|  | /* Target-machine dependent code for Renesas H8/300, for GDB. | 
|  |  | 
|  | Copyright (C) 1988-2023 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | /* | 
|  | Contributed by Steve Chamberlain | 
|  | sac@cygnus.com | 
|  | */ | 
|  |  | 
|  | #include "defs.h" | 
|  | #include "value.h" | 
|  | #include "arch-utils.h" | 
|  | #include "regcache.h" | 
|  | #include "gdbcore.h" | 
|  | #include "objfiles.h" | 
|  | #include "dis-asm.h" | 
|  | #include "dwarf2/frame.h" | 
|  | #include "frame-base.h" | 
|  | #include "frame-unwind.h" | 
|  |  | 
|  | enum gdb_regnum | 
|  | { | 
|  | E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM, | 
|  | E_RET0_REGNUM = E_R0_REGNUM, | 
|  | E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM, | 
|  | E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM, | 
|  | E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM, | 
|  | E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM, | 
|  | E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM, | 
|  | E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM, | 
|  | E_SP_REGNUM, | 
|  | E_CCR_REGNUM, | 
|  | E_PC_REGNUM, | 
|  | E_CYCLES_REGNUM, | 
|  | E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM, | 
|  | E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM, | 
|  | E_INSTS_REGNUM, | 
|  | E_MACH_REGNUM, | 
|  | E_MACL_REGNUM, | 
|  | E_SBR_REGNUM, | 
|  | E_VBR_REGNUM | 
|  | }; | 
|  |  | 
|  | #define H8300_MAX_NUM_REGS 18 | 
|  |  | 
|  | #define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)) | 
|  | #define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1) | 
|  |  | 
|  | struct h8300_frame_cache | 
|  | { | 
|  | /* Base address.  */ | 
|  | CORE_ADDR base; | 
|  | CORE_ADDR sp_offset; | 
|  | CORE_ADDR pc; | 
|  |  | 
|  | /* Flag showing that a frame has been created in the prologue code.  */ | 
|  | int uses_fp; | 
|  |  | 
|  | /* Saved registers.  */ | 
|  | CORE_ADDR saved_regs[H8300_MAX_NUM_REGS]; | 
|  | CORE_ADDR saved_sp; | 
|  | }; | 
|  |  | 
|  | enum | 
|  | { | 
|  | h8300_reg_size = 2, | 
|  | h8300h_reg_size = 4, | 
|  | h8300_max_reg_size = 4, | 
|  | }; | 
|  |  | 
|  | static int is_h8300hmode (struct gdbarch *gdbarch); | 
|  | static int is_h8300smode (struct gdbarch *gdbarch); | 
|  | static int is_h8300sxmode (struct gdbarch *gdbarch); | 
|  | static int is_h8300_normal_mode (struct gdbarch *gdbarch); | 
|  |  | 
|  | #define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \ | 
|  | && !is_h8300_normal_mode (gdbarch)) \ | 
|  | ? h8300h_reg_size : h8300_reg_size) | 
|  |  | 
|  | /* Normal frames.  */ | 
|  |  | 
|  | /* Allocate and initialize a frame cache.  */ | 
|  |  | 
|  | static void | 
|  | h8300_init_frame_cache (struct gdbarch *gdbarch, | 
|  | struct h8300_frame_cache *cache) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Base address.  */ | 
|  | cache->base = 0; | 
|  | cache->sp_offset = 0; | 
|  | cache->pc = 0; | 
|  |  | 
|  | /* Frameless until proven otherwise.  */ | 
|  | cache->uses_fp = 0; | 
|  |  | 
|  | /* Saved registers.  We initialize these to -1 since zero is a valid | 
|  | offset (that's where %fp is supposed to be stored).  */ | 
|  | for (i = 0; i < gdbarch_num_regs (gdbarch); i++) | 
|  | cache->saved_regs[i] = -1; | 
|  | } | 
|  |  | 
|  | #define IS_MOVB_RnRm(x)		(((x) & 0xff88) == 0x0c88) | 
|  | #define IS_MOVW_RnRm(x)		(((x) & 0xff88) == 0x0d00) | 
|  | #define IS_MOVL_RnRm(x)		(((x) & 0xff88) == 0x0f80) | 
|  | #define IS_MOVB_Rn16_SP(x)	(((x) & 0xfff0) == 0x6ee0) | 
|  | #define IS_MOVB_EXT(x)		((x) == 0x7860) | 
|  | #define IS_MOVB_Rn24_SP(x)	(((x) & 0xfff0) == 0x6aa0) | 
|  | #define IS_MOVW_Rn16_SP(x)	(((x) & 0xfff0) == 0x6fe0) | 
|  | #define IS_MOVW_EXT(x)		((x) == 0x78e0) | 
|  | #define IS_MOVW_Rn24_SP(x)	(((x) & 0xfff0) == 0x6ba0) | 
|  | /* Same instructions as mov.w, just prefixed with 0x0100.  */ | 
|  | #define IS_MOVL_PRE(x)		((x) == 0x0100) | 
|  | #define IS_MOVL_Rn16_SP(x)	(((x) & 0xfff0) == 0x6fe0) | 
|  | #define IS_MOVL_EXT(x)		((x) == 0x78e0) | 
|  | #define IS_MOVL_Rn24_SP(x)	(((x) & 0xfff0) == 0x6ba0) | 
|  |  | 
|  | #define IS_PUSHFP_MOVESPFP(x)	((x) == 0x6df60d76) | 
|  | #define IS_PUSH_FP(x)		((x) == 0x01006df6) | 
|  | #define IS_MOV_SP_FP(x)		((x) == 0x0ff6) | 
|  | #define IS_SUB2_SP(x)		((x) == 0x1b87) | 
|  | #define IS_SUB4_SP(x)		((x) == 0x1b97) | 
|  | #define IS_ADD_IMM_SP(x)	((x) == 0x7a1f) | 
|  | #define IS_SUB_IMM_SP(x)	((x) == 0x7a3f) | 
|  | #define IS_SUBL4_SP(x)		((x) == 0x1acf) | 
|  | #define IS_MOV_IMM_Rn(x)	(((x) & 0xfff0) == 0x7905) | 
|  | #define IS_SUB_RnSP(x)		(((x) & 0xff0f) == 0x1907) | 
|  | #define IS_ADD_RnSP(x)		(((x) & 0xff0f) == 0x0907) | 
|  | #define IS_PUSH(x)		(((x) & 0xfff0) == 0x6df0) | 
|  |  | 
|  | /* If the instruction at PC is an argument register spill, return its | 
|  | length.  Otherwise, return zero. | 
|  |  | 
|  | An argument register spill is an instruction that moves an argument | 
|  | from the register in which it was passed to the stack slot in which | 
|  | it really lives.  It is a byte, word, or longword move from an | 
|  | argument register to a negative offset from the frame pointer. | 
|  |  | 
|  | CV, 2003-06-16: Or, in optimized code or when the `register' qualifier | 
|  | is used, it could be a byte, word or long move to registers r3-r5.  */ | 
|  |  | 
|  | static int | 
|  | h8300_is_argument_spill (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | int w = read_memory_unsigned_integer (pc, 2, byte_order); | 
|  |  | 
|  | if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w)) | 
|  | && (w & 0x70) <= 0x20	/* Rs is R0, R1 or R2 */ | 
|  | && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5)	/* Rd is R3, R4 or R5 */ | 
|  | return 2; | 
|  |  | 
|  | if (IS_MOVB_Rn16_SP (w) | 
|  | && 8 <= (w & 0xf) && (w & 0xf) <= 10)	/* Rs is R0L, R1L, or R2L  */ | 
|  | { | 
|  | /* ... and d:16 is negative.  */ | 
|  | if (read_memory_integer (pc + 2, 2, byte_order) < 0) | 
|  | return 4; | 
|  | } | 
|  | else if (IS_MOVB_EXT (w)) | 
|  | { | 
|  | if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2, | 
