| /* An expandable hash tables datatype. |
| Copyright (C) 1999-2024 Free Software Foundation, Inc. |
| Contributed by Vladimir Makarov (vmakarov@cygnus.com). |
| |
| This file is part of the libiberty library. |
| Libiberty is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Library General Public |
| License as published by the Free Software Foundation; either |
| version 2 of the License, or (at your option) any later version. |
| |
| Libiberty is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Library General Public License for more details. |
| |
| You should have received a copy of the GNU Library General Public |
| License along with libiberty; see the file COPYING.LIB. If |
| not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, |
| Boston, MA 02110-1301, USA. */ |
| |
| /* This package implements basic hash table functionality. It is possible |
| to search for an entry, create an entry and destroy an entry. |
| |
| Elements in the table are generic pointers. |
| |
| The size of the table is not fixed; if the occupancy of the table |
| grows too high the hash table will be expanded. |
| |
| The abstract data implementation is based on generalized Algorithm D |
| from Knuth's book "The art of computer programming". Hash table is |
| expanded by creation of new hash table and transferring elements from |
| the old table to the new table. */ |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #include <sys/types.h> |
| |
| #ifdef HAVE_STDLIB_H |
| #include <stdlib.h> |
| #endif |
| #ifdef HAVE_STRING_H |
| #include <string.h> |
| #endif |
| #ifdef HAVE_MALLOC_H |
| #include <malloc.h> |
| #endif |
| #ifdef HAVE_LIMITS_H |
| #include <limits.h> |
| #endif |
| #ifdef HAVE_INTTYPES_H |
| #include <inttypes.h> |
| #endif |
| #ifdef HAVE_STDINT_H |
| #include <stdint.h> |
| #endif |
| |
| #include <stdio.h> |
| |
| #include "libiberty.h" |
| #include "ansidecl.h" |
| #include "hashtab.h" |
| |
| #ifndef CHAR_BIT |
| #define CHAR_BIT 8 |
| #endif |
| |
| static unsigned int higher_prime_index (unsigned long); |
| static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int); |
| static hashval_t htab_mod (hashval_t, htab_t); |
| static hashval_t htab_mod_m2 (hashval_t, htab_t); |
| static hashval_t hash_pointer (const void *); |
| static int eq_pointer (const void *, const void *); |
| static int htab_expand (htab_t); |
| static void **find_empty_slot_for_expand (htab_t, hashval_t); |
| |
| /* At some point, we could make these be NULL, and modify the |
| hash-table routines to handle NULL specially; that would avoid |
| function-call overhead for the common case of hashing pointers. */ |
| htab_hash htab_hash_pointer = hash_pointer; |
| htab_eq htab_eq_pointer = eq_pointer; |
| |
| /* Table of primes and multiplicative inverses. |
| |
| Note that these are not minimally reduced inverses. Unlike when generating |
| code to divide by a constant, we want to be able to use the same algorithm |
| all the time. All of these inverses (are implied to) have bit 32 set. |
| |
| For the record, here's the function that computed the table; it's a |
| vastly simplified version of the function of the same name from gcc. */ |
| |
| #if 0 |
| unsigned int |
| ceil_log2 (unsigned int x) |
| { |
| int i; |
| for (i = 31; i >= 0 ; --i) |
| if (x > (1u << i)) |
| return i+1; |
| abort (); |
| } |
| |
| unsigned int |
| choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp) |
| { |
| unsigned long long mhigh; |
| double nx; |
| int lgup, post_shift; |
| int pow, pow2; |
| int n = 32, precision = 32; |
| |
| lgup = ceil_log2 (d); |
| pow = n + lgup; |
| pow2 = n + lgup - precision; |
| |
| nx = ldexp (1.0, pow) + ldexp (1.0, pow2); |
| mhigh = nx / d; |
| |
| *shiftp = lgup - 1; |
| *mlp = mhigh; |
| return mhigh >> 32; |
| } |
| #endif |
| |
| struct prime_ent |
| { |
| hashval_t prime; |
| hashval_t inv; |
