| /* Target-dependent code for the Z80. | 
 |  | 
 |    Copyright (C) 1986-2023 Free Software Foundation, Inc. | 
 |  | 
 |    This file is part of GDB. | 
 |  | 
 |    This program is free software; you can redistribute it and/or modify | 
 |    it under the terms of the GNU General Public License as published by | 
 |    the Free Software Foundation; either version 3 of the License, or | 
 |    (at your option) any later version. | 
 |  | 
 |    This program is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |    GNU General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU General Public License | 
 |    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "defs.h" | 
 | #include "arch-utils.h" | 
 | #include "dis-asm.h" | 
 | #include "frame.h" | 
 | #include "frame-unwind.h" | 
 | #include "frame-base.h" | 
 | #include "trad-frame.h" | 
 | #include "gdbcmd.h" | 
 | #include "gdbcore.h" | 
 | #include "gdbtypes.h" | 
 | #include "inferior.h" | 
 | #include "objfiles.h" | 
 | #include "symfile.h" | 
 | #include "gdbarch.h" | 
 |  | 
 | #include "z80-tdep.h" | 
 | #include "features/z80.c" | 
 |  | 
 | /* You need to define __gdb_break_handler symbol pointing to the breakpoint | 
 |    handler.  The value of the symbol will be used to determine the instruction | 
 |    for software breakpoint.  If __gdb_break_handler points to one of standard | 
 |    RST addresses (0x00, 0x08, 0x10,... 0x38) then RST __gdb_break_handler | 
 |    instruction will be used, else CALL __gdb_break_handler | 
 |  | 
 | ;breakpoint handler | 
 | 	.globl	__gdb_break_handler | 
 | 	.org	8 | 
 | __gdb_break_handler: | 
 | 	jp	_debug_swbreak | 
 |  | 
 | */ | 
 |  | 
 | /* Meaning of terms "previous" and "next": | 
 |      previous frame - frame of callee, which is called by current function | 
 |      current frame - frame of current function which has called callee | 
 |      next frame - frame of caller, which has called current function | 
 | */ | 
 |  | 
 | struct z80_gdbarch_tdep : gdbarch_tdep_base | 
 | { | 
 |   /* Number of bytes used for address: | 
 |       2 bytes for all Z80 family | 
 |       3 bytes for eZ80 CPUs operating in ADL mode */ | 
 |   int addr_length = 0; | 
 |  | 
 |   /* Type for void.  */ | 
 |   struct type *void_type = nullptr; | 
 |  | 
 |   /* Type for a function returning void.  */ | 
 |   struct type *func_void_type = nullptr; | 
 |  | 
 |   /* Type for a pointer to a function.  Used for the type of PC.  */ | 
 |   struct type *pc_type = nullptr; | 
 | }; | 
 |  | 
 | /* At any time stack frame contains following parts: | 
 |    [<current PC>] | 
 |    [<temporaries, y bytes>] | 
 |    [<local variables, x bytes> | 
 |    <next frame FP>] | 
 |    [<saved state (critical or interrupt functions), 2 or 10 bytes>] | 
 |    In simplest case <next PC> is pointer to the call instruction | 
 |    (or call __call_hl). There are more difficult cases: interrupt handler or | 
 |    push/ret and jp; but they are untrackable. | 
 | */ | 
 |  | 
 | struct z80_unwind_cache | 
 | { | 
 |   /* The previous frame's inner most stack address (SP after call executed), | 
 |      it is current frame's frame_id.  */ | 
 |   CORE_ADDR prev_sp; | 
 |  | 
 |   /* Size of the frame, prev_sp + size = next_frame.prev_sp */ | 
 |   ULONGEST size; | 
 |  | 
 |   /* size of saved state (including frame pointer and return address), | 
 |      assume: prev_sp + size = IX + state_size */ | 
 |   ULONGEST state_size; | 
 |  | 
 |   struct | 
 |   { | 
 |     unsigned int called : 1;    /* there is return address on stack */ | 
 |     unsigned int load_args : 1; /* prologues loads args using POPs */ | 
 |     unsigned int fp_sdcc : 1;   /* prologue saves and adjusts frame pointer IX */ | 
 |     unsigned int interrupt : 1; /* __interrupt handler */ | 
 |     unsigned int critical : 1;  /* __critical function */ | 
 |   } prologue_type; | 
 |  | 
 |   /* Table indicating the location of each and every register.  */ | 
 |   struct trad_frame_saved_reg *saved_regs; | 
 | }; | 
 |  | 
 | enum z80_instruction_type | 
 | { | 
 |   insn_default, | 
 |   insn_z80, | 
 |   insn_adl, | 
 |   insn_z80_ed, | 
 |   insn_adl_ed, | 
 |   insn_z80_ddfd, | 
 |   insn_adl_ddfd, | 
 |   insn_djnz_d, | 
 |   insn_jr_d, | 
 |   insn_jr_cc_d, | 
 |   insn_jp_nn, | 
 |   insn_jp_rr, | 
 |   insn_jp_cc_nn, | 
 |   insn_call_nn, | 
 |   insn_call_cc_nn, | 
 |   insn_rst_n, | 
 |   insn_ret, | 
 |   insn_ret_cc, | 
 |   insn_push_rr, | 
 |   insn_pop_rr, | 
 |   insn_dec_sp, | 
 |   insn_inc_sp, | 
 |   insn_ld_sp_nn, | 
 |   insn_ld_sp_6nn9, /* ld sp, (nn) */ | 
 |   insn_ld_sp_rr, | 
 |   insn_force_nop /* invalid opcode prefix */ | 
 | }; | 
 |  | 
 | struct z80_insn_info | 
 | { | 
 |   gdb_byte code; | 
 |   gdb_byte mask; | 
 |   gdb_byte size; /* without prefix(es) */ | 
 |   enum z80_instruction_type type; | 
 | }; | 
 |  | 
 | /* Constants */ | 
 |  | 
 | static const struct z80_insn_info * | 
 | z80_get_insn_info (struct gdbarch *gdbarch, const gdb_byte *buf, int *size); | 
 |  | 
 | static const char *z80_reg_names[] = | 
 | { | 
 |   /* 24 bit on eZ80, else 16 bit */ | 
 |   "af", "bc", "de", "hl", | 
 |   "sp", "pc", "ix", "iy", | 
 |   "af'", "bc'", "de'", "hl'", | 
 |   "ir", | 
 |   /* eZ80 only */ | 
 |   "sps" | 
 | }; | 
 |  | 
 | /* Return the name of register REGNUM.  */ | 
 | static const char * | 
 | z80_register_name (struct gdbarch *gdbarch, int regnum) | 
 | { | 
 |   if (regnum < ARRAY_SIZE (z80_reg_names)) | 
 |     return z80_reg_names[regnum]; | 
 |  | 
 |   return ""; | 
 | } | 
 |  | 
 | /* Return the type of a register specified by the architecture.  Only | 
 |    the register cache should call this function directly; others should | 
 |    use "register_type".  */ | 
 | static struct type * | 
 | z80_register_type (struct gdbarch *gdbarch, int reg_nr) | 
 | { | 
 |   return builtin_type (gdbarch)->builtin_data_ptr; | 
 | } | 
 |  | 
 | /* The next 2 functions check BUF for instruction.  If it is pop/push rr, then | 
 |    it returns register number OR'ed with 0x100 */ | 
 | static int | 
 | z80_is_pop_rr (const gdb_byte buf[], int *size) | 
 | { | 
 |   switch (buf[0]) | 
 |     { | 
 |     case 0xc1: | 
 |       *size = 1; | 
 |       return Z80_BC_REGNUM | 0x100; | 
 |     case 0xd1: | 
 |       *size = 1; | 
 |       return Z80_DE_REGNUM | 0x100; | 
 |     case 0xe1: | 
 |       *size = 1; | 
 |       return Z80_HL_REGNUM | 0x100; | 
 |     case 0xf1: | 
 |       *size = 1; | 
 |       return Z80_AF_REGNUM | 0x100; | 
 |     case 0xdd: | 
 |       *size = 2; | 
 |       return (buf[1] == 0xe1) ? (Z80_IX_REGNUM | 0x100) : 0; | 
 |     case 0xfd: | 
 |       *size = 2; | 
 |       return (buf[1] == 0xe1) ? (Z80_IY_REGNUM | 0x100) : 0; | 
 |     } | 
 |   *size = 0; | 
 |   return 0; | 
