| /* KVX-specific support for NN-bit ELF. |
| Copyright (C) 2009-2024 Free Software Foundation, Inc. |
| Contributed by Kalray SA. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; see the file COPYING3. If not, |
| see <http://www.gnu.org/licenses/>. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "libiberty.h" |
| #include "libbfd.h" |
| #include "elf-bfd.h" |
| #include "bfdlink.h" |
| #include "objalloc.h" |
| #include "elf/kvx.h" |
| #include "elfxx-kvx.h" |
| |
| #define ARCH_SIZE NN |
| |
| #if ARCH_SIZE == 64 |
| #define LOG_FILE_ALIGN 3 |
| #endif |
| |
| #if ARCH_SIZE == 32 |
| #define LOG_FILE_ALIGN 2 |
| #endif |
| |
| #define IS_KVX_TLS_RELOC(R_TYPE) \ |
| ((R_TYPE) == BFD_RELOC_KVX_S37_TLS_LE_LO10 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_LE_UP27 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LE_LO10 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LE_UP27 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LE_EX6 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_DTPOFF_LO10 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_DTPOFF_UP27 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_DTPOFF_LO10 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_DTPOFF_UP27 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_DTPOFF_EX6 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_IE_LO10 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_IE_UP27 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_IE_LO10 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_IE_UP27 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_IE_EX6 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_GD_LO10 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_GD_UP27 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_GD_LO10 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_GD_UP27 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_GD_EX6 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_LD_LO10 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S37_TLS_LD_UP27 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LD_LO10 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LD_UP27 \ |
| || (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LD_EX6 \ |
| ) |
| |
| #define IS_KVX_TLS_RELAX_RELOC(R_TYPE) 0 |
| |
| #define ELIMINATE_COPY_RELOCS 0 |
| |
| /* Return size of a relocation entry. HTAB is the bfd's |
| elf_kvx_link_hash_entry. */ |
| #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela)) |
| |
| /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */ |
| #define GOT_ENTRY_SIZE (ARCH_SIZE / 8) |
| #define PLT_ENTRY_SIZE (32) |
| |
| #define PLT_SMALL_ENTRY_SIZE (4*4) |
| |
| /* Encoding of the nop instruction */ |
| #define INSN_NOP 0x00f0037f |
| |
| #define kvx_compute_jump_table_size(htab) \ |
| (((htab)->root.srelplt == NULL) ? 0 \ |
| : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE) |
| |
| static const bfd_byte elfNN_kvx_small_plt0_entry[PLT_ENTRY_SIZE] = |
| { |
| /* FIXME KVX: no first entry, not used yet */ |
| 0 |
| }; |
| |
| /* Per function entry in a procedure linkage table looks like this |
| if the distance between the PLTGOT and the PLT is < 4GB use |
| these PLT entries. */ |
| static const bfd_byte elfNN_kvx_small_plt_entry[PLT_SMALL_ENTRY_SIZE] = |
| { |
| 0x10, 0x00, 0xc4, 0x0f, /* get $r16 = $pc ;; */ |
| #if ARCH_SIZE == 32 |
| 0x10, 0x00, 0x40, 0xb0, /* lwz $r16 = 0[$r16] ;; */ |
| #else |
| 0x10, 0x00, 0x40, 0xb8, /* ld $r16 = 0[$r16] ;; */ |
| #endif |
| 0x00, 0x00, 0x00, 0x18, /* upper 27 bits for LSU */ |
| 0x10, 0x00, 0xd8, 0x0f, /* igoto $r16 ;; */ |
| }; |
| |
| /* Long stub use 43bits format of make. */ |
| static const uint32_t elfNN_kvx_long_branch_stub[] = |
| { |
| 0xe0400000, /* make $r16 = LO10<emm43> EX6<imm43> */ |
| 0x00000000, /* UP27<imm43> ;; */ |
| 0x0fd80010, /* igoto "r16 ;; */ |
| }; |
| |
| #define elf_info_to_howto elfNN_kvx_info_to_howto |
| #define elf_info_to_howto_rel elfNN_kvx_info_to_howto |
| |
| #define KVX_ELF_ABI_VERSION 0 |
| |
| /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */ |
| #define ALL_ONES (~ (bfd_vma) 0) |
| |
| /* Indexed by the bfd interal reloc enumerators. |
| Therefore, the table needs to be synced with BFD_RELOC_KVX_* |
| in reloc.c. */ |
| |
| #define KVX_KV3_V1_KV3_V2_KV4_V1 |
| #include "elfxx-kvx-relocs.h" |
| #undef KVX_KV3_V1_KV3_V2_KV4_V1 |
| |
| /* Given HOWTO, return the bfd internal relocation enumerator. */ |
| |
| static bfd_reloc_code_real_type |
| elfNN_kvx_bfd_reloc_from_howto (reloc_howto_type *howto) |
| { |
| const int size = (int) ARRAY_SIZE (elf_kvx_howto_table); |
| const ptrdiff_t offset = howto - elf_kvx_howto_table; |
| |
| if (offset >= 0 && offset < size) |
| return BFD_RELOC_KVX_RELOC_START + offset + 1; |
| |
| return BFD_RELOC_KVX_RELOC_START + 1; |
| } |
| |
| /* Given R_TYPE, return the bfd internal relocation enumerator. */ |
| |
| static bfd_reloc_code_real_type |
| elfNN_kvx_bfd_reloc_from_type (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type) |
| { |
| static bool initialized_p = false; |
| /* Indexed by R_TYPE, values are offsets in the howto_table. */ |
| static unsigned int offsets[R_KVX_end]; |
| |
| if (!initialized_p) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE (elf_kvx_howto_table); ++i) |
| offsets[elf_kvx_howto_table[i].type] = i; |
| |
| initialized_p = true; |
| } |
| |
| /* PR 17512: file: b371e70a. */ |
| if (r_type >= R_KVX_end) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| return BFD_RELOC_KVX_RELOC_END; |
| } |
| |
| return (BFD_RELOC_KVX_RELOC_START + 1) + offsets[r_type]; |
| } |
| |
| struct elf_kvx_reloc_map |
| { |
| bfd_reloc_code_real_type from; |
| bfd_reloc_code_real_type to; |
| }; |
| |
| /* Map bfd generic reloc to KVX-specific reloc. */ |
| static const struct elf_kvx_reloc_map elf_kvx_reloc_map[] = |
| { |
| {BFD_RELOC_NONE, BFD_RELOC_KVX_NONE}, |
| |
| /* Basic data relocations. */ |
| {BFD_RELOC_CTOR, BFD_RELOC_KVX_NN}, |
| {BFD_RELOC_64, BFD_RELOC_KVX_64}, |
| {BFD_RELOC_32, BFD_RELOC_KVX_32}, |
| {BFD_RELOC_16, BFD_RELOC_KVX_16}, |
| {BFD_RELOC_8, BFD_RELOC_KVX_8}, |
| |
| {BFD_RELOC_64_PCREL, BFD_RELOC_KVX_64_PCREL}, |
| {BFD_RELOC_32_PCREL, BFD_RELOC_KVX_32_PCREL}, |
| }; |
| |
| /* Given the bfd internal relocation enumerator in CODE, return the |
| corresponding howto entry. */ |
| |
| static reloc_howto_type * |
| elfNN_kvx_howto_from_bfd_reloc (bfd_reloc_code_real_type code) |
| { |
| unsigned int i; |
| |
| /* Convert bfd generic reloc to KVX-specific reloc. */ |
| if (code < BFD_RELOC_KVX_RELOC_START || code > BFD_RELOC_KVX_RELOC_END) |
| for (i = 0; i < ARRAY_SIZE (elf_kvx_reloc_map) ; i++) |
| if (elf_kvx_reloc_map[i].from == code) |
| { |
| code = elf_kvx_reloc_map[i].to; |
| break; |
| } |
| |
| if (code > BFD_RELOC_KVX_RELOC_START && code < BFD_RELOC_KVX_RELOC_END) |
| return &elf_kvx_howto_table[code - (BFD_RELOC_KVX_RELOC_START + 1)]; |
| |
| return NULL; |
| } |
| |
| static reloc_howto_type * |
| elfNN_kvx_howto_from_type (bfd *abfd, unsigned int r_type) |
| { |
| bfd_reloc_code_real_type val; |
| reloc_howto_type *howto; |
| |
| #if ARCH_SIZE == 32 |
| if (r_type > 256) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| return NULL; |
| } |
| #endif |
| |
| val = elfNN_kvx_bfd_reloc_from_type (abfd, r_type); |
| howto = elfNN_kvx_howto_from_bfd_reloc (val); |
| |
| if (howto != NULL) |
| return howto; |
| |
| bfd_set_error (bfd_error_bad_value); |
| return NULL; |
| } |
| |
| static bool |
| elfNN_kvx_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc, |
| Elf_Internal_Rela *elf_reloc) |
| { |
| unsigned int r_type; |
| |
| r_type = ELFNN_R_TYPE (elf_reloc->r_info); |
| bfd_reloc->howto = elfNN_kvx_howto_from_type (abfd, r_type); |
| |
| if (bfd_reloc->howto == NULL) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: unsupported relocation type %#x"), |
| abfd, r_type); |
| return false; |
| } |
| return true; |
| } |
| |
| static reloc_howto_type * |
| elfNN_kvx_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| bfd_reloc_code_real_type code) |
| { |
| reloc_howto_type *howto = elfNN_kvx_howto_from_bfd_reloc (code); |
| |
| if (howto != NULL) |
| return howto; |
| |
| bfd_set_error (bfd_error_bad_value); |
| return NULL; |
| } |
| |
| static reloc_howto_type * |
| elfNN_kvx_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| const char *r_name) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE (elf_kvx_howto_table); ++i) |
| if (elf_kvx_howto_table[i].name != NULL |
| && strcasecmp (elf_kvx_howto_table[i].name, r_name) == 0) |
| return &elf_kvx_howto_table[i]; |
| |
| return NULL; |
| } |
| |
| #define TARGET_LITTLE_SYM kvx_elfNN_vec |
| #define TARGET_LITTLE_NAME "elfNN-kvx" |
| |
| /* The linker script knows the section names for placement. |
| The entry_names are used to do simple name mangling on the stubs. |
| Given a function name, and its type, the stub can be found. The |
| name can be changed. The only requirement is the %s be present. */ |
| #define STUB_ENTRY_NAME "__%s_veneer" |
| |
| /* The name of the dynamic interpreter. This is put in the .interp |
| section. */ |
| #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" |
| |
| |
| /* PCREL 27 is signed-extended and scaled by 4 */ |
| #define KVX_MAX_FWD_CALL_OFFSET \ |
| (((1 << 26) - 1) << 2) |
| #define KVX_MAX_BWD_CALL_OFFSET \ |
| (-((1 << 26) << 2)) |
| |
| /* Check that the destination of the call is within the PCREL27 |
| range. */ |
| static int |
| kvx_valid_call_p (bfd_vma value, bfd_vma place) |
| { |
| bfd_signed_vma offset = (bfd_signed_vma) (value - place); |
| return (offset <= KVX_MAX_FWD_CALL_OFFSET |
| && offset >= KVX_MAX_BWD_CALL_OFFSET); |
| } |
| |
| /* Section name for stubs is the associated section name plus this |
| string. */ |
| #define STUB_SUFFIX ".stub" |
| |
| enum elf_kvx_stub_type |
| { |
| kvx_stub_none, |
| kvx_stub_long_branch, |
| }; |
| |
| struct elf_kvx_stub_hash_entry |
| { |
| /* Base hash table entry structure. */ |
| struct bfd_hash_entry root; |
| |
| /* The stub section. */ |
| asection *stub_sec; |
| |
| /* Offset within stub_sec of the beginning of this stub. */ |
| bfd_vma stub_offset; |
| |
| /* Given the symbol's value and its section we can determine its final |
| value when building the stubs (so the stub knows where to jump). */ |
| bfd_vma target_value; |
| asection *target_section; |
| |
| enum elf_kvx_stub_type stub_type; |
| |
| /* The symbol table entry, if any, that this was derived from. */ |
| struct elf_kvx_link_hash_entry *h; |
| |
| /* Destination symbol type */ |
| unsigned char st_type; |
| |
| /* Where this stub is being called from, or, in the case of combined |
| stub sections, the first input section in the group. */ |
| asection *id_sec; |
| |
| /* The name for the local symbol at the start of this stub. The |
| stub name in the hash table has to be unique; this does not, so |
| it can be friendlier. */ |
| char *output_name; |
| }; |
| |
| /* Used to build a map of a section. This is required for mixed-endian |
| code/data. */ |
| |
| typedef struct elf_elf_section_map |
| { |
| bfd_vma vma; |
| char type; |
| } |
| elf_kvx_section_map; |
| |
| |
| typedef struct _kvx_elf_section_data |
| { |
| struct bfd_elf_section_data elf; |
| unsigned int mapcount; |
| unsigned int mapsize; |
| elf_kvx_section_map *map; |
| } |
| _kvx_elf_section_data; |
| |
| #define elf_kvx_section_data(sec) \ |
| ((_kvx_elf_section_data *) elf_section_data (sec)) |
| |
| struct elf_kvx_local_symbol |
| { |
| unsigned int got_type; |
| bfd_signed_vma got_refcount; |
| bfd_vma got_offset; |
| }; |
| |
| struct elf_kvx_obj_tdata |
| { |
| struct elf_obj_tdata root; |
| |
| /* local symbol descriptors */ |
| struct elf_kvx_local_symbol *locals; |
| |
| /* Zero to warn when linking objects with incompatible enum sizes. */ |
| int no_enum_size_warning; |
| |
| /* Zero to warn when linking objects with incompatible wchar_t sizes. */ |
| int no_wchar_size_warning; |
| }; |
| |
| #define elf_kvx_tdata(bfd) \ |
| ((struct elf_kvx_obj_tdata *) (bfd)->tdata.any) |
| |
| #define elf_kvx_locals(bfd) (elf_kvx_tdata (bfd)->locals) |
| |
| #define is_kvx_elf(bfd) \ |
| (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ |
| && elf_tdata (bfd) != NULL \ |
| && elf_object_id (bfd) == KVX_ELF_DATA) |
| |
| static bool |
| elfNN_kvx_mkobject (bfd *abfd) |
| { |
| return bfd_elf_allocate_object (abfd, sizeof (struct elf_kvx_obj_tdata), |
| KVX_ELF_DATA); |
| } |
| |
| #define elf_kvx_hash_entry(ent) \ |
| ((struct elf_kvx_link_hash_entry *)(ent)) |
| |
| #define GOT_UNKNOWN 0 |
| #define GOT_NORMAL 1 |
| |
| #define GOT_TLS_GD 2 |
| #define GOT_TLS_IE 4 |
| #define GOT_TLS_LD 8 |
| |
| /* KVX ELF linker hash entry. */ |
| struct elf_kvx_link_hash_entry |
| { |
| struct elf_link_hash_entry root; |
| |
| /* Since PLT entries have variable size, we need to record the |
| index into .got.plt instead of recomputing it from the PLT |
| offset. */ |
| bfd_signed_vma plt_got_offset; |
| |
| /* Bit mask representing the type of GOT entry(s) if any required by |
| this symbol. */ |
| unsigned int got_type; |
| |
| /* A pointer to the most recently used stub hash entry against this |
| symbol. */ |
| struct elf_kvx_stub_hash_entry *stub_cache; |
| }; |
| |
| /* Get the KVX elf linker hash table from a link_info structure. */ |
| #define elf_kvx_hash_table(info) \ |
| ((struct elf_kvx_link_hash_table *) ((info)->hash)) |
| |
| #define kvx_stub_hash_lookup(table, string, create, copy) \ |
| ((struct elf_kvx_stub_hash_entry *) \ |
| bfd_hash_lookup ((table), (string), (create), (copy))) |
| |
| /* KVX ELF linker hash table. */ |
| struct elf_kvx_link_hash_table |
| { |
| /* The main hash table. */ |
| struct elf_link_hash_table root; |
| |
| /* Nonzero to force PIC branch veneers. */ |
| int pic_veneer; |
| |
| /* The number of bytes in the initial entry in the PLT. */ |
| bfd_size_type plt_header_size; |
| |
| /* The number of bytes in the subsequent PLT etries. */ |
| bfd_size_type plt_entry_size; |
| |
| /* The bytes of the subsequent PLT entry. */ |
| const bfd_byte *plt_entry; |
| |
| /* Short-cuts to get to dynamic linker sections. */ |
| asection *sdynbss; |
| asection *srelbss; |
| |
| /* Small local sym cache. */ |
| struct sym_cache sym_cache; |
| |
| /* For convenience in allocate_dynrelocs. */ |
| bfd *obfd; |
| |
| /* The amount of space used by the reserved portion of the sgotplt |
| section, plus whatever space is used by the jump slots. */ |
| bfd_vma sgotplt_jump_table_size; |
| |
| /* The stub hash table. */ |
| struct bfd_hash_table stub_hash_table; |
| |
| /* Linker stub bfd. */ |
| bfd *stub_bfd; |
| |
| /* Linker call-backs. */ |
| asection *(*add_stub_section) (const char *, asection *); |
| void (*layout_sections_again) (void); |
| |
| /* Array to keep track of which stub sections have been created, and |
| information on stub grouping. */ |
| struct map_stub |
| { |
| /* This is the section to which stubs in the group will be |
| attached. */ |
| asection *link_sec; |
| /* The stub section. */ |
| asection *stub_sec; |
| } *stub_group; |
| |
| /* Assorted information used by elfNN_kvx_size_stubs. */ |
| unsigned int bfd_count; |
| unsigned int top_index; |
| asection **input_list; |
| }; |
| |
| /* Create an entry in an KVX ELF linker hash table. */ |
| |
| static struct bfd_hash_entry * |
| elfNN_kvx_link_hash_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, |
| const char *string) |
| { |
| struct elf_kvx_link_hash_entry *ret = |
| (struct elf_kvx_link_hash_entry *) entry; |
| |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (ret == NULL) |
| ret = bfd_hash_allocate (table, |
| sizeof (struct elf_kvx_link_hash_entry)); |
| if (ret == NULL) |
| return (struct bfd_hash_entry *) ret; |
| |
| /* Call the allocation method of the superclass. */ |
| ret = ((struct elf_kvx_link_hash_entry *) |
| _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, |
| table, string)); |
| if (ret != NULL) |
| { |
| ret->got_type = GOT_UNKNOWN; |
| ret->plt_got_offset = (bfd_vma) - 1; |
| ret->stub_cache = NULL; |
| } |
| |
| return (struct bfd_hash_entry *) ret; |
| } |
| |
| /* Initialize an entry in the stub hash table. */ |
| |
| static struct bfd_hash_entry * |
| stub_hash_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, const char *string) |
| { |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (entry == NULL) |
| { |
| entry = bfd_hash_allocate (table, |
| sizeof (struct |
| elf_kvx_stub_hash_entry)); |
| if (entry == NULL) |
| return entry; |
| } |
| |
| /* Call the allocation method of the superclass. */ |
| entry = bfd_hash_newfunc (entry, table, string); |
| if (entry != NULL) |
| { |
| struct elf_kvx_stub_hash_entry *eh; |
| |
| /* Initialize the local fields. */ |
| eh = (struct elf_kvx_stub_hash_entry *) entry; |
| eh->stub_sec = NULL; |
| eh->stub_offset = 0; |
| eh->target_value = 0; |
| eh->target_section = NULL; |
| eh->stub_type = kvx_stub_none; |
| eh->h = NULL; |
| eh->id_sec = NULL; |
| } |
| |
| return entry; |
| } |
| |
| /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
| |
| static void |
| elfNN_kvx_copy_indirect_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *dir, |
| struct elf_link_hash_entry *ind) |
| { |
