| /* Common target dependent code for GDB on ARM systems. |
| |
| Copyright (C) 1988-2022 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| |
| #include <ctype.h> /* XXX for isupper (). */ |
| |
| #include "frame.h" |
| #include "inferior.h" |
| #include "infrun.h" |
| #include "gdbcmd.h" |
| #include "gdbcore.h" |
| #include "dis-asm.h" /* For register styles. */ |
| #include "disasm.h" |
| #include "regcache.h" |
| #include "reggroups.h" |
| #include "target-float.h" |
| #include "value.h" |
| #include "arch-utils.h" |
| #include "osabi.h" |
| #include "frame-unwind.h" |
| #include "frame-base.h" |
| #include "trad-frame.h" |
| #include "objfiles.h" |
| #include "dwarf2/frame.h" |
| #include "gdbtypes.h" |
| #include "prologue-value.h" |
| #include "remote.h" |
| #include "target-descriptions.h" |
| #include "user-regs.h" |
| #include "observable.h" |
| #include "count-one-bits.h" |
| |
| #include "arch/arm.h" |
| #include "arch/arm-get-next-pcs.h" |
| #include "arm-tdep.h" |
| #include "gdb/sim-arm.h" |
| |
| #include "elf-bfd.h" |
| #include "coff/internal.h" |
| #include "elf/arm.h" |
| |
| #include "record.h" |
| #include "record-full.h" |
| #include <algorithm> |
| |
| #include "producer.h" |
| |
| #if GDB_SELF_TEST |
| #include "gdbsupport/selftest.h" |
| #endif |
| |
| static bool arm_debug; |
| |
| /* Print an "arm" debug statement. */ |
| |
| #define arm_debug_printf(fmt, ...) \ |
| debug_prefixed_printf_cond (arm_debug, "arm", fmt, ##__VA_ARGS__) |
| |
| /* Macros for setting and testing a bit in a minimal symbol that marks |
| it as Thumb function. The MSB of the minimal symbol's "info" field |
| is used for this purpose. |
| |
| MSYMBOL_SET_SPECIAL Actually sets the "special" bit. |
| MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */ |
| |
| #define MSYMBOL_SET_SPECIAL(msym) \ |
| MSYMBOL_TARGET_FLAG_1 (msym) = 1 |
| |
| #define MSYMBOL_IS_SPECIAL(msym) \ |
| MSYMBOL_TARGET_FLAG_1 (msym) |
| |
| struct arm_mapping_symbol |
| { |
| CORE_ADDR value; |
| char type; |
| |
| bool operator< (const arm_mapping_symbol &other) const |
| { return this->value < other.value; } |
| }; |
| |
| typedef std::vector<arm_mapping_symbol> arm_mapping_symbol_vec; |
| |
| struct arm_per_bfd |
| { |
| explicit arm_per_bfd (size_t num_sections) |
| : section_maps (new arm_mapping_symbol_vec[num_sections]), |
| section_maps_sorted (new bool[num_sections] ()) |
| {} |
| |
| DISABLE_COPY_AND_ASSIGN (arm_per_bfd); |
| |
| /* Information about mapping symbols ($a, $d, $t) in the objfile. |
| |
| The format is an array of vectors of arm_mapping_symbols, there is one |
| vector for each section of the objfile (the array is index by BFD section |
| index). |
| |
| For each section, the vector of arm_mapping_symbol is sorted by |
| symbol value (address). */ |
| std::unique_ptr<arm_mapping_symbol_vec[]> section_maps; |
| |
| /* For each corresponding element of section_maps above, is this vector |
| sorted. */ |
| std::unique_ptr<bool[]> section_maps_sorted; |
| }; |
| |
| /* Per-bfd data used for mapping symbols. */ |
| static bfd_key<arm_per_bfd> arm_bfd_data_key; |
| |
| /* The list of available "set arm ..." and "show arm ..." commands. */ |
| static struct cmd_list_element *setarmcmdlist = NULL; |
| static struct cmd_list_element *showarmcmdlist = NULL; |
| |
| /* The type of floating-point to use. Keep this in sync with enum |
| arm_float_model, and the help string in _initialize_arm_tdep. */ |
| static const char *const fp_model_strings[] = |
| { |
| "auto", |
| "softfpa", |
| "fpa", |
| "softvfp", |
| "vfp", |
| NULL |
| }; |
| |
