|  | /* BFD back-end for HP PA-RISC ELF files. | 
|  | Copyright (C) 1990-2025 Free Software Foundation, Inc. | 
|  |  | 
|  | Original code by | 
|  | Center for Software Science | 
|  | Department of Computer Science | 
|  | University of Utah | 
|  | Largely rewritten by Alan Modra <alan@linuxcare.com.au> | 
|  | Naming cleanup by Carlos O'Donell <carlos@systemhalted.org> | 
|  | TLS support written by Randolph Chung <tausq@debian.org> | 
|  |  | 
|  | This file is part of BFD, the Binary File Descriptor library. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the Free Software | 
|  | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | 
|  | MA 02110-1301, USA.  */ | 
|  |  | 
|  | #include "sysdep.h" | 
|  | #include "bfd.h" | 
|  | #include "libbfd.h" | 
|  | #include "elf-bfd.h" | 
|  | #include "elf/hppa.h" | 
|  | #include "libhppa.h" | 
|  | #include "elf32-hppa.h" | 
|  | #define ARCH_SIZE		32 | 
|  | #include "elf32-hppa.h" | 
|  | #include "elf-hppa.h" | 
|  |  | 
|  | /* In order to gain some understanding of code in this file without | 
|  | knowing all the intricate details of the linker, note the | 
|  | following: | 
|  |  | 
|  | Functions named elf32_hppa_* are called by external routines, other | 
|  | functions are only called locally.  elf32_hppa_* functions appear | 
|  | in this file more or less in the order in which they are called | 
|  | from external routines.  eg. elf32_hppa_check_relocs is called | 
|  | early in the link process, elf32_hppa_finish_dynamic_sections is | 
|  | one of the last functions.  */ | 
|  |  | 
|  | /* We use two hash tables to hold information for linking PA ELF objects. | 
|  |  | 
|  | The first is the elf32_hppa_link_hash_table which is derived | 
|  | from the standard ELF linker hash table.  We use this as a place to | 
|  | attach other hash tables and static information. | 
|  |  | 
|  | The second is the stub hash table which is derived from the | 
|  | base BFD hash table.  The stub hash table holds the information | 
|  | necessary to build the linker stubs during a link. | 
|  |  | 
|  | There are a number of different stubs generated by the linker. | 
|  |  | 
|  | Long branch stub: | 
|  | :		ldil LR'X,%r1 | 
|  | :		be,n RR'X(%sr4,%r1) | 
|  |  | 
|  | PIC long branch stub: | 
|  | :		b,l .+8,%r1 | 
|  | :		addil LR'X - ($PIC_pcrel$0 - 4),%r1 | 
|  | :		be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1) | 
|  |  | 
|  | Import stub to call shared library routine from normal object file | 
|  | (single sub-space version) | 
|  | :		addil LR'lt_ptr+ltoff,%dp	; get PLT address | 
|  | :		ldo RR'lt_ptr+ltoff(%r1),%r22   ; | 
|  | :		ldw 0(%r22),%r21		; get procedure entry point | 
|  | :		bv %r0(%r21) | 
|  | :		ldw 4(%r22),%r19		; get new dlt value. | 
|  |  | 
|  | Import stub to call shared library routine from shared library | 
|  | (single sub-space version) | 
|  | :		addil LR'ltoff,%r19		; get PLT address | 
|  | :		ldo RR'ltoff(%r1),%r22 | 
|  | :		ldw 0(%r22),%r21		; get procedure entry point | 
|  | :		bv %r0(%r21) | 
|  | :		ldw 4(%r22),%r19		; get new dlt value. | 
|  |  | 
|  | Import stub to call shared library routine from normal object file | 
|  | (multiple sub-space support) | 
|  | :		addil LR'lt_ptr+ltoff,%dp	; get PLT address | 
|  | :		ldo RR'lt_ptr+ltoff(%r1),%r22   ; | 
|  | :		ldw 0(%r22),%r21		; get procedure entry point | 
|  | :		ldsid (%r21),%r1		; get target sid | 
|  | :		ldw 4(%r22),%r19		; get new dlt value. | 
|  | :		mtsp %r1,%sr0 | 
|  | :		be 0(%sr0,%r21)			; branch to target | 
|  | :		stw %rp,-24(%sp)		; save rp | 
|  |  | 
|  | Import stub to call shared library routine from shared library | 
|  | (multiple sub-space support) | 
|  | :		addil LR'ltoff,%r19		; get PLT address | 
|  | :		ldo RR'ltoff(%r1),%r22 | 
|  | :		ldw 0(%r22),%r21		; get procedure entry point | 
|  | :		ldsid (%r21),%r1		; get target sid | 
|  | :		ldw 4(%r22),%r19		; get new dlt value. | 
|  | :		mtsp %r1,%sr0 | 
|  | :		be 0(%sr0,%r21)			; branch to target | 
|  | :		stw %rp,-24(%sp)		; save rp | 
|  |  | 
|  | Export stub to return from shared lib routine (multiple sub-space support) | 
|  | One of these is created for each exported procedure in a shared | 
|  | library (and stored in the shared lib).  Shared lib routines are | 
|  | called via the first instruction in the export stub so that we can | 
|  | do an inter-space return.  Not required for single sub-space. | 
|  | :		bl,n X,%rp			; trap the return | 
|  | :		nop | 
|  | :		ldw -24(%sp),%rp		; restore the original rp | 
|  | :		ldsid (%rp),%r1 | 
|  | :		mtsp %r1,%sr0 | 
|  | :		be,n 0(%sr0,%rp)		; inter-space return.  */ | 
|  |  | 
|  |  | 
|  | /* Variable names follow a coding style. | 
|  | Please follow this (Apps Hungarian) style: | 
|  |  | 
|  | Structure/Variable			Prefix | 
|  | elf_link_hash_table			"etab" | 
|  | elf_link_hash_entry			"eh" | 
|  |  | 
|  | elf32_hppa_link_hash_table		"htab" | 
|  | elf32_hppa_link_hash_entry		"hh" | 
|  |  | 
|  | bfd_hash_table			"btab" | 
|  | bfd_hash_entry			"bh" | 
|  |  | 
|  | bfd_hash_table containing stubs	"bstab" | 
|  | elf32_hppa_stub_hash_entry		"hsh" | 
|  |  | 
|  | Always remember to use GNU Coding Style. */ | 
|  |  | 
|  | #define PLT_ENTRY_SIZE 8 | 
|  | #define GOT_ENTRY_SIZE 4 | 
|  | #define LONG_BRANCH_STUB_SIZE 8 | 
|  | #define LONG_BRANCH_SHARED_STUB_SIZE 12 | 
|  | #define IMPORT_STUB_SIZE 20 | 
|  | #define IMPORT_SHARED_STUB_SIZE 32 | 
|  | #define EXPORT_STUB_SIZE 24 | 
|  | #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" | 
|  |  | 
|  | static const bfd_byte plt_stub[] = | 
|  | { | 
|  | 0x0e, 0x80, 0x10, 0x95,  /* 1: ldw	0(%r20),%r21		*/ | 
|  | 0xea, 0xa0, 0xc0, 0x00,  /*    bv	%r0(%r21)		*/ | 
|  | 0x0e, 0x88, 0x10, 0x95,  /*    ldw	4(%r20),%r21		*/ | 
|  | #define PLT_STUB_ENTRY (3*4) | 
|  | 0xea, 0x9f, 0x1f, 0xdd,  /*    b,l	1b,%r20			*/ | 
|  | 0xd6, 0x80, 0x1c, 0x1e,  /*    depi	0,31,2,%r20		*/ | 
|  | 0x00, 0xc0, 0xff, 0xee,  /* 9: .word	fixup_func		*/ | 
|  | 0xde, 0xad, 0xbe, 0xef   /*    .word	fixup_ltp		*/ | 
|  | }; | 
|  |  | 
|  | /* Section name for stubs is the associated section name plus this | 
|  | string.  */ | 
|  | #define STUB_SUFFIX ".stub" | 
|  |  | 
|  | /* We don't need to copy certain PC- or GP-relative dynamic relocs | 
|  | into a shared object's dynamic section.  All the relocs of the | 
|  | limited class we are interested in, are absolute.  */ | 
|  | #ifndef RELATIVE_DYNRELOCS | 
|  | #define RELATIVE_DYNRELOCS 0 | 
|  | #define IS_ABSOLUTE_RELOC(r_type) 1 | 
|  | #define pc_dynrelocs(hh) 0 | 
|  | #endif | 
|  |  | 
|  | /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid | 
|  | copying dynamic variables from a shared lib into an app's dynbss | 
|  | section, and instead use a dynamic relocation to point into the | 
|  | shared lib.  */ | 
|  | #define ELIMINATE_COPY_RELOCS 1 | 
|  |  | 
|  | enum elf32_hppa_stub_type | 
|  | { | 
|  | hppa_stub_long_branch, | 
|  | hppa_stub_long_branch_shared, | 
|  | hppa_stub_import, | 
|  | hppa_stub_import_shared, | 
|  | hppa_stub_export, | 
|  | hppa_stub_none | 
|  | }; | 
|  |  | 
|  | struct elf32_hppa_stub_hash_entry | 
|  | { | 
|  | /* Base hash table entry structure.  */ | 
|  | struct bfd_hash_entry bh_root; | 
|  |  | 
|  | /* The stub section.  */ | 
|  | asection *stub_sec; | 
|  |  | 
|  | /* Offset within stub_sec of the beginning of this stub.  */ | 
|  | bfd_vma stub_offset; | 
|  |  | 
|  | /* Given the symbol's value and its section we can determine its final | 
|  | value when building the stubs (so the stub knows where to jump.  */ | 
|  | bfd_vma target_value; | 
|  | asection *target_section; | 
|  |  | 
|  | enum elf32_hppa_stub_type stub_type; | 
|  |  | 
|  | /* The symbol table entry, if any, that this was derived from.  */ | 
|  | struct elf32_hppa_link_hash_entry *hh; | 
|  |  | 
|  | /* Where this stub is being called from, or, in the case of combined | 
|  | stub sections, the first input section in the group.  */ | 
|  | asection *id_sec; | 
|  | }; | 
|  |  | 
|  | enum _tls_type | 
|  | { | 
|  | GOT_UNKNOWN = 0, | 
|  | GOT_NORMAL = 1, | 
|  | GOT_TLS_GD = 2, | 
|  | GOT_TLS_LDM = 4, | 
|  | GOT_TLS_IE = 8 | 
|  | }; | 
|  |  | 
|  | struct elf32_hppa_link_hash_entry | 
|  | { | 
|  | struct elf_link_hash_entry eh; | 
|  |  | 
|  | /* A pointer to the most recently used stub hash entry against this | 
|  | symbol.  */ | 
|  | struct elf32_hppa_stub_hash_entry *hsh_cache; | 
|  |  | 
|  | ENUM_BITFIELD (_tls_type) tls_type : 8; | 
|  |  | 
|  | /* Set if this symbol is used by a plabel reloc.  */ | 
|  | unsigned int plabel:1; | 
|  | }; | 
|  |  | 
|  | struct elf32_hppa_link_hash_table | 
|  | { | 
|  | /* The main hash table.  */ | 
|  | struct elf_link_hash_table etab; | 
|  |  | 
|  | /* The stub hash table.  */ | 
|  | struct bfd_hash_table bstab; | 
|  |  | 
|  | /* Linker stub bfd.  */ | 
|  | bfd *stub_bfd; | 
|  |  | 
|  | /* Linker call-backs.  */ | 
|  | asection * (*add_stub_section) (const char *, asection *); | 
|  | void (*layout_sections_again) (void); | 
|  |  | 
|  | /* Array to keep track of which stub sections have been created, and | 
|  | information on stub grouping.  */ | 
|  | struct map_stub | 
|  | { | 
|  | /* This is the section to which stubs in the group will be | 
|  | attached.  */ | 
|  | asection *link_sec; | 
|  | /* The stub section.  */ | 
|  | asection *stub_sec; | 
|  | } *stub_group; | 
|  |  | 
|  | /* Assorted information used by elf32_hppa_size_stubs.  */ | 
|  | unsigned int bfd_count; | 
|  | unsigned int top_index; | 
|  | asection **input_list; | 
|  | Elf_Internal_Sym **all_local_syms; | 
|  |  | 
|  | /* Used during a final link to store the base of the text and data | 
|  | segments so that we can perform SEGREL relocations.  */ | 
|  | bfd_vma text_segment_base; | 
|  | bfd_vma data_segment_base; | 
|  |  | 
|  | /* Whether we support multiple sub-spaces for shared libs.  */ | 
|  | unsigned int multi_subspace:1; | 
|  |  | 
|  | /* Flags set when various size branches are detected.  Used to | 
|  | select suitable defaults for the stub group size.  */ | 
|  | unsigned int has_12bit_branch:1; | 
|  | unsigned int has_17bit_branch:1; | 
|  | unsigned int has_22bit_branch:1; | 
|  |  | 
|  | /* Set if we need a .plt stub to support lazy dynamic linking.  */ | 
|  | unsigned int need_plt_stub:1; | 
|  |  | 
|  | /* Data for LDM relocations.  */ | 
|  | union | 
|  | { | 
|  | bfd_signed_vma refcount; | 
|  | bfd_vma offset; | 
|  | } tls_ldm_got; | 
|  | }; | 
|  |  | 
|  | /* Various hash macros and functions.  */ | 
|  | #define hppa_link_hash_table(p) \ | 
|  | ((is_elf_hash_table ((p)->hash)					\ | 
|  | && elf_hash_table_id (elf_hash_table (p)) == HPPA32_ELF_DATA)	\ | 
|  | ? (struct elf32_hppa_link_hash_table *) (p)->hash : NULL) | 
|  |  | 
|  | #define hppa_elf_hash_entry(ent) \ | 
|  | ((struct elf32_hppa_link_hash_entry *)(ent)) | 
|  |  | 
|  | #define hppa_stub_hash_entry(ent) \ | 
|  | ((struct elf32_hppa_stub_hash_entry *)(ent)) | 
|  |  | 
|  | #define hppa_stub_hash_lookup(table, string, create, copy) \ | 
|  | ((struct elf32_hppa_stub_hash_entry *) \ | 
|  | bfd_hash_lookup ((table), (string), (create), (copy))) | 
|  |  | 
|  | #define hppa_elf_local_got_tls_type(abfd) \ | 
|  | ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2))) | 
|  |  | 
|  | #define hh_name(hh) \ | 
|  | (hh ? hh->eh.root.root.string : "<undef>") | 
|  |  | 
|  | #define eh_name(eh) \ | 
|  | (eh ? eh->root.root.string : "<undef>") | 
|  |  | 
|  | /* Assorted hash table functions.  */ | 
|  |  | 
|  | /* Initialize an entry in the stub hash table.  */ | 
|  |  | 
|  | static struct bfd_hash_entry * | 
|  | stub_hash_newfunc (struct bfd_hash_entry *entry, | 
|  | struct bfd_hash_table *table, | 
|  | const char *string) | 
|  | { | 
|  | /* Allocate the structure if it has not already been allocated by a | 
|  | subclass.  */ | 
|  | if (entry == NULL) | 
|  | { | 
|  | entry = bfd_hash_allocate (table, | 
|  | sizeof (struct elf32_hppa_stub_hash_entry)); | 
|  | if (entry == NULL) | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* Call the allocation method of the superclass.  */ | 
|  | entry = bfd_hash_newfunc (entry, table, string); | 
|  | if (entry != NULL) | 
|  | { | 
|  | struct elf32_hppa_stub_hash_entry *hsh; | 
|  |  | 
|  | /* Initialize the local fields.  */ | 
|  | hsh = hppa_stub_hash_entry (entry); | 
|  | hsh->stub_sec = NULL; | 
|  | hsh->stub_offset = 0; | 
|  | hsh->target_value = 0; | 
|  | hsh->target_section = NULL; | 
|  | hsh->stub_type = hppa_stub_long_branch; | 
|  | hsh->hh = NULL; | 
|  | hsh->id_sec = NULL; | 
|  | } | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* Initialize an entry in the link hash table.  */ | 
|  |  | 
|  | static struct bfd_hash_entry * | 
|  | hppa_link_hash_newfunc (struct bfd_hash_entry *entry, | 
|  | struct bfd_hash_table *table, | 
|  | const char *string) | 
|  | { | 
|  | /* Allocate the structure if it has not already been allocated by a | 
|  | subclass.  */ | 
|  | if (entry == NULL) | 
|  | { | 
|  | entry = bfd_hash_allocate (table, | 
|  | sizeof (struct elf32_hppa_link_hash_entry)); | 
|  | if (entry == NULL) | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* Call the allocation method of the superclass.  */ | 
|  | entry = _bfd_elf_link_hash_newfunc (entry, table, string); | 
|  | if (entry != NULL) | 
|  | { | 
|  | struct elf32_hppa_link_hash_entry *hh; | 
|  |  | 
|  | /* Initialize the local fields.  */ | 
|  | hh = hppa_elf_hash_entry (entry); | 
|  | hh->hsh_cache = NULL; | 
|  | hh->plabel = 0; | 
|  | hh->tls_type = GOT_UNKNOWN; | 
|  | } | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* Free the derived linker hash table.  */ | 
|  |  | 
|  | static void | 
|  | elf32_hppa_link_hash_table_free (bfd *obfd) | 
|  | { | 
|  | struct elf32_hppa_link_hash_table *htab | 
|  | = (struct elf32_hppa_link_hash_table *) obfd->link.hash; | 
|  |  | 
|  | bfd_hash_table_free (&htab->bstab); | 
|  | _bfd_elf_link_hash_table_free (obfd); | 
|  | } | 
|  |  | 
|  | /* Create the derived linker hash table.  The PA ELF port uses the derived | 
|  | hash table to keep information specific to the PA ELF linker (without | 
|  | using static variables).  */ | 
|  |  | 
|  | static struct bfd_link_hash_table * | 
|  | elf32_hppa_link_hash_table_create (bfd *abfd) | 
|  | { | 
|  | struct elf32_hppa_link_hash_table *htab; | 
|  | size_t amt = sizeof (*htab); | 
|  |  | 
|  | htab = bfd_zmalloc (amt); | 
|  | if (htab == NULL) | 
|  | return NULL; | 
|  |  | 
|  | if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc, | 
|  | sizeof (struct elf32_hppa_link_hash_entry))) | 
|  | { | 
|  | free (htab); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Init the stub hash table too.  */ | 
|  | if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc, | 
|  | sizeof (struct elf32_hppa_stub_hash_entry))) | 
|  | { | 
|  | _bfd_elf_link_hash_table_free (abfd); | 
|  | return NULL; | 
|  | } | 
|  | htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free; | 
|  | htab->etab.dt_pltgot_required = true; | 
|  |  | 
|  | htab->text_segment_base = (bfd_vma) -1; | 
|  | htab->data_segment_base = (bfd_vma) -1; | 
|  | return &htab->etab.root; | 
|  | } | 
|  |  | 
|  | /* Initialize the linker stubs BFD so that we can use it for linker | 
|  | created dynamic sections.  */ | 
|  |  | 
|  | void | 
|  | elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info) | 
|  | { | 
|  | struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); | 
|  |  | 
|  | elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32; | 
|  | htab->etab.dynobj = abfd; | 
|  | } | 
|  |  | 
|  | /* Build a name for an entry in the stub hash table.  */ | 
|  |  | 
|  | static char * | 
|  | hppa_stub_name (const asection *input_section, | 
|  | const asection *sym_sec, | 
|  | const struct elf32_hppa_link_hash_entry *hh, | 
|  | const Elf_Internal_Rela *rela) | 
|  | { | 
|  | char *stub_name; | 
|  | bfd_size_type len; | 
|  |  | 
|  | if (hh) | 
|  | { | 
|  | len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1; | 
|  | stub_name = bfd_malloc (len); | 
|  | if (stub_name != NULL) | 
|  | sprintf (stub_name, "%08x_%s+%x", | 
|  | input_section->id & 0xffffffff, | 
|  | hh_name (hh), | 
|  | (int) rela->r_addend & 0xffffffff); | 
|  | } | 
|  | else | 
|  | { | 
|  | len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1; | 
|  | stub_name = bfd_malloc (len); | 
|  | if (stub_name != NULL) | 
|  | sprintf (stub_name, "%08x_%x:%x+%x", | 
|  | input_section->id & 0xffffffff, | 
|  | sym_sec->id & 0xffffffff, | 
|  | (int) ELF32_R_SYM (rela->r_info) & 0xffffffff, | 
|  | (int) rela->r_addend & 0xffffffff); | 
|  | } | 
|  | return stub_name; | 
|  | } | 
|  |  | 
|  | /* Look up an entry in the stub hash.  Stub entries are cached because | 
|  | creating the stub name takes a bit of time.  */ | 
|  |  | 
|  | static struct elf32_hppa_stub_hash_entry * | 
|  | hppa_get_stub_entry (const asection *input_section, | 
|  | const asection *sym_sec, | 
|  | struct elf32_hppa_link_hash_entry *hh, | 
|  | const Elf_Internal_Rela *rela, | 
|  | struct elf32_hppa_link_hash_table *htab) | 
|  | { | 
|  | struct elf32_hppa_stub_hash_entry *hsh_entry; | 
|  | const asection *id_sec; | 
|  |  | 
|  | /* If this input section is part of a group of sections sharing one | 
|  | stub section, then use the id of the first section in the group. | 
|  | Stub names need to include a section id, as there may well be | 
|  | more than one stub used to reach say, printf, and we need to | 
|  | distinguish between them.  */ | 
|  | id_sec = htab->stub_group[input_section->id].link_sec; | 
|  | if (id_sec == NULL) | 
|  | return NULL; | 
|  |  | 
|  | if (hh != NULL && hh->hsh_cache != NULL | 
|  | && hh->hsh_cache->hh == hh | 
|  | && hh->hsh_cache->id_sec == id_sec) | 
|  | { | 
|  | hsh_entry = hh->hsh_cache; | 
|  | } | 
|  | else | 
|  | { | 
|  | char *stub_name; | 
|  |  | 
|  | stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela); | 
|  | if (stub_name == NULL) | 
|  | return NULL; | 
|  |  | 
|  | hsh_entry = hppa_stub_hash_lookup (&htab->bstab, | 
|  | stub_name, false, false); | 
|  | if (hh != NULL) | 
|  | hh->hsh_cache = hsh_entry; | 
|  |  | 
|  | free (stub_name); | 
|  | } | 
|  |  | 
|  | return hsh_entry; | 
|  | } | 
|  |  | 
|  | /* Add a new stub entry to the stub hash.  Not all fields of the new | 
|  | stub entry are initialised.  */ | 
|  |  | 
|  | static struct elf32_hppa_stub_hash_entry * | 
|  | hppa_add_stub (const char *stub_name, | 
|  | asection *section, | 
|  | struct elf32_hppa_link_hash_table *htab) | 
|  | { | 
|  | asection *link_sec; | 
|  | asection *stub_sec; | 
|  | struct elf32_hppa_stub_hash_entry *hsh; | 
|  |  | 
|  | link_sec = htab->stub_group[section->id].link_sec; | 
|  | stub_sec = htab->stub_group[section->id].stub_sec; | 
|  | if (stub_sec == NULL) | 
|  | { | 
|  | stub_sec = htab->stub_group[link_sec->id].stub_sec; | 
