |     } | 
 |  | 
 |     [[nodiscard]] constexpr auto size() const -> size_t { | 
 |         return m_size; | 
 |     } | 
 |  | 
 |     [[nodiscard]] constexpr auto capacity() const -> size_t { | 
 |         return m_blocks.size() * num_elements_in_block; | 
 |     } | 
 |  | 
 |     // Indexing is highly performance critical | 
 |     [[nodiscard]] constexpr auto operator[](size_t i) const noexcept -> T const& { | 
 |         return m_blocks[i >> num_bits][i & mask]; | 
 |     } | 
 |  | 
 |     [[nodiscard]] constexpr auto operator[](size_t i) noexcept -> T& { | 
 |         return m_blocks[i >> num_bits][i & mask]; | 
 |     } | 
 |  | 
 |     [[nodiscard]] constexpr auto begin() -> iterator { | 
 |         return {m_blocks.data(), 0U}; | 
 |     } | 
 |     [[nodiscard]] constexpr auto begin() const -> const_iterator { | 
 |         return {m_blocks.data(), 0U}; | 
 |     } | 
 |     [[nodiscard]] constexpr auto cbegin() const -> const_iterator { | 
 |         return {m_blocks.data(), 0U}; | 
 |     } | 
 |  | 
 |     [[nodiscard]] constexpr auto end() -> iterator { | 
 |         return {m_blocks.data(), m_size}; | 
 |     } | 
 |     [[nodiscard]] constexpr auto end() const -> const_iterator { | 
 |         return {m_blocks.data(), m_size}; | 
 |     } | 
 |     [[nodiscard]] constexpr auto cend() const -> const_iterator { | 
 |         return {m_blocks.data(), m_size}; | 
 |     } | 
 |  | 
 |     [[nodiscard]] constexpr auto back() -> reference { | 
 |         return operator[](m_size - 1); | 
 |     } | 
 |     [[nodiscard]] constexpr auto back() const -> const_reference { | 
 |         return operator[](m_size - 1); | 
 |     } | 
 |  | 
 |     void pop_back() { | 
 |         back().~T(); | 
 |         --m_size; | 
 |     } | 
 |  | 
 |     [[nodiscard]] auto empty() const { | 
 |         return 0 == m_size; | 
 |     } | 
 |  | 
 |     void reserve(size_t new_capacity) { | 
 |         m_blocks.reserve(calc_num_blocks_for_capacity(new_capacity)); | 
 |         while (new_capacity > capacity()) { | 
 |             increase_capacity(); | 
 |         } | 
 |     } | 
 |  | 
 |     [[nodiscard]] auto get_allocator() const -> allocator_type { | 
 |         return allocator_type{m_blocks.get_allocator()}; | 
 |     } | 
 |  | 
 |     template <class... Args> | 
 |     auto emplace_back(Args&&... args) -> reference { | 
 |         if (m_size == capacity()) { | 
 |             increase_capacity(); | 
 |         } | 
 |         auto* ptr = static_cast<void*>(&operator[](m_size)); | 
 |         auto& ref = *new (ptr) T(std::forward<Args>(args)...); | 
 |         ++m_size; | 
 |         return ref; | 
 |     } | 
 |  | 
 |     void clear() { | 
 |         if constexpr (!std::is_trivially_destructible_v<T>) { | 
 |             for (size_t i = 0, s = size(); i < s; ++i) { | 
 |                 operator[](i).~T(); | 
 |             } | 
 |         } | 
 |         m_size = 0; | 
 |     } | 
 |  | 
 |     void shrink_to_fit() { | 
 |         auto ba = Allocator(m_blocks.get_allocator()); | 
 |         auto num_blocks_required = calc_num_blocks_for_capacity(m_size); | 
 |         while (m_blocks.size() > num_blocks_required) { | 
 |             std::allocator_traits<Allocator>::deallocate(ba, m_blocks.back(), num_elements_in_block); | 
 |             m_blocks.pop_back(); | 
 |         } | 
 |         m_blocks.shrink_to_fit(); | 
 |     } | 
 | }; | 
 |  | 
 | namespace detail { | 
 |  | 
 | // This is it, the table. Doubles as map and set, and uses `void` for T when its used as a set. | 
 | template <class Key, | 
 |           class T, // when void, treat it as a set. | 
 |           class Hash, | 
 |           class KeyEqual, | 
 |           class AllocatorOrContainer, | 
 |           class Bucket, | 
 |           bool IsSegmented> | 
 | class table : public std::conditional_t<is_map_v<T>, base_table_type_map<T>, base_table_type_set> { | 
 |     using underlying_value_type = typename std::conditional_t<is_map_v<T>, std::pair<Key, T>, Key>; | 
 |     using underlying_container_type = std::conditional_t<IsSegmented, | 
 |                                                          segmented_vector<underlying_value_type, AllocatorOrContainer>, | 
 |                                                          std::vector<underlying_value_type, AllocatorOrContainer>>; | 
 |  | 
 | public: | 
 |     using value_container_type = std:: | 
 |         conditional_t<is_detected_v<detect_iterator, AllocatorOrContainer>, AllocatorOrContainer, underlying_container_type>; | 
 |  | 
 | private: | 
 |     using bucket_alloc = | 
 |         typename std::allocator_traits<typename value_container_type::allocator_type>::template rebind_alloc<Bucket>; | 
 |     using bucket_alloc_traits = std::allocator_traits<bucket_alloc>; | 
 |  | 
 |     static constexpr uint8_t initial_shifts = 64 - 2; // 2^(64-m_shift) number of buckets | 
 |     static constexpr float default_max_load_factor = 0.8F; | 
 |  | 
 | public: | 
 |     using key_type = Key; | 
 |     using value_type = typename value_container_type::value_type; | 
 |     using size_type = typename value_container_type::size_type; | 
 |     using difference_type = typename value_container_type::difference_type; | 
 |     using hasher = Hash; | 
 |     using key_equal = KeyEqual; | 
 |     using allocator_type = typename value_container_type::allocator_type; | 
 |     using reference = typename value_container_type::reference; | 
 |     using const_reference = typename value_container_type::const_reference; | 
 |     using pointer = typename value_container_type::pointer; | 
 |     using const_pointer = typename value_container_type::const_pointer; | 
 |     using const_iterator = typename value_container_type::const_iterator; | 
 |     using iterator = std::conditional_t<is_map_v<T>, typename value_container_type::iterator, const_iterator>; | 
 |     using bucket_type = Bucket; | 
 |  | 
 | private: | 
 |     using value_idx_type = decltype(Bucket::m_value_idx); | 
 |     using dist_and_fingerprint_type = decltype(Bucket::m_dist_and_fingerprint); | 
 |  | 
 |     static_assert(std::is_trivially_destructible_v<Bucket>, "assert there's no need to call destructor / std::destroy"); | 
 |     static_assert(std::is_trivially_copyable_v<Bucket>, "assert we can just memset / memcpy"); | 
 |  | 
 |     value_container_type m_values{}; // Contains all the key-value pairs in one densely stored container. No holes. | 
 |     using bucket_pointer = typename std::allocator_traits<bucket_alloc>::pointer; | 
 |     bucket_pointer m_buckets{}; | 
 |     size_t m_num_buckets = 0; | 
 |     size_t m_max_bucket_capacity = 0; | 
 |     float m_max_load_factor = default_max_load_factor; | 
 |     Hash m_hash{}; | 
 |     KeyEqual m_equal{}; | 
 |     uint8_t m_shifts = initial_shifts; | 
 |  | 
 |     [[nodiscard]] auto next(value_idx_type bucket_idx) const -> value_idx_type { | 
 |         return ANKERL_UNORDERED_DENSE_UNLIKELY(bucket_idx + 1U == m_num_buckets) | 
 |                    ? 0 | 
 |                    : static_cast<value_idx_type>(bucket_idx + 1U); | 
 |     } | 
 |  | 
 |     // Helper to access bucket through pointer types | 
 |     [[nodiscard]] static constexpr auto at(bucket_pointer bucket_ptr, size_t offset) -> Bucket& { | 
 |         return *(bucket_ptr + static_cast<typename std::allocator_traits<bucket_alloc>::difference_type>(offset)); | 
 |     } | 
 |  | 
 |     // use the dist_inc and dist_dec functions so that uint16_t types work without warning | 
 |     [[nodiscard]] static constexpr auto dist_inc(dist_and_fingerprint_type x) -> dist_and_fingerprint_type { | 