| /* A variable that can be configured by the user. */ |
| static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO; |
| static const char *current_fp_model = "auto"; |
| |
| /* The ABI to use. Keep this in sync with arm_abi_kind. */ |
| static const char *const arm_abi_strings[] = |
| { |
| "auto", |
| "APCS", |
| "AAPCS", |
| NULL |
| }; |
| |
| /* A variable that can be configured by the user. */ |
| static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO; |
| static const char *arm_abi_string = "auto"; |
| |
| /* The execution mode to assume. */ |
| static const char *const arm_mode_strings[] = |
| { |
| "auto", |
| "arm", |
| "thumb", |
| NULL |
| }; |
| |
| static const char *arm_fallback_mode_string = "auto"; |
| static const char *arm_force_mode_string = "auto"; |
| |
| /* The standard register names, and all the valid aliases for them. Note |
| that `fp', `sp' and `pc' are not added in this alias list, because they |
| have been added as builtin user registers in |
| std-regs.c:_initialize_frame_reg. */ |
| static const struct |
| { |
| const char *name; |
| int regnum; |
| } arm_register_aliases[] = { |
| /* Basic register numbers. */ |
| { "r0", 0 }, |
| { "r1", 1 }, |
| { "r2", 2 }, |
| { "r3", 3 }, |
| { "r4", 4 }, |
| { "r5", 5 }, |
| { "r6", 6 }, |
| { "r7", 7 }, |
| { "r8", 8 }, |
| { "r9", 9 }, |
| { "r10", 10 }, |
| { "r11", 11 }, |
| { "r12", 12 }, |
| { "r13", 13 }, |
| { "r14", 14 }, |
| { "r15", 15 }, |
| /* Synonyms (argument and variable registers). */ |
| { "a1", 0 }, |
| { "a2", 1 }, |
| { "a3", 2 }, |
| { "a4", 3 }, |
| { "v1", 4 }, |
| { "v2", 5 }, |
| { "v3", 6 }, |
| { "v4", 7 }, |
| { "v5", 8 }, |
| { "v6", 9 }, |
| { "v7", 10 }, |
| { "v8", 11 }, |
| /* Other platform-specific names for r9. */ |
| { "sb", 9 }, |
| { "tr", 9 }, |
| /* Special names. */ |
| { "ip", 12 }, |
| { "lr", 14 }, |
| /* Names used by GCC (not listed in the ARM EABI). */ |
| { "sl", 10 }, |
| /* A special name from the older ATPCS. */ |
| { "wr", 7 }, |
| }; |
| |
| static const char *const arm_register_names[] = |
| {"r0", "r1", "r2", "r3", /* 0 1 2 3 */ |
| "r4", "r5", "r6", "r7", /* 4 5 6 7 */ |
| "r8", "r9", "r10", "r11", /* 8 9 10 11 */ |
| "r12", "sp", "lr", "pc", /* 12 13 14 15 */ |
| "f0", "f1", "f2", "f3", /* 16 17 18 19 */ |
| "f4", "f5", "f6", "f7", /* 20 21 22 23 */ |
| "fps", "cpsr" }; /* 24 25 */ |
| |
| /* Holds the current set of options to be passed to the disassembler. */ |
| static char *arm_disassembler_options; |
| |
| /* Valid register name styles. */ |
| static const char **valid_disassembly_styles; |
| |
| /* Disassembly style to use. Default to "std" register names. */ |
| static const char *disassembly_style; |
| |
| /* All possible arm target descriptors. */ |
| static struct target_desc *tdesc_arm_list[ARM_FP_TYPE_INVALID]; |
| static struct target_desc *tdesc_arm_mprofile_list[ARM_M_TYPE_INVALID]; |
| |
| /* This is used to keep the bfd arch_info in sync with the disassembly |
| style. */ |
| static void set_disassembly_style_sfunc (const char *, int, |
| struct cmd_list_element *); |
| static void show_disassembly_style_sfunc (struct ui_file *, int, |
| struct cmd_list_element *, |
| const char *); |
| |
| static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch, |
| readable_regcache *regcache, |
| int regnum, gdb_byte *buf); |
| static void arm_neon_quad_write (struct gdbarch *gdbarch, |
| struct regcache *regcache, |
| int regnum, const gdb_byte *buf); |
| |
| static CORE_ADDR |
| arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self); |
| |
| |
| /* get_next_pcs operations. */ |