| hashval_t inv_m2; /* inverse of prime-2 */ |
| hashval_t shift; |
| }; |
| |
| static struct prime_ent const prime_tab[] = { |
| { 7, 0x24924925, 0x9999999b, 2 }, |
| { 13, 0x3b13b13c, 0x745d1747, 3 }, |
| { 31, 0x08421085, 0x1a7b9612, 4 }, |
| { 61, 0x0c9714fc, 0x15b1e5f8, 5 }, |
| { 127, 0x02040811, 0x0624dd30, 6 }, |
| { 251, 0x05197f7e, 0x073260a5, 7 }, |
| { 509, 0x01824366, 0x02864fc8, 8 }, |
| { 1021, 0x00c0906d, 0x014191f7, 9 }, |
| { 2039, 0x0121456f, 0x0161e69e, 10 }, |
| { 4093, 0x00300902, 0x00501908, 11 }, |
| { 8191, 0x00080041, 0x00180241, 12 }, |
| { 16381, 0x000c0091, 0x00140191, 13 }, |
| { 32749, 0x002605a5, 0x002a06e6, 14 }, |
| { 65521, 0x000f00e2, 0x00110122, 15 }, |
| { 131071, 0x00008001, 0x00018003, 16 }, |
| { 262139, 0x00014002, 0x0001c004, 17 }, |
| { 524287, 0x00002001, 0x00006001, 18 }, |
| { 1048573, 0x00003001, 0x00005001, 19 }, |
| { 2097143, 0x00004801, 0x00005801, 20 }, |
| { 4194301, 0x00000c01, 0x00001401, 21 }, |
| { 8388593, 0x00001e01, 0x00002201, 22 }, |
| { 16777213, 0x00000301, 0x00000501, 23 }, |
| { 33554393, 0x00001381, 0x00001481, 24 }, |
| { 67108859, 0x00000141, 0x000001c1, 25 }, |
| { 134217689, 0x000004e1, 0x00000521, 26 }, |
| { 268435399, 0x00000391, 0x000003b1, 27 }, |
| { 536870909, 0x00000019, 0x00000029, 28 }, |
| { 1073741789, 0x0000008d, 0x00000095, 29 }, |
| { 2147483647, 0x00000003, 0x00000007, 30 }, |
| /* Avoid "decimal constant so large it is unsigned" for 4294967291. */ |
| { 0xfffffffb, 0x00000006, 0x00000008, 31 } |
| }; |
| |
| /* The following function returns an index into the above table of the |
| nearest prime number which is greater than N, and near a power of two. */ |
| |
| static unsigned int |
| higher_prime_index (unsigned long n) |
| { |
| unsigned int low = 0; |
| unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]); |
| |
| while (low != high) |
| { |
| unsigned int mid = low + (high - low) / 2; |
| if (n > prime_tab[mid].prime) |
| low = mid + 1; |
| else |
| high = mid; |
| } |
| |
| /* If we've run out of primes, abort. */ |
| if (n > prime_tab[low].prime) |
| { |
| fprintf (stderr, "Cannot find prime bigger than %lu\n", n); |
| abort (); |
| } |
| |
| return low; |
| } |
| |
| /* Returns non-zero if P1 and P2 are equal. */ |
| |
| static int |
| eq_pointer (const void *p1, const void *p2) |
| { |
| return p1 == p2; |
| } |
| |
| |
| /* The parens around the function names in the next two definitions |
| are essential in order to prevent macro expansions of the name. |
| The bodies, however, are expanded as expected, so they are not |
| recursive definitions. */ |
| |
| /* Return the current size of given hash table. */ |
| |
| #define htab_size(htab) ((htab)->size) |
| |
| size_t |
| (htab_size) (htab_t htab) |
| { |
| return htab_size (htab); |
| } |
| |
| /* Return the current number of elements in given hash table. */ |
| |
| #define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted) |
| |
| size_t |
| (htab_elements) (htab_t htab) |
| { |
| return htab_elements (htab); |
| } |
| |
| /* Return X % Y. */ |
| |
| static inline hashval_t |
| htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift) |
| { |
| /* The multiplicative inverses computed above are for 32-bit types, and |
| requires that we be able to compute a highpart multiply. */ |
| #ifdef UNSIGNED_64BIT_TYPE |
| __extension__ typedef UNSIGNED_64BIT_TYPE ull; |
| if (sizeof (hashval_t) * CHAR_BIT <= 32) |
| { |
| hashval_t t1, t2, t3, t4, q, r; |
| |
| t1 = ((ull)x * inv) >> 32; |
| t2 = x - t1; |
| t3 = t2 >> 1; |
| t4 = t1 + t3; |
| q = t4 >> shift; |
| r = x - (q * y); |
| |
| return r; |
| } |
| #endif |
| |
| /* Otherwise just use the native division routines. */ |
| return x % y; |
| } |
| |
| /* Compute the primary hash for HASH given HTAB's current size. */ |
| |
| static inline hashval_t |
| htab_mod (hashval_t hash, htab_t htab) |
| { |