|  | 2, byte_order))) | 
|  | { | 
|  | ULONGEST disp = read_memory_unsigned_integer (pc + 4, 4, byte_order); | 
|  |  | 
|  | /* ... and d:24 is negative.  */ | 
|  | if ((disp & 0x00800000) != 0) | 
|  | return 8; | 
|  | } | 
|  | } | 
|  | else if (IS_MOVW_Rn16_SP (w) | 
|  | && (w & 0xf) <= 2)	/* Rs is R0, R1, or R2 */ | 
|  | { | 
|  | /* ... and d:16 is negative.  */ | 
|  | if (read_memory_integer (pc + 2, 2, byte_order) < 0) | 
|  | return 4; | 
|  | } | 
|  | else if (IS_MOVW_EXT (w)) | 
|  | { | 
|  | if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2, | 
|  | 2, byte_order))) | 
|  | { | 
|  | ULONGEST disp = read_memory_unsigned_integer (pc + 4, 4, byte_order); | 
|  |  | 
|  | /* ... and d:24 is negative.  */ | 
|  | if ((disp & 0x00800000) != 0) | 
|  | return 8; | 
|  | } | 
|  | } | 
|  | else if (IS_MOVL_PRE (w)) | 
|  | { | 
|  | int w2 = read_memory_integer (pc + 2, 2, byte_order); | 
|  |  | 
|  | if (IS_MOVL_Rn16_SP (w2) | 
|  | && (w2 & 0xf) <= 2)	/* Rs is ER0, ER1, or ER2 */ | 
|  | { | 
|  | /* ... and d:16 is negative.  */ | 
|  | if (read_memory_integer (pc + 4, 2, byte_order) < 0) | 
|  | return 6; | 
|  | } | 
|  | else if (IS_MOVL_EXT (w2)) | 
|  | { | 
|  | if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2, byte_order))) | 
|  | { | 
|  | ULONGEST disp = read_memory_unsigned_integer (pc + 6, 4, | 
|  | byte_order); | 
|  |  | 
|  | /* ... and d:24 is negative.  */ | 
|  | if ((disp & 0x00800000) != 0) | 
|  | return 10; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Do a full analysis of the prologue at PC and update CACHE | 
|  | accordingly.  Bail out early if CURRENT_PC is reached.  Return the | 
|  | address where the analysis stopped. | 
|  |  | 
|  | We handle all cases that can be generated by gcc. | 
|  |  | 
|  | For allocating a stack frame: | 
|  |  | 
|  | mov.w r6,@-sp | 
|  | mov.w sp,r6 | 
|  | mov.w #-n,rN | 
|  | add.w rN,sp | 
|  |  | 
|  | mov.w r6,@-sp | 
|  | mov.w sp,r6 | 
|  | subs  #2,sp | 
|  | (repeat) | 
|  |  | 
|  | mov.l er6,@-sp | 
|  | mov.l sp,er6 | 
|  | add.l #-n,sp | 
|  |  | 
|  | mov.w r6,@-sp | 
|  | mov.w sp,r6 | 
|  | subs  #4,sp | 
|  | (repeat) | 
|  |  | 
|  | For saving registers: | 
|  |  | 
|  | mov.w rN,@-sp | 
|  | mov.l erN,@-sp | 
|  | stm.l reglist,@-sp | 
|  |  | 
|  | */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | h8300_analyze_prologue (struct gdbarch *gdbarch, | 
|  | CORE_ADDR pc, CORE_ADDR current_pc, | 
|  | struct h8300_frame_cache *cache) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | unsigned int op; | 
|  | int regno, i, spill_size; | 
|  |  | 
|  | cache->sp_offset = 0; | 
|  |  | 
|  | if (pc >= current_pc) | 
|  | return current_pc; | 
|  |  | 
|  | op = read_memory_unsigned_integer (pc, 4, byte_order); | 
|  |  | 
|  | if (IS_PUSHFP_MOVESPFP (op)) | 
|  | { | 
|  | cache->saved_regs[E_FP_REGNUM] = 0; | 
|  | cache->uses_fp = 1; | 
|  | pc += 4; | 
|  | } | 
|  | else if (IS_PUSH_FP (op)) | 
|  | { | 
|  | cache->saved_regs[E_FP_REGNUM] = 0; | 
|  | pc += 4; | 
|  | if (pc >= current_pc) | 
|  | return current_pc; | 
|  | op = read_memory_unsigned_integer (pc, 2, byte_order); | 
|  | if (IS_MOV_SP_FP (op)) | 
|  | { | 
|  | cache->uses_fp = 1; | 
|  | pc += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (pc < current_pc) | 
|  | { | 
|  | op = read_memory_unsigned_integer (pc, 2, byte_order); | 
|  | if (IS_SUB2_SP (op)) | 
|  | { | 
|  | cache->sp_offset += 2; | 
|  | pc += 2; | 
|  | } | 
|  | else if (IS_SUB4_SP (op)) | 
|  | { | 
|  | cache->sp_offset += 4; | 
|  | pc += 2; | 
|  | } | 
|  | else if (IS_ADD_IMM_SP (op)) | 
|  | { | 
|  | cache->sp_offset += -read_memory_integer (pc + 2, 2, byte_order); | 
|  | pc += 4; | 
|  | } | 
|  | else if (IS_SUB_IMM_SP (op)) | 
|  | { | 
|  | cache->sp_offset += read_memory_integer (pc + 2, 2, byte_order); | 
|  | pc += 4; | 
|  | } | 
|  | else if (IS_SUBL4_SP (op)) | 
|  | { | 
|  | cache->sp_offset += 4; | 
|  | pc += 2; | 
|  | } | 
|  | else if (IS_MOV_IMM_Rn (op)) | 
|  | { | 
|  | int offset = read_memory_integer (pc + 2, 2, byte_order); | 
|  | regno = op & 0x000f; | 
|  | op = read_memory_unsigned_integer (pc + 4, 2, byte_order); | 
|  | if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno) | 
|  | { | 
|  | cache->sp_offset -= offset; | 
|  | pc += 6; | 
|  | } | 
|  | else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno) | 
|  | { | 
|  | cache->sp_offset += offset; | 
|  | pc += 6; | 
|  | } | 
|  | else | 
|  | break; | 
|  | } | 
|  | else if (IS_PUSH (op)) | 
|  | { | 
|  | regno = op & 0x000f; | 
|  | cache->sp_offset += 2; | 
|  | cache->saved_regs[regno] = cache->sp_offset; | 
|  | pc += 2; | 
|  | } | 
|  | else if (op == 0x0100) | 
|  | { | 
|  | op = read_memory_unsigned_integer (pc + 2, 2, byte_order); | 
|  | if (IS_PUSH (op)) | 
|  | { | 
|  | regno = op & 0x000f; | 
|  | cache->sp_offset += 4; | 
|  | cache->saved_regs[regno] = cache->sp_offset; | 
|  | pc += 4; | 
|  | } | 
|  | else | 
|  | break; | 
|  | } | 
|  | else if ((op & 0xffcf) == 0x0100) | 
|  | { | 
|  | int op1; | 
|  | op1 = read_memory_unsigned_integer (pc + 2, 2, byte_order); | 
|  | if (IS_PUSH (op1)) | 
|  | { | 
|  | /* Since the prefix is 0x01x0, this is not a simple pushm but a | 
|  | stm.l reglist,@-sp */ | 
|  | i = ((op & 0x0030) >> 4) + 1; | 
|  | regno = op1 & 0x000f; | 
|  | for (; i > 0; regno++, --i) | 
|  | { | 
|  | cache->sp_offset += 4; | 
|  | cache->saved_regs[regno] = cache->sp_offset; | 
|  | } | 
|  | pc += 4; | 
|  | } | 
|  | else | 
|  | break; | 
|  | } | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Check for spilling an argument register to the stack frame. | 
|  | This could also be an initializing store from non-prologue code, | 
|  | but I don't think there's any harm in skipping that.  */ | 
|  | while ((spill_size = h8300_is_argument_spill (gdbarch, pc)) > 0 | 
|  | && pc + spill_size <= current_pc) | 
|  | pc += spill_size; | 
|  |  | 
|  | return pc; | 
|  | } | 
|  |  | 
|  | static struct h8300_frame_cache * | 