| static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = { |
| arm_get_next_pcs_read_memory_unsigned_integer, |
| arm_get_next_pcs_syscall_next_pc, |
| arm_get_next_pcs_addr_bits_remove, |
| arm_get_next_pcs_is_thumb, |
| NULL, |
| }; |
| |
| struct arm_prologue_cache |
| { |
| /* The stack pointer at the time this frame was created; i.e. the |
| caller's stack pointer when this function was called. It is used |
| to identify this frame. */ |
| CORE_ADDR prev_sp; |
| |
| /* The frame base for this frame is just prev_sp - frame size. |
| FRAMESIZE is the distance from the frame pointer to the |
| initial stack pointer. */ |
| |
| int framesize; |
| |
| /* The register used to hold the frame pointer for this frame. */ |
| int framereg; |
| |
| /* Saved register offsets. */ |
| trad_frame_saved_reg *saved_regs; |
| }; |
| |
| namespace { |
| |
| /* Abstract class to read ARM instructions from memory. */ |
| |
| class arm_instruction_reader |
| { |
| public: |
| /* Read a 4 bytes instruction from memory using the BYTE_ORDER endianness. */ |
| virtual uint32_t read (CORE_ADDR memaddr, bfd_endian byte_order) const = 0; |
| }; |
| |
| /* Read instructions from target memory. */ |
| |
| class target_arm_instruction_reader : public arm_instruction_reader |
| { |
| public: |
| uint32_t read (CORE_ADDR memaddr, bfd_endian byte_order) const override |
| { |
| return read_code_unsigned_integer (memaddr, 4, byte_order); |
| } |
| }; |
| |
| } /* namespace */ |
| |
| static CORE_ADDR arm_analyze_prologue |
| (struct gdbarch *gdbarch, CORE_ADDR prologue_start, CORE_ADDR prologue_end, |
| struct arm_prologue_cache *cache, const arm_instruction_reader &insn_reader); |
| |
| /* Architecture version for displaced stepping. This effects the behaviour of |
| certain instructions, and really should not be hard-wired. */ |
| |
| #define DISPLACED_STEPPING_ARCH_VERSION 5 |
| |
| /* See arm-tdep.h. */ |
| |
| bool arm_apcs_32 = true; |
| |
| /* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */ |
| |
| int |
| arm_psr_thumb_bit (struct gdbarch *gdbarch) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| if (tdep->is_m) |
| return XPSR_T; |
| else |
| return CPSR_T; |
| } |
| |
| /* Determine if the processor is currently executing in Thumb mode. */ |
| |
| int |
| arm_is_thumb (struct regcache *regcache) |
| { |
| ULONGEST cpsr; |
| ULONGEST t_bit = arm_psr_thumb_bit (regcache->arch ()); |
| |
| cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM); |
| |
| return (cpsr & t_bit) != 0; |
| } |
| |
| /* Determine if FRAME is executing in Thumb mode. */ |
| |
| int |
| arm_frame_is_thumb (struct frame_info *frame) |
| { |
| CORE_ADDR cpsr; |
| ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame)); |
| |
| /* Every ARM frame unwinder can unwind the T bit of the CPSR, either |
| directly (from a signal frame or dummy frame) or by interpreting |
| the saved LR (from a prologue or DWARF frame). So consult it and |
| trust the unwinders. */ |
| cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM); |
| |
| return (cpsr & t_bit) != 0; |
| } |
| |
| /* Search for the mapping symbol covering MEMADDR. If one is found, |
| return its type. Otherwise, return 0. If START is non-NULL, |
| set *START to the location of the mapping symbol. */ |
| |
| static char |
| arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start) |
| { |
| struct obj_section *sec; |
| |
| /* If there are mapping symbols, consult them. */ |
| sec = find_pc_section (memaddr); |
| if (sec != NULL) |
| { |
| arm_per_bfd *data = arm_bfd_data_key.get (sec->objfile->obfd); |