| const struct prime_ent *p = &prime_tab[htab->size_prime_index]; |
| return htab_mod_1 (hash, p->prime, p->inv, p->shift); |
| } |
| |
| /* Compute the secondary hash for HASH given HTAB's current size. */ |
| |
| static inline hashval_t |
| htab_mod_m2 (hashval_t hash, htab_t htab) |
| { |
| const struct prime_ent *p = &prime_tab[htab->size_prime_index]; |
| return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift); |
| } |
| |
| /* This function creates table with length slightly longer than given |
| source length. Created hash table is initiated as empty (all the |
| hash table entries are HTAB_EMPTY_ENTRY). The function returns the |
| created hash table, or NULL if memory allocation fails. */ |
| |
| htab_t |
| htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f, |
| htab_del del_f, htab_alloc alloc_f, htab_free free_f) |
| { |
| return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f, |
| free_f); |
| } |
| |
| /* As above, but uses the variants of ALLOC_F and FREE_F which accept |
| an extra argument. */ |
| |
| htab_t |
| htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f, |
| htab_del del_f, void *alloc_arg, |
| htab_alloc_with_arg alloc_f, |
| htab_free_with_arg free_f) |
| { |
| htab_t result; |
| unsigned int size_prime_index; |
| |
| size_prime_index = higher_prime_index (size); |
| size = prime_tab[size_prime_index].prime; |
| |
| result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab)); |
| if (result == NULL) |
| return NULL; |
| result->entries = (void **) (*alloc_f) (alloc_arg, size, sizeof (void *)); |
| if (result->entries == NULL) |
| { |
| if (free_f != NULL) |
| (*free_f) (alloc_arg, result); |
| return NULL; |
| } |
| result->size = size; |
| result->size_prime_index = size_prime_index; |
| result->hash_f = hash_f; |
| result->eq_f = eq_f; |
| result->del_f = del_f; |
| result->alloc_arg = alloc_arg; |
| result->alloc_with_arg_f = alloc_f; |
| result->free_with_arg_f = free_f; |
| return result; |
| } |
| |
| /* |
| |
| @deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @ |
| htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @ |
| htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @ |
| htab_free @var{free_f}) |
| |
| This function creates a hash table that uses two different allocators |
| @var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself |
| and its entries respectively. This is useful when variables of different |
| types need to be allocated with different allocators. |
| |
| The created hash table is slightly larger than @var{size} and it is |
| initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}). |
| The function returns the created hash table, or @code{NULL} if memory |
| allocation fails. |
| |
| @end deftypefn |
| |
| */ |
| |
| htab_t |
| htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f, |
| htab_del del_f, htab_alloc alloc_tab_f, |
| htab_alloc alloc_f, htab_free free_f) |
| { |
| htab_t result; |
| unsigned int size_prime_index; |
| |
| size_prime_index = higher_prime_index (size); |
| size = prime_tab[size_prime_index].prime; |
| |
| result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab)); |
| if (result == NULL) |
| return NULL; |
| result->entries = (void **) (*alloc_f) (size, sizeof (void *)); |
| if (result->entries == NULL) |
| { |
| if (free_f != NULL) |
| (*free_f) (result); |
| return NULL; |
| } |
| result->size = size; |
| result->size_prime_index = size_prime_index; |
| result->hash_f = hash_f; |
| result->eq_f = eq_f; |
| result->del_f = del_f; |
| result->alloc_f = alloc_f; |
| result->free_f = free_f; |
| return result; |
| } |
| |
| |
| /* Update the function pointers and allocation parameter in the htab_t. */ |
| |
| void |
| htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f, |
| htab_del del_f, void *alloc_arg, |
| htab_alloc_with_arg alloc_f, htab_free_with_arg free_f) |