 |         return static_cast<dist_and_fingerprint_type>(x + Bucket::dist_inc); | 
 |     } | 
 |  | 
 |     [[nodiscard]] static constexpr auto dist_dec(dist_and_fingerprint_type x) -> dist_and_fingerprint_type { | 
 |         return static_cast<dist_and_fingerprint_type>(x - Bucket::dist_inc); | 
 |     } | 
 |  | 
 |     // The goal of mixed_hash is to always produce a high quality 64bit hash. | 
 |     template <typename K> | 
 |     [[nodiscard]] constexpr auto mixed_hash(K const& key) const -> uint64_t { | 
 |         if constexpr (is_detected_v<detect_avalanching, Hash>) { | 
 |             // we know that the hash is good because is_avalanching. | 
 |             if constexpr (sizeof(decltype(m_hash(key))) < sizeof(uint64_t)) { | 
 |                 // 32bit hash and is_avalanching => multiply with a constant to avalanche bits upwards | 
 |                 return m_hash(key) * UINT64_C(0x9ddfea08eb382d69); | 
 |             } else { | 
 |                 // 64bit and is_avalanching => only use the hash itself. | 
 |                 return m_hash(key); | 
 |             } | 
 |         } else { | 
 |             // not is_avalanching => apply wyhash | 
 |             return wyhash::hash(m_hash(key)); | 
 |         } | 
 |     } | 
 |  | 
 |     [[nodiscard]] constexpr auto dist_and_fingerprint_from_hash(uint64_t hash) const -> dist_and_fingerprint_type { | 
 |         return Bucket::dist_inc | (static_cast<dist_and_fingerprint_type>(hash) & Bucket::fingerprint_mask); | 
 |     } | 
 |  | 
 |     [[nodiscard]] constexpr auto bucket_idx_from_hash(uint64_t hash) const -> value_idx_type { | 
 |         return static_cast<value_idx_type>(hash >> m_shifts); | 
 |     } | 
 |  | 
 |     [[nodiscard]] static constexpr auto get_key(value_type const& vt) -> key_type const& { | 
 |         if constexpr (is_map_v<T>) { | 
 |             return vt.first; | 
 |         } else { | 
 |             return vt; | 
 |         } | 
 |     } | 
 |  | 
 |     template <typename K> | 
 |     [[nodiscard]] auto next_while_less(K const& key) const -> Bucket { | 
 |         auto hash = mixed_hash(key); | 
 |         auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); | 
 |         auto bucket_idx = bucket_idx_from_hash(hash); | 
 |  | 
 |         while (dist_and_fingerprint < at(m_buckets, bucket_idx).m_dist_and_fingerprint) { | 
 |             dist_and_fingerprint = dist_inc(dist_and_fingerprint); | 
 |             bucket_idx = next(bucket_idx); | 
 |         } | 
 |         return {dist_and_fingerprint, bucket_idx}; | 
 |     } | 
 |  | 
 |     void place_and_shift_up(Bucket bucket, value_idx_type place) { | 
 |         while (0 != at(m_buckets, place).m_dist_and_fingerprint) { | 
 |             bucket = std::exchange(at(m_buckets, place), bucket); | 
 |             bucket.m_dist_and_fingerprint = dist_inc(bucket.m_dist_and_fingerprint); | 
 |             place = next(place); | 
 |         } | 
 |         at(m_buckets, place) = bucket; | 
 |     } | 
 |  | 
 |     [[nodiscard]] static constexpr auto calc_num_buckets(uint8_t shifts) -> size_t { | 
 |         return (std::min)(max_bucket_count(), size_t{1} << (64U - shifts)); | 
 |     } | 
 |  | 
 |     [[nodiscard]] constexpr auto calc_shifts_for_size(size_t s) const -> uint8_t { | 
 |         auto shifts = initial_shifts; | 
 |         while (shifts > 0 && static_cast<size_t>(static_cast<float>(calc_num_buckets(shifts)) * max_load_factor()) < s) { | 
 |             --shifts; | 
 |         } | 
 |         return shifts; | 
 |     } | 
 |  | 
 |     // assumes m_values has data, m_buckets=m_buckets_end=nullptr, m_shifts is INITIAL_SHIFTS | 
 |     void copy_buckets(table const& other) { | 
 |         // assumes m_values has already the correct data copied over. | 
 |         if (empty()) { | 
 |             // when empty, at least allocate an initial buckets and clear them. | 
 |             allocate_buckets_from_shift(); | 
 |             clear_buckets(); | 
 |         } else { | 
 |             m_shifts = other.m_shifts; | 
 |             allocate_buckets_from_shift(); | 
 |             std::memcpy(m_buckets, other.m_buckets, sizeof(Bucket) * bucket_count()); | 
 |         } | 
 |     } | 
 |  | 
 |     /** | 
 |      * True when no element can be added any more without increasing the size | 
 |      */ | 
 |     [[nodiscard]] auto is_full() const -> bool { | 
 |         return size() > m_max_bucket_capacity; | 
 |     } | 
 |  | 
 |     void deallocate_buckets() { | 
 |         auto ba = bucket_alloc(m_values.get_allocator()); | 
 |         if (nullptr != m_buckets) { | 
 |             bucket_alloc_traits::deallocate(ba, m_buckets, bucket_count()); | 
 |             m_buckets = nullptr; | 
 |         } | 
 |         m_num_buckets = 0; | 
 |         m_max_bucket_capacity = 0; | 
 |     } | 
 |  | 
 |     void allocate_buckets_from_shift() { | 
 |         auto ba = bucket_alloc(m_values.get_allocator()); | 
 |         m_num_buckets = calc_num_buckets(m_shifts); | 
 |         m_buckets = bucket_alloc_traits::allocate(ba, m_num_buckets); | 
 |         if (m_num_buckets == max_bucket_count()) { | 
 |             // reached the maximum, make sure we can use each bucket | 
 |             m_max_bucket_capacity = max_bucket_count(); | 
 |         } else { | 
 |             m_max_bucket_capacity = static_cast<value_idx_type>(static_cast<float>(m_num_buckets) * max_load_factor()); | 
 |         } | 
 |     } | 
 |  | 
 |     void clear_buckets() { | 
 |         if (m_buckets != nullptr) { | 
 |             std::memset(&*m_buckets, 0, sizeof(Bucket) * bucket_count()); | 
 |         } | 
 |     } | 
 |  | 
 |     void clear_and_fill_buckets_from_values() { | 
 |         clear_buckets(); | 
 |         for (value_idx_type value_idx = 0, end_idx = static_cast<value_idx_type>(m_values.size()); value_idx < end_idx; | 
 |              ++value_idx) { | 
 |             auto const& key = get_key(m_values[value_idx]); | 
 |             auto [dist_and_fingerprint, bucket] = next_while_less(key); | 
 |  | 
 |             // we know for certain that key has not yet been inserted, so no need to check it. | 
 |             place_and_shift_up({dist_and_fingerprint, value_idx}, bucket); | 
 |         } | 
 |     } | 
 |  | 
 |     void increase_size() { | 
 |         if (m_max_bucket_capacity == max_bucket_count()) { | 
 |             // remove the value again, we can't add it! | 
 |             m_values.pop_back(); | 
 |             on_error_bucket_overflow(); | 
 |         } | 
 |         --m_shifts; | 
 |         deallocate_buckets(); | 
 |         allocate_buckets_from_shift(); | 
 |         clear_and_fill_buckets_from_values(); | 
 |     } | 
 |  | 
 |     template <typename Op> | 
 |     void do_erase(value_idx_type bucket_idx, Op handle_erased_value) { | 
 |         auto const value_idx_to_remove = at(m_buckets, bucket_idx).m_value_idx; | 
 |  | 
 |         // shift down until either empty or an element with correct spot is found | 
 |         auto next_bucket_idx = next(bucket_idx); | 
 |         while (at(m_buckets, next_bucket_idx).m_dist_and_fingerprint >= Bucket::dist_inc * 2) { | 
 |             at(m_buckets, bucket_idx) = {dist_dec(at(m_buckets, next_bucket_idx).m_dist_and_fingerprint), | 
 |                                          at(m_buckets, next_bucket_idx).m_value_idx}; | 
 |             bucket_idx = std::exchange(next_bucket_idx, next(next_bucket_idx)); | 
 |         } | 
 |         at(m_buckets, bucket_idx) = {}; | 
 |         handle_erased_value(std::move(m_values[value_idx_to_remove])); | 