|  | if (stub_sec == NULL) | 
|  | { | 
|  | size_t namelen; | 
|  | bfd_size_type len; | 
|  | char *s_name; | 
|  |  | 
|  | namelen = strlen (link_sec->name); | 
|  | len = namelen + sizeof (STUB_SUFFIX); | 
|  | s_name = bfd_alloc (htab->stub_bfd, len); | 
|  | if (s_name == NULL) | 
|  | return NULL; | 
|  |  | 
|  | memcpy (s_name, link_sec->name, namelen); | 
|  | memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX)); | 
|  | stub_sec = (*htab->add_stub_section) (s_name, link_sec); | 
|  | if (stub_sec == NULL) | 
|  | return NULL; | 
|  | htab->stub_group[link_sec->id].stub_sec = stub_sec; | 
|  | } | 
|  | htab->stub_group[section->id].stub_sec = stub_sec; | 
|  | } | 
|  |  | 
|  | /* Enter this entry into the linker stub hash table.  */ | 
|  | hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name, | 
|  | true, false); | 
|  | if (hsh == NULL) | 
|  | { | 
|  | /* xgettext:c-format */ | 
|  | _bfd_error_handler (_("%pB: cannot create stub entry %s"), | 
|  | section->owner, stub_name); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | hsh->stub_sec = stub_sec; | 
|  | hsh->stub_offset = 0; | 
|  | hsh->id_sec = link_sec; | 
|  | return hsh; | 
|  | } | 
|  |  | 
|  | /* Determine the type of stub needed, if any, for a call.  */ | 
|  |  | 
|  | static enum elf32_hppa_stub_type | 
|  | hppa_type_of_stub (asection *input_sec, | 
|  | const Elf_Internal_Rela *rela, | 
|  | struct elf32_hppa_link_hash_entry *hh, | 
|  | bfd_vma destination, | 
|  | struct bfd_link_info *info) | 
|  | { | 
|  | bfd_vma location; | 
|  | bfd_vma branch_offset; | 
|  | bfd_vma max_branch_offset; | 
|  | unsigned int r_type; | 
|  |  | 
|  | if (hh != NULL | 
|  | && hh->eh.plt.offset != (bfd_vma) -1 | 
|  | && hh->eh.dynindx != -1 | 
|  | && !hh->plabel | 
|  | && (bfd_link_pic (info) | 
|  | || !hh->eh.def_regular | 
|  | || hh->eh.root.type == bfd_link_hash_defweak)) | 
|  | { | 
|  | /* We need an import stub.  Decide between hppa_stub_import | 
|  | and hppa_stub_import_shared later.  */ | 
|  | return hppa_stub_import; | 
|  | } | 
|  |  | 
|  | if (destination == (bfd_vma) -1) | 
|  | return hppa_stub_none; | 
|  |  | 
|  | /* Determine where the call point is.  */ | 
|  | location = (input_sec->output_offset | 
|  | + input_sec->output_section->vma | 
|  | + rela->r_offset); | 
|  |  | 
|  | branch_offset = destination - location - 8; | 
|  | r_type = ELF32_R_TYPE (rela->r_info); | 
|  |  | 
|  | /* Determine if a long branch stub is needed.  parisc branch offsets | 
|  | are relative to the second instruction past the branch, ie. +8 | 
|  | bytes on from the branch instruction location.  The offset is | 
|  | signed and counts in units of 4 bytes.  */ | 
|  | if (r_type == (unsigned int) R_PARISC_PCREL17F) | 
|  | max_branch_offset = (1 << (17 - 1)) << 2; | 
|  |  | 
|  | else if (r_type == (unsigned int) R_PARISC_PCREL12F) | 
|  | max_branch_offset = (1 << (12 - 1)) << 2; | 
|  |  | 
|  | else /* R_PARISC_PCREL22F.  */ | 
|  | max_branch_offset = (1 << (22 - 1)) << 2; | 
|  |  | 
|  | if (branch_offset + max_branch_offset >= 2*max_branch_offset) | 
|  | return hppa_stub_long_branch; | 
|  |  | 
|  | return hppa_stub_none; | 
|  | } | 
|  |  | 
|  | /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY. | 
|  | IN_ARG contains the link info pointer.  */ | 
|  |  | 
|  | #define LDIL_R1		0x20200000	/* ldil  LR'XXX,%r1		*/ | 
|  | #define BE_SR4_R1	0xe0202002	/* be,n  RR'XXX(%sr4,%r1)	*/ | 
|  |  | 
|  | #define BL_R1		0xe8200000	/* b,l   .+8,%r1		*/ | 
|  | #define ADDIL_R1	0x28200000	/* addil LR'XXX,%r1,%r1		*/ | 
|  | #define DEPI_R1		0xd4201c1e	/* depi  0,31,2,%r1		*/ | 
|  |  | 
|  | #define ADDIL_DP	0x2b600000	/* addil LR'XXX,%dp,%r1		*/ | 
|  | #define LDW_R1_R21	0x48350000	/* ldw   RR'XXX(%sr0,%r1),%r21	*/ | 
|  | #define BV_R0_R21	0xeaa0c000	/* bv    %r0(%r21)		*/ | 
|  | #define LDW_R1_R19	0x48330000	/* ldw   RR'XXX(%sr0,%r1),%r19	*/ | 
|  |  | 
|  | #define ADDIL_R19	0x2a600000	/* addil LR'XXX,%r19,%r1	*/ | 
|  | #define LDW_R1_DP	0x483b0000	/* ldw   RR'XXX(%sr0,%r1),%dp	*/ | 
|  |  | 
|  | #define LDO_R1_R22	0x34360000	/* ldo   RR'XXX(%r1),%r22	*/ | 
|  | #define LDW_R22_R21	0x0ec01095	/* ldw   0(%r22),%r21		*/ | 
|  | #define LDW_R22_R19	0x0ec81093	/* ldw   4(%r22),%r19		*/ | 
|  |  | 
|  | #define LDSID_R21_R1	0x02a010a1	/* ldsid (%sr0,%r21),%r1	*/ | 
|  | #define MTSP_R1		0x00011820	/* mtsp  %r1,%sr0		*/ | 
|  | #define BE_SR0_R21	0xe2a00000	/* be    0(%sr0,%r21)		*/ | 
|  | #define STW_RP		0x6bc23fd1	/* stw   %rp,-24(%sr0,%sp)	*/ | 
|  |  | 
|  | #define BL22_RP		0xe800a002	/* b,l,n XXX,%rp		*/ | 
|  | #define BL_RP		0xe8400002	/* b,l,n XXX,%rp		*/ | 
|  | #define NOP		0x08000240	/* nop				*/ | 
|  | #define LDW_RP		0x4bc23fd1	/* ldw   -24(%sr0,%sp),%rp	*/ | 
|  | #define LDSID_RP_R1	0x004010a1	/* ldsid (%sr0,%rp),%r1		*/ | 
|  | #define BE_SR0_RP	0xe0400002	/* be,n  0(%sr0,%rp)		*/ | 
|  |  | 
|  | #ifndef R19_STUBS | 
|  | #define R19_STUBS 1 | 
|  | #endif | 
|  |  | 
|  | #if R19_STUBS | 
|  | #define LDW_R1_DLT	LDW_R1_R19 | 
|  | #else | 
|  | #define LDW_R1_DLT	LDW_R1_DP | 
|  | #endif | 
|  |  | 
|  | static bool | 
|  | hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg) | 
|  | { | 
|  | struct elf32_hppa_stub_hash_entry *hsh; | 
|  | struct bfd_link_info *info; | 
|  | struct elf32_hppa_link_hash_table *htab; | 
|  | asection *stub_sec; | 
|  | bfd *stub_bfd; | 
|  | bfd_byte *loc; | 
|  | bfd_vma sym_value; | 
|  | bfd_vma insn; | 
|  | bfd_vma off; | 
|  | int val; | 
|  | int size; | 
|  |  | 
|  | /* Massage our args to the form they really have.  */ | 
|  | hsh = hppa_stub_hash_entry (bh); | 
|  | info = (struct bfd_link_info *)in_arg; | 
|  |  | 
|  | htab = hppa_link_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return false; | 
|  |  | 
|  | stub_sec = hsh->stub_sec; | 
|  |  | 
|  | /* Make a note of the offset within the stubs for this entry.  */ | 
|  | hsh->stub_offset = stub_sec->size; | 
|  | loc = stub_sec->contents + hsh->stub_offset; | 
|  |  | 
|  | stub_bfd = stub_sec->owner; | 
|  |  | 
|  | switch (hsh->stub_type) | 
|  | { | 
|  | case hppa_stub_long_branch: | 
|  | /* Fail if the target section could not be assigned to an output | 
|  | section.  The user should fix his linker script.  */ | 
|  | if (hsh->target_section->output_section == NULL | 
|  | && info->non_contiguous_regions) | 
|  | info->callbacks->fatal (_("%P: Could not assign `%pA' to an output " | 
|  | "section. Retry without " | 
|  | "--enable-non-contiguous-regions.\n"), | 
|  | hsh->target_section); | 
|  |  | 
|  | /* Create the long branch.  A long branch is formed with "ldil" | 
|  | loading the upper bits of the target address into a register, | 
|  | then branching with "be" which adds in the lower bits. | 
|  | The "be" has its delay slot nullified.  */ | 
|  | sym_value = (hsh->target_value | 
|  | + hsh->target_section->output_offset | 
|  | + hsh->target_section->output_section->vma); | 
|  |  | 
|  | val = hppa_field_adjust (sym_value, 0, e_lrsel); | 
|  | insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21); | 
|  | bfd_put_32 (stub_bfd, insn, loc); | 
|  |  | 
|  | val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2; | 
|  | insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); | 
|  | bfd_put_32 (stub_bfd, insn, loc + 4); | 
|  |  | 
|  | size = LONG_BRANCH_STUB_SIZE; | 
|  | break; | 
|  |  | 
|  | case hppa_stub_long_branch_shared: | 
|  | /* Fail if the target section could not be assigned to an output | 
|  | section.  The user should fix his linker script.  */ | 
|  | if (hsh->target_section->output_section == NULL | 
|  | && info->non_contiguous_regions) | 
|  | info->callbacks->fatal (_("%P: Could not assign `%pA' to an output " | 
|  | "section. Retry without " | 
|  | "--enable-non-contiguous-regions.\n"), | 
|  | hsh->target_section); | 
|  |  | 
|  | /* Branches are relative.  This is where we are going to.  */ | 
|  | sym_value = (hsh->target_value | 
|  | + hsh->target_section->output_offset | 
|  | + hsh->target_section->output_section->vma); | 
|  |  | 
|  | /* And this is where we are coming from, more or less.  */ | 
|  | sym_value -= (hsh->stub_offset | 
|  | + stub_sec->output_offset | 
|  | + stub_sec->output_section->vma); | 
|  |  | 
|  | bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc); | 
|  | val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel); | 
|  | insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21); | 
|  | bfd_put_32 (stub_bfd, insn, loc + 4); | 
|  |  | 
|  | val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2; | 
|  | insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); | 
|  | bfd_put_32 (stub_bfd, insn, loc + 8); | 
|  | size = LONG_BRANCH_SHARED_STUB_SIZE; | 
|  | break; | 
|  |  | 
|  | case hppa_stub_import: | 
|  | case hppa_stub_import_shared: | 
|  | off = hsh->hh->eh.plt.offset; | 
|  | if (off >= (bfd_vma) -2) | 
|  | abort (); | 
|  |  | 
|  | off &= ~ (bfd_vma) 1; | 
|  | sym_value = (off | 
|  | + htab->etab.splt->output_offset | 
|  | + htab->etab.splt->output_section->vma | 
|  | - elf_gp (htab->etab.splt->output_section->owner)); | 
|  |  | 
|  | insn = ADDIL_DP; | 
|  | #if R19_STUBS | 
|  | if (hsh->stub_type == hppa_stub_import_shared) | 
|  | insn = ADDIL_R19; | 
|  | #endif | 
|  |  | 
|  | /* Load function descriptor address into register %r22.  It is | 
|  | sometimes needed for lazy binding.  */ | 
|  | val = hppa_field_adjust (sym_value, 0, e_lrsel), | 
|  | insn = hppa_rebuild_insn ((int) insn, val, 21); | 
|  | bfd_put_32 (stub_bfd, insn, loc); | 
|  |  | 
|  | val = hppa_field_adjust (sym_value, 0, e_rrsel); | 
|  | insn = hppa_rebuild_insn ((int) LDO_R1_R22, val, 14); | 
|  | bfd_put_32 (stub_bfd, insn, loc + 4); | 
|  |  | 
|  | bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R21, loc + 8); | 
|  |  | 
|  | if (htab->multi_subspace) | 
|  | { | 
|  | bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12); | 
|  | bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19,  loc + 16); | 
|  | bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,      loc + 20); | 
|  | bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21,   loc + 24); | 
|  | bfd_put_32 (stub_bfd, (bfd_vma) STW_RP,       loc + 28); | 
|  |  | 
|  | size = IMPORT_SHARED_STUB_SIZE; | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 12); | 
|  | bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16); | 
|  |  | 
|  | size = IMPORT_STUB_SIZE; | 
|  | } | 
|  |  | 
|  | break; | 
|  |  | 
|  | case hppa_stub_export: | 
|  | /* Fail if the target section could not be assigned to an output | 
|  | section.  The user should fix his linker script.  */ | 
|  | if (hsh->target_section->output_section == NULL | 
|  | && info->non_contiguous_regions) | 
|  | info->callbacks->fatal (_("%P: Could not assign `%pA' to an output " | 
|  | "section. Retry without " | 
|  | "--enable-non-contiguous-regions.\n"), | 
|  | hsh->target_section); | 
|  |  | 
|  | /* Branches are relative.  This is where we are going to.  */ | 
|  | sym_value = (hsh->target_value | 
|  | + hsh->target_section->output_offset | 
|  | + hsh->target_section->output_section->vma); | 
|  |  | 
|  | /* And this is where we are coming from.  */ | 
|  | sym_value -= (hsh->stub_offset | 
|  | + stub_sec->output_offset | 
|  | + stub_sec->output_section->vma); | 
|  |  | 
|  | if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2)) | 
|  | && (!htab->has_22bit_branch | 
|  | || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2)))) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA+%#" PRIx64 "): " | 
|  | "cannot reach %s, recompile with -ffunction-sections"), | 
|  | hsh->target_section->owner, | 
|  | stub_sec, | 
|  | (uint64_t) hsh->stub_offset, | 
|  | hsh->bh_root.string); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2; | 
|  | if (!htab->has_22bit_branch) | 
|  | insn = hppa_rebuild_insn ((int) BL_RP, val, 17); | 
|  | else | 
|  | insn = hppa_rebuild_insn ((int) BL22_RP, val, 22); | 
|  | bfd_put_32 (stub_bfd, insn, loc); | 
|  |  | 
|  | bfd_put_32 (stub_bfd, (bfd_vma) NOP,	   loc + 4); | 
|  | bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP,      loc + 8); | 
|  | bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12); | 
|  | bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,     loc + 16); | 
|  | bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP,   loc + 20); | 
|  |  | 
|  | /* Point the function symbol at the stub.  */ | 
|  | hsh->hh->eh.root.u.def.section = stub_sec; | 
|  | hsh->hh->eh.root.u.def.value = stub_sec->size; | 
|  |  | 
|  | size = EXPORT_STUB_SIZE; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BFD_FAIL (); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | stub_sec->size += size; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #undef LDIL_R1 | 
|  | #undef BE_SR4_R1 | 
|  | #undef BL_R1 | 
|  | #undef ADDIL_R1 | 
|  | #undef DEPI_R1 | 
|  | #undef LDW_R1_R21 | 
|  | #undef LDW_R1_DLT | 
|  | #undef LDW_R1_R19 | 
|  | #undef ADDIL_R19 | 
|  | #undef LDW_R1_DP | 
|  | #undef LDSID_R21_R1 | 
|  | #undef MTSP_R1 | 
|  | #undef BE_SR0_R21 | 
|  | #undef STW_RP | 
|  | #undef BV_R0_R21 | 
|  | #undef BL_RP | 
|  | #undef NOP | 
|  | #undef LDW_RP | 
|  | #undef LDSID_RP_R1 | 
|  | #undef BE_SR0_RP | 
|  |  | 
|  | /* As above, but don't actually build the stub.  Just bump offset so | 
|  | we know stub section sizes.  */ | 
|  |  | 
|  | static bool | 
|  | hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg) | 
|  | { | 
|  | struct elf32_hppa_stub_hash_entry *hsh; | 
|  | struct elf32_hppa_link_hash_table *htab; | 
|  | int size; | 
|  |  | 
|  | /* Massage our args to the form they really have.  */ | 
|  | hsh = hppa_stub_hash_entry (bh); | 
|  | htab = in_arg; | 
|  |  | 
|  | if (hsh->stub_type == hppa_stub_long_branch) | 
|  | size = LONG_BRANCH_STUB_SIZE; | 
|  | else if (hsh->stub_type == hppa_stub_long_branch_shared) | 
|  | size = LONG_BRANCH_SHARED_STUB_SIZE; | 
|  | else if (hsh->stub_type == hppa_stub_export) | 
|  | size = EXPORT_STUB_SIZE; | 
|  | else /* hppa_stub_import or hppa_stub_import_shared.  */ | 
|  | { | 
|  | if (htab->multi_subspace) | 
|  | size = IMPORT_SHARED_STUB_SIZE; | 
|  | else | 
|  | size = IMPORT_STUB_SIZE; | 
|  | } | 
|  |  | 
|  | hsh->stub_sec->size += size; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return nonzero if ABFD represents an HPPA ELF32 file. | 
|  | Additionally we set the default architecture and machine.  */ | 
|  |  | 
|  | static bool | 
|  | elf32_hppa_object_p (bfd *abfd) | 
|  | { | 
|  | Elf_Internal_Ehdr * i_ehdrp; | 
|  | unsigned int flags; | 
|  |  | 
|  | i_ehdrp = elf_elfheader (abfd); | 
|  | if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0) | 
|  | { | 
|  | /* GCC on hppa-linux produces binaries with OSABI=GNU, | 
|  | but the kernel produces corefiles with OSABI=SysV.  */ | 
|  | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU && | 
|  | i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ | 
|  | return false; | 
|  | } | 
|  | else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0) | 
|  | { | 
|  | /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD, | 
|  | but the kernel produces corefiles with OSABI=SysV.  */ | 
|  | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD && | 
|  | i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ | 
|  | return false; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | flags = i_ehdrp->e_flags; | 
|  | switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE)) | 
|  | { | 
|  | case EFA_PARISC_1_0: | 
|  | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10); | 
|  | case EFA_PARISC_1_1: | 
|  | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11); | 
|  | case EFA_PARISC_2_0: | 
|  | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20); | 
|  | case EFA_PARISC_2_0 | EF_PARISC_WIDE: | 
|  | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Create the .plt and .got sections, and set up our hash table | 
|  | short-cuts to various dynamic sections.  */ | 
|  |  | 
|  | static bool | 
|  | elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) | 
|  | { | 
|  | struct elf32_hppa_link_hash_table *htab; | 
|  | struct elf_link_hash_entry *eh; | 
|  |  | 
|  | /* Don't try to create the .plt and .got twice.  */ | 
|  | htab = hppa_link_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return false; | 
|  | if (htab->etab.splt != NULL) | 
|  | return true; | 
|  |  | 
|  | /* Call the generic code to do most of the work.  */ | 
|  | if (! _bfd_elf_create_dynamic_sections (abfd, info)) | 
|  | return false; | 
|  |  | 
|  | /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main | 
|  | application, because __canonicalize_funcptr_for_compare needs it.  */ | 
|  | eh = elf_hash_table (info)->hgot; | 
|  | eh->forced_local = 0; | 
|  | eh->other = STV_DEFAULT; | 
|  | return bfd_elf_link_record_dynamic_symbol (info, eh); | 
|  | } | 
|  |  | 
|  | /* Copy the extra info we tack onto an elf_link_hash_entry.  */ | 
|  |  | 
|  | static void | 
|  | elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info, | 
|  | struct elf_link_hash_entry *eh_dir, | 
|  | struct elf_link_hash_entry *eh_ind) | 
|  | { | 
|  | struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind; | 
|  |  | 
|  | hh_dir = hppa_elf_hash_entry (eh_dir); | 
|  | hh_ind = hppa_elf_hash_entry (eh_ind); | 
|  |  | 
|  | if (eh_ind->root.type == bfd_link_hash_indirect) | 
|  | { | 
|  | hh_dir->plabel |= hh_ind->plabel; | 
|  | hh_dir->tls_type |= hh_ind->tls_type; | 
|  | hh_ind->tls_type = GOT_UNKNOWN; | 
|  | } | 
|  |  | 
|  | _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind); | 
|  | } | 
|  |  | 
|  | static int | 
|  | elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
|  | int r_type, int is_local ATTRIBUTE_UNUSED) | 
|  | { | 
|  | /* For now we don't support linker optimizations.  */ | 
|  | return r_type; | 
|  | } | 
|  |  | 
|  | /* Return a pointer to the local GOT, PLT and TLS reference counts | 
|  | for ABFD.  Returns NULL if the storage allocation fails.  */ | 
|  |  | 
|  | static bfd_signed_vma * | 
|  | hppa32_elf_local_refcounts (bfd *abfd) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  | bfd_signed_vma *local_refcounts; | 
|  |  | 
|  | local_refcounts = elf_local_got_refcounts (abfd); | 
|  | if (local_refcounts == NULL) | 
|  | { | 
|  | bfd_size_type size; | 
|  |  | 
|  | /* Allocate space for local GOT and PLT reference | 
|  | counts.  Done this way to save polluting elf_obj_tdata | 
|  | with another target specific pointer.  */ | 
|  | size = symtab_hdr->sh_info; | 
|  | size *= 2 * sizeof (bfd_signed_vma); | 
|  | /* Add in space to store the local GOT TLS types.  */ | 
|  | size += symtab_hdr->sh_info; | 
|  | local_refcounts = bfd_zalloc (abfd, size); | 
|  | if (local_refcounts == NULL) | 
|  | return NULL; | 
|  | elf_local_got_refcounts (abfd) = local_refcounts; | 
|  | memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN, | 