| { |
| htab->hash_f = hash_f; |
| htab->eq_f = eq_f; |
| htab->del_f = del_f; |
| htab->alloc_arg = alloc_arg; |
| htab->alloc_with_arg_f = alloc_f; |
| htab->free_with_arg_f = free_f; |
| } |
| |
| /* These functions exist solely for backward compatibility. */ |
| |
| #undef htab_create |
| htab_t |
| htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f) |
| { |
| return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free); |
| } |
| |
| htab_t |
| htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f) |
| { |
| return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free); |
| } |
| |
| /* This function frees all memory allocated for given hash table. |
| Naturally the hash table must already exist. */ |
| |
| void |
| htab_delete (htab_t htab) |
| { |
| size_t size = htab_size (htab); |
| void **entries = htab->entries; |
| int i; |
| |
| if (htab->del_f) |
| for (i = size - 1; i >= 0; i--) |
| if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY) |
| (*htab->del_f) (entries[i]); |
| |
| if (htab->free_f != NULL) |
| { |
| (*htab->free_f) (entries); |
| (*htab->free_f) (htab); |
| } |
| else if (htab->free_with_arg_f != NULL) |
| { |
| (*htab->free_with_arg_f) (htab->alloc_arg, entries); |
| (*htab->free_with_arg_f) (htab->alloc_arg, htab); |
| } |
| } |
| |
| /* This function clears all entries in the given hash table. */ |
| |
| void |
| htab_empty (htab_t htab) |
| { |
| size_t size = htab_size (htab); |
| void **entries = htab->entries; |
| int i; |
| |
| if (htab->del_f) |
| for (i = size - 1; i >= 0; i--) |
| if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY) |
| (*htab->del_f) (entries[i]); |
| |
| /* Instead of clearing megabyte, downsize the table. */ |
| if (size > 1024*1024 / sizeof (void *)) |
| { |
| int nindex = higher_prime_index (1024 / sizeof (void *)); |
| int nsize = prime_tab[nindex].prime; |
| |
| if (htab->free_f != NULL) |
| (*htab->free_f) (htab->entries); |
| else if (htab->free_with_arg_f != NULL) |
| (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries); |
| if (htab->alloc_with_arg_f != NULL) |
| htab->entries = (void **) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize, |
| sizeof (void *)); |
| else |
| htab->entries = (void **) (*htab->alloc_f) (nsize, sizeof (void *)); |
| htab->size = nsize; |
| htab->size_prime_index = nindex; |
| } |
| else |
| memset (entries, 0, size * sizeof (void *)); |
| htab->n_deleted = 0; |
| htab->n_elements = 0; |
| } |
| |
| /* Similar to htab_find_slot, but without several unwanted side effects: |
| - Does not call htab->eq_f when it finds an existing entry. |
| - Does not change the count of elements/searches/collisions in the |
| hash table. |
| This function also assumes there are no deleted entries in the table. |
| HASH is the hash value for the element to be inserted. */ |
| |
| static void ** |
| find_empty_slot_for_expand (htab_t htab, hashval_t hash) |
| { |
| hashval_t index = htab_mod (hash, htab); |
| size_t size = htab_size (htab); |
| void **slot = htab->entries + index; |
| hashval_t hash2; |
| |
| if (*slot == HTAB_EMPTY_ENTRY) |
| return slot; |
| else if (*slot == HTAB_DELETED_ENTRY) |
| abort (); |
| |
| hash2 = htab_mod_m2 (hash, htab); |
| for (;;) |
| { |
| index += hash2; |
| if (index >= size) |
| index -= size; |
| |
| slot = htab->entries + index; |
| if (*slot == HTAB_EMPTY_ENTRY) |
| return slot; |
| else if (*slot == HTAB_DELETED_ENTRY) |
| abort (); |
| } |
| } |
| |
| /* The following function changes size of memory allocated for the |
| entries and repeatedly inserts the table elements. The occupancy |
| of the table after the call will be about 50%. Naturally the hash |
| table must already exist. Remember also that the place of the |
| table entries is changed. If memory allocation failures are allowed, |
| this function will return zero, indicating that the table could not be |