| struct elf_kvx_link_hash_entry *edir, *eind; |
| |
| edir = (struct elf_kvx_link_hash_entry *) dir; |
| eind = (struct elf_kvx_link_hash_entry *) ind; |
| |
| if (ind->root.type == bfd_link_hash_indirect) |
| { |
| /* Copy over PLT info. */ |
| if (dir->got.refcount <= 0) |
| { |
| edir->got_type = eind->got_type; |
| eind->got_type = GOT_UNKNOWN; |
| } |
| } |
| |
| _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
| } |
| |
| /* Destroy a KVX elf linker hash table. */ |
| |
| static void |
| elfNN_kvx_link_hash_table_free (bfd *obfd) |
| { |
| struct elf_kvx_link_hash_table *ret |
| = (struct elf_kvx_link_hash_table *) obfd->link.hash; |
| |
| bfd_hash_table_free (&ret->stub_hash_table); |
| _bfd_elf_link_hash_table_free (obfd); |
| } |
| |
| /* Create a KVX elf linker hash table. */ |
| |
| static struct bfd_link_hash_table * |
| elfNN_kvx_link_hash_table_create (bfd *abfd) |
| { |
| struct elf_kvx_link_hash_table *ret; |
| bfd_size_type amt = sizeof (struct elf_kvx_link_hash_table); |
| |
| ret = bfd_zmalloc (amt); |
| if (ret == NULL) |
| return NULL; |
| |
| if (!_bfd_elf_link_hash_table_init |
| (&ret->root, abfd, elfNN_kvx_link_hash_newfunc, |
| sizeof (struct elf_kvx_link_hash_entry), KVX_ELF_DATA)) |
| { |
| free (ret); |
| return NULL; |
| } |
| |
| ret->plt_header_size = PLT_ENTRY_SIZE; |
| ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE; |
| ret->plt_entry = elfNN_kvx_small_plt_entry; |
| |
| ret->obfd = abfd; |
| |
| if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc, |
| sizeof (struct elf_kvx_stub_hash_entry))) |
| { |
| _bfd_elf_link_hash_table_free (abfd); |
| return NULL; |
| } |
| |
| ret->root.root.hash_table_free = elfNN_kvx_link_hash_table_free; |
| |
| return &ret->root.root; |
| } |
| |
| static bfd_reloc_status_type |
| kvx_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section, |
| bfd_vma offset, bfd_vma value) |
| { |
| reloc_howto_type *howto; |
| |
| howto = elfNN_kvx_howto_from_type (input_bfd, r_type); |
| r_type = elfNN_kvx_bfd_reloc_from_type (input_bfd, r_type); |
| return _bfd_kvx_elf_put_addend (input_bfd, |
| input_section->contents + offset, r_type, |
| howto, value); |
| } |
| |
| /* Determine the type of stub needed, if any, for a call. */ |
| |
| static enum elf_kvx_stub_type |
| kvx_type_of_stub (asection *input_sec, |
| const Elf_Internal_Rela *rel, |
| asection *sym_sec, |
| unsigned char st_type, |
| bfd_vma destination) |
| { |
| bfd_vma location; |
| bfd_signed_vma branch_offset; |
| unsigned int r_type; |
| enum elf_kvx_stub_type stub_type = kvx_stub_none; |
| |
| if (st_type != STT_FUNC |
| && (sym_sec == input_sec)) |
| return stub_type; |
| |
| /* Determine where the call point is. */ |
| location = (input_sec->output_offset |
| + input_sec->output_section->vma + rel->r_offset); |
| |
| branch_offset = (bfd_signed_vma) (destination - location); |
| |
| r_type = ELFNN_R_TYPE (rel->r_info); |
| |
| /* We don't want to redirect any old unconditional jump in this way, |
| only one which is being used for a sibcall, where it is |
| acceptable for the R16 and R17 registers to be clobbered. */ |
| if (r_type == R_KVX_PCREL27 |
| && (branch_offset > KVX_MAX_FWD_CALL_OFFSET |
| || branch_offset < KVX_MAX_BWD_CALL_OFFSET)) |
| { |
| stub_type = kvx_stub_long_branch; |
| } |
| |
| return stub_type; |
| } |
| |
| /* Build a name for an entry in the stub hash table. */ |
| |
| static char * |
| elfNN_kvx_stub_name (const asection *input_section, |
| const asection *sym_sec, |
| const struct elf_kvx_link_hash_entry *hash, |
| const Elf_Internal_Rela *rel) |
| { |
| char *stub_name; |
| bfd_size_type len; |
| |
| if (hash) |
| { |
| len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1; |
| stub_name = bfd_malloc (len); |
| if (stub_name != NULL) |
| snprintf (stub_name, len, "%08x_%s+%" PRIx64 "x", |
| (unsigned int) input_section->id, |
| hash->root.root.root.string, |
| (uint64_t) rel->r_addend); |
| } |
| else |
| { |
| len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1; |
| stub_name = bfd_malloc (len); |
| if (stub_name != NULL) |
| snprintf (stub_name, len, "%08x_%x:%x+%" PRIx64 "x", |
| (unsigned int) input_section->id, |
| (unsigned int) sym_sec->id, |
| (unsigned int) ELFNN_R_SYM (rel->r_info), |
| (uint64_t) rel->r_addend); |
| } |
| |
| return stub_name; |
| } |
| |
| /* Return true if symbol H should be hashed in the `.gnu.hash' section. For |
| executable PLT slots where the executable never takes the address of those |
| functions, the function symbols are not added to the hash table. */ |
| |
| static bool |
| elf_kvx_hash_symbol (struct elf_link_hash_entry *h) |
| { |
| if (h->plt.offset != (bfd_vma) -1 |
| && !h->def_regular |
| && !h->pointer_equality_needed) |
| return false; |
| |
| return _bfd_elf_hash_symbol (h); |
| } |
| |
| |
| /* Look up an entry in the stub hash. Stub entries are cached because |
| creating the stub name takes a bit of time. */ |
| |
| static struct elf_kvx_stub_hash_entry * |
| elfNN_kvx_get_stub_entry (const asection *input_section, |
| const asection *sym_sec, |
| struct elf_link_hash_entry *hash, |
| const Elf_Internal_Rela *rel, |
| struct elf_kvx_link_hash_table *htab) |
| { |
| struct elf_kvx_stub_hash_entry *stub_entry; |
| struct elf_kvx_link_hash_entry *h = |
| (struct elf_kvx_link_hash_entry *) hash; |
| const asection *id_sec; |
| |
| if ((input_section->flags & SEC_CODE) == 0) |
| return NULL; |
| |
| /* If this input section is part of a group of sections sharing one |
| stub section, then use the id of the first section in the group. |
| Stub names need to include a section id, as there may well be |
| more than one stub used to reach say, printf, and we need to |
| distinguish between them. */ |
| id_sec = htab->stub_group[input_section->id].link_sec; |
| |
| if (h != NULL && h->stub_cache != NULL |
| && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec) |
| { |
| stub_entry = h->stub_cache; |
| } |
| else |
| { |
| char *stub_name; |
| |
| stub_name = elfNN_kvx_stub_name (id_sec, sym_sec, h, rel); |
| if (stub_name == NULL) |
| return NULL; |
| |
| stub_entry = kvx_stub_hash_lookup (&htab->stub_hash_table, |
| stub_name, false, false); |
| if (h != NULL) |
| h->stub_cache = stub_entry; |
| |
| free (stub_name); |
| } |
| |
| return stub_entry; |
| } |
| |
| |
| /* Create a stub section. */ |
| |
| static asection * |
| _bfd_kvx_create_stub_section (asection *section, |
| struct elf_kvx_link_hash_table *htab) |
| |
| { |
| size_t namelen; |
| bfd_size_type len; |
| char *s_name; |
| |
| namelen = strlen (section->name); |
| len = namelen + sizeof (STUB_SUFFIX); |
| s_name = bfd_alloc (htab->stub_bfd, len); |
| if (s_name == NULL) |
| return NULL; |
| |
| memcpy (s_name, section->name, namelen); |
| memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX)); |
| return (*htab->add_stub_section) (s_name, section); |
| } |
| |
| |
| /* Find or create a stub section for a link section. |
| |
| Fix or create the stub section used to collect stubs attached to |
| the specified link section. */ |
| |
| static asection * |
| _bfd_kvx_get_stub_for_link_section (asection *link_section, |
| struct elf_kvx_link_hash_table *htab) |
| { |
| if (htab->stub_group[link_section->id].stub_sec == NULL) |
| htab->stub_group[link_section->id].stub_sec |
| = _bfd_kvx_create_stub_section (link_section, htab); |
| return htab->stub_group[link_section->id].stub_sec; |
| } |
| |
| |
| /* Find or create a stub section in the stub group for an input |
| section. */ |
| |
| static asection * |
| _bfd_kvx_create_or_find_stub_sec (asection *section, |
| struct elf_kvx_link_hash_table *htab) |
| { |
| asection *link_sec = htab->stub_group[section->id].link_sec; |
| return _bfd_kvx_get_stub_for_link_section (link_sec, htab); |
| } |
| |
| |
| /* Add a new stub entry in the stub group associated with an input |
| section to the stub hash. Not all fields of the new stub entry are |
| initialised. */ |
| |
| static struct elf_kvx_stub_hash_entry * |
| _bfd_kvx_add_stub_entry_in_group (const char *stub_name, |
| asection *section, |
| struct elf_kvx_link_hash_table *htab) |
| { |
| asection *link_sec; |
| asection *stub_sec; |
| struct elf_kvx_stub_hash_entry *stub_entry; |
| |
| link_sec = htab->stub_group[section->id].link_sec; |
| stub_sec = _bfd_kvx_create_or_find_stub_sec (section, htab); |
| |
| /* Enter this entry into the linker stub hash table. */ |
| stub_entry = kvx_stub_hash_lookup (&htab->stub_hash_table, stub_name, |
| true, false); |
| if (stub_entry == NULL) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: cannot create stub entry %s"), |
| section->owner, stub_name); |
| return NULL; |
| } |
| |
| stub_entry->stub_sec = stub_sec; |
| stub_entry->stub_offset = 0; |
| stub_entry->id_sec = link_sec; |
| |
| return stub_entry; |
| } |
| |
| static bool |
| kvx_build_one_stub (struct bfd_hash_entry *gen_entry, |
| void *in_arg) |
| { |
| struct elf_kvx_stub_hash_entry *stub_entry; |
| asection *stub_sec; |
| bfd *stub_bfd; |
| bfd_byte *loc; |
| bfd_vma sym_value; |
| unsigned int template_size; |
| const uint32_t *template; |
| unsigned int i; |
| struct bfd_link_info *info; |
| |
| /* Massage our args to the form they really have. */ |
| stub_entry = (struct elf_kvx_stub_hash_entry *) gen_entry; |
| |
| info = (struct bfd_link_info *) in_arg; |
| |
| /* Fail if the target section could not be assigned to an output |
| section. The user should fix his linker script. */ |
| if (stub_entry->target_section->output_section == NULL |
| && info->non_contiguous_regions) |
| info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. " |
| "Retry without " |
| "--enable-non-contiguous-regions.\n"), |
| stub_entry->target_section); |
| |
| stub_sec = stub_entry->stub_sec; |
| |
| /* Make a note of the offset within the stubs for this entry. */ |
| stub_entry->stub_offset = stub_sec->size; |
| loc = stub_sec->contents + stub_entry->stub_offset; |
| |
| stub_bfd = stub_sec->owner; |
| |
| /* This is the address of the stub destination. */ |
| sym_value = (stub_entry->target_value |
| + stub_entry->target_section->output_offset |
| + stub_entry->target_section->output_section->vma); |
| |
| switch (stub_entry->stub_type) |
| { |
| case kvx_stub_long_branch: |
| template = elfNN_kvx_long_branch_stub; |
| template_size = sizeof (elfNN_kvx_long_branch_stub); |
| break; |
| default: |
| abort (); |
| } |
| |
| for (i = 0; i < (template_size / sizeof template[0]); i++) |
| { |
| bfd_putl32 (template[i], loc); |
| loc += 4; |
| } |
| |
| stub_sec->size += template_size; |
| |
| switch (stub_entry->stub_type) |
| { |
| case kvx_stub_long_branch: |
| /* The stub uses a make insn with 43bits immediate. |
| We need to apply 3 relocations: |
| BFD_RELOC_KVX_S43_LO10, |
| BFD_RELOC_KVX_S43_UP27, |
| BFD_RELOC_KVX_S43_EX6. */ |
| if (kvx_relocate (R_KVX_S43_LO10, stub_bfd, stub_sec, |
| stub_entry->stub_offset, sym_value) != bfd_reloc_ok) |
| BFD_FAIL (); |
| if (kvx_relocate (R_KVX_S43_EX6, stub_bfd, stub_sec, |
| stub_entry->stub_offset, sym_value) != bfd_reloc_ok) |
| BFD_FAIL (); |
| if (kvx_relocate (R_KVX_S43_UP27, stub_bfd, stub_sec, |
| stub_entry->stub_offset + 4, sym_value) != bfd_reloc_ok) |
| BFD_FAIL (); |
| break; |
| default: |
| abort (); |
| } |
| |
| return true; |
| } |
| |
| /* As above, but don't actually build the stub. Just bump offset so |
| we know stub section sizes. */ |
| |
| static bool |
| kvx_size_one_stub (struct bfd_hash_entry *gen_entry, |
| void *in_arg ATTRIBUTE_UNUSED) |
| { |
| struct elf_kvx_stub_hash_entry *stub_entry; |
| int size; |
| |
| /* Massage our args to the form they really have. */ |
| stub_entry = (struct elf_kvx_stub_hash_entry *) gen_entry; |
| |
| switch (stub_entry->stub_type) |
| { |
| case kvx_stub_long_branch: |
| size = sizeof (elfNN_kvx_long_branch_stub); |
| break; |
| default: |
| abort (); |
| } |
| |
| stub_entry->stub_sec->size += size; |
| return true; |
| } |
| |
| /* External entry points for sizing and building linker stubs. */ |
| |
| /* Set up various things so that we can make a list of input sections |
| for each output section included in the link. Returns -1 on error, |
| 0 when no stubs will be needed, and 1 on success. */ |
| |
| int |
| elfNN_kvx_setup_section_lists (bfd *output_bfd, |
| struct bfd_link_info *info) |
| { |
| bfd *input_bfd; |
| unsigned int bfd_count; |
| unsigned int top_id, top_index; |
| asection *section; |
| asection **input_list, **list; |
| bfd_size_type amt; |
| struct elf_kvx_link_hash_table *htab = |
| elf_kvx_hash_table (info); |
| |
| if (!is_elf_hash_table ((const struct bfd_link_hash_table *)htab)) |
| return 0; |
| |
| /* Count the number of input BFDs and find the top input section id. */ |
| for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; |
| input_bfd != NULL; input_bfd = input_bfd->link.next) |
| { |
| bfd_count += 1; |
| for (section = input_bfd->sections; |
| section != NULL; section = section->next) |
| { |
| if (top_id < section->id) |
| top_id = section->id; |
| } |
| } |
| htab->bfd_count = bfd_count; |
| |
| amt = sizeof (struct map_stub) * (top_id + 1); |
| htab->stub_group = bfd_zmalloc (amt); |
| if (htab->stub_group == NULL) |
| return -1; |
| |
| /* We can't use output_bfd->section_count here to find the top output |
| section index as some sections may have been removed, and |
| _bfd_strip_section_from_output doesn't renumber the indices. */ |
| for (section = output_bfd->sections, top_index = 0; |
| section != NULL; section = section->next) |
| { |
| if (top_index < section->index) |
| top_index = section->index; |
| } |
| |
| htab->top_index = top_index; |
| amt = sizeof (asection *) * (top_index + 1); |
| input_list = bfd_malloc (amt); |
| htab->input_list = input_list; |
| if (input_list == NULL) |
| return -1; |
| |
| /* For sections we aren't interested in, mark their entries with a |
| value we can check later. */ |
| list = input_list + top_index; |
| do |
| *list = bfd_abs_section_ptr; |
| while (list-- != input_list); |
| |
| for (section = output_bfd->sections; |
| section != NULL; section = section->next) |
| { |
| if ((section->flags & SEC_CODE) != 0) |
| input_list[section->index] = NULL; |
| } |
| |
| return 1; |
| } |
| |
| /* Used by elfNN_kvx_next_input_section and group_sections. */ |
| #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) |
| |
| /* The linker repeatedly calls this function for each input section, |
| in the order that input sections are linked into output sections. |
| Build lists of input sections to determine groupings between which |
| we may insert linker stubs. */ |
| |
| void |
| elfNN_kvx_next_input_section (struct bfd_link_info *info, asection *isec) |
| { |
| struct elf_kvx_link_hash_table *htab = |
| elf_kvx_hash_table (info); |
| |
| if (isec->output_section->index <= htab->top_index) |
| { |
| asection **list = htab->input_list + isec->output_section->index; |
| |
| if (*list != bfd_abs_section_ptr) |
| { |
| /* Steal the link_sec pointer for our list. */ |
| /* This happens to make the list in reverse order, |
| which is what we want. */ |
| PREV_SEC (isec) = *list; |
| *list = isec; |
| } |
| } |
| } |
| |
| /* See whether we can group stub sections together. Grouping stub |
| sections may result in fewer stubs. More importantly, we need to |
| put all .init* and .fini* stubs at the beginning of the .init or |
| .fini output sections respectively, because glibc splits the |
| _init and _fini functions into multiple parts. Putting a stub in |
| the middle of a function is not a good idea. */ |
| |
| static void |
| group_sections (struct elf_kvx_link_hash_table *htab, |
| bfd_size_type stub_group_size, |
| bool stubs_always_after_branch) |
| { |
| asection **list = htab->input_list; |
| |
| do |
| { |
| asection *tail = *list; |
| asection *head; |
| |
| if (tail == bfd_abs_section_ptr) |
| continue; |
| |
| /* Reverse the list: we must avoid placing stubs at the |
| beginning of the section because the beginning of the text |
| section may be required for an interrupt vector in bare metal |
| code. */ |
| #define NEXT_SEC PREV_SEC |
| head = NULL; |
| while (tail != NULL) |
| { |
| /* Pop from tail. */ |
| asection *item = tail; |
| tail = PREV_SEC (item); |
| |
| /* Push on head. */ |
| NEXT_SEC (item) = head; |
| head = item; |
| } |
| |
| while (head != NULL) |
| { |
| asection *curr; |
| asection *next; |
| bfd_vma stub_group_start = head->output_offset; |
| bfd_vma end_of_next; |
| |
| curr = head; |
| while (NEXT_SEC (curr) != NULL) |
| { |
| next = NEXT_SEC (curr); |
| end_of_next = next->output_offset + next->size; |
| if (end_of_next - stub_group_start >= stub_group_size) |
| /* End of NEXT is too far from start, so stop. */ |
| break; |
| /* Add NEXT to the group. */ |
| curr = next; |
| } |
| |
| /* OK, the size from the start to the start of CURR is less |
| than stub_group_size and thus can be handled by one stub |
| section. (Or the head section is itself larger than |
| stub_group_size, in which case we may be toast.) |
| We should really be keeping track of the total size of |
| stubs added here, as stubs contribute to the final output |
| section size. */ |
| do |
| { |
| next = NEXT_SEC (head); |
| /* Set up this stub group. */ |
| htab->stub_group[head->id].link_sec = curr; |
