| /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger. | 
 |  | 
 |    Copyright (C) 1996-2022 Free Software Foundation, Inc. | 
 |  | 
 |    This file is part of GDB. | 
 |  | 
 |    This program is free software; you can redistribute it and/or modify | 
 |    it under the terms of the GNU General Public License as published by | 
 |    the Free Software Foundation; either version 3 of the License, or | 
 |    (at your option) any later version. | 
 |  | 
 |    This program is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |    GNU General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU General Public License | 
 |    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "defs.h" | 
 | #include "arch-utils.h" | 
 | #include "dis-asm.h" | 
 | #include "gdbtypes.h" | 
 | #include "regcache.h" | 
 | #include "gdbcore.h"	/* For write_memory_unsigned_integer.  */ | 
 | #include "value.h" | 
 | #include "frame.h" | 
 | #include "frame-unwind.h" | 
 | #include "frame-base.h" | 
 | #include "symtab.h" | 
 | #include "dwarf2/frame.h" | 
 | #include "osabi.h" | 
 | #include "infcall.h" | 
 | #include "prologue-value.h" | 
 | #include "target.h" | 
 |  | 
 | #include "mn10300-tdep.h" | 
 |  | 
 |  | 
 | /* The am33-2 has 64 registers.  */ | 
 | #define MN10300_MAX_NUM_REGS 64 | 
 |  | 
 | /* Big enough to hold the size of the largest register in bytes.  */ | 
 | #define MN10300_MAX_REGISTER_SIZE      64 | 
 |  | 
 | /* This structure holds the results of a prologue analysis.  */ | 
 | struct mn10300_prologue | 
 | { | 
 |   /* The architecture for which we generated this prologue info.  */ | 
 |   struct gdbarch *gdbarch; | 
 |  | 
 |   /* The offset from the frame base to the stack pointer --- always | 
 |      zero or negative. | 
 |  | 
 |      Calling this a "size" is a bit misleading, but given that the | 
 |      stack grows downwards, using offsets for everything keeps one | 
 |      from going completely sign-crazy: you never change anything's | 
 |      sign for an ADD instruction; always change the second operand's | 
 |      sign for a SUB instruction; and everything takes care of | 
 |      itself.  */ | 
 |   int frame_size; | 
 |  | 
 |   /* Non-zero if this function has initialized the frame pointer from | 
 |      the stack pointer, zero otherwise.  */ | 
 |   int has_frame_ptr; | 
 |  | 
 |   /* If has_frame_ptr is non-zero, this is the offset from the frame | 
 |      base to where the frame pointer points.  This is always zero or | 
 |      negative.  */ | 
 |   int frame_ptr_offset; | 
 |  | 
 |   /* The address of the first instruction at which the frame has been | 
 |      set up and the arguments are where the debug info says they are | 
 |      --- as best as we can tell.  */ | 
 |   CORE_ADDR prologue_end; | 
 |  | 
 |   /* reg_offset[R] is the offset from the CFA at which register R is | 
 |      saved, or 1 if register R has not been saved.  (Real values are | 
 |      always zero or negative.)  */ | 
 |   int reg_offset[MN10300_MAX_NUM_REGS]; | 
 | }; | 
 |  | 
 |  | 
 | /* Compute the alignment required by a type.  */ | 
 |  | 
 | static int | 
 | mn10300_type_align (struct type *type) | 
 | { | 
 |   int i, align = 1; | 
 |  | 
 |   switch (type->code ()) | 
 |     { | 
 |     case TYPE_CODE_INT: | 
 |     case TYPE_CODE_ENUM: | 
 |     case TYPE_CODE_SET: | 
 |     case TYPE_CODE_RANGE: | 
 |     case TYPE_CODE_CHAR: | 
 |     case TYPE_CODE_BOOL: | 
 |     case TYPE_CODE_FLT: | 
 |     case TYPE_CODE_PTR: | 
 |     case TYPE_CODE_REF: | 
 |     case TYPE_CODE_RVALUE_REF: | 
 |       return TYPE_LENGTH (type); | 
 |  | 
 |     case TYPE_CODE_COMPLEX: | 
 |       return TYPE_LENGTH (type) / 2; | 
 |  | 
 |     case TYPE_CODE_STRUCT: | 
 |     case TYPE_CODE_UNION: | 
 |       for (i = 0; i < type->num_fields (); i++) | 
 | 	{ | 
 | 	  int falign = mn10300_type_align (type->field (i).type ()); | 
 | 	  while (align < falign) | 
 | 	    align <<= 1; | 
 | 	} | 
 |       return align; | 
 |  | 
 |     case TYPE_CODE_ARRAY: | 
 |       /* HACK!  Structures containing arrays, even small ones, are not | 
 | 	 eligible for returning in registers.  */ | 
 |       return 256; | 
 |  | 
 |     case TYPE_CODE_TYPEDEF: | 
 |       return mn10300_type_align (check_typedef (type)); | 
 |  | 
 |     default: | 
 |       internal_error (__FILE__, __LINE__, _("bad switch")); | 
 |     } | 
 | } | 
 |  | 
 | /* Should call_function allocate stack space for a struct return?  */ | 
 | static int | 
 | mn10300_use_struct_convention (struct type *type) | 
 | { | 
 |   /* Structures bigger than a pair of words can't be returned in | 
 |      registers.  */ | 
 |   if (TYPE_LENGTH (type) > 8) | 
 |     return 1; | 
 |  | 
 |   switch (type->code ()) | 
 |     { | 
 |     case TYPE_CODE_STRUCT: | 
 |     case TYPE_CODE_UNION: | 
 |       /* Structures with a single field are handled as the field | 
 | 	 itself.  */ | 
 |       if (type->num_fields () == 1) | 
 | 	return mn10300_use_struct_convention (type->field (0).type ()); | 
 |  | 
 |       /* Structures with word or double-word size are passed in memory, as | 
 | 	 long as they require at least word alignment.  */ | 
 |       if (mn10300_type_align (type) >= 4) | 
 | 	return 0; | 
 |  | 
 |       return 1; | 
 |  | 
 |       /* Arrays are addressable, so they're never returned in | 
 | 	 registers.  This condition can only hold when the array is | 
 | 	 the only field of a struct or union.  */ | 
 |     case TYPE_CODE_ARRAY: | 
 |       return 1; | 
 |  | 
 |     case TYPE_CODE_TYPEDEF: | 
 |       return mn10300_use_struct_convention (check_typedef (type)); | 
 |  | 
 |     default: | 
 |       return 0; | 
 |     } | 
 | } | 
 |  | 
 | static void | 
 | mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type, | 
 | 			    struct regcache *regcache, const gdb_byte *valbuf) | 
 | { | 
 |   int len = TYPE_LENGTH (type); | 
 |   int reg, regsz; | 
 |    | 
 |   if (type->code () == TYPE_CODE_PTR) | 
 |     reg = 4; | 
 |   else | 
 |     reg = 0; | 