| expanded. If all goes well, it will return a non-zero value. */ |
| |
| static int |
| htab_expand (htab_t htab) |
| { |
| void **oentries; |
| void **olimit; |
| void **p; |
| void **nentries; |
| size_t nsize, osize, elts; |
| unsigned int oindex, nindex; |
| |
| oentries = htab->entries; |
| oindex = htab->size_prime_index; |
| osize = htab->size; |
| olimit = oentries + osize; |
| elts = htab_elements (htab); |
| |
| /* Resize only when table after removal of unused elements is either |
| too full or too empty. */ |
| if (elts * 2 > osize || (elts * 8 < osize && osize > 32)) |
| { |
| nindex = higher_prime_index (elts * 2); |
| nsize = prime_tab[nindex].prime; |
| } |
| else |
| { |
| nindex = oindex; |
| nsize = osize; |
| } |
| |
| if (htab->alloc_with_arg_f != NULL) |
| nentries = (void **) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize, |
| sizeof (void *)); |
| else |
| nentries = (void **) (*htab->alloc_f) (nsize, sizeof (void *)); |
| if (nentries == NULL) |
| return 0; |
| htab->entries = nentries; |
| htab->size = nsize; |
| htab->size_prime_index = nindex; |
| htab->n_elements -= htab->n_deleted; |
| htab->n_deleted = 0; |
| |
| p = oentries; |
| do |
| { |
| void *x = *p; |
| |
| if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) |
| { |
| void **q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x)); |
| |
| *q = x; |
| } |
| |
| p++; |
| } |
| while (p < olimit); |
| |
| if (htab->free_f != NULL) |
| (*htab->free_f) (oentries); |
| else if (htab->free_with_arg_f != NULL) |
| (*htab->free_with_arg_f) (htab->alloc_arg, oentries); |
| return 1; |
| } |
| |
| /* This function searches for a hash table entry equal to the given |
| element. It cannot be used to insert or delete an element. */ |
| |
| void * |
| htab_find_with_hash (htab_t htab, const void *element, hashval_t hash) |
| { |
| hashval_t index, hash2; |
| size_t size; |
| void *entry; |
| |
| htab->searches++; |
| size = htab_size (htab); |
| index = htab_mod (hash, htab); |
| |
| entry = htab->entries[index]; |
| if (entry == HTAB_EMPTY_ENTRY |
| || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element))) |
| return entry; |
| |
| hash2 = htab_mod_m2 (hash, htab); |
| for (;;) |
| { |
| htab->collisions++; |
| index += hash2; |
| if (index >= size) |
| index -= size; |
| |
| entry = htab->entries[index]; |
| if (entry == HTAB_EMPTY_ENTRY |
| || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element))) |
| return entry; |
| } |
| } |
| |
| /* Like htab_find_slot_with_hash, but compute the hash value from the |
| element. */ |
| |
| void * |
| htab_find (htab_t htab, const void *element) |
| { |
| return htab_find_with_hash (htab, element, (*htab->hash_f) (element)); |
| } |
| |
| /* This function searches for a hash table slot containing an entry |
| equal to the given element. To delete an entry, call this with |
| insert=NO_INSERT, then call htab_clear_slot on the slot returned |
| (possibly after doing some checks). To insert an entry, call this |
| with insert=INSERT, then write the value you want into the returned |
| slot. When inserting an entry, NULL may be returned if memory |
| allocation fails. */ |
| |
| void ** |
| htab_find_slot_with_hash (htab_t htab, const void *element, |
| hashval_t hash, enum insert_option insert) |
| { |
| void **first_deleted_slot; |
| hashval_t index, hash2; |
| size_t size; |
| void *entry; |
| |
| size = htab_size (htab); |
| if (insert == INSERT && size * 3 <= htab->n_elements * 4) |
| { |
| if (htab_expand (htab) == 0) |
| return NULL; |
| size = htab_size (htab); |
| } |
| |
| index = htab_mod (hash, htab); |
| |
| htab->searches++; |
| first_deleted_slot = NULL; |
| |
| entry = htab->entries[index]; |
| if (entry == HTAB_EMPTY_ENTRY) |
| goto empty_entry; |
| else if (entry == HTAB_DELETED_ENTRY) |
| first_deleted_slot = &htab->entries[index]; |