|  | symtab_hdr->sh_info); | 
|  | } | 
|  | return local_refcounts; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Look through the relocs for a section during the first phase, and | 
|  | calculate needed space in the global offset table, procedure linkage | 
|  | table, and dynamic reloc sections.  At this point we haven't | 
|  | necessarily read all the input files.  */ | 
|  |  | 
|  | static bool | 
|  | elf32_hppa_check_relocs (bfd *abfd, | 
|  | struct bfd_link_info *info, | 
|  | asection *sec, | 
|  | const Elf_Internal_Rela *relocs) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | struct elf_link_hash_entry **eh_syms; | 
|  | const Elf_Internal_Rela *rela; | 
|  | const Elf_Internal_Rela *rela_end; | 
|  | struct elf32_hppa_link_hash_table *htab; | 
|  | asection *sreloc; | 
|  |  | 
|  | if (bfd_link_relocatable (info)) | 
|  | return true; | 
|  |  | 
|  | htab = hppa_link_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return false; | 
|  | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  | eh_syms = elf_sym_hashes (abfd); | 
|  | sreloc = NULL; | 
|  |  | 
|  | rela_end = relocs + sec->reloc_count; | 
|  | for (rela = relocs; rela < rela_end; rela++) | 
|  | { | 
|  | enum { | 
|  | NEED_GOT = 1, | 
|  | NEED_PLT = 2, | 
|  | NEED_DYNREL = 4, | 
|  | PLT_PLABEL = 8 | 
|  | }; | 
|  |  | 
|  | unsigned int r_symndx, r_type; | 
|  | struct elf32_hppa_link_hash_entry *hh; | 
|  | int need_entry = 0; | 
|  |  | 
|  | r_symndx = ELF32_R_SYM (rela->r_info); | 
|  |  | 
|  | if (r_symndx < symtab_hdr->sh_info) | 
|  | hh = NULL; | 
|  | else | 
|  | { | 
|  | hh =  hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]); | 
|  | while (hh->eh.root.type == bfd_link_hash_indirect | 
|  | || hh->eh.root.type == bfd_link_hash_warning) | 
|  | hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); | 
|  | } | 
|  |  | 
|  | r_type = ELF32_R_TYPE (rela->r_info); | 
|  | r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL); | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | case R_PARISC_DLTIND14F: | 
|  | case R_PARISC_DLTIND14R: | 
|  | case R_PARISC_DLTIND21L: | 
|  | /* This symbol requires a global offset table entry.  */ | 
|  | need_entry = NEED_GOT; | 
|  | break; | 
|  |  | 
|  | case R_PARISC_PLABEL14R: /* "Official" procedure labels.  */ | 
|  | case R_PARISC_PLABEL21L: | 
|  | case R_PARISC_PLABEL32: | 
|  | /* If the addend is non-zero, we break badly.  */ | 
|  | if (rela->r_addend != 0) | 
|  | abort (); | 
|  |  | 
|  | /* If we are creating a shared library, then we need to | 
|  | create a PLT entry for all PLABELs, because PLABELs with | 
|  | local symbols may be passed via a pointer to another | 
|  | object.  Additionally, output a dynamic relocation | 
|  | pointing to the PLT entry. | 
|  |  | 
|  | For executables, the original 32-bit ABI allowed two | 
|  | different styles of PLABELs (function pointers):  For | 
|  | global functions, the PLABEL word points into the .plt | 
|  | two bytes past a (function address, gp) pair, and for | 
|  | local functions the PLABEL points directly at the | 
|  | function.  The magic +2 for the first type allows us to | 
|  | differentiate between the two.  As you can imagine, this | 
|  | is a real pain when it comes to generating code to call | 
|  | functions indirectly or to compare function pointers. | 
|  | We avoid the mess by always pointing a PLABEL into the | 
|  | .plt, even for local functions.  */ | 
|  | need_entry = PLT_PLABEL | NEED_PLT; | 
|  | if (bfd_link_pic (info)) | 
|  | need_entry |= NEED_DYNREL; | 
|  | break; | 
|  |  | 
|  | case R_PARISC_PCREL12F: | 
|  | htab->has_12bit_branch = 1; | 
|  | goto branch_common; | 
|  |  | 
|  | case R_PARISC_PCREL17C: | 
|  | case R_PARISC_PCREL17F: | 
|  | htab->has_17bit_branch = 1; | 
|  | goto branch_common; | 
|  |  | 
|  | case R_PARISC_PCREL22F: | 
|  | htab->has_22bit_branch = 1; | 
|  | branch_common: | 
|  | /* Function calls might need to go through the .plt, and | 
|  | might require long branch stubs.  */ | 
|  | if (hh == NULL) | 
|  | { | 
|  | /* We know local syms won't need a .plt entry, and if | 
|  | they need a long branch stub we can't guarantee that | 
|  | we can reach the stub.  So just flag an error later | 
|  | if we're doing a shared link and find we need a long | 
|  | branch stub.  */ | 
|  | continue; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Global symbols will need a .plt entry if they remain | 
|  | global, and in most cases won't need a long branch | 
|  | stub.  Unfortunately, we have to cater for the case | 
|  | where a symbol is forced local by versioning, or due | 
|  | to symbolic linking, and we lose the .plt entry.  */ | 
|  | need_entry = NEED_PLT; | 
|  | if (hh->eh.type == STT_PARISC_MILLI) | 
|  | need_entry = 0; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case R_PARISC_SEGBASE:  /* Used to set segment base.  */ | 
|  | case R_PARISC_SEGREL32: /* Relative reloc, used for unwind.  */ | 
|  | case R_PARISC_PCREL14F: /* PC relative load/store.  */ | 
|  | case R_PARISC_PCREL14R: | 
|  | case R_PARISC_PCREL17R: /* External branches.  */ | 
|  | case R_PARISC_PCREL21L: /* As above, and for load/store too.  */ | 
|  | case R_PARISC_PCREL32: | 
|  | /* We don't need to propagate the relocation if linking a | 
|  | shared object since these are section relative.  */ | 
|  | continue; | 
|  |  | 
|  | case R_PARISC_DPREL14F: /* Used for gp rel data load/store.  */ | 
|  | case R_PARISC_DPREL14R: | 
|  | case R_PARISC_DPREL21L: | 
|  | if (bfd_link_pic (info)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"), | 
|  | abfd, | 
|  | elf_hppa_howto_table[r_type].name); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  | /* Fall through.  */ | 
|  |  | 
|  | case R_PARISC_DIR17F: /* Used for external branches.  */ | 
|  | case R_PARISC_DIR17R: | 
|  | case R_PARISC_DIR14F: /* Used for load/store from absolute locn.  */ | 
|  | case R_PARISC_DIR14R: | 
|  | case R_PARISC_DIR21L: /* As above, and for ext branches too.  */ | 
|  | case R_PARISC_DIR32: /* .word relocs.  */ | 
|  | /* We may want to output a dynamic relocation later.  */ | 
|  | need_entry = NEED_DYNREL; | 
|  | break; | 
|  |  | 
|  | /* This relocation describes the C++ object vtable hierarchy. | 
|  | Reconstruct it for later use during GC.  */ | 
|  | case R_PARISC_GNU_VTINHERIT: | 
|  | if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset)) | 
|  | return false; | 
|  | continue; | 
|  |  | 
|  | /* This relocation describes which C++ vtable entries are actually | 
|  | used.  Record for later use during GC.  */ | 
|  | case R_PARISC_GNU_VTENTRY: | 
|  | if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend)) | 
|  | return false; | 
|  | continue; | 
|  |  | 
|  | case R_PARISC_TLS_GD21L: | 
|  | case R_PARISC_TLS_GD14R: | 
|  | case R_PARISC_TLS_LDM21L: | 
|  | case R_PARISC_TLS_LDM14R: | 
|  | need_entry = NEED_GOT; | 
|  | break; | 
|  |  | 
|  | case R_PARISC_TLS_IE21L: | 
|  | case R_PARISC_TLS_IE14R: | 
|  | if (bfd_link_dll (info)) | 
|  | info->flags |= DF_STATIC_TLS; | 
|  | need_entry = NEED_GOT; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Now carry out our orders.  */ | 
|  | if (need_entry & NEED_GOT) | 
|  | { | 
|  | int tls_type = GOT_NORMAL; | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | default: | 
|  | break; | 
|  | case R_PARISC_TLS_GD21L: | 
|  | case R_PARISC_TLS_GD14R: | 
|  | tls_type = GOT_TLS_GD; | 
|  | break; | 
|  | case R_PARISC_TLS_LDM21L: | 
|  | case R_PARISC_TLS_LDM14R: | 
|  | tls_type = GOT_TLS_LDM; | 
|  | break; | 
|  | case R_PARISC_TLS_IE21L: | 
|  | case R_PARISC_TLS_IE14R: | 
|  | tls_type = GOT_TLS_IE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Allocate space for a GOT entry, as well as a dynamic | 
|  | relocation for this entry.  */ | 
|  | if (htab->etab.sgot == NULL) | 
|  | { | 
|  | if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (hh != NULL) | 
|  | { | 
|  | if (tls_type == GOT_TLS_LDM) | 
|  | htab->tls_ldm_got.refcount += 1; | 
|  | else | 
|  | hh->eh.got.refcount += 1; | 
|  | hh->tls_type |= tls_type; | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_signed_vma *local_got_refcounts; | 
|  |  | 
|  | /* This is a global offset table entry for a local symbol.  */ | 
|  | local_got_refcounts = hppa32_elf_local_refcounts (abfd); | 
|  | if (local_got_refcounts == NULL) | 
|  | return false; | 
|  | if (tls_type == GOT_TLS_LDM) | 
|  | htab->tls_ldm_got.refcount += 1; | 
|  | else | 
|  | local_got_refcounts[r_symndx] += 1; | 
|  |  | 
|  | hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (need_entry & NEED_PLT) | 
|  | { | 
|  | /* If we are creating a shared library, and this is a reloc | 
|  | against a weak symbol or a global symbol in a dynamic | 
|  | object, then we will be creating an import stub and a | 
|  | .plt entry for the symbol.  Similarly, on a normal link | 
|  | to symbols defined in a dynamic object we'll need the | 
|  | import stub and a .plt entry.  We don't know yet whether | 
|  | the symbol is defined or not, so make an entry anyway and | 
|  | clean up later in adjust_dynamic_symbol.  */ | 
|  | if ((sec->flags & SEC_ALLOC) != 0) | 
|  | { | 
|  | if (hh != NULL) | 
|  | { | 
|  | hh->eh.needs_plt = 1; | 
|  | hh->eh.plt.refcount += 1; | 
|  |  | 
|  | /* If this .plt entry is for a plabel, mark it so | 
|  | that adjust_dynamic_symbol will keep the entry | 
|  | even if it appears to be local.  */ | 
|  | if (need_entry & PLT_PLABEL) | 
|  | hh->plabel = 1; | 
|  | } | 
|  | else if (need_entry & PLT_PLABEL) | 
|  | { | 
|  | bfd_signed_vma *local_got_refcounts; | 
|  | bfd_signed_vma *local_plt_refcounts; | 
|  |  | 
|  | local_got_refcounts = hppa32_elf_local_refcounts (abfd); | 
|  | if (local_got_refcounts == NULL) | 
|  | return false; | 
|  | local_plt_refcounts = (local_got_refcounts | 
|  | + symtab_hdr->sh_info); | 
|  | local_plt_refcounts[r_symndx] += 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((need_entry & NEED_DYNREL) != 0 | 
|  | && (sec->flags & SEC_ALLOC) != 0) | 
|  | { | 
|  | /* Flag this symbol as having a non-got, non-plt reference | 
|  | so that we generate copy relocs if it turns out to be | 
|  | dynamic.  */ | 
|  | if (hh != NULL) | 
|  | hh->eh.non_got_ref = 1; | 
|  |  | 
|  | /* If we are creating a shared library then we need to copy | 
|  | the reloc into the shared library.  However, if we are | 
|  | linking with -Bsymbolic, we need only copy absolute | 
|  | relocs or relocs against symbols that are not defined in | 
|  | an object we are including in the link.  PC- or DP- or | 
|  | DLT-relative relocs against any local sym or global sym | 
|  | with DEF_REGULAR set, can be discarded.  At this point we | 
|  | have not seen all the input files, so it is possible that | 
|  | DEF_REGULAR is not set now but will be set later (it is | 
|  | never cleared).  We account for that possibility below by | 
|  | storing information in the dyn_relocs field of the | 
|  | hash table entry. | 
|  |  | 
|  | A similar situation to the -Bsymbolic case occurs when | 
|  | creating shared libraries and symbol visibility changes | 
|  | render the symbol local. | 
|  |  | 
|  | As it turns out, all the relocs we will be creating here | 
|  | are absolute, so we cannot remove them on -Bsymbolic | 
|  | links or visibility changes anyway.  A STUB_REL reloc | 
|  | is absolute too, as in that case it is the reloc in the | 
|  | stub we will be creating, rather than copying the PCREL | 
|  | reloc in the branch. | 
|  |  | 
|  | If on the other hand, we are creating an executable, we | 
|  | may need to keep relocations for symbols satisfied by a | 
|  | dynamic library if we manage to avoid copy relocs for the | 
|  | symbol.  */ | 
|  | if ((bfd_link_pic (info) | 
|  | && (IS_ABSOLUTE_RELOC (r_type) | 
|  | || (hh != NULL | 
|  | && (!SYMBOLIC_BIND (info, &hh->eh) | 
|  | || hh->eh.root.type == bfd_link_hash_defweak | 
|  | || !hh->eh.def_regular)))) | 
|  | || (ELIMINATE_COPY_RELOCS | 
|  | && !bfd_link_pic (info) | 
|  | && hh != NULL | 
|  | && (hh->eh.root.type == bfd_link_hash_defweak | 
|  | || !hh->eh.def_regular))) | 
|  | { | 
|  | struct elf_dyn_relocs *hdh_p; | 
|  | struct elf_dyn_relocs **hdh_head; | 
|  |  | 
|  | /* Create a reloc section in dynobj and make room for | 
|  | this reloc.  */ | 
|  | if (sreloc == NULL) | 
|  | { | 
|  | sreloc = _bfd_elf_make_dynamic_reloc_section | 
|  | (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ true); | 
|  |  | 
|  | if (sreloc == NULL) | 
|  | { | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If this is a global symbol, we count the number of | 
|  | relocations we need for this symbol.  */ | 
|  | if (hh != NULL) | 
|  | { | 
|  | hdh_head = &hh->eh.dyn_relocs; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Track dynamic relocs needed for local syms too. | 
|  | We really need local syms available to do this | 
|  | easily.  Oh well.  */ | 
|  | asection *sr; | 
|  | void *vpp; | 
|  | Elf_Internal_Sym *isym; | 
|  |  | 
|  | isym = bfd_sym_from_r_symndx (&htab->etab.sym_cache, | 
|  | abfd, r_symndx); | 
|  | if (isym == NULL) | 
|  | return false; | 
|  |  | 
|  | sr = bfd_section_from_elf_index (abfd, isym->st_shndx); | 
|  | if (sr == NULL) | 
|  | sr = sec; | 
|  |  | 
|  | vpp = &elf_section_data (sr)->local_dynrel; | 
|  | hdh_head = (struct elf_dyn_relocs **) vpp; | 
|  | } | 
|  |  | 
|  | hdh_p = *hdh_head; | 
|  | if (hdh_p == NULL || hdh_p->sec != sec) | 
|  | { | 
|  | hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p); | 
|  | if (hdh_p == NULL) | 
|  | return false; | 
|  | hdh_p->next = *hdh_head; | 
|  | *hdh_head = hdh_p; | 
|  | hdh_p->sec = sec; | 
|  | hdh_p->count = 0; | 
|  | #if RELATIVE_DYNRELOCS | 
|  | hdh_p->pc_count = 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | hdh_p->count += 1; | 
|  | #if RELATIVE_DYNRELOCS | 
|  | if (!IS_ABSOLUTE_RELOC (rtype)) | 
|  | hdh_p->pc_count += 1; | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return the section that should be marked against garbage collection | 
|  | for a given relocation.  */ | 
|  |  | 
|  | static asection * | 
|  | elf32_hppa_gc_mark_hook (asection *sec, | 
|  | struct bfd_link_info *info, | 
|  | Elf_Internal_Rela *rela, | 
|  | struct elf_link_hash_entry *hh, | 
|  | Elf_Internal_Sym *sym) | 
|  | { | 
|  | if (hh != NULL) | 
|  | switch ((unsigned int) ELF32_R_TYPE (rela->r_info)) | 
|  | { | 
|  | case R_PARISC_GNU_VTINHERIT: | 
|  | case R_PARISC_GNU_VTENTRY: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym); | 
|  | } | 
|  |  | 
|  | /* Support for core dump NOTE sections.  */ | 
|  |  | 
|  | static bool | 
|  | elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | int offset; | 
|  | size_t size; | 
|  |  | 
|  | switch (note->descsz) | 
|  | { | 
|  | default: | 
|  | return false; | 
|  |  | 
|  | case 396:		/* Linux/hppa */ | 
|  | /* pr_cursig */ | 
|  | elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); | 
|  |  | 
|  | /* pr_pid */ | 
|  | elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); | 
|  |  | 
|  | /* pr_reg */ | 
|  | offset = 72; | 
|  | size = 320; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Make a ".reg/999" section.  */ | 
|  | return _bfd_elfcore_make_pseudosection (abfd, ".reg", | 
|  | size, note->descpos + offset); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | switch (note->descsz) | 
|  | { | 
|  | default: | 
|  | return false; | 
|  |  | 
|  | case 124:		/* Linux/hppa elf_prpsinfo.  */ | 
|  | elf_tdata (abfd)->core->program | 
|  | = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); | 
|  | elf_tdata (abfd)->core->command | 
|  | = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); | 
|  | } | 
|  |  | 
|  | /* Note that for some reason, a spurious space is tacked | 
|  | onto the end of the args in some (at least one anyway) | 
|  | implementations, so strip it off if it exists.  */ | 
|  | { | 
|  | char *command = elf_tdata (abfd)->core->command; | 
|  | int n = strlen (command); | 
|  |  | 
|  | if (0 < n && command[n - 1] == ' ') | 
|  | command[n - 1] = '\0'; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Our own version of hide_symbol, so that we can keep plt entries for | 
|  | plabels.  */ | 
|  |  | 
|  | static void | 
|  | elf32_hppa_hide_symbol (struct bfd_link_info *info, | 
|  | struct elf_link_hash_entry *eh, | 
|  | bool force_local) | 
|  | { | 
|  | if (force_local) | 
|  | { | 
|  | eh->forced_local = 1; | 
|  | if (eh->dynindx != -1) | 
|  | { | 
|  | eh->dynindx = -1; | 
|  | _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, | 
|  | eh->dynstr_index); | 
|  | } | 
|  |  | 
|  | /* PR 16082: Remove version information from hidden symbol.  */ | 
|  | eh->verinfo.verdef = NULL; | 
|  | eh->verinfo.vertree = NULL; | 
|  | } | 
|  |  | 
|  | /* STT_GNU_IFUNC symbol must go through PLT.  */ | 
|  | if (! hppa_elf_hash_entry (eh)->plabel | 
|  | && eh->type != STT_GNU_IFUNC) | 
|  | { | 
|  | eh->needs_plt = 0; | 
|  | eh->plt = elf_hash_table (info)->init_plt_offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return true if we have dynamic relocs against H or any of its weak | 
|  | aliases, that apply to read-only sections.  Cannot be used after | 
|  | size_dynamic_sections.  */ | 
|  |  | 
|  | static bool | 
|  | alias_readonly_dynrelocs (struct elf_link_hash_entry *eh) | 
|  | { | 
|  | struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); | 
|  | do | 
|  | { | 
|  | if (_bfd_elf_readonly_dynrelocs (&hh->eh)) | 
|  | return true; | 
|  | hh = hppa_elf_hash_entry (hh->eh.u.alias); | 
|  | } while (hh != NULL && &hh->eh != eh); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Adjust a symbol defined by a dynamic object and referenced by a | 
|  | regular object.  The current definition is in some section of the | 
|  | dynamic object, but we're not including those sections.  We have to | 
|  | change the definition to something the rest of the link can | 
|  | understand.  */ | 
|  |  | 
|  | static bool | 
|  | elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info, | 
|  | struct elf_link_hash_entry *eh) | 
|  | { | 
|  | struct elf32_hppa_link_hash_table *htab; | 
|  | asection *sec, *srel; | 
|  |  | 
|  | /* If this is a function, put it in the procedure linkage table.  We | 
|  | will fill in the contents of the procedure linkage table later.  */ | 
|  | if (eh->type == STT_FUNC | 
|  | || eh->needs_plt) | 
|  | { | 
|  | bool local = (SYMBOL_CALLS_LOCAL (info, eh) | 
|  | || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)); | 
|  | /* Discard dyn_relocs when non-pic if we've decided that a | 
|  | function symbol is local.  */ | 
|  | if (!bfd_link_pic (info) && local) | 
|  | eh->dyn_relocs = NULL; | 
|  |  | 
|  | /* If the symbol is used by a plabel, we must allocate a PLT slot. | 
|  | The refcounts are not reliable when it has been hidden since | 
|  | hide_symbol can be called before the plabel flag is set.  */ | 