| } |
| while (head != curr && (head = next) != NULL); |
| |
| /* But wait, there's more! Input sections up to stub_group_size |
| bytes after the stub section can be handled by it too. */ |
| if (!stubs_always_after_branch) |
| { |
| stub_group_start = curr->output_offset + curr->size; |
| |
| while (next != NULL) |
| { |
| end_of_next = next->output_offset + next->size; |
| if (end_of_next - stub_group_start >= stub_group_size) |
| /* End of NEXT is too far from stubs, so stop. */ |
| break; |
| /* Add NEXT to the stub group. */ |
| head = next; |
| next = NEXT_SEC (head); |
| htab->stub_group[head->id].link_sec = curr; |
| } |
| } |
| head = next; |
| } |
| } |
| while (list++ != htab->input_list + htab->top_index); |
| |
| free (htab->input_list); |
| } |
| |
| static void |
| _bfd_kvx_resize_stubs (struct elf_kvx_link_hash_table *htab) |
| { |
| asection *section; |
| |
| /* OK, we've added some stubs. Find out the new size of the |
| stub sections. */ |
| for (section = htab->stub_bfd->sections; |
| section != NULL; section = section->next) |
| { |
| /* Ignore non-stub sections. */ |
| if (!strstr (section->name, STUB_SUFFIX)) |
| continue; |
| section->size = 0; |
| } |
| |
| bfd_hash_traverse (&htab->stub_hash_table, kvx_size_one_stub, htab); |
| } |
| |
| /* Satisfy the ELF linker by filling in some fields in our fake bfd. */ |
| |
| bool |
| kvx_elfNN_init_stub_bfd (struct bfd_link_info *info, |
| bfd *stub_bfd) |
| { |
| struct elf_kvx_link_hash_table *htab; |
| |
| elf_elfheader (stub_bfd)->e_ident[EI_CLASS] = ELFCLASSNN; |
| |
| /* Always hook our dynamic sections into the first bfd, which is the |
| linker created stub bfd. This ensures that the GOT header is at |
| the start of the output TOC section. */ |
| htab = elf_kvx_hash_table (info); |
| if (htab == NULL) |
| return false; |
| |
| return true; |
| } |
| |
| /* Determine and set the size of the stub section for a final link. |
| |
| The basic idea here is to examine all the relocations looking for |
| PC-relative calls to a target that is unreachable with a 27bits |
| immediate (found in call and goto). */ |
| |
| bool |
| elfNN_kvx_size_stubs (bfd *output_bfd, |
| bfd *stub_bfd, |
| struct bfd_link_info *info, |
| bfd_signed_vma group_size, |
| asection * (*add_stub_section) (const char *, |
| asection *), |
| void (*layout_sections_again) (void)) |
| { |
| bfd_size_type stub_group_size; |
| bool stubs_always_before_branch; |
| bool stub_changed = false; |
| struct elf_kvx_link_hash_table *htab = elf_kvx_hash_table (info); |
| |
| /* Propagate mach to stub bfd, because it may not have been |
| finalized when we created stub_bfd. */ |
| bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd), |
| bfd_get_mach (output_bfd)); |
| |
| /* Stash our params away. */ |
| htab->stub_bfd = stub_bfd; |
| htab->add_stub_section = add_stub_section; |
| htab->layout_sections_again = layout_sections_again; |
| stubs_always_before_branch = group_size < 0; |
| if (group_size < 0) |
| stub_group_size = -group_size; |
| else |
| stub_group_size = group_size; |
| |
| if (stub_group_size == 1) |
| { |
| /* Default values. */ |
| /* KVX branch range is +-256MB. The value used is 1MB less. */ |
| stub_group_size = 255 * 1024 * 1024; |
| } |
| |
| group_sections (htab, stub_group_size, stubs_always_before_branch); |
| |
| (*htab->layout_sections_again) (); |
| |
| while (1) |
| { |
| bfd *input_bfd; |
| |
| for (input_bfd = info->input_bfds; |
| input_bfd != NULL; input_bfd = input_bfd->link.next) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| asection *section; |
| Elf_Internal_Sym *local_syms = NULL; |
| |
| if (!is_kvx_elf (input_bfd) |
| || (input_bfd->flags & BFD_LINKER_CREATED) != 0) |
| continue; |
| |
| /* We'll need the symbol table in a second. */ |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| if (symtab_hdr->sh_info == 0) |
| continue; |
| |
| /* Walk over each section attached to the input bfd. */ |
| for (section = input_bfd->sections; |
| section != NULL; section = section->next) |
| { |
| Elf_Internal_Rela *internal_relocs, *irelaend, *irela; |
| |
| /* If there aren't any relocs, then there's nothing more |
| to do. */ |
| if ((section->flags & SEC_RELOC) == 0 |
| || section->reloc_count == 0 |
| || (section->flags & SEC_CODE) == 0) |
| continue; |
| |
| /* If this section is a link-once section that will be |
| discarded, then don't create any stubs. */ |
| if (section->output_section == NULL |
| || section->output_section->owner != output_bfd) |
| continue; |
| |
| /* Get the relocs. */ |
| internal_relocs |
| = _bfd_elf_link_read_relocs (input_bfd, section, NULL, |
| NULL, info->keep_memory); |
| if (internal_relocs == NULL) |
| goto error_ret_free_local; |
| |
| /* Now examine each relocation. */ |
| irela = internal_relocs; |
| irelaend = irela + section->reloc_count; |
| for (; irela < irelaend; irela++) |
| { |
| unsigned int r_type, r_indx; |
| enum elf_kvx_stub_type stub_type; |
| struct elf_kvx_stub_hash_entry *stub_entry; |
| asection *sym_sec; |
| bfd_vma sym_value; |
| bfd_vma destination; |
| struct elf_kvx_link_hash_entry *hash; |
| const char *sym_name; |
| char *stub_name; |
| const asection *id_sec; |
| unsigned char st_type; |
| bfd_size_type len; |
| |
| r_type = ELFNN_R_TYPE (irela->r_info); |
| r_indx = ELFNN_R_SYM (irela->r_info); |
| |
| if (r_type >= (unsigned int) R_KVX_end) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| error_ret_free_internal: |
| if (elf_section_data (section)->relocs == NULL) |
| free (internal_relocs); |
| goto error_ret_free_local; |
| } |
| |
| /* Only look for stubs on unconditional branch and |
| branch and link instructions. */ |
| /* This catches CALL and GOTO insn */ |
| if (r_type != (unsigned int) R_KVX_PCREL27) |
| continue; |
| |
| /* Now determine the call target, its name, value, |
| section. */ |
| sym_sec = NULL; |
| sym_value = 0; |
| destination = 0; |
| hash = NULL; |
| sym_name = NULL; |
| if (r_indx < symtab_hdr->sh_info) |
| { |
| /* It's a local symbol. */ |
| Elf_Internal_Sym *sym; |
| Elf_Internal_Shdr *hdr; |
| |
| if (local_syms == NULL) |
| { |
| local_syms |
| = (Elf_Internal_Sym *) symtab_hdr->contents; |
| if (local_syms == NULL) |
| local_syms |
| = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, |
| symtab_hdr->sh_info, 0, |
| NULL, NULL, NULL); |
| if (local_syms == NULL) |
| goto error_ret_free_internal; |
| } |
| |
| sym = local_syms + r_indx; |
| hdr = elf_elfsections (input_bfd)[sym->st_shndx]; |
| sym_sec = hdr->bfd_section; |
| if (!sym_sec) |
| /* This is an undefined symbol. It can never |
| be resolved. */ |
| continue; |
| |
| if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) |
| sym_value = sym->st_value; |
| destination = (sym_value + irela->r_addend |
| + sym_sec->output_offset |
| + sym_sec->output_section->vma); |
| st_type = ELF_ST_TYPE (sym->st_info); |
| sym_name |
| = bfd_elf_string_from_elf_section (input_bfd, |
| symtab_hdr->sh_link, |
| sym->st_name); |
| } |
| else |
| { |
| int e_indx; |
| |
| e_indx = r_indx - symtab_hdr->sh_info; |
| hash = ((struct elf_kvx_link_hash_entry *) |
| elf_sym_hashes (input_bfd)[e_indx]); |
| |
| while (hash->root.root.type == bfd_link_hash_indirect |
| || hash->root.root.type == bfd_link_hash_warning) |
| hash = ((struct elf_kvx_link_hash_entry *) |
| hash->root.root.u.i.link); |
| |
| if (hash->root.root.type == bfd_link_hash_defined |
| || hash->root.root.type == bfd_link_hash_defweak) |
| { |
| struct elf_kvx_link_hash_table *globals = |
| elf_kvx_hash_table (info); |
| sym_sec = hash->root.root.u.def.section; |
| sym_value = hash->root.root.u.def.value; |
| /* For a destination in a shared library, |
| use the PLT stub as target address to |
| decide whether a branch stub is |
| needed. */ |
| if (globals->root.splt != NULL && hash != NULL |
| && hash->root.plt.offset != (bfd_vma) - 1) |
| { |
| sym_sec = globals->root.splt; |
| sym_value = hash->root.plt.offset; |
| if (sym_sec->output_section != NULL) |
| destination = (sym_value |
| + sym_sec->output_offset |
| + sym_sec->output_section->vma); |
| } |
| else if (sym_sec->output_section != NULL) |
| destination = (sym_value + irela->r_addend |
| + sym_sec->output_offset |
| + sym_sec->output_section->vma); |
| } |
| else if (hash->root.root.type == bfd_link_hash_undefined |
| || (hash->root.root.type |
| == bfd_link_hash_undefweak)) |
| { |
| /* For a shared library, use the PLT stub as |
| target address to decide whether a long |
| branch stub is needed. |
| For absolute code, they cannot be handled. */ |
| struct elf_kvx_link_hash_table *globals = |
| elf_kvx_hash_table (info); |
| |
| if (globals->root.splt != NULL && hash != NULL |
| && hash->root.plt.offset != (bfd_vma) - 1) |
| { |
| sym_sec = globals->root.splt; |
| sym_value = hash->root.plt.offset; |
| if (sym_sec->output_section != NULL) |
| destination = (sym_value |
| + sym_sec->output_offset |
| + sym_sec->output_section->vma); |
| } |
| else |
| continue; |
| } |
| else |
| { |
| bfd_set_error (bfd_error_bad_value); |
| goto error_ret_free_internal; |
| } |
| st_type = ELF_ST_TYPE (hash->root.type); |
| sym_name = hash->root.root.root.string; |
| } |
| |
| /* Determine what (if any) linker stub is needed. */ |
| stub_type = kvx_type_of_stub (section, irela, sym_sec, |
| st_type, destination); |
| if (stub_type == kvx_stub_none) |
| continue; |
| |
| /* Support for grouping stub sections. */ |
| id_sec = htab->stub_group[section->id].link_sec; |
| |
| /* Get the name of this stub. */ |
| stub_name = elfNN_kvx_stub_name (id_sec, sym_sec, hash, |
| irela); |
| if (!stub_name) |
| goto error_ret_free_internal; |
| |
| stub_entry = |
| kvx_stub_hash_lookup (&htab->stub_hash_table, |
| stub_name, false, false); |
| if (stub_entry != NULL) |
| { |
| /* The proper stub has already been created. */ |
| free (stub_name); |
| /* Always update this stub's target since it may have |
| changed after layout. */ |
| stub_entry->target_value = sym_value + irela->r_addend; |
| continue; |
| } |
| |
| stub_entry = _bfd_kvx_add_stub_entry_in_group |
| (stub_name, section, htab); |
| if (stub_entry == NULL) |
| { |
| free (stub_name); |
| goto error_ret_free_internal; |
| } |
| |
| stub_entry->target_value = sym_value + irela->r_addend; |
| stub_entry->target_section = sym_sec; |
| stub_entry->stub_type = stub_type; |
| stub_entry->h = hash; |
| stub_entry->st_type = st_type; |
| |
| if (sym_name == NULL) |
| sym_name = "unnamed"; |
| len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name); |
| stub_entry->output_name = bfd_alloc (htab->stub_bfd, len); |
| if (stub_entry->output_name == NULL) |
| { |
| free (stub_name); |
| goto error_ret_free_internal; |
| } |
| |
| snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME, |
| sym_name); |
| |
| stub_changed = true; |
| } |
| |
| /* We're done with the internal relocs, free them. */ |
| if (elf_section_data (section)->relocs == NULL) |
| free (internal_relocs); |
| } |
| } |
| |
| if (!stub_changed) |
| break; |
| |
| _bfd_kvx_resize_stubs (htab); |
| |
| /* Ask the linker to do its stuff. */ |
| (*htab->layout_sections_again) (); |
| stub_changed = false; |
| } |
| |
| return true; |
| |
| error_ret_free_local: |
| return false; |
| |
| } |
| |
| /* Build all the stubs associated with the current output file. The |
| stubs are kept in a hash table attached to the main linker hash |
| table. We also set up the .plt entries for statically linked PIC |
| functions here. This function is called via kvx_elf_finish in the |
| linker. */ |
| |
| bool |
| elfNN_kvx_build_stubs (struct bfd_link_info *info) |
| { |
| asection *stub_sec; |
| struct bfd_hash_table *table; |
| struct elf_kvx_link_hash_table *htab; |
| |
| htab = elf_kvx_hash_table (info); |
| |
| for (stub_sec = htab->stub_bfd->sections; |
| stub_sec != NULL; stub_sec = stub_sec->next) |
| { |
| bfd_size_type size; |
| |
| /* Ignore non-stub sections. */ |
| if (!strstr (stub_sec->name, STUB_SUFFIX)) |
| continue; |
| |
| /* Allocate memory to hold the linker stubs. */ |
| size = stub_sec->size; |
| stub_sec->contents = bfd_zalloc (htab->stub_bfd, size); |
| if (stub_sec->contents == NULL && size != 0) |
| return false; |
| stub_sec->size = 0; |
| } |
| |
| /* Build the stubs as directed by the stub hash table. */ |
| table = &htab->stub_hash_table; |
| bfd_hash_traverse (table, kvx_build_one_stub, info); |
| |
| return true; |
| } |
| |
| static bfd_vma |
| kvx_calculate_got_entry_vma (struct elf_link_hash_entry *h, |
| struct elf_kvx_link_hash_table |
| *globals, struct bfd_link_info *info, |
| bfd_vma value, bfd *output_bfd, |
| bool *unresolved_reloc_p) |
| { |
| bfd_vma off = (bfd_vma) - 1; |
| asection *basegot = globals->root.sgot; |
| bool dyn = globals->root.dynamic_sections_created; |
| |
| if (h != NULL) |
| { |
| BFD_ASSERT (basegot != NULL); |
| off = h->got.offset; |
| BFD_ASSERT (off != (bfd_vma) - 1); |
| if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) |
| || (bfd_link_pic (info) |
| && SYMBOL_REFERENCES_LOCAL (info, h)) |
| || (ELF_ST_VISIBILITY (h->other) |
| && h->root.type == bfd_link_hash_undefweak)) |
| { |
| /* This is actually a static link, or it is a -Bsymbolic link |
| and the symbol is defined locally. We must initialize this |
| entry in the global offset table. Since the offset must |
| always be a multiple of 8 (4 in the case of ILP32), we use |
| the least significant bit to record whether we have |
| initialized it already. |
| When doing a dynamic link, we create a .rel(a).got relocation |
| entry to initialize the value. This is done in the |
| finish_dynamic_symbol routine. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| bfd_put_NN (output_bfd, value, basegot->contents + off); |
| h->got.offset |= 1; |
| } |
| } |
| else |
| *unresolved_reloc_p = false; |
| } |
| |
| return off; |
| } |
| |
| static unsigned int |
| kvx_reloc_got_type (bfd_reloc_code_real_type r_type) |
| { |
| switch (r_type) |
| { |
| /* Extracted with: |
| awk 'match ($0, /HOWTO.*R_(KVX.*_GOT(OFF)?(64)?_.*),/,ary) \ |
| {print "case BFD_RELOC_" ary[1] ":";}' elfxx-kvxc.def */ |
| case BFD_RELOC_KVX_S37_GOTOFF_LO10: |
| case BFD_RELOC_KVX_S37_GOTOFF_UP27: |
| |
| case BFD_RELOC_KVX_S37_GOT_LO10: |
| case BFD_RELOC_KVX_S37_GOT_UP27: |
| |
| case BFD_RELOC_KVX_S43_GOTOFF_LO10: |
| case BFD_RELOC_KVX_S43_GOTOFF_UP27: |
| case BFD_RELOC_KVX_S43_GOTOFF_EX6: |
| |
| case BFD_RELOC_KVX_S43_GOT_LO10: |
| case BFD_RELOC_KVX_S43_GOT_UP27: |
| case BFD_RELOC_KVX_S43_GOT_EX6: |
| return GOT_NORMAL; |
| |
| case BFD_RELOC_KVX_S37_TLS_GD_LO10: |
| case BFD_RELOC_KVX_S37_TLS_GD_UP27: |
| case BFD_RELOC_KVX_S43_TLS_GD_LO10: |
| case BFD_RELOC_KVX_S43_TLS_GD_UP27: |
| case BFD_RELOC_KVX_S43_TLS_GD_EX6: |
| return GOT_TLS_GD; |
| |
| case BFD_RELOC_KVX_S37_TLS_LD_LO10: |
| case BFD_RELOC_KVX_S37_TLS_LD_UP27: |
| case BFD_RELOC_KVX_S43_TLS_LD_LO10: |
| case BFD_RELOC_KVX_S43_TLS_LD_UP27: |
| case BFD_RELOC_KVX_S43_TLS_LD_EX6: |
| return GOT_TLS_LD; |
| |
| case BFD_RELOC_KVX_S37_TLS_IE_LO10: |
| case BFD_RELOC_KVX_S37_TLS_IE_UP27: |
| case BFD_RELOC_KVX_S43_TLS_IE_LO10: |
| case BFD_RELOC_KVX_S43_TLS_IE_UP27: |
| case BFD_RELOC_KVX_S43_TLS_IE_EX6: |
| return GOT_TLS_IE; |
| |
| default: |
| break; |
| } |
| return GOT_UNKNOWN; |
| } |
| |
| static bool |
| kvx_can_relax_tls (bfd *input_bfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| bfd_reloc_code_real_type r_type ATTRIBUTE_UNUSED, |
| struct elf_link_hash_entry *h ATTRIBUTE_UNUSED, |
| unsigned long r_symndx ATTRIBUTE_UNUSED) |
| { |
| if (! IS_KVX_TLS_RELAX_RELOC (r_type)) |
| return false; |
| |
| /* Relaxing hook. Disabled on KVX. */ |
| /* See elfnn-aarch64.c */ |
| return true; |
| } |
| |
| /* Given the relocation code R_TYPE, return the relaxed bfd reloc |
| enumerator. */ |
| |
| static bfd_reloc_code_real_type |
| kvx_tls_transition (bfd *input_bfd, |
| struct bfd_link_info *info, |
| unsigned int r_type, |
| struct elf_link_hash_entry *h, |
| unsigned long r_symndx) |
| { |
| bfd_reloc_code_real_type bfd_r_type |
| = elfNN_kvx_bfd_reloc_from_type (input_bfd, r_type); |
| |
| if (! kvx_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx)) |
| return bfd_r_type; |
| |
| return bfd_r_type; |
| } |
| |
| /* Return the base VMA address which should be subtracted from real addresses |
| when resolving R_KVX_*_TLS_GD_* and R_KVX_*_TLS_LD_* relocation. */ |
| |
| static bfd_vma |
| dtpoff_base (struct bfd_link_info *info) |
| { |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL); |
| return elf_hash_table (info)->tls_sec->vma; |
| } |
| |
| /* Return the base VMA address which should be subtracted from real addresses |
| when resolving R_KVX_*_TLS_IE_* and R_KVX_*_TLS_LE_* relocations. */ |
| |
| static bfd_vma |
| tpoff_base (struct bfd_link_info *info) |
| { |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| BFD_ASSERT (htab->tls_sec != NULL); |
| |
| bfd_vma base = align_power ((bfd_vma) 0, |
| htab->tls_sec->alignment_power); |
| return htab->tls_sec->vma - base; |
| } |
| |
| static bfd_vma * |
| symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h, |
| unsigned long r_symndx) |
| { |
| /* Calculate the address of the GOT entry for symbol |
| referred to in h. */ |
| if (h != NULL) |
| return &h->got.offset; |
| else |
| { |