 |  | 
 |         // update m_values | 
 |         if (value_idx_to_remove != m_values.size() - 1) { | 
 |             // no luck, we'll have to replace the value with the last one and update the index accordingly | 
 |             auto& val = m_values[value_idx_to_remove]; | 
 |             val = std::move(m_values.back()); | 
 |  | 
 |             // update the values_idx of the moved entry. No need to play the info game, just look until we find the values_idx | 
 |             auto mh = mixed_hash(get_key(val)); | 
 |             bucket_idx = bucket_idx_from_hash(mh); | 
 |  | 
 |             auto const values_idx_back = static_cast<value_idx_type>(m_values.size() - 1); | 
 |             while (values_idx_back != at(m_buckets, bucket_idx).m_value_idx) { | 
 |                 bucket_idx = next(bucket_idx); | 
 |             } | 
 |             at(m_buckets, bucket_idx).m_value_idx = value_idx_to_remove; | 
 |         } | 
 |         m_values.pop_back(); | 
 |     } | 
 |  | 
 |     template <typename K, typename Op> | 
 |     auto do_erase_key(K&& key, Op handle_erased_value) -> size_t { | 
 |         if (empty()) { | 
 |             return 0; | 
 |         } | 
 |  | 
 |         auto [dist_and_fingerprint, bucket_idx] = next_while_less(key); | 
 |  | 
 |         while (dist_and_fingerprint == at(m_buckets, bucket_idx).m_dist_and_fingerprint && | 
 |                !m_equal(key, get_key(m_values[at(m_buckets, bucket_idx).m_value_idx]))) { | 
 |             dist_and_fingerprint = dist_inc(dist_and_fingerprint); | 
 |             bucket_idx = next(bucket_idx); | 
 |         } | 
 |  | 
 |         if (dist_and_fingerprint != at(m_buckets, bucket_idx).m_dist_and_fingerprint) { | 
 |             return 0; | 
 |         } | 
 |         do_erase(bucket_idx, handle_erased_value); | 
 |         return 1; | 
 |     } | 
 |  | 
 |     template <class K, class M> | 
 |     auto do_insert_or_assign(K&& key, M&& mapped) -> std::pair<iterator, bool> { | 
 |         auto it_isinserted = try_emplace(std::forward<K>(key), std::forward<M>(mapped)); | 
 |         if (!it_isinserted.second) { | 
 |             it_isinserted.first->second = std::forward<M>(mapped); | 
 |         } | 
 |         return it_isinserted; | 
 |     } | 
 |  | 
 |     template <typename... Args> | 
 |     auto do_place_element(dist_and_fingerprint_type dist_and_fingerprint, value_idx_type bucket_idx, Args&&... args) | 
 |         -> std::pair<iterator, bool> { | 
 |  | 
 |         // emplace the new value. If that throws an exception, no harm done; index is still in a valid state | 
 |         m_values.emplace_back(std::forward<Args>(args)...); | 
 |  | 
 |         auto value_idx = static_cast<value_idx_type>(m_values.size() - 1); | 
 |         if (ANKERL_UNORDERED_DENSE_UNLIKELY(is_full())) { | 
 |             increase_size(); | 
 |         } else { | 
 |             place_and_shift_up({dist_and_fingerprint, value_idx}, bucket_idx); | 
 |         } | 
 |  | 
 |         // place element and shift up until we find an empty spot | 
 |         return {begin() + static_cast<difference_type>(value_idx), true}; | 
 |     } | 
 |  | 
 |     template <typename K, typename... Args> | 
 |     auto do_try_emplace(K&& key, Args&&... args) -> std::pair<iterator, bool> { | 
 |         auto hash = mixed_hash(key); | 
 |         auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); | 
 |         auto bucket_idx = bucket_idx_from_hash(hash); | 
 |  | 
 |         while (true) { | 
 |             auto* bucket = &at(m_buckets, bucket_idx); | 
 |             if (dist_and_fingerprint == bucket->m_dist_and_fingerprint) { | 
 |                 if (m_equal(key, get_key(m_values[bucket->m_value_idx]))) { | 
 |                     return {begin() + static_cast<difference_type>(bucket->m_value_idx), false}; | 
 |                 } | 
 |             } else if (dist_and_fingerprint > bucket->m_dist_and_fingerprint) { | 
 |                 return do_place_element(dist_and_fingerprint, | 
 |                                         bucket_idx, | 
 |                                         std::piecewise_construct, | 
 |                                         std::forward_as_tuple(std::forward<K>(key)), | 
 |                                         std::forward_as_tuple(std::forward<Args>(args)...)); | 
 |             } | 
 |             dist_and_fingerprint = dist_inc(dist_and_fingerprint); | 
 |             bucket_idx = next(bucket_idx); | 
 |         } | 
 |     } | 
 |  | 
 |     template <typename K> | 
 |     auto do_find(K const& key) -> iterator { | 
 |         if (ANKERL_UNORDERED_DENSE_UNLIKELY(empty())) { | 
 |             return end(); | 
 |         } | 
 |  | 
 |         auto mh = mixed_hash(key); | 
 |         auto dist_and_fingerprint = dist_and_fingerprint_from_hash(mh); | 
 |         auto bucket_idx = bucket_idx_from_hash(mh); | 
 |         auto* bucket = &at(m_buckets, bucket_idx); | 
 |  | 
 |         // unrolled loop. *Always* check a few directly, then enter the loop. This is faster. | 
 |         if (dist_and_fingerprint == bucket->m_dist_and_fingerprint && m_equal(key, get_key(m_values[bucket->m_value_idx]))) { | 
 |             return begin() + static_cast<difference_type>(bucket->m_value_idx); | 
 |         } | 
 |         dist_and_fingerprint = dist_inc(dist_and_fingerprint); | 
 |         bucket_idx = next(bucket_idx); | 
 |         bucket = &at(m_buckets, bucket_idx); | 
 |  | 
 |         if (dist_and_fingerprint == bucket->m_dist_and_fingerprint && m_equal(key, get_key(m_values[bucket->m_value_idx]))) { | 
 |             return begin() + static_cast<difference_type>(bucket->m_value_idx); | 
 |         } | 
 |         dist_and_fingerprint = dist_inc(dist_and_fingerprint); | 
 |         bucket_idx = next(bucket_idx); | 
 |         bucket = &at(m_buckets, bucket_idx); | 
 |  | 
 |         while (true) { | 
 |             if (dist_and_fingerprint == bucket->m_dist_and_fingerprint) { | 
 |                 if (m_equal(key, get_key(m_values[bucket->m_value_idx]))) { | 
 |                     return begin() + static_cast<difference_type>(bucket->m_value_idx); | 
 |                 } | 
 |             } else if (dist_and_fingerprint > bucket->m_dist_and_fingerprint) { | 
 |                 return end(); | 
 |             } | 
 |             dist_and_fingerprint = dist_inc(dist_and_fingerprint); | 
 |             bucket_idx = next(bucket_idx); | 
 |             bucket = &at(m_buckets, bucket_idx); | 
 |         } | 
 |     } | 
 |  | 
 |     template <typename K> | 
 |     auto do_find(K const& key) const -> const_iterator { | 
 |         return const_cast<table*>(this)->do_find(key); // NOLINT(cppcoreguidelines-pro-type-const-cast) | 
 |     } | 
 |  | 
 |     template <typename K, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> | 
 |     auto do_at(K const& key) -> Q& { | 
 |         if (auto it = find(key); ANKERL_UNORDERED_DENSE_LIKELY(end() != it)) { | 
 |             return it->second; | 
 |         } | 
 |         on_error_key_not_found(); | 
 |     } | 
 |  | 
 |     template <typename K, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> | 
 |     auto do_at(K const& key) const -> Q const& { | 
 |         return const_cast<table*>(this)->at(key); // NOLINT(cppcoreguidelines-pro-type-const-cast) | 
 |     } | 
 |  | 
 | public: | 
 |     explicit table(size_t bucket_count, | 
 |                    Hash const& hash = Hash(), | 
 |                    KeyEqual const& equal = KeyEqual(), | 
 |                    allocator_type const& alloc_or_container = allocator_type()) | 
 |         : m_values(alloc_or_container) | 