| else if ((*htab->eq_f) (entry, element)) |
| return &htab->entries[index]; |
| |
| hash2 = htab_mod_m2 (hash, htab); |
| for (;;) |
| { |
| htab->collisions++; |
| index += hash2; |
| if (index >= size) |
| index -= size; |
| |
| entry = htab->entries[index]; |
| if (entry == HTAB_EMPTY_ENTRY) |
| goto empty_entry; |
| else if (entry == HTAB_DELETED_ENTRY) |
| { |
| if (!first_deleted_slot) |
| first_deleted_slot = &htab->entries[index]; |
| } |
| else if ((*htab->eq_f) (entry, element)) |
| return &htab->entries[index]; |
| } |
| |
| empty_entry: |
| if (insert == NO_INSERT) |
| return NULL; |
| |
| if (first_deleted_slot) |
| { |
| htab->n_deleted--; |
| *first_deleted_slot = HTAB_EMPTY_ENTRY; |
| return first_deleted_slot; |
| } |
| |
| htab->n_elements++; |
| return &htab->entries[index]; |
| } |
| |
| /* Like htab_find_slot_with_hash, but compute the hash value from the |
| element. */ |
| |
| void ** |
| htab_find_slot (htab_t htab, const void *element, enum insert_option insert) |
| { |
| return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element), |
| insert); |
| } |
| |
| /* This function deletes an element with the given value from hash |
| table (the hash is computed from the element). If there is no matching |
| element in the hash table, this function does nothing. */ |
| |
| void |
| htab_remove_elt (htab_t htab, const void *element) |
| { |
| htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element)); |
| } |
| |
| |
| /* This function deletes an element with the given value from hash |
| table. If there is no matching element in the hash table, this |
| function does nothing. */ |
| |
| void |
| htab_remove_elt_with_hash (htab_t htab, const void *element, hashval_t hash) |
| { |
| void **slot; |
| |
| slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT); |
| if (slot == NULL) |
| return; |
| |
| if (htab->del_f) |
| (*htab->del_f) (*slot); |
| |
| *slot = HTAB_DELETED_ENTRY; |
| htab->n_deleted++; |
| } |
| |
| /* This function clears a specified slot in a hash table. It is |
| useful when you've already done the lookup and don't want to do it |
| again. */ |
| |
| void |
| htab_clear_slot (htab_t htab, void **slot) |
| { |
| if (slot < htab->entries || slot >= htab->entries + htab_size (htab) |
| || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY) |
| abort (); |
| |
| if (htab->del_f) |
| (*htab->del_f) (*slot); |
| |
| *slot = HTAB_DELETED_ENTRY; |
| htab->n_deleted++; |
| } |
| |
| /* This function scans over the entire hash table calling |
| CALLBACK for each live entry. If CALLBACK returns false, |
| the iteration stops. INFO is passed as CALLBACK's second |
| argument. */ |
| |
| void |
| htab_traverse_noresize (htab_t htab, htab_trav callback, void *info) |
| { |
| void **slot; |
| void **limit; |
| |
| slot = htab->entries; |
| limit = slot + htab_size (htab); |
| |
| do |
| { |
| void *x = *slot; |
| |
| if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) |
| if (!(*callback) (slot, info)) |
| break; |
| } |
| while (++slot < limit); |
| } |
| |
| /* Like htab_traverse_noresize, but does resize the table when it is |
| too empty to improve effectivity of subsequent calls. */ |
| |
| void |
| htab_traverse (htab_t htab, htab_trav callback, void *info) |
| { |
| size_t size = htab_size (htab); |
| if (htab_elements (htab) * 8 < size && size > 32) |
| htab_expand (htab); |
| |
| htab_traverse_noresize (htab, callback, info); |
| } |
| |
| /* Return the fraction of fixed collisions during all work with given |
| hash table. */ |
| |
| double |
| htab_collisions (htab_t htab) |
| { |
| if (htab->searches == 0) |
| return 0.0; |
| |
| return (double) htab->collisions / (double) htab->searches; |
| } |
| |
| /* Hash P as a null-terminated string. |
| |
| Copied from gcc/hashtable.c. Zack had the following to say with respect |