|  | if (hppa_elf_hash_entry (eh)->plabel) | 
|  | eh->plt.refcount = 1; | 
|  |  | 
|  | /* Note that unlike some other backends, the refcount is not | 
|  | incremented for a non-call (and non-plabel) function reference.  */ | 
|  | else if (eh->plt.refcount <= 0 | 
|  | || local) | 
|  | { | 
|  | /* The .plt entry is not needed when: | 
|  | a) Garbage collection has removed all references to the | 
|  | symbol, or | 
|  | b) We know for certain the symbol is defined in this | 
|  | object, and it's not a weak definition, nor is the symbol | 
|  | used by a plabel relocation.  Either this object is the | 
|  | application or we are doing a shared symbolic link.  */ | 
|  | eh->plt.offset = (bfd_vma) -1; | 
|  | eh->needs_plt = 0; | 
|  | } | 
|  |  | 
|  | /* Unlike other targets, elf32-hppa.c does not define a function | 
|  | symbol in a non-pic executable on PLT stub code, so we don't | 
|  | have a local definition in that case.  ie. dyn_relocs can't | 
|  | be discarded.  */ | 
|  |  | 
|  | /* Function symbols can't have copy relocs.  */ | 
|  | return true; | 
|  | } | 
|  | else | 
|  | eh->plt.offset = (bfd_vma) -1; | 
|  |  | 
|  | htab = hppa_link_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return false; | 
|  |  | 
|  | /* If this is a weak symbol, and there is a real definition, the | 
|  | processor independent code will have arranged for us to see the | 
|  | real definition first, and we can just use the same value.  */ | 
|  | if (eh->is_weakalias) | 
|  | { | 
|  | struct elf_link_hash_entry *def = weakdef (eh); | 
|  | BFD_ASSERT (def->root.type == bfd_link_hash_defined); | 
|  | eh->root.u.def.section = def->root.u.def.section; | 
|  | eh->root.u.def.value = def->root.u.def.value; | 
|  | if (def->root.u.def.section == htab->etab.sdynbss | 
|  | || def->root.u.def.section == htab->etab.sdynrelro) | 
|  | eh->dyn_relocs = NULL; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* This is a reference to a symbol defined by a dynamic object which | 
|  | is not a function.  */ | 
|  |  | 
|  | /* If we are creating a shared library, we must presume that the | 
|  | only references to the symbol are via the global offset table. | 
|  | For such cases we need not do anything here; the relocations will | 
|  | be handled correctly by relocate_section.  */ | 
|  | if (bfd_link_pic (info)) | 
|  | return true; | 
|  |  | 
|  | /* If there are no references to this symbol that do not use the | 
|  | GOT, we don't need to generate a copy reloc.  */ | 
|  | if (!eh->non_got_ref) | 
|  | return true; | 
|  |  | 
|  | /* If -z nocopyreloc was given, we won't generate them either.  */ | 
|  | if (info->nocopyreloc) | 
|  | return true; | 
|  |  | 
|  | /* If we don't find any dynamic relocs in read-only sections, then | 
|  | we'll be keeping the dynamic relocs and avoiding the copy reloc.  */ | 
|  | if (ELIMINATE_COPY_RELOCS | 
|  | && !alias_readonly_dynrelocs (eh)) | 
|  | return true; | 
|  |  | 
|  | /* We must allocate the symbol in our .dynbss section, which will | 
|  | become part of the .bss section of the executable.  There will be | 
|  | an entry for this symbol in the .dynsym section.  The dynamic | 
|  | object will contain position independent code, so all references | 
|  | from the dynamic object to this symbol will go through the global | 
|  | offset table.  The dynamic linker will use the .dynsym entry to | 
|  | determine the address it must put in the global offset table, so | 
|  | both the dynamic object and the regular object will refer to the | 
|  | same memory location for the variable.  */ | 
|  | if ((eh->root.u.def.section->flags & SEC_READONLY) != 0) | 
|  | { | 
|  | sec = htab->etab.sdynrelro; | 
|  | srel = htab->etab.sreldynrelro; | 
|  | } | 
|  | else | 
|  | { | 
|  | sec = htab->etab.sdynbss; | 
|  | srel = htab->etab.srelbss; | 
|  | } | 
|  | if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0) | 
|  | { | 
|  | /* We must generate a COPY reloc to tell the dynamic linker to | 
|  | copy the initial value out of the dynamic object and into the | 
|  | runtime process image.  */ | 
|  | srel->size += sizeof (Elf32_External_Rela); | 
|  | eh->needs_copy = 1; | 
|  | } | 
|  |  | 
|  | /* We no longer want dyn_relocs.  */ | 
|  | eh->dyn_relocs = NULL; | 
|  | return _bfd_elf_adjust_dynamic_copy (info, eh, sec); | 
|  | } | 
|  |  | 
|  | /* If EH is undefined, make it dynamic if that makes sense.  */ | 
|  |  | 
|  | static bool | 
|  | ensure_undef_dynamic (struct bfd_link_info *info, | 
|  | struct elf_link_hash_entry *eh) | 
|  | { | 
|  | struct elf_link_hash_table *htab = elf_hash_table (info); | 
|  |  | 
|  | if (htab->dynamic_sections_created | 
|  | && (eh->root.type == bfd_link_hash_undefweak | 
|  | || eh->root.type == bfd_link_hash_undefined) | 
|  | && eh->dynindx == -1 | 
|  | && !eh->forced_local | 
|  | && eh->type != STT_PARISC_MILLI | 
|  | && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh) | 
|  | && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT) | 
|  | return bfd_elf_link_record_dynamic_symbol (info, eh); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Allocate space in the .plt for entries that won't have relocations. | 
|  | ie. plabel entries.  */ | 
|  |  | 
|  | static bool | 
|  | allocate_plt_static (struct elf_link_hash_entry *eh, void *inf) | 
|  | { | 
|  | struct bfd_link_info *info; | 
|  | struct elf32_hppa_link_hash_table *htab; | 
|  | struct elf32_hppa_link_hash_entry *hh; | 
|  | asection *sec; | 
|  |  | 
|  | if (eh->root.type == bfd_link_hash_indirect) | 
|  | return true; | 
|  |  | 
|  | info = (struct bfd_link_info *) inf; | 
|  | hh = hppa_elf_hash_entry (eh); | 
|  | htab = hppa_link_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return false; | 
|  |  | 
|  | if (htab->etab.dynamic_sections_created | 
|  | && eh->plt.refcount > 0) | 
|  | { | 
|  | if (!ensure_undef_dynamic (info, eh)) | 
|  | return false; | 
|  |  | 
|  | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh)) | 
|  | { | 
|  | /* Allocate these later.  From this point on, h->plabel | 
|  | means that the plt entry is only used by a plabel. | 
|  | We'll be using a normal plt entry for this symbol, so | 
|  | clear the plabel indicator.  */ | 
|  |  | 
|  | hh->plabel = 0; | 
|  | } | 
|  | else if (hh->plabel) | 
|  | { | 
|  | /* Make an entry in the .plt section for plabel references | 
|  | that won't have a .plt entry for other reasons.  */ | 
|  | sec = htab->etab.splt; | 
|  | eh->plt.offset = sec->size; | 
|  | sec->size += PLT_ENTRY_SIZE; | 
|  | if (bfd_link_pic (info)) | 
|  | htab->etab.srelplt->size += sizeof (Elf32_External_Rela); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* No .plt entry needed.  */ | 
|  | eh->plt.offset = (bfd_vma) -1; | 
|  | eh->needs_plt = 0; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | eh->plt.offset = (bfd_vma) -1; | 
|  | eh->needs_plt = 0; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Calculate size of GOT entries for symbol given its TLS_TYPE.  */ | 
|  |  | 
|  | static inline unsigned int | 
|  | got_entries_needed (int tls_type) | 
|  | { | 
|  | unsigned int need = 0; | 
|  |  | 
|  | if ((tls_type & GOT_NORMAL) != 0) | 
|  | need += GOT_ENTRY_SIZE; | 
|  | if ((tls_type & GOT_TLS_GD) != 0) | 
|  | need += GOT_ENTRY_SIZE * 2; | 
|  | if ((tls_type & GOT_TLS_IE) != 0) | 
|  | need += GOT_ENTRY_SIZE; | 
|  | return need; | 
|  | } | 
|  |  | 
|  | /* Calculate size of relocs needed for symbol given its TLS_TYPE and | 
|  | NEEDed GOT entries.  TPREL_KNOWN says a TPREL offset can be | 
|  | calculated at link time.  DTPREL_KNOWN says the same for a DTPREL | 
|  | offset.  */ | 
|  |  | 
|  | static inline unsigned int | 
|  | got_relocs_needed (int tls_type, unsigned int need, | 
|  | bool dtprel_known, bool tprel_known) | 
|  | { | 
|  | /* All the entries we allocated need relocs. | 
|  | Except for GD and IE with local symbols.  */ | 
|  | if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known) | 
|  | need -= GOT_ENTRY_SIZE; | 
|  | if ((tls_type & GOT_TLS_IE) != 0 && tprel_known) | 
|  | need -= GOT_ENTRY_SIZE; | 
|  | return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE; | 
|  | } | 
|  |  | 
|  | /* Allocate space in .plt, .got and associated reloc sections for | 
|  | global syms.  */ | 
|  |  | 
|  | static bool | 
|  | allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf) | 
|  | { | 
|  | struct bfd_link_info *info; | 
|  | struct elf32_hppa_link_hash_table *htab; | 
|  | asection *sec; | 
|  | struct elf32_hppa_link_hash_entry *hh; | 
|  | struct elf_dyn_relocs *hdh_p; | 
|  |  | 
|  | if (eh->root.type == bfd_link_hash_indirect) | 
|  | return true; | 
|  |  | 
|  | info = inf; | 
|  | htab = hppa_link_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return false; | 
|  |  | 
|  | hh = hppa_elf_hash_entry (eh); | 
|  |  | 
|  | if (htab->etab.dynamic_sections_created | 
|  | && eh->plt.offset != (bfd_vma) -1 | 
|  | && !hh->plabel | 
|  | && eh->plt.refcount > 0) | 
|  | { | 
|  | /* Make an entry in the .plt section.  */ | 
|  | sec = htab->etab.splt; | 
|  | eh->plt.offset = sec->size; | 
|  | sec->size += PLT_ENTRY_SIZE; | 
|  |  | 
|  | /* We also need to make an entry in the .rela.plt section.  */ | 
|  | htab->etab.srelplt->size += sizeof (Elf32_External_Rela); | 
|  | htab->need_plt_stub = 1; | 
|  | } | 
|  |  | 
|  | if (eh->got.refcount > 0) | 
|  | { | 
|  | unsigned int need; | 
|  |  | 
|  | if (!ensure_undef_dynamic (info, eh)) | 
|  | return false; | 
|  |  | 
|  | sec = htab->etab.sgot; | 
|  | eh->got.offset = sec->size; | 
|  | need = got_entries_needed (hh->tls_type); | 
|  | sec->size += need; | 
|  | if (htab->etab.dynamic_sections_created | 
|  | && (bfd_link_dll (info) | 
|  | || (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0) | 
|  | || (eh->dynindx != -1 | 
|  | && !SYMBOL_REFERENCES_LOCAL (info, eh))) | 
|  | && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)) | 
|  | { | 
|  | bool local = SYMBOL_REFERENCES_LOCAL (info, eh); | 
|  | htab->etab.srelgot->size | 
|  | += got_relocs_needed (hh->tls_type, need, local, | 
|  | local && bfd_link_executable (info)); | 
|  | } | 
|  | } | 
|  | else | 
|  | eh->got.offset = (bfd_vma) -1; | 
|  |  | 
|  | /* If no dynamic sections we can't have dynamic relocs.  */ | 
|  | if (!htab->etab.dynamic_sections_created) | 
|  | eh->dyn_relocs = NULL; | 
|  |  | 
|  | /* Discard relocs on undefined syms with non-default visibility.  */ | 
|  | else if ((eh->root.type == bfd_link_hash_undefined | 
|  | && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT) | 
|  | || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)) | 
|  | eh->dyn_relocs = NULL; | 
|  |  | 
|  | if (eh->dyn_relocs == NULL) | 
|  | return true; | 
|  |  | 
|  | /* If this is a -Bsymbolic shared link, then we need to discard all | 
|  | space allocated for dynamic pc-relative relocs against symbols | 
|  | defined in a regular object.  For the normal shared case, discard | 
|  | space for relocs that have become local due to symbol visibility | 
|  | changes.  */ | 
|  | if (bfd_link_pic (info)) | 
|  | { | 
|  | #if RELATIVE_DYNRELOCS | 
|  | if (SYMBOL_CALLS_LOCAL (info, eh)) | 
|  | { | 
|  | struct elf_dyn_relocs **hdh_pp; | 
|  |  | 
|  | for (hdh_pp = &eh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; ) | 
|  | { | 
|  | hdh_p->count -= hdh_p->pc_count; | 
|  | hdh_p->pc_count = 0; | 
|  | if (hdh_p->count == 0) | 
|  | *hdh_pp = hdh_p->next; | 
|  | else | 
|  | hdh_pp = &hdh_p->next; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (eh->dyn_relocs != NULL) | 
|  | { | 
|  | if (!ensure_undef_dynamic (info, eh)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | else if (ELIMINATE_COPY_RELOCS) | 
|  | { | 
|  | /* For the non-shared case, discard space for relocs against | 
|  | symbols which turn out to need copy relocs or are not | 
|  | dynamic.  */ | 
|  |  | 
|  | if (eh->dynamic_adjusted | 
|  | && !eh->def_regular | 
|  | && !ELF_COMMON_DEF_P (eh)) | 
|  | { | 
|  | if (!ensure_undef_dynamic (info, eh)) | 
|  | return false; | 
|  |  | 
|  | if (eh->dynindx == -1) | 
|  | eh->dyn_relocs = NULL; | 
|  | } | 
|  | else | 
|  | eh->dyn_relocs = NULL; | 
|  | } | 
|  |  | 
|  | /* Finally, allocate space.  */ | 
|  | for (hdh_p = eh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next) | 
|  | { | 
|  | asection *sreloc = elf_section_data (hdh_p->sec)->sreloc; | 
|  | sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* This function is called via elf_link_hash_traverse to force | 
|  | millicode symbols local so they do not end up as globals in the | 
|  | dynamic symbol table.  We ought to be able to do this in | 
|  | adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called | 
|  | for all dynamic symbols.  Arguably, this is a bug in | 
|  | elf_adjust_dynamic_symbol.  */ | 
|  |  | 
|  | static bool | 
|  | clobber_millicode_symbols (struct elf_link_hash_entry *eh, | 
|  | void *info) | 
|  | { | 
|  | if (eh->type == STT_PARISC_MILLI | 
|  | && !eh->forced_local) | 
|  | elf32_hppa_hide_symbol ((struct bfd_link_info *) info, eh, true); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Set the sizes of the dynamic sections.  */ | 
|  |  | 
|  | static bool | 
|  | elf32_hppa_late_size_sections (bfd *output_bfd ATTRIBUTE_UNUSED, | 
|  | struct bfd_link_info *info) | 
|  | { | 
|  | struct elf32_hppa_link_hash_table *htab; | 
|  | bfd *dynobj; | 
|  | bfd *ibfd; | 
|  | asection *sec; | 
|  | bool relocs; | 
|  |  | 
|  | htab = hppa_link_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return false; | 
|  |  | 
|  | dynobj = htab->etab.dynobj; | 
|  | if (dynobj == NULL) | 
|  | return true; | 
|  |  | 
|  | if (htab->etab.dynamic_sections_created) | 
|  | { | 
|  | /* Set the contents of the .interp section to the interpreter.  */ | 
|  | if (bfd_link_executable (info) && !info->nointerp) | 
|  | { | 
|  | sec = bfd_get_linker_section (dynobj, ".interp"); | 
|  | if (sec == NULL) | 
|  | abort (); | 
|  | sec->size = sizeof ELF_DYNAMIC_INTERPRETER; | 
|  | sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; | 
|  | sec->alloced = 1; | 
|  | } | 
|  |  | 
|  | /* Force millicode symbols local.  */ | 
|  | elf_link_hash_traverse (&htab->etab, | 
|  | clobber_millicode_symbols, | 
|  | info); | 
|  | } | 
|  |  | 
|  | /* Set up .got and .plt offsets for local syms, and space for local | 
|  | dynamic relocs.  */ | 
|  | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) | 
|  | { | 
|  | bfd_signed_vma *local_got; | 
|  | bfd_signed_vma *end_local_got; | 
|  | bfd_signed_vma *local_plt; | 
|  | bfd_signed_vma *end_local_plt; | 
|  | bfd_size_type locsymcount; | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | asection *srel; | 
|  | char *local_tls_type; | 
|  |  | 
|  | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) | 
|  | continue; | 
|  |  | 
|  | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | 
|  | { | 
|  | struct elf_dyn_relocs *hdh_p; | 
|  |  | 
|  | for (hdh_p = ((struct elf_dyn_relocs *) | 
|  | elf_section_data (sec)->local_dynrel); | 
|  | hdh_p != NULL; | 
|  | hdh_p = hdh_p->next) | 
|  | { | 
|  | if (!bfd_is_abs_section (hdh_p->sec) | 
|  | && bfd_is_abs_section (hdh_p->sec->output_section)) | 
|  | { | 
|  | /* Input section has been discarded, either because | 
|  | it is a copy of a linkonce section or due to | 
|  | linker script /DISCARD/, so we'll be discarding | 
|  | the relocs too.  */ | 
|  | } | 
|  | else if (hdh_p->count != 0) | 
|  | { | 
|  | srel = elf_section_data (hdh_p->sec)->sreloc; | 
|  | srel->size += hdh_p->count * sizeof (Elf32_External_Rela); | 
|  | if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0) | 
|  | info->flags |= DF_TEXTREL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | local_got = elf_local_got_refcounts (ibfd); | 
|  | if (!local_got) | 
|  | continue; | 
|  |  | 
|  | symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; | 
|  | locsymcount = symtab_hdr->sh_info; | 
|  | end_local_got = local_got + locsymcount; | 
|  | local_tls_type = hppa_elf_local_got_tls_type (ibfd); | 
|  | sec = htab->etab.sgot; | 
|  | srel = htab->etab.srelgot; | 
|  | for (; local_got < end_local_got; ++local_got) | 
|  | { | 
|  | if (*local_got > 0) | 
|  | { | 
|  | unsigned int need; | 
|  |  | 
|  | *local_got = sec->size; | 
|  | need = got_entries_needed (*local_tls_type); | 
|  | sec->size += need; | 
|  | if (bfd_link_dll (info) | 
|  | || (bfd_link_pic (info) | 
|  | && (*local_tls_type & GOT_NORMAL) != 0)) | 
|  | htab->etab.srelgot->size | 
|  | += got_relocs_needed (*local_tls_type, need, true, | 
|  | bfd_link_executable (info)); | 
|  | } | 
|  | else | 
|  | *local_got = (bfd_vma) -1; | 
|  |  | 
|  | ++local_tls_type; | 
|  | } | 
|  |  | 
|  | local_plt = end_local_got; | 
|  | end_local_plt = local_plt + locsymcount; | 
|  | if (! htab->etab.dynamic_sections_created) | 
|  | { | 
|  | /* Won't be used, but be safe.  */ | 
|  | for (; local_plt < end_local_plt; ++local_plt) | 
|  | *local_plt = (bfd_vma) -1; | 
|  | } | 
|  | else | 
|  | { | 
|  | sec = htab->etab.splt; | 
|  | srel = htab->etab.srelplt; | 
|  | for (; local_plt < end_local_plt; ++local_plt) | 
|  | { | 
|  | if (*local_plt > 0) | 
|  | { | 
|  | *local_plt = sec->size; | 
|  | sec->size += PLT_ENTRY_SIZE; | 
|  | if (bfd_link_pic (info)) | 
|  | srel->size += sizeof (Elf32_External_Rela); | 
|  | } | 
|  | else | 
|  | *local_plt = (bfd_vma) -1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (htab->tls_ldm_got.refcount > 0) | 
|  | { | 
|  | /* Allocate 2 got entries and 1 dynamic reloc for | 
|  | R_PARISC_TLS_DTPMOD32 relocs.  */ | 
|  | htab->tls_ldm_got.offset = htab->etab.sgot->size; | 
|  | htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2); | 
|  | htab->etab.srelgot->size += sizeof (Elf32_External_Rela); | 
|  | } | 
|  | else | 
|  | htab->tls_ldm_got.offset = -1; | 
|  |  | 
|  | /* Do all the .plt entries without relocs first.  The dynamic linker | 
|  | uses the last .plt reloc to find the end of the .plt (and hence | 
|  | the start of the .got) for lazy linking.  */ | 
|  | elf_link_hash_traverse (&htab->etab, allocate_plt_static, info); | 
|  |  | 
|  | /* Allocate global sym .plt and .got entries, and space for global | 
|  | sym dynamic relocs.  */ | 
|  | elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info); | 
|  |  | 
|  | /* The check_relocs and adjust_dynamic_symbol entry points have | 
|  | determined the sizes of the various dynamic sections.  Allocate | 
|  | memory for them.  */ | 
|  | relocs = false; | 
|  | for (sec = dynobj->sections; sec != NULL; sec = sec->next) | 
|  | { | 
|  | if ((sec->flags & SEC_LINKER_CREATED) == 0) | 
|  | continue; | 
|  |  | 
|  | if (sec == htab->etab.splt) | 
|  | { | 
|  | if (htab->need_plt_stub) | 
|  | { | 
|  | /* Make space for the plt stub at the end of the .plt | 
|  | section.  We want this stub right at the end, up | 