 |         , m_hash(hash) | 
 |         , m_equal(equal) { | 
 |         if (0 != bucket_count) { | 
 |             reserve(bucket_count); | 
 |         } else { | 
 |             allocate_buckets_from_shift(); | 
 |             clear_buckets(); | 
 |         } | 
 |     } | 
 |  | 
 |     table() | 
 |         : table(0) {} | 
 |  | 
 |     table(size_t bucket_count, allocator_type const& alloc) | 
 |         : table(bucket_count, Hash(), KeyEqual(), alloc) {} | 
 |  | 
 |     table(size_t bucket_count, Hash const& hash, allocator_type const& alloc) | 
 |         : table(bucket_count, hash, KeyEqual(), alloc) {} | 
 |  | 
 |     explicit table(allocator_type const& alloc) | 
 |         : table(0, Hash(), KeyEqual(), alloc) {} | 
 |  | 
 |     template <class InputIt> | 
 |     table(InputIt first, | 
 |           InputIt last, | 
 |           size_type bucket_count = 0, | 
 |           Hash const& hash = Hash(), | 
 |           KeyEqual const& equal = KeyEqual(), | 
 |           allocator_type const& alloc = allocator_type()) | 
 |         : table(bucket_count, hash, equal, alloc) { | 
 |         insert(first, last); | 
 |     } | 
 |  | 
 |     template <class InputIt> | 
 |     table(InputIt first, InputIt last, size_type bucket_count, allocator_type const& alloc) | 
 |         : table(first, last, bucket_count, Hash(), KeyEqual(), alloc) {} | 
 |  | 
 |     template <class InputIt> | 
 |     table(InputIt first, InputIt last, size_type bucket_count, Hash const& hash, allocator_type const& alloc) | 
 |         : table(first, last, bucket_count, hash, KeyEqual(), alloc) {} | 
 |  | 
 |     table(table const& other) | 
 |         : table(other, other.m_values.get_allocator()) {} | 
 |  | 
 |     table(table const& other, allocator_type const& alloc) | 
 |         : m_values(other.m_values, alloc) | 
 |         , m_max_load_factor(other.m_max_load_factor) | 
 |         , m_hash(other.m_hash) | 
 |         , m_equal(other.m_equal) { | 
 |         copy_buckets(other); | 
 |     } | 
 |  | 
 |     table(table&& other) noexcept | 
 |         : table(std::move(other), other.m_values.get_allocator()) {} | 
 |  | 
 |     table(table&& other, allocator_type const& alloc) noexcept | 
 |         : m_values(alloc) { | 
 |         *this = std::move(other); | 
 |     } | 
 |  | 
 |     table(std::initializer_list<value_type> ilist, | 
 |           size_t bucket_count = 0, | 
 |           Hash const& hash = Hash(), | 
 |           KeyEqual const& equal = KeyEqual(), | 
 |           allocator_type const& alloc = allocator_type()) | 
 |         : table(bucket_count, hash, equal, alloc) { | 
 |         insert(ilist); | 
 |     } | 
 |  | 
 |     table(std::initializer_list<value_type> ilist, size_type bucket_count, allocator_type const& alloc) | 
 |         : table(ilist, bucket_count, Hash(), KeyEqual(), alloc) {} | 
 |  | 
 |     table(std::initializer_list<value_type> init, size_type bucket_count, Hash const& hash, allocator_type const& alloc) | 
 |         : table(init, bucket_count, hash, KeyEqual(), alloc) {} | 
 |  | 
 |     ~table() { | 
 |         if (nullptr != m_buckets) { | 
 |             auto ba = bucket_alloc(m_values.get_allocator()); | 
 |             bucket_alloc_traits::deallocate(ba, m_buckets, bucket_count()); | 
 |         } | 
 |     } | 
 |  | 
 |     auto operator=(table const& other) -> table& { | 
 |         if (&other != this) { | 
 |             deallocate_buckets(); // deallocate before m_values is set (might have another allocator) | 
 |             m_values = other.m_values; | 
 |             m_max_load_factor = other.m_max_load_factor; | 
 |             m_hash = other.m_hash; | 
 |             m_equal = other.m_equal; | 
 |             m_shifts = initial_shifts; | 
 |             copy_buckets(other); | 
 |         } | 
 |         return *this; | 
 |     } | 
 |  | 
 |     auto operator=(table&& other) noexcept(noexcept(std::is_nothrow_move_assignable_v<value_container_type> && | 
 |                                                     std::is_nothrow_move_assignable_v<Hash> && | 
 |                                                     std::is_nothrow_move_assignable_v<KeyEqual>)) -> table& { | 
 |         if (&other != this) { | 
 |             deallocate_buckets(); // deallocate before m_values is set (might have another allocator) | 
 |             m_values = std::move(other.m_values); | 
 |             other.m_values.clear(); | 
 |  | 
 |             // we can only reuse m_buckets when both maps have the same allocator! | 
 |             if (get_allocator() == other.get_allocator()) { | 
 |                 m_buckets = std::exchange(other.m_buckets, nullptr); | 
 |                 m_num_buckets = std::exchange(other.m_num_buckets, 0); | 
 |                 m_max_bucket_capacity = std::exchange(other.m_max_bucket_capacity, 0); | 
 |                 m_shifts = std::exchange(other.m_shifts, initial_shifts); | 
 |                 m_max_load_factor = std::exchange(other.m_max_load_factor, default_max_load_factor); | 
 |                 m_hash = std::exchange(other.m_hash, {}); | 
 |                 m_equal = std::exchange(other.m_equal, {}); | 
 |                 other.allocate_buckets_from_shift(); | 
 |                 other.clear_buckets(); | 
 |             } else { | 
 |                 // set max_load_factor *before* copying the other's buckets, so we have the same | 
 |                 // behavior | 
 |                 m_max_load_factor = other.m_max_load_factor; | 
 |  | 
 |                 // copy_buckets sets m_buckets, m_num_buckets, m_max_bucket_capacity, m_shifts | 
 |                 copy_buckets(other); | 
 |                 // clear's the other's buckets so other is now already usable. | 
 |                 other.clear_buckets(); | 
 |                 m_hash = other.m_hash; | 
 |                 m_equal = other.m_equal; | 
 |             } | 
 |             // map "other" is now already usable, it's empty. | 
 |         } | 
 |         return *this; | 
 |     } | 
 |  | 
 |     auto operator=(std::initializer_list<value_type> ilist) -> table& { | 
 |         clear(); | 
 |         insert(ilist); | 
 |         return *this; | 
 |     } | 
 |  | 
 |     auto get_allocator() const noexcept -> allocator_type { | 
 |         return m_values.get_allocator(); | 
 |     } | 
 |  | 
 |     // iterators ////////////////////////////////////////////////////////////// | 
 |  | 
 |     auto begin() noexcept -> iterator { | 
 |         return m_values.begin(); | 
 |     } | 
 |  | 
 |     auto begin() const noexcept -> const_iterator { | 
 |         return m_values.begin(); | 
 |     } | 
 |  | 
 |     auto cbegin() const noexcept -> const_iterator { | 
 |         return m_values.cbegin(); | 
 |     } | 
 |  | 
 |     auto end() noexcept -> iterator { | 
 |         return m_values.end(); | 
 |     } | 
 |  | 
 |     auto cend() const noexcept -> const_iterator { | 
 |         return m_values.cend(); | 
 |     } | 
 |  | 
 |     auto end() const noexcept -> const_iterator { | 
 |         return m_values.end(); | 
 |     } | 
 |  | 
 |     // capacity /////////////////////////////////////////////////////////////// | 
 |  | 
 |     [[nodiscard]] auto empty() const noexcept -> bool { | 
 |         return m_values.empty(); | 
 |     } | 
 |  | 
 |     [[nodiscard]] auto size() const noexcept -> size_t { | 
 |         return m_values.size(); | 
 |     } | 
 |  | 
 |     [[nodiscard]] static constexpr auto max_size() noexcept -> size_t { | 
 |         if constexpr ((std::numeric_limits<value_idx_type>::max)() == (std::numeric_limits<size_t>::max)()) { | 