| if (data != NULL) |
| { |
| unsigned int section_idx = sec->the_bfd_section->index; |
| arm_mapping_symbol_vec &map |
| = data->section_maps[section_idx]; |
| |
| /* Sort the vector on first use. */ |
| if (!data->section_maps_sorted[section_idx]) |
| { |
| std::sort (map.begin (), map.end ()); |
| data->section_maps_sorted[section_idx] = true; |
| } |
| |
| arm_mapping_symbol map_key = { memaddr - sec->addr (), 0 }; |
| arm_mapping_symbol_vec::const_iterator it |
| = std::lower_bound (map.begin (), map.end (), map_key); |
| |
| /* std::lower_bound finds the earliest ordered insertion |
| point. If the symbol at this position starts at this exact |
| address, we use that; otherwise, the preceding |
| mapping symbol covers this address. */ |
| if (it < map.end ()) |
| { |
| if (it->value == map_key.value) |
| { |
| if (start) |
| *start = it->value + sec->addr (); |
| return it->type; |
| } |
| } |
| |
| if (it > map.begin ()) |
| { |
| arm_mapping_symbol_vec::const_iterator prev_it |
| = it - 1; |
| |
| if (start) |
| *start = prev_it->value + sec->addr (); |
| return prev_it->type; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Determine if the program counter specified in MEMADDR is in a Thumb |
| function. This function should be called for addresses unrelated to |
| any executing frame; otherwise, prefer arm_frame_is_thumb. */ |
| |
| int |
| arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr) |
| { |
| struct bound_minimal_symbol sym; |
| char type; |
| arm_displaced_step_copy_insn_closure *dsc = nullptr; |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| if (gdbarch_displaced_step_copy_insn_closure_by_addr_p (gdbarch)) |
| dsc = ((arm_displaced_step_copy_insn_closure * ) |
| gdbarch_displaced_step_copy_insn_closure_by_addr |
| (gdbarch, current_inferior (), memaddr)); |
| |
| /* If checking the mode of displaced instruction in copy area, the mode |
| should be determined by instruction on the original address. */ |
| if (dsc) |
| { |
| displaced_debug_printf ("check mode of %.8lx instead of %.8lx", |
| (unsigned long) dsc->insn_addr, |
| (unsigned long) memaddr); |
| memaddr = dsc->insn_addr; |
| } |
| |
| /* If bit 0 of the address is set, assume this is a Thumb address. */ |
| if (IS_THUMB_ADDR (memaddr)) |
| return 1; |
| |
| /* If the user wants to override the symbol table, let him. */ |
| if (strcmp (arm_force_mode_string, "arm") == 0) |
| return 0; |
| if (strcmp (arm_force_mode_string, "thumb") == 0) |
| return 1; |
| |
| /* ARM v6-M and v7-M are always in Thumb mode. */ |
| if (tdep->is_m) |
| return 1; |
| |
| /* If there are mapping symbols, consult them. */ |
| type = arm_find_mapping_symbol (memaddr, NULL); |
| if (type) |
| return type == 't'; |
| |
| /* Thumb functions have a "special" bit set in minimal symbols. */ |
| sym = lookup_minimal_symbol_by_pc (memaddr); |
| if (sym.minsym) |
| return (MSYMBOL_IS_SPECIAL (sym.minsym)); |
| |
| /* If the user wants to override the fallback mode, let them. */ |
| if (strcmp (arm_fallback_mode_string, "arm") == 0) |
| return 0; |
| if (strcmp (arm_fallback_mode_string, "thumb") == 0) |
| return 1; |
| |
| /* If we couldn't find any symbol, but we're talking to a running |
| target, then trust the current value of $cpsr. This lets |
| "display/i $pc" always show the correct mode (though if there is |
| a symbol table we will not reach here, so it still may not be |
| displayed in the mode it will be executed). */ |
| if (target_has_registers ()) |
| return arm_frame_is_thumb (get_current_frame ()); |
| |
| /* Otherwise we're out of luck; we assume ARM. */ |
| return 0; |