|  | h8300_frame_cache (frame_info_ptr this_frame, void **this_cache) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | struct h8300_frame_cache *cache; | 
|  | int i; | 
|  | CORE_ADDR current_pc; | 
|  |  | 
|  | if (*this_cache) | 
|  | return (struct h8300_frame_cache *) *this_cache; | 
|  |  | 
|  | cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache); | 
|  | h8300_init_frame_cache (gdbarch, cache); | 
|  | *this_cache = cache; | 
|  |  | 
|  | /* In principle, for normal frames, %fp holds the frame pointer, | 
|  | which holds the base address for the current stack frame. | 
|  | However, for functions that don't need it, the frame pointer is | 
|  | optional.  For these "frameless" functions the frame pointer is | 
|  | actually the frame pointer of the calling frame.  */ | 
|  |  | 
|  | cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM); | 
|  | if (cache->base == 0) | 
|  | return cache; | 
|  |  | 
|  | cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch); | 
|  |  | 
|  | cache->pc = get_frame_func (this_frame); | 
|  | current_pc = get_frame_pc (this_frame); | 
|  | if (cache->pc != 0) | 
|  | h8300_analyze_prologue (gdbarch, cache->pc, current_pc, cache); | 
|  |  | 
|  | if (!cache->uses_fp) | 
|  | { | 
|  | /* We didn't find a valid frame, which means that CACHE->base | 
|  | currently holds the frame pointer for our calling frame.  If | 
|  | we're at the start of a function, or somewhere half-way its | 
|  | prologue, the function's frame probably hasn't been fully | 
|  | setup yet.  Try to reconstruct the base address for the stack | 
|  | frame by looking at the stack pointer.  For truly "frameless" | 
|  | functions this might work too.  */ | 
|  |  | 
|  | cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM) | 
|  | + cache->sp_offset; | 
|  | cache->saved_sp = cache->base + BINWORD (gdbarch); | 
|  | cache->saved_regs[E_PC_REGNUM] = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | cache->saved_sp = cache->base + 2 * BINWORD (gdbarch); | 
|  | cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch); | 
|  | } | 
|  |  | 
|  | /* Adjust all the saved registers such that they contain addresses | 
|  | instead of offsets.  */ | 
|  | for (i = 0; i < gdbarch_num_regs (gdbarch); i++) | 
|  | if (cache->saved_regs[i] != -1) | 
|  | cache->saved_regs[i] = cache->base - cache->saved_regs[i]; | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | static void | 
|  | h8300_frame_this_id (frame_info_ptr this_frame, void **this_cache, | 
|  | struct frame_id *this_id) | 
|  | { | 
|  | struct h8300_frame_cache *cache = | 
|  | h8300_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | /* This marks the outermost frame.  */ | 
|  | if (cache->base == 0) | 
|  | return; | 
|  |  | 
|  | *this_id = frame_id_build (cache->saved_sp, cache->pc); | 
|  | } | 
|  |  | 
|  | static struct value * | 
|  | h8300_frame_prev_register (frame_info_ptr this_frame, void **this_cache, | 
|  | int regnum) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | struct h8300_frame_cache *cache = | 
|  | h8300_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | gdb_assert (regnum >= 0); | 
|  |  | 
|  | if (regnum == E_SP_REGNUM && cache->saved_sp) | 
|  | return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp); | 
|  |  | 
|  | if (regnum < gdbarch_num_regs (gdbarch) | 
|  | && cache->saved_regs[regnum] != -1) | 
|  | return frame_unwind_got_memory (this_frame, regnum, | 
|  | cache->saved_regs[regnum]); | 
|  |  | 
|  | return frame_unwind_got_register (this_frame, regnum, regnum); | 
|  | } | 
|  |  | 
|  | static const struct frame_unwind h8300_frame_unwind = { | 
|  | "h8300 prologue", | 
|  | NORMAL_FRAME, | 
|  | default_frame_unwind_stop_reason, | 
|  | h8300_frame_this_id, | 
|  | h8300_frame_prev_register, | 
|  | NULL, | 
|  | default_frame_sniffer | 
|  | }; | 
|  |  | 
|  | static CORE_ADDR | 
|  | h8300_frame_base_address (frame_info_ptr this_frame, void **this_cache) | 
|  | { | 
|  | struct h8300_frame_cache *cache = h8300_frame_cache (this_frame, this_cache); | 
|  | return cache->base; | 
|  | } | 
|  |  | 
|  | static const struct frame_base h8300_frame_base = { | 
|  | &h8300_frame_unwind, | 
|  | h8300_frame_base_address, | 
|  | h8300_frame_base_address, | 
|  | h8300_frame_base_address | 
|  | }; | 
|  |  | 
|  | static CORE_ADDR | 
|  | h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | CORE_ADDR func_addr = 0 , func_end = 0; | 
|  |  | 
|  | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | 
|  | { | 
|  | struct symtab_and_line sal; | 
|  | struct h8300_frame_cache cache; | 
|  |  | 
|  | /* Found a function.  */ | 
|  | sal = find_pc_line (func_addr, 0); | 
|  | if (sal.end && sal.end < func_end) | 
|  | /* Found a line number, use it as end of prologue.  */ | 
|  | return sal.end; | 
|  |  | 
|  | /* No useable line symbol.  Use prologue parsing method.  */ | 
|  | h8300_init_frame_cache (gdbarch, &cache); | 
|  | return h8300_analyze_prologue (gdbarch, func_addr, func_end, &cache); | 
|  | } | 
|  |  | 
|  | /* No function symbol -- just return the PC.  */ | 
|  | return (CORE_ADDR) pc; | 
|  | } | 
|  |  | 
|  | /* Function: push_dummy_call | 
|  | Setup the function arguments for calling a function in the inferior. | 
|  | In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits | 
|  | on the H8/300H. | 
|  |  | 
|  | There are actually two ABI's here: -mquickcall (the default) and | 
|  | -mno-quickcall.  With -mno-quickcall, all arguments are passed on | 
|  | the stack after the return address, word-aligned.  With | 
|  | -mquickcall, GCC tries to use r0 -- r2 to pass registers.  Since | 
|  | GCC doesn't indicate in the object file which ABI was used to | 
|  | compile it, GDB only supports the default --- -mquickcall. | 
|  |  | 
|  | Here are the rules for -mquickcall, in detail: | 
|  |  | 
|  | Each argument, whether scalar or aggregate, is padded to occupy a | 
|  | whole number of words.  Arguments smaller than a word are padded at | 
|  | the most significant end; those larger than a word are padded at | 
|  | the least significant end. | 
|  |  | 
|  | The initial arguments are passed in r0 -- r2.  Earlier arguments go in | 