 | } | 
 |  | 
 | static int | 
 | z80_is_push_rr (const gdb_byte buf[], int *size) | 
 | { | 
 |   switch (buf[0]) | 
 |     { | 
 |     case 0xc5: | 
 |       *size = 1; | 
 |       return Z80_BC_REGNUM | 0x100; | 
 |     case 0xd5: | 
 |       *size = 1; | 
 |       return Z80_DE_REGNUM | 0x100; | 
 |     case 0xe5: | 
 |       *size = 1; | 
 |       return Z80_HL_REGNUM | 0x100; | 
 |     case 0xf5: | 
 |       *size = 1; | 
 |       return Z80_AF_REGNUM | 0x100; | 
 |     case 0xdd: | 
 |       *size = 2; | 
 |       return (buf[1] == 0xe5) ? (Z80_IX_REGNUM | 0x100) : 0; | 
 |     case 0xfd: | 
 |       *size = 2; | 
 |       return (buf[1] == 0xe5) ? (Z80_IY_REGNUM | 0x100) : 0; | 
 |     } | 
 |   *size = 0; | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Function: z80_scan_prologue | 
 |  | 
 |    This function decodes a function prologue to determine: | 
 |      1) the size of the stack frame | 
 |      2) which registers are saved on it | 
 |      3) the offsets of saved regs | 
 |    This information is stored in the z80_unwind_cache structure. | 
 |    Small SDCC functions may just load args using POP instructions in prologue: | 
 | 	pop	af | 
 | 	pop	de | 
 | 	pop	hl | 
 | 	pop	bc | 
 | 	push	bc | 
 | 	push	hl | 
 | 	push	de | 
 | 	push	af | 
 |    SDCC function prologue may have up to 3 sections (all are optional): | 
 |      1) save state | 
 |        a) __critical functions: | 
 | 	ld	a,i | 
 | 	di | 
 | 	push	af | 
 |        b) __interrupt (both int and nmi) functions: | 
 | 	push	af | 
 | 	push	bc | 
 | 	push	de | 
 | 	push	hl | 
 | 	push	iy | 
 |      2) save and adjust frame pointer | 
 |        a) call to special function (size optimization) | 
 | 	call	___sdcc_enter_ix | 
 |        b) inline (speed optimization) | 
 | 	push	ix | 
 | 	ld	ix, #0 | 
 | 	add	ix, sp | 
 |        c) without FP, but saving it (IX is optimized out) | 
 | 	push	ix | 
 |      3) allocate local variables | 
 |        a) via series of PUSH AF and optional DEC SP (size optimization) | 
 | 	push	af | 
 | 	... | 
 | 	push	af | 
 | 	dec	sp	;optional, if allocated odd numbers of bytes | 
 |        b) via SP decrements | 
 | 	dec	sp | 
 | 	... | 
 | 	dec	sp | 
 |        c) via addition (for large frames: 5+ for speed and 9+ for size opt.) | 
 | 	ld	hl, #xxxx	;size of stack frame | 
 | 	add	hl, sp | 
 | 	ld	sp, hl | 
 |        d) same, but using register IY (arrays or for __z88dk_fastcall functions) | 
 | 	ld	iy, #xxxx	;size of stack frame | 
 | 	add	iy, sp | 
 | 	ld	sp, iy | 
 |        e) same as c, but for eZ80 | 
 | 	lea	hl, ix - #nn | 
 | 	ld	sp, hl | 
 |        f) same as d, but for eZ80 | 
 | 	lea	iy, ix - #nn | 
 | 	ld	sp, iy | 
 | */ | 
 |  | 
 | static int | 
 | z80_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end, | 
 | 		   struct z80_unwind_cache *info) | 
 | { | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   z80_gdbarch_tdep *tdep = gdbarch_tdep<z80_gdbarch_tdep> (gdbarch); | 
 |   int addr_len = tdep->addr_length; | 
 |   gdb_byte prologue[32]; /* max prologue is 24 bytes: __interrupt with local array */ | 
 |   int pos = 0; | 
 |   int len; | 
 |   int reg; | 
 |   CORE_ADDR value; | 
 |  | 
 |   len = pc_end - pc_beg; | 
 |   if (len > (int)sizeof (prologue)) | 
 |     len = sizeof (prologue); | 
 |  | 
 |   read_memory (pc_beg, prologue, len); | 
 |  | 
 |   /* stage0: check for series of POPs and then PUSHs */ | 
 |   if ((reg = z80_is_pop_rr(prologue, &pos))) | 
 |     { | 
 |       int i; | 
 |       int size = pos; | 
 |       gdb_byte regs[8]; /* Z80 have only 6 register pairs */ | 
 |       regs[0] = reg & 0xff; | 
 |       for (i = 1; i < 8 && (regs[i] = z80_is_pop_rr (&prologue[pos], &size)); | 
 | 	   ++i, pos += size); | 
 |       /* now we expect series of PUSHs in reverse order */ | 
 |       for (--i; i >= 0 && regs[i] == z80_is_push_rr (&prologue[pos], &size); | 
 | 	   --i, pos += size); | 
 |       if (i == -1 && pos > 0) | 
 | 	info->prologue_type.load_args = 1; | 
 |       else | 
 | 	pos = 0; | 
 |     } | 
 |   /* stage1: check for __interrupt handlers and __critical functions */ | 
 |   else if (!memcmp (&prologue[pos], "\355\127\363\365", 4)) | 
 |     { /* ld a, i; di; push af */ | 
 |       info->prologue_type.critical = 1; | 
 |       pos += 4; | 
 |       info->state_size += addr_len; | 
 |     } | 
 |   else if (!memcmp (&prologue[pos], "\365\305\325\345\375\345", 6)) | 
 |     { /* push af; push bc; push de; push hl; push iy */ | 
 |       info->prologue_type.interrupt = 1; | 
 |       pos += 6; | 
 |       info->state_size += addr_len * 5; | 
 |     } | 
 |  | 
 |   /* stage2: check for FP saving scheme */ | 
 |   if (prologue[pos] == 0xcd) /* call nn */ | 
 |     { | 
 |       struct bound_minimal_symbol msymbol; | 
 |       msymbol = lookup_minimal_symbol ("__sdcc_enter_ix", NULL, NULL); | 
 |       if (msymbol.minsym) | 
 | 	{ | 
 | 	  value = msymbol.value_address (); | 
 | 	  if (value == extract_unsigned_integer (&prologue[pos+1], addr_len, byte_order)) | 
 | 	    { | 
 | 	      pos += 1 + addr_len; | 
 | 	      info->prologue_type.fp_sdcc = 1; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   else if (!memcmp (&prologue[pos], "\335\345\335\041\000\000", 4+addr_len) && | 
 | 	   !memcmp (&prologue[pos+4+addr_len], "\335\071\335\371", 4)) | 
 |     { /* push ix; ld ix, #0; add ix, sp; ld sp, ix */ | 
 |       pos += 4 + addr_len + 4; | 
 |       info->prologue_type.fp_sdcc = 1; | 
 |     } | 
 |   else if (!memcmp (&prologue[pos], "\335\345", 2)) | 
 |     { /* push ix */ | 
 |       pos += 2; | 
 |       info->prologue_type.fp_sdcc = 1; | 
 |     } | 
 |  | 
 |   /* stage3: check for local variables allocation */ | 
 |   switch (prologue[pos]) | 
 |     { | 
 |       case 0xf5: /* push af */ | 
 | 	info->size = 0; | 
 | 	while (prologue[pos] == 0xf5) | 
 | 	  { | 
 | 	    info->size += addr_len; | 
 | 	    pos++; | 
 | 	  } | 
 | 	if (prologue[pos] == 0x3b) /* dec sp */ | 
 | 	  { | 
 | 	    info->size++; | 
 | 	    pos++; | 
 | 	  } | 
 | 	break; | 
 |       case 0x3b: /* dec sp */ | 
 | 	info->size = 0; | 
 | 	while (prologue[pos] == 0x3b) | 
 | 	  { | 
 | 	    info->size++; | 
 | 	    pos++; | 
 | 	  } | 
 | 	break; | 
 |       case 0x21: /*ld hl, -nn */ | 
 | 	if (prologue[pos+addr_len] == 0x39 && prologue[pos+addr_len] >= 0x80 && | 
 | 	    prologue[pos+addr_len+1] == 0xf9) | 
 | 	  { /* add hl, sp; ld sp, hl */ | 
 | 	    info->size = -extract_signed_integer(&prologue[pos+1], addr_len, byte_order); | 
 | 	    pos += 1 + addr_len + 2; | 
 | 	  } | 
 | 	break; | 
 |       case 0xfd: /* ld iy, -nn */ | 
 | 	if (prologue[pos+1] == 0x21 && prologue[pos+1+addr_len] >= 0x80 && | 
 | 	    !memcmp (&prologue[pos+2+addr_len], "\375\071\375\371", 4)) | 
 | 	  { | 
 | 	    info->size = -extract_signed_integer(&prologue[pos+2], addr_len, byte_order); | 