|  | against the .got section.  */ | 
|  | int gotalign = bfd_section_alignment (htab->etab.sgot); | 
|  | int align = gotalign > 3 ? gotalign : 3; | 
|  | bfd_size_type mask; | 
|  |  | 
|  | (void) bfd_link_align_section (sec, align); | 
|  | mask = ((bfd_size_type) 1 << gotalign) - 1; | 
|  | sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask; | 
|  | } | 
|  | } | 
|  | else if (sec == htab->etab.sgot | 
|  | || sec == htab->etab.sdynbss | 
|  | || sec == htab->etab.sdynrelro) | 
|  | ; | 
|  | else if (startswith (bfd_section_name (sec), ".rela")) | 
|  | { | 
|  | if (sec->size != 0) | 
|  | { | 
|  | /* Remember whether there are any reloc sections other | 
|  | than .rela.plt.  */ | 
|  | if (sec != htab->etab.srelplt) | 
|  | relocs = true; | 
|  |  | 
|  | /* We use the reloc_count field as a counter if we need | 
|  | to copy relocs into the output file.  */ | 
|  | sec->reloc_count = 0; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* It's not one of our sections, so don't allocate space.  */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (sec->size == 0) | 
|  | { | 
|  | /* If we don't need this section, strip it from the | 
|  | output file.  This is mostly to handle .rela.bss and | 
|  | .rela.plt.  We must create both sections in | 
|  | create_dynamic_sections, because they must be created | 
|  | before the linker maps input sections to output | 
|  | sections.  The linker does that before | 
|  | adjust_dynamic_symbol is called, and it is that | 
|  | function which decides whether anything needs to go | 
|  | into these sections.  */ | 
|  | sec->flags |= SEC_EXCLUDE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((sec->flags & SEC_HAS_CONTENTS) == 0) | 
|  | continue; | 
|  |  | 
|  | /* Allocate memory for the section contents.  Zero it, because | 
|  | we may not fill in all the reloc sections.  */ | 
|  | sec->contents = bfd_zalloc (dynobj, sec->size); | 
|  | if (sec->contents == NULL) | 
|  | return false; | 
|  | sec->alloced = 1; | 
|  | } | 
|  |  | 
|  | return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs); | 
|  | } | 
|  |  | 
|  | /* External entry points for sizing and building linker stubs.  */ | 
|  |  | 
|  | /* Set up various things so that we can make a list of input sections | 
|  | for each output section included in the link.  Returns -1 on error, | 
|  | 0 when no stubs will be needed, and 1 on success.  */ | 
|  |  | 
|  | int | 
|  | elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info) | 
|  | { | 
|  | bfd *input_bfd; | 
|  | unsigned int bfd_count; | 
|  | unsigned int top_id, top_index; | 
|  | asection *section; | 
|  | asection **input_list, **list; | 
|  | size_t amt; | 
|  | struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); | 
|  |  | 
|  | if (htab == NULL) | 
|  | return -1; | 
|  |  | 
|  | /* Count the number of input BFDs and find the top input section id.  */ | 
|  | for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; | 
|  | input_bfd != NULL; | 
|  | input_bfd = input_bfd->link.next) | 
|  | { | 
|  | bfd_count += 1; | 
|  | for (section = input_bfd->sections; | 
|  | section != NULL; | 
|  | section = section->next) | 
|  | { | 
|  | if (top_id < section->id) | 
|  | top_id = section->id; | 
|  | } | 
|  | } | 
|  | htab->bfd_count = bfd_count; | 
|  |  | 
|  | amt = sizeof (struct map_stub) * (top_id + 1); | 
|  | htab->stub_group = bfd_zmalloc (amt); | 
|  | if (htab->stub_group == NULL) | 
|  | return -1; | 
|  |  | 
|  | /* We can't use output_bfd->section_count here to find the top output | 
|  | section index as some sections may have been removed, and | 
|  | strip_excluded_output_sections doesn't renumber the indices.  */ | 
|  | for (section = output_bfd->sections, top_index = 0; | 
|  | section != NULL; | 
|  | section = section->next) | 
|  | { | 
|  | if (top_index < section->index) | 
|  | top_index = section->index; | 
|  | } | 
|  |  | 
|  | htab->top_index = top_index; | 
|  | amt = sizeof (asection *) * (top_index + 1); | 
|  | input_list = bfd_malloc (amt); | 
|  | htab->input_list = input_list; | 
|  | if (input_list == NULL) | 
|  | return -1; | 
|  |  | 
|  | /* For sections we aren't interested in, mark their entries with a | 
|  | value we can check later.  */ | 
|  | list = input_list + top_index; | 
|  | do | 
|  | *list = bfd_abs_section_ptr; | 
|  | while (list-- != input_list); | 
|  |  | 
|  | for (section = output_bfd->sections; | 
|  | section != NULL; | 
|  | section = section->next) | 
|  | { | 
|  | if ((section->flags & SEC_CODE) != 0) | 
|  | input_list[section->index] = NULL; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* The linker repeatedly calls this function for each input section, | 
|  | in the order that input sections are linked into output sections. | 
|  | Build lists of input sections to determine groupings between which | 
|  | we may insert linker stubs.  */ | 
|  |  | 
|  | void | 
|  | elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec) | 
|  | { | 
|  | struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); | 
|  |  | 
|  | if (htab == NULL) | 
|  | return; | 
|  |  | 
|  | if (isec->output_section->index <= htab->top_index) | 
|  | { | 
|  | asection **list = htab->input_list + isec->output_section->index; | 
|  | if (*list != bfd_abs_section_ptr) | 
|  | { | 
|  | /* Steal the link_sec pointer for our list.  */ | 
|  | #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) | 
|  | /* This happens to make the list in reverse order, | 
|  | which is what we want.  */ | 
|  | PREV_SEC (isec) = *list; | 
|  | *list = isec; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* See whether we can group stub sections together.  Grouping stub | 
|  | sections may result in fewer stubs.  More importantly, we need to | 
|  | put all .init* and .fini* stubs at the beginning of the .init or | 
|  | .fini output sections respectively, because glibc splits the | 
|  | _init and _fini functions into multiple parts.  Putting a stub in | 
|  | the middle of a function is not a good idea.  */ | 
|  |  | 
|  | static void | 
|  | group_sections (struct elf32_hppa_link_hash_table *htab, | 
|  | bfd_size_type stub_group_size, | 
|  | bool stubs_always_before_branch) | 
|  | { | 
|  | asection **list = htab->input_list + htab->top_index; | 
|  | do | 
|  | { | 
|  | asection *tail = *list; | 
|  | if (tail == bfd_abs_section_ptr) | 
|  | continue; | 
|  | while (tail != NULL) | 
|  | { | 
|  | asection *curr; | 
|  | asection *prev; | 
|  | bfd_size_type total; | 
|  | bool big_sec; | 
|  |  | 
|  | curr = tail; | 
|  | total = tail->size; | 
|  | big_sec = total >= stub_group_size; | 
|  |  | 
|  | while ((prev = PREV_SEC (curr)) != NULL | 
|  | && ((total += curr->output_offset - prev->output_offset) | 
|  | < stub_group_size)) | 
|  | curr = prev; | 
|  |  | 
|  | /* OK, the size from the start of CURR to the end is less | 
|  | than 240000 bytes and thus can be handled by one stub | 
|  | section.  (or the tail section is itself larger than | 
|  | 240000 bytes, in which case we may be toast.) | 
|  | We should really be keeping track of the total size of | 
|  | stubs added here, as stubs contribute to the final output | 
|  | section size.  That's a little tricky, and this way will | 
|  | only break if stubs added total more than 22144 bytes, or | 
|  | 2768 long branch stubs.  It seems unlikely for more than | 
|  | 2768 different functions to be called, especially from | 
|  | code only 240000 bytes long.  This limit used to be | 
|  | 250000, but c++ code tends to generate lots of little | 
|  | functions, and sometimes violated the assumption.  */ | 
|  | do | 
|  | { | 
|  | prev = PREV_SEC (tail); | 
|  | /* Set up this stub group.  */ | 
|  | htab->stub_group[tail->id].link_sec = curr; | 
|  | } | 
|  | while (tail != curr && (tail = prev) != NULL); | 
|  |  | 
|  | /* But wait, there's more!  Input sections up to 240000 | 
|  | bytes before the stub section can be handled by it too. | 
|  | Don't do this if we have a really large section after the | 
|  | stubs, as adding more stubs increases the chance that | 
|  | branches may not reach into the stub section.  */ | 
|  | if (!stubs_always_before_branch && !big_sec) | 
|  | { | 
|  | total = 0; | 
|  | while (prev != NULL | 
|  | && ((total += tail->output_offset - prev->output_offset) | 
|  | < stub_group_size)) | 
|  | { | 
|  | tail = prev; | 
|  | prev = PREV_SEC (tail); | 
|  | htab->stub_group[tail->id].link_sec = curr; | 
|  | } | 
|  | } | 
|  | tail = prev; | 
|  | } | 
|  | } | 
|  | while (list-- != htab->input_list); | 
|  | free (htab->input_list); | 
|  | #undef PREV_SEC | 
|  | } | 
|  |  | 
|  | /* Read in all local syms for all input bfds, and create hash entries | 
|  | for export stubs if we are building a multi-subspace shared lib. | 
|  | Returns -1 on error, 1 if export stubs created, 0 otherwise.  */ | 
|  |  | 
|  | static int | 
|  | get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info) | 
|  | { | 
|  | unsigned int bfd_indx; | 
|  | Elf_Internal_Sym *local_syms, **all_local_syms; | 
|  | int stub_changed = 0; | 
|  | struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); | 
|  |  | 
|  | if (htab == NULL) | 
|  | return -1; | 
|  |  | 
|  | /* We want to read in symbol extension records only once.  To do this | 
|  | we need to read in the local symbols in parallel and save them for | 
|  | later use; so hold pointers to the local symbols in an array.  */ | 
|  | size_t amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count; | 
|  | all_local_syms = bfd_zmalloc (amt); | 
|  | htab->all_local_syms = all_local_syms; | 
|  | if (all_local_syms == NULL) | 
|  | return -1; | 
|  |  | 
|  | /* Walk over all the input BFDs, swapping in local symbols. | 
|  | If we are creating a shared library, create hash entries for the | 
|  | export stubs.  */ | 
|  | for (bfd_indx = 0; | 
|  | input_bfd != NULL; | 
|  | input_bfd = input_bfd->link.next, bfd_indx++) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  |  | 
|  | /* We'll need the symbol table in a second.  */ | 
|  | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | 
|  | if (symtab_hdr->sh_info == 0) | 
|  | continue; | 
|  |  | 
|  | /* We need an array of the local symbols attached to the input bfd.  */ | 
|  | local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; | 
|  | if (local_syms == NULL) | 
|  | { | 
|  | local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, | 
|  | symtab_hdr->sh_info, 0, | 
|  | NULL, NULL, NULL); | 
|  | /* Cache them for elf_link_input_bfd.  */ | 
|  | symtab_hdr->contents = (unsigned char *) local_syms; | 
|  | } | 
|  | if (local_syms == NULL) | 
|  | return -1; | 
|  |  | 
|  | all_local_syms[bfd_indx] = local_syms; | 
|  |  | 
|  | if (bfd_link_pic (info) && htab->multi_subspace) | 
|  | { | 
|  | struct elf_link_hash_entry **eh_syms; | 
|  | struct elf_link_hash_entry **eh_symend; | 
|  | unsigned int symcount; | 
|  |  | 
|  | symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) | 
|  | - symtab_hdr->sh_info); | 
|  | eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd); | 
|  | eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount); | 
|  |  | 
|  | /* Look through the global syms for functions;  We need to | 
|  | build export stubs for all globally visible functions.  */ | 
|  | for (; eh_syms < eh_symend; eh_syms++) | 
|  | { | 
|  | struct elf32_hppa_link_hash_entry *hh; | 
|  |  | 
|  | hh = hppa_elf_hash_entry (*eh_syms); | 
|  |  | 
|  | while (hh->eh.root.type == bfd_link_hash_indirect | 
|  | || hh->eh.root.type == bfd_link_hash_warning) | 
|  | hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); | 
|  |  | 
|  | /* At this point in the link, undefined syms have been | 
|  | resolved, so we need to check that the symbol was | 
|  | defined in this BFD.  */ | 
|  | if ((hh->eh.root.type == bfd_link_hash_defined | 
|  | || hh->eh.root.type == bfd_link_hash_defweak) | 
|  | && hh->eh.type == STT_FUNC | 
|  | && hh->eh.root.u.def.section->output_section != NULL | 
|  | && (hh->eh.root.u.def.section->output_section->owner | 
|  | == output_bfd) | 
|  | && hh->eh.root.u.def.section->owner == input_bfd | 
|  | && hh->eh.def_regular | 
|  | && !hh->eh.forced_local | 
|  | && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT) | 
|  | { | 
|  | asection *sec; | 
|  | const char *stub_name; | 
|  | struct elf32_hppa_stub_hash_entry *hsh; | 
|  |  | 
|  | sec = hh->eh.root.u.def.section; | 
|  | stub_name = hh_name (hh); | 
|  | hsh = hppa_stub_hash_lookup (&htab->bstab, | 
|  | stub_name, | 
|  | false, false); | 
|  | if (hsh == NULL) | 
|  | { | 
|  | hsh = hppa_add_stub (stub_name, sec, htab); | 
|  | if (!hsh) | 
|  | return -1; | 
|  |  | 
|  | hsh->target_value = hh->eh.root.u.def.value; | 
|  | hsh->target_section = hh->eh.root.u.def.section; | 
|  | hsh->stub_type = hppa_stub_export; | 
|  | hsh->hh = hh; | 
|  | stub_changed = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* xgettext:c-format */ | 
|  | _bfd_error_handler (_("%pB: duplicate export stub %s"), | 
|  | input_bfd, stub_name); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return stub_changed; | 
|  | } | 
|  |  | 
|  | /* Determine and set the size of the stub section for a final link. | 
|  |  | 
|  | The basic idea here is to examine all the relocations looking for | 
|  | PC-relative calls to a target that is unreachable with a "bl" | 
|  | instruction.  */ | 
|  |  | 
|  | bool | 
|  | elf32_hppa_size_stubs | 
|  | (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info, | 
|  | bool multi_subspace, bfd_signed_vma group_size, | 
|  | asection * (*add_stub_section) (const char *, asection *), | 
|  | void (*layout_sections_again) (void)) | 
|  | { | 
|  | bfd_size_type stub_group_size; | 
|  | bool stubs_always_before_branch; | 
|  | bool stub_changed; | 
|  | struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); | 
|  |  | 
|  | if (htab == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Stash our params away.  */ | 
|  | htab->stub_bfd = stub_bfd; | 
|  | htab->multi_subspace = multi_subspace; | 
|  | htab->add_stub_section = add_stub_section; | 
|  | htab->layout_sections_again = layout_sections_again; | 
|  | stubs_always_before_branch = group_size < 0; | 
|  | if (group_size < 0) | 
|  | stub_group_size = -group_size; | 
|  | else | 
|  | stub_group_size = group_size; | 
|  | if (stub_group_size == 1) | 
|  | { | 
|  | /* Default values.  */ | 
|  | if (stubs_always_before_branch) | 
|  | { | 
|  | stub_group_size = 7680000; | 
|  | if (htab->has_17bit_branch || htab->multi_subspace) | 
|  | stub_group_size = 240000; | 
|  | if (htab->has_12bit_branch) | 
|  | stub_group_size = 7500; | 
|  | } | 
|  | else | 
|  | { | 
|  | stub_group_size = 6971392; | 
|  | if (htab->has_17bit_branch || htab->multi_subspace) | 
|  | stub_group_size = 217856; | 
|  | if (htab->has_12bit_branch) | 
|  | stub_group_size = 6808; | 
|  | } | 
|  | } | 
|  |  | 
|  | group_sections (htab, stub_group_size, stubs_always_before_branch); | 
|  |  | 
|  | switch (get_local_syms (output_bfd, info->input_bfds, info)) | 
|  | { | 
|  | default: | 
|  | if (htab->all_local_syms) | 
|  | goto error_ret_free_local; | 
|  | return false; | 
|  |  | 
|  | case 0: | 
|  | stub_changed = false; | 
|  | break; | 
|  |  | 
|  | case 1: | 
|  | stub_changed = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | while (1) | 
|  | { | 
|  | bfd *input_bfd; | 
|  | unsigned int bfd_indx; | 
|  | asection *stub_sec; | 
|  |  | 
|  | for (input_bfd = info->input_bfds, bfd_indx = 0; | 
|  | input_bfd != NULL; | 
|  | input_bfd = input_bfd->link.next, bfd_indx++) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | asection *section; | 
|  | Elf_Internal_Sym *local_syms; | 
|  |  | 
|  | /* We'll need the symbol table in a second.  */ | 
|  | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | 
|  | if (symtab_hdr->sh_info == 0) | 
|  | continue; | 
|  |  | 
|  | local_syms = htab->all_local_syms[bfd_indx]; | 
|  |  | 
|  | /* Walk over each section attached to the input bfd.  */ | 
|  | for (section = input_bfd->sections; | 
|  | section != NULL; | 
|  | section = section->next) | 
|  | { | 
|  | Elf_Internal_Rela *internal_relocs, *irelaend, *irela; | 
|  |  | 
|  | /* If there aren't any relocs, then there's nothing more | 
|  | to do.  */ | 
|  | if ((section->flags & SEC_RELOC) == 0 | 
|  | || (section->flags & SEC_ALLOC) == 0 | 
|  | || (section->flags & SEC_LOAD) == 0 | 
|  | || (section->flags & SEC_CODE) == 0 | 
|  | || section->reloc_count == 0) | 
|  | continue; | 
|  |  | 
|  | /* If this section is a link-once section that will be | 
|  | discarded, then don't create any stubs.  */ | 
|  | if (section->output_section == NULL | 
|  | || section->output_section->owner != output_bfd) | 
|  | continue; | 
|  |  | 
|  | /* Get the relocs.  */ | 
|  | internal_relocs | 
|  | = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL, | 
|  | info->keep_memory); | 
|  | if (internal_relocs == NULL) | 
|  | goto error_ret_free_local; | 
|  |  | 
|  | /* Now examine each relocation.  */ | 
|  | irela = internal_relocs; | 
|  | irelaend = irela + section->reloc_count; | 
|  | for (; irela < irelaend; irela++) | 
|  | { | 
|  | unsigned int r_type, r_indx; | 
|  | enum elf32_hppa_stub_type stub_type; | 
|  | struct elf32_hppa_stub_hash_entry *hsh; | 
|  | asection *sym_sec; | 
|  | bfd_vma sym_value; | 
|  | bfd_vma destination; | 
|  | struct elf32_hppa_link_hash_entry *hh; | 
|  | char *stub_name; | 
|  | const asection *id_sec; | 
|  |  | 
|  | r_type = ELF32_R_TYPE (irela->r_info); | 
|  | r_indx = ELF32_R_SYM (irela->r_info); | 
|  |  | 
|  | if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED) | 
|  | { | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | error_ret_free_internal: | 
|  | if (elf_section_data (section)->relocs == NULL) | 
|  | free (internal_relocs); | 
|  | goto error_ret_free_local; | 
|  | } | 
|  |  | 
|  | /* Only look for stubs on call instructions.  */ | 
|  | if (r_type != (unsigned int) R_PARISC_PCREL12F | 
|  | && r_type != (unsigned int) R_PARISC_PCREL17F | 
|  | && r_type != (unsigned int) R_PARISC_PCREL22F) | 
|  | continue; | 
|  |  | 
|  | /* Now determine the call target, its name, value, | 
|  | section.  */ | 
|  | sym_sec = NULL; | 
|  | sym_value = 0; | 
|  | destination = -1; | 
|  | hh = NULL; | 
|  | if (r_indx < symtab_hdr->sh_info) | 
|  | { | 
|  | /* It's a local symbol.  */ | 
|  | Elf_Internal_Sym *sym; | 
|  | Elf_Internal_Shdr *hdr; | 
|  | unsigned int shndx; | 
|  |  | 
|  | sym = local_syms + r_indx; | 
|  | if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) | 
|  | sym_value = sym->st_value; | 
|  | shndx = sym->st_shndx; | 
|  | if (shndx < elf_numsections (input_bfd)) | 
|  | { | 
|  | hdr = elf_elfsections (input_bfd)[shndx]; | 
|  | sym_sec = hdr->bfd_section; | 
|  | destination = (sym_value + irela->r_addend | 
|  | + sym_sec->output_offset | 