 |  | 
 |   regsz = register_size (gdbarch, reg); | 
 |  | 
 |   if (len <= regsz) | 
 |     regcache->raw_write_part (reg, 0, len, valbuf); | 
 |   else if (len <= 2 * regsz) | 
 |     { | 
 |       regcache->raw_write (reg, valbuf); | 
 |       gdb_assert (regsz == register_size (gdbarch, reg + 1)); | 
 |       regcache->raw_write_part (reg + 1, 0, len - regsz, valbuf + regsz); | 
 |     } | 
 |   else | 
 |     internal_error (__FILE__, __LINE__, | 
 | 		    _("Cannot store return value %d bytes long."), len); | 
 | } | 
 |  | 
 | static void | 
 | mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type, | 
 | 			      struct regcache *regcache, void *valbuf) | 
 | { | 
 |   gdb_byte buf[MN10300_MAX_REGISTER_SIZE]; | 
 |   int len = TYPE_LENGTH (type); | 
 |   int reg, regsz; | 
 |  | 
 |   if (type->code () == TYPE_CODE_PTR) | 
 |     reg = 4; | 
 |   else | 
 |     reg = 0; | 
 |  | 
 |   regsz = register_size (gdbarch, reg); | 
 |   gdb_assert (regsz <= MN10300_MAX_REGISTER_SIZE); | 
 |   if (len <= regsz) | 
 |     { | 
 |       regcache->raw_read (reg, buf); | 
 |       memcpy (valbuf, buf, len); | 
 |     } | 
 |   else if (len <= 2 * regsz) | 
 |     { | 
 |       regcache->raw_read (reg, buf); | 
 |       memcpy (valbuf, buf, regsz); | 
 |       gdb_assert (regsz == register_size (gdbarch, reg + 1)); | 
 |       regcache->raw_read (reg + 1, buf); | 
 |       memcpy ((char *) valbuf + regsz, buf, len - regsz); | 
 |     } | 
 |   else | 
 |     internal_error (__FILE__, __LINE__, | 
 | 		    _("Cannot extract return value %d bytes long."), len); | 
 | } | 
 |  | 
 | /* Determine, for architecture GDBARCH, how a return value of TYPE | 
 |    should be returned.  If it is supposed to be returned in registers, | 
 |    and READBUF is non-zero, read the appropriate value from REGCACHE, | 
 |    and copy it into READBUF.  If WRITEBUF is non-zero, write the value | 
 |    from WRITEBUF into REGCACHE.  */ | 
 |  | 
 | static enum return_value_convention | 
 | mn10300_return_value (struct gdbarch *gdbarch, struct value *function, | 
 | 		      struct type *type, struct regcache *regcache, | 
 | 		      gdb_byte *readbuf, const gdb_byte *writebuf) | 
 | { | 
 |   if (mn10300_use_struct_convention (type)) | 
 |     return RETURN_VALUE_STRUCT_CONVENTION; | 
 |  | 
 |   if (readbuf) | 
 |     mn10300_extract_return_value (gdbarch, type, regcache, readbuf); | 
 |   if (writebuf) | 
 |     mn10300_store_return_value (gdbarch, type, regcache, writebuf); | 
 |  | 
 |   return RETURN_VALUE_REGISTER_CONVENTION; | 
 | } | 
 |  | 
 | static const char * | 
 | register_name (int reg, const char **regs, long sizeof_regs) | 
 | { | 
 |   if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0])) | 
 |     return NULL; | 
 |   else | 
 |     return regs[reg]; | 
 | } | 
 |  | 
 | static const char * | 
 | mn10300_generic_register_name (struct gdbarch *gdbarch, int reg) | 
 | { | 
 |   static const char *regs[] = | 
 |   { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", | 
 |     "sp", "pc", "mdr", "psw", "lir", "lar", "", "", | 
 |     "", "", "", "", "", "", "", "", | 
 |     "", "", "", "", "", "", "", "fp" | 
 |   }; | 
 |   return register_name (reg, regs, sizeof regs); | 
 | } | 
 |  | 
 |  | 
 | static const char * | 
 | am33_register_name (struct gdbarch *gdbarch, int reg) | 
 | { | 
 |   static const char *regs[] = | 
 |   { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", | 
 |     "sp", "pc", "mdr", "psw", "lir", "lar", "", | 
 |     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | 
 |     "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", "" | 
 |   }; | 
 |   return register_name (reg, regs, sizeof regs); | 
 | } | 
 |  | 
 | static const char * | 
 | am33_2_register_name (struct gdbarch *gdbarch, int reg) | 
 | { | 
 |   static const char *regs[] = | 
 |   { | 
 |     "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", | 
 |     "sp", "pc", "mdr", "psw", "lir", "lar", "mdrq", "r0", | 
 |     "r1", "r2", "r3", "r4", "r5", "r6", "r7", "ssp", | 
 |     "msp", "usp", "mcrh", "mcrl", "mcvf", "fpcr", "", "", | 
 |     "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", | 
 |     "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15", | 
 |     "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23", | 
 |     "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" | 
 |   }; | 
 |   return register_name (reg, regs, sizeof regs); | 
 | } | 
 |  | 
 | static struct type * | 
 | mn10300_register_type (struct gdbarch *gdbarch, int reg) | 
 | { | 
 |   return builtin_type (gdbarch)->builtin_int; | 
 | } | 
 |  | 
 | /* The breakpoint instruction must be the same size as the smallest | 
 |    instruction in the instruction set. | 
 |  | 
 |    The Matsushita mn10x00 processors have single byte instructions | 
 |    so we need a single byte breakpoint.  Matsushita hasn't defined | 
 |    one, so we defined it ourselves.  */ | 
 | constexpr gdb_byte mn10300_break_insn[] = {0xff}; | 
 |  | 
 | typedef BP_MANIPULATION (mn10300_break_insn) mn10300_breakpoint; | 
 |  | 
 | /* Model the semantics of pushing a register onto the stack.  This | 
 |    is a helper function for mn10300_analyze_prologue, below.  */ | 
 | static void | 
 | push_reg (pv_t *regs, struct pv_area *stack, int regnum) | 
 | { | 
 |   regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4); | 
 |   stack->store (regs[E_SP_REGNUM], 4, regs[regnum]); | 
 | } | 
 |  | 
 | /* Translate an "r" register number extracted from an instruction encoding | 
 |    into a GDB register number.  Adapted from a simulator function | 
 |    of the same name; see am33.igen.  */ | 
 | static int | 
 | translate_rreg (int rreg) | 
 | { | 
 |  /* The higher register numbers actually correspond to the | 
 |      basic machine's address and data registers.  */ | 
 |   if (rreg > 7 && rreg < 12) | 
 |     return E_A0_REGNUM + rreg - 8; | 
 |   else if (rreg > 11 && rreg < 16) | 
 |     return E_D0_REGNUM + rreg - 12; | 
 |   else | 