| /* local symbol */ |
| struct elf_kvx_local_symbol *l; |
| |
| l = elf_kvx_locals (input_bfd); |
| return &l[r_symndx].got_offset; |
| } |
| } |
| |
| static void |
| symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h, |
| unsigned long r_symndx) |
| { |
| bfd_vma *p; |
| p = symbol_got_offset_ref (input_bfd, h, r_symndx); |
| *p |= 1; |
| } |
| |
| static int |
| symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h, |
| unsigned long r_symndx) |
| { |
| bfd_vma value; |
| value = * symbol_got_offset_ref (input_bfd, h, r_symndx); |
| return value & 1; |
| } |
| |
| static bfd_vma |
| symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h, |
| unsigned long r_symndx) |
| { |
| bfd_vma value; |
| value = * symbol_got_offset_ref (input_bfd, h, r_symndx); |
| value &= ~1; |
| return value; |
| } |
| |
| /* N_ONES produces N one bits, without overflowing machine arithmetic. */ |
| #define N_ONES(n) (((((bfd_vma) 1 << ((n) -1)) - 1) << 1) | 1) |
| |
| /* This is a copy/paste + modification from |
| reloc.c:_bfd_relocate_contents. Relocations are applied to 32bits |
| words, so all overflow checks will overflow for values above |
| 32bits. */ |
| static bfd_reloc_status_type |
| check_signed_overflow (enum complain_overflow complain_on_overflow, |
| bfd_reloc_code_real_type bfd_r_type, bfd *input_bfd, |
| bfd_vma relocation) |
| { |
| bfd_reloc_status_type flag = bfd_reloc_ok; |
| bfd_vma addrmask, fieldmask, signmask, ss; |
| bfd_vma a, b, sum; |
| bfd_vma x = 0; |
| |
| /* These usually come from howto struct. As we don't check for |
| values fitting in bitfields or in subpart of words, we set all |
| these to values to check as if the field is starting from first |
| bit. */ |
| unsigned int rightshift = 0; |
| unsigned int bitpos = 0; |
| unsigned int bitsize = 0; |
| bfd_vma src_mask = -1; |
| |
| /* Only regular symbol relocations are checked here. Others |
| relocations (GOT, TLS) could be checked if the need is |
| confirmed. At the moment, we keep previous behavior |
| (ie. unchecked) for those. */ |
| switch (bfd_r_type) |
| { |
| case BFD_RELOC_KVX_S37_LO10: |
| case BFD_RELOC_KVX_S37_UP27: |
| bitsize = 37; |
| break; |
| |
| case BFD_RELOC_KVX_S32_LO5: |
| case BFD_RELOC_KVX_S32_UP27: |
| bitsize = 32; |
| break; |
| |
| case BFD_RELOC_KVX_S43_LO10: |
| case BFD_RELOC_KVX_S43_UP27: |
| case BFD_RELOC_KVX_S43_EX6: |
| bitsize = 43; |
| break; |
| |
| case BFD_RELOC_KVX_S64_LO10: |
| case BFD_RELOC_KVX_S64_UP27: |
| case BFD_RELOC_KVX_S64_EX27: |
| bitsize = 64; |
| break; |
| |
| default: |
| return bfd_reloc_ok; |
| } |
| |
| /* direct copy/paste from reloc.c below */ |
| |
| /* Get the values to be added together. For signed and unsigned |
| relocations, we assume that all values should be truncated to |
| the size of an address. For bitfields, all the bits matter. |
| See also bfd_check_overflow. */ |
| fieldmask = N_ONES (bitsize); |
| signmask = ~fieldmask; |
| addrmask = (N_ONES (bfd_arch_bits_per_address (input_bfd)) |
| | (fieldmask << rightshift)); |
| a = (relocation & addrmask) >> rightshift; |
| b = (x & src_mask & addrmask) >> bitpos; |
| addrmask >>= rightshift; |
| |
| switch (complain_on_overflow) |
| { |
| case complain_overflow_signed: |
| /* If any sign bits are set, all sign bits must be set. |
| That is, A must be a valid negative address after |
| shifting. */ |
| signmask = ~(fieldmask >> 1); |
| /* Fall thru */ |
| |
| case complain_overflow_bitfield: |
| /* Much like the signed check, but for a field one bit |
| wider. We allow a bitfield to represent numbers in the |
| range -2**n to 2**n-1, where n is the number of bits in the |
| field. Note that when bfd_vma is 32 bits, a 32-bit reloc |
| can't overflow, which is exactly what we want. */ |
| ss = a & signmask; |
| if (ss != 0 && ss != (addrmask & signmask)) |
| flag = bfd_reloc_overflow; |
| |
| /* We only need this next bit of code if the sign bit of B |
| is below the sign bit of A. This would only happen if |
| SRC_MASK had fewer bits than BITSIZE. Note that if |
| SRC_MASK has more bits than BITSIZE, we can get into |
| trouble; we would need to verify that B is in range, as |
| we do for A above. */ |
| ss = ((~src_mask) >> 1) & src_mask; |
| ss >>= bitpos; |
| |
| /* Set all the bits above the sign bit. */ |
| b = (b ^ ss) - ss; |
| |
| /* Now we can do the addition. */ |
| sum = a + b; |
| |
| /* See if the result has the correct sign. Bits above the |
| sign bit are junk now; ignore them. If the sum is |
| positive, make sure we did not have all negative inputs; |
| if the sum is negative, make sure we did not have all |
| positive inputs. The test below looks only at the sign |
| bits, and it really just |
| SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM) |
| |
| We mask with addrmask here to explicitly allow an address |
| wrap-around. The Linux kernel relies on it, and it is |
| the only way to write assembler code which can run when |
| loaded at a location 0x80000000 away from the location at |
| which it is linked. */ |
| if (((~(a ^ b)) & (a ^ sum)) & signmask & addrmask) |
| flag = bfd_reloc_overflow; |
| break; |
| |
| case complain_overflow_unsigned: |
| /* Checking for an unsigned overflow is relatively easy: |
| trim the addresses and add, and trim the result as well. |
| Overflow is normally indicated when the result does not |
| fit in the field. However, we also need to consider the |
| case when, e.g., fieldmask is 0x7fffffff or smaller, an |
| input is 0x80000000, and bfd_vma is only 32 bits; then we |
| will get sum == 0, but there is an overflow, since the |
| inputs did not fit in the field. Instead of doing a |
| separate test, we can check for this by or-ing in the |
| operands when testing for the sum overflowing its final |
| field. */ |
| sum = (a + b) & addrmask; |
| if ((a | b | sum) & signmask) |
| flag = bfd_reloc_overflow; |
| break; |
| |
| default: |
| abort (); |
| } |
| return flag; |
| } |
| |
| /* Perform a relocation as part of a final link. */ |
| static bfd_reloc_status_type |
| elfNN_kvx_final_link_relocate (reloc_howto_type *howto, |
| bfd *input_bfd, |
| bfd *output_bfd, |
| asection *input_section, |
| bfd_byte *contents, |
| Elf_Internal_Rela *rel, |
| bfd_vma value, |
| struct bfd_link_info *info, |
| asection *sym_sec, |
| struct elf_link_hash_entry *h, |
| bool *unresolved_reloc_p, |
| bool save_addend, |
| bfd_vma *saved_addend, |
| Elf_Internal_Sym *sym) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| unsigned int r_type = howto->type; |
| bfd_reloc_code_real_type bfd_r_type |
| = elfNN_kvx_bfd_reloc_from_howto (howto); |
| bfd_reloc_code_real_type new_bfd_r_type; |
| unsigned long r_symndx; |
| bfd_byte *hit_data = contents + rel->r_offset; |
| bfd_vma place, off; |
| bfd_vma addend; |
| struct elf_kvx_link_hash_table *globals; |
| bool weak_undef_p; |
| asection *base_got; |
| bfd_reloc_status_type rret = bfd_reloc_ok; |
| bool resolved_to_zero; |
| globals = elf_kvx_hash_table (info); |
| |
| symtab_hdr = &elf_symtab_hdr (input_bfd); |
| |
| BFD_ASSERT (is_kvx_elf (input_bfd)); |
| |
| r_symndx = ELFNN_R_SYM (rel->r_info); |
| |
| /* It is possible to have linker relaxations on some TLS access |
| models. Update our information here. */ |
| new_bfd_r_type = kvx_tls_transition (input_bfd, info, r_type, h, r_symndx); |
| if (new_bfd_r_type != bfd_r_type) |
| { |
| bfd_r_type = new_bfd_r_type; |
| howto = elfNN_kvx_howto_from_bfd_reloc (bfd_r_type); |
| BFD_ASSERT (howto != NULL); |
| r_type = howto->type; |
| } |
| |
| place = input_section->output_section->vma |
| + input_section->output_offset + rel->r_offset; |
| |
| /* Get addend, accumulating the addend for consecutive relocs |
| which refer to the same offset. */ |
| addend = saved_addend ? *saved_addend : 0; |
| addend += rel->r_addend; |
| |
| weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak |
| : bfd_is_und_section (sym_sec)); |
| resolved_to_zero = (h != NULL |
| && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)); |
| |
| switch (bfd_r_type) |
| { |
| case BFD_RELOC_KVX_NN: |
| #if ARCH_SIZE == 64 |
| case BFD_RELOC_KVX_32: |
| #endif |
| case BFD_RELOC_KVX_S37_LO10: |
| case BFD_RELOC_KVX_S37_UP27: |
| |
| case BFD_RELOC_KVX_S32_LO5: |
| case BFD_RELOC_KVX_S32_UP27: |
| |
| case BFD_RELOC_KVX_S43_LO10: |
| case BFD_RELOC_KVX_S43_UP27: |
| case BFD_RELOC_KVX_S43_EX6: |
| |
| case BFD_RELOC_KVX_S64_LO10: |
| case BFD_RELOC_KVX_S64_UP27: |
| case BFD_RELOC_KVX_S64_EX27: |
| /* When generating a shared library or PIE, these relocations |
| are copied into the output file to be resolved at run time. */ |
| if (bfd_link_pic (info) |
| && (input_section->flags & SEC_ALLOC) |
| && (h == NULL |
| || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| && !resolved_to_zero) |
| || h->root.type != bfd_link_hash_undefweak)) |
| { |
| Elf_Internal_Rela outrel; |
| bfd_byte *loc; |
| bool skip, relocate; |
| asection *sreloc; |
| |
| *unresolved_reloc_p = false; |
| |
| skip = false; |
| relocate = false; |
| |
| outrel.r_addend = addend; |
| outrel.r_offset = |
| _bfd_elf_section_offset (output_bfd, info, input_section, |
| rel->r_offset); |
| if (outrel.r_offset == (bfd_vma) - 1) |
| skip = true; |
| else if (outrel.r_offset == (bfd_vma) - 2) |
| { |
| skip = true; |
| relocate = true; |
| } |
| |
| outrel.r_offset += (input_section->output_section->vma |
| + input_section->output_offset); |
| |
| if (skip) |
| memset (&outrel, 0, sizeof outrel); |
| else if (h != NULL |
| && h->dynindx != -1 |
| && (!bfd_link_pic (info) || !info->symbolic |
| || !h->def_regular)) |
| outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); |
| else if (bfd_r_type == BFD_RELOC_KVX_32 |
| || bfd_r_type == BFD_RELOC_KVX_64) |
| { |
| int symbol; |
| |
| /* On SVR4-ish systems, the dynamic loader cannot |
| relocate the text and data segments independently, |
| so the symbol does not matter. */ |
| symbol = 0; |
| outrel.r_info = ELFNN_R_INFO (symbol, R_KVX_RELATIVE); |
| outrel.r_addend += value; |
| } |
| else if (bfd_link_pic (info) && info->symbolic) |
| { |
| goto skip_because_pic; |
| } |
| else |
| { |
| /* We may endup here from bad input code trying to |
| insert relocation on symbols within code. We do not |
| want that currently, and such code should use GOT + |
| KVX_32/64 reloc that translate in KVX_RELATIVE. */ |
| const char *name; |
| if (h && h->root.root.string) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, |
| NULL); |
| |
| (*_bfd_error_handler) |
| /* xgettext:c-format */ |
| (_("%pB(%pA+%#" PRIx64 "): " |
| "unresolvable %s relocation in section `%s'"), |
| input_bfd, input_section, (uint64_t) rel->r_offset, howto->name, |
| name); |
| return bfd_reloc_notsupported; |
| } |
| |
| sreloc = elf_section_data (input_section)->sreloc; |
| if (sreloc == NULL || sreloc->contents == NULL) |
| return bfd_reloc_notsupported; |
| |
| loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals); |
| bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc); |
| |
| if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size) |
| { |
| /* Sanity to check that we have previously allocated |
| sufficient space in the relocation section for the |
| number of relocations we actually want to emit. */ |
| abort (); |
| } |
| |
| /* If this reloc is against an external symbol, we do not want to |
| fiddle with the addend. Otherwise, we need to include the symbol |
| value so that it becomes an addend for the dynamic reloc. */ |
| if (!relocate) |
| return bfd_reloc_ok; |
| |
| rret = check_signed_overflow (complain_overflow_signed, bfd_r_type, |
| input_bfd, value + addend); |
| if (rret != bfd_reloc_ok) |
| return rret; |
| |
| return _bfd_final_link_relocate (howto, input_bfd, input_section, |
| contents, rel->r_offset, value, |
| addend); |
| } |
| |
| skip_because_pic: |
| rret = check_signed_overflow (complain_overflow_signed, bfd_r_type, |
| input_bfd, value + addend); |
| if (rret != bfd_reloc_ok) |
| return rret; |
| |
| return _bfd_final_link_relocate (howto, input_bfd, input_section, |
| contents, rel->r_offset, value, |
| addend); |
| break; |
| |
| case BFD_RELOC_KVX_PCREL17: |
| case BFD_RELOC_KVX_PCREL27: |
| { |
| /* BCU insn are always first in a bundle, so there is no need |
| to correct the address using offset within bundle. */ |
| |
| asection *splt = globals->root.splt; |
| bool via_plt_p = |
| splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1; |
| |
| /* A call to an undefined weak symbol is converted to a jump to |
| the next instruction unless a PLT entry will be created. |
| The jump to the next instruction is optimized as a NOP. |
| Do the same for local undefined symbols. */ |
| if (weak_undef_p && ! via_plt_p) |
| { |
| bfd_putl32 (INSN_NOP, hit_data); |
| return bfd_reloc_ok; |
| } |
| |
| /* If the call goes through a PLT entry, make sure to |
| check distance to the right destination address. */ |
| if (via_plt_p) |
| value = (splt->output_section->vma |
| + splt->output_offset + h->plt.offset); |
| |
| /* Check if a stub has to be inserted because the destination |
| is too far away. */ |
| struct elf_kvx_stub_hash_entry *stub_entry = NULL; |
| |
| /* If the target symbol is global and marked as a function the |
| relocation applies a function call or a tail call. In this |
| situation we can veneer out of range branches. The veneers |
| use R16 and R17 hence cannot be used arbitrary out of range |
| branches that occur within the body of a function. */ |
| |
| /* Check if a stub has to be inserted because the destination |
| is too far away. */ |
| if (! kvx_valid_call_p (value, place)) |
| { |
| /* The target is out of reach, so redirect the branch to |
| the local stub for this function. */ |
| stub_entry = elfNN_kvx_get_stub_entry (input_section, |
| sym_sec, h, |
| rel, globals); |
| if (stub_entry != NULL) |
| value = (stub_entry->stub_offset |
| + stub_entry->stub_sec->output_offset |
| + stub_entry->stub_sec->output_section->vma); |
| /* We have redirected the destination to stub entry address, |
| so ignore any addend record in the original rela entry. */ |
| addend = 0; |
| } |
| } |
| *unresolved_reloc_p = false; |
| |
| /* FALLTHROUGH */ |
| |
| /* PCREL 32 are used in dwarf2 table for exception handling */ |
| case BFD_RELOC_KVX_32_PCREL: |
| case BFD_RELOC_KVX_S64_PCREL_LO10: |
| case BFD_RELOC_KVX_S64_PCREL_UP27: |
| case BFD_RELOC_KVX_S64_PCREL_EX27: |
| case BFD_RELOC_KVX_S37_PCREL_LO10: |
| case BFD_RELOC_KVX_S37_PCREL_UP27: |
| case BFD_RELOC_KVX_S43_PCREL_LO10: |
| case BFD_RELOC_KVX_S43_PCREL_UP27: |
| case BFD_RELOC_KVX_S43_PCREL_EX6: |
| return _bfd_final_link_relocate (howto, input_bfd, input_section, |
| contents, rel->r_offset, value, |
| addend); |
| break; |
| |
| case BFD_RELOC_KVX_S37_TLS_LE_LO10: |
| case BFD_RELOC_KVX_S37_TLS_LE_UP27: |
| |
| case BFD_RELOC_KVX_S43_TLS_LE_LO10: |
| case BFD_RELOC_KVX_S43_TLS_LE_UP27: |
| case BFD_RELOC_KVX_S43_TLS_LE_EX6: |
| return _bfd_final_link_relocate (howto, input_bfd, input_section, |
| contents, rel->r_offset, |
| value - tpoff_base (info), addend); |
| break; |
| |
| case BFD_RELOC_KVX_S37_TLS_DTPOFF_LO10: |
| case BFD_RELOC_KVX_S37_TLS_DTPOFF_UP27: |
| |
| case BFD_RELOC_KVX_S43_TLS_DTPOFF_LO10: |
| case BFD_RELOC_KVX_S43_TLS_DTPOFF_UP27: |
| case BFD_RELOC_KVX_S43_TLS_DTPOFF_EX6: |
| return _bfd_final_link_relocate (howto, input_bfd, input_section, |
| contents, rel->r_offset, |
| value - dtpoff_base (info), addend); |
| |
| case BFD_RELOC_KVX_S37_TLS_GD_UP27: |
| case BFD_RELOC_KVX_S37_TLS_GD_LO10: |
| |
| case BFD_RELOC_KVX_S43_TLS_GD_UP27: |
| case BFD_RELOC_KVX_S43_TLS_GD_EX6: |
| case BFD_RELOC_KVX_S43_TLS_GD_LO10: |
| |
| case BFD_RELOC_KVX_S37_TLS_IE_UP27: |
| case BFD_RELOC_KVX_S37_TLS_IE_LO10: |
| |
| case BFD_RELOC_KVX_S43_TLS_IE_UP27: |
| case BFD_RELOC_KVX_S43_TLS_IE_EX6: |
| case BFD_RELOC_KVX_S43_TLS_IE_LO10: |
| |
| case BFD_RELOC_KVX_S37_TLS_LD_UP27: |
| case BFD_RELOC_KVX_S37_TLS_LD_LO10: |
| |
| case BFD_RELOC_KVX_S43_TLS_LD_UP27: |
| case BFD_RELOC_KVX_S43_TLS_LD_EX6: |
| case BFD_RELOC_KVX_S43_TLS_LD_LO10: |
| |
| if (globals->root.sgot == NULL) |
| return bfd_reloc_notsupported; |
| value = symbol_got_offset (input_bfd, h, r_symndx); |
| |
| _bfd_final_link_relocate (howto, input_bfd, input_section, |
| contents, rel->r_offset, value, addend); |
| *unresolved_reloc_p = false; |
| break; |
| |
| case BFD_RELOC_KVX_S37_GOTADDR_UP27: |
| case BFD_RELOC_KVX_S37_GOTADDR_LO10: |
| |
| case BFD_RELOC_KVX_S43_GOTADDR_UP27: |
| case BFD_RELOC_KVX_S43_GOTADDR_EX6: |
| case BFD_RELOC_KVX_S43_GOTADDR_LO10: |
| |
| case BFD_RELOC_KVX_S64_GOTADDR_UP27: |
| case BFD_RELOC_KVX_S64_GOTADDR_EX27: |
| case BFD_RELOC_KVX_S64_GOTADDR_LO10: |
| { |
| if (globals->root.sgot == NULL) |
| BFD_ASSERT (h != NULL); |
| |
| value = globals->root.sgot->output_section->vma |
| + globals->root.sgot->output_offset; |
| |
| return _bfd_final_link_relocate (howto, input_bfd, input_section, |
| contents, rel->r_offset, value, |
| addend); |
| } |
| break; |
| |
| case BFD_RELOC_KVX_S37_GOTOFF_LO10: |
| case BFD_RELOC_KVX_S37_GOTOFF_UP27: |
| |
| case BFD_RELOC_KVX_32_GOTOFF: |
| case BFD_RELOC_KVX_64_GOTOFF: |
| |
| case BFD_RELOC_KVX_S43_GOTOFF_LO10: |
| case BFD_RELOC_KVX_S43_GOTOFF_UP27: |
| case BFD_RELOC_KVX_S43_GOTOFF_EX6: |