 | 	    pos += 2 + addr_len + 4; | 
 | 	  } | 
 | 	break; | 
 |       case 0xed: /* check for lea xx, ix - n */ | 
 | 	switch (prologue[pos+1]) | 
 | 	  { | 
 | 	  case 0x22: /* lea hl, ix - n */ | 
 | 	    if (prologue[pos+2] >= 0x80 && prologue[pos+3] == 0xf9) | 
 | 	      { /* ld sp, hl */ | 
 | 		info->size = -extract_signed_integer(&prologue[pos+2], 1, byte_order); | 
 | 		pos += 4; | 
 | 	      } | 
 | 	    break; | 
 | 	  case 0x55: /* lea iy, ix - n */ | 
 | 	    if (prologue[pos+2] >= 0x80 && prologue[pos+3] == 0xfd && | 
 | 		prologue[pos+4] == 0xf9) | 
 | 	      { /* ld sp, iy */ | 
 | 		info->size = -extract_signed_integer(&prologue[pos+2], 1, byte_order); | 
 | 		pos += 5; | 
 | 	      } | 
 | 	    break; | 
 | 	  } | 
 | 	  break; | 
 |     } | 
 |   len = 0; | 
 |  | 
 |   if (info->prologue_type.interrupt) | 
 |     { | 
 |       info->saved_regs[Z80_AF_REGNUM].set_addr (len++); | 
 |       info->saved_regs[Z80_BC_REGNUM].set_addr (len++); | 
 |       info->saved_regs[Z80_DE_REGNUM].set_addr (len++); | 
 |       info->saved_regs[Z80_HL_REGNUM].set_addr (len++); | 
 |       info->saved_regs[Z80_IY_REGNUM].set_addr (len++); | 
 |     } | 
 |  | 
 |   if (info->prologue_type.critical) | 
 |     len++; /* just skip IFF2 saved state */ | 
 |  | 
 |   if (info->prologue_type.fp_sdcc) | 
 |     info->saved_regs[Z80_IX_REGNUM].set_addr (len++); | 
 |  | 
 |   info->state_size += len * addr_len; | 
 |  | 
 |   return pc_beg + pos; | 
 | } | 
 |  | 
 | static CORE_ADDR | 
 | z80_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | 
 | { | 
 |   CORE_ADDR func_addr, func_end; | 
 |   CORE_ADDR prologue_end; | 
 |  | 
 |   if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | 
 |     return pc; | 
 |  | 
 |   prologue_end = skip_prologue_using_sal (gdbarch, func_addr); | 
 |   if (prologue_end != 0) | 
 |     return std::max (pc, prologue_end); | 
 |  | 
 |   { | 
 |     struct z80_unwind_cache info = {0}; | 
 |     struct trad_frame_saved_reg saved_regs[Z80_NUM_REGS]; | 
 |  | 
 |     info.saved_regs = saved_regs; | 
 |  | 
 |     /* Need to run the prologue scanner to figure out if the function has a | 
 |        prologue.  */ | 
 |  | 
 |     prologue_end = z80_scan_prologue (gdbarch, func_addr, func_end, &info); | 
 |  | 
 |     if (info.prologue_type.fp_sdcc || info.prologue_type.interrupt || | 
 | 	info.prologue_type.critical) | 
 |       return std::max (pc, prologue_end); | 
 |   } | 
 |  | 
 |   if (prologue_end != 0) | 
 |     { | 
 |       struct symtab_and_line prologue_sal = find_pc_line (func_addr, 0); | 
 |       struct compunit_symtab *compunit = prologue_sal.symtab->compunit (); | 
 |       const char *debug_format = compunit->debugformat (); | 
 |  | 
 |       if (debug_format != NULL && | 
 | 	  !strncasecmp ("dwarf", debug_format, strlen("dwarf"))) | 
 | 	return std::max (pc, prologue_end); | 
 |     } | 
 |  | 
 |   return pc; | 
 | } | 
 |  | 
 | /* Return the return-value convention that will be used by FUNCTION | 
 |    to return a value of type VALTYPE.  FUNCTION may be NULL in which | 
 |    case the return convention is computed based only on VALTYPE. | 
 |  | 
 |    If READBUF is not NULL, extract the return value and save it in this buffer. | 
 |  | 
 |    If WRITEBUF is not NULL, it contains a return value which will be | 
 |    stored into the appropriate register.  This can be used when we want | 
 |    to force the value returned by a function (see the "return" command | 
 |    for instance).  */ | 
 | static enum return_value_convention | 
 | z80_return_value (struct gdbarch *gdbarch, struct value *function, | 
 | 		  struct type *valtype, struct regcache *regcache, | 
 | 		  gdb_byte *readbuf, const gdb_byte *writebuf) | 
 | { | 
 |   /* Byte are returned in L, word in HL, dword in DEHL.  */ | 
 |   int len = valtype->length (); | 
 |  | 
 |   if ((valtype->code () == TYPE_CODE_STRUCT | 
 |        || valtype->code () == TYPE_CODE_UNION | 
 |        || valtype->code () == TYPE_CODE_ARRAY) | 
 |       && len > 4) | 
 |     return RETURN_VALUE_STRUCT_CONVENTION; | 
 |  | 
 |   if (writebuf != NULL) | 
 |     { | 
 |       if (len > 2) | 
 | 	{ | 
 | 	  regcache->cooked_write_part (Z80_DE_REGNUM, 0, len - 2, writebuf+2); | 
 | 	  len = 2; | 
 | 	} | 
 |       regcache->cooked_write_part (Z80_HL_REGNUM, 0, len, writebuf); | 
 |     } | 
 |  | 
 |   if (readbuf != NULL) | 
 |     { | 
 |       if (len > 2) | 
 | 	{ | 
 | 	  regcache->cooked_read_part (Z80_DE_REGNUM, 0, len - 2, readbuf+2); | 
 | 	  len = 2; | 
 | 	} | 
 |       regcache->cooked_read_part (Z80_HL_REGNUM, 0, len, readbuf); | 
 |     } | 
 |  | 
 |   return RETURN_VALUE_REGISTER_CONVENTION; | 
 | } | 
 |  | 
 | /* function unwinds current stack frame and returns next one */ | 
 | static struct z80_unwind_cache * | 
 | z80_frame_unwind_cache (frame_info_ptr this_frame, | 
 | 			void **this_prologue_cache) | 
 | { | 
 |   CORE_ADDR start_pc, current_pc; | 
 |   ULONGEST this_base; | 
 |   int i; | 
 |   gdb_byte buf[sizeof(void*)]; | 
 |   struct z80_unwind_cache *info; | 
 |   struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
 |   z80_gdbarch_tdep *tdep = gdbarch_tdep<z80_gdbarch_tdep> (gdbarch); | 
 |   int addr_len = tdep->addr_length; | 
 |  | 
 |   if (*this_prologue_cache) | 
 |     return (struct z80_unwind_cache *) *this_prologue_cache; | 
 |  | 
 |   info = FRAME_OBSTACK_ZALLOC (struct z80_unwind_cache); | 
 |   memset (info, 0, sizeof (*info)); | 
 |   info->saved_regs = trad_frame_alloc_saved_regs (this_frame); | 
 |   *this_prologue_cache = info; | 
 |  | 
 |   start_pc = get_frame_func (this_frame); | 
 |   current_pc = get_frame_pc (this_frame); | 
 |   if ((start_pc > 0) && (start_pc <= current_pc)) | 
 |     z80_scan_prologue (get_frame_arch (this_frame), | 
 | 		       start_pc, current_pc, info); | 
 |  | 
 |   if (info->prologue_type.fp_sdcc) | 
 |     { | 
 |       /*  With SDCC standard prologue, IX points to the end of current frame | 
 | 	  (where previous frame pointer and state are saved).  */ | 
 |       this_base = get_frame_register_unsigned (this_frame, Z80_IX_REGNUM); | 
 |       info->prev_sp = this_base + info->size; | 
 |     } | 
 |   else | 
 |     { | 
 |       CORE_ADDR addr; | 
 |       CORE_ADDR sp; | 
 |       CORE_ADDR sp_mask = (1 << gdbarch_ptr_bit(gdbarch)) - 1; | 
 |       enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |       /* Assume that the FP is this frame's SP but with that pushed | 
 | 	 stack space added back.  */ | 
 |       this_base = get_frame_register_unsigned (this_frame, Z80_SP_REGNUM); | 
 |       sp = this_base + info->size; | 
 |       for (;; ++sp) | 
 | 	{ | 
 | 	  sp &= sp_mask; | 
 | 	  if (sp < this_base) | 
 | 	    { /* overflow, looks like end of stack */ | 