 |     return E_E0_REGNUM + rreg; | 
 | } | 
 |  | 
 | /* Find saved registers in a 'struct pv_area'; we pass this to pv_area::scan. | 
 |  | 
 |    If VALUE is a saved register, ADDR says it was saved at a constant | 
 |    offset from the frame base, and SIZE indicates that the whole | 
 |    register was saved, record its offset in RESULT_UNTYPED.  */ | 
 | static void | 
 | check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value) | 
 | { | 
 |   struct mn10300_prologue *result = (struct mn10300_prologue *) result_untyped; | 
 |  | 
 |   if (value.kind == pvk_register | 
 |       && value.k == 0 | 
 |       && pv_is_register (addr, E_SP_REGNUM) | 
 |       && size == register_size (result->gdbarch, value.reg)) | 
 |     result->reg_offset[value.reg] = addr.k; | 
 | } | 
 |  | 
 | /* Analyze the prologue to determine where registers are saved, | 
 |    the end of the prologue, etc.  The result of this analysis is | 
 |    returned in RESULT.  See struct mn10300_prologue above for more | 
 |    information.  */ | 
 | static void | 
 | mn10300_analyze_prologue (struct gdbarch *gdbarch, | 
 | 			  CORE_ADDR start_pc, CORE_ADDR limit_pc, | 
 | 			  struct mn10300_prologue *result) | 
 | { | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   CORE_ADDR pc; | 
 |   int rn; | 
 |   pv_t regs[MN10300_MAX_NUM_REGS]; | 
 |   CORE_ADDR after_last_frame_setup_insn = start_pc; | 
 |   int am33_mode = get_am33_mode (gdbarch); | 
 |  | 
 |   memset (result, 0, sizeof (*result)); | 
 |   result->gdbarch = gdbarch; | 
 |  | 
 |   for (rn = 0; rn < MN10300_MAX_NUM_REGS; rn++) | 
 |     { | 
 |       regs[rn] = pv_register (rn, 0); | 
 |       result->reg_offset[rn] = 1; | 
 |     } | 
 |   pv_area stack (E_SP_REGNUM, gdbarch_addr_bit (gdbarch)); | 
 |  | 
 |   /* The typical call instruction will have saved the return address on the | 
 |      stack.  Space for the return address has already been preallocated in | 
 |      the caller's frame.  It's possible, such as when using -mrelax with gcc | 
 |      that other registers were saved as well.  If this happens, we really | 
 |      have no chance of deciphering the frame.  DWARF info can save the day | 
 |      when this happens.  */ | 
 |   stack.store (regs[E_SP_REGNUM], 4, regs[E_PC_REGNUM]); | 
 |  | 
 |   pc = start_pc; | 
 |   while (pc < limit_pc) | 
 |     { | 
 |       int status; | 
 |       gdb_byte instr[2]; | 
 |  | 
 |       /* Instructions can be as small as one byte; however, we usually | 
 | 	 need at least two bytes to do the decoding, so fetch that many | 
 | 	 to begin with.  */ | 
 |       status = target_read_memory (pc, instr, 2); | 
 |       if (status != 0) | 
 | 	break; | 
 |  | 
 |       /* movm [regs], sp  */ | 
 |       if (instr[0] == 0xcf) | 
 | 	{ | 
 | 	  gdb_byte save_mask; | 
 |  | 
 | 	  save_mask = instr[1]; | 
 |  | 
 | 	  if ((save_mask & movm_exreg0_bit) && am33_mode) | 
 | 	    { | 
 | 	      push_reg (regs, &stack, E_E2_REGNUM); | 
 | 	      push_reg (regs, &stack, E_E3_REGNUM); | 
 | 	    } | 
 | 	  if ((save_mask & movm_exreg1_bit) && am33_mode) | 
 | 	    { | 
 | 	      push_reg (regs, &stack, E_E4_REGNUM); | 
 | 	      push_reg (regs, &stack, E_E5_REGNUM); | 
 | 	      push_reg (regs, &stack, E_E6_REGNUM); | 
 | 	      push_reg (regs, &stack, E_E7_REGNUM); | 
 | 	    } | 
 | 	  if ((save_mask & movm_exother_bit) && am33_mode) | 
 | 	    { | 
 | 	      push_reg (regs, &stack, E_E0_REGNUM); | 
 | 	      push_reg (regs, &stack, E_E1_REGNUM); | 
 | 	      push_reg (regs, &stack, E_MDRQ_REGNUM); | 
 | 	      push_reg (regs, &stack, E_MCRH_REGNUM); | 
 | 	      push_reg (regs, &stack, E_MCRL_REGNUM); | 
 | 	      push_reg (regs, &stack, E_MCVF_REGNUM); | 
 | 	    } | 
 | 	  if (save_mask & movm_d2_bit) | 
 | 	    push_reg (regs, &stack, E_D2_REGNUM); | 
 | 	  if (save_mask & movm_d3_bit) | 
 | 	    push_reg (regs, &stack, E_D3_REGNUM); | 
 | 	  if (save_mask & movm_a2_bit) | 
 | 	    push_reg (regs, &stack, E_A2_REGNUM); | 
 | 	  if (save_mask & movm_a3_bit) | 
 | 	    push_reg (regs, &stack, E_A3_REGNUM); | 
 | 	  if (save_mask & movm_other_bit) | 
 | 	    { | 
 | 	      push_reg (regs, &stack, E_D0_REGNUM); | 
 | 	      push_reg (regs, &stack, E_D1_REGNUM); | 
 | 	      push_reg (regs, &stack, E_A0_REGNUM); | 
 | 	      push_reg (regs, &stack, E_A1_REGNUM); | 
 | 	      push_reg (regs, &stack, E_MDR_REGNUM); | 
 | 	      push_reg (regs, &stack, E_LIR_REGNUM); | 
 | 	      push_reg (regs, &stack, E_LAR_REGNUM); | 
 | 	      /* The `other' bit leaves a blank area of four bytes at | 
 | 		 the beginning of its block of saved registers, making | 
 | 		 it 32 bytes long in total.  */ | 
 | 	      regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4); | 
 | 	    } | 
 |  | 
 | 	  pc += 2; | 
 | 	  after_last_frame_setup_insn = pc; | 
 | 	} | 
 |       /* mov sp, aN */ | 
 |       else if ((instr[0] & 0xfc) == 0x3c) | 
 | 	{ | 
 | 	  int aN = instr[0] & 0x03; | 
 |  | 
 | 	  regs[E_A0_REGNUM + aN] = regs[E_SP_REGNUM]; | 
 |  | 
 | 	  pc += 1; | 
 | 	  if (aN == 3) | 
 | 	    after_last_frame_setup_insn = pc; | 
 | 	} | 
 |       /* mov aM, aN */ | 
 |       else if ((instr[0] & 0xf0) == 0x90 | 
 | 	       && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2)) | 
 | 	{ | 
 | 	  int aN = instr[0] & 0x03; | 
 | 	  int aM = (instr[0] & 0x0c) >> 2; | 
 |  | 
 | 	  regs[E_A0_REGNUM + aN] = regs[E_A0_REGNUM + aM]; | 
 |  | 
 | 	  pc += 1; | 
 | 	} | 
 |       /* mov dM, dN */ | 
 |       else if ((instr[0] & 0xf0) == 0x80 | 
 | 	       && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2)) | 
 | 	{ | 
 | 	  int dN = instr[0] & 0x03; | 
 | 	  int dM = (instr[0] & 0x0c) >> 2; | 
 |  | 
 | 	  regs[E_D0_REGNUM + dN] = regs[E_D0_REGNUM + dM]; | 
 |  | 
 | 	  pc += 1; | 
 | 	} | 
 |       /* mov aM, dN */ | 
 |       else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xd0) | 
 | 	{ | 
 | 	  int dN = instr[1] & 0x03; | 
 | 	  int aM = (instr[1] & 0x0c) >> 2; | 
 |  | 
 | 	  regs[E_D0_REGNUM + dN] = regs[E_A0_REGNUM + aM]; | 
 |  | 
 | 	  pc += 2; | 