 |             return size_t{1} << (sizeof(value_idx_type) * 8 - 1); | 
 |         } else { | 
 |             return size_t{1} << (sizeof(value_idx_type) * 8); | 
 |         } | 
 |     } | 
 |  | 
 |     // modifiers ////////////////////////////////////////////////////////////// | 
 |  | 
 |     void clear() { | 
 |         m_values.clear(); | 
 |         clear_buckets(); | 
 |     } | 
 |  | 
 |     auto insert(value_type const& value) -> std::pair<iterator, bool> { | 
 |         return emplace(value); | 
 |     } | 
 |  | 
 |     auto insert(value_type&& value) -> std::pair<iterator, bool> { | 
 |         return emplace(std::move(value)); | 
 |     } | 
 |  | 
 |     template <class P, std::enable_if_t<std::is_constructible_v<value_type, P&&>, bool> = true> | 
 |     auto insert(P&& value) -> std::pair<iterator, bool> { | 
 |         return emplace(std::forward<P>(value)); | 
 |     } | 
 |  | 
 |     auto insert(const_iterator /*hint*/, value_type const& value) -> iterator { | 
 |         return insert(value).first; | 
 |     } | 
 |  | 
 |     auto insert(const_iterator /*hint*/, value_type&& value) -> iterator { | 
 |         return insert(std::move(value)).first; | 
 |     } | 
 |  | 
 |     template <class P, std::enable_if_t<std::is_constructible_v<value_type, P&&>, bool> = true> | 
 |     auto insert(const_iterator /*hint*/, P&& value) -> iterator { | 
 |         return insert(std::forward<P>(value)).first; | 
 |     } | 
 |  | 
 |     template <class InputIt> | 
 |     void insert(InputIt first, InputIt last) { | 
 |         while (first != last) { | 
 |             insert(*first); | 
 |             ++first; | 
 |         } | 
 |     } | 
 |  | 
 |     void insert(std::initializer_list<value_type> ilist) { | 
 |         insert(ilist.begin(), ilist.end()); | 
 |     } | 
 |  | 
 |     // nonstandard API: *this is emptied. | 
 |     // Also see "A Standard flat_map" https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0429r9.pdf | 
 |     auto extract() && -> value_container_type { | 
 |         return std::move(m_values); | 
 |     } | 
 |  | 
 |     // nonstandard API: | 
 |     // Discards the internally held container and replaces it with the one passed. Erases non-unique elements. | 
 |     auto replace(value_container_type&& container) { | 
 |         if (ANKERL_UNORDERED_DENSE_UNLIKELY(container.size() > max_size())) { | 
 |             on_error_too_many_elements(); | 
 |         } | 
 |         auto shifts = calc_shifts_for_size(container.size()); | 
 |         if (0 == m_num_buckets || shifts < m_shifts || container.get_allocator() != m_values.get_allocator()) { | 
 |             m_shifts = shifts; | 
 |             deallocate_buckets(); | 
 |             allocate_buckets_from_shift(); | 
 |         } | 
 |         clear_buckets(); | 
 |  | 
 |         m_values = std::move(container); | 
 |  | 
 |         // can't use clear_and_fill_buckets_from_values() because container elements might not be unique | 
 |         auto value_idx = value_idx_type{}; | 
 |  | 
 |         // loop until we reach the end of the container. duplicated entries will be replaced with back(). | 
 |         while (value_idx != static_cast<value_idx_type>(m_values.size())) { | 
 |             auto const& key = get_key(m_values[value_idx]); | 
 |  | 
 |             auto hash = mixed_hash(key); | 
 |             auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); | 
 |             auto bucket_idx = bucket_idx_from_hash(hash); | 
 |  | 
 |             bool key_found = false; | 
 |             while (true) { | 
 |                 auto const& bucket = at(m_buckets, bucket_idx); | 
 |                 if (dist_and_fingerprint > bucket.m_dist_and_fingerprint) { | 
 |                     break; | 
 |                 } | 
 |                 if (dist_and_fingerprint == bucket.m_dist_and_fingerprint && | 
 |                     m_equal(key, get_key(m_values[bucket.m_value_idx]))) { | 
 |                     key_found = true; | 
 |                     break; | 
 |                 } | 
 |                 dist_and_fingerprint = dist_inc(dist_and_fingerprint); | 
 |                 bucket_idx = next(bucket_idx); | 
 |             } | 
 |  | 
 |             if (key_found) { | 
 |                 if (value_idx != static_cast<value_idx_type>(m_values.size() - 1)) { | 
 |                     m_values[value_idx] = std::move(m_values.back()); | 
 |                 } | 
 |                 m_values.pop_back(); | 
 |             } else { | 
 |                 place_and_shift_up({dist_and_fingerprint, value_idx}, bucket_idx); | 
 |                 ++value_idx; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     template <class M, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> | 
 |     auto insert_or_assign(Key const& key, M&& mapped) -> std::pair<iterator, bool> { | 
 |         return do_insert_or_assign(key, std::forward<M>(mapped)); | 
 |     } | 
 |  | 
 |     template <class M, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> | 
 |     auto insert_or_assign(Key&& key, M&& mapped) -> std::pair<iterator, bool> { | 
 |         return do_insert_or_assign(std::move(key), std::forward<M>(mapped)); | 
 |     } | 
 |  | 
 |     template <typename K, | 
 |               typename M, | 
 |               typename Q = T, | 
 |               typename H = Hash, | 
 |               typename KE = KeyEqual, | 
 |               std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> | 
 |     auto insert_or_assign(K&& key, M&& mapped) -> std::pair<iterator, bool> { | 
 |         return do_insert_or_assign(std::forward<K>(key), std::forward<M>(mapped)); | 
 |     } | 
 |  | 
 |     template <class M, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> | 
 |     auto insert_or_assign(const_iterator /*hint*/, Key const& key, M&& mapped) -> iterator { | 
 |         return do_insert_or_assign(key, std::forward<M>(mapped)).first; | 
 |     } | 
 |  | 
 |     template <class M, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> | 
 |     auto insert_or_assign(const_iterator /*hint*/, Key&& key, M&& mapped) -> iterator { | 
 |         return do_insert_or_assign(std::move(key), std::forward<M>(mapped)).first; | 
 |     } | 
 |  | 
 |     template <typename K, | 
 |               typename M, | 
 |               typename Q = T, | 
 |               typename H = Hash, | 
 |               typename KE = KeyEqual, | 
 |               std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> | 
 |     auto insert_or_assign(const_iterator /*hint*/, K&& key, M&& mapped) -> iterator { | 
 |         return do_insert_or_assign(std::forward<K>(key), std::forward<M>(mapped)).first; | 
 |     } | 
 |  | 
 |     // Single arguments for unordered_set can be used without having to construct the value_type | 
 |     template <class K, | 
 |               typename Q = T, | 
 |               typename H = Hash, | 
 |               typename KE = KeyEqual, | 
 |               std::enable_if_t<!is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> | 
 |     auto emplace(K&& key) -> std::pair<iterator, bool> { | 
 |         auto hash = mixed_hash(key); | 
 |         auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); | 
 |         auto bucket_idx = bucket_idx_from_hash(hash); | 
 |  | 
 |         while (dist_and_fingerprint <= at(m_buckets, bucket_idx).m_dist_and_fingerprint) { | 
 |             if (dist_and_fingerprint == at(m_buckets, bucket_idx).m_dist_and_fingerprint && | 
 |                 m_equal(key, m_values[at(m_buckets, bucket_idx).m_value_idx])) { | 