 | 	      sp = this_base + info->size; | 
 | 	      break; | 
 | 	    } | 
 | 	  /* find return address */ | 
 | 	  read_memory (sp, buf, addr_len); | 
 | 	  addr = extract_unsigned_integer(buf, addr_len, byte_order); | 
 | 	  read_memory (addr-addr_len-1, buf, addr_len+1); | 
 | 	  if (buf[0] == 0xcd || (buf[0] & 0307) == 0304) /* Is it CALL */ | 
 | 	    { /* CALL nn or CALL cc,nn */ | 
 | 	      static const char *names[] = | 
 | 		{ | 
 | 		  "__sdcc_call_ix", "__sdcc_call_iy", "__sdcc_call_hl" | 
 | 		}; | 
 | 	      addr = extract_unsigned_integer(buf+1, addr_len, byte_order); | 
 | 	      if (addr == start_pc) | 
 | 		break; /* found */ | 
 | 	      for (i = sizeof(names)/sizeof(*names)-1; i >= 0; --i) | 
 | 		{ | 
 | 		  struct bound_minimal_symbol msymbol; | 
 | 		  msymbol = lookup_minimal_symbol (names[i], NULL, NULL); | 
 | 		  if (!msymbol.minsym) | 
 | 		    continue; | 
 | 		  if (addr == msymbol.value_address ()) | 
 | 		    break; | 
 | 		} | 
 | 	      if (i >= 0) | 
 | 		break; | 
 | 	      continue; | 
 | 	    } | 
 | 	  else | 
 | 	    continue; /* it is not call_nn, call_cc_nn */ | 
 | 	} | 
 |       info->prev_sp = sp; | 
 |     } | 
 |  | 
 |   /* Adjust all the saved registers so that they contain addresses and not | 
 |      offsets.  */ | 
 |   for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++) | 
 |     if (info->saved_regs[i].addr () > 0) | 
 |       info->saved_regs[i].set_addr | 
 | 	(info->prev_sp - info->saved_regs[i].addr () * addr_len); | 
 |  | 
 |   /* Except for the startup code, the return PC is always saved on | 
 |      the stack and is at the base of the frame.  */ | 
 |   info->saved_regs[Z80_PC_REGNUM].set_addr (info->prev_sp); | 
 |  | 
 |   /* The previous frame's SP needed to be computed.  Save the computed | 
 |      value.  */ | 
 |   info->saved_regs[Z80_SP_REGNUM].set_value (info->prev_sp + addr_len); | 
 |   return info; | 
 | } | 
 |  | 
 | /* Given a GDB frame, determine the address of the calling function's | 
 |    frame.  This will be used to create a new GDB frame struct.  */ | 
 | static void | 
 | z80_frame_this_id (frame_info_ptr this_frame, void **this_cache, | 
 | 		   struct frame_id *this_id) | 
 | { | 
 |   struct frame_id id; | 
 |   struct z80_unwind_cache *info; | 
 |   CORE_ADDR base; | 
 |   CORE_ADDR func; | 
 |  | 
 |   /* The FUNC is easy.  */ | 
 |   func = get_frame_func (this_frame); | 
 |  | 
 |   info = z80_frame_unwind_cache (this_frame, this_cache); | 
 |   /* Hopefully the prologue analysis either correctly determined the | 
 |      frame's base (which is the SP from the previous frame), or set | 
 |      that base to "NULL".  */ | 
 |   base = info->prev_sp; | 
 |   if (base == 0) | 
 |     return; | 
 |  | 
 |   id = frame_id_build (base, func); | 
 |   *this_id = id; | 
 | } | 
 |  | 
 | static struct value * | 
 | z80_frame_prev_register (frame_info_ptr this_frame, | 
 | 			 void **this_prologue_cache, int regnum) | 
 | { | 
 |   struct z80_unwind_cache *info | 
 |     = z80_frame_unwind_cache (this_frame, this_prologue_cache); | 
 |  | 
 |   if (regnum == Z80_PC_REGNUM) | 
 |     { | 
 |       if (info->saved_regs[Z80_PC_REGNUM].is_addr ()) | 
 | 	{ | 
 | 	  /* Reading the return PC from the PC register is slightly | 
 | 	     abnormal.  */ | 
 | 	  ULONGEST pc; | 
 | 	  gdb_byte buf[3]; | 
 | 	  struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
 | 	  z80_gdbarch_tdep *tdep = gdbarch_tdep<z80_gdbarch_tdep> (gdbarch); | 
 | 	  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |  | 
 | 	  read_memory (info->saved_regs[Z80_PC_REGNUM].addr (), | 
 | 		       buf, tdep->addr_length); | 
 | 	  pc = extract_unsigned_integer (buf, tdep->addr_length, byte_order); | 
 | 	  return frame_unwind_got_constant (this_frame, regnum, pc); | 
 | 	} | 
 |  | 
 |       return frame_unwind_got_optimized (this_frame, regnum); | 
 |     } | 
 |  | 
 |   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | 
 | } | 
 |  | 
 | /* Return the breakpoint kind for this target based on *PCPTR.  */ | 
 | static int | 
 | z80_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) | 
 | { | 
 |   static int addr = -1; | 
 |   if (addr == -1) | 
 |     { | 
 |       struct bound_minimal_symbol bh; | 
 |       bh = lookup_minimal_symbol ("_break_handler", NULL, NULL); | 
 |       if (bh.minsym) | 
 | 	addr = bh.value_address (); | 
 |       else | 
 | 	{ | 
 | 	  warning(_("Unable to determine inferior's software breakpoint type: " | 
 | 		    "couldn't find `_break_handler' function in inferior. Will " | 
 | 		    "be used default software breakpoint instruction RST 0x08.")); | 
 | 	  addr = 0x0008; | 
 | 	} | 
 |     } | 
 |   return addr; | 
 | } | 
 |  | 
 | /* Return the software breakpoint from KIND. KIND is just address of breakpoint | 
 |    handler.  If address is on of standard RSTs, then RST n instruction is used | 
 |    as breakpoint. | 
 |    SIZE is set to the software breakpoint's length in memory.  */ | 
 | static const gdb_byte * | 
 | z80_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) | 
 | { | 
 |   static gdb_byte break_insn[8]; | 
 |  | 
 |   if ((kind & 070) == kind) | 
 |     { | 
 |       break_insn[0] = kind | 0307; | 
 |       *size = 1; | 
 |     } | 
 |   else /* kind is non-RST address, use CALL instead, but it is dungerous */ | 
 |     { | 
 |       z80_gdbarch_tdep *tdep = gdbarch_tdep<z80_gdbarch_tdep> (gdbarch); | 
 |       gdb_byte *p = break_insn; | 
 |       *p++ = 0xcd; | 
 |       *p++ = (kind >> 0) & 0xff; | 
 |       *p++ = (kind >> 8) & 0xff; | 
 |       if (tdep->addr_length > 2) | 
 | 	*p++ = (kind >> 16) & 0xff; | 
 |       *size = p - break_insn; | 
 |     } | 
 |   return break_insn; | 
 | } | 
 |  | 
 | /* Return a vector of addresses on which the software single step | 
 |    breakpoints should be inserted.  NULL means software single step is | 
 |    not used. | 
 |    Only one breakpoint address will be returned: conditional branches | 
 |    will be always evaluated. */ | 
 | static std::vector<CORE_ADDR> | 
 | z80_software_single_step (struct regcache *regcache) | 
 | { | 
 |   static const int flag_mask[] = {1 << 6, 1 << 0, 1 << 2, 1 << 7}; | 
 |   gdb_byte buf[8]; | 
 |   ULONGEST t; | 
 |   ULONGEST addr; | 
 |   int opcode; | 
 |   int size; | 
 |   const struct z80_insn_info *info; | 
 |   std::vector<CORE_ADDR> ret (1); | 
 |   struct gdbarch *gdbarch = target_gdbarch (); | 
 |  | 
 |   regcache->cooked_read (Z80_PC_REGNUM, &addr); | 
 |   read_memory (addr, buf, sizeof(buf)); | 
 |   info = z80_get_insn_info (gdbarch, buf, &size); | 
 |   ret[0] = addr + size; | 
 |   if (info == NULL) /* possible in case of double prefix */ | 
 |     { /* forced NOP, TODO: replace by NOP */ | 
 |       return ret; | 
 |     } | 