| } |
| |
| /* Determine if the address specified equals any of these magic return |
| values, called EXC_RETURN, defined by the ARM v6-M, v7-M and v8-M |
| architectures. |
| |
| From ARMv6-M Reference Manual B1.5.8 |
| Table B1-5 Exception return behavior |
| |
| EXC_RETURN Return To Return Stack |
| 0xFFFFFFF1 Handler mode Main |
| 0xFFFFFFF9 Thread mode Main |
| 0xFFFFFFFD Thread mode Process |
| |
| From ARMv7-M Reference Manual B1.5.8 |
| Table B1-8 EXC_RETURN definition of exception return behavior, no FP |
| |
| EXC_RETURN Return To Return Stack |
| 0xFFFFFFF1 Handler mode Main |
| 0xFFFFFFF9 Thread mode Main |
| 0xFFFFFFFD Thread mode Process |
| |
| Table B1-9 EXC_RETURN definition of exception return behavior, with |
| FP |
| |
| EXC_RETURN Return To Return Stack Frame Type |
| 0xFFFFFFE1 Handler mode Main Extended |
| 0xFFFFFFE9 Thread mode Main Extended |
| 0xFFFFFFED Thread mode Process Extended |
| 0xFFFFFFF1 Handler mode Main Basic |
| 0xFFFFFFF9 Thread mode Main Basic |
| 0xFFFFFFFD Thread mode Process Basic |
| |
| For more details see "B1.5.8 Exception return behavior" |
| in both ARMv6-M and ARMv7-M Architecture Reference Manuals. |
| |
| In the ARMv8-M Architecture Technical Reference also adds |
| for implementations without the Security Extension: |
| |
| EXC_RETURN Condition |
| 0xFFFFFFB0 Return to Handler mode. |
| 0xFFFFFFB8 Return to Thread mode using the main stack. |
| 0xFFFFFFBC Return to Thread mode using the process stack. */ |
| |
| static int |
| arm_m_addr_is_magic (CORE_ADDR addr) |
| { |
| switch (addr) |
| { |
| /* Values from ARMv8-M Architecture Technical Reference. */ |
| case 0xffffffb0: |
| case 0xffffffb8: |
| case 0xffffffbc: |
| /* Values from Tables in B1.5.8 the EXC_RETURN definitions of |
| the exception return behavior. */ |
| case 0xffffffe1: |
| case 0xffffffe9: |
| case 0xffffffed: |
| case 0xfffffff1: |
| case 0xfffffff9: |
| case 0xfffffffd: |
| /* Address is magic. */ |
| return 1; |
| |
| default: |
| /* Address is not magic. */ |
| return 0; |
| } |
| } |
| |
| /* Remove useless bits from addresses in a running program. */ |
| static CORE_ADDR |
| arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| /* On M-profile devices, do not strip the low bit from EXC_RETURN |
| (the magic exception return address). */ |
| if (tdep->is_m && arm_m_addr_is_magic (val)) |
| return val; |
| |
| if (arm_apcs_32) |
| return UNMAKE_THUMB_ADDR (val); |
| else |
| return (val & 0x03fffffc); |
| } |
| |
| /* Return 1 if PC is the start of a compiler helper function which |
| can be safely ignored during prologue skipping. IS_THUMB is true |
| if the function is known to be a Thumb function due to the way it |
| is being called. */ |
| static int |
| skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb) |
| { |
| enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
| struct bound_minimal_symbol msym; |
| |
| msym = lookup_minimal_symbol_by_pc (pc); |
| if (msym.minsym != NULL |
| && BMSYMBOL_VALUE_ADDRESS (msym) == pc |
| && msym.minsym->linkage_name () != NULL) |
| { |
| const char *name = msym.minsym->linkage_name (); |
| |
| /* The GNU linker's Thumb call stub to foo is named |
| __foo_from_thumb. */ |
| if (strstr (name, "_from_thumb") != NULL) |
| name += 2; |
| |
| /* On soft-float targets, __truncdfsf2 is called to convert promoted |
| arguments to their argument types in non-prototyped |
| functions. */ |
| if (startswith (name, "__truncdfsf2")) |
| return 1; |
| if (startswith (name, "__aeabi_d2f")) |
| return 1; |
| |
| /* Internal functions related to thread-local storage. */ |