 | 	} | 
 |       /* mov dM, aN */ | 
 |       else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xe0) | 
 | 	{ | 
 | 	  int aN = instr[1] & 0x03; | 
 | 	  int dM = (instr[1] & 0x0c) >> 2; | 
 |  | 
 | 	  regs[E_A0_REGNUM + aN] = regs[E_D0_REGNUM + dM]; | 
 |  | 
 | 	  pc += 2; | 
 | 	} | 
 |       /* add imm8, SP */ | 
 |       else if (instr[0] == 0xf8 && instr[1] == 0xfe) | 
 | 	{ | 
 | 	  gdb_byte buf[1]; | 
 | 	  LONGEST imm8; | 
 |  | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 1); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  imm8 = extract_signed_integer (buf, 1, byte_order); | 
 | 	  regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm8); | 
 |  | 
 | 	  pc += 3; | 
 | 	  /* Stack pointer adjustments are frame related.  */ | 
 | 	  after_last_frame_setup_insn = pc; | 
 | 	} | 
 |       /* add imm16, SP */ | 
 |       else if (instr[0] == 0xfa && instr[1] == 0xfe) | 
 | 	{ | 
 | 	  gdb_byte buf[2]; | 
 | 	  LONGEST imm16; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 2); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  imm16 = extract_signed_integer (buf, 2, byte_order); | 
 | 	  regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm16); | 
 |  | 
 | 	  pc += 4; | 
 | 	  /* Stack pointer adjustments are frame related.  */ | 
 | 	  after_last_frame_setup_insn = pc; | 
 | 	} | 
 |       /* add imm32, SP */ | 
 |       else if (instr[0] == 0xfc && instr[1] == 0xfe) | 
 | 	{ | 
 | 	  gdb_byte buf[4]; | 
 | 	  LONGEST imm32; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 4); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 |  | 
 | 	  imm32 = extract_signed_integer (buf, 4, byte_order); | 
 | 	  regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm32); | 
 |  | 
 | 	  pc += 6; | 
 | 	  /* Stack pointer adjustments are frame related.  */ | 
 | 	  after_last_frame_setup_insn = pc; | 
 | 	} | 
 |       /* add imm8, aN  */ | 
 |       else if ((instr[0] & 0xfc) == 0x20) | 
 | 	{ | 
 | 	  int aN; | 
 | 	  LONGEST imm8; | 
 |  | 
 | 	  aN = instr[0] & 0x03; | 
 | 	  imm8 = extract_signed_integer (&instr[1], 1, byte_order); | 
 |  | 
 | 	  regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN], | 
 | 						    imm8); | 
 |  | 
 | 	  pc += 2; | 
 | 	} | 
 |       /* add imm16, aN  */ | 
 |       else if (instr[0] == 0xfa && (instr[1] & 0xfc) == 0xd0) | 
 | 	{ | 
 | 	  int aN; | 
 | 	  LONGEST imm16; | 
 | 	  gdb_byte buf[2]; | 
 |  | 
 | 	  aN = instr[1] & 0x03; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 2); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 |  | 
 | 	  imm16 = extract_signed_integer (buf, 2, byte_order); | 
 |  | 
 | 	  regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN], | 
 | 						    imm16); | 
 |  | 
 | 	  pc += 4; | 
 | 	} | 
 |       /* add imm32, aN  */ | 
 |       else if (instr[0] == 0xfc && (instr[1] & 0xfc) == 0xd0) | 
 | 	{ | 
 | 	  int aN; | 
 | 	  LONGEST imm32; | 
 | 	  gdb_byte buf[4]; | 
 |  | 
 | 	  aN = instr[1] & 0x03; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 4); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  imm32 = extract_signed_integer (buf, 2, byte_order); | 
 |  | 
 | 	  regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN], | 
 | 						    imm32); | 
 | 	  pc += 6; | 
 | 	} | 
 |       /* fmov fsM, (rN) */ | 
 |       else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x30) | 
 | 	{ | 
 | 	  int fsM, sM, Y, rN; | 
 | 	  gdb_byte buf[1]; | 
 |  | 
 | 	  Y = (instr[1] & 0x02) >> 1; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 1); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  sM = (buf[0] & 0xf0) >> 4; | 
 | 	  rN = buf[0] & 0x0f; | 
 | 	  fsM = (Y << 4) | sM; | 
 |  | 
 | 	  stack.store (regs[translate_rreg (rN)], 4, | 
 | 		       regs[E_FS0_REGNUM + fsM]); | 
 |  | 
 | 	  pc += 3; | 
 | 	} | 
 |       /* fmov fsM, (sp) */ | 
 |       else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x34) | 
 | 	{ | 
 | 	  int fsM, sM, Y; | 
 | 	  gdb_byte buf[1]; | 
 |  | 
 | 	  Y = (instr[1] & 0x02) >> 1; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 1); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  sM = (buf[0] & 0xf0) >> 4; | 
 | 	  fsM = (Y << 4) | sM; | 
 |  | 
 | 	  stack.store (regs[E_SP_REGNUM], 4, | 
 | 		       regs[E_FS0_REGNUM + fsM]); | 
 |  | 
 | 	  pc += 3; | 
 | 	} | 
 |       /* fmov fsM, (rN, rI) */ | 
 |       else if (instr[0] == 0xfb && instr[1] == 0x37) | 
 | 	{ | 
 | 	  int fsM, sM, Z, rN, rI; | 
 | 	  gdb_byte buf[2]; | 
 |  | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 2); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  rI = (buf[0] & 0xf0) >> 4; | 
 | 	  rN = buf[0] & 0x0f; | 
 | 	  sM = (buf[1] & 0xf0) >> 4; | 
 | 	  Z = (buf[1] & 0x02) >> 1; | 
 | 	  fsM = (Z << 4) | sM; | 
 |  | 
 | 	  stack.store (pv_add (regs[translate_rreg (rN)], | 
 | 			       regs[translate_rreg (rI)]), | 
 | 		       4, regs[E_FS0_REGNUM + fsM]); | 
 |  | 
 | 	  pc += 4; | 
 | 	} | 
 |       /* fmov fsM, (d8, rN) */ | 
 |       else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x30) | 
 | 	{ | 
 | 	  int fsM, sM, Y, rN; | 
 | 	  LONGEST d8; | 
 | 	  gdb_byte buf[2]; | 
 |  | 
 | 	  Y = (instr[1] & 0x02) >> 1; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 2); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  sM = (buf[0] & 0xf0) >> 4; | 
 | 	  rN = buf[0] & 0x0f; | 
 | 	  fsM = (Y << 4) | sM; | 
 | 	  d8 = extract_signed_integer (&buf[1], 1, byte_order); | 
 |  | 
 | 	  stack.store (pv_add_constant (regs[translate_rreg (rN)], d8), | 
 | 		       4, regs[E_FS0_REGNUM + fsM]); | 
 |  | 
 | 	  pc += 4; | 
 | 	} | 
 |       /* fmov fsM, (d24, rN) */ | 
 |       else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x30) | 
 | 	{ | 
 | 	  int fsM, sM, Y, rN; | 
 | 	  LONGEST d24; | 
 | 	  gdb_byte buf[4]; | 
 |  | 
 | 	  Y = (instr[1] & 0x02) >> 1; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 4); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  sM = (buf[0] & 0xf0) >> 4; | 
 | 	  rN = buf[0] & 0x0f; | 