 |                 // found it, return without ever actually creating anything | 
 |                 return {begin() + static_cast<difference_type>(at(m_buckets, bucket_idx).m_value_idx), false}; | 
 |             } | 
 |             dist_and_fingerprint = dist_inc(dist_and_fingerprint); | 
 |             bucket_idx = next(bucket_idx); | 
 |         } | 
 |  | 
 |         // value is new, insert element first, so when exception happens we are in a valid state | 
 |         return do_place_element(dist_and_fingerprint, bucket_idx, std::forward<K>(key)); | 
 |     } | 
 |  | 
 |     template <class... Args> | 
 |     auto emplace(Args&&... args) -> std::pair<iterator, bool> { | 
 |         // we have to instantiate the value_type to be able to access the key. | 
 |         // 1. emplace_back the object so it is constructed. 2. If the key is already there, pop it later in the loop. | 
 |         auto& key = get_key(m_values.emplace_back(std::forward<Args>(args)...)); | 
 |         auto hash = mixed_hash(key); | 
 |         auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); | 
 |         auto bucket_idx = bucket_idx_from_hash(hash); | 
 |  | 
 |         while (dist_and_fingerprint <= at(m_buckets, bucket_idx).m_dist_and_fingerprint) { | 
 |             if (dist_and_fingerprint == at(m_buckets, bucket_idx).m_dist_and_fingerprint && | 
 |                 m_equal(key, get_key(m_values[at(m_buckets, bucket_idx).m_value_idx]))) { | 
 |                 m_values.pop_back(); // value was already there, so get rid of it | 
 |                 return {begin() + static_cast<difference_type>(at(m_buckets, bucket_idx).m_value_idx), false}; | 
 |             } | 
 |             dist_and_fingerprint = dist_inc(dist_and_fingerprint); | 
 |             bucket_idx = next(bucket_idx); | 
 |         } | 
 |  | 
 |         // value is new, place the bucket and shift up until we find an empty spot | 
 |         auto value_idx = static_cast<value_idx_type>(m_values.size() - 1); | 
 |         if (ANKERL_UNORDERED_DENSE_UNLIKELY(is_full())) { | 
 |             // increase_size just rehashes all the data we have in m_values | 
 |             increase_size(); | 
 |         } else { | 
 |             // place element and shift up until we find an empty spot | 
 |             place_and_shift_up({dist_and_fingerprint, value_idx}, bucket_idx); | 
 |         } | 
 |         return {begin() + static_cast<difference_type>(value_idx), true}; | 
 |     } | 
 |  | 
 |     template <class... Args> | 
 |     auto emplace_hint(const_iterator /*hint*/, Args&&... args) -> iterator { | 
 |         return emplace(std::forward<Args>(args)...).first; | 
 |     } | 
 |  | 
 |     template <class... Args, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> | 
 |     auto try_emplace(Key const& key, Args&&... args) -> std::pair<iterator, bool> { | 
 |         return do_try_emplace(key, std::forward<Args>(args)...); | 
 |     } | 
 |  | 
 |     template <class... Args, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> | 
 |     auto try_emplace(Key&& key, Args&&... args) -> std::pair<iterator, bool> { | 
 |         return do_try_emplace(std::move(key), std::forward<Args>(args)...); | 
 |     } | 
 |  | 
 |     template <class... Args, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> | 
 |     auto try_emplace(const_iterator /*hint*/, Key const& key, Args&&... args) -> iterator { | 
 |         return do_try_emplace(key, std::forward<Args>(args)...).first; | 
 |     } | 
 |  | 
 |     template <class... Args, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> | 
 |     auto try_emplace(const_iterator /*hint*/, Key&& key, Args&&... args) -> iterator { | 
 |         return do_try_emplace(std::move(key), std::forward<Args>(args)...).first; | 
 |     } | 
 |  | 
 |     template < | 
 |         typename K, | 
 |         typename... Args, | 
 |         typename Q = T, | 
 |         typename H = Hash, | 
 |         typename KE = KeyEqual, | 
 |         std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE> && is_neither_convertible_v<K&&, iterator, const_iterator>, | 
 |                          bool> = true> | 
 |     auto try_emplace(K&& key, Args&&... args) -> std::pair<iterator, bool> { | 
 |         return do_try_emplace(std::forward<K>(key), std::forward<Args>(args)...); | 
 |     } | 
 |  | 
 |     template < | 
 |         typename K, | 
 |         typename... Args, | 
 |         typename Q = T, | 
 |         typename H = Hash, | 
 |         typename KE = KeyEqual, | 
 |         std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE> && is_neither_convertible_v<K&&, iterator, const_iterator>, | 
 |                          bool> = true> | 
 |     auto try_emplace(const_iterator /*hint*/, K&& key, Args&&... args) -> iterator { | 
 |         return do_try_emplace(std::forward<K>(key), std::forward<Args>(args)...).first; | 
 |     } | 
 |  | 
 |     auto erase(iterator it) -> iterator { | 
 |         auto hash = mixed_hash(get_key(*it)); | 
 |         auto bucket_idx = bucket_idx_from_hash(hash); | 
 |  | 
 |         auto const value_idx_to_remove = static_cast<value_idx_type>(it - cbegin()); | 
 |         while (at(m_buckets, bucket_idx).m_value_idx != value_idx_to_remove) { | 
 |             bucket_idx = next(bucket_idx); | 
 |         } | 
 |  | 
 |         do_erase(bucket_idx, [](value_type&& /*unused*/) { | 
 |         }); | 
 |         return begin() + static_cast<difference_type>(value_idx_to_remove); | 
 |     } | 
 |  | 
 |     auto extract(iterator it) -> value_type { | 
 |         auto hash = mixed_hash(get_key(*it)); | 
 |         auto bucket_idx = bucket_idx_from_hash(hash); | 
 |  | 
 |         auto const value_idx_to_remove = static_cast<value_idx_type>(it - cbegin()); | 
 |         while (at(m_buckets, bucket_idx).m_value_idx != value_idx_to_remove) { | 
 |             bucket_idx = next(bucket_idx); | 
 |         } | 
 |  | 
 |         auto tmp = std::optional<value_type>{}; | 
 |         do_erase(bucket_idx, [&tmp](value_type&& val) { | 
 |             tmp = std::move(val); | 
 |         }); | 
 |         return std::move(tmp).value(); | 
 |     } | 
 |  | 
 |     template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> | 
 |     auto erase(const_iterator it) -> iterator { | 
 |         return erase(begin() + (it - cbegin())); | 
 |     } | 
 |  | 
 |     template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> | 
 |     auto extract(const_iterator it) -> value_type { | 
 |         return extract(begin() + (it - cbegin())); | 
 |     } | 
 |  | 
 |     auto erase(const_iterator first, const_iterator last) -> iterator { | 
 |         auto const idx_first = first - cbegin(); | 
 |         auto const idx_last = last - cbegin(); | 
 |         auto const first_to_last = std::distance(first, last); | 
 |         auto const last_to_end = std::distance(last, cend()); | 
 |  | 
 |         // remove elements from left to right which moves elements from the end back | 
 |         auto const mid = idx_first + (std::min)(first_to_last, last_to_end); | 
 |         auto idx = idx_first; | 
 |         while (idx != mid) { | 
 |             erase(begin() + idx); | 
 |             ++idx; | 
 |         } | 
 |  | 
 |         // all elements from the right are moved, now remove the last element until all done | 
 |         idx = idx_last; | 
 |         while (idx != mid) { | 
 |             --idx; | 
 |             erase(begin() + idx); | 
 |         } | 
 |  | 
 |         return begin() + idx_first; | 
 |     } | 
 |  | 
 |     auto erase(Key const& key) -> size_t { | 