| |
| { |
| asection *basegot = globals->root.sgot; |
| /* BFD_ASSERT(h == NULL); */ |
| BFD_ASSERT(globals->root.sgot != NULL); |
| value -= basegot->output_section->vma + basegot->output_offset; |
| return _bfd_final_link_relocate (howto, input_bfd, input_section, |
| contents, rel->r_offset, value, |
| addend); |
| } |
| break; |
| |
| case BFD_RELOC_KVX_S37_GOT_LO10: |
| case BFD_RELOC_KVX_S37_GOT_UP27: |
| |
| case BFD_RELOC_KVX_32_GOT: |
| case BFD_RELOC_KVX_64_GOT: |
| |
| case BFD_RELOC_KVX_S43_GOT_LO10: |
| case BFD_RELOC_KVX_S43_GOT_UP27: |
| case BFD_RELOC_KVX_S43_GOT_EX6: |
| |
| if (globals->root.sgot == NULL) |
| BFD_ASSERT (h != NULL); |
| |
| if (h != NULL) |
| { |
| value = kvx_calculate_got_entry_vma (h, globals, info, value, |
| output_bfd, |
| unresolved_reloc_p); |
| #ifdef UGLY_DEBUG |
| printf("GOT_LO/HI for %s, value %x\n", h->root.root.string, value); |
| #endif |
| |
| return _bfd_final_link_relocate (howto, input_bfd, input_section, |
| contents, rel->r_offset, value, |
| addend); |
| } |
| else |
| { |
| #ifdef UGLY_DEBUG |
| printf("GOT_LO/HI with h NULL, initial value %x\n", value); |
| #endif |
| struct elf_kvx_local_symbol *locals = elf_kvx_locals (input_bfd); |
| |
| if (locals == NULL) |
| { |
| int howto_index = bfd_r_type - BFD_RELOC_KVX_RELOC_START; |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: local symbol descriptor table be NULL when applying " |
| "relocation %s against local symbol"), |
| input_bfd, elf_kvx_howto_table[howto_index].name); |
| abort (); |
| } |
| |
| off = symbol_got_offset (input_bfd, h, r_symndx); |
| base_got = globals->root.sgot; |
| bfd_vma got_entry_addr = (base_got->output_section->vma |
| + base_got->output_offset + off); |
| |
| if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx)) |
| { |
| bfd_put_64 (output_bfd, value, base_got->contents + off); |
| |
| if (bfd_link_pic (info)) |
| { |
| asection *s; |
| Elf_Internal_Rela outrel; |
| |
| /* For PIC executables and shared libraries we need |
| to relocate the GOT entry at run time. */ |
| s = globals->root.srelgot; |
| if (s == NULL) |
| abort (); |
| |
| outrel.r_offset = got_entry_addr; |
| outrel.r_info = ELFNN_R_INFO (0, R_KVX_RELATIVE); |
| outrel.r_addend = value; |
| elf_append_rela (output_bfd, s, &outrel); |
| } |
| |
| symbol_got_offset_mark (input_bfd, h, r_symndx); |
| } |
| |
| /* Update the relocation value to GOT entry addr as we have |
| transformed the direct data access into an indirect data |
| access through GOT. */ |
| value = got_entry_addr; |
| |
| return _bfd_final_link_relocate (howto, input_bfd, input_section, |
| contents, rel->r_offset, off, 0); |
| } |
| break; |
| |
| default: |
| return bfd_reloc_notsupported; |
| } |
| |
| if (saved_addend) |
| *saved_addend = value; |
| |
| /* Only apply the final relocation in a sequence. */ |
| if (save_addend) |
| return bfd_reloc_continue; |
| |
| return _bfd_kvx_elf_put_addend (input_bfd, hit_data, bfd_r_type, |
| howto, value); |
| } |
| |
| |
| |
| /* Relocate a KVX ELF section. */ |
| |
| static int |
| elfNN_kvx_relocate_section (bfd *output_bfd, |
| struct bfd_link_info *info, |
| bfd *input_bfd, |
| asection *input_section, |
| bfd_byte *contents, |
| Elf_Internal_Rela *relocs, |
| Elf_Internal_Sym *local_syms, |
| asection **local_sections) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| Elf_Internal_Rela *rel; |
| Elf_Internal_Rela *relend; |
| const char *name; |
| struct elf_kvx_link_hash_table *globals; |
| bool save_addend = false; |
| bfd_vma addend = 0; |
| |
| globals = elf_kvx_hash_table (info); |
| |
| symtab_hdr = &elf_symtab_hdr (input_bfd); |
| sym_hashes = elf_sym_hashes (input_bfd); |
| |
| rel = relocs; |
| relend = relocs + input_section->reloc_count; |
| for (; rel < relend; rel++) |
| { |
| unsigned int r_type; |
| bfd_reloc_code_real_type bfd_r_type; |
| reloc_howto_type *howto; |
| unsigned long r_symndx; |
| Elf_Internal_Sym *sym; |
| asection *sec; |
| struct elf_link_hash_entry *h; |
| bfd_vma relocation; |
| bfd_reloc_status_type r; |
| arelent bfd_reloc; |
| char sym_type; |
| bool unresolved_reloc = false; |
| char *error_message = NULL; |
| |
| r_symndx = ELFNN_R_SYM (rel->r_info); |
| r_type = ELFNN_R_TYPE (rel->r_info); |
| |
| bfd_reloc.howto = elfNN_kvx_howto_from_type (input_bfd, r_type); |
| howto = bfd_reloc.howto; |
| |
| if (howto == NULL) |
| return _bfd_unrecognized_reloc (input_bfd, input_section, r_type); |
| |
| bfd_r_type = elfNN_kvx_bfd_reloc_from_howto (howto); |
| |
| h = NULL; |
| sym = NULL; |
| sec = NULL; |
| |
| if (r_symndx < symtab_hdr->sh_info) /* A local symbol. */ |
| { |
| sym = local_syms + r_symndx; |
| sym_type = ELFNN_ST_TYPE (sym->st_info); |
| sec = local_sections[r_symndx]; |
| |
| /* An object file might have a reference to a local |
| undefined symbol. This is a draft object file, but we |
| should at least do something about it. */ |
| if (r_type != R_KVX_NONE |
| && r_type != R_KVX_S37_GOTADDR_LO10 |
| && r_type != R_KVX_S37_GOTADDR_UP27 |
| && r_type != R_KVX_S64_GOTADDR_LO10 |
| && r_type != R_KVX_S64_GOTADDR_UP27 |
| && r_type != R_KVX_S64_GOTADDR_EX27 |
| && r_type != R_KVX_S43_GOTADDR_LO10 |
| && r_type != R_KVX_S43_GOTADDR_UP27 |
| && r_type != R_KVX_S43_GOTADDR_EX6 |
| && bfd_is_und_section (sec) |
| && ELF_ST_BIND (sym->st_info) != STB_WEAK) |
| (*info->callbacks->undefined_symbol) |
| (info, bfd_elf_string_from_elf_section |
| (input_bfd, symtab_hdr->sh_link, sym->st_name), |
| input_bfd, input_section, rel->r_offset, true); |
| |
| relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
| } |
| else |
| { |
| bool warned, ignored; |
| |
| RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
| r_symndx, symtab_hdr, sym_hashes, |
| h, sec, relocation, |
| unresolved_reloc, warned, ignored); |
| |
| sym_type = h->type; |
| } |
| |
| if (sec != NULL && discarded_section (sec)) |
| RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
| rel, 1, relend, howto, 0, contents); |
| |
| if (bfd_link_relocatable (info)) |
| continue; |
| |
| if (h != NULL) |
| name = h->root.root.string; |
| else |
| { |
| name = (bfd_elf_string_from_elf_section |
| (input_bfd, symtab_hdr->sh_link, sym->st_name)); |
| if (name == NULL || *name == '\0') |
| name = bfd_section_name (sec); |
| } |
| |
| if (r_symndx != 0 |
| && r_type != R_KVX_NONE |
| && (h == NULL |
| || h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && IS_KVX_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS)) |
| { |
| (*_bfd_error_handler) |
| ((sym_type == STT_TLS |
| /* xgettext:c-format */ |
| ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s") |
| /* xgettext:c-format */ |
| : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")), |
| input_bfd, |
| input_section, (uint64_t) rel->r_offset, howto->name, name); |
| } |
| |
| /* Original aarch64 has relaxation handling for TLS here. */ |
| r = bfd_reloc_continue; |
| |
| /* There may be multiple consecutive relocations for the |
| same offset. In that case we are supposed to treat the |
| output of each relocation as the addend for the next. */ |
| if (rel + 1 < relend |
| && rel->r_offset == rel[1].r_offset |
| && ELFNN_R_TYPE (rel[1].r_info) != R_KVX_NONE) |
| |
| save_addend = true; |
| else |
| save_addend = false; |
| |
| if (r == bfd_reloc_continue) |
| r = elfNN_kvx_final_link_relocate (howto, input_bfd, output_bfd, |
| input_section, contents, rel, |
| relocation, info, sec, |
| h, &unresolved_reloc, |
| save_addend, &addend, sym); |
| |
| switch (elfNN_kvx_bfd_reloc_from_type (input_bfd, r_type)) |
| { |
| case BFD_RELOC_KVX_S37_TLS_GD_LO10: |
| case BFD_RELOC_KVX_S37_TLS_GD_UP27: |
| |
| case BFD_RELOC_KVX_S43_TLS_GD_LO10: |
| case BFD_RELOC_KVX_S43_TLS_GD_UP27: |
| case BFD_RELOC_KVX_S43_TLS_GD_EX6: |
| |
| case BFD_RELOC_KVX_S37_TLS_LD_LO10: |
| case BFD_RELOC_KVX_S37_TLS_LD_UP27: |
| |
| case BFD_RELOC_KVX_S43_TLS_LD_LO10: |
| case BFD_RELOC_KVX_S43_TLS_LD_UP27: |
| case BFD_RELOC_KVX_S43_TLS_LD_EX6: |
| |
| if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx)) |
| { |
| bool need_relocs = false; |
| bfd_byte *loc; |
| int indx; |
| bfd_vma off; |
| |
| off = symbol_got_offset (input_bfd, h, r_symndx); |
| indx = h && h->dynindx != -1 ? h->dynindx : 0; |
| |
| need_relocs = |
| (bfd_link_pic (info) || indx != 0) && |
| (h == NULL |
| || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak); |
| |
| BFD_ASSERT (globals->root.srelgot != NULL); |
| |
| if (need_relocs) |
| { |
| Elf_Internal_Rela rela; |
| rela.r_info = ELFNN_R_INFO (indx, R_KVX_64_DTPMOD); |
| rela.r_addend = 0; |
| rela.r_offset = globals->root.sgot->output_section->vma + |
| globals->root.sgot->output_offset + off; |
| |
| loc = globals->root.srelgot->contents; |
| loc += globals->root.srelgot->reloc_count++ |
| * RELOC_SIZE (htab); |
| bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); |
| |
| bfd_reloc_code_real_type real_type = |
| elfNN_kvx_bfd_reloc_from_type (input_bfd, r_type); |
| |
| if (real_type == BFD_RELOC_KVX_S37_TLS_LD_LO10 |
| || real_type == BFD_RELOC_KVX_S37_TLS_LD_UP27 |
| || real_type == BFD_RELOC_KVX_S43_TLS_LD_LO10 |
| || real_type == BFD_RELOC_KVX_S43_TLS_LD_UP27 |
| || real_type == BFD_RELOC_KVX_S43_TLS_LD_EX6) |
| { |
| /* For local dynamic, don't generate DTPOFF in any case. |
| Initialize the DTPOFF slot into zero, so we get module |
| base address when invoke runtime TLS resolver. */ |
| bfd_put_NN (output_bfd, 0, |
| globals->root.sgot->contents + off |
| + GOT_ENTRY_SIZE); |
| } |
| else if (indx == 0) |
| { |
| bfd_put_NN (output_bfd, |
| relocation - dtpoff_base (info), |
| globals->root.sgot->contents + off |
| + GOT_ENTRY_SIZE); |
| } |
| else |
| { |
| /* This TLS symbol is global. We emit a |
| relocation to fixup the tls offset at load |
| time. */ |
| rela.r_info = |
| ELFNN_R_INFO (indx, R_KVX_64_DTPOFF); |
| rela.r_addend = 0; |
| rela.r_offset = |
| (globals->root.sgot->output_section->vma |
| + globals->root.sgot->output_offset + off |
| + GOT_ENTRY_SIZE); |
| |
| loc = globals->root.srelgot->contents; |
| loc += globals->root.srelgot->reloc_count++ |
| * RELOC_SIZE (globals); |
| bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); |
| bfd_put_NN (output_bfd, (bfd_vma) 0, |
| globals->root.sgot->contents + off |
| + GOT_ENTRY_SIZE); |
| } |
| } |
| else |
| { |
| bfd_put_NN (output_bfd, (bfd_vma) 1, |
| globals->root.sgot->contents + off); |
| bfd_put_NN (output_bfd, |
| relocation - dtpoff_base (info), |
| globals->root.sgot->contents + off |
| + GOT_ENTRY_SIZE); |
| } |
| |
| symbol_got_offset_mark (input_bfd, h, r_symndx); |
| } |
| break; |
| |
| case BFD_RELOC_KVX_S37_TLS_IE_LO10: |
| case BFD_RELOC_KVX_S37_TLS_IE_UP27: |
| |
| case BFD_RELOC_KVX_S43_TLS_IE_LO10: |
| case BFD_RELOC_KVX_S43_TLS_IE_UP27: |
| case BFD_RELOC_KVX_S43_TLS_IE_EX6: |
| if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx)) |
| { |
| bool need_relocs = false; |
| bfd_byte *loc; |
| int indx; |
| bfd_vma off; |
| |
| off = symbol_got_offset (input_bfd, h, r_symndx); |
| |
| indx = h && h->dynindx != -1 ? h->dynindx : 0; |
| |
| need_relocs = |
| (bfd_link_pic (info) || indx != 0) && |
| (h == NULL |
| || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak); |
| |
| BFD_ASSERT (globals->root.srelgot != NULL); |
| |
| if (need_relocs) |
| { |
| Elf_Internal_Rela rela; |
| |
| if (indx == 0) |
| rela.r_addend = relocation - dtpoff_base (info); |
| else |
| rela.r_addend = 0; |
| |
| rela.r_info = ELFNN_R_INFO (indx, R_KVX_64_TPOFF); |
| rela.r_offset = globals->root.sgot->output_section->vma + |
| globals->root.sgot->output_offset + off; |
| |
| loc = globals->root.srelgot->contents; |
| loc += globals->root.srelgot->reloc_count++ |
| * RELOC_SIZE (htab); |
| |
| bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); |
| |
| bfd_put_NN (output_bfd, rela.r_addend, |
| globals->root.sgot->contents + off); |
| } |
| else |
| bfd_put_NN (output_bfd, relocation - tpoff_base (info), |
| globals->root.sgot->contents + off); |
| |
| symbol_got_offset_mark (input_bfd, h, r_symndx); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Dynamic relocs are not propagated for SEC_DEBUGGING sections |
| because such sections are not SEC_ALLOC and thus ld.so will |
| not process them. */ |
| if (unresolved_reloc |
| && !((input_section->flags & SEC_DEBUGGING) != 0 |
| && h->def_dynamic) |
| && _bfd_elf_section_offset (output_bfd, info, input_section, |
| +rel->r_offset) != (bfd_vma) - 1) |
| { |
| (*_bfd_error_handler) |
| /* xgettext:c-format */ |
| (_("%pB(%pA+%#" PRIx64 "): " |
| "unresolvable %s relocation against symbol `%s'"), |
| input_bfd, input_section, (uint64_t) rel->r_offset, howto->name, |
| h->root.root.string); |
| return false; |
| } |
| |
| if (r != bfd_reloc_ok && r != bfd_reloc_continue) |
| { |
| switch (r) |
| { |
| case bfd_reloc_overflow: |
| (*info->callbacks->reloc_overflow) |
| (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, |
| input_bfd, input_section, rel->r_offset); |
| |
| /* Original aarch64 code had a check for alignement correctness */ |
| break; |
| |
| case bfd_reloc_undefined: |
| (*info->callbacks->undefined_symbol) |
| (info, name, input_bfd, input_section, rel->r_offset, true); |
| break; |
| |
| case bfd_reloc_outofrange: |
| error_message = _("out of range"); |
| goto common_error; |
| |
| case bfd_reloc_notsupported: |
| error_message = _("unsupported relocation"); |
| goto common_error; |
| |
| case bfd_reloc_dangerous: |
| /* error_message should already be set. */ |
| goto common_error; |
| |
| default: |
| error_message = _("unknown error"); |
| /* Fall through. */ |
| |
| common_error: |
| BFD_ASSERT (error_message != NULL); |
| (*info->callbacks->reloc_dangerous) |
| (info, error_message, input_bfd, input_section, rel->r_offset); |
| break; |
| } |
| } |
| |
| if (!save_addend) |
| addend = 0; |
| } |
| |
| return true; |
| } |
| |
| /* Set the right machine number. */ |
| |
| static bool |
| elfNN_kvx_object_p (bfd *abfd) |
| { |
| /* must be coherent with default arch in cpu-kvx.c */ |
| int e_set = bfd_mach_kv3_1; |
| |
| if (elf_elfheader (abfd)->e_machine == EM_KVX) |
| { |
| int e_core = elf_elfheader (abfd)->e_flags & ELF_KVX_CORE_MASK; |
| switch(e_core) |
| { |
| #if ARCH_SIZE == 64 |
| case ELF_KVX_CORE_KV3_1 : e_set = bfd_mach_kv3_1_64; break; |
| case ELF_KVX_CORE_KV3_2 : e_set = bfd_mach_kv3_2_64; break; |
| case ELF_KVX_CORE_KV4_1 : e_set = bfd_mach_kv4_1_64; break; |
| #else |
| case ELF_KVX_CORE_KV3_1 : e_set = bfd_mach_kv3_1; break; |
| case ELF_KVX_CORE_KV3_2 : e_set = bfd_mach_kv3_2; break; |
| case ELF_KVX_CORE_KV4_1 : e_set = bfd_mach_kv4_1; break; |
| #endif |
| default: |
| (*_bfd_error_handler)(_("%s: Bad ELF id: `%d'"), |
| abfd->filename, e_core); |
| } |
| } |
| return bfd_default_set_arch_mach (abfd, bfd_arch_kvx, e_set); |
| } |
| |
| /* Function to keep KVX specific flags in the ELF header. */ |
| |
| static bool |
| elfNN_kvx_set_private_flags (bfd *abfd, flagword flags) |
| { |
| if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags) |
| { |
| } |
| else |
| { |
| elf_elfheader (abfd)->e_flags = flags; |
| elf_flags_init (abfd) = true; |
| } |
| |
| return true; |
| } |
| |
| /* Merge backend specific data from an object file to the output |
| object file when linking. */ |
| |
| static bool |
| elfNN_kvx_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) |
| { |
| bfd *obfd = info->output_bfd; |
| flagword out_flags; |
| flagword in_flags; |
| bool flags_compatible = true; |
| asection *sec; |
| |
| /* Check if we have the same endianess. */ |
| if (!_bfd_generic_verify_endian_match (ibfd, info)) |
| return false; |
| |
| if (!is_kvx_elf (ibfd) || !is_kvx_elf (obfd)) |
| return true; |
| |
| /* The input BFD must have had its flags initialised. */ |
| /* The following seems bogus to me -- The flags are initialized in |
| the assembler but I don't think an elf_flags_init field is |
| written into the object. */ |
| /* BFD_ASSERT (elf_flags_init (ibfd)); */ |
| |
| if (bfd_get_arch_size (ibfd) != bfd_get_arch_size (obfd)) |
| { |
| const char *msg; |
| |
| if (bfd_get_arch_size (ibfd) == 32 |
| && bfd_get_arch_size (obfd) == 64) |
| msg = _("%s: compiled as 32-bit object and %s is 64-bit"); |
| else if (bfd_get_arch_size (ibfd) == 64 |
| && bfd_get_arch_size (obfd) == 32) |
| msg = _("%s: compiled as 64-bit object and %s is 32-bit"); |
| else |
| msg = _("%s: object size does not match that of target %s"); |
| |
| (*_bfd_error_handler) (msg, bfd_get_filename (ibfd), |
| bfd_get_filename (obfd)); |
| bfd_set_error (bfd_error_wrong_format); |
| return false; |
| } |
| |
| in_flags = elf_elfheader (ibfd)->e_flags; |
| out_flags = elf_elfheader (obfd)->e_flags; |
| |
| if (!elf_flags_init (obfd)) |
| { |
| /* If the input is the default architecture and had the default |
| flags then do not bother setting the flags for the output |
| architecture, instead allow future merges to do this. If no |
| future merges ever set these flags then they will retain their |
| uninitialised values, which surprise surprise, correspond |
| to the default values. */ |
| if (bfd_get_arch_info (ibfd)->the_default |
| && elf_elfheader (ibfd)->e_flags == 0) |
| return true; |
| |
| elf_flags_init (obfd) = true; |
| elf_elfheader (obfd)->e_flags = in_flags; |
| |