 | 	  fsM = (Y << 4) | sM; | 
 | 	  d24 = extract_signed_integer (&buf[1], 3, byte_order); | 
 |  | 
 | 	  stack.store (pv_add_constant (regs[translate_rreg (rN)], d24), | 
 | 		       4, regs[E_FS0_REGNUM + fsM]); | 
 |  | 
 | 	  pc += 6; | 
 | 	} | 
 |       /* fmov fsM, (d32, rN) */ | 
 |       else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x30) | 
 | 	{ | 
 | 	  int fsM, sM, Y, rN; | 
 | 	  LONGEST d32; | 
 | 	  gdb_byte buf[5]; | 
 |  | 
 | 	  Y = (instr[1] & 0x02) >> 1; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 5); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  sM = (buf[0] & 0xf0) >> 4; | 
 | 	  rN = buf[0] & 0x0f; | 
 | 	  fsM = (Y << 4) | sM; | 
 | 	  d32 = extract_signed_integer (&buf[1], 4, byte_order); | 
 |  | 
 | 	  stack.store (pv_add_constant (regs[translate_rreg (rN)], d32), | 
 | 		       4, regs[E_FS0_REGNUM + fsM]); | 
 |  | 
 | 	  pc += 7; | 
 | 	} | 
 |       /* fmov fsM, (d8, SP) */ | 
 |       else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x34) | 
 | 	{ | 
 | 	  int fsM, sM, Y; | 
 | 	  LONGEST d8; | 
 | 	  gdb_byte buf[2]; | 
 |  | 
 | 	  Y = (instr[1] & 0x02) >> 1; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 2); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  sM = (buf[0] & 0xf0) >> 4; | 
 | 	  fsM = (Y << 4) | sM; | 
 | 	  d8 = extract_signed_integer (&buf[1], 1, byte_order); | 
 |  | 
 | 	  stack.store (pv_add_constant (regs[E_SP_REGNUM], d8), | 
 | 		       4, regs[E_FS0_REGNUM + fsM]); | 
 |  | 
 | 	  pc += 4; | 
 | 	} | 
 |       /* fmov fsM, (d24, SP) */ | 
 |       else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x34) | 
 | 	{ | 
 | 	  int fsM, sM, Y; | 
 | 	  LONGEST d24; | 
 | 	  gdb_byte buf[4]; | 
 |  | 
 | 	  Y = (instr[1] & 0x02) >> 1; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 4); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  sM = (buf[0] & 0xf0) >> 4; | 
 | 	  fsM = (Y << 4) | sM; | 
 | 	  d24 = extract_signed_integer (&buf[1], 3, byte_order); | 
 |  | 
 | 	  stack.store (pv_add_constant (regs[E_SP_REGNUM], d24), | 
 | 		       4, regs[E_FS0_REGNUM + fsM]); | 
 |  | 
 | 	  pc += 6; | 
 | 	} | 
 |       /* fmov fsM, (d32, SP) */ | 
 |       else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x34) | 
 | 	{ | 
 | 	  int fsM, sM, Y; | 
 | 	  LONGEST d32; | 
 | 	  gdb_byte buf[5]; | 
 |  | 
 | 	  Y = (instr[1] & 0x02) >> 1; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 5); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  sM = (buf[0] & 0xf0) >> 4; | 
 | 	  fsM = (Y << 4) | sM; | 
 | 	  d32 = extract_signed_integer (&buf[1], 4, byte_order); | 
 |  | 
 | 	  stack.store (pv_add_constant (regs[E_SP_REGNUM], d32), | 
 | 		       4, regs[E_FS0_REGNUM + fsM]); | 
 |  | 
 | 	  pc += 7; | 
 | 	} | 
 |       /* fmov fsM, (rN+) */ | 
 |       else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x31) | 
 | 	{ | 
 | 	  int fsM, sM, Y, rN, rN_regnum; | 
 | 	  gdb_byte buf[1]; | 
 |  | 
 | 	  Y = (instr[1] & 0x02) >> 1; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 1); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  sM = (buf[0] & 0xf0) >> 4; | 
 | 	  rN = buf[0] & 0x0f; | 
 | 	  fsM = (Y << 4) | sM; | 
 |  | 
 | 	  rN_regnum = translate_rreg (rN); | 
 |  | 
 | 	  stack.store (regs[rN_regnum], 4, | 
 | 		       regs[E_FS0_REGNUM + fsM]); | 
 | 	  regs[rN_regnum] = pv_add_constant (regs[rN_regnum], 4); | 
 |  | 
 | 	  pc += 3; | 
 | 	} | 
 |       /* fmov fsM, (rN+, imm8) */ | 
 |       else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x31) | 
 | 	{ | 
 | 	  int fsM, sM, Y, rN, rN_regnum; | 
 | 	  LONGEST imm8; | 
 | 	  gdb_byte buf[2]; | 
 |  | 
 | 	  Y = (instr[1] & 0x02) >> 1; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 2); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  sM = (buf[0] & 0xf0) >> 4; | 
 | 	  rN = buf[0] & 0x0f; | 
 | 	  fsM = (Y << 4) | sM; | 
 | 	  imm8 = extract_signed_integer (&buf[1], 1, byte_order); | 
 |  | 
 | 	  rN_regnum = translate_rreg (rN); | 
 |  | 
 | 	  stack.store (regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]); | 
 | 	  regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm8); | 
 |  | 
 | 	  pc += 4; | 
 | 	} | 
 |       /* fmov fsM, (rN+, imm24) */ | 
 |       else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x31) | 
 | 	{ | 
 | 	  int fsM, sM, Y, rN, rN_regnum; | 
 | 	  LONGEST imm24; | 
 | 	  gdb_byte buf[4]; | 
 |  | 
 | 	  Y = (instr[1] & 0x02) >> 1; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 4); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  sM = (buf[0] & 0xf0) >> 4; | 
 | 	  rN = buf[0] & 0x0f; | 
 | 	  fsM = (Y << 4) | sM; | 
 | 	  imm24 = extract_signed_integer (&buf[1], 3, byte_order); | 
 |  | 
 | 	  rN_regnum = translate_rreg (rN); | 
 |  | 
 | 	  stack.store (regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]); | 
 | 	  regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm24); | 
 |  | 
 | 	  pc += 6; | 
 | 	} | 
 |       /* fmov fsM, (rN+, imm32) */ | 
 |       else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x31) | 
 | 	{ | 
 | 	  int fsM, sM, Y, rN, rN_regnum; | 
 | 	  LONGEST imm32; | 
 | 	  gdb_byte buf[5]; | 
 |  | 
 | 	  Y = (instr[1] & 0x02) >> 1; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 5); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  sM = (buf[0] & 0xf0) >> 4; | 
 | 	  rN = buf[0] & 0x0f; | 
 | 	  fsM = (Y << 4) | sM; | 
 | 	  imm32 = extract_signed_integer (&buf[1], 4, byte_order); | 
 |  | 
 | 	  rN_regnum = translate_rreg (rN); | 
 |  | 
 | 	  stack.store (regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]); | 
 | 	  regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm32); | 
 |  | 
 | 	  pc += 7; | 
 | 	} | 
 |       /* mov imm8, aN */ | 
 |       else if ((instr[0] & 0xf0) == 0x90) | 
 | 	{ | 
 | 	  int aN = instr[0] & 0x03; | 
 | 	  LONGEST imm8; | 
 |  | 
 | 	  imm8 = extract_signed_integer (&instr[1], 1, byte_order); | 
 |  | 
 | 	  regs[E_A0_REGNUM + aN] = pv_constant (imm8); | 
 | 	  pc += 2; | 
 | 	} | 