 |         return do_erase_key(key, [](value_type&& /*unused*/) { | 
 |         }); | 
 |     } | 
 |  | 
 |     auto extract(Key const& key) -> std::optional<value_type> { | 
 |         auto tmp = std::optional<value_type>{}; | 
 |         do_erase_key(key, [&tmp](value_type&& val) { | 
 |             tmp = std::move(val); | 
 |         }); | 
 |         return tmp; | 
 |     } | 
 |  | 
 |     template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> | 
 |     auto erase(K&& key) -> size_t { | 
 |         return do_erase_key(std::forward<K>(key), [](value_type&& /*unused*/) { | 
 |         }); | 
 |     } | 
 |  | 
 |     template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> | 
 |     auto extract(K&& key) -> std::optional<value_type> { | 
 |         auto tmp = std::optional<value_type>{}; | 
 |         do_erase_key(std::forward<K>(key), [&tmp](value_type&& val) { | 
 |             tmp = std::move(val); | 
 |         }); | 
 |         return tmp; | 
 |     } | 
 |  | 
 |     void swap(table& other) noexcept(noexcept(std::is_nothrow_swappable_v<value_container_type> && | 
 |                                               std::is_nothrow_swappable_v<Hash> && std::is_nothrow_swappable_v<KeyEqual>)) { | 
 |         using std::swap; | 
 |         swap(other, *this); | 
 |     } | 
 |  | 
 |     // lookup ///////////////////////////////////////////////////////////////// | 
 |  | 
 |     template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> | 
 |     auto at(key_type const& key) -> Q& { | 
 |         return do_at(key); | 
 |     } | 
 |  | 
 |     template <typename K, | 
 |               typename Q = T, | 
 |               typename H = Hash, | 
 |               typename KE = KeyEqual, | 
 |               std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> | 
 |     auto at(K const& key) -> Q& { | 
 |         return do_at(key); | 
 |     } | 
 |  | 
 |     template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> | 
 |     auto at(key_type const& key) const -> Q const& { | 
 |         return do_at(key); | 
 |     } | 
 |  | 
 |     template <typename K, | 
 |               typename Q = T, | 
 |               typename H = Hash, | 
 |               typename KE = KeyEqual, | 
 |               std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> | 
 |     auto at(K const& key) const -> Q const& { | 
 |         return do_at(key); | 
 |     } | 
 |  | 
 |     template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> | 
 |     auto operator[](Key const& key) -> Q& { | 
 |         return try_emplace(key).first->second; | 
 |     } | 
 |  | 
 |     template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> | 
 |     auto operator[](Key&& key) -> Q& { | 
 |         return try_emplace(std::move(key)).first->second; | 
 |     } | 
 |  | 
 |     template <typename K, | 
 |               typename Q = T, | 
 |               typename H = Hash, | 
 |               typename KE = KeyEqual, | 
 |               std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> | 
 |     auto operator[](K&& key) -> Q& { | 
 |         return try_emplace(std::forward<K>(key)).first->second; | 
 |     } | 
 |  | 
 |     auto count(Key const& key) const -> size_t { | 
 |         return find(key) == end() ? 0 : 1; | 
 |     } | 
 |  | 
 |     template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> | 
 |     auto count(K const& key) const -> size_t { | 
 |         return find(key) == end() ? 0 : 1; | 
 |     } | 
 |  | 
 |     auto find(Key const& key) -> iterator { | 
 |         return do_find(key); | 
 |     } | 
 |  | 
 |     auto find(Key const& key) const -> const_iterator { | 
 |         return do_find(key); | 
 |     } | 
 |  | 
 |     template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> | 
 |     auto find(K const& key) -> iterator { | 
 |         return do_find(key); | 
 |     } | 
 |  | 
 |     template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> | 
 |     auto find(K const& key) const -> const_iterator { | 
 |         return do_find(key); | 
 |     } | 
 |  | 
 |     auto contains(Key const& key) const -> bool { | 
 |         return find(key) != end(); | 
 |     } | 
 |  | 
 |     template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> | 
 |     auto contains(K const& key) const -> bool { | 
 |         return find(key) != end(); | 
 |     } | 
 |  | 
 |     auto equal_range(Key const& key) -> std::pair<iterator, iterator> { | 
 |         auto it = do_find(key); | 
 |         return {it, it == end() ? end() : it + 1}; | 
 |     } | 
 |  | 
 |     auto equal_range(const Key& key) const -> std::pair<const_iterator, const_iterator> { | 
 |         auto it = do_find(key); | 
 |         return {it, it == end() ? end() : it + 1}; | 
 |     } | 
 |  | 
 |     template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> | 
 |     auto equal_range(K const& key) -> std::pair<iterator, iterator> { | 
 |         auto it = do_find(key); | 
 |         return {it, it == end() ? end() : it + 1}; | 
 |     } | 
 |  | 
 |     template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> | 
 |     auto equal_range(K const& key) const -> std::pair<const_iterator, const_iterator> { | 
 |         auto it = do_find(key); | 
 |         return {it, it == end() ? end() : it + 1}; | 
 |     } | 
 |  | 
 |     // bucket interface /////////////////////////////////////////////////////// | 
 |  | 
 |     auto bucket_count() const noexcept -> size_t { // NOLINT(modernize-use-nodiscard) | 
 |         return m_num_buckets; | 
 |     } | 
 |  | 
 |     static constexpr auto max_bucket_count() noexcept -> size_t { // NOLINT(modernize-use-nodiscard) | 
 |         return max_size(); | 
 |     } | 
 |  | 
 |     // hash policy //////////////////////////////////////////////////////////// | 
 |  | 
 |     [[nodiscard]] auto load_factor() const -> float { | 
 |         return bucket_count() ? static_cast<float>(size()) / static_cast<float>(bucket_count()) : 0.0F; | 
 |     } | 
 |  | 
 |     [[nodiscard]] auto max_load_factor() const -> float { | 
 |         return m_max_load_factor; | 
 |     } | 
 |  | 
 |     void max_load_factor(float ml) { | 
 |         m_max_load_factor = ml; | 
 |         if (m_num_buckets != max_bucket_count()) { | 
 |             m_max_bucket_capacity = static_cast<value_idx_type>(static_cast<float>(bucket_count()) * max_load_factor()); | 
 |         } | 
 |     } | 
 |  | 
 |     void rehash(size_t count) { | 
 |         count = (std::min)(count, max_size()); | 
 |         auto shifts = calc_shifts_for_size((std::max)(count, size())); | 
 |         if (shifts != m_shifts) { | 
 |             m_shifts = shifts; | 
 |             deallocate_buckets(); | 
 |             m_values.shrink_to_fit(); | 
 |             allocate_buckets_from_shift(); | 
 |             clear_and_fill_buckets_from_values(); | 
 |         } | 
 |     } | 
 |  | 
 |     void reserve(size_t capa) { | 
 |         capa = (std::min)(capa, max_size()); | 
 |         if constexpr (has_reserve<value_container_type>) { | 
 |             // std::deque doesn't have reserve(). Make sure we only call when available | 
 |             m_values.reserve(capa); | 
 |         } | 
 |         auto shifts = calc_shifts_for_size((std::max)(capa, size())); | 
 |         if (0 == m_num_buckets || shifts < m_shifts) { | 
 |             m_shifts = shifts; | 
 |             deallocate_buckets(); | 
 |             allocate_buckets_from_shift(); | 
 |             clear_and_fill_buckets_from_values(); | 
 |         } | 
 |     } | 
 |  | 
 |     // observers ////////////////////////////////////////////////////////////// | 