| if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
| && bfd_get_arch_info (obfd)->the_default) |
| return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), |
| bfd_get_mach (ibfd)); |
| |
| return true; |
| } |
| |
| /* Identical flags must be compatible. */ |
| if (in_flags == out_flags) |
| return true; |
| |
| /* Check to see if the input BFD actually contains any sections. If |
| not, its flags may not have been initialised either, but it |
| cannot actually cause any incompatiblity. Do not short-circuit |
| dynamic objects; their section list may be emptied by |
| elf_link_add_object_symbols. |
| |
| Also check to see if there are no code sections in the input. |
| In this case there is no need to check for code specific flags. |
| XXX - do we need to worry about floating-point format compatability |
| in data sections ? */ |
| if (!(ibfd->flags & DYNAMIC)) |
| { |
| bool null_input_bfd = true; |
| bool only_data_sections = true; |
| |
| for (sec = ibfd->sections; sec != NULL; sec = sec->next) |
| { |
| if ((bfd_section_flags (sec) |
| & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) |
| == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) |
| only_data_sections = false; |
| |
| null_input_bfd = false; |
| break; |
| } |
| |
| if (null_input_bfd || only_data_sections) |
| return true; |
| } |
| return flags_compatible; |
| } |
| |
| /* Display the flags field. */ |
| |
| static bool |
| elfNN_kvx_print_private_bfd_data (bfd *abfd, void *ptr) |
| { |
| FILE *file = (FILE *) ptr; |
| unsigned long flags; |
| |
| BFD_ASSERT (abfd != NULL && ptr != NULL); |
| |
| /* Print normal ELF private data. */ |
| _bfd_elf_print_private_bfd_data (abfd, ptr); |
| |
| flags = elf_elfheader (abfd)->e_flags; |
| /* Ignore init flag - it may not be set, despite the flags field |
| containing valid data. */ |
| |
| /* xgettext:c-format */ |
| fprintf (file, _("Private flags = 0x%lx : "), elf_elfheader (abfd)->e_flags); |
| if((flags & ELF_KVX_ABI_64B_ADDR_BIT) == ELF_KVX_ABI_64B_ADDR_BIT) |
| { |
| if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV3_1)) |
| fprintf (file, _("Coolidge (kv3) V1 64 bits")); |
| else if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV3_2)) |
| fprintf (file, _("Coolidge (kv3) V2 64 bits")); |
| else if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV4_1)) |
| fprintf (file, _("Coolidge (kv4) V1 64 bits")); |
| } |
| else |
| { |
| if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV3_1)) |
| fprintf (file, _("Coolidge (kv3) V1 32 bits")); |
| else if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV3_2)) |
| fprintf (file, _("Coolidge (kv3) V2 32 bits")); |
| else if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV4_1)) |
| fprintf (file, _("Coolidge (kv4) V1 32 bits")); |
| } |
| |
| fputc ('\n', file); |
| |
| return true; |
| } |
| |
| /* Adjust a symbol defined by a dynamic object and referenced by a |
| regular object. The current definition is in some section of the |
| dynamic object, but we're not including those sections. We have to |
| change the definition to something the rest of the link can |
| understand. */ |
| |
| static bool |
| elfNN_kvx_adjust_dynamic_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| struct elf_kvx_link_hash_table *htab; |
| asection *s; |
| |
| /* If this is a function, put it in the procedure linkage table. We |
| will fill in the contents of the procedure linkage table later, |
| when we know the address of the .got section. */ |
| if (h->type == STT_FUNC || h->needs_plt) |
| { |
| if (h->plt.refcount <= 0 |
| || ((SYMBOL_CALLS_LOCAL (info, h) |
| || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| && h->root.type == bfd_link_hash_undefweak)))) |
| { |
| /* This case can occur if we saw a CALL26 reloc in |
| an input file, but the symbol wasn't referred to |
| by a dynamic object or all references were |
| garbage collected. In which case we can end up |
| resolving. */ |
| h->plt.offset = (bfd_vma) - 1; |
| h->needs_plt = 0; |
| } |
| |
| return true; |
| } |
| else |
| /* Otherwise, reset to -1. */ |
| h->plt.offset = (bfd_vma) - 1; |
| |
| |
| /* If this is a weak symbol, and there is a real definition, the |
| processor independent code will have arranged for us to see the |
| real definition first, and we can just use the same value. */ |
| if (h->is_weakalias) |
| { |
| struct elf_link_hash_entry *def = weakdef (h); |
| BFD_ASSERT (def->root.type == bfd_link_hash_defined); |
| h->root.u.def.section = def->root.u.def.section; |
| h->root.u.def.value = def->root.u.def.value; |
| if (ELIMINATE_COPY_RELOCS || info->nocopyreloc) |
| h->non_got_ref = def->non_got_ref; |
| return true; |
| } |
| |
| /* If we are creating a shared library, we must presume that the |
| only references to the symbol are via the global offset table. |
| For such cases we need not do anything here; the relocations will |
| be handled correctly by relocate_section. */ |
| if (bfd_link_pic (info)) |
| return true; |
| |
| /* If there are no references to this symbol that do not use the |
| GOT, we don't need to generate a copy reloc. */ |
| if (!h->non_got_ref) |
| return true; |
| |
| /* If -z nocopyreloc was given, we won't generate them either. */ |
| if (info->nocopyreloc) |
| { |
| h->non_got_ref = 0; |
| return true; |
| } |
| |
| /* We must allocate the symbol in our .dynbss section, which will |
| become part of the .bss section of the executable. There will be |
| an entry for this symbol in the .dynsym section. The dynamic |
| object will contain position independent code, so all references |
| from the dynamic object to this symbol will go through the global |
| offset table. The dynamic linker will use the .dynsym entry to |
| determine the address it must put in the global offset table, so |
| both the dynamic object and the regular object will refer to the |
| same memory location for the variable. */ |
| |
| htab = elf_kvx_hash_table (info); |
| |
| /* We must generate a R_KVX_COPY reloc to tell the dynamic linker |
| to copy the initial value out of the dynamic object and into the |
| runtime process image. */ |
| if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) |
| { |
| htab->srelbss->size += RELOC_SIZE (htab); |
| h->needs_copy = 1; |
| } |
| |
| s = htab->sdynbss; |
| |
| return _bfd_elf_adjust_dynamic_copy (info, h, s); |
| } |
| |
| static bool |
| elfNN_kvx_allocate_local_symbols (bfd *abfd, unsigned number) |
| { |
| struct elf_kvx_local_symbol *locals; |
| locals = elf_kvx_locals (abfd); |
| if (locals == NULL) |
| { |
| locals = (struct elf_kvx_local_symbol *) |
| bfd_zalloc (abfd, number * sizeof (struct elf_kvx_local_symbol)); |
| if (locals == NULL) |
| return false; |
| elf_kvx_locals (abfd) = locals; |
| } |
| return true; |
| } |
| |
| /* Create the .got section to hold the global offset table. */ |
| |
| static bool |
| kvx_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| flagword flags; |
| asection *s; |
| struct elf_link_hash_entry *h; |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| |
| /* This function may be called more than once. */ |
| s = bfd_get_linker_section (abfd, ".got"); |
| if (s != NULL) |
| return true; |
| |
| flags = bed->dynamic_sec_flags; |
| |
| s = bfd_make_section_anyway_with_flags (abfd, |
| (bed->rela_plts_and_copies_p |
| ? ".rela.got" : ".rel.got"), |
| (bed->dynamic_sec_flags |
| | SEC_READONLY)); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| |
| return false; |
| htab->srelgot = s; |
| |
| s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return false; |
| htab->sgot = s; |
| htab->sgot->size += GOT_ENTRY_SIZE; |
| |
| if (bed->want_got_sym) |
| { |
| /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got |
| (or .got.plt) section. We don't do this in the linker script |
| because we don't want to define the symbol if we are not creating |
| a global offset table. */ |
| h = _bfd_elf_define_linkage_sym (abfd, info, s, |
| "_GLOBAL_OFFSET_TABLE_"); |
| elf_hash_table (info)->hgot = h; |
| if (h == NULL) |
| return false; |
| } |
| |
| if (bed->want_got_plt) |
| { |
| s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, |
| bed->s->log_file_align)) |
| return false; |
| htab->sgotplt = s; |
| } |
| |
| /* The first bit of the global offset table is the header. */ |
| s->size += bed->got_header_size; |
| |
| /* we still need to handle got content when doing static link with PIC */ |
| if (bfd_link_executable (info) && !bfd_link_pic (info)) { |
| htab->dynobj = abfd; |
| } |
| |
| return true; |
| } |
| |
| /* Look through the relocs for a section during the first phase. */ |
| |
| static bool |
| elfNN_kvx_check_relocs (bfd *abfd, struct bfd_link_info *info, |
| asection *sec, const Elf_Internal_Rela *relocs) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| const Elf_Internal_Rela *rel; |
| const Elf_Internal_Rela *rel_end; |
| asection *sreloc; |
| |
| struct elf_kvx_link_hash_table *htab; |
| |
| if (bfd_link_relocatable (info)) |
| return true; |
| |
| BFD_ASSERT (is_kvx_elf (abfd)); |
| |
| htab = elf_kvx_hash_table (info); |
| sreloc = NULL; |
| |
| symtab_hdr = &elf_symtab_hdr (abfd); |
| sym_hashes = elf_sym_hashes (abfd); |
| |
| rel_end = relocs + sec->reloc_count; |
| for (rel = relocs; rel < rel_end; rel++) |
| { |
| struct elf_link_hash_entry *h; |
| unsigned int r_symndx; |
| unsigned int r_type; |
| bfd_reloc_code_real_type bfd_r_type; |
| Elf_Internal_Sym *isym; |
| |
| r_symndx = ELFNN_R_SYM (rel->r_info); |
| r_type = ELFNN_R_TYPE (rel->r_info); |
| |
| if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx); |
| return false; |
| } |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| /* A local symbol. */ |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| return false; |
| |
| h = NULL; |
| } |
| else |
| { |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| |
| /* Could be done earlier, if h were already available. */ |
| bfd_r_type = kvx_tls_transition (abfd, info, r_type, h, r_symndx); |
| |
| if (h != NULL) |
| { |
| /* Create the ifunc sections for static executables. If we |
| never see an indirect function symbol nor we are building |
| a static executable, those sections will be empty and |
| won't appear in output. */ |
| switch (bfd_r_type) |
| { |
| default: |
| break; |
| } |
| |
| /* It is referenced by a non-shared object. */ |
| h->ref_regular = 1; |
| } |
| |
| switch (bfd_r_type) |
| { |
| |
| case BFD_RELOC_KVX_S43_LO10: |
| case BFD_RELOC_KVX_S43_UP27: |
| case BFD_RELOC_KVX_S43_EX6: |
| |
| case BFD_RELOC_KVX_S37_LO10: |
| case BFD_RELOC_KVX_S37_UP27: |
| |
| case BFD_RELOC_KVX_S64_LO10: |
| case BFD_RELOC_KVX_S64_UP27: |
| case BFD_RELOC_KVX_S64_EX27: |
| |
| case BFD_RELOC_KVX_32: |
| case BFD_RELOC_KVX_64: |
| |
| /* We don't need to handle relocs into sections not going into |
| the "real" output. */ |
| if ((sec->flags & SEC_ALLOC) == 0) |
| break; |
| |
| if (h != NULL) |
| { |
| if (!bfd_link_pic (info)) |
| h->non_got_ref = 1; |
| |
| h->plt.refcount += 1; |
| h->pointer_equality_needed = 1; |
| } |
| |
| /* No need to do anything if we're not creating a shared |
| object. */ |
| if (! bfd_link_pic (info)) |
| break; |
| |
| { |
| struct elf_dyn_relocs *p; |
| struct elf_dyn_relocs **head; |
| |
| /* We must copy these reloc types into the output file. |
| Create a reloc section in dynobj and make room for |
| this reloc. */ |
| if (sreloc == NULL) |
| { |
| if (htab->root.dynobj == NULL) |
| htab->root.dynobj = abfd; |
| |
| sreloc = _bfd_elf_make_dynamic_reloc_section |
| (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ true); |
| |
| if (sreloc == NULL) |
| return false; |
| } |
| |
| /* If this is a global symbol, we count the number of |
| relocations we need for this symbol. */ |
| if (h != NULL) |
| { |
| head = &h->dyn_relocs; |
| } |
| else |
| { |
| /* Track dynamic relocs needed for local syms too. |
| We really need local syms available to do this |
| easily. Oh well. */ |
| |
| asection *s; |
| void **vpp; |
| |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| return false; |
| |
| s = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| if (s == NULL) |
| s = sec; |
| |
| /* Beware of type punned pointers vs strict aliasing |
| rules. */ |
| vpp = &(elf_section_data (s)->local_dynrel); |
| head = (struct elf_dyn_relocs **) vpp; |
| } |
| |
| p = *head; |
| if (p == NULL || p->sec != sec) |
| { |
| bfd_size_type amt = sizeof *p; |
| p = ((struct elf_dyn_relocs *) |
| bfd_zalloc (htab->root.dynobj, amt)); |
| if (p == NULL) |
| return false; |
| p->next = *head; |
| *head = p; |
| p->sec = sec; |
| } |
| |
| p->count += 1; |
| |
| } |
| break; |
| |
| case BFD_RELOC_KVX_S37_GOT_LO10: |
| case BFD_RELOC_KVX_S37_GOT_UP27: |
| |
| case BFD_RELOC_KVX_S37_GOTOFF_LO10: |
| case BFD_RELOC_KVX_S37_GOTOFF_UP27: |
| |
| case BFD_RELOC_KVX_S43_GOT_LO10: |
| case BFD_RELOC_KVX_S43_GOT_UP27: |
| case BFD_RELOC_KVX_S43_GOT_EX6: |
| |
| case BFD_RELOC_KVX_S43_GOTOFF_LO10: |
| case BFD_RELOC_KVX_S43_GOTOFF_UP27: |
| case BFD_RELOC_KVX_S43_GOTOFF_EX6: |
| |
| case BFD_RELOC_KVX_S37_TLS_GD_LO10: |
| case BFD_RELOC_KVX_S37_TLS_GD_UP27: |
| |
| case BFD_RELOC_KVX_S43_TLS_GD_LO10: |
| case BFD_RELOC_KVX_S43_TLS_GD_UP27: |
| case BFD_RELOC_KVX_S43_TLS_GD_EX6: |
| |
| case BFD_RELOC_KVX_S37_TLS_IE_LO10: |
| case BFD_RELOC_KVX_S37_TLS_IE_UP27: |
| |
| case BFD_RELOC_KVX_S43_TLS_IE_LO10: |
| case BFD_RELOC_KVX_S43_TLS_IE_UP27: |
| case BFD_RELOC_KVX_S43_TLS_IE_EX6: |
| |
| case BFD_RELOC_KVX_S37_TLS_LD_LO10: |
| case BFD_RELOC_KVX_S37_TLS_LD_UP27: |
| |
| case BFD_RELOC_KVX_S43_TLS_LD_LO10: |
| case BFD_RELOC_KVX_S43_TLS_LD_UP27: |
| case BFD_RELOC_KVX_S43_TLS_LD_EX6: |
| { |
| unsigned got_type; |
| unsigned old_got_type; |
| |
| got_type = kvx_reloc_got_type (bfd_r_type); |
| |
| if (h) |
| { |
| h->got.refcount += 1; |
| old_got_type = elf_kvx_hash_entry (h)->got_type; |
| } |
| else |
| { |
| struct elf_kvx_local_symbol *locals; |
| |
| if (!elfNN_kvx_allocate_local_symbols |
| (abfd, symtab_hdr->sh_info)) |
| return false; |
| |
| locals = elf_kvx_locals (abfd); |
| BFD_ASSERT (r_symndx < symtab_hdr->sh_info); |
| locals[r_symndx].got_refcount += 1; |
| old_got_type = locals[r_symndx].got_type; |
| } |
| |
| /* We will already have issued an error message if there |
| is a TLS/non-TLS mismatch, based on the symbol type. |
| So just combine any TLS types needed. */ |
| if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL |
| && got_type != GOT_NORMAL) |
| got_type |= old_got_type; |
| |
| /* If the symbol is accessed by both IE and GD methods, we |
| are able to relax. Turn off the GD flag, without |
| messing up with any other kind of TLS types that may be |
| involved. */ |
| /* Disabled untested and unused TLS */ |
| /* if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type)) */ |
| /* got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD); */ |
| |
| if (old_got_type != got_type) |
| { |
| if (h != NULL) |
| elf_kvx_hash_entry (h)->got_type = got_type; |
| else |
| { |
| struct elf_kvx_local_symbol *locals; |
| locals = elf_kvx_locals (abfd); |
| BFD_ASSERT (r_symndx < symtab_hdr->sh_info); |
| locals[r_symndx].got_type = got_type; |
| } |
| } |
| |
| if (htab->root.dynobj == NULL) |
| htab->root.dynobj = abfd; |
| if (! kvx_elf_create_got_section (htab->root.dynobj, info)) |
| return false; |
| break; |
| } |
| |
| case BFD_RELOC_KVX_S64_GOTADDR_LO10: |
| case BFD_RELOC_KVX_S64_GOTADDR_UP27: |
| case BFD_RELOC_KVX_S64_GOTADDR_EX27: |
| |
| case BFD_RELOC_KVX_S43_GOTADDR_LO10: |
| case BFD_RELOC_KVX_S43_GOTADDR_UP27: |
| case BFD_RELOC_KVX_S43_GOTADDR_EX6: |
| |
| case BFD_RELOC_KVX_S37_GOTADDR_LO10: |
| case BFD_RELOC_KVX_S37_GOTADDR_UP27: |
| |
| if (htab->root.dynobj == NULL) |
| htab->root.dynobj = abfd; |
| if (! kvx_elf_create_got_section (htab->root.dynobj, info)) |
| return false; |
| break; |
| |
| case BFD_RELOC_KVX_PCREL27: |
| case BFD_RELOC_KVX_PCREL17: |
| /* If this is a local symbol then we resolve it |
| directly without creating a PLT entry. */ |
| if (h == NULL) |
| continue; |
| |
| h->needs_plt = 1; |
| if (h->plt.refcount <= 0) |
| h->plt.refcount = 1; |
| else |
| h->plt.refcount += 1; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool |
| elfNN_kvx_init_file_header (bfd *abfd, struct bfd_link_info *link_info) |
| { |
| Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */ |
| |
| if (!_bfd_elf_init_file_header (abfd, link_info)) |
| return false; |
| |
| i_ehdrp = elf_elfheader (abfd); |
| i_ehdrp->e_ident[EI_ABIVERSION] = KVX_ELF_ABI_VERSION; |
| return true; |
| } |
| |
| static enum elf_reloc_type_class |
| elfNN_kvx_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| const asection *rel_sec ATTRIBUTE_UNUSED, |
| const Elf_Internal_Rela *rela) |
| { |
| switch ((int) ELFNN_R_TYPE (rela->r_info)) |
| { |
| case R_KVX_RELATIVE: |
| return reloc_class_relative; |
| case R_KVX_JMP_SLOT: |
| return reloc_class_plt; |
| case R_KVX_COPY: |
| return reloc_class_copy; |
| default: |
| return reloc_class_normal; |
| } |
| } |
| |
| /* A structure used to record a list of sections, independently |
| of the next and prev fields in the asection structure. */ |
| typedef struct section_list |
| { |
| asection *sec; |
| struct section_list *next; |
| struct section_list *prev; |
| } |