 |   opcode = buf[size - info->size]; /* take opcode instead of prefix */ | 
 |   /* stage 1: check for conditions */ | 
 |   switch (info->type) | 
 |     { | 
 |     case insn_djnz_d: | 
 |       regcache->cooked_read (Z80_BC_REGNUM, &t); | 
 |       if ((t & 0xff00) != 0x100) | 
 | 	return ret; | 
 |       break; | 
 |     case insn_jr_cc_d: | 
 |       opcode &= 030; /* JR NZ,d has cc equal to 040, but others 000 */ | 
 |       /* fall through */ | 
 |     case insn_jp_cc_nn: | 
 |     case insn_call_cc_nn: | 
 |     case insn_ret_cc: | 
 |       regcache->cooked_read (Z80_AF_REGNUM, &t); | 
 |       /* lower bit of condition inverts match, so invert flags if set */ | 
 |       if ((opcode & 010) != 0) | 
 | 	t = ~t; | 
 |       /* two higher bits of condition field defines flag, so use them only | 
 | 	 to check condition of "not execute" */ | 
 |       if (t & flag_mask[(opcode >> 4) & 3]) | 
 | 	return ret; | 
 |       break; | 
 |     } | 
 |   /* stage 2: compute address */ | 
 |   /* TODO: implement eZ80 MADL support */ | 
 |   switch (info->type) | 
 |     { | 
 |     default: | 
 |       return ret; | 
 |     case insn_djnz_d: | 
 |     case insn_jr_d: | 
 |     case insn_jr_cc_d: | 
 |       addr += size; | 
 |       addr += (signed char)buf[size-1]; | 
 |       break; | 
 |     case insn_jp_rr: | 
 |       if (size == 1) | 
 | 	opcode = Z80_HL_REGNUM; | 
 |       else | 
 | 	opcode = (buf[size-2] & 0x20) ? Z80_IY_REGNUM : Z80_IX_REGNUM; | 
 |       regcache->cooked_read (opcode, &addr); | 
 |       break; | 
 |     case insn_jp_nn: | 
 |     case insn_jp_cc_nn: | 
 |     case insn_call_nn: | 
 |     case insn_call_cc_nn: | 
 |       addr = buf[size-1] * 0x100 + buf[size-2]; | 
 |       if (info->size > 3) /* long instruction mode */ | 
 | 	addr = addr * 0x100 + buf[size-3]; | 
 |       break; | 
 |     case insn_rst_n: | 
 |       addr = opcode & 070; | 
 |       break; | 
 |     case insn_ret: | 
 |     case insn_ret_cc: | 
 |       regcache->cooked_read (Z80_SP_REGNUM, &addr); | 
 |       read_memory (addr, buf, 3); | 
 |       addr = buf[1] * 0x100 + buf[0]; | 
 |       if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ez80_adl) | 
 | 	addr = addr * 0x100 + buf[2]; | 
 |       break; | 
 |     } | 
 |   ret[0] = addr; | 
 |   return ret; | 
 | } | 
 |  | 
 | /* Cached, dynamically allocated copies of the target data structures: */ | 
 | static unsigned (*cache_ovly_region_table)[3] = 0; | 
 | static unsigned cache_novly_regions; | 
 | static CORE_ADDR cache_ovly_region_table_base = 0; | 
 | enum z80_ovly_index | 
 |   { | 
 |     Z80_VMA, Z80_OSIZE, Z80_MAPPED_TO_LMA | 
 |   }; | 
 |  | 
 | static void | 
 | z80_free_overlay_region_table (void) | 
 | { | 
 |   if (cache_ovly_region_table) | 
 |     xfree (cache_ovly_region_table); | 
 |   cache_novly_regions = 0; | 
 |   cache_ovly_region_table = NULL; | 
 |   cache_ovly_region_table_base = 0; | 
 | } | 
 |  | 
 | /* Read an array of ints of size SIZE from the target into a local buffer. | 
 |    Convert to host order.  LEN is number of ints.  */ | 
 |  | 
 | static void | 
 | read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, | 
 | 			int len, int size, enum bfd_endian byte_order) | 
 | { | 
 |   /* alloca is safe here, because regions array is very small. */ | 
 |   gdb_byte *buf = (gdb_byte *) alloca (len * size); | 
 |   int i; | 
 |  | 
 |   read_memory (memaddr, buf, len * size); | 
 |   for (i = 0; i < len; i++) | 
 |     myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order); | 
 | } | 
 |  | 
 | static int | 
 | z80_read_overlay_region_table () | 
 | { | 
 |   struct bound_minimal_symbol novly_regions_msym; | 
 |   struct bound_minimal_symbol ovly_region_table_msym; | 
 |   struct gdbarch *gdbarch; | 
 |   int word_size; | 
 |   enum bfd_endian byte_order; | 
 |  | 
 |   z80_free_overlay_region_table (); | 
 |   novly_regions_msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL); | 
 |   if (! novly_regions_msym.minsym) | 
 |     { | 
 |       error (_("Error reading inferior's overlay table: " | 
 | 	       "couldn't find `_novly_regions'\n" | 
 | 	       "variable in inferior.  Use `overlay manual' mode.")); | 
 |       return 0; | 
 |     } | 
 |  | 
 |   ovly_region_table_msym = lookup_bound_minimal_symbol ("_ovly_region_table"); | 
 |   if (! ovly_region_table_msym.minsym) | 
 |     { | 
 |       error (_("Error reading inferior's overlay table: couldn't find " | 
 | 	       "`_ovly_region_table'\n" | 
 | 	       "array in inferior.  Use `overlay manual' mode.")); | 
 |       return 0; | 
 |     } | 
 |  | 
 |   const enum overlay_debugging_state save_ovly_dbg = overlay_debugging; | 
 |   /* prevent infinite recurse */ | 
 |   overlay_debugging = ovly_off; | 
 |  | 
 |   gdbarch = ovly_region_table_msym.objfile->arch (); | 
 |   word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT; | 
 |   byte_order = gdbarch_byte_order (gdbarch); | 
 |  | 
 |   cache_novly_regions = read_memory_integer (novly_regions_msym.value_address (), | 
 | 					     4, byte_order); | 
 |   cache_ovly_region_table | 
 |     = (unsigned int (*)[3]) xmalloc (cache_novly_regions * | 
 | 					sizeof (*cache_ovly_region_table)); | 
 |   cache_ovly_region_table_base | 
 |     = ovly_region_table_msym.value_address (); | 
 |   read_target_long_array (cache_ovly_region_table_base, | 
 | 			  (unsigned int *) cache_ovly_region_table, | 
 | 			  cache_novly_regions * 3, word_size, byte_order); | 
 |  | 
 |   overlay_debugging = save_ovly_dbg; | 
 |   return 1;                     /* SUCCESS */ | 
 | } | 
 |  | 
 | static int | 
 | z80_overlay_update_1 (struct obj_section *osect) | 
 | { | 
 |   int i; | 
 |   asection *bsect = osect->the_bfd_section; | 
 |   unsigned lma; | 
 |   unsigned vma = bfd_section_vma (bsect); | 
 |  | 
 |   /* find region corresponding to the section VMA */ | 
 |   for (i = 0; i < cache_novly_regions; i++) | 
 |     if (cache_ovly_region_table[i][Z80_VMA] == vma) | 
 | 	break; | 
 |   if (i == cache_novly_regions) | 
 |     return 0; /* no such region */ | 
 |  | 
 |   lma = cache_ovly_region_table[i][Z80_MAPPED_TO_LMA]; | 
 |   i = 0; | 
 |  | 
 |   /* we have interest for sections with same VMA */ | 
 |   for (objfile *objfile : current_program_space->objfiles ()) | 
 |     for (obj_section *sect : objfile->sections ()) | 
 |       if (section_is_overlay (sect)) | 
 | 	{ | 
 | 	  sect->ovly_mapped = (lma == bfd_section_lma (sect->the_bfd_section)); | 
 | 	  i |= sect->ovly_mapped; /* true, if at least one section is mapped */ | 
 | 	} | 
 |   return i; | 
 | } | 
 |  | 
 | /* Refresh overlay mapped state for section OSECT.  */ | 
 | static void | 
 | z80_overlay_update (struct obj_section *osect) | 
 | { | 
 |   /* Always need to read the entire table anew.  */ | 
 |   if (!z80_read_overlay_region_table ()) | 