|  | lower-numbered registers.  Multi-word arguments are passed in | 
|  | consecutive registers, with the most significant end in the | 
|  | lower-numbered register. | 
|  |  | 
|  | If an argument doesn't fit entirely in the remaining registers, it | 
|  | is passed entirely on the stack.  Stack arguments begin just after | 
|  | the return address.  Once an argument has overflowed onto the stack | 
|  | this way, all subsequent arguments are passed on the stack. | 
|  |  | 
|  | The above rule has odd consequences.  For example, on the h8/300s, | 
|  | if a function takes two longs and an int as arguments: | 
|  | - the first long will be passed in r0/r1, | 
|  | - the second long will be passed entirely on the stack, since it | 
|  | doesn't fit in r2, | 
|  | - and the int will be passed on the stack, even though it could fit | 
|  | in r2. | 
|  |  | 
|  | A weird exception: if an argument is larger than a word, but not a | 
|  | whole number of words in length (before padding), it is passed on | 
|  | the stack following the rules for stack arguments above, even if | 
|  | there are sufficient registers available to hold it.  Stranger | 
|  | still, the argument registers are still `used up' --- even though | 
|  | there's nothing in them. | 
|  |  | 
|  | So, for example, on the h8/300s, if a function expects a three-byte | 
|  | structure and an int, the structure will go on the stack, and the | 
|  | int will go in r2, not r0. | 
|  |  | 
|  | If the function returns an aggregate type (struct, union, or class) | 
|  | by value, the caller must allocate space to hold the return value, | 
|  | and pass the callee a pointer to this space as an invisible first | 
|  | argument, in R0. | 
|  |  | 
|  | For varargs functions, the last fixed argument and all the variable | 
|  | arguments are always passed on the stack.  This means that calls to | 
|  | varargs functions don't work properly unless there is a prototype | 
|  | in scope. | 
|  |  | 
|  | Basically, this ABI is not good, for the following reasons: | 
|  | - You can't call vararg functions properly unless a prototype is in scope. | 
|  | - Structure passing is inconsistent, to no purpose I can see. | 
|  | - It often wastes argument registers, of which there are only three | 
|  | to begin with.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | 
|  | struct regcache *regcache, CORE_ADDR bp_addr, | 
|  | int nargs, struct value **args, CORE_ADDR sp, | 
|  | function_call_return_method return_method, | 
|  | CORE_ADDR struct_addr) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | int stack_alloc = 0, stack_offset = 0; | 
|  | int wordsize = BINWORD (gdbarch); | 
|  | int reg = E_ARG0_REGNUM; | 
|  | int argument; | 
|  |  | 
|  | /* First, make sure the stack is properly aligned.  */ | 
|  | sp = align_down (sp, wordsize); | 
|  |  | 
|  | /* Now make sure there's space on the stack for the arguments.  We | 
|  | may over-allocate a little here, but that won't hurt anything.  */ | 
|  | for (argument = 0; argument < nargs; argument++) | 
|  | stack_alloc += align_up (args[argument]->type ()->length (), wordsize); | 
|  | sp -= stack_alloc; | 
|  |  | 
|  | /* Now load as many arguments as possible into registers, and push | 
|  | the rest onto the stack. | 
|  | If we're returning a structure by value, then we must pass a | 
|  | pointer to the buffer for the return value as an invisible first | 
|  | argument.  */ | 
|  | if (return_method == return_method_struct) | 
|  | regcache_cooked_write_unsigned (regcache, reg++, struct_addr); | 
|  |  | 
|  | for (argument = 0; argument < nargs; argument++) | 
|  | { | 
|  | struct type *type = args[argument]->type (); | 
|  | int len = type->length (); | 
|  | char *contents = (char *) args[argument]->contents ().data (); | 
|  |  | 
|  | /* Pad the argument appropriately.  */ | 
|  | int padded_len = align_up (len, wordsize); | 
|  | /* Use std::vector here to get zero initialization.  */ | 
|  | std::vector<gdb_byte> padded (padded_len); | 
|  |  | 
|  | memcpy ((len < wordsize ? padded.data () + padded_len - len | 
|  | : padded.data ()), | 
|  | contents, len); | 
|  |  | 
|  | /* Could the argument fit in the remaining registers?  */ | 
|  | if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize) | 
|  | { | 
|  | /* Are we going to pass it on the stack anyway, for no good | 
|  | reason?  */ | 
|  | if (len > wordsize && len % wordsize) | 
|  | { | 
|  | /* I feel so unclean.  */ | 
|  | write_memory (sp + stack_offset, padded.data (), padded_len); | 
|  | stack_offset += padded_len; | 
|  |  | 
|  | /* That's right --- even though we passed the argument | 
|  | on the stack, we consume the registers anyway!  Love | 
|  | me, love my dog.  */ | 
|  | reg += padded_len / wordsize; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Heavens to Betsy --- it's really going in registers! | 
|  | Note that on the h8/300s, there are gaps between the | 
|  | registers in the register file.  */ | 
|  | int offset; | 
|  |  | 
|  | for (offset = 0; offset < padded_len; offset += wordsize) | 
|  | { | 
|  | ULONGEST word | 
|  | = extract_unsigned_integer (&padded[offset], | 
|  | wordsize, byte_order); | 
|  | regcache_cooked_write_unsigned (regcache, reg++, word); | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* It doesn't fit in registers!  Onto the stack it goes.  */ | 
|  | write_memory (sp + stack_offset, padded.data (), padded_len); | 
|  | stack_offset += padded_len; | 
|  |  | 
|  | /* Once one argument has spilled onto the stack, all | 
|  | subsequent arguments go on the stack.  */ | 
|  | reg = E_ARGLAST_REGNUM + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Store return address.  */ | 
|  | sp -= wordsize; | 
|  | write_memory_unsigned_integer (sp, wordsize, byte_order, bp_addr); | 
|  |  | 
|  | /* Update stack pointer.  */ | 
|  | regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp); | 
|  |  | 
|  | /* Return the new stack pointer minus the return address slot since | 
|  | that's what DWARF2/GCC uses as the frame's CFA.  */ | 