| if (startswith (name, "__tls_get_addr")) |
| return 1; |
| if (startswith (name, "__aeabi_read_tp")) |
| return 1; |
| } |
| else |
| { |
| /* If we run against a stripped glibc, we may be unable to identify |
| special functions by name. Check for one important case, |
| __aeabi_read_tp, by comparing the *code* against the default |
| implementation (this is hand-written ARM assembler in glibc). */ |
| |
| if (!is_thumb |
| && read_code_unsigned_integer (pc, 4, byte_order_for_code) |
| == 0xe3e00a0f /* mov r0, #0xffff0fff */ |
| && read_code_unsigned_integer (pc + 4, 4, byte_order_for_code) |
| == 0xe240f01f) /* sub pc, r0, #31 */ |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Extract the immediate from instruction movw/movt of encoding T. INSN1 is |
| the first 16-bit of instruction, and INSN2 is the second 16-bit of |
| instruction. */ |
| #define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \ |
| ((bits ((insn1), 0, 3) << 12) \ |
| | (bits ((insn1), 10, 10) << 11) \ |
| | (bits ((insn2), 12, 14) << 8) \ |
| | bits ((insn2), 0, 7)) |
| |
| /* Extract the immediate from instruction movw/movt of encoding A. INSN is |
| the 32-bit instruction. */ |
| #define EXTRACT_MOVW_MOVT_IMM_A(insn) \ |
| ((bits ((insn), 16, 19) << 12) \ |
| | bits ((insn), 0, 11)) |
| |
| /* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */ |
| |
| static unsigned int |
| thumb_expand_immediate (unsigned int imm) |
| { |
| unsigned int count = imm >> 7; |
| |
| if (count < 8) |
| switch (count / 2) |
| { |
| case 0: |
| return imm & 0xff; |
| case 1: |
| return (imm & 0xff) | ((imm & 0xff) << 16); |
| case 2: |
| return ((imm & 0xff) << 8) | ((imm & 0xff) << 24); |
| case 3: |
| return (imm & 0xff) | ((imm & 0xff) << 8) |
| | ((imm & 0xff) << 16) | ((imm & 0xff) << 24); |
| } |
| |
| return (0x80 | (imm & 0x7f)) << (32 - count); |
| } |
| |
| /* Return 1 if the 16-bit Thumb instruction INSN restores SP in |
| epilogue, 0 otherwise. */ |
| |
| static int |
| thumb_instruction_restores_sp (unsigned short insn) |
| { |
| return (insn == 0x46bd /* mov sp, r7 */ |
| || (insn & 0xff80) == 0xb000 /* add sp, imm */ |
| || (insn & 0xfe00) == 0xbc00); /* pop <registers> */ |
| } |
| |
| /* Analyze a Thumb prologue, looking for a recognizable stack frame |
| and frame pointer. Scan until we encounter a store that could |
| clobber the stack frame unexpectedly, or an unknown instruction. |
| Return the last address which is definitely safe to skip for an |
| initial breakpoint. */ |
| |
| static CORE_ADDR |
| thumb_analyze_prologue (struct gdbarch *gdbarch, |
| CORE_ADDR start, CORE_ADDR limit, |
| struct arm_prologue_cache *cache) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
| int i; |
| pv_t regs[16]; |
| CORE_ADDR offset; |
| CORE_ADDR unrecognized_pc = 0; |
| |
| for (i = 0; i < 16; i++) |
| regs[i] = pv_register (i, 0); |
| pv_area stack (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
| |
| while (start < limit) |
| { |
| unsigned short insn; |
| |
| insn = read_code_unsigned_integer (start, 2, byte_order_for_code); |
| |
| if ((insn & 0xfe00) == 0xb400) /* push { rlist } */ |
| { |
| int regno; |
| int mask; |
| |
| if (stack.store_would_trash (regs[ARM_SP_REGNUM])) |
| break; |
| |
| /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says |
| whether to save LR (R14). */ |
| mask = (insn & 0xff) | ((insn & 0x100) << 6); |
| |
| /* Calculate offsets of saved R0-R7 and LR. */ |
| for (regno = ARM_LR_REGNUM; regno >= 0; regno--) |
| if (mask & (1 << regno)) |
| { |
| regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], |