|  | + sym_sec->output_section->vma); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* It's an external symbol.  */ | 
|  | int e_indx; | 
|  |  | 
|  | e_indx = r_indx - symtab_hdr->sh_info; | 
|  | hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]); | 
|  |  | 
|  | while (hh->eh.root.type == bfd_link_hash_indirect | 
|  | || hh->eh.root.type == bfd_link_hash_warning) | 
|  | hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); | 
|  |  | 
|  | if (hh->eh.root.type == bfd_link_hash_defined | 
|  | || hh->eh.root.type == bfd_link_hash_defweak) | 
|  | { | 
|  | sym_sec = hh->eh.root.u.def.section; | 
|  | sym_value = hh->eh.root.u.def.value; | 
|  | if (sym_sec->output_section != NULL) | 
|  | destination = (sym_value + irela->r_addend | 
|  | + sym_sec->output_offset | 
|  | + sym_sec->output_section->vma); | 
|  | } | 
|  | else if (hh->eh.root.type == bfd_link_hash_undefweak) | 
|  | { | 
|  | if (! bfd_link_pic (info)) | 
|  | continue; | 
|  | } | 
|  | else if (hh->eh.root.type == bfd_link_hash_undefined) | 
|  | { | 
|  | if (! (info->unresolved_syms_in_objects == RM_IGNORE | 
|  | && (ELF_ST_VISIBILITY (hh->eh.other) | 
|  | == STV_DEFAULT) | 
|  | && hh->eh.type != STT_PARISC_MILLI)) | 
|  | continue; | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | goto error_ret_free_internal; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Determine what (if any) linker stub is needed.  */ | 
|  | stub_type = hppa_type_of_stub (section, irela, hh, | 
|  | destination, info); | 
|  | if (stub_type == hppa_stub_none) | 
|  | continue; | 
|  |  | 
|  | /* Support for grouping stub sections.  */ | 
|  | id_sec = htab->stub_group[section->id].link_sec; | 
|  |  | 
|  | /* Get the name of this stub.  */ | 
|  | stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela); | 
|  | if (!stub_name) | 
|  | goto error_ret_free_internal; | 
|  |  | 
|  | hsh = hppa_stub_hash_lookup (&htab->bstab, | 
|  | stub_name, | 
|  | false, false); | 
|  | if (hsh != NULL) | 
|  | { | 
|  | /* The proper stub has already been created.  */ | 
|  | free (stub_name); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | hsh = hppa_add_stub (stub_name, section, htab); | 
|  | if (hsh == NULL) | 
|  | { | 
|  | free (stub_name); | 
|  | goto error_ret_free_internal; | 
|  | } | 
|  |  | 
|  | hsh->target_value = sym_value; | 
|  | hsh->target_section = sym_sec; | 
|  | hsh->stub_type = stub_type; | 
|  | if (bfd_link_pic (info)) | 
|  | { | 
|  | if (stub_type == hppa_stub_import) | 
|  | hsh->stub_type = hppa_stub_import_shared; | 
|  | else if (stub_type == hppa_stub_long_branch) | 
|  | hsh->stub_type = hppa_stub_long_branch_shared; | 
|  | } | 
|  | hsh->hh = hh; | 
|  | stub_changed = true; | 
|  | } | 
|  |  | 
|  | /* We're done with the internal relocs, free them.  */ | 
|  | if (elf_section_data (section)->relocs == NULL) | 
|  | free (internal_relocs); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!stub_changed) | 
|  | break; | 
|  |  | 
|  | /* OK, we've added some stubs.  Find out the new size of the | 
|  | stub sections.  */ | 
|  | for (stub_sec = htab->stub_bfd->sections; | 
|  | stub_sec != NULL; | 
|  | stub_sec = stub_sec->next) | 
|  | if ((stub_sec->flags & SEC_LINKER_CREATED) == 0) | 
|  | stub_sec->size = 0; | 
|  |  | 
|  | bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab); | 
|  |  | 
|  | /* Ask the linker to do its stuff.  */ | 
|  | (*htab->layout_sections_again) (); | 
|  | stub_changed = false; | 
|  | } | 
|  |  | 
|  | free (htab->all_local_syms); | 
|  | return true; | 
|  |  | 
|  | error_ret_free_local: | 
|  | free (htab->all_local_syms); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* For a final link, this function is called after we have sized the | 
|  | stubs to provide a value for __gp.  */ | 
|  |  | 
|  | bool | 
|  | elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info) | 
|  | { | 
|  | struct bfd_link_hash_entry *h; | 
|  | asection *sec = NULL; | 
|  | bfd_vma gp_val = 0; | 
|  |  | 
|  | h = bfd_link_hash_lookup (info->hash, "$global$", false, false, false); | 
|  |  | 
|  | if (h != NULL | 
|  | && (h->type == bfd_link_hash_defined | 
|  | || h->type == bfd_link_hash_defweak)) | 
|  | { | 
|  | gp_val = h->u.def.value; | 
|  | sec = h->u.def.section; | 
|  | } | 
|  | else | 
|  | { | 
|  | asection *splt = bfd_get_section_by_name (abfd, ".plt"); | 
|  | asection *sgot = bfd_get_section_by_name (abfd, ".got"); | 
|  |  | 
|  | /* Choose to point our LTP at, in this order, one of .plt, .got, | 
|  | or .data, if these sections exist.  In the case of choosing | 
|  | .plt try to make the LTP ideal for addressing anywhere in the | 
|  | .plt or .got with a 14 bit signed offset.  Typically, the end | 
|  | of the .plt is the start of the .got, so choose .plt + 0x2000 | 
|  | if either the .plt or .got is larger than 0x2000.  If both | 
|  | the .plt and .got are smaller than 0x2000, choose the end of | 
|  | the .plt section.  */ | 
|  | sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0 | 
|  | ? NULL : splt; | 
|  | if (sec != NULL) | 
|  | { | 
|  | gp_val = sec->size; | 
|  | if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000)) | 
|  | { | 
|  | gp_val = 0x2000; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | sec = sgot; | 
|  | if (sec != NULL) | 
|  | { | 
|  | if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0) | 
|  | { | 
|  | /* We know we don't have a .plt.  If .got is large, | 
|  | offset our LTP.  */ | 
|  | if (sec->size > 0x2000) | 
|  | gp_val = 0x2000; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* No .plt or .got.  Who cares what the LTP is?  */ | 
|  | sec = bfd_get_section_by_name (abfd, ".data"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (h != NULL) | 
|  | { | 
|  | h->type = bfd_link_hash_defined; | 
|  | h->u.def.value = gp_val; | 
|  | if (sec != NULL) | 
|  | h->u.def.section = sec; | 
|  | else | 
|  | h->u.def.section = bfd_abs_section_ptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour) | 
|  | { | 
|  | if (sec != NULL && sec->output_section != NULL) | 
|  | gp_val += sec->output_section->vma + sec->output_offset; | 
|  |  | 
|  | elf_gp (abfd) = gp_val; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Build all the stubs associated with the current output file.  The | 
|  | stubs are kept in a hash table attached to the main linker hash | 
|  | table.  We also set up the .plt entries for statically linked PIC | 
|  | functions here.  This function is called via hppaelf_finish in the | 
|  | linker.  */ | 
|  |  | 
|  | bool | 
|  | elf32_hppa_build_stubs (struct bfd_link_info *info) | 
|  | { | 
|  | asection *stub_sec; | 
|  | struct bfd_hash_table *table; | 
|  | struct elf32_hppa_link_hash_table *htab; | 
|  |  | 
|  | htab = hppa_link_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return false; | 
|  |  | 
|  | for (stub_sec = htab->stub_bfd->sections; | 
|  | stub_sec != NULL; | 
|  | stub_sec = stub_sec->next) | 
|  | if ((stub_sec->flags & SEC_LINKER_CREATED) == 0 | 
|  | && stub_sec->size != 0) | 
|  | { | 
|  | /* Allocate memory to hold the linker stubs.  */ | 
|  | stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size); | 
|  | if (stub_sec->contents == NULL) | 
|  | return false; | 
|  | stub_sec->alloced = 1; | 
|  | stub_sec->size = 0; | 
|  | } | 
|  |  | 
|  | /* Build the stubs as directed by the stub hash table.  */ | 
|  | table = &htab->bstab; | 
|  | bfd_hash_traverse (table, hppa_build_one_stub, info); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return the base vma address which should be subtracted from the real | 
|  | address when resolving a dtpoff relocation. | 
|  | This is PT_TLS segment p_vaddr.  */ | 
|  |  | 
|  | static bfd_vma | 
|  | dtpoff_base (struct bfd_link_info *info) | 
|  | { | 
|  | /* If tls_sec is NULL, we should have signalled an error already.  */ | 
|  | if (elf_hash_table (info)->tls_sec == NULL) | 
|  | return 0; | 
|  | return elf_hash_table (info)->tls_sec->vma; | 
|  | } | 
|  |  | 
|  | /* Return the relocation value for R_PARISC_TLS_TPOFF*..  */ | 
|  |  | 
|  | static bfd_vma | 
|  | tpoff (struct bfd_link_info *info, bfd_vma address) | 
|  | { | 
|  | struct elf_link_hash_table *htab = elf_hash_table (info); | 
|  |  | 
|  | /* If tls_sec is NULL, we should have signalled an error already.  */ | 
|  | if (htab->tls_sec == NULL) | 
|  | return 0; | 
|  | /* hppa TLS ABI is variant I and static TLS block start just after | 
|  | tcbhead structure which has 2 pointer fields.  */ | 
|  | return (address - htab->tls_sec->vma | 
|  | + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power)); | 
|  | } | 
|  |  | 
|  | /* Perform a final link.  */ | 
|  |  | 
|  | static bool | 
|  | elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info) | 
|  | { | 
|  | struct stat buf; | 
|  |  | 
|  | /* Invoke the regular ELF linker to do all the work.  */ | 
|  | if (!bfd_elf_final_link (abfd, info)) | 
|  | return false; | 
|  |  | 
|  | /* If we're producing a final executable, sort the contents of the | 
|  | unwind section.  */ | 
|  | if (bfd_link_relocatable (info)) | 
|  | return true; | 
|  |  | 
|  | /* Do not attempt to sort non-regular files.  This is here | 
|  | especially for configure scripts and kernel builds which run | 
|  | tests with "ld [...] -o /dev/null".  */ | 
|  | if (stat (bfd_get_filename (abfd), &buf) != 0 | 
|  | || !S_ISREG(buf.st_mode)) | 
|  | return true; | 
|  |  | 
|  | return elf_hppa_sort_unwind (abfd); | 
|  | } | 
|  |  | 
|  | /* Record the lowest address for the data and text segments.  */ | 
|  |  | 
|  | static void | 
|  | hppa_record_segment_addr (bfd *abfd, asection *section, void *data) | 
|  | { | 
|  | struct elf32_hppa_link_hash_table *htab; | 
|  |  | 
|  | htab = (struct elf32_hppa_link_hash_table*) data; | 
|  | if (htab == NULL) | 
|  | return; | 
|  |  | 
|  | if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) | 
|  | { | 
|  | bfd_vma value; | 
|  | Elf_Internal_Phdr *p; | 
|  |  | 
|  | p = _bfd_elf_find_segment_containing_section (abfd, section->output_section); | 
|  | BFD_ASSERT (p != NULL); | 
|  | value = p->p_vaddr; | 
|  |  | 
|  | if ((section->flags & SEC_READONLY) != 0) | 
|  | { | 
|  | if (value < htab->text_segment_base) | 
|  | htab->text_segment_base = value; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (value < htab->data_segment_base) | 
|  | htab->data_segment_base = value; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Perform a relocation as part of a final link.  */ | 
|  |  | 
|  | static bfd_reloc_status_type | 
|  | final_link_relocate (asection *input_section, | 
|  | bfd_byte *contents, | 
|  | const Elf_Internal_Rela *rela, | 
|  | bfd_vma value, | 
|  | struct elf32_hppa_link_hash_table *htab, | 
|  | asection *sym_sec, | 
|  | struct elf32_hppa_link_hash_entry *hh, | 
|  | struct bfd_link_info *info) | 
|  | { | 
|  | unsigned int insn; | 
|  | unsigned int r_type = ELF32_R_TYPE (rela->r_info); | 
|  | unsigned int orig_r_type = r_type; | 
|  | reloc_howto_type *howto = elf_hppa_howto_table + r_type; | 
|  | int r_format; | 
|  | enum hppa_reloc_field_selector_type_alt r_field; | 
|  | bfd *input_bfd = input_section->owner; | 
|  | bfd_vma offset = rela->r_offset; | 
|  | bfd_vma max_branch_offset = 0; | 
|  | bfd_byte *hit_data = contents + offset; | 
|  | bfd_signed_vma addend = rela->r_addend; | 
|  | bfd_vma location; | 
|  | struct elf32_hppa_stub_hash_entry *hsh = NULL; | 
|  | int val; | 
|  |  | 
|  | if (r_type == R_PARISC_NONE) | 
|  | return bfd_reloc_ok; | 
|  |  | 
|  | insn = bfd_get_32 (input_bfd, hit_data); | 
|  |  | 
|  | /* Find out where we are and where we're going.  */ | 
|  | location = (offset + | 
|  | input_section->output_offset + | 
|  | input_section->output_section->vma); | 
|  |  | 
|  | /* If we are not building a shared library, convert DLTIND relocs to | 
|  | DPREL relocs.  */ | 
|  | if (!bfd_link_pic (info)) | 
|  | { | 
|  | switch (r_type) | 
|  | { | 
|  | case R_PARISC_DLTIND21L: | 
|  | case R_PARISC_TLS_GD21L: | 
|  | case R_PARISC_TLS_LDM21L: | 
|  | case R_PARISC_TLS_IE21L: | 
|  | r_type = R_PARISC_DPREL21L; | 
|  | break; | 
|  |  | 
|  | case R_PARISC_DLTIND14R: | 
|  | case R_PARISC_TLS_GD14R: | 
|  | case R_PARISC_TLS_LDM14R: | 
|  | case R_PARISC_TLS_IE14R: | 
|  | r_type = R_PARISC_DPREL14R; | 
|  | break; | 
|  |  | 
|  | case R_PARISC_DLTIND14F: | 
|  | r_type = R_PARISC_DPREL14F; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | case R_PARISC_PCREL12F: | 
|  | case R_PARISC_PCREL17F: | 
|  | case R_PARISC_PCREL22F: | 
|  | /* If this call should go via the plt, find the import stub in | 
|  | the stub hash.  */ | 
|  | if (sym_sec == NULL | 
|  | || sym_sec->output_section == NULL | 
|  | || (hh != NULL | 
|  | && hh->eh.plt.offset != (bfd_vma) -1 | 
|  | && hh->eh.dynindx != -1 | 
|  | && !hh->plabel | 
|  | && (bfd_link_pic (info) | 
|  | || !hh->eh.def_regular | 
|  | || hh->eh.root.type == bfd_link_hash_defweak))) | 
|  | { | 
|  | hsh = hppa_get_stub_entry (input_section, sym_sec, | 
|  | hh, rela, htab); | 
|  | if (hsh != NULL) | 
|  | { | 
|  | value = (hsh->stub_offset | 
|  | + hsh->stub_sec->output_offset | 
|  | + hsh->stub_sec->output_section->vma); | 
|  | addend = 0; | 
|  | } | 
|  | else if (sym_sec == NULL && hh != NULL | 
|  | && hh->eh.root.type == bfd_link_hash_undefweak) | 
|  | { | 
|  | /* It's OK if undefined weak.  Calls to undefined weak | 
|  | symbols behave as if the "called" function | 
|  | immediately returns.  We can thus call to a weak | 
|  | function without first checking whether the function | 
|  | is defined.  */ | 
|  | value = location; | 
|  | addend = 8; | 
|  | } | 
|  | else | 
|  | return bfd_reloc_undefined; | 
|  | } | 
|  | /* Fall thru.  */ | 
|  |  | 
|  | case R_PARISC_PCREL21L: | 
|  | case R_PARISC_PCREL17C: | 
|  | case R_PARISC_PCREL17R: | 
|  | case R_PARISC_PCREL14R: | 
|  | case R_PARISC_PCREL14F: | 
|  | case R_PARISC_PCREL32: | 
|  | /* Make it a pc relative offset.  */ | 
|  | value -= location; | 
|  | addend -= 8; | 
|  | break; | 
|  |  | 
|  | case R_PARISC_DPREL21L: | 
|  | case R_PARISC_DPREL14R: | 
|  | case R_PARISC_DPREL14F: | 
|  | /* Convert instructions that use the linkage table pointer (r19) to | 
|  | instructions that use the global data pointer (dp).  This is the | 
|  | most efficient way of using PIC code in an incomplete executable, | 
|  | but the user must follow the standard runtime conventions for | 
|  | accessing data for this to work.  */ | 
|  | if (orig_r_type != r_type) | 
|  | { | 
|  | if (r_type == R_PARISC_DPREL21L) | 
|  | { | 
|  | /* GCC sometimes uses a register other than r19 for the | 
|  | operation, so we must convert any addil instruction | 
|  | that uses this relocation.  */ | 
|  | if ((insn & 0xfc000000) == OP_ADDIL << 26) | 
|  | insn = ADDIL_DP; | 
|  | else | 
|  | /* We must have a ldil instruction.  It's too hard to find | 
|  | and convert the associated add instruction, so issue an | 
|  | error.  */ | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA+%#" PRIx64 "): %s fixup for insn %#x " | 
|  | "is not supported in a non-shared link"), | 
|  | input_bfd, | 
|  | input_section, | 
|  | (uint64_t) offset, | 
|  | howto->name, | 
|  | insn); | 
|  | } | 
|  | else if (r_type == R_PARISC_DPREL14F) | 
|  | { | 
|  | /* This must be a format 1 load/store.  Change the base | 
|  | register to dp.  */ | 
|  | insn = (insn & 0xfc1ffff) | (27 << 21); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* For all the DP relative relocations, we need to examine the symbol's | 
|  | section.  If it has no section or if it's a code section, then | 
|  | "data pointer relative" makes no sense.  In that case we don't | 
|  | adjust the "value", and for 21 bit addil instructions, we change the | 
|  | source addend register from %dp to %r0.  This situation commonly | 
|  | arises for undefined weak symbols and when a variable's "constness" | 
|  | is declared differently from the way the variable is defined.  For | 
|  | instance: "extern int foo" with foo defined as "const int foo".  */ | 
|  | if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0) | 
|  | { | 
|  | if ((insn & ((0x3fu << 26) | (0x1f << 21))) | 
|  | == ((OP_ADDIL << 26) | (27 << 21))) | 
|  | { | 
|  | insn &= ~ (0x1f << 21); | 
|  | } | 
|  | /* Now try to make things easy for the dynamic linker.  */ | 
|  |  | 
|  | break; | 
|  | } | 
|  | /* Fall thru.  */ | 
|  |  | 
|  | case R_PARISC_DLTIND21L: | 
|  | case R_PARISC_DLTIND14R: | 
|  | case R_PARISC_DLTIND14F: | 
|  | case R_PARISC_TLS_GD21L: | 
|  | case R_PARISC_TLS_LDM21L: | 
|  | case R_PARISC_TLS_IE21L: | 
|  | case R_PARISC_TLS_GD14R: | 
|  | case R_PARISC_TLS_LDM14R: | 
|  | case R_PARISC_TLS_IE14R: | 
|  | value -= elf_gp (input_section->output_section->owner); | 
|  | break; | 
|  |  | 
|  | case R_PARISC_SEGREL32: | 
|  | if ((sym_sec->flags & SEC_CODE) != 0) | 
|  | value -= htab->text_segment_base; | 
|  | else | 
|  | value -= htab->data_segment_base; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | case R_PARISC_DIR32: | 
|  | case R_PARISC_DIR14F: | 
|  | case R_PARISC_DIR17F: | 
|  | case R_PARISC_PCREL17C: | 
|  | case R_PARISC_PCREL14F: | 
|  | case R_PARISC_PCREL32: | 
|  | case R_PARISC_DPREL14F: | 
|  | case R_PARISC_PLABEL32: | 
|  | case R_PARISC_DLTIND14F: | 
|  | case R_PARISC_SEGBASE: | 
|  | case R_PARISC_SEGREL32: | 
|  | case R_PARISC_TLS_DTPMOD32: | 
|  | case R_PARISC_TLS_DTPOFF32: | 
|  | case R_PARISC_TLS_TPREL32: | 
|  | r_field = e_fsel; | 
|  | break; | 
|  |  | 
|  | case R_PARISC_DLTIND21L: | 
|  | case R_PARISC_PCREL21L: | 
|  | case R_PARISC_PLABEL21L: | 
|  | r_field = e_lsel; | 
|  | break; | 
|  |  | 
|  | case R_PARISC_DIR21L: | 
|  | case R_PARISC_DPREL21L: | 
|  | case R_PARISC_TLS_GD21L: | 
|  | case R_PARISC_TLS_LDM21L: | 
|  | case R_PARISC_TLS_LDO21L: | 
|  | case R_PARISC_TLS_IE21L: | 
|  | case R_PARISC_TLS_LE21L: | 
|  | r_field = e_lrsel; | 
|  | break; | 
|  |  | 
|  | case R_PARISC_PCREL17R: | 
|  | case R_PARISC_PCREL14R: | 
|  | case R_PARISC_PLABEL14R: | 
|  | case R_PARISC_DLTIND14R: | 
|  | r_field = e_rsel; | 
|  | break; | 
|  |  | 
|  | case R_PARISC_DIR17R: | 
|  | case R_PARISC_DIR14R: | 
|  | case R_PARISC_DPREL14R: | 
|  | case R_PARISC_TLS_GD14R: | 
|  | case R_PARISC_TLS_LDM14R: | 
|  | case R_PARISC_TLS_LDO14R: | 
|  | case R_PARISC_TLS_IE14R: | 
|  | case R_PARISC_TLS_LE14R: | 
|  | r_field = e_rrsel; | 
|  | break; | 
|  |  | 
|  | case R_PARISC_PCREL12F: | 
|  | case R_PARISC_PCREL17F: | 
|  | case R_PARISC_PCREL22F: | 
|  | r_field = e_fsel; | 
|  |  | 
|  | if (r_type == (unsigned int) R_PARISC_PCREL17F) | 
|  | { | 
|  | max_branch_offset = (1 << (17-1)) << 2; | 
|  | } | 
|  | else if (r_type == (unsigned int) R_PARISC_PCREL12F) | 
|  | { | 
|  | max_branch_offset = (1 << (12-1)) << 2; | 
|  | } | 
|  | else | 
|  | { | 
|  | max_branch_offset = (1 << (22-1)) << 2; | 
|  | } | 
|  |  | 