|  | return sp + wordsize; | 
|  | } | 
|  |  | 
|  | /* Function: extract_return_value | 
|  | Figure out where in REGBUF the called function has left its return value. | 
|  | Copy that into VALBUF.  Be sure to account for CPU type.   */ | 
|  |  | 
|  | static void | 
|  | h8300_extract_return_value (struct type *type, struct regcache *regcache, | 
|  | gdb_byte *valbuf) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | int len = type->length (); | 
|  | ULONGEST c, addr; | 
|  |  | 
|  | switch (len) | 
|  | { | 
|  | case 1: | 
|  | case 2: | 
|  | regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c); | 
|  | store_unsigned_integer (valbuf, len, byte_order, c); | 
|  | break; | 
|  | case 4:			/* Needs two registers on plain H8/300 */ | 
|  | regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c); | 
|  | store_unsigned_integer (valbuf, 2, byte_order, c); | 
|  | regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c); | 
|  | store_unsigned_integer (valbuf + 2, 2, byte_order, c); | 
|  | break; | 
|  | case 8:			/* long long is now 8 bytes.  */ | 
|  | if (type->code () == TYPE_CODE_INT) | 
|  | { | 
|  | regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr); | 
|  | c = read_memory_unsigned_integer ((CORE_ADDR) addr, len, byte_order); | 
|  | store_unsigned_integer (valbuf, len, byte_order, c); | 
|  | } | 
|  | else | 
|  | { | 
|  | error (_("I don't know how this 8 byte value is returned.")); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | h8300h_extract_return_value (struct type *type, struct regcache *regcache, | 
|  | gdb_byte *valbuf) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | ULONGEST c; | 
|  |  | 
|  | switch (type->length ()) | 
|  | { | 
|  | case 1: | 
|  | case 2: | 
|  | case 4: | 
|  | regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c); | 
|  | store_unsigned_integer (valbuf, type->length (), byte_order, c); | 
|  | break; | 
|  | case 8:			/* long long is now 8 bytes.  */ | 
|  | if (type->code () == TYPE_CODE_INT) | 
|  | { | 
|  | regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c); | 
|  | store_unsigned_integer (valbuf, 4, byte_order, c); | 
|  | regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c); | 
|  | store_unsigned_integer (valbuf + 4, 4, byte_order, c); | 
|  | } | 
|  | else | 
|  | { | 
|  | error (_("I don't know how this 8 byte value is returned.")); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | h8300_use_struct_convention (struct type *value_type) | 
|  | { | 
|  | /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the | 
|  | stack.  */ | 
|  |  | 
|  | if (value_type->code () == TYPE_CODE_STRUCT | 
|  | || value_type->code () == TYPE_CODE_UNION) | 
|  | return 1; | 
|  | return !(value_type->length () == 1 | 
|  | || value_type->length () == 2 | 
|  | || value_type->length () == 4); | 
|  | } | 
|  |  | 
|  | static int | 
|  | h8300h_use_struct_convention (struct type *value_type) | 
|  | { | 
|  | /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are | 
|  | returned in R0/R1, everything else on the stack.  */ | 
|  | if (value_type->code () == TYPE_CODE_STRUCT | 
|  | || value_type->code () == TYPE_CODE_UNION) | 
|  | return 1; | 
|  | return !(value_type->length () == 1 | 
|  | || value_type->length () == 2 | 
|  | || value_type->length () == 4 | 
|  | || (value_type->length () == 8 | 
|  | && value_type->code () == TYPE_CODE_INT)); | 
|  | } | 
|  |  | 
|  | /* Function: store_return_value | 
|  | Place the appropriate value in the appropriate registers. | 
|  | Primarily used by the RETURN command.  */ | 
|  |  | 
|  | static void | 
|  | h8300_store_return_value (struct type *type, struct regcache *regcache, | 
|  | const gdb_byte *valbuf) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | ULONGEST val; | 
|  |  | 
|  | switch (type->length ()) | 
|  | { | 
|  | case 1: | 
|  | case 2:			/* short...  */ | 
|  | val = extract_unsigned_integer (valbuf, type->length (), byte_order); | 
|  | regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val); | 
|  | break; | 
|  | case 4:			/* long, float */ | 
|  | val = extract_unsigned_integer (valbuf, type->length (), byte_order); | 
|  | regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, | 
|  | (val >> 16) & 0xffff); | 
|  | regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff); | 
|  | break; | 
|  | case 8:			/* long long, double and long double | 
|  | are all defined as 4 byte types so | 
|  | far so this shouldn't happen.  */ | 
|  | error (_("I don't know how to return an 8 byte value.")); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | h8300h_store_return_value (struct type *type, struct regcache *regcache, | 
|  | const gdb_byte *valbuf) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | ULONGEST val; | 
|  |  | 
|  | switch (type->length ()) | 
|  | { | 
|  | case 1: | 
|  | case 2: | 
|  | case 4:			/* long, float */ | 
|  | val = extract_unsigned_integer (valbuf, type->length (), byte_order); | 
|  | regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val); | 
|  | break; | 
|  | case 8: | 
|  | val = extract_unsigned_integer (valbuf, type->length (), byte_order); | 
|  | regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, | 
|  | (val >> 32) & 0xffffffff); | 
|  | regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, | 
|  | val & 0xffffffff); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static enum return_value_convention | 
|  | h8300_return_value (struct gdbarch *gdbarch, struct value *function, | 
|  | struct type *type, struct regcache *regcache, | 
|  | gdb_byte *readbuf, const gdb_byte *writebuf) | 
|  | { | 
|  | if (h8300_use_struct_convention (type)) | 
|  | return RETURN_VALUE_STRUCT_CONVENTION; | 
|  | if (writebuf) | 
|  | h8300_store_return_value (type, regcache, writebuf); | 
|  | else if (readbuf) | 
|  | h8300_extract_return_value (type, regcache, readbuf); | 
|  | return RETURN_VALUE_REGISTER_CONVENTION; | 
|  | } | 
|  |  | 
|  | static enum return_value_convention | 
|  | h8300h_return_value (struct gdbarch *gdbarch, struct value *function, | 
|  | struct type *type, struct regcache *regcache, | 