| to applicability, though note that unlike hashtable.c, this hash table |
| implementation re-hashes rather than chain buckets. |
| |
| http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html |
| From: Zack Weinberg <zackw@panix.com> |
| Date: Fri, 17 Aug 2001 02:15:56 -0400 |
| |
| I got it by extracting all the identifiers from all the source code |
| I had lying around in mid-1999, and testing many recurrences of |
| the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either |
| prime numbers or the appropriate identity. This was the best one. |
| I don't remember exactly what constituted "best", except I was |
| looking at bucket-length distributions mostly. |
| |
| So it should be very good at hashing identifiers, but might not be |
| as good at arbitrary strings. |
| |
| I'll add that it thoroughly trounces the hash functions recommended |
| for this use at http://burtleburtle.net/bob/hash/index.html, both |
| on speed and bucket distribution. I haven't tried it against the |
| function they just started using for Perl's hashes. */ |
| |
| hashval_t |
| htab_hash_string (const void *p) |
| { |
| const unsigned char *str = (const unsigned char *) p; |
| hashval_t r = 0; |
| unsigned char c; |
| |
| while ((c = *str++) != 0) |
| r = r * 67 + c - 113; |
| |
| return r; |
| } |
| |
| /* An equality function for null-terminated strings. */ |
| int |
| htab_eq_string (const void *a, const void *b) |
| { |
| return strcmp ((const char *) a, (const char *) b) == 0; |
| } |
| |
| /* DERIVED FROM: |
| -------------------------------------------------------------------- |
| lookup2.c, by Bob Jenkins, December 1996, Public Domain. |
| hash(), hash2(), hash3, and mix() are externally useful functions. |
| Routines to test the hash are included if SELF_TEST is defined. |
| You can use this free for any purpose. It has no warranty. |
| -------------------------------------------------------------------- |
| */ |
| |
| /* |
| -------------------------------------------------------------------- |
| mix -- mix 3 32-bit values reversibly. |
| For every delta with one or two bit set, and the deltas of all three |
| high bits or all three low bits, whether the original value of a,b,c |
| is almost all zero or is uniformly distributed, |
| * If mix() is run forward or backward, at least 32 bits in a,b,c |
| have at least 1/4 probability of changing. |
| * If mix() is run forward, every bit of c will change between 1/3 and |
| 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.) |
| mix() was built out of 36 single-cycle latency instructions in a |
| structure that could supported 2x parallelism, like so: |
| a -= b; |
| a -= c; x = (c>>13); |
| b -= c; a ^= x; |
| b -= a; x = (a<<8); |
| c -= a; b ^= x; |
| c -= b; x = (b>>13); |
| ... |
| Unfortunately, superscalar Pentiums and Sparcs can't take advantage |
| of that parallelism. They've also turned some of those single-cycle |
| latency instructions into multi-cycle latency instructions. Still, |
| this is the fastest good hash I could find. There were about 2^^68 |
| to choose from. I only looked at a billion or so. |
| -------------------------------------------------------------------- |
| */ |
| /* same, but slower, works on systems that might have 8 byte hashval_t's */ |
| #define mix(a,b,c) \ |
| { \ |
| a -= b; a -= c; a ^= (c>>13); \ |
| b -= c; b -= a; b ^= (a<< 8); \ |
| c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \ |
| a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \ |
| b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \ |
| c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \ |
| a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \ |
| b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \ |
| c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \ |
| } |
| |
| /* |
| -------------------------------------------------------------------- |