|  | /* sym_sec is NULL on undefined weak syms or when shared on | 
|  | undefined syms.  We've already checked for a stub for the | 
|  | shared undefined case.  */ | 
|  | if (sym_sec == NULL) | 
|  | break; | 
|  |  | 
|  | /* If the branch is out of reach, then redirect the | 
|  | call to the local stub for this function.  */ | 
|  | if (value + addend + max_branch_offset >= 2*max_branch_offset) | 
|  | { | 
|  | hsh = hppa_get_stub_entry (input_section, sym_sec, | 
|  | hh, rela, htab); | 
|  | if (hsh == NULL) | 
|  | return bfd_reloc_undefined; | 
|  |  | 
|  | /* Munge up the value and addend so that we call the stub | 
|  | rather than the procedure directly.  */ | 
|  | value = (hsh->stub_offset | 
|  | + hsh->stub_sec->output_offset | 
|  | + hsh->stub_sec->output_section->vma | 
|  | - location); | 
|  | addend = -8; | 
|  | } | 
|  | break; | 
|  |  | 
|  | /* Something we don't know how to handle.  */ | 
|  | default: | 
|  | return bfd_reloc_notsupported; | 
|  | } | 
|  |  | 
|  | /* Make sure we can reach the stub.  */ | 
|  | if (max_branch_offset != 0 | 
|  | && value + addend + max_branch_offset >= 2*max_branch_offset) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA+%#" PRIx64 "): cannot reach %s, " | 
|  | "recompile with -ffunction-sections"), | 
|  | input_bfd, | 
|  | input_section, | 
|  | (uint64_t) offset, | 
|  | hsh->bh_root.string); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return bfd_reloc_notsupported; | 
|  | } | 
|  |  | 
|  | val = hppa_field_adjust (value, addend, r_field); | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | case R_PARISC_PCREL12F: | 
|  | case R_PARISC_PCREL17C: | 
|  | case R_PARISC_PCREL17F: | 
|  | case R_PARISC_PCREL17R: | 
|  | case R_PARISC_PCREL22F: | 
|  | case R_PARISC_DIR17F: | 
|  | case R_PARISC_DIR17R: | 
|  | /* This is a branch.  Divide the offset by four. | 
|  | Note that we need to decide whether it's a branch or | 
|  | otherwise by inspecting the reloc.  Inspecting insn won't | 
|  | work as insn might be from a .word directive.  */ | 
|  | val >>= 2; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (r_type) | 
|  | { | 
|  | case R_PARISC_DIR32: | 
|  | case R_PARISC_SECREL32: | 
|  | case R_PARISC_SEGBASE: | 
|  | case R_PARISC_SEGREL32: | 
|  | case R_PARISC_PLABEL32: | 
|  | /* These relocations apply to data.  */ | 
|  | r_format = howto->bitsize; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | r_format = bfd_hppa_insn2fmt (input_bfd, insn); | 
|  | switch (r_format) | 
|  | { | 
|  | case 10: | 
|  | case -10: | 
|  | if (val & 7) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA+%#" PRIx64 "): displacement %#x for insn %#x " | 
|  | "is not a multiple of 8 (gp %#x)"), | 
|  | input_bfd, | 
|  | input_section, | 
|  | (uint64_t) offset, | 
|  | val, | 
|  | insn, | 
|  | (unsigned int) elf_gp (input_section->output_section->owner)); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return bfd_reloc_notsupported; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case -11: | 
|  | case -16: | 
|  | if (val & 3) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA+%#" PRIx64 "): displacement %#x for insn %#x " | 
|  | "is not a multiple of 4 (gp %#x)"), | 
|  | input_bfd, | 
|  | input_section, | 
|  | (uint64_t) offset, | 
|  | val, | 
|  | insn, | 
|  | (unsigned int) elf_gp (input_section->output_section->owner)); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return bfd_reloc_notsupported; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | insn = hppa_rebuild_insn (insn, val, r_format); | 
|  |  | 
|  | /* Update the instruction word.  */ | 
|  | bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data); | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | /* Relocate an HPPA ELF section.  */ | 
|  |  | 
|  | static int | 
|  | elf32_hppa_relocate_section (bfd *output_bfd, | 
|  | struct bfd_link_info *info, | 
|  | bfd *input_bfd, | 
|  | asection *input_section, | 
|  | bfd_byte *contents, | 
|  | Elf_Internal_Rela *relocs, | 
|  | Elf_Internal_Sym *local_syms, | 
|  | asection **local_sections) | 
|  | { | 
|  | bfd_vma *local_got_offsets; | 
|  | struct elf32_hppa_link_hash_table *htab; | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | Elf_Internal_Rela *rela; | 
|  | Elf_Internal_Rela *relend; | 
|  |  | 
|  | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | 
|  |  | 
|  | htab = hppa_link_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return false; | 
|  |  | 
|  | local_got_offsets = elf_local_got_offsets (input_bfd); | 
|  |  | 
|  | rela = relocs; | 
|  | relend = relocs + input_section->reloc_count; | 
|  | for (; rela < relend; rela++) | 
|  | { | 
|  | unsigned int r_type; | 
|  | reloc_howto_type *howto; | 
|  | unsigned int r_symndx; | 
|  | struct elf32_hppa_link_hash_entry *hh; | 
|  | Elf_Internal_Sym *sym; | 
|  | asection *sym_sec; | 
|  | bfd_vma relocation; | 
|  | bfd_reloc_status_type rstatus; | 
|  | const char *sym_name; | 
|  | bool plabel; | 
|  | bool warned_undef; | 
|  |  | 
|  | r_type = ELF32_R_TYPE (rela->r_info); | 
|  | if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED) | 
|  | { | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  | if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY | 
|  | || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT) | 
|  | continue; | 
|  |  | 
|  | r_symndx = ELF32_R_SYM (rela->r_info); | 
|  | hh = NULL; | 
|  | sym = NULL; | 
|  | sym_sec = NULL; | 
|  | warned_undef = false; | 
|  | if (r_symndx < symtab_hdr->sh_info) | 
|  | { | 
|  | /* This is a local symbol, h defaults to NULL.  */ | 
|  | sym = local_syms + r_symndx; | 
|  | sym_sec = local_sections[r_symndx]; | 
|  | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela); | 
|  | } | 
|  | else | 
|  | { | 
|  | struct elf_link_hash_entry *eh; | 
|  | bool unresolved_reloc, ignored; | 
|  | struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); | 
|  |  | 
|  | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela, | 
|  | r_symndx, symtab_hdr, sym_hashes, | 
|  | eh, sym_sec, relocation, | 
|  | unresolved_reloc, warned_undef, | 
|  | ignored); | 
|  |  | 
|  | if (!bfd_link_relocatable (info) | 
|  | && relocation == 0 | 
|  | && eh->root.type != bfd_link_hash_defined | 
|  | && eh->root.type != bfd_link_hash_defweak | 
|  | && eh->root.type != bfd_link_hash_undefweak) | 
|  | { | 
|  | if (info->unresolved_syms_in_objects == RM_IGNORE | 
|  | && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT | 
|  | && eh->type == STT_PARISC_MILLI) | 
|  | { | 
|  | (*info->callbacks->undefined_symbol) | 
|  | (info, eh_name (eh), input_bfd, | 
|  | input_section, rela->r_offset, false); | 
|  | warned_undef = true; | 
|  | } | 
|  | } | 
|  | hh = hppa_elf_hash_entry (eh); | 
|  | } | 
|  |  | 
|  | if (sym_sec != NULL && discarded_section (sym_sec)) | 
|  | RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, | 
|  | rela, 1, relend, | 
|  | elf_hppa_howto_table + r_type, 0, | 
|  | contents); | 
|  |  | 
|  | if (bfd_link_relocatable (info)) | 
|  | continue; | 
|  |  | 
|  | /* Do any required modifications to the relocation value, and | 
|  | determine what types of dynamic info we need to output, if | 
|  | any.  */ | 
|  | plabel = 0; | 
|  | switch (r_type) | 
|  | { | 
|  | case R_PARISC_DLTIND14F: | 
|  | case R_PARISC_DLTIND14R: | 
|  | case R_PARISC_DLTIND21L: | 
|  | { | 
|  | bfd_vma off; | 
|  | bool do_got = false; | 
|  | bool reloc = bfd_link_pic (info); | 
|  |  | 
|  | /* Relocation is to the entry for this symbol in the | 
|  | global offset table.  */ | 
|  | if (hh != NULL) | 
|  | { | 
|  | bool dyn; | 
|  |  | 
|  | off = hh->eh.got.offset; | 
|  | dyn = htab->etab.dynamic_sections_created; | 
|  | reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh) | 
|  | && (reloc | 
|  | || (hh->eh.dynindx != -1 | 
|  | && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))); | 
|  | if (!reloc | 
|  | || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, | 
|  | bfd_link_pic (info), | 
|  | &hh->eh)) | 
|  | { | 
|  | /* If we aren't going to call finish_dynamic_symbol, | 
|  | then we need to handle initialisation of the .got | 
|  | entry and create needed relocs here.  Since the | 
|  | offset must always be a multiple of 4, we use the | 
|  | least significant bit to record whether we have | 
|  | initialised it already.  */ | 
|  | if ((off & 1) != 0) | 
|  | off &= ~1; | 
|  | else | 
|  | { | 
|  | hh->eh.got.offset |= 1; | 
|  | do_got = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Local symbol case.  */ | 
|  | if (local_got_offsets == NULL) | 
|  | abort (); | 
|  |  | 
|  | off = local_got_offsets[r_symndx]; | 
|  |  | 
|  | /* The offset must always be a multiple of 4.  We use | 
|  | the least significant bit to record whether we have | 
|  | already generated the necessary reloc.  */ | 
|  | if ((off & 1) != 0) | 
|  | off &= ~1; | 
|  | else | 
|  | { | 
|  | local_got_offsets[r_symndx] |= 1; | 
|  | do_got = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (do_got) | 
|  | { | 
|  | if (reloc) | 
|  | { | 
|  | /* Output a dynamic relocation for this GOT entry. | 
|  | In this case it is relative to the base of the | 
|  | object because the symbol index is zero.  */ | 
|  | Elf_Internal_Rela outrel; | 
|  | bfd_byte *loc; | 
|  | asection *sec = htab->etab.srelgot; | 
|  |  | 
|  | outrel.r_offset = (off | 
|  | + htab->etab.sgot->output_offset | 
|  | + htab->etab.sgot->output_section->vma); | 
|  | outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32); | 
|  | outrel.r_addend = relocation; | 
|  | loc = sec->contents; | 
|  | loc += sec->reloc_count++ * sizeof (Elf32_External_Rela); | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | 
|  | } | 
|  | else | 
|  | bfd_put_32 (output_bfd, relocation, | 
|  | htab->etab.sgot->contents + off); | 
|  | } | 
|  |  | 
|  | if (off >= (bfd_vma) -2) | 
|  | abort (); | 
|  |  | 
|  | /* Add the base of the GOT to the relocation value.  */ | 
|  | relocation = (off | 
|  | + htab->etab.sgot->output_offset | 
|  | + htab->etab.sgot->output_section->vma); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case R_PARISC_SEGREL32: | 
|  | /* If this is the first SEGREL relocation, then initialize | 
|  | the segment base values.  */ | 
|  | if (htab->text_segment_base == (bfd_vma) -1) | 
|  | bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab); | 
|  | break; | 
|  |  | 
|  | case R_PARISC_PLABEL14R: | 
|  | case R_PARISC_PLABEL21L: | 
|  | case R_PARISC_PLABEL32: | 
|  | if (htab->etab.dynamic_sections_created) | 
|  | { | 
|  | bfd_vma off; | 
|  | bool do_plt = 0; | 
|  | /* If we have a global symbol with a PLT slot, then | 
|  | redirect this relocation to it.  */ | 
|  | if (hh != NULL) | 
|  | { | 
|  | off = hh->eh.plt.offset; | 
|  | if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, | 
|  | bfd_link_pic (info), | 
|  | &hh->eh)) | 
|  | { | 
|  | /* In a non-shared link, adjust_dynamic_symbol | 
|  | isn't called for symbols forced local.  We | 
|  | need to write out the plt entry here.  */ | 
|  | if ((off & 1) != 0) | 
|  | off &= ~1; | 
|  | else | 
|  | { | 
|  | hh->eh.plt.offset |= 1; | 
|  | do_plt = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_vma *local_plt_offsets; | 
|  |  | 
|  | if (local_got_offsets == NULL) | 
|  | abort (); | 
|  |  | 
|  | local_plt_offsets = local_got_offsets + symtab_hdr->sh_info; | 
|  | off = local_plt_offsets[r_symndx]; | 
|  |  | 
|  | /* As for the local .got entry case, we use the last | 
|  | bit to record whether we've already initialised | 
|  | this local .plt entry.  */ | 
|  | if ((off & 1) != 0) | 
|  | off &= ~1; | 
|  | else | 
|  | { | 
|  | local_plt_offsets[r_symndx] |= 1; | 
|  | do_plt = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (do_plt) | 
|  | { | 
|  | if (bfd_link_pic (info)) | 
|  | { | 
|  | /* Output a dynamic IPLT relocation for this | 
|  | PLT entry.  */ | 
|  | Elf_Internal_Rela outrel; | 
|  | bfd_byte *loc; | 
|  | asection *s = htab->etab.srelplt; | 
|  |  | 
|  | outrel.r_offset = (off | 
|  | + htab->etab.splt->output_offset | 
|  | + htab->etab.splt->output_section->vma); | 
|  | outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT); | 
|  | outrel.r_addend = relocation; | 
|  | loc = s->contents; | 
|  | loc += s->reloc_count++ * sizeof (Elf32_External_Rela); | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_put_32 (output_bfd, | 
|  | relocation, | 
|  | htab->etab.splt->contents + off); | 
|  | bfd_put_32 (output_bfd, | 
|  | elf_gp (htab->etab.splt->output_section->owner), | 
|  | htab->etab.splt->contents + off + 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (off >= (bfd_vma) -2) | 
|  | abort (); | 
|  |  | 
|  | /* PLABELs contain function pointers.  Relocation is to | 
|  | the entry for the function in the .plt.  The magic +2 | 
|  | offset signals to $$dyncall that the function pointer | 
|  | is in the .plt and thus has a gp pointer too. | 
|  | Exception:  Undefined PLABELs should have a value of | 
|  | zero.  */ | 
|  | if (hh == NULL | 
|  | || (hh->eh.root.type != bfd_link_hash_undefweak | 
|  | && hh->eh.root.type != bfd_link_hash_undefined)) | 
|  | { | 
|  | relocation = (off | 
|  | + htab->etab.splt->output_offset | 
|  | + htab->etab.splt->output_section->vma | 
|  | + 2); | 
|  | } | 
|  | plabel = 1; | 
|  | } | 
|  | /* Fall through.  */ | 
|  |  | 
|  | case R_PARISC_DIR17F: | 
|  | case R_PARISC_DIR17R: | 
|  | case R_PARISC_DIR14F: | 
|  | case R_PARISC_DIR14R: | 
|  | case R_PARISC_DIR21L: | 
|  | case R_PARISC_DPREL14F: | 
|  | case R_PARISC_DPREL14R: | 
|  | case R_PARISC_DPREL21L: | 
|  | case R_PARISC_DIR32: | 
|  | if ((input_section->flags & SEC_ALLOC) == 0) | 
|  | break; | 
|  |  | 
|  | if (bfd_link_pic (info) | 
|  | ? ((hh == NULL | 
|  | || hh->eh.dyn_relocs != NULL) | 
|  | && ((hh != NULL && pc_dynrelocs (hh)) | 
|  | || IS_ABSOLUTE_RELOC (r_type))) | 
|  | : (hh != NULL | 
|  | && hh->eh.dyn_relocs != NULL)) | 
|  | { | 
|  | Elf_Internal_Rela outrel; | 
|  | bool skip; | 
|  | asection *sreloc; | 
|  | bfd_byte *loc; | 
|  |  | 
|  | /* When generating a shared object, these relocations | 
|  | are copied into the output file to be resolved at run | 
|  | time.  */ | 
|  |  | 
|  | outrel.r_addend = rela->r_addend; | 
|  | outrel.r_offset = | 
|  | _bfd_elf_section_offset (output_bfd, info, input_section, | 
|  | rela->r_offset); | 
|  | skip = (outrel.r_offset == (bfd_vma) -1 | 
|  | || outrel.r_offset == (bfd_vma) -2); | 
|  | outrel.r_offset += (input_section->output_offset | 
|  | + input_section->output_section->vma); | 
|  |  | 
|  | if (skip) | 
|  | { | 
|  | memset (&outrel, 0, sizeof (outrel)); | 
|  | } | 
|  | else if (hh != NULL | 
|  | && hh->eh.dynindx != -1 | 
|  | && (plabel | 
|  | || !IS_ABSOLUTE_RELOC (r_type) | 
|  | || !bfd_link_pic (info) | 
|  | || !SYMBOLIC_BIND (info, &hh->eh) | 
|  | || !hh->eh.def_regular)) | 
|  | { | 
|  | outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type); | 
|  | } | 
|  | else /* It's a local symbol, or one marked to become local.  */ | 
|  | { | 
|  | int indx = 0; | 
|  |  | 
|  | /* Add the absolute offset of the symbol.  */ | 
|  | outrel.r_addend += relocation; | 
|  |  | 
|  | /* Global plabels need to be processed by the | 
|  | dynamic linker so that functions have at most one | 
|  | fptr.  For this reason, we need to differentiate | 
|  | between global and local plabels, which we do by | 
|  | providing the function symbol for a global plabel | 
|  | reloc, and no symbol for local plabels.  */ | 
|  | if (! plabel | 
|  | && sym_sec != NULL | 
|  | && sym_sec->output_section != NULL | 
|  | && ! bfd_is_abs_section (sym_sec)) | 
|  | { | 
|  | asection *osec; | 
|  |  | 
|  | osec = sym_sec->output_section; | 
|  | indx = elf_section_data (osec)->dynindx; | 
|  | if (indx == 0) | 
|  | { | 
|  | osec = htab->etab.text_index_section; | 
|  | indx = elf_section_data (osec)->dynindx; | 
|  | } | 
|  | BFD_ASSERT (indx != 0); | 
|  |  | 
|  | /* We are turning this relocation into one | 
|  | against a section symbol, so subtract out the | 
|  | output section's address but not the offset | 
|  | of the input section in the output section.  */ | 
|  | outrel.r_addend -= osec->vma; | 
|  | } | 
|  |  | 
|  | outrel.r_info = ELF32_R_INFO (indx, r_type); | 
|  | } | 
|  | sreloc = elf_section_data (input_section)->sreloc; | 
|  | if (sreloc == NULL) | 
|  | abort (); | 
|  |  | 
|  | loc = sreloc->contents; | 
|  | loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela); | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case R_PARISC_TLS_LDM21L: | 
|  | case R_PARISC_TLS_LDM14R: | 
|  | { | 
|  | bfd_vma off; | 
|  |  | 
|  | off = htab->tls_ldm_got.offset; | 
|  | if (off & 1) | 
|  | off &= ~1; | 
|  | else | 
|  | { | 
|  | Elf_Internal_Rela outrel; | 
|  | bfd_byte *loc; | 
|  |  | 
|  | outrel.r_offset = (off | 
|  | + htab->etab.sgot->output_section->vma | 
|  | + htab->etab.sgot->output_offset); | 
|  | outrel.r_addend = 0; | 
|  | outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32); | 
|  | loc = htab->etab.srelgot->contents; | 
|  | loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela); | 
|  |  | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | 
|  | htab->tls_ldm_got.offset |= 1; | 
|  | } | 
|  |  | 
|  | /* Add the base of the GOT to the relocation value.  */ | 
|  | relocation = (off | 
|  | + htab->etab.sgot->output_offset | 
|  | + htab->etab.sgot->output_section->vma); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case R_PARISC_TLS_LDO21L: | 
|  | case R_PARISC_TLS_LDO14R: | 
|  | relocation -= dtpoff_base (info); | 
|  | break; | 
|  |  | 
|  | case R_PARISC_TLS_GD21L: | 
|  | case R_PARISC_TLS_GD14R: | 
|  | case R_PARISC_TLS_IE21L: | 
|  | case R_PARISC_TLS_IE14R: | 
|  | { | 
|  | bfd_vma off; | 
|  | int indx; | 
|  | char tls_type; | 
|  |  | 
|  | indx = 0; | 
|  | if (hh != NULL) | 
|  | { | 
|  | if (!htab->etab.dynamic_sections_created | 
|  | || hh->eh.dynindx == -1 | 
|  | || SYMBOL_REFERENCES_LOCAL (info, &hh->eh) | 
|  | || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)) | 
|  | /* This is actually a static link, or it is a | 
|  | -Bsymbolic link and the symbol is defined | 
|  | locally, or the symbol was forced to be local | 
|  | because of a version file.  */ | 
|  | ; | 
|  | else | 
|  | indx = hh->eh.dynindx; | 
|  | off = hh->eh.got.offset; | 
|  | tls_type = hh->tls_type; | 
|  | } | 
|  | else | 
|  | { | 
|  | off = local_got_offsets[r_symndx]; | 
|  | tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx]; | 
|  | } | 
|  |  | 
|  | if (tls_type == GOT_UNKNOWN) | 
|  | abort (); | 
|  |  | 
|  | if ((off & 1) != 0) | 
|  | off &= ~1; | 
|  | else | 
|  | { | 
|  | bool need_relocs = false; | 
|  | Elf_Internal_Rela outrel; | 
|  | bfd_byte *loc = NULL; | 
|  | int cur_off = off; | 
|  |  | 
|  | /* The GOT entries have not been initialized yet.  Do it | 