 |     return; | 
 |  | 
 |   /* Were we given an osect to look up?  NULL means do all of them.  */ | 
 |   if (osect != nullptr && z80_overlay_update_1 (osect)) | 
 |     return; | 
 |  | 
 |   /* Update all sections, even if only one was requested.  */ | 
 |   for (objfile *objfile : current_program_space->objfiles ()) | 
 |     for (obj_section *sect : objfile->sections ()) | 
 |       { | 
 | 	if (!section_is_overlay (sect)) | 
 | 	  continue; | 
 |  | 
 | 	asection *bsect = sect->the_bfd_section; | 
 | 	bfd_vma lma = bfd_section_lma (bsect); | 
 | 	bfd_vma vma = bfd_section_vma (bsect); | 
 |  | 
 | 	for (int i = 0; i < cache_novly_regions; ++i) | 
 | 	  if (cache_ovly_region_table[i][Z80_VMA] == vma) | 
 | 	    sect->ovly_mapped = | 
 | 	      (cache_ovly_region_table[i][Z80_MAPPED_TO_LMA] == lma); | 
 |       } | 
 | } | 
 |  | 
 | /* Return non-zero if the instruction at ADDR is a call; zero otherwise.  */ | 
 | static int | 
 | z80_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr) | 
 | { | 
 |   gdb_byte buf[8]; | 
 |   int size; | 
 |   const struct z80_insn_info *info; | 
 |   read_memory (addr, buf, sizeof(buf)); | 
 |   info = z80_get_insn_info (gdbarch, buf, &size); | 
 |   if (info) | 
 |     switch (info->type) | 
 |       { | 
 |       case insn_call_nn: | 
 |       case insn_call_cc_nn: | 
 |       case insn_rst_n: | 
 | 	return 1; | 
 |       } | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Return non-zero if the instruction at ADDR is a return; zero otherwise. */ | 
 | static int | 
 | z80_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr) | 
 | { | 
 |   gdb_byte buf[8]; | 
 |   int size; | 
 |   const struct z80_insn_info *info; | 
 |   read_memory (addr, buf, sizeof(buf)); | 
 |   info = z80_get_insn_info (gdbarch, buf, &size); | 
 |   if (info) | 
 |     switch (info->type) | 
 |       { | 
 |       case insn_ret: | 
 |       case insn_ret_cc: | 
 | 	return 1; | 
 |       } | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Return non-zero if the instruction at ADDR is a jump; zero otherwise.  */ | 
 | static int | 
 | z80_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr) | 
 | { | 
 |   gdb_byte buf[8]; | 
 |   int size; | 
 |   const struct z80_insn_info *info; | 
 |   read_memory (addr, buf, sizeof(buf)); | 
 |   info = z80_get_insn_info (gdbarch, buf, &size); | 
 |   if (info) | 
 |     switch (info->type) | 
 |       { | 
 |       case insn_jp_nn: | 
 |       case insn_jp_cc_nn: | 
 |       case insn_jp_rr: | 
 |       case insn_jr_d: | 
 |       case insn_jr_cc_d: | 
 |       case insn_djnz_d: | 
 | 	return 1; | 
 |       } | 
 |   return 0; | 
 | } | 
 |  | 
 | static const struct frame_unwind | 
 | z80_frame_unwind = | 
 | { | 
 |   "z80", | 
 |   NORMAL_FRAME, | 
 |   default_frame_unwind_stop_reason, | 
 |   z80_frame_this_id, | 
 |   z80_frame_prev_register, | 
 |   NULL, /*unwind_data*/ | 
 |   default_frame_sniffer | 
 |   /*dealloc_cache*/ | 
 |   /*prev_arch*/ | 
 | }; | 
 |  | 
 | /* Initialize the gdbarch struct for the Z80 arch */ | 
 | static struct gdbarch * | 
 | z80_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | 
 | { | 
 |   struct gdbarch_list *best_arch; | 
 |   tdesc_arch_data_up tdesc_data; | 
 |   unsigned long mach = info.bfd_arch_info->mach; | 
 |   const struct target_desc *tdesc = info.target_desc; | 
 |  | 
 |   if (!tdesc_has_registers (tdesc)) | 
 |     /* Pick a default target description.  */ | 
 |     tdesc = tdesc_z80; | 
 |  | 
 |   /* Check any target description for validity.  */ | 
 |   if (tdesc_has_registers (tdesc)) | 
 |     { | 
 |       const struct tdesc_feature *feature; | 
 |       int valid_p; | 
 |  | 
 |       feature = tdesc_find_feature (tdesc, "org.gnu.gdb.z80.cpu"); | 
 |       if (feature == NULL) | 
 | 	return NULL; | 
 |  | 
 |       tdesc_data = tdesc_data_alloc (); | 
 |  | 
 |       valid_p = 1; | 
 |  | 
 |       for (unsigned i = 0; i < Z80_NUM_REGS; i++) | 
 | 	valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i, | 
 | 					    z80_reg_names[i]); | 
 |  | 
 |       if (!valid_p) | 
 | 	return NULL; | 
 |     } | 
 |  | 
 |   /* If there is already a candidate, use it.  */ | 
 |   for (best_arch = gdbarch_list_lookup_by_info (arches, &info); | 
 |        best_arch != NULL; | 
 |        best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) | 
 |     { | 
 |       if (mach == gdbarch_bfd_arch_info (best_arch->gdbarch)->mach) | 
 | 	return best_arch->gdbarch; | 
 |     } | 
 |  | 
 |   /* None found, create a new architecture from the information provided.  */ | 
 |   gdbarch *gdbarch | 
 |     = gdbarch_alloc (&info, gdbarch_tdep_up (new z80_gdbarch_tdep)); | 
 |   z80_gdbarch_tdep *tdep = gdbarch_tdep<z80_gdbarch_tdep> (gdbarch); | 
 |  | 
 |   if (mach == bfd_mach_ez80_adl) | 
 |     { | 
 |       tdep->addr_length = 3; | 
 |       set_gdbarch_max_insn_length (gdbarch, 6); | 
 |     } | 
 |   else | 
 |     { | 
 |       tdep->addr_length = 2; | 
 |       set_gdbarch_max_insn_length (gdbarch, 4); | 
 |     } | 
 |  | 
 |   /* Create a type for PC.  We can't use builtin types here, as they may not | 
 |      be defined.  */ | 
 |   type_allocator alloc (gdbarch); | 
 |   tdep->void_type = alloc.new_type (TYPE_CODE_VOID, TARGET_CHAR_BIT, | 
 | 				    "void"); | 
 |   tdep->func_void_type = make_function_type (tdep->void_type, NULL); | 
 |   tdep->pc_type = init_pointer_type (alloc, | 
 | 				     tdep->addr_length * TARGET_CHAR_BIT, | 
 | 				     NULL, tdep->func_void_type); | 
 |  | 
 |   set_gdbarch_short_bit (gdbarch, TARGET_CHAR_BIT); | 
 |   set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); | 
 |   set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
 |   set_gdbarch_ptr_bit (gdbarch, tdep->addr_length * TARGET_CHAR_BIT); | 
 |   set_gdbarch_addr_bit (gdbarch, tdep->addr_length * TARGET_CHAR_BIT); | 
 |  | 
 |   set_gdbarch_num_regs (gdbarch, (mach == bfd_mach_ez80_adl) ? EZ80_NUM_REGS | 
 | 							     : Z80_NUM_REGS); | 
 |   set_gdbarch_sp_regnum (gdbarch, Z80_SP_REGNUM); | 
 |   set_gdbarch_pc_regnum (gdbarch, Z80_PC_REGNUM); | 
 |  | 
 |   set_gdbarch_register_name (gdbarch, z80_register_name); | 
 |   set_gdbarch_register_type (gdbarch, z80_register_type); | 
 |  | 
 |   /* TODO: get FP type from binary (extra flags required) */ | 
 |   set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
 |   set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
 |   set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
 |   set_gdbarch_float_format (gdbarch, floatformats_ieee_single); | 
 |   set_gdbarch_double_format (gdbarch, floatformats_ieee_single); | 
 |   set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single); | 
 |  | 
 |   set_gdbarch_return_value (gdbarch, z80_return_value); | 
 |  | 