|  | gdb_byte *readbuf, const gdb_byte *writebuf) | 
|  | { | 
|  | if (h8300h_use_struct_convention (type)) | 
|  | { | 
|  | if (readbuf) | 
|  | { | 
|  | ULONGEST addr; | 
|  |  | 
|  | regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr); | 
|  | read_memory (addr, readbuf, type->length ()); | 
|  | } | 
|  |  | 
|  | return RETURN_VALUE_ABI_RETURNS_ADDRESS; | 
|  | } | 
|  | if (writebuf) | 
|  | h8300h_store_return_value (type, regcache, writebuf); | 
|  | else if (readbuf) | 
|  | h8300h_extract_return_value (type, regcache, readbuf); | 
|  | return RETURN_VALUE_REGISTER_CONVENTION; | 
|  | } | 
|  |  | 
|  | /* Implementation of 'register_sim_regno' gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | h8300_register_sim_regno (struct gdbarch *gdbarch, int regnum) | 
|  | { | 
|  | /* Only makes sense to supply raw registers.  */ | 
|  | gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)); | 
|  |  | 
|  | /* We hide the raw ccr from the user by making it nameless.  Because | 
|  | the default register_sim_regno hook returns | 
|  | LEGACY_SIM_REGNO_IGNORE for unnamed registers, we need to | 
|  | override it.  The sim register numbering is compatible with | 
|  | gdb's.  */ | 
|  | return regnum; | 
|  | } | 
|  |  | 
|  | static const char * | 
|  | h8300_register_name_common (const char *regnames[], int numregs, | 
|  | struct gdbarch *gdbarch, int regno) | 
|  | { | 
|  | gdb_assert (numregs == gdbarch_num_cooked_regs (gdbarch)); | 
|  | return regnames[regno]; | 
|  | } | 
|  |  | 
|  | static const char * | 
|  | h8300_register_name (struct gdbarch *gdbarch, int regno) | 
|  | { | 
|  | /* The register names change depending on which h8300 processor | 
|  | type is selected.  */ | 
|  | static const char *register_names[] = { | 
|  | "r0", "r1", "r2", "r3", "r4", "r5", "r6", | 
|  | "sp", "", "pc", "cycles", "tick", "inst", | 
|  | "ccr",			/* pseudo register */ | 
|  | }; | 
|  | return h8300_register_name_common(register_names, ARRAY_SIZE(register_names), | 
|  | gdbarch, regno); | 
|  | } | 
|  |  | 
|  | static const char * | 
|  | h8300h_register_name (struct gdbarch *gdbarch, int regno) | 
|  | { | 
|  | static const char *register_names[] = { | 
|  | "er0", "er1", "er2", "er3", "er4", "er5", "er6", | 
|  | "sp", "", "pc", "cycles", "tick", "inst", | 
|  | "ccr",			/* pseudo register */ | 
|  | }; | 
|  | return h8300_register_name_common(register_names, ARRAY_SIZE(register_names), | 
|  | gdbarch, regno); | 
|  | } | 
|  |  | 
|  | static const char * | 
|  | h8300s_register_name (struct gdbarch *gdbarch, int regno) | 
|  | { | 
|  | static const char *register_names[] = { | 
|  | "er0", "er1", "er2", "er3", "er4", "er5", "er6", | 
|  | "sp", "", "pc", "cycles", "", "tick", "inst", | 
|  | "mach", "macl", | 
|  | "ccr", "exr"		/* pseudo registers */ | 
|  | }; | 
|  | return h8300_register_name_common(register_names, ARRAY_SIZE(register_names), | 
|  | gdbarch, regno); | 
|  | } | 
|  |  | 
|  | static const char * | 
|  | h8300sx_register_name (struct gdbarch *gdbarch, int regno) | 
|  | { | 
|  | static const char *register_names[] = { | 
|  | "er0", "er1", "er2", "er3", "er4", "er5", "er6", | 
|  | "sp", "", "pc", "cycles", "", "tick", "inst", | 
|  | "mach", "macl", "sbr", "vbr", | 
|  | "ccr", "exr"		/* pseudo registers */ | 
|  | }; | 
|  | return h8300_register_name_common(register_names, ARRAY_SIZE(register_names), | 
|  | gdbarch, regno); | 
|  | } | 
|  |  | 
|  | static void | 
|  | h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file, | 
|  | frame_info_ptr frame, int regno) | 
|  | { | 
|  | LONGEST rval; | 
|  | const char *name = gdbarch_register_name (gdbarch, regno); | 
|  |  | 
|  | if (*name == '\0') | 
|  | return; | 
|  |  | 
|  | rval = get_frame_register_signed (frame, regno); | 
|  |  | 
|  | gdb_printf (file, "%-14s ", name); | 
|  | if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \ | 
|  | (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))) | 
|  | { | 
|  | gdb_printf (file, "0x%02x        ", (unsigned char) rval); | 
|  | print_longest (file, 'u', 1, rval); | 
|  | } | 
|  | else | 
|  | { | 
|  | gdb_printf (file, "0x%s  ", phex ((ULONGEST) rval, | 
|  | BINWORD (gdbarch))); | 
|  | print_longest (file, 'd', 1, rval); | 
|  | } | 
|  | if (regno == E_PSEUDO_CCR_REGNUM (gdbarch)) | 
|  | { | 
|  | /* CCR register */ | 
|  | int C, Z, N, V; | 
|  | unsigned char l = rval & 0xff; | 
|  | gdb_printf (file, "\t"); | 
|  | gdb_printf (file, "I-%d ", (l & 0x80) != 0); | 
|  | gdb_printf (file, "UI-%d ", (l & 0x40) != 0); | 
|  | gdb_printf (file, "H-%d ", (l & 0x20) != 0); | 
|  | gdb_printf (file, "U-%d ", (l & 0x10) != 0); | 
|  | N = (l & 0x8) != 0; | 
|  | Z = (l & 0x4) != 0; | 
|  | V = (l & 0x2) != 0; | 
|  | C = (l & 0x1) != 0; | 
|  | gdb_printf (file, "N-%d ", N); | 
|  | gdb_printf (file, "Z-%d ", Z); | 
|  | gdb_printf (file, "V-%d ", V); | 
|  | gdb_printf (file, "C-%d ", C); | 
|  | if ((C | Z) == 0) | 
|  | gdb_printf (file, "u> "); | 
|  | if ((C | Z) == 1) | 
|  | gdb_printf (file, "u<= "); | 
|  | if (C == 0) | 
|  | gdb_printf (file, "u>= "); | 
|  | if (C == 1) | 
|  | gdb_printf (file, "u< "); | 
|  | if (Z == 0) | 
|  | gdb_printf (file, "!= "); | 
|  | if (Z == 1) | 
|  | gdb_printf (file, "== "); | 
|  | if ((N ^ V) == 0) | 
|  | gdb_printf (file, ">= "); | 
|  | if ((N ^ V) == 1) | 
|  | gdb_printf (file, "< "); | 
|  | if ((Z | (N ^ V)) == 0) | 
|  | gdb_printf (file, "> "); | 
|  | if ((Z | (N ^ V)) == 1) | 
|  | gdb_printf (file, "<= "); | 
|  | } | 
|  | else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)) | 
|  | { | 
|  | /* EXR register */ | 
|  | unsigned char l = rval & 0xff; | 
|  | gdb_printf (file, "\t"); | 
|  | gdb_printf (file, "T-%d - - - ", (l & 0x80) != 0); | 
|  | gdb_printf (file, "I2-%d ", (l & 4) != 0); | 
|  | gdb_printf (file, "I1-%d ", (l & 2) != 0); | 
|  | gdb_printf (file, "I0-%d", (l & 1) != 0); | 
|  | } | 
|  | gdb_printf (file, "\n"); | 
|  | } | 
|  |  | 
|  | static void | 
|  | h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file, | 