| section_list; |
| |
| typedef struct |
| { |
| void *finfo; |
| struct bfd_link_info *info; |
| asection *sec; |
| int sec_shndx; |
| int (*func) (void *, const char *, Elf_Internal_Sym *, |
| asection *, struct elf_link_hash_entry *); |
| } output_arch_syminfo; |
| |
| /* Output a single local symbol for a generated stub. */ |
| |
| static bool |
| elfNN_kvx_output_stub_sym (output_arch_syminfo *osi, const char *name, |
| bfd_vma offset, bfd_vma size) |
| { |
| Elf_Internal_Sym sym; |
| |
| sym.st_value = (osi->sec->output_section->vma |
| + osi->sec->output_offset + offset); |
| sym.st_size = size; |
| sym.st_other = 0; |
| sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC); |
| sym.st_shndx = osi->sec_shndx; |
| return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1; |
| } |
| |
| static bool |
| kvx_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg) |
| { |
| struct elf_kvx_stub_hash_entry *stub_entry; |
| asection *stub_sec; |
| bfd_vma addr; |
| char *stub_name; |
| output_arch_syminfo *osi; |
| |
| /* Massage our args to the form they really have. */ |
| stub_entry = (struct elf_kvx_stub_hash_entry *) gen_entry; |
| osi = (output_arch_syminfo *) in_arg; |
| |
| stub_sec = stub_entry->stub_sec; |
| |
| /* Ensure this stub is attached to the current section being |
| processed. */ |
| if (stub_sec != osi->sec) |
| return true; |
| |
| addr = (bfd_vma) stub_entry->stub_offset; |
| |
| stub_name = stub_entry->output_name; |
| |
| switch (stub_entry->stub_type) |
| { |
| case kvx_stub_long_branch: |
| if (!elfNN_kvx_output_stub_sym |
| (osi, stub_name, addr, sizeof (elfNN_kvx_long_branch_stub))) |
| return false; |
| break; |
| |
| default: |
| abort (); |
| } |
| |
| return true; |
| } |
| |
| /* Output mapping symbols for linker generated sections. */ |
| |
| static bool |
| elfNN_kvx_output_arch_local_syms (bfd *output_bfd, |
| struct bfd_link_info *info, |
| void *finfo, |
| int (*func) (void *, const char *, |
| Elf_Internal_Sym *, |
| asection *, |
| struct elf_link_hash_entry *)) |
| { |
| output_arch_syminfo osi; |
| struct elf_kvx_link_hash_table *htab; |
| |
| htab = elf_kvx_hash_table (info); |
| |
| osi.finfo = finfo; |
| osi.info = info; |
| osi.func = func; |
| |
| /* Long calls stubs. */ |
| if (htab->stub_bfd && htab->stub_bfd->sections) |
| { |
| asection *stub_sec; |
| |
| for (stub_sec = htab->stub_bfd->sections; |
| stub_sec != NULL; stub_sec = stub_sec->next) |
| { |
| /* Ignore non-stub sections. */ |
| if (!strstr (stub_sec->name, STUB_SUFFIX)) |
| continue; |
| |
| osi.sec = stub_sec; |
| |
| osi.sec_shndx = _bfd_elf_section_from_bfd_section |
| (output_bfd, osi.sec->output_section); |
| |
| bfd_hash_traverse (&htab->stub_hash_table, kvx_map_one_stub, |
| &osi); |
| } |
| } |
| |
| /* Finally, output mapping symbols for the PLT. */ |
| if (!htab->root.splt || htab->root.splt->size == 0) |
| return true; |
| |
| osi.sec_shndx = _bfd_elf_section_from_bfd_section |
| (output_bfd, htab->root.splt->output_section); |
| osi.sec = htab->root.splt; |
| |
| return true; |
| |
| } |
| |
| /* Allocate target specific section data. */ |
| |
| static bool |
| elfNN_kvx_new_section_hook (bfd *abfd, asection *sec) |
| { |
| if (!sec->used_by_bfd) |
| { |
| _kvx_elf_section_data *sdata; |
| bfd_size_type amt = sizeof (*sdata); |
| |
| sdata = bfd_zalloc (abfd, amt); |
| if (sdata == NULL) |
| return false; |
| sec->used_by_bfd = sdata; |
| } |
| |
| return _bfd_elf_new_section_hook (abfd, sec); |
| } |
| |
| /* Create dynamic sections. This is different from the ARM backend in that |
| the got, plt, gotplt and their relocation sections are all created in the |
| standard part of the bfd elf backend. */ |
| |
| static bool |
| elfNN_kvx_create_dynamic_sections (bfd *dynobj, |
| struct bfd_link_info *info) |
| { |
| struct elf_kvx_link_hash_table *htab; |
| |
| /* We need to create .got section. */ |
| if (!kvx_elf_create_got_section (dynobj, info)) |
| return false; |
| |
| if (!_bfd_elf_create_dynamic_sections (dynobj, info)) |
| return false; |
| |
| htab = elf_kvx_hash_table (info); |
| htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss"); |
| if (!bfd_link_pic (info)) |
| htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss"); |
| |
| if (!htab->sdynbss || (!bfd_link_pic (info) && !htab->srelbss)) |
| abort (); |
| |
| return true; |
| } |
| |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| dynamic relocs. */ |
| |
| static bool |
| elfNN_kvx_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) |
| { |
| struct bfd_link_info *info; |
| struct elf_kvx_link_hash_table *htab; |
| struct elf_dyn_relocs *p; |
| |
| /* An example of a bfd_link_hash_indirect symbol is versioned |
| symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect) |
| -> __gxx_personality_v0(bfd_link_hash_defined) |
| |
| There is no need to process bfd_link_hash_indirect symbols here |
| because we will also be presented with the concrete instance of |
| the symbol and elfNN_kvx_copy_indirect_symbol () will have been |
| called to copy all relevant data from the generic to the concrete |
| symbol instance. */ |
| if (h->root.type == bfd_link_hash_indirect) |
| return true; |
| |
| if (h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| info = (struct bfd_link_info *) inf; |
| htab = elf_kvx_hash_table (info); |
| |
| if (htab->root.dynamic_sections_created && h->plt.refcount > 0) |
| { |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 && !h->forced_local) |
| { |
| if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| |
| if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) |
| { |
| asection *s = htab->root.splt; |
| |
| /* If this is the first .plt entry, make room for the special |
| first entry. */ |
| if (s->size == 0) |
| s->size += htab->plt_header_size; |
| |
| h->plt.offset = s->size; |
| |
| /* If this symbol is not defined in a regular file, and we are |
| not generating a shared library, then set the symbol to this |
| location in the .plt. This is required to make function |
| pointers compare as equal between the normal executable and |
| the shared library. */ |
| if (!bfd_link_pic (info) && !h->def_regular) |
| { |
| h->root.u.def.section = s; |
| h->root.u.def.value = h->plt.offset; |
| } |
| |
| /* Make room for this entry. For now we only create the |
| small model PLT entries. We later need to find a way |
| of relaxing into these from the large model PLT entries. */ |
| s->size += PLT_SMALL_ENTRY_SIZE; |
| |
| /* We also need to make an entry in the .got.plt section, which |
| will be placed in the .got section by the linker script. */ |
| htab->root.sgotplt->size += GOT_ENTRY_SIZE; |
| |
| /* We also need to make an entry in the .rela.plt section. */ |
| htab->root.srelplt->size += RELOC_SIZE (htab); |
| |
| /* We need to ensure that all GOT entries that serve the PLT |
| are consecutive with the special GOT slots [0] [1] and |
| [2]. Any addtional relocations must be placed after the |
| PLT related entries. We abuse the reloc_count such that |
| during sizing we adjust reloc_count to indicate the |
| number of PLT related reserved entries. In subsequent |
| phases when filling in the contents of the reloc entries, |
| PLT related entries are placed by computing their PLT |
| index (0 .. reloc_count). While other none PLT relocs are |
| placed at the slot indicated by reloc_count and |
| reloc_count is updated. */ |
| |
| htab->root.srelplt->reloc_count++; |
| } |
| else |
| { |
| h->plt.offset = (bfd_vma) - 1; |
| h->needs_plt = 0; |
| } |
| } |
| else |
| { |
| h->plt.offset = (bfd_vma) - 1; |
| h->needs_plt = 0; |
| } |
| |
| if (h->got.refcount > 0) |
| { |
| bool dyn; |
| unsigned got_type = elf_kvx_hash_entry (h)->got_type; |
| |
| h->got.offset = (bfd_vma) - 1; |
| |
| dyn = htab->root.dynamic_sections_created; |
| |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (dyn && h->dynindx == -1 && !h->forced_local) |
| { |
| if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| |
| if (got_type == GOT_UNKNOWN) |
| { |
| (*_bfd_error_handler) |
| (_("relocation against `%s' has faulty GOT type "), |
| (h) ? h->root.root.string : "a local symbol"); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| else if (got_type == GOT_NORMAL) |
| { |
| h->got.offset = htab->root.sgot->size; |
| htab->root.sgot->size += GOT_ENTRY_SIZE; |
| if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak) |
| && (bfd_link_pic (info) |
| || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) |
| { |
| htab->root.srelgot->size += RELOC_SIZE (htab); |
| } |
| } |
| else |
| { |
| int indx; |
| |
| /* Any of these will require 2 GOT slots because |
| * they use __tls_get_addr() */ |
| if (got_type & (GOT_TLS_GD | GOT_TLS_LD)) |
| { |
| h->got.offset = htab->root.sgot->size; |
| htab->root.sgot->size += GOT_ENTRY_SIZE * 2; |
| } |
| |
| if (got_type & GOT_TLS_IE) |
| { |
| h->got.offset = htab->root.sgot->size; |
| htab->root.sgot->size += GOT_ENTRY_SIZE; |
| } |
| |
| indx = h && h->dynindx != -1 ? h->dynindx : 0; |
| if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak) |
| && (bfd_link_pic (info) |
| || indx != 0 |
| || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) |
| { |
| /* Only the GD case requires 2 relocations. */ |
| if (got_type & GOT_TLS_GD) |
| htab->root.srelgot->size += RELOC_SIZE (htab) * 2; |
| |
| /* LD needs a DTPMOD reloc, IE needs a DTPOFF. */ |
| if (got_type & (GOT_TLS_LD | GOT_TLS_IE)) |
| htab->root.srelgot->size += RELOC_SIZE (htab); |
| } |
| } |
| } |
| else |
| { |
| h->got.offset = (bfd_vma) - 1; |
| } |
| |
| if (h->dyn_relocs == NULL) |
| return true; |
| |
| /* In the shared -Bsymbolic case, discard space allocated for |
| dynamic pc-relative relocs against symbols which turn out to be |
| defined in regular objects. For the normal shared case, discard |
| space for pc-relative relocs that have become local due to symbol |
| visibility changes. */ |
| |
| if (bfd_link_pic (info)) |
| { |
| /* Relocs that use pc_count are those that appear on a call |
| insn, or certain REL relocs that can generated via assembly. |
| We want calls to protected symbols to resolve directly to the |
| function rather than going via the plt. If people want |
| function pointer comparisons to work as expected then they |
| should avoid writing weird assembly. */ |
| if (SYMBOL_CALLS_LOCAL (info, h)) |
| { |
| struct elf_dyn_relocs **pp; |
| |
| for (pp = &h->dyn_relocs; (p = *pp) != NULL;) |
| { |
| p->count -= p->pc_count; |
| p->pc_count = 0; |
| if (p->count == 0) |
| *pp = p->next; |
| else |
| pp = &p->next; |
| } |
| } |
| |
| /* Also discard relocs on undefined weak syms with non-default |
| visibility. */ |
| if (h->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak) |
| { |
| if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) |
| h->dyn_relocs = NULL; |
| |
| /* Make sure undefined weak symbols are output as a dynamic |
| symbol in PIEs. */ |
| else if (h->dynindx == -1 |
| && !h->forced_local |
| && !bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| } |
| |
| } |
| else if (ELIMINATE_COPY_RELOCS) |
| { |
| /* For the non-shared case, discard space for relocs against |
| symbols which turn out to need copy relocs or are not |
| dynamic. */ |
| |
| if (!h->non_got_ref |
| && ((h->def_dynamic |
| && !h->def_regular) |
| || (htab->root.dynamic_sections_created |
| && (h->root.type == bfd_link_hash_undefweak |
| || h->root.type == bfd_link_hash_undefined)))) |
| { |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local |
| && !bfd_elf_link_record_dynamic_symbol (info, h)) |
| return false; |
| |
| /* If that succeeded, we know we'll be keeping all the |
| relocs. */ |
| if (h->dynindx != -1) |
| goto keep; |
| } |
| |
| h->dyn_relocs = NULL; |
| |
| keep:; |
| } |
| |
| /* Finally, allocate space. */ |
| for (p = h->dyn_relocs; p != NULL; p = p->next) |
| { |
| asection *sreloc; |
| |
| sreloc = elf_section_data (p->sec)->sreloc; |
| |
| BFD_ASSERT (sreloc != NULL); |
| |
| sreloc->size += p->count * RELOC_SIZE (htab); |
| } |
| |
| return true; |
| } |
| |
| /* Find any dynamic relocs that apply to read-only sections. */ |
| |
| static bool |
| kvx_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf) |
| { |
| struct elf_dyn_relocs * p; |
| |
| for (p = h->dyn_relocs; p != NULL; p = p->next) |
| { |
| asection *s = p->sec; |
| |
| if (s != NULL && (s->flags & SEC_READONLY) != 0) |
| { |
| struct bfd_link_info *info = (struct bfd_link_info *) inf; |
| |
| info->flags |= DF_TEXTREL; |
| info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' in " |
| "read-only section `%pA'\n"), |
| s->owner, h->root.root.string, s); |
| |
| /* Not an error, just cut short the traversal. */ |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* This is the most important function of all . Innocuosly named |
| though ! */ |
| static bool |
| elfNN_kvx_late_size_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info) |
| { |
| struct elf_kvx_link_hash_table *htab; |
| bfd *dynobj; |
| asection *s; |
| bool relocs; |
| bfd *ibfd; |
| |
| htab = elf_kvx_hash_table ((info)); |
| dynobj = htab->root.dynobj; |
| if (dynobj == NULL) |
| return true; |
| |
| if (htab->root.dynamic_sections_created) |
| { |
| if (bfd_link_executable (info) && !info->nointerp) |
| { |
| s = bfd_get_linker_section (dynobj, ".interp"); |
| if (s == NULL) |
| abort (); |
| s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
| s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
| } |
| } |
| |
| /* Set up .got offsets for local syms, and space for local dynamic |
| relocs. */ |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| { |
| struct elf_kvx_local_symbol *locals = NULL; |
| Elf_Internal_Shdr *symtab_hdr; |
| asection *srel; |
| unsigned int i; |
| |
| if (!is_kvx_elf (ibfd)) |
| continue; |
| |
| for (s = ibfd->sections; s != NULL; s = s->next) |
| { |
| struct elf_dyn_relocs *p; |
| |
| for (p = (struct elf_dyn_relocs *) |
| (elf_section_data (s)->local_dynrel); p != NULL; p = p->next) |
| { |
| if (!bfd_is_abs_section (p->sec) |
| && bfd_is_abs_section (p->sec->output_section)) |
| { |
| /* Input section has been discarded, either because |
| it is a copy of a linkonce section or due to |
| linker script /DISCARD/, so we'll be discarding |
| the relocs too. */ |
| } |
| else if (p->count != 0) |
| { |
| srel = elf_section_data (p->sec)->sreloc; |
| srel->size += p->count * RELOC_SIZE (htab); |
| if ((p->sec->output_section->flags & SEC_READONLY) != 0) |
| info->flags |= DF_TEXTREL; |
| } |
| } |
| } |
| |
| locals = elf_kvx_locals (ibfd); |
| if (!locals) |
| continue; |
| |
| symtab_hdr = &elf_symtab_hdr (ibfd); |
| srel = htab->root.srelgot; |
| for (i = 0; i < symtab_hdr->sh_info; i++) |
| { |
| locals[i].got_offset = (bfd_vma) - 1; |
| if (locals[i].got_refcount > 0) |
| { |
| unsigned got_type = locals[i].got_type; |
| if (got_type & (GOT_TLS_GD | GOT_TLS_LD)) |
| { |
| locals[i].got_offset = htab->root.sgot->size; |
| htab->root.sgot->size += GOT_ENTRY_SIZE * 2; |
| } |
| |
| if (got_type & (GOT_NORMAL | GOT_TLS_IE )) |
| { |
| locals[i].got_offset = htab->root.sgot->size; |
| htab->root.sgot->size += GOT_ENTRY_SIZE; |
| } |
| |
| if (got_type == GOT_UNKNOWN) |
| { |
| } |
| |
| if (bfd_link_pic (info)) |
| { |
| if (got_type & GOT_TLS_GD) |
| htab->root.srelgot->size += RELOC_SIZE (htab) * 2; |
| |
| if (got_type & GOT_TLS_IE |
| || got_type & GOT_TLS_LD |
| || got_type & GOT_NORMAL) |
| htab->root.srelgot->size += RELOC_SIZE (htab); |
| } |
| } |
| else |
| { |
| locals[i].got_refcount = (bfd_vma) - 1; |
| } |
| } |
| } |
| |
| |
| /* Allocate global sym .plt and .got entries, and space for global |
| sym dynamic relocs. */ |
| elf_link_hash_traverse (&htab->root, elfNN_kvx_allocate_dynrelocs, |
| info); |
| |
| /* For every jump slot reserved in the sgotplt, reloc_count is |
| incremented. However, when we reserve space for TLS descriptors, |
| it's not incremented, so in order to compute the space reserved |
| for them, it suffices to multiply the reloc count by the jump |
| slot size. */ |
| |
| if (htab->root.srelplt) |
| htab->sgotplt_jump_table_size = kvx_compute_jump_table_size (htab); |
| |
| /* We now have determined the sizes of the various dynamic sections. |
| Allocate memory for them. */ |
| relocs = false; |
| for (s = dynobj->sections; s != NULL; s = s->next) |
| { |
| if ((s->flags & SEC_LINKER_CREATED) == 0) |
| continue; |
| |
| if (s == htab->root.splt |
| || s == htab->root.sgot |
| || s == htab->root.sgotplt |
| || s == htab->root.iplt |
| || s == htab->root.igotplt || s == htab->sdynbss) |
| { |
| /* Strip this section if we don't need it; see the |
| comment below. */ |
| } |
| else if (startswith (bfd_section_name (s), ".rela")) |
| { |
| if (s->size != 0 && s != htab->root.srelplt) |
| relocs = true; |
| |
| /* We use the reloc_count field as a counter if we need |
| to copy relocs into the output file. */ |
| if (s != htab->root.srelplt) |
| s->reloc_count = 0; |
| } |
| else |
| { |
| /* It's not one of our sections, so don't allocate space. */ |
| continue; |
| } |
| |
| if (s->size == 0) |
| { |
| /* If we don't need this section, strip it from the |
| output file. This is mostly to handle .rela.bss and |
| .rela.plt. We must create both sections in |