 |   set_gdbarch_skip_prologue (gdbarch, z80_skip_prologue); | 
 |   set_gdbarch_inner_than (gdbarch, core_addr_lessthan); // falling stack | 
 |  | 
 |   set_gdbarch_software_single_step (gdbarch, z80_software_single_step); | 
 |   set_gdbarch_breakpoint_kind_from_pc (gdbarch, z80_breakpoint_kind_from_pc); | 
 |   set_gdbarch_sw_breakpoint_from_kind (gdbarch, z80_sw_breakpoint_from_kind); | 
 |   set_gdbarch_insn_is_call (gdbarch, z80_insn_is_call); | 
 |   set_gdbarch_insn_is_jump (gdbarch, z80_insn_is_jump); | 
 |   set_gdbarch_insn_is_ret (gdbarch, z80_insn_is_ret); | 
 |  | 
 |   set_gdbarch_overlay_update (gdbarch, z80_overlay_update); | 
 |  | 
 |   frame_unwind_append_unwinder (gdbarch, &z80_frame_unwind); | 
 |   if (tdesc_data) | 
 |     tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data)); | 
 |  | 
 |   return gdbarch; | 
 | } | 
 |  | 
 | /* Table to disassemble machine codes without prefix.  */ | 
 | static const struct z80_insn_info | 
 | ez80_main_insn_table[] = | 
 | { /* table with double prefix check */ | 
 |   { 0100, 0377, 0, insn_force_nop}, //double prefix | 
 |   { 0111, 0377, 0, insn_force_nop}, //double prefix | 
 |   { 0122, 0377, 0, insn_force_nop}, //double prefix | 
 |   { 0133, 0377, 0, insn_force_nop}, //double prefix | 
 |   /* initial table for eZ80_z80 */ | 
 |   { 0100, 0377, 1, insn_z80      }, //eZ80 mode prefix | 
 |   { 0111, 0377, 1, insn_z80      }, //eZ80 mode prefix | 
 |   { 0122, 0377, 1, insn_adl      }, //eZ80 mode prefix | 
 |   { 0133, 0377, 1, insn_adl      }, //eZ80 mode prefix | 
 |   /* here common Z80/Z180/eZ80 opcodes */ | 
 |   { 0000, 0367, 1, insn_default  }, //"nop", "ex af,af'" | 
 |   { 0061, 0377, 3, insn_ld_sp_nn }, //"ld sp,nn" | 
 |   { 0001, 0317, 3, insn_default  }, //"ld rr,nn" | 
 |   { 0002, 0347, 1, insn_default  }, //"ld (rr),a", "ld a,(rr)" | 
 |   { 0042, 0347, 3, insn_default  }, //"ld (nn),hl/a", "ld hl/a,(nn)" | 
 |   { 0063, 0377, 1, insn_inc_sp   }, //"inc sp" | 
 |   { 0073, 0377, 1, insn_dec_sp   }, //"dec sp" | 
 |   { 0003, 0303, 1, insn_default  }, //"inc rr", "dec rr", ... | 
 |   { 0004, 0307, 1, insn_default  }, //"inc/dec r/(hl)" | 
 |   { 0006, 0307, 2, insn_default  }, //"ld r,n", "ld (hl),n" | 
 |   { 0020, 0377, 2, insn_djnz_d   }, //"djnz dis" | 
 |   { 0030, 0377, 2, insn_jr_d     }, //"jr dis" | 
 |   { 0040, 0347, 2, insn_jr_cc_d  }, //"jr cc,dis" | 
 |   { 0100, 0300, 1, insn_default  }, //"ld r,r", "halt" | 
 |   { 0200, 0300, 1, insn_default  }, //"alu_op a,r" | 
 |   { 0300, 0307, 1, insn_ret_cc   }, //"ret cc" | 
 |   { 0301, 0317, 1, insn_pop_rr   }, //"pop rr" | 
 |   { 0302, 0307, 3, insn_jp_cc_nn }, //"jp cc,nn" | 
 |   { 0303, 0377, 3, insn_jp_nn    }, //"jp nn" | 
 |   { 0304, 0307, 3, insn_call_cc_nn}, //"call cc,nn" | 
 |   { 0305, 0317, 1, insn_push_rr  }, //"push rr" | 
 |   { 0306, 0307, 2, insn_default  }, //"alu_op a,n" | 
 |   { 0307, 0307, 1, insn_rst_n    }, //"rst n" | 
 |   { 0311, 0377, 1, insn_ret      }, //"ret" | 
 |   { 0313, 0377, 2, insn_default  }, //CB prefix | 
 |   { 0315, 0377, 3, insn_call_nn  }, //"call nn" | 
 |   { 0323, 0367, 2, insn_default  }, //"out (n),a", "in a,(n)" | 
 |   { 0335, 0337, 1, insn_z80_ddfd }, //DD/FD prefix | 
 |   { 0351, 0377, 1, insn_jp_rr    }, //"jp (hl)" | 
 |   { 0355, 0377, 1, insn_z80_ed   }, //ED prefix | 
 |   { 0371, 0377, 1, insn_ld_sp_rr }, //"ld sp,hl" | 
 |   { 0000, 0000, 1, insn_default  }  //others | 
 | } ; | 
 |  | 
 | static const struct z80_insn_info | 
 | ez80_adl_main_insn_table[] = | 
 | { /* table with double prefix check */ | 
 |   { 0100, 0377, 0, insn_force_nop}, //double prefix | 
 |   { 0111, 0377, 0, insn_force_nop}, //double prefix | 
 |   { 0122, 0377, 0, insn_force_nop}, //double prefix | 
 |   { 0133, 0377, 0, insn_force_nop}, //double prefix | 
 |   /* initial table for eZ80_adl */ | 
 |   { 0000, 0367, 1, insn_default  }, //"nop", "ex af,af'" | 
 |   { 0061, 0377, 4, insn_ld_sp_nn }, //"ld sp,Mmn" | 
 |   { 0001, 0317, 4, insn_default  }, //"ld rr,Mmn" | 
 |   { 0002, 0347, 1, insn_default  }, //"ld (rr),a", "ld a,(rr)" | 
 |   { 0042, 0347, 4, insn_default  }, //"ld (Mmn),hl/a", "ld hl/a,(Mmn)" | 
 |   { 0063, 0377, 1, insn_inc_sp   }, //"inc sp" | 
 |   { 0073, 0377, 1, insn_dec_sp   }, //"dec sp" | 
 |   { 0003, 0303, 1, insn_default  }, //"inc rr", "dec rr", ... | 
 |   { 0004, 0307, 1, insn_default  }, //"inc/dec r/(hl)" | 
 |   { 0006, 0307, 2, insn_default  }, //"ld r,n", "ld (hl),n" | 
 |   { 0020, 0377, 2, insn_djnz_d   }, //"djnz dis" | 
 |   { 0030, 0377, 2, insn_jr_d     }, //"jr dis" | 
 |   { 0040, 0347, 2, insn_jr_cc_d  }, //"jr cc,dis" | 
 |   { 0100, 0377, 1, insn_z80      }, //eZ80 mode prefix (short instruction) | 
 |   { 0111, 0377, 1, insn_z80      }, //eZ80 mode prefix (short instruction) | 
 |   { 0122, 0377, 1, insn_adl      }, //eZ80 mode prefix (long instruction) | 
 |   { 0133, 0377, 1, insn_adl      }, //eZ80 mode prefix (long instruction) | 
 |   { 0100, 0300, 1, insn_default  }, //"ld r,r", "halt" | 
 |   { 0200, 0300, 1, insn_default  }, //"alu_op a,r" | 
 |   { 0300, 0307, 1, insn_ret_cc   }, //"ret cc" | 
 |   { 0301, 0317, 1, insn_pop_rr   }, //"pop rr" | 
 |   { 0302, 0307, 4, insn_jp_cc_nn }, //"jp cc,nn" | 
 |   { 0303, 0377, 4, insn_jp_nn    }, //"jp nn" | 
 |   { 0304, 0307, 4, insn_call_cc_nn}, //"call cc,Mmn" | 
 |   { 0305, 0317, 1, insn_push_rr  }, //"push rr" | 
 |   { 0306, 0307, 2, insn_default  }, //"alu_op a,n" | 
 |   { 0307, 0307, 1, insn_rst_n    }, //"rst n" | 
 |   { 0311, 0377, 1, insn_ret      }, //"ret" | 
 |   { 0313, 0377, 2, insn_default  }, //CB prefix | 
 |   { 0315, 0377, 4, insn_call_nn  }, //"call Mmn" | 
 |   { 0323, 0367, 2, insn_default  }, //"out (n),a", "in a,(n)" | 
 |   { 0335, 0337, 1, insn_adl_ddfd }, //DD/FD prefix | 
 |   { 0351, 0377, 1, insn_jp_rr    }, //"jp (hl)" | 
 |   { 0355, 0377, 1, insn_adl_ed   }, //ED prefix | 
 |   { 0371, 0377, 1, insn_ld_sp_rr }, //"ld sp,hl" | 
 |   { 0000, 0000, 1, insn_default  }  //others | 
 | }; | 
 |  | 
 | /* ED prefix opcodes table. | 
 |    Note the instruction length does include the ED prefix (+ 1 byte) | 
 | */ | 
 | static const struct z80_insn_info | 
 | ez80_ed_insn_table[] = | 
 | { | 
 |   /* eZ80 only instructions */ | 
 |   { 0002, 0366, 2, insn_default    }, //"lea rr,ii+d" | 
 |   { 0124, 0376, 2, insn_default    }, //"lea ix,iy+d", "lea iy,ix+d" | 
 |   { 0145, 0377, 2, insn_default    }, //"pea ix+d" | 
 |   { 0146, 0377, 2, insn_default    }, //"pea iy+d" | 
 |   { 0164, 0377, 2, insn_default    }, //"tstio n" | 
 |   /* Z180/eZ80 only instructions */ | 
 |   { 0060, 0376, 1, insn_default    }, //not an instruction | 
 |   { 0000, 0306, 2, insn_default    }, //"in0 r,(n)", "out0 (n),r" | 
 |   { 0144, 0377, 2, insn_default    }, //"tst a, n" | 
 |   /* common instructions */ | 