| -4); |
| stack.store (regs[ARM_SP_REGNUM], 4, regs[regno]); |
| } |
| } |
| else if ((insn & 0xff80) == 0xb080) /* sub sp, #imm */ |
| { |
| offset = (insn & 0x7f) << 2; /* get scaled offset */ |
| regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], |
| -offset); |
| } |
| else if (thumb_instruction_restores_sp (insn)) |
| { |
| /* Don't scan past the epilogue. */ |
| break; |
| } |
| else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */ |
| regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM], |
| (insn & 0xff) << 2); |
| else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */ |
| && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)) |
| regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)], |
| bits (insn, 6, 8)); |
| else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */ |
| && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM)) |
| regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)], |
| bits (insn, 0, 7)); |
| else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */ |
| && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM) |
| && pv_is_constant (regs[bits (insn, 3, 5)])) |
| regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)], |
| regs[bits (insn, 6, 8)]); |
| else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */ |
| && pv_is_constant (regs[bits (insn, 3, 6)])) |
| { |
| int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2); |
| int rm = bits (insn, 3, 6); |
| regs[rd] = pv_add (regs[rd], regs[rm]); |
| } |
| else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */ |
| { |
| int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4); |
| int src_reg = (insn & 0x78) >> 3; |
| regs[dst_reg] = regs[src_reg]; |
| } |
| else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */ |
| { |
| /* Handle stores to the stack. Normally pushes are used, |
| but with GCC -mtpcs-frame, there may be other stores |
| in the prologue to create the frame. */ |
| int regno = (insn >> 8) & 0x7; |
| pv_t addr; |
| |
| offset = (insn & 0xff) << 2; |
| addr = pv_add_constant (regs[ARM_SP_REGNUM], offset); |
| |
| if (stack.store_would_trash (addr)) |
| break; |
| |
| stack.store (addr, 4, regs[regno]); |
| } |
| else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */ |
| { |
| int rd = bits (insn, 0, 2); |
| int rn = bits (insn, 3, 5); |
| pv_t addr; |
| |
| offset = bits (insn, 6, 10) << 2; |
| addr = pv_add_constant (regs[rn], offset); |
| |
| if (stack.store_would_trash (addr)) |
| break; |
| |
| stack.store (addr, 4, regs[rd]); |
| } |
| else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */ |
| || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */ |
| && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)) |
| /* Ignore stores of argument registers to the stack. */ |
| ; |
| else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */ |
| && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM)) |
| /* Ignore block loads from the stack, potentially copying |
| parameters from memory. */ |
| ; |
| else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */ |
| || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */ |
| && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))) |
| /* Similarly ignore single loads from the stack. */ |
| ; |
| else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */ |
| || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */ |
| /* Skip register copies, i.e. saves to another register |
| instead of the stack. */ |
| ; |
| else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */ |
| /* Recognize constant loads; even