|  | frame_info_ptr frame, int regno, int cpregs) | 
|  | { | 
|  | if (regno < 0) | 
|  | { | 
|  | for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno) | 
|  | h8300_print_register (gdbarch, file, frame, regno); | 
|  | h8300_print_register (gdbarch, file, frame, | 
|  | E_PSEUDO_CCR_REGNUM (gdbarch)); | 
|  | h8300_print_register (gdbarch, file, frame, E_PC_REGNUM); | 
|  | if (is_h8300smode (gdbarch)) | 
|  | { | 
|  | h8300_print_register (gdbarch, file, frame, | 
|  | E_PSEUDO_EXR_REGNUM (gdbarch)); | 
|  | if (is_h8300sxmode (gdbarch)) | 
|  | { | 
|  | h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM); | 
|  | h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM); | 
|  | } | 
|  | h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM); | 
|  | h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM); | 
|  | h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM); | 
|  | h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM); | 
|  | h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM); | 
|  | } | 
|  | else | 
|  | { | 
|  | h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM); | 
|  | h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM); | 
|  | h8300_print_register (gdbarch, file, frame, E_INST_REGNUM); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (regno == E_CCR_REGNUM) | 
|  | h8300_print_register (gdbarch, file, frame, | 
|  | E_PSEUDO_CCR_REGNUM (gdbarch)); | 
|  | else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) | 
|  | && is_h8300smode (gdbarch)) | 
|  | h8300_print_register (gdbarch, file, frame, | 
|  | E_PSEUDO_EXR_REGNUM (gdbarch)); | 
|  | else | 
|  | h8300_print_register (gdbarch, file, frame, regno); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct type * | 
|  | h8300_register_type (struct gdbarch *gdbarch, int regno) | 
|  | { | 
|  | if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch)) | 
|  | internal_error (_("h8300_register_type: illegal register number %d"), | 
|  | regno); | 
|  | else | 
|  | { | 
|  | switch (regno) | 
|  | { | 
|  | case E_PC_REGNUM: | 
|  | return builtin_type (gdbarch)->builtin_func_ptr; | 
|  | case E_SP_REGNUM: | 
|  | case E_FP_REGNUM: | 
|  | return builtin_type (gdbarch)->builtin_data_ptr; | 
|  | default: | 
|  | if (regno == E_PSEUDO_CCR_REGNUM (gdbarch)) | 
|  | return builtin_type (gdbarch)->builtin_uint8; | 
|  | else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)) | 
|  | return builtin_type (gdbarch)->builtin_uint8; | 
|  | else if (is_h8300hmode (gdbarch)) | 
|  | return builtin_type (gdbarch)->builtin_int32; | 
|  | else | 
|  | return builtin_type (gdbarch)->builtin_int16; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Helpers for h8300_pseudo_register_read.  We expose ccr/exr as | 
|  | pseudo-registers to users with smaller sizes than the corresponding | 
|  | raw registers.  These helpers extend/narrow the values.  */ | 
|  |  | 
|  | static enum register_status | 
|  | pseudo_from_raw_register (struct gdbarch *gdbarch, readable_regcache *regcache, | 
|  | gdb_byte *buf, int pseudo_regno, int raw_regno) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | enum register_status status; | 
|  | ULONGEST val; | 
|  |  | 
|  | status = regcache->raw_read (raw_regno, &val); | 
|  | if (status == REG_VALID) | 
|  | store_unsigned_integer (buf, | 
|  | register_size (gdbarch, pseudo_regno), | 
|  | byte_order, val); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* See pseudo_from_raw_register.  */ | 
|  |  | 
|  | static void | 
|  | raw_from_pseudo_register (struct gdbarch *gdbarch, struct regcache *regcache, | 
|  | const gdb_byte *buf, int raw_regno, int pseudo_regno) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | ULONGEST val; | 
|  |  | 
|  | val = extract_unsigned_integer (buf, register_size (gdbarch, pseudo_regno), | 
|  | byte_order); | 
|  | regcache_raw_write_unsigned (regcache, raw_regno, val); | 
|  | } | 
|  |  | 
|  | static enum register_status | 
|  | h8300_pseudo_register_read (struct gdbarch *gdbarch, | 
|  | readable_regcache *regcache, int regno, | 
|  | gdb_byte *buf) | 
|  | { | 
|  | if (regno == E_PSEUDO_CCR_REGNUM (gdbarch)) | 
|  | { | 
|  | return pseudo_from_raw_register (gdbarch, regcache, buf, | 
|  | regno, E_CCR_REGNUM); | 
|  | } | 
|  | else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)) | 
|  | { | 
|  | return pseudo_from_raw_register (gdbarch, regcache, buf, | 
|  | regno, E_EXR_REGNUM); | 
|  | } | 
|  | else | 
|  | return regcache->raw_read (regno, buf); | 
|  | } | 
|  |  | 
|  | static void | 
|  | h8300_pseudo_register_write (struct gdbarch *gdbarch, | 
|  | struct regcache *regcache, int regno, | 
|  | const gdb_byte *buf) | 
|  | { | 
|  | if (regno == E_PSEUDO_CCR_REGNUM (gdbarch)) | 
|  | raw_from_pseudo_register (gdbarch, regcache, buf, E_CCR_REGNUM, regno); | 
|  | else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)) | 
|  | raw_from_pseudo_register (gdbarch, regcache, buf, E_EXR_REGNUM, regno); | 
|  | else | 
|  | regcache->raw_write (regno, buf); | 
|  | } | 
|  |  | 
|  | static int | 
|  | h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno) | 
|  | { | 
|  | if (regno == E_CCR_REGNUM) | 
|  | return E_PSEUDO_CCR_REGNUM (gdbarch); | 
|  | return regno; | 
|  | } | 
|  |  | 
|  | static int | 
|  | h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno) | 
|  | { | 
|  | if (regno == E_CCR_REGNUM) | 
|  | return E_PSEUDO_CCR_REGNUM (gdbarch); | 
|  | if (regno == E_EXR_REGNUM) | 
|  | return E_PSEUDO_EXR_REGNUM (gdbarch); | 
|  | return regno; | 
|  | } | 
|  |  | 
|  | /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */ | 
|  | constexpr gdb_byte h8300_break_insn[] = { 0x01, 0x80 };	/* Sleep */ | 
|  |  | 
|  | typedef BP_MANIPULATION (h8300_break_insn) h8300_breakpoint; | 
|  |  | 
|  | static struct gdbarch * | 
|  | h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | 
|  | { | 
|  | struct gdbarch *gdbarch; | 
|  |  | 
|  | arches = gdbarch_list_lookup_by_info (arches, &info); | 
|  | if (arches != NULL) | 
|  | return arches->gdbarch; | 
|  |  | 
|  | if (info.bfd_arch_info->arch != bfd_arch_h8300) | 