 |  | 
 |     auto hash_function() const -> hasher { | 
 |         return m_hash; | 
 |     } | 
 |  | 
 |     auto key_eq() const -> key_equal { | 
 |         return m_equal; | 
 |     } | 
 |  | 
 |     // nonstandard API: expose the underlying values container | 
 |     [[nodiscard]] auto values() const noexcept -> value_container_type const& { | 
 |         return m_values; | 
 |     } | 
 |  | 
 |     // non-member functions /////////////////////////////////////////////////// | 
 |  | 
 |     friend auto operator==(table const& a, table const& b) -> bool { | 
 |         if (&a == &b) { | 
 |             return true; | 
 |         } | 
 |         if (a.size() != b.size()) { | 
 |             return false; | 
 |         } | 
 |         for (auto const& b_entry : b) { | 
 |             auto it = a.find(get_key(b_entry)); | 
 |             if constexpr (is_map_v<T>) { | 
 |                 // map: check that key is here, then also check that value is the same | 
 |                 if (a.end() == it || !(b_entry.second == it->second)) { | 
 |                     return false; | 
 |                 } | 
 |             } else { | 
 |                 // set: only check that the key is here | 
 |                 if (a.end() == it) { | 
 |                     return false; | 
 |                 } | 
 |             } | 
 |         } | 
 |         return true; | 
 |     } | 
 |  | 
 |     friend auto operator!=(table const& a, table const& b) -> bool { | 
 |         return !(a == b); | 
 |     } | 
 | }; | 
 |  | 
 | } /* namespace detail */ | 
 |  | 
 | ANKERL_UNORDERED_DENSE_EXPORT template <class Key, | 
 |                                         class T, | 
 |                                         class Hash = hash<Key>, | 
 |                                         class KeyEqual = std::equal_to<Key>, | 
 |                                         class AllocatorOrContainer = std::allocator<std::pair<Key, T>>, | 
 |                                         class Bucket = bucket_type::standard> | 
 | using map = detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, false>; | 
 |  | 
 | ANKERL_UNORDERED_DENSE_EXPORT template <class Key, | 
 |                                         class T, | 
 |                                         class Hash = hash<Key>, | 
 |                                         class KeyEqual = std::equal_to<Key>, | 
 |                                         class AllocatorOrContainer = std::allocator<std::pair<Key, T>>, | 
 |                                         class Bucket = bucket_type::standard> | 
 | using segmented_map = detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, true>; | 
 |  | 
 | ANKERL_UNORDERED_DENSE_EXPORT template <class Key, | 
 |                                         class Hash = hash<Key>, | 
 |                                         class KeyEqual = std::equal_to<Key>, | 
 |                                         class AllocatorOrContainer = std::allocator<Key>, | 
 |                                         class Bucket = bucket_type::standard> | 
 | using set = detail::table<Key, void, Hash, KeyEqual, AllocatorOrContainer, Bucket, false>; | 
 |  | 
 | ANKERL_UNORDERED_DENSE_EXPORT template <class Key, | 
 |                                         class Hash = hash<Key>, | 
 |                                         class KeyEqual = std::equal_to<Key>, | 
 |                                         class AllocatorOrContainer = std::allocator<Key>, | 
 |                                         class Bucket = bucket_type::standard> | 
 | using segmented_set = detail::table<Key, void, Hash, KeyEqual, AllocatorOrContainer, Bucket, true>; | 
 |  | 
 | #    if defined(ANKERL_UNORDERED_DENSE_PMR) | 
 |  | 
 | namespace pmr { | 
 |  | 
 | ANKERL_UNORDERED_DENSE_EXPORT template <class Key, | 
 |                                         class T, | 
 |                                         class Hash = hash<Key>, | 
 |                                         class KeyEqual = std::equal_to<Key>, | 
 |                                         class Bucket = bucket_type::standard> | 
 | using map = | 
 |     detail::table<Key, T, Hash, KeyEqual, ANKERL_UNORDERED_DENSE_PMR::polymorphic_allocator<std::pair<Key, T>>, Bucket, false>; | 
 |  | 
 | ANKERL_UNORDERED_DENSE_EXPORT template <class Key, | 
 |                                         class T, | 
 |                                         class Hash = hash<Key>, | 
 |                                         class KeyEqual = std::equal_to<Key>, | 
 |                                         class Bucket = bucket_type::standard> | 
 | using segmented_map = | 
 |     detail::table<Key, T, Hash, KeyEqual, ANKERL_UNORDERED_DENSE_PMR::polymorphic_allocator<std::pair<Key, T>>, Bucket, true>; | 
 |  | 
 | ANKERL_UNORDERED_DENSE_EXPORT template <class Key, | 
 |                                         class Hash = hash<Key>, | 
 |                                         class KeyEqual = std::equal_to<Key>, | 
 |                                         class Bucket = bucket_type::standard> | 
 | using set = detail::table<Key, void, Hash, KeyEqual, ANKERL_UNORDERED_DENSE_PMR::polymorphic_allocator<Key>, Bucket, false>; | 
 |  | 
 | ANKERL_UNORDERED_DENSE_EXPORT template <class Key, | 
 |                                         class Hash = hash<Key>, | 
 |                                         class KeyEqual = std::equal_to<Key>, | 
 |                                         class Bucket = bucket_type::standard> | 
 | using segmented_set = | 
 |     detail::table<Key, void, Hash, KeyEqual, ANKERL_UNORDERED_DENSE_PMR::polymorphic_allocator<Key>, Bucket, true>; | 
 |  | 
 | } /* namespace pmr */ | 
 |  | 
 | #    endif | 
 |  | 
 | // deduction guides /////////////////////////////////////////////////////////// | 
 |  | 
 | // deduction guides for alias templates are only possible since C++20 | 
 | // see https://en.cppreference.com/w/cpp/language/class_template_argument_deduction | 
 |  | 
 | } /* namespace ANKERL_UNORDERED_DENSE_NAMESPACE */ | 
 | } /* namespace ankerl::unordered_dense */ | 
 |  | 
 | // std extensions ///////////////////////////////////////////////////////////// | 
 |  | 
 | namespace std { // NOLINT(cert-dcl58-cpp) | 
 |  | 
 | ANKERL_UNORDERED_DENSE_EXPORT template <class Key, | 
 |                                         class T, | 
 |                                         class Hash, | 
 |                                         class KeyEqual, | 
 |                                         class AllocatorOrContainer, | 
 |                                         class Bucket, | 
 |                                         class Pred, | 
 |                                         bool IsSegmented> | 
 | // NOLINTNEXTLINE(cert-dcl58-cpp) | 
 | auto erase_if(ankerl::unordered_dense::detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, IsSegmented>& map, | 
 |               Pred pred) -> size_t { | 
 |     using map_t = ankerl::unordered_dense::detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, IsSegmented>; | 
 |  | 
 |     // going back to front because erase() invalidates the end iterator | 
 |     auto const old_size = map.size(); | 
 |     auto idx = old_size; | 
 |     while (idx) { | 
 |         --idx; | 
 |         auto it = map.begin() + static_cast<typename map_t::difference_type>(idx); | 
 |         if (pred(*it)) { | 
 |             map.erase(it); | 
 |         } | 
 |     } | 
 |  | 
 |     return old_size - map.size(); | 
 | } | 
 |  | 
 | } /* namespace std */ | 
 |  | 
 | #endif | 
 | #endif |