| hash() -- hash a variable-length key into a 32-bit value |
| k : the key (the unaligned variable-length array of bytes) |
| len : the length of the key, counting by bytes |
| level : can be any 4-byte value |
| Returns a 32-bit value. Every bit of the key affects every bit of |
| the return value. Every 1-bit and 2-bit delta achieves avalanche. |
| About 36+6len instructions. |
| |
| The best hash table sizes are powers of 2. There is no need to do |
| mod a prime (mod is sooo slow!). If you need less than 32 bits, |
| use a bitmask. For example, if you need only 10 bits, do |
| h = (h & hashmask(10)); |
| In which case, the hash table should have hashsize(10) elements. |
| |
| If you are hashing n strings (ub1 **)k, do it like this: |
| for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h); |
| |
| By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this |
| code any way you wish, private, educational, or commercial. It's free. |
| |
| See http://burtleburtle.net/bob/hash/evahash.html |
| Use for hash table lookup, or anything where one collision in 2^32 is |
| acceptable. Do NOT use for cryptographic purposes. |
| -------------------------------------------------------------------- |
| */ |
| |
| hashval_t |
| iterative_hash (const void *k_in /* the key */, |
| register size_t length /* the length of the key */, |
| register hashval_t initval /* the previous hash, or |
| an arbitrary value */) |
| { |
| register const unsigned char *k = (const unsigned char *)k_in; |
| register hashval_t a,b,c,len; |
| |
| /* Set up the internal state */ |
| len = length; |
| a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */ |
| c = initval; /* the previous hash value */ |
| |
| /*---------------------------------------- handle most of the key */ |
| #ifndef WORDS_BIGENDIAN |
| /* On a little-endian machine, if the data is 4-byte aligned we can hash |
| by word for better speed. This gives nondeterministic results on |
| big-endian machines. */ |
| if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0) |
| while (len >= 12) /* aligned */ |
| { |
| a += *(hashval_t *)(k+0); |
| b += *(hashval_t *)(k+4); |
| c += *(hashval_t *)(k+8); |
| mix(a,b,c); |
| k += 12; len -= 12; |
| } |
| else /* unaligned */ |
| #endif |
| while (len >= 12) |
| { |
| a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24)); |
| b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24)); |
| c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24)); |
| mix(a,b,c); |
| k += 12; len -= 12; |
| } |
| |
| /*------------------------------------- handle the last 11 bytes */ |
| c += length; |
| switch(len) /* all the case statements fall through */ |
| { |
| case 11: c+=((hashval_t)k[10]<<24); /* fall through */ |
| case 10: c+=((hashval_t)k[9]<<16); /* fall through */ |
| case 9 : c+=((hashval_t)k[8]<<8); /* fall through */ |
| /* the first byte of c is reserved for the length */ |
| case 8 : b+=((hashval_t)k[7]<<24); /* fall through */ |
| case 7 : b+=((hashval_t)k[6]<<16); /* fall through */ |
| case 6 : b+=((hashval_t)k[5]<<8); /* fall through */ |
| case 5 : b+=k[4]; /* fall through */ |
| case 4 : a+=((hashval_t)k[3]<<24); /* fall through */ |
| case 3 : a+=((hashval_t)k[2]<<16); /* fall through */ |
| case 2 : a+=((hashval_t)k[1]<<8); /* fall through */ |
| case 1 : a+=k[0]; |
| /* case 0: nothing left to add */ |
| } |
| mix(a,b,c); |
| /*-------------------------------------------- report the result */ |
| return c; |
| } |
| |
| /* Returns a hash code for pointer P. Simplified version of evahash */ |
| |
| static hashval_t |
| hash_pointer (const void *p) |
| { |
| intptr_t v = (intptr_t) p; |
| unsigned a, b, c; |
| |
| a = b = 0x9e3779b9; |
| a += v >> (sizeof (intptr_t) * CHAR_BIT / 2); |
| b += v & (((intptr_t) 1 << (sizeof (intptr_t) * CHAR_BIT / 2)) - 1); |
| c = 0x42135234; |
| mix (a, b, c); |
| return c; |
| } |