|  | return NULL; | 
|  |  | 
|  | gdbarch = gdbarch_alloc (&info, 0); | 
|  |  | 
|  | set_gdbarch_register_sim_regno (gdbarch, h8300_register_sim_regno); | 
|  |  | 
|  | switch (info.bfd_arch_info->mach) | 
|  | { | 
|  | case bfd_mach_h8300: | 
|  | set_gdbarch_num_regs (gdbarch, 13); | 
|  | set_gdbarch_num_pseudo_regs (gdbarch, 1); | 
|  | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum); | 
|  | set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum); | 
|  | set_gdbarch_register_name (gdbarch, h8300_register_name); | 
|  | set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_return_value (gdbarch, h8300_return_value); | 
|  | break; | 
|  | case bfd_mach_h8300h: | 
|  | case bfd_mach_h8300hn: | 
|  | set_gdbarch_num_regs (gdbarch, 13); | 
|  | set_gdbarch_num_pseudo_regs (gdbarch, 1); | 
|  | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum); | 
|  | set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum); | 
|  | set_gdbarch_register_name (gdbarch, h8300h_register_name); | 
|  | if (info.bfd_arch_info->mach != bfd_mach_h8300hn) | 
|  | { | 
|  | set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  | } | 
|  | else | 
|  | { | 
|  | set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | 
|  | } | 
|  | set_gdbarch_return_value (gdbarch, h8300h_return_value); | 
|  | break; | 
|  | case bfd_mach_h8300s: | 
|  | case bfd_mach_h8300sn: | 
|  | set_gdbarch_num_regs (gdbarch, 16); | 
|  | set_gdbarch_num_pseudo_regs (gdbarch, 2); | 
|  | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum); | 
|  | set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum); | 
|  | set_gdbarch_register_name (gdbarch, h8300s_register_name); | 
|  | if (info.bfd_arch_info->mach != bfd_mach_h8300sn) | 
|  | { | 
|  | set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  | } | 
|  | else | 
|  | { | 
|  | set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | 
|  | } | 
|  | set_gdbarch_return_value (gdbarch, h8300h_return_value); | 
|  | break; | 
|  | case bfd_mach_h8300sx: | 
|  | case bfd_mach_h8300sxn: | 
|  | set_gdbarch_num_regs (gdbarch, 18); | 
|  | set_gdbarch_num_pseudo_regs (gdbarch, 2); | 
|  | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum); | 
|  | set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum); | 
|  | set_gdbarch_register_name (gdbarch, h8300sx_register_name); | 
|  | if (info.bfd_arch_info->mach != bfd_mach_h8300sxn) | 
|  | { | 
|  | set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  | } | 
|  | else | 
|  | { | 
|  | set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | 
|  | } | 
|  | set_gdbarch_return_value (gdbarch, h8300h_return_value); | 
|  | break; | 
|  | } | 
|  |  | 
|  | set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read); | 
|  | set_gdbarch_deprecated_pseudo_register_write (gdbarch, | 
|  | h8300_pseudo_register_write); | 
|  |  | 
|  | /* | 
|  | * Basic register fields and methods. | 
|  | */ | 
|  |  | 
|  | set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM); | 
|  | set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM); | 
|  | set_gdbarch_register_type (gdbarch, h8300_register_type); | 
|  | set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info); | 
|  |  | 
|  | /* | 
|  | * Frame Info | 
|  | */ | 
|  | set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue); | 
|  |  | 
|  | /* Frame unwinder.  */ | 
|  | frame_base_set_default (gdbarch, &h8300_frame_base); | 
|  |  | 
|  | /* | 
|  | * Miscellany | 
|  | */ | 
|  | /* Stack grows up.  */ | 
|  | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | 
|  |  | 
|  | set_gdbarch_breakpoint_kind_from_pc (gdbarch, | 
|  | h8300_breakpoint::kind_from_pc); | 
|  | set_gdbarch_sw_breakpoint_from_kind (gdbarch, | 
|  | h8300_breakpoint::bp_from_kind); | 
|  | set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call); | 
|  |  | 
|  | set_gdbarch_char_signed (gdbarch, 0); | 
|  | set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | 
|  |  | 
|  | set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_wchar_signed (gdbarch, 0); | 
|  |  | 
|  | set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_double_format (gdbarch, floatformats_ieee_single); | 
|  | set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single); | 
|  |  | 
|  | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | 
|  |  | 
|  | /* Hook in the DWARF CFI frame unwinder.  */ | 
|  | dwarf2_append_unwinders (gdbarch); | 
|  | frame_unwind_append_unwinder (gdbarch, &h8300_frame_unwind); | 
|  |  | 
|  | return gdbarch; | 
|  |  | 
|  | } | 
|  |  | 
|  | void _initialize_h8300_tdep (); | 
|  | void | 
|  | _initialize_h8300_tdep () | 
|  | { | 
|  | gdbarch_register (bfd_arch_h8300, h8300_gdbarch_init); | 
|  | } | 
|  |  | 
|  | static int | 
|  | is_h8300hmode (struct gdbarch *gdbarch) | 
|  | { | 
|  | return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx | 
|  | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn | 
|  | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s | 
|  | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn | 
|  | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h | 
|  | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn; | 
|  | } | 
|  |  | 
|  | static int | 
|  | is_h8300smode (struct gdbarch *gdbarch) | 
|  | { | 
|  | return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx | 
|  | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn | 
|  | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s | 
|  | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn; | 
|  | } | 
|  |  | 
|  | static int | 
|  | is_h8300sxmode (struct gdbarch *gdbarch) | 
|  | { | 
|  | return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx | 
|  | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn; | 
|  | } | 
|  |  | 
|  | static int | 
|  | is_h8300_normal_mode (struct gdbarch *gdbarch) | 
|  | { | 
|  | return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn | 
|  | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn | 
|  | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn; | 
|  | } |