| create_dynamic_sections, because they must be created |
| before the linker maps input sections to output |
| sections. The linker does that before |
| adjust_dynamic_symbol is called, and it is that |
| function which decides whether anything needs to go |
| into these sections. */ |
| |
| s->flags |= SEC_EXCLUDE; |
| continue; |
| } |
| |
| if ((s->flags & SEC_HAS_CONTENTS) == 0) |
| continue; |
| |
| /* Allocate memory for the section contents. We use bfd_zalloc |
| here in case unused entries are not reclaimed before the |
| section's contents are written out. This should not happen, |
| but this way if it does, we get a R_KVX_NONE reloc instead |
| of garbage. */ |
| s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
| if (s->contents == NULL) |
| return false; |
| } |
| |
| if (htab->root.dynamic_sections_created) |
| { |
| /* Add some entries to the .dynamic section. We fill in the |
| values later, in elfNN_kvx_finish_dynamic_sections, but we |
| must add the entries now so that we get the correct size for |
| the .dynamic section. The DT_DEBUG entry is filled in by the |
| dynamic linker and used by the debugger. */ |
| #define add_dynamic_entry(TAG, VAL) \ |
| _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
| |
| if (bfd_link_executable (info)) |
| { |
| if (!add_dynamic_entry (DT_DEBUG, 0)) |
| return false; |
| } |
| |
| if (htab->root.splt->size != 0) |
| { |
| if (!add_dynamic_entry (DT_PLTGOT, 0) |
| || !add_dynamic_entry (DT_PLTRELSZ, 0) |
| || !add_dynamic_entry (DT_PLTREL, DT_RELA) |
| || !add_dynamic_entry (DT_JMPREL, 0)) |
| return false; |
| } |
| |
| if (relocs) |
| { |
| if (!add_dynamic_entry (DT_RELA, 0) |
| || !add_dynamic_entry (DT_RELASZ, 0) |
| || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab))) |
| return false; |
| |
| /* If any dynamic relocs apply to a read-only section, |
| then we need a DT_TEXTREL entry. */ |
| if ((info->flags & DF_TEXTREL) == 0) |
| elf_link_hash_traverse (&htab->root, kvx_readonly_dynrelocs, |
| info); |
| |
| if ((info->flags & DF_TEXTREL) != 0) |
| { |
| if (!add_dynamic_entry (DT_TEXTREL, 0)) |
| return false; |
| } |
| } |
| } |
| #undef add_dynamic_entry |
| |
| return true; |
| } |
| |
| static inline void |
| elf_kvx_update_plt_entry (bfd *output_bfd, |
| bfd_reloc_code_real_type r_type, |
| bfd_byte *plt_entry, bfd_vma value) |
| { |
| reloc_howto_type *howto = elfNN_kvx_howto_from_bfd_reloc (r_type); |
| BFD_ASSERT(howto != NULL); |
| _bfd_kvx_elf_put_addend (output_bfd, plt_entry, r_type, howto, value); |
| } |
| |
| static void |
| elfNN_kvx_create_small_pltn_entry (struct elf_link_hash_entry *h, |
| struct elf_kvx_link_hash_table *htab, |
| bfd *output_bfd) |
| { |
| bfd_byte *plt_entry; |
| bfd_vma plt_index; |
| bfd_vma got_offset; |
| bfd_vma gotplt_entry_address; |
| bfd_vma plt_entry_address; |
| Elf_Internal_Rela rela; |
| bfd_byte *loc; |
| asection *plt, *gotplt, *relplt; |
| |
| plt = htab->root.splt; |
| gotplt = htab->root.sgotplt; |
| relplt = htab->root.srelplt; |
| |
| /* Get the index in the procedure linkage table which |
| corresponds to this symbol. This is the index of this symbol |
| in all the symbols for which we are making plt entries. The |
| first entry in the procedure linkage table is reserved. |
| |
| Get the offset into the .got table of the entry that |
| corresponds to this function. Each .got entry is GOT_ENTRY_SIZE |
| bytes. The first three are reserved for the dynamic linker. |
| |
| For static executables, we don't reserve anything. */ |
| |
| if (plt == htab->root.splt) |
| { |
| plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size; |
| got_offset = (plt_index + 3) * GOT_ENTRY_SIZE; |
| } |
| else |
| { |
| plt_index = h->plt.offset / htab->plt_entry_size; |
| got_offset = plt_index * GOT_ENTRY_SIZE; |
| } |
| |
| plt_entry = plt->contents + h->plt.offset; |
| plt_entry_address = plt->output_section->vma |
| + plt->output_offset + h->plt.offset; |
| gotplt_entry_address = gotplt->output_section->vma + |
| gotplt->output_offset + got_offset; |
| |
| /* Copy in the boiler-plate for the PLTn entry. */ |
| memcpy (plt_entry, elfNN_kvx_small_plt_entry, PLT_SMALL_ENTRY_SIZE); |
| |
| /* Patch the loading of the GOT entry, relative to the PLT entry |
| address. */ |
| |
| /* Use 37bits offset for both 32 and 64bits mode. |
| Fill the LO10 of of lw $r9 = 0[$r14]. */ |
| elf_kvx_update_plt_entry(output_bfd, BFD_RELOC_KVX_S37_LO10, |
| plt_entry+4, |
| gotplt_entry_address - plt_entry_address); |
| |
| /* Fill the UP27 of of lw $r9 = 0[$r14]. */ |
| elf_kvx_update_plt_entry(output_bfd, BFD_RELOC_KVX_S37_UP27, |
| plt_entry+8, |
| gotplt_entry_address - plt_entry_address); |
| |
| rela.r_offset = gotplt_entry_address; |
| |
| /* Fill in the entry in the .rela.plt section. */ |
| rela.r_info = ELFNN_R_INFO (h->dynindx, R_KVX_JMP_SLOT); |
| rela.r_addend = 0; |
| |
| /* Compute the relocation entry to used based on PLT index and do |
| not adjust reloc_count. The reloc_count has already been adjusted |
| to account for this entry. */ |
| loc = relplt->contents + plt_index * RELOC_SIZE (htab); |
| bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); |
| } |
| |
| /* Size sections even though they're not dynamic. We use it to setup |
| _TLS_MODULE_BASE_, if needed. */ |
| |
| static bool |
| elfNN_kvx_early_size_sections (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| asection *tls_sec; |
| |
| if (bfd_link_relocatable (info)) |
| return true; |
| |
| tls_sec = elf_hash_table (info)->tls_sec; |
| |
| if (tls_sec) |
| { |
| struct elf_link_hash_entry *tlsbase; |
| |
| tlsbase = elf_link_hash_lookup (elf_hash_table (info), |
| "_TLS_MODULE_BASE_", true, true, false); |
| |
| if (tlsbase) |
| { |
| struct bfd_link_hash_entry *h = NULL; |
| const struct elf_backend_data *bed = |
| get_elf_backend_data (output_bfd); |
| |
| if (!(_bfd_generic_link_add_one_symbol |
| (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, |
| tls_sec, 0, NULL, false, bed->collect, &h))) |
| return false; |
| |
| tlsbase->type = STT_TLS; |
| tlsbase = (struct elf_link_hash_entry *) h; |
| tlsbase->def_regular = 1; |
| tlsbase->other = STV_HIDDEN; |
| (*bed->elf_backend_hide_symbol) (info, tlsbase, true); |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Finish up dynamic symbol handling. We set the contents of various |
| dynamic sections here. */ |
| static bool |
| elfNN_kvx_finish_dynamic_symbol (bfd *output_bfd, |
| struct bfd_link_info *info, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| struct elf_kvx_link_hash_table *htab; |
| htab = elf_kvx_hash_table (info); |
| |
| if (h->plt.offset != (bfd_vma) - 1) |
| { |
| asection *plt = NULL, *gotplt = NULL, *relplt = NULL; |
| |
| /* This symbol has an entry in the procedure linkage table. Set |
| it up. */ |
| |
| if (htab->root.splt != NULL) |
| { |
| plt = htab->root.splt; |
| gotplt = htab->root.sgotplt; |
| relplt = htab->root.srelplt; |
| } |
| |
| /* This symbol has an entry in the procedure linkage table. Set |
| it up. */ |
| if ((h->dynindx == -1 |
| && !((h->forced_local || bfd_link_executable (info)) |
| && h->def_regular |
| && h->type == STT_GNU_IFUNC)) |
| || plt == NULL |
| || gotplt == NULL |
| || relplt == NULL) |
| abort (); |
| |
| elfNN_kvx_create_small_pltn_entry (h, htab, output_bfd); |
| if (!h->def_regular) |
| { |
| /* Mark the symbol as undefined, rather than as defined in |
| the .plt section. */ |
| sym->st_shndx = SHN_UNDEF; |
| /* If the symbol is weak we need to clear the value. |
| Otherwise, the PLT entry would provide a definition for |
| the symbol even if the symbol wasn't defined anywhere, |
| and so the symbol would never be NULL. Leave the value if |
| there were any relocations where pointer equality matters |
| (this is a clue for the dynamic linker, to make function |
| pointer comparisons work between an application and shared |
| library). */ |
| if (!h->ref_regular_nonweak || !h->pointer_equality_needed) |
| sym->st_value = 0; |
| } |
| } |
| |
| if (h->got.offset != (bfd_vma) - 1 |
| && elf_kvx_hash_entry (h)->got_type == GOT_NORMAL) |
| { |
| Elf_Internal_Rela rela; |
| bfd_byte *loc; |
| |
| /* This symbol has an entry in the global offset table. Set it |
| up. */ |
| if (htab->root.sgot == NULL || htab->root.srelgot == NULL) |
| abort (); |
| |
| rela.r_offset = (htab->root.sgot->output_section->vma |
| + htab->root.sgot->output_offset |
| + (h->got.offset & ~(bfd_vma) 1)); |
| |
| #ifdef UGLY_DEBUG |
| printf("setting rela at offset 0x%x(0x%x + 0x%x + 0x%x) for %s\n", |
| rela.r_offset, |
| htab->root.sgot->output_section->vma, |
| htab->root.sgot->output_offset, |
| h->got.offset, |
| h->root.root.string); |
| #endif |
| |
| if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h)) |
| { |
| if (!h->def_regular) |
| return false; |
| |
| /* in case of PLT related GOT entry, it is not clear who is |
| supposed to set the LSB of GOT entry... |
| kvx_calculate_got_entry_vma() would be a good candidate, |
| but it is not called currently |
| So we are commenting it ATM. */ |
| // BFD_ASSERT ((h->got.offset & 1) != 0); |
| rela.r_info = ELFNN_R_INFO (0, R_KVX_RELATIVE); |
| rela.r_addend = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| } |
| else |
| { |
| BFD_ASSERT ((h->got.offset & 1) == 0); |
| bfd_put_NN (output_bfd, (bfd_vma) 0, |
| htab->root.sgot->contents + h->got.offset); |
| rela.r_info = ELFNN_R_INFO (h->dynindx, R_KVX_GLOB_DAT); |
| rela.r_addend = 0; |
| } |
| |
| loc = htab->root.srelgot->contents; |
| loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab); |
| bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); |
| } |
| |
| if (h->needs_copy) |
| { |
| Elf_Internal_Rela rela; |
| bfd_byte *loc; |
| |
| /* This symbol needs a copy reloc. Set it up. */ |
| |
| if (h->dynindx == -1 |
| || (h->root.type != bfd_link_hash_defined |
| && h->root.type != bfd_link_hash_defweak) |
| || htab->srelbss == NULL) |
| abort (); |
| |
| rela.r_offset = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| rela.r_info = ELFNN_R_INFO (h->dynindx, R_KVX_COPY); |
| rela.r_addend = 0; |
| loc = htab->srelbss->contents; |
| loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab); |
| bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); |
| } |
| |
| /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may |
| be NULL for local symbols. */ |
| if (sym != NULL |
| && (h == elf_hash_table (info)->hdynamic |
| || h == elf_hash_table (info)->hgot)) |
| sym->st_shndx = SHN_ABS; |
| |
| return true; |
| } |
| |
| static void |
| elfNN_kvx_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED, |
| struct elf_kvx_link_hash_table *htab) |
| { |
| memcpy (htab->root.splt->contents, elfNN_kvx_small_plt0_entry, |
| PLT_ENTRY_SIZE); |
| elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize = |
| PLT_ENTRY_SIZE; |
| } |
| |
| static bool |
| elfNN_kvx_finish_dynamic_sections (bfd *output_bfd, |
| struct bfd_link_info *info) |
| { |
| struct elf_kvx_link_hash_table *htab; |
| bfd *dynobj; |
| asection *sdyn; |
| |
| htab = elf_kvx_hash_table (info); |
| dynobj = htab->root.dynobj; |
| sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
| |
| if (htab->root.dynamic_sections_created) |
| { |
| ElfNN_External_Dyn *dyncon, *dynconend; |
| |
| if (sdyn == NULL || htab->root.sgot == NULL) |
| abort (); |
| |
| dyncon = (ElfNN_External_Dyn *) sdyn->contents; |
| dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size); |
| for (; dyncon < dynconend; dyncon++) |
| { |
| Elf_Internal_Dyn dyn; |
| asection *s; |
| |
| bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn); |
| |
| switch (dyn.d_tag) |
| { |
| default: |
| continue; |
| |
| case DT_PLTGOT: |
| s = htab->root.sgotplt; |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
| break; |
| |
| case DT_JMPREL: |
| s = htab->root.srelplt; |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
| break; |
| |
| case DT_PLTRELSZ: |
| s = htab->root.srelplt; |
| dyn.d_un.d_val = s->size; |
| break; |
| |
| case DT_RELASZ: |
| /* The procedure linkage table relocs (DT_JMPREL) should |
| not be included in the overall relocs (DT_RELA). |
| Therefore, we override the DT_RELASZ entry here to |
| make it not include the JMPREL relocs. Since the |
| linker script arranges for .rela.plt to follow all |
| other relocation sections, we don't have to worry |
| about changing the DT_RELA entry. */ |
| if (htab->root.srelplt != NULL) |
| { |
| s = htab->root.srelplt; |
| dyn.d_un.d_val -= s->size; |
| } |
| break; |
| } |
| |
| bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon); |
| } |
| |
| } |
| |
| /* Fill in the special first entry in the procedure linkage table. */ |
| if (htab->root.splt && htab->root.splt->size > 0) |
| { |
| elfNN_kvx_init_small_plt0_entry (output_bfd, htab); |
| |
| elf_section_data (htab->root.splt->output_section)-> |
| this_hdr.sh_entsize = htab->plt_entry_size; |
| } |
| |
| if (htab->root.sgotplt) |
| { |
| if (bfd_is_abs_section (htab->root.sgotplt->output_section)) |
| { |
| (*_bfd_error_handler) |
| (_("discarded output section: `%pA'"), htab->root.sgotplt); |
| return false; |
| } |
| |
| /* Fill in the first three entries in the global offset table. */ |
| if (htab->root.sgotplt->size > 0) |
| { |
| bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents); |
| |
| /* Write GOT[1] and GOT[2], needed for the dynamic linker. */ |
| bfd_put_NN (output_bfd, |
| (bfd_vma) 0, |
| htab->root.sgotplt->contents + GOT_ENTRY_SIZE); |
| bfd_put_NN (output_bfd, |
| (bfd_vma) 0, |
| htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2); |
| } |
| |
| if (htab->root.sgot) |
| { |
| if (htab->root.sgot->size > 0) |
| { |
| bfd_vma addr = |
| sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0; |
| bfd_put_NN (output_bfd, addr, htab->root.sgot->contents); |
| } |
| } |
| |
| elf_section_data (htab->root.sgotplt->output_section)-> |
| this_hdr.sh_entsize = GOT_ENTRY_SIZE; |
| } |
| |
| if (htab->root.sgot && htab->root.sgot->size > 0) |
| elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize |
| = GOT_ENTRY_SIZE; |
| |
| return true; |
| } |
| |
| /* Return address for Ith PLT stub in section PLT, for relocation REL |
| or (bfd_vma) -1 if it should not be included. */ |
| |
| static bfd_vma |
| elfNN_kvx_plt_sym_val (bfd_vma i, const asection *plt, |
| const arelent *rel ATTRIBUTE_UNUSED) |
| { |
| return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE; |
| } |
| |
| #define ELF_ARCH bfd_arch_kvx |
| #define ELF_MACHINE_CODE EM_KVX |
| #define ELF_MAXPAGESIZE 0x10000 |
| #define ELF_MINPAGESIZE 0x1000 |
| #define ELF_COMMONPAGESIZE 0x1000 |
| |
| #define bfd_elfNN_bfd_link_hash_table_create \ |
| elfNN_kvx_link_hash_table_create |
| |
| #define bfd_elfNN_bfd_merge_private_bfd_data \ |
| elfNN_kvx_merge_private_bfd_data |
| |
| #define bfd_elfNN_bfd_print_private_bfd_data \ |
| elfNN_kvx_print_private_bfd_data |
| |
| #define bfd_elfNN_bfd_reloc_type_lookup \ |
| elfNN_kvx_reloc_type_lookup |
| |
| #define bfd_elfNN_bfd_reloc_name_lookup \ |
| elfNN_kvx_reloc_name_lookup |
| |
| #define bfd_elfNN_bfd_set_private_flags \ |
| elfNN_kvx_set_private_flags |
| |
| #define bfd_elfNN_mkobject \ |
| elfNN_kvx_mkobject |
| |
| #define bfd_elfNN_new_section_hook \ |
| elfNN_kvx_new_section_hook |
| |
| #define elf_backend_adjust_dynamic_symbol \ |
| elfNN_kvx_adjust_dynamic_symbol |
| |
| #define elf_backend_early_size_sections \ |
| elfNN_kvx_early_size_sections |
| |
| #define elf_backend_check_relocs \ |
| elfNN_kvx_check_relocs |
| |
| #define elf_backend_copy_indirect_symbol \ |
| elfNN_kvx_copy_indirect_symbol |
| |
| /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts |
| to them in our hash. */ |
| #define elf_backend_create_dynamic_sections \ |
| elfNN_kvx_create_dynamic_sections |
| |
| #define elf_backend_init_index_section \ |
| _bfd_elf_init_2_index_sections |
| |
| #define elf_backend_finish_dynamic_sections \ |
| elfNN_kvx_finish_dynamic_sections |
| |
| #define elf_backend_finish_dynamic_symbol \ |
| elfNN_kvx_finish_dynamic_symbol |
| |
| #define elf_backend_object_p \ |
| elfNN_kvx_object_p |
| |
| #define elf_backend_output_arch_local_syms \ |
| elfNN_kvx_output_arch_local_syms |
| |
| #define elf_backend_plt_sym_val \ |
| elfNN_kvx_plt_sym_val |
| |
| #define elf_backend_init_file_header \ |
| elfNN_kvx_init_file_header |
| |
| #define elf_backend_init_process_headers \ |
| elfNN_kvx_init_process_headers |
| |
| #define elf_backend_relocate_section \ |
| elfNN_kvx_relocate_section |
| |
| #define elf_backend_reloc_type_class \ |
| elfNN_kvx_reloc_type_class |
| |
| #define elf_backend_late_size_sections \ |
| elfNN_kvx_late_size_sections |
| |
| #define elf_backend_can_refcount 1 |
| #define elf_backend_can_gc_sections 1 |
| #define elf_backend_plt_readonly 1 |
| #define elf_backend_want_got_plt 1 |
| #define elf_backend_want_plt_sym 0 |
| #define elf_backend_may_use_rel_p 0 |
| #define elf_backend_may_use_rela_p 1 |
| #define elf_backend_default_use_rela_p 1 |
| #define elf_backend_rela_normal 1 |
| #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3) |
| #define elf_backend_default_execstack 0 |
| #define elf_backend_extern_protected_data 1 |
| #define elf_backend_hash_symbol elf_kvx_hash_symbol |
| |
| #include "elfNN-target.h" |