 |       /* mov imm16, aN */ | 
 |       else if ((instr[0] & 0xfc) == 0x24) | 
 | 	{ | 
 | 	  int aN = instr[0] & 0x03; | 
 | 	  gdb_byte buf[2]; | 
 | 	  LONGEST imm16; | 
 |  | 
 | 	  status = target_read_memory (pc + 1, buf, 2); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  imm16 = extract_signed_integer (buf, 2, byte_order); | 
 | 	  regs[E_A0_REGNUM + aN] = pv_constant (imm16); | 
 | 	  pc += 3; | 
 | 	} | 
 |       /* mov imm32, aN */ | 
 |       else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xdc)) | 
 | 	{ | 
 | 	  int aN = instr[1] & 0x03; | 
 | 	  gdb_byte buf[4]; | 
 | 	  LONGEST imm32; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 4); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  imm32 = extract_signed_integer (buf, 4, byte_order); | 
 | 	  regs[E_A0_REGNUM + aN] = pv_constant (imm32); | 
 | 	  pc += 6; | 
 | 	} | 
 |       /* mov imm8, dN */ | 
 |       else if ((instr[0] & 0xf0) == 0x80) | 
 | 	{ | 
 | 	  int dN = instr[0] & 0x03; | 
 | 	  LONGEST imm8; | 
 |  | 
 | 	  imm8 = extract_signed_integer (&instr[1], 1, byte_order); | 
 |  | 
 | 	  regs[E_D0_REGNUM + dN] = pv_constant (imm8); | 
 | 	  pc += 2; | 
 | 	} | 
 |       /* mov imm16, dN */ | 
 |       else if ((instr[0] & 0xfc) == 0x2c) | 
 | 	{ | 
 | 	  int dN = instr[0] & 0x03; | 
 | 	  gdb_byte buf[2]; | 
 | 	  LONGEST imm16; | 
 |  | 
 | 	  status = target_read_memory (pc + 1, buf, 2); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  imm16 = extract_signed_integer (buf, 2, byte_order); | 
 | 	  regs[E_D0_REGNUM + dN] = pv_constant (imm16); | 
 | 	  pc += 3; | 
 | 	} | 
 |       /* mov imm32, dN */ | 
 |       else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xcc)) | 
 | 	{ | 
 | 	  int dN = instr[1] & 0x03; | 
 | 	  gdb_byte buf[4]; | 
 | 	  LONGEST imm32; | 
 |  | 
 | 	  status = target_read_memory (pc + 2, buf, 4); | 
 | 	  if (status != 0) | 
 | 	    break; | 
 |  | 
 | 	  imm32 = extract_signed_integer (buf, 4, byte_order); | 
 | 	  regs[E_D0_REGNUM + dN] = pv_constant (imm32); | 
 | 	  pc += 6; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  /* We've hit some instruction that we don't recognize.  Hopefully, | 
 | 	     we have enough to do prologue analysis.  */ | 
 | 	  break; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Is the frame size (offset, really) a known constant?  */ | 
 |   if (pv_is_register (regs[E_SP_REGNUM], E_SP_REGNUM)) | 
 |     result->frame_size = regs[E_SP_REGNUM].k; | 
 |  | 
 |   /* Was the frame pointer initialized?  */ | 
 |   if (pv_is_register (regs[E_A3_REGNUM], E_SP_REGNUM)) | 
 |     { | 
 |       result->has_frame_ptr = 1; | 
 |       result->frame_ptr_offset = regs[E_A3_REGNUM].k; | 
 |     } | 
 |  | 
 |   /* Record where all the registers were saved.  */ | 
 |   stack.scan (check_for_saved, (void *) result); | 
 |  | 
 |   result->prologue_end = after_last_frame_setup_insn; | 
 | } | 
 |  | 
 | /* Function: skip_prologue | 
 |    Return the address of the first inst past the prologue of the function.  */ | 
 |  | 
 | static CORE_ADDR | 
 | mn10300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | 
 | { | 
 |   const char *name; | 
 |   CORE_ADDR func_addr, func_end; | 
 |   struct mn10300_prologue p; | 
 |  | 
 |   /* Try to find the extent of the function that contains PC.  */ | 
 |   if (!find_pc_partial_function (pc, &name, &func_addr, &func_end)) | 
 |     return pc; | 
 |  | 
 |   mn10300_analyze_prologue (gdbarch, pc, func_end, &p); | 
 |   return p.prologue_end; | 
 | } | 
 |  | 
 | /* Wrapper for mn10300_analyze_prologue: find the function start; | 
 |    use the current frame PC as the limit, then | 
 |    invoke mn10300_analyze_prologue and return its result.  */ | 
 | static struct mn10300_prologue * | 
 | mn10300_analyze_frame_prologue (struct frame_info *this_frame, | 
 | 			   void **this_prologue_cache) | 
 | { | 
 |   if (!*this_prologue_cache) | 
 |     { | 
 |       CORE_ADDR func_start, stop_addr; | 
 |  | 
 |       *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct mn10300_prologue); | 
 |  | 
 |       func_start = get_frame_func (this_frame); | 
 |       stop_addr = get_frame_pc (this_frame); | 
 |  | 
 |       /* If we couldn't find any function containing the PC, then | 
 | 	 just initialize the prologue cache, but don't do anything.  */ | 
 |       if (!func_start) | 
 | 	stop_addr = func_start; | 
 |  | 
 |       mn10300_analyze_prologue (get_frame_arch (this_frame), | 
 | 				func_start, stop_addr, | 
 | 				((struct mn10300_prologue *) | 
 | 				 *this_prologue_cache)); | 
 |     } | 
 |  | 
 |   return (struct mn10300_prologue *) *this_prologue_cache; | 
 | } | 
 |  | 
 | /* Given the next frame and a prologue cache, return this frame's | 
 |    base.  */ | 
 | static CORE_ADDR | 
 | mn10300_frame_base (struct frame_info *this_frame, void **this_prologue_cache) | 
 | { | 
 |   struct mn10300_prologue *p | 
 |     = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache); | 
 |  | 
 |   /* In functions that use alloca, the distance between the stack | 
 |      pointer and the frame base varies dynamically, so we can't use | 
 |      the SP plus static information like prologue analysis to find the | 
 |      frame base.  However, such functions must have a frame pointer, | 
 |      to be able to restore the SP on exit.  So whenever we do have a | 
 |      frame pointer, use that to find the base.  */ | 
 |   if (p->has_frame_ptr) | 
 |     { | 
 |       CORE_ADDR fp = get_frame_register_unsigned (this_frame, E_A3_REGNUM); | 
 |       return fp - p->frame_ptr_offset; | 
 |     } | 
 |   else | 
 |     { | 
 |       CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM); | 
 |       return sp - p->frame_size; | 
 |     } | 
 | } | 
 |  | 
 | static void | 
 | mn10300_frame_this_id (struct frame_info *this_frame, | 
 | 		       void **this_prologue_cache, | 
 | 		       struct frame_id *this_id) | 
 | { | 
 |   *this_id = frame_id_build (mn10300_frame_base (this_frame, | 
 | 						 this_prologue_cache), | 
 | 			     get_frame_func (this_frame)); | 
 |  | 
 | } | 
 |  | 
 | static struct value * | 
 | mn10300_frame_prev_register (struct frame_info *this_frame, | 
 | 			     void **this_prologue_cache, int regnum) | 
 | { | 
 |   struct mn10300_prologue *p | 
 |     = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache); | 
 |   CORE_ADDR frame_base = mn10300_frame_base (this_frame, this_prologue_cache); | 
 |  | 
 |   if (regnum == E_SP_REGNUM) | 
 |     return frame_unwind_got_constant (this_frame, regnum, frame_base); | 
 |  | 
 |   /* If prologue analysis says we saved this register somewhere, | 
 |      return a description of the stack slot holding it.  */ | 
 |   if (p->reg_offset[regnum] != 1) | 
 |     return frame_unwind_got_memory (this_frame, regnum, | 
 | 				    frame_base + p->reg_offset[regnum]); | 
 |  | 
 |   /* Otherwise, presume we haven't changed the value of this | 
 |      register, and get it from the next frame.  */ | 
 |   return frame_unwind_got_register (this_frame, regnum, regnum); | 
 | } | 
 |  | 
 | static const struct frame_unwind mn10300_frame_unwind = { | 
 |   "mn10300 prologue", | 
 |   NORMAL_FRAME, | 
 |   default_frame_unwind_stop_reason, | 
 |   mn10300_frame_this_id,  | 
 |   mn10300_frame_prev_register, | 
 |   NULL, | 
 |   default_frame_sniffer | 
 | }; | 
 |  | 
 | static void | 
 | mn10300_frame_unwind_init (struct gdbarch *gdbarch) | 
 | { | 
 |   dwarf2_append_unwinders (gdbarch); | 
 |   frame_unwind_append_unwinder (gdbarch, &mn10300_frame_unwind); | 
 | } | 
 |  | 
 | /* Function: push_dummy_call | 
 |  * | 
 |  * Set up machine state for a target call, including | 
 |  * function arguments, stack, return address, etc. | 
 |  * | 
 |  */ | 
 |  | 
 | static CORE_ADDR | 
 | mn10300_push_dummy_call (struct gdbarch *gdbarch,  | 
 | 			 struct value *target_func, | 
 | 			 struct regcache *regcache, | 
 | 			 CORE_ADDR bp_addr,  | 
 | 			 int nargs, struct value **args, | 
 | 			 CORE_ADDR sp,  | 
 | 			 function_call_return_method return_method, | 
 | 			 CORE_ADDR struct_addr) | 
 | { | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   const int push_size = register_size (gdbarch, E_PC_REGNUM); | 
 |   int regs_used; | 
 |   int len, arg_len;  | 
 |   int stack_offset = 0; | 
 |   int argnum; | 
 |   const gdb_byte *val; | 
 |   gdb_byte valbuf[MN10300_MAX_REGISTER_SIZE]; | 
 |  | 
 |   /* This should be a nop, but align the stack just in case something | 
 |      went wrong.  Stacks are four byte aligned on the mn10300.  */ | 
 |   sp &= ~3; | 
 |  | 
 |   /* Now make space on the stack for the args. | 
 |  | 
 |      XXX This doesn't appear to handle pass-by-invisible reference | 
 |      arguments.  */ | 
 |   regs_used = (return_method == return_method_struct) ? 1 : 0; | 
 |   for (len = 0, argnum = 0; argnum < nargs; argnum++) | 
 |     { | 
 |       arg_len = (TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3; | 
 |       while (regs_used < 2 && arg_len > 0) | 
 | 	{ | 
 | 	  regs_used++; | 
 | 	  arg_len -= push_size; | 
 | 	} | 
 |       len += arg_len; | 
 |     } | 
 |  | 
 |   /* Allocate stack space.  */ | 
 |   sp -= len; | 
 |  | 
 |   if (return_method == return_method_struct) | 
 |     { | 
 |       regs_used = 1; | 
 |       regcache_cooked_write_unsigned (regcache, E_D0_REGNUM, struct_addr); | 
 |     } | 
 |   else | 
 |     regs_used = 0; | 
 |  | 
 |   /* Push all arguments onto the stack.  */ | 
 |   for (argnum = 0; argnum < nargs; argnum++) | 
 |     { | 
 |       /* FIXME what about structs?  Unions?  */ | 
 |       if (value_type (*args)->code () == TYPE_CODE_STRUCT | 
 | 	  && TYPE_LENGTH (value_type (*args)) > 8) | 
 | 	{ | 
 | 	  /* Change to pointer-to-type.  */ | 
 | 	  arg_len = push_size; | 
 | 	  gdb_assert (push_size <= MN10300_MAX_REGISTER_SIZE); | 
 | 	  store_unsigned_integer (valbuf, push_size, byte_order, | 
 | 				  value_address (*args)); | 
 | 	  val = &valbuf[0]; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  arg_len = TYPE_LENGTH (value_type (*args)); | 
 | 	  val = value_contents (*args).data (); | 
 | 	} | 
 |  | 
 |       while (regs_used < 2 && arg_len > 0) | 
 | 	{ | 
 | 	  regcache_cooked_write_unsigned (regcache, regs_used,  | 
 | 		  extract_unsigned_integer (val, push_size, byte_order)); | 
 | 	  val += push_size; | 
 | 	  arg_len -= push_size; | 
 | 	  regs_used++; | 
 | 	} | 
 |  | 
 |       while (arg_len > 0) | 
 | 	{ | 
 | 	  write_memory (sp + stack_offset, val, push_size); | 
 | 	  arg_len -= push_size; | 
 | 	  val += push_size; | 
 | 	  stack_offset += push_size; | 
 | 	} | 
 |  | 
 |       args++; | 
 |     } | 
 |  | 
 |   /* Make space for the flushback area.  */ | 
 |   sp -= 8; | 
 |  | 
 |   /* Push the return address that contains the magic breakpoint.  */ | 
 |   sp -= 4; | 
 |   write_memory_unsigned_integer (sp, push_size, byte_order, bp_addr); | 
 |  | 
 |   /* The CPU also writes the return address always into the | 
 |      MDR register on "call".  */ | 
 |   regcache_cooked_write_unsigned (regcache, E_MDR_REGNUM, bp_addr); | 
 |  | 
 |   /* Update $sp.  */ | 
 |   regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp); | 
 |  | 
 |   /* On the mn10300, it's possible to move some of the stack adjustment | 
 |      and saving of the caller-save registers out of the prologue and | 
 |      into the call sites.  (When using gcc, this optimization can | 
 |      occur when using the -mrelax switch.) If this occurs, the dwarf2 | 
 |      info will reflect this fact.  We can test to see if this is the | 
 |      case by creating a new frame using the current stack pointer and | 
 |      the address of the function that we're about to call.  We then | 
 |      unwind SP and see if it's different than the SP of our newly | 
 |      created frame.  If the SP values are the same, the caller is not | 
 |      expected to allocate any additional stack.  On the other hand, if | 
 |      the SP values are different, the difference determines the | 
 |      additional stack that must be allocated. | 
 |       | 
 |      Note that we don't update the return value though because that's | 
 |      the value of the stack just after pushing the arguments, but prior | 
 |      to performing the call.  This value is needed in order to | 
 |      construct the frame ID of the dummy call.  */ | 
 |   { | 
 |     CORE_ADDR func_addr = find_function_addr (target_func, NULL); | 
 |     CORE_ADDR unwound_sp  | 
 |       = gdbarch_unwind_sp (gdbarch, create_new_frame (sp, func_addr)); | 
 |     if (sp != unwound_sp) | 
 |       regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, | 
 | 				      sp - (unwound_sp - sp)); | 
 |   } | 
 |  | 
 |   return sp; | 
 | } | 
 |  | 
 | /* If DWARF2 is a register number appearing in Dwarf2 debug info, then | 
 |    mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB | 
 |    register number.  Why don't Dwarf2 and GDB use the same numbering? | 
 |    Who knows?  But since people have object files lying around with | 
 |    the existing Dwarf2 numbering, and other people have written stubs | 
 |    to work with the existing GDB, neither of them can change.  So we | 
 |    just have to cope.  */ | 
 | static int | 
 | mn10300_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int dwarf2) | 
 | { | 
 |   /* This table is supposed to be shaped like the gdbarch_register_name | 
 |      initializer in gcc/config/mn10300/mn10300.h.  Registers which | 
 |      appear in GCC's numbering, but have no counterpart in GDB's | 
 |      world, are marked with a -1.  */ | 
 |   static int dwarf2_to_gdb[] = { | 
 |     E_D0_REGNUM, E_D1_REGNUM, E_D2_REGNUM, E_D3_REGNUM, | 
 |     E_A0_REGNUM, E_A1_REGNUM, E_A2_REGNUM, E_A3_REGNUM, | 
 |     -1, E_SP_REGNUM, | 
 |  | 
 |     E_E0_REGNUM, E_E1_REGNUM, E_E2_REGNUM, E_E3_REGNUM, | 
 |     E_E4_REGNUM, E_E5_REGNUM, E_E6_REGNUM, E_E7_REGNUM, | 
 |  | 
 |     E_FS0_REGNUM + 0, E_FS0_REGNUM + 1, E_FS0_REGNUM + 2, E_FS0_REGNUM + 3, | 
 |     E_FS0_REGNUM + 4, E_FS0_REGNUM + 5, E_FS0_REGNUM + 6, E_FS0_REGNUM + 7, | 
 |  | 
 |     E_FS0_REGNUM + 8, E_FS0_REGNUM + 9, E_FS0_REGNUM + 10, E_FS0_REGNUM + 11, | 
 |     E_FS0_REGNUM + 12, E_FS0_REGNUM + 13, E_FS0_REGNUM + 14, E_FS0_REGNUM + 15, | 
 |  | 
 |     E_FS0_REGNUM + 16, E_FS0_REGNUM + 17, E_FS0_REGNUM + 18, E_FS0_REGNUM + 19, | 
 |     E_FS0_REGNUM + 20, E_FS0_REGNUM + 21, E_FS0_REGNUM + 22, E_FS0_REGNUM + 23, | 
 |  | 
 |     E_FS0_REGNUM + 24, E_FS0_REGNUM + 25, E_FS0_REGNUM + 26, E_FS0_REGNUM + 27, | 
 |     E_FS0_REGNUM + 28, E_FS0_REGNUM + 29, E_FS0_REGNUM + 30, E_FS0_REGNUM + 31, | 
 |  | 
 |     E_MDR_REGNUM, E_PSW_REGNUM, E_PC_REGNUM | 
 |   }; | 
 |  | 
 |   if (dwarf2 < 0 | 
 |       || dwarf2 >= ARRAY_SIZE (dwarf2_to_gdb)) | 
 |     return -1; | 
 |  | 
 |   return dwarf2_to_gdb[dwarf2]; | 
 | } | 
 |  | 
 | static struct gdbarch * | 
 | mn10300_gdbarch_init (struct gdbarch_info info, | 
 | 		      struct gdbarch_list *arches) | 
 | { | 
 |   struct gdbarch *gdbarch; | 
 |   int num_regs; | 
 |  | 
 |   arches = gdbarch_list_lookup_by_info (arches, &info); | 
 |   if (arches != NULL) | 
 |     return arches->gdbarch; | 
 |  | 
 |   mn10300_gdbarch_tdep *tdep = new mn10300_gdbarch_tdep; | 
 |   gdbarch = gdbarch_alloc (&info, tdep); | 
 |  | 
 |   switch (info.bfd_arch_info->mach) | 
 |     { | 
 |     case 0: | 
 |     case bfd_mach_mn10300: | 
 |       set_gdbarch_register_name (gdbarch, mn10300_generic_register_name); | 
 |       tdep->am33_mode = 0; | 
 |       num_regs = 32; | 
 |       break; | 
 |     case bfd_mach_am33: | 
 |       set_gdbarch_register_name (gdbarch, am33_register_name); | 
 |       tdep->am33_mode = 1; | 
 |       num_regs = 32; | 
 |       break; | 
 |     case bfd_mach_am33_2: | 
 |       set_gdbarch_register_name (gdbarch, am33_2_register_name); | 
 |       tdep->am33_mode = 2; | 
 |       num_regs = 64; | 
 |       set_gdbarch_fp0_regnum (gdbarch, 32); | 
 |       break; | 
 |     default: | 
 |       internal_error (__FILE__, __LINE__, | 
 | 		      _("mn10300_gdbarch_init: Unknown mn10300 variant")); | 
 |       break; | 
 |     } | 
 |  | 
 |   /* By default, chars are unsigned.  */ | 
 |   set_gdbarch_char_signed (gdbarch, 0); | 
 |  | 
 |   /* Registers.  */ | 
 |   set_gdbarch_num_regs (gdbarch, num_regs); | 
 |   set_gdbarch_register_type (gdbarch, mn10300_register_type); | 
 |   set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue); | 
 |   set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM); | 
 |   set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM); | 
 |   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum); | 
 |  | 
 |   /* Stack unwinding.  */ | 
 |   set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | 
 |   /* Breakpoints.  */ | 
 |   set_gdbarch_breakpoint_kind_from_pc (gdbarch, | 
 | 				       mn10300_breakpoint::kind_from_pc); | 
 |   set_gdbarch_sw_breakpoint_from_kind (gdbarch, | 
 | 				       mn10300_breakpoint::bp_from_kind); | 
 |   /* decr_pc_after_break?  */ | 
 |  | 
 |   /* Stage 2 */ | 
 |   set_gdbarch_return_value (gdbarch, mn10300_return_value); | 
 |    | 
 |   /* Stage 3 -- get target calls working.  */ | 
 |   set_gdbarch_push_dummy_call (gdbarch, mn10300_push_dummy_call); | 
 |   /* set_gdbarch_return_value (store, extract) */ | 
 |  | 
 |  | 
 |   mn10300_frame_unwind_init (gdbarch); | 
 |  | 
 |   /* Hook in ABI-specific overrides, if they have been registered.  */ | 
 |   gdbarch_init_osabi (info, gdbarch); | 
 |  | 
 |   return gdbarch; | 
 | } | 
 |   | 
 | /* Dump out the mn10300 specific architecture information.  */ | 
 |  | 
 | static void | 
 | mn10300_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) | 
 | { | 
 |   mn10300_gdbarch_tdep *tdep = (mn10300_gdbarch_tdep *) gdbarch_tdep (gdbarch); | 
 |   fprintf_filtered (file, "mn10300_dump_tdep: am33_mode = %d\n", | 
 | 		    tdep->am33_mode); | 
 | } | 
 |  | 
 | void _initialize_mn10300_tdep (); | 
 | void | 
 | _initialize_mn10300_tdep () | 
 | { | 
 |   gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep); | 
 | } | 
 |  |