 |   { 0173, 0377, 3, insn_ld_sp_6nn9 }, //"ld sp,(nn)" | 
 |   { 0103, 0307, 3, insn_default    }, //"ld (nn),rr", "ld rr,(nn)" | 
 |   { 0105, 0317, 1, insn_ret        }, //"retn", "reti" | 
 |   { 0000, 0000, 1, insn_default    } | 
 | }; | 
 |  | 
 | static const struct z80_insn_info | 
 | ez80_adl_ed_insn_table[] = | 
 | { | 
 |   { 0002, 0366, 2, insn_default }, //"lea rr,ii+d" | 
 |   { 0124, 0376, 2, insn_default }, //"lea ix,iy+d", "lea iy,ix+d" | 
 |   { 0145, 0377, 2, insn_default }, //"pea ix+d" | 
 |   { 0146, 0377, 2, insn_default }, //"pea iy+d" | 
 |   { 0164, 0377, 2, insn_default }, //"tstio n" | 
 |   { 0060, 0376, 1, insn_default }, //not an instruction | 
 |   { 0000, 0306, 2, insn_default }, //"in0 r,(n)", "out0 (n),r" | 
 |   { 0144, 0377, 2, insn_default }, //"tst a, n" | 
 |   { 0173, 0377, 4, insn_ld_sp_6nn9 }, //"ld sp,(nn)" | 
 |   { 0103, 0307, 4, insn_default }, //"ld (nn),rr", "ld rr,(nn)" | 
 |   { 0105, 0317, 1, insn_ret     }, //"retn", "reti" | 
 |   { 0000, 0000, 1, insn_default } | 
 | }; | 
 |  | 
 | /* table for FD and DD prefixed instructions */ | 
 | static const struct z80_insn_info | 
 | ez80_ddfd_insn_table[] = | 
 | { | 
 |   /* ez80 only instructions */ | 
 |   { 0007, 0307, 2, insn_default }, //"ld rr,(ii+d)" | 
 |   { 0061, 0377, 2, insn_default }, //"ld ii,(ii+d)" | 
 |   /* common instructions */ | 
 |   { 0011, 0367, 2, insn_default }, //"add ii,rr" | 
 |   { 0041, 0377, 3, insn_default }, //"ld ii,nn" | 
 |   { 0042, 0367, 3, insn_default }, //"ld (nn),ii", "ld ii,(nn)" | 
 |   { 0043, 0367, 1, insn_default }, //"inc ii", "dec ii" | 
 |   { 0044, 0366, 1, insn_default }, //"inc/dec iih/iil" | 
 |   { 0046, 0367, 2, insn_default }, //"ld iih,n", "ld iil,n" | 
 |   { 0064, 0376, 2, insn_default }, //"inc (ii+d)", "dec (ii+d)" | 
 |   { 0066, 0377, 2, insn_default }, //"ld (ii+d),n" | 
 |   { 0166, 0377, 0, insn_default }, //not an instruction | 
 |   { 0160, 0370, 2, insn_default }, //"ld (ii+d),r" | 
 |   { 0104, 0306, 1, insn_default }, //"ld r,iih", "ld r,iil" | 
 |   { 0106, 0307, 2, insn_default }, //"ld r,(ii+d)" | 
 |   { 0140, 0360, 1, insn_default }, //"ld iih,r", "ld iil,r" | 
 |   { 0204, 0306, 1, insn_default }, //"alu_op a,iih", "alu_op a,iil" | 
 |   { 0206, 0307, 2, insn_default }, //"alu_op a,(ii+d)" | 
 |   { 0313, 0377, 3, insn_default }, //DD/FD CB dd oo instructions | 
 |   { 0335, 0337, 0, insn_force_nop}, //double DD/FD prefix, exec DD/FD as NOP | 
 |   { 0341, 0373, 1, insn_default }, //"pop ii", "push ii" | 
 |   { 0343, 0377, 1, insn_default }, //"ex (sp),ii" | 
 |   { 0351, 0377, 1, insn_jp_rr   }, //"jp (ii)" | 
 |   { 0371, 0377, 1, insn_ld_sp_rr}, //"ld sp,ii" | 
 |   { 0000, 0000, 0, insn_default }  //not an instruction, exec DD/FD as NOP | 
 | }; | 
 |  | 
 | static const struct z80_insn_info | 
 | ez80_adl_ddfd_insn_table[] = | 
 | { | 
 |   { 0007, 0307, 2, insn_default }, //"ld rr,(ii+d)" | 
 |   { 0061, 0377, 2, insn_default }, //"ld ii,(ii+d)" | 
 |   { 0011, 0367, 1, insn_default }, //"add ii,rr" | 
 |   { 0041, 0377, 4, insn_default }, //"ld ii,nn" | 
 |   { 0042, 0367, 4, insn_default }, //"ld (nn),ii", "ld ii,(nn)" | 
 |   { 0043, 0367, 1, insn_default }, //"inc ii", "dec ii" | 
 |   { 0044, 0366, 1, insn_default }, //"inc/dec iih/iil" | 
 |   { 0046, 0367, 2, insn_default }, //"ld iih,n", "ld iil,n" | 
 |   { 0064, 0376, 2, insn_default }, //"inc (ii+d)", "dec (ii+d)" | 
 |   { 0066, 0377, 3, insn_default }, //"ld (ii+d),n" | 
 |   { 0166, 0377, 0, insn_default }, //not an instruction | 
 |   { 0160, 0370, 2, insn_default }, //"ld (ii+d),r" | 
 |   { 0104, 0306, 1, insn_default }, //"ld r,iih", "ld r,iil" | 
 |   { 0106, 0307, 2, insn_default }, //"ld r,(ii+d)" | 
 |   { 0140, 0360, 1, insn_default }, //"ld iih,r", "ld iil,r" | 
 |   { 0204, 0306, 1, insn_default }, //"alu_op a,iih", "alu_op a,iil" | 
 |   { 0206, 0307, 2, insn_default }, //"alu_op a,(ii+d)" | 
 |   { 0313, 0377, 3, insn_default }, //DD/FD CB dd oo instructions | 
 |   { 0335, 0337, 0, insn_force_nop}, //double DD/FD prefix, exec DD/FD as NOP | 
 |   { 0341, 0373, 1, insn_default }, //"pop ii", "push ii" | 
 |   { 0343, 0377, 1, insn_default }, //"ex (sp),ii" | 
 |   { 0351, 0377, 1, insn_jp_rr   }, //"jp (ii)" | 
 |   { 0371, 0377, 1, insn_ld_sp_rr}, //"ld sp,ii" | 
 |   { 0000, 0000, 0, insn_default }  //not an instruction, exec DD/FD as NOP | 
 | }; | 
 |  | 
 | /* Return pointer to instruction information structure corresponded to opcode | 
 |    in buf.  */ | 
 | static const struct z80_insn_info * | 
 | z80_get_insn_info (struct gdbarch *gdbarch, const gdb_byte *buf, int *size) | 
 | { | 
 |   int code; | 
 |   const struct z80_insn_info *info; | 
 |   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; | 
 |   *size = 0; | 
 |   switch (mach) | 
 |     { | 
 |     case bfd_mach_ez80_z80: | 
 |       info = &ez80_main_insn_table[4]; /* skip force_nops */ | 
 |       break; | 
 |     case bfd_mach_ez80_adl: | 
 |       info = &ez80_adl_main_insn_table[4]; /* skip force_nops */ | 
 |       break; | 
 |     default: | 
 |       info = &ez80_main_insn_table[8]; /* skip eZ80 prefices and force_nops */ | 
 |       break; | 
 |     } | 
 |   do | 
 |     { | 
 |       for (; ((code = buf[*size]) & info->mask) != info->code; ++info) | 
 | 	; | 
 |       *size += info->size; | 
 |       /* process instruction type */ | 
 |       switch (info->type) | 
 | 	{ | 
 | 	case insn_z80: | 
 | 	  if (mach == bfd_mach_ez80_z80 || mach == bfd_mach_ez80_adl) | 
 | 	    info = &ez80_main_insn_table[0]; | 
 | 	  else | 
 | 	    info = &ez80_main_insn_table[8]; | 
 | 	  break; | 
 | 	case insn_adl: | 
 | 	  info = &ez80_adl_main_insn_table[0]; | 
 | 	  break; | 
 | 	/*  These two (for GameBoy Z80 & Z80 Next CPUs) haven't been tested. | 
 |  | 
 | 	case bfd_mach_gbz80: | 
 | 	  info = &gbz80_main_insn_table[0]; | 
 | 	  break; | 
 | 	case bfd_mach_z80n: | 
 | 	  info = &z80n_main_insn_table[0]; | 
 | 	  break; | 
 | 	*/ | 
 | 	case insn_z80_ddfd: | 
 | 	  if (mach == bfd_mach_ez80_z80 || mach == bfd_mach_ez80_adl) | 
 | 	    info = &ez80_ddfd_insn_table[0]; | 
 | 	  else | 
 | 	    info = &ez80_ddfd_insn_table[2]; | 
 | 	  break; | 
 | 	case insn_adl_ddfd: | 
 | 	  info = &ez80_adl_ddfd_insn_table[0]; | 
 | 	  break; | 
 | 	case insn_z80_ed: | 
 | 	  info = &ez80_ed_insn_table[0]; | 
 | 	  break; | 
 | 	case insn_adl_ed: | 
 | 	  info = &ez80_adl_ed_insn_table[0]; | 
 | 	  break; | 
 | 	case insn_force_nop: | 
 | 	  return NULL; | 
 | 	default: | 
 | 	  return info; | 
 | 	} | 
 |     } | 
 |   while (1); | 
 | } | 
 |  | 
 | extern initialize_file_ftype _initialize_z80_tdep; | 
 |  | 
 | void | 
 | _initialize_z80_tdep () | 
 | { | 
 |   gdbarch_register (bfd_arch_z80, z80_gdbarch_init); | 
 |   initialize_tdesc_z80 (); | 
 | } |