|  | now, and emit any relocations.  If both an IE GOT and a | 
|  | GD GOT are necessary, we emit the GD first.  */ | 
|  |  | 
|  | if (indx != 0 | 
|  | || (bfd_link_dll (info) | 
|  | && (hh == NULL | 
|  | || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)))) | 
|  | { | 
|  | need_relocs = true; | 
|  | loc = htab->etab.srelgot->contents; | 
|  | loc += (htab->etab.srelgot->reloc_count | 
|  | * sizeof (Elf32_External_Rela)); | 
|  | } | 
|  |  | 
|  | if (tls_type & GOT_TLS_GD) | 
|  | { | 
|  | if (need_relocs) | 
|  | { | 
|  | outrel.r_offset | 
|  | = (cur_off | 
|  | + htab->etab.sgot->output_section->vma | 
|  | + htab->etab.sgot->output_offset); | 
|  | outrel.r_info | 
|  | = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32); | 
|  | outrel.r_addend = 0; | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | 
|  | htab->etab.srelgot->reloc_count++; | 
|  | loc += sizeof (Elf32_External_Rela); | 
|  | bfd_put_32 (output_bfd, 0, | 
|  | htab->etab.sgot->contents + cur_off); | 
|  | } | 
|  | else | 
|  | /* If we are not emitting relocations for a | 
|  | general dynamic reference, then we must be in a | 
|  | static link or an executable link with the | 
|  | symbol binding locally.  Mark it as belonging | 
|  | to module 1, the executable.  */ | 
|  | bfd_put_32 (output_bfd, 1, | 
|  | htab->etab.sgot->contents + cur_off); | 
|  |  | 
|  | if (indx != 0) | 
|  | { | 
|  | outrel.r_info | 
|  | = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32); | 
|  | outrel.r_offset += 4; | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | 
|  | htab->etab.srelgot->reloc_count++; | 
|  | loc += sizeof (Elf32_External_Rela); | 
|  | bfd_put_32 (output_bfd, 0, | 
|  | htab->etab.sgot->contents + cur_off + 4); | 
|  | } | 
|  | else | 
|  | bfd_put_32 (output_bfd, relocation - dtpoff_base (info), | 
|  | htab->etab.sgot->contents + cur_off + 4); | 
|  | cur_off += 8; | 
|  | } | 
|  |  | 
|  | if (tls_type & GOT_TLS_IE) | 
|  | { | 
|  | if (need_relocs | 
|  | && !(bfd_link_executable (info) | 
|  | && SYMBOL_REFERENCES_LOCAL (info, &hh->eh))) | 
|  | { | 
|  | outrel.r_offset | 
|  | = (cur_off | 
|  | + htab->etab.sgot->output_section->vma | 
|  | + htab->etab.sgot->output_offset); | 
|  | outrel.r_info = ELF32_R_INFO (indx, | 
|  | R_PARISC_TLS_TPREL32); | 
|  | if (indx == 0) | 
|  | outrel.r_addend = relocation - dtpoff_base (info); | 
|  | else | 
|  | outrel.r_addend = 0; | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | 
|  | htab->etab.srelgot->reloc_count++; | 
|  | loc += sizeof (Elf32_External_Rela); | 
|  | } | 
|  | else | 
|  | bfd_put_32 (output_bfd, tpoff (info, relocation), | 
|  | htab->etab.sgot->contents + cur_off); | 
|  | cur_off += 4; | 
|  | } | 
|  |  | 
|  | if (hh != NULL) | 
|  | hh->eh.got.offset |= 1; | 
|  | else | 
|  | local_got_offsets[r_symndx] |= 1; | 
|  | } | 
|  |  | 
|  | if ((tls_type & GOT_NORMAL) != 0 | 
|  | && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0) | 
|  | { | 
|  | if (hh != NULL) | 
|  | _bfd_error_handler (_("%s has both normal and TLS relocs"), | 
|  | hh_name (hh)); | 
|  | else | 
|  | { | 
|  | Elf_Internal_Sym *isym | 
|  | = bfd_sym_from_r_symndx (&htab->etab.sym_cache, | 
|  | input_bfd, r_symndx); | 
|  | if (isym == NULL) | 
|  | return false; | 
|  | sym_name | 
|  | = bfd_elf_string_from_elf_section (input_bfd, | 
|  | symtab_hdr->sh_link, | 
|  | isym->st_name); | 
|  | if (sym_name == NULL) | 
|  | return false; | 
|  | if (*sym_name == '\0') | 
|  | sym_name = bfd_section_name (sym_sec); | 
|  | _bfd_error_handler | 
|  | (_("%pB:%s has both normal and TLS relocs"), | 
|  | input_bfd, sym_name); | 
|  | } | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if ((tls_type & GOT_TLS_GD) | 
|  | && r_type != R_PARISC_TLS_GD21L | 
|  | && r_type != R_PARISC_TLS_GD14R) | 
|  | off += 2 * GOT_ENTRY_SIZE; | 
|  |  | 
|  | /* Add the base of the GOT to the relocation value.  */ | 
|  | relocation = (off | 
|  | + htab->etab.sgot->output_offset | 
|  | + htab->etab.sgot->output_section->vma); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case R_PARISC_TLS_LE21L: | 
|  | case R_PARISC_TLS_LE14R: | 
|  | { | 
|  | relocation = tpoff (info, relocation); | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | rstatus = final_link_relocate (input_section, contents, rela, relocation, | 
|  | htab, sym_sec, hh, info); | 
|  |  | 
|  | if (rstatus == bfd_reloc_ok) | 
|  | continue; | 
|  |  | 
|  | if (hh != NULL) | 
|  | sym_name = hh_name (hh); | 
|  | else | 
|  | { | 
|  | sym_name = bfd_elf_string_from_elf_section (input_bfd, | 
|  | symtab_hdr->sh_link, | 
|  | sym->st_name); | 
|  | if (sym_name == NULL) | 
|  | return false; | 
|  | if (*sym_name == '\0') | 
|  | sym_name = bfd_section_name (sym_sec); | 
|  | } | 
|  |  | 
|  | howto = elf_hppa_howto_table + r_type; | 
|  |  | 
|  | if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported) | 
|  | { | 
|  | if (rstatus == bfd_reloc_notsupported || !warned_undef) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA+%#" PRIx64 "): cannot handle %s for %s"), | 
|  | input_bfd, | 
|  | input_section, | 
|  | (uint64_t) rela->r_offset, | 
|  | howto->name, | 
|  | sym_name); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | else | 
|  | (*info->callbacks->reloc_overflow) | 
|  | (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name, | 
|  | (bfd_vma) 0, input_bfd, input_section, rela->r_offset); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Finish up dynamic symbol handling.  We set the contents of various | 
|  | dynamic sections here.  */ | 
|  |  | 
|  | static bool | 
|  | elf32_hppa_finish_dynamic_symbol (bfd *output_bfd, | 
|  | struct bfd_link_info *info, | 
|  | struct elf_link_hash_entry *eh, | 
|  | Elf_Internal_Sym *sym) | 
|  | { | 
|  | struct elf32_hppa_link_hash_table *htab; | 
|  | Elf_Internal_Rela rela; | 
|  | bfd_byte *loc; | 
|  |  | 
|  | htab = hppa_link_hash_table (info); | 
|  |  | 
|  | if (eh->plt.offset != (bfd_vma) -1) | 
|  | { | 
|  | bfd_vma value; | 
|  |  | 
|  | if (eh->plt.offset & 1) | 
|  | abort (); | 
|  |  | 
|  | /* This symbol has an entry in the procedure linkage table.  Set | 
|  | it up. | 
|  |  | 
|  | The format of a plt entry is | 
|  | <funcaddr> | 
|  | <__gp> | 
|  | */ | 
|  | value = 0; | 
|  | if (eh->root.type == bfd_link_hash_defined | 
|  | || eh->root.type == bfd_link_hash_defweak) | 
|  | { | 
|  | value = eh->root.u.def.value; | 
|  | if (eh->root.u.def.section->output_section != NULL) | 
|  | value += (eh->root.u.def.section->output_offset | 
|  | + eh->root.u.def.section->output_section->vma); | 
|  | } | 
|  |  | 
|  | /* Create a dynamic IPLT relocation for this entry.  */ | 
|  | rela.r_offset = (eh->plt.offset | 
|  | + htab->etab.splt->output_offset | 
|  | + htab->etab.splt->output_section->vma); | 
|  | if (eh->dynindx != -1) | 
|  | { | 
|  | rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT); | 
|  | rela.r_addend = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* This symbol has been marked to become local, and is | 
|  | used by a plabel so must be kept in the .plt.  */ | 
|  | rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT); | 
|  | rela.r_addend = value; | 
|  | } | 
|  |  | 
|  | loc = htab->etab.srelplt->contents; | 
|  | loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela); | 
|  | bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc); | 
|  |  | 
|  | if (!eh->def_regular) | 
|  | { | 
|  | /* Mark the symbol as undefined, rather than as defined in | 
|  | the .plt section.  Leave the value alone.  */ | 
|  | sym->st_shndx = SHN_UNDEF; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (eh->got.offset != (bfd_vma) -1 | 
|  | && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0 | 
|  | && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)) | 
|  | { | 
|  | bool is_dyn = (eh->dynindx != -1 | 
|  | && !SYMBOL_REFERENCES_LOCAL (info, eh)); | 
|  |  | 
|  | if (is_dyn || bfd_link_pic (info)) | 
|  | { | 
|  | /* This symbol has an entry in the global offset table.  Set | 
|  | it up.  */ | 
|  |  | 
|  | rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1) | 
|  | + htab->etab.sgot->output_offset | 
|  | + htab->etab.sgot->output_section->vma); | 
|  |  | 
|  | /* If this is a -Bsymbolic link and the symbol is defined | 
|  | locally or was forced to be local because of a version | 
|  | file, we just want to emit a RELATIVE reloc.  The entry | 
|  | in the global offset table will already have been | 
|  | initialized in the relocate_section function.  */ | 
|  | if (!is_dyn | 
|  | && (eh->root.type == bfd_link_hash_defined | 
|  | || eh->root.type == bfd_link_hash_defweak)) | 
|  | { | 
|  | rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32); | 
|  | rela.r_addend = (eh->root.u.def.value | 
|  | + eh->root.u.def.section->output_offset | 
|  | + eh->root.u.def.section->output_section->vma); | 
|  | } | 
|  | else | 
|  | { | 
|  | if ((eh->got.offset & 1) != 0) | 
|  | abort (); | 
|  |  | 
|  | bfd_put_32 (output_bfd, 0, | 
|  | htab->etab.sgot->contents + (eh->got.offset & ~1)); | 
|  | rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32); | 
|  | rela.r_addend = 0; | 
|  | } | 
|  |  | 
|  | loc = htab->etab.srelgot->contents; | 
|  | loc += (htab->etab.srelgot->reloc_count++ | 
|  | * sizeof (Elf32_External_Rela)); | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (eh->needs_copy) | 
|  | { | 
|  | asection *sec; | 
|  |  | 
|  | /* This symbol needs a copy reloc.  Set it up.  */ | 
|  |  | 
|  | if (! (eh->dynindx != -1 | 
|  | && (eh->root.type == bfd_link_hash_defined | 
|  | || eh->root.type == bfd_link_hash_defweak))) | 
|  | abort (); | 
|  |  | 
|  | rela.r_offset = (eh->root.u.def.value | 
|  | + eh->root.u.def.section->output_offset | 
|  | + eh->root.u.def.section->output_section->vma); | 
|  | rela.r_addend = 0; | 
|  | rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY); | 
|  | if (eh->root.u.def.section == htab->etab.sdynrelro) | 
|  | sec = htab->etab.sreldynrelro; | 
|  | else | 
|  | sec = htab->etab.srelbss; | 
|  | loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela); | 
|  | bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); | 
|  | } | 
|  |  | 
|  | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */ | 
|  | if (eh == htab->etab.hdynamic || eh == htab->etab.hgot) | 
|  | { | 
|  | sym->st_shndx = SHN_ABS; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Used to decide how to sort relocs in an optimal manner for the | 
|  | dynamic linker, before writing them out.  */ | 
|  |  | 
|  | static enum elf_reloc_type_class | 
|  | elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
|  | const asection *rel_sec ATTRIBUTE_UNUSED, | 
|  | const Elf_Internal_Rela *rela) | 
|  | { | 
|  | /* Handle TLS relocs first; we don't want them to be marked | 
|  | relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)" | 
|  | check below.  */ | 
|  | switch ((int) ELF32_R_TYPE (rela->r_info)) | 
|  | { | 
|  | case R_PARISC_TLS_DTPMOD32: | 
|  | case R_PARISC_TLS_DTPOFF32: | 
|  | case R_PARISC_TLS_TPREL32: | 
|  | return reloc_class_normal; | 
|  | } | 
|  |  | 
|  | if (ELF32_R_SYM (rela->r_info) == STN_UNDEF) | 
|  | return reloc_class_relative; | 
|  |  | 
|  | switch ((int) ELF32_R_TYPE (rela->r_info)) | 
|  | { | 
|  | case R_PARISC_IPLT: | 
|  | return reloc_class_plt; | 
|  | case R_PARISC_COPY: | 
|  | return reloc_class_copy; | 
|  | default: | 
|  | return reloc_class_normal; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Finish up the dynamic sections.  */ | 
|  |  | 
|  | static bool | 
|  | elf32_hppa_finish_dynamic_sections (bfd *output_bfd, | 
|  | struct bfd_link_info *info) | 
|  | { | 
|  | bfd *dynobj; | 
|  | struct elf32_hppa_link_hash_table *htab; | 
|  | asection *sdyn; | 
|  | asection * sgot; | 
|  |  | 
|  | htab = hppa_link_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return false; | 
|  |  | 
|  | dynobj = htab->etab.dynobj; | 
|  |  | 
|  | sgot = htab->etab.sgot; | 
|  | /* A broken linker script might have discarded the dynamic sections. | 
|  | Catch this here so that we do not seg-fault later on.  */ | 
|  | if (sgot != NULL && bfd_is_abs_section (sgot->output_section)) | 
|  | return false; | 
|  |  | 
|  | sdyn = bfd_get_linker_section (dynobj, ".dynamic"); | 
|  |  | 
|  | if (htab->etab.dynamic_sections_created) | 
|  | { | 
|  | Elf32_External_Dyn *dyncon, *dynconend; | 
|  |  | 
|  | if (sdyn == NULL) | 
|  | abort (); | 
|  |  | 
|  | dyncon = (Elf32_External_Dyn *) sdyn->contents; | 
|  | dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); | 
|  | for (; dyncon < dynconend; dyncon++) | 
|  | { | 
|  | Elf_Internal_Dyn dyn; | 
|  | asection *s; | 
|  |  | 
|  | bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); | 
|  |  | 
|  | switch (dyn.d_tag) | 
|  | { | 
|  | default: | 
|  | continue; | 
|  |  | 
|  | case DT_PLTGOT: | 
|  | /* Use PLTGOT to set the GOT register.  */ | 
|  | dyn.d_un.d_ptr = elf_gp (output_bfd); | 
|  | break; | 
|  |  | 
|  | case DT_JMPREL: | 
|  | s = htab->etab.srelplt; | 
|  | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | 
|  | break; | 
|  |  | 
|  | case DT_PLTRELSZ: | 
|  | s = htab->etab.srelplt; | 
|  | dyn.d_un.d_val = s->size; | 
|  | break; | 
|  | } | 
|  |  | 
|  | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sgot != NULL && sgot->size != 0) | 
|  | { | 
|  | /* Fill in the first entry in the global offset table. | 
|  | We use it to point to our dynamic section, if we have one.  */ | 
|  | bfd_put_32 (output_bfd, | 
|  | sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0, | 
|  | sgot->contents); | 
|  |  | 
|  | /* The second entry is reserved for use by the dynamic linker.  */ | 
|  | memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE); | 
|  |  | 
|  | /* Set .got entry size.  */ | 
|  | elf_section_data (sgot->output_section) | 
|  | ->this_hdr.sh_entsize = GOT_ENTRY_SIZE; | 
|  | } | 
|  |  | 
|  | if (htab->etab.splt != NULL && htab->etab.splt->size != 0) | 
|  | { | 
|  | /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the | 
|  | plt stubs and as such the section does not hold a table of fixed-size | 
|  | entries.  */ | 
|  | elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0; | 
|  |  | 
|  | if (htab->need_plt_stub) | 
|  | { | 
|  | /* Set up the .plt stub.  */ | 
|  | memcpy (htab->etab.splt->contents | 
|  | + htab->etab.splt->size - sizeof (plt_stub), | 
|  | plt_stub, sizeof (plt_stub)); | 
|  |  | 
|  | if ((htab->etab.splt->output_offset | 
|  | + htab->etab.splt->output_section->vma | 
|  | + htab->etab.splt->size) | 
|  | != (sgot->output_offset | 
|  | + sgot->output_section->vma)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_(".got section not immediately after .plt section")); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Called when writing out an object file to decide the type of a | 
|  | symbol.  */ | 
|  | static int | 
|  | elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type) | 
|  | { | 
|  | if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI) | 
|  | return STT_PARISC_MILLI; | 
|  | else | 
|  | return type; | 
|  | } | 
|  |  | 
|  | /* Misc BFD support code.  */ | 
|  | #define bfd_elf32_bfd_is_local_label_name    elf_hppa_is_local_label_name | 
|  | #define bfd_elf32_bfd_reloc_type_lookup	     elf_hppa_reloc_type_lookup | 
|  | #define bfd_elf32_bfd_reloc_name_lookup      elf_hppa_reloc_name_lookup | 
|  | #define elf_info_to_howto		     elf_hppa_info_to_howto | 
|  | #define elf_info_to_howto_rel		     elf_hppa_info_to_howto_rel | 
|  |  | 
|  | /* Stuff for the BFD linker.  */ | 
|  | #define bfd_elf32_bfd_final_link	     elf32_hppa_final_link | 
|  | #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create | 
|  | #define elf_backend_adjust_dynamic_symbol    elf32_hppa_adjust_dynamic_symbol | 
|  | #define elf_backend_copy_indirect_symbol     elf32_hppa_copy_indirect_symbol | 
|  | #define elf_backend_check_relocs	     elf32_hppa_check_relocs | 
|  | #define elf_backend_relocs_compatible	     _bfd_elf_relocs_compatible | 
|  | #define elf_backend_create_dynamic_sections  elf32_hppa_create_dynamic_sections | 
|  | #define elf_backend_fake_sections	     elf_hppa_fake_sections | 
|  | #define elf_backend_relocate_section	     elf32_hppa_relocate_section | 
|  | #define elf_backend_hide_symbol		     elf32_hppa_hide_symbol | 
|  | #define elf_backend_finish_dynamic_symbol    elf32_hppa_finish_dynamic_symbol | 
|  | #define elf_backend_finish_dynamic_sections  elf32_hppa_finish_dynamic_sections | 
|  | #define elf_backend_late_size_sections	     elf32_hppa_late_size_sections | 
|  | #define elf_backend_init_index_section	     _bfd_elf_init_1_index_section | 
|  | #define elf_backend_gc_mark_hook	     elf32_hppa_gc_mark_hook | 
|  | #define elf_backend_grok_prstatus	     elf32_hppa_grok_prstatus | 
|  | #define elf_backend_grok_psinfo		     elf32_hppa_grok_psinfo | 
|  | #define elf_backend_object_p		     elf32_hppa_object_p | 
|  | #define elf_backend_final_write_processing   elf_hppa_final_write_processing | 
|  | #define elf_backend_get_symbol_type	     elf32_hppa_elf_get_symbol_type | 
|  | #define elf_backend_reloc_type_class	     elf32_hppa_reloc_type_class | 
|  | #define elf_backend_action_discarded	     elf_hppa_action_discarded | 
|  |  | 
|  | #define elf_backend_can_gc_sections	     1 | 
|  | #define elf_backend_can_refcount	     1 | 
|  | #define elf_backend_plt_alignment	     2 | 
|  | #define elf_backend_want_got_plt	     0 | 
|  | #define elf_backend_plt_readonly	     0 | 
|  | #define elf_backend_want_plt_sym	     0 | 
|  | #define elf_backend_got_header_size	     8 | 
|  | #define elf_backend_want_dynrelro	     1 | 
|  | #define elf_backend_rela_normal		     1 | 
|  | #define elf_backend_dtrel_excludes_plt	     1 | 
|  | #define elf_backend_no_page_alias	     1 | 
|  |  | 
|  | #define TARGET_BIG_SYM		hppa_elf32_vec | 
|  | #define TARGET_BIG_NAME		"elf32-hppa" | 
|  | #define ELF_ARCH		bfd_arch_hppa | 
|  | #define ELF_TARGET_ID		HPPA32_ELF_DATA | 
|  | #define ELF_MACHINE_CODE	EM_PARISC | 
|  | #define ELF_MAXPAGESIZE		0x1000 | 
|  | #define ELF_OSABI		ELFOSABI_HPUX | 
|  | #define elf32_bed		elf32_hppa_hpux_bed | 
|  |  | 
|  | #include "elf32-target.h" | 
|  |  | 
|  | #undef TARGET_BIG_SYM | 
|  | #define TARGET_BIG_SYM		hppa_elf32_linux_vec | 
|  | #undef TARGET_BIG_NAME | 
|  | #define TARGET_BIG_NAME		"elf32-hppa-linux" | 
|  | #undef ELF_OSABI | 
|  | #define ELF_OSABI		ELFOSABI_GNU | 
|  | #undef elf32_bed | 
|  | #define elf32_bed		elf32_hppa_linux_bed | 
|  |  | 
|  | #include "elf32-target.h" | 
|  |  | 
|  | #undef TARGET_BIG_SYM | 
|  | #define TARGET_BIG_SYM		hppa_elf32_nbsd_vec | 
|  | #undef TARGET_BIG_NAME | 
|  | #define TARGET_BIG_NAME		"elf32-hppa-netbsd" | 
|  | #undef ELF_OSABI | 
|  | #define ELF_OSABI		ELFOSABI_NETBSD | 
|  | #undef elf32_bed | 
|  | #define elf32_bed		elf32_hppa_netbsd_bed | 
|  |  | 
|  | #include "elf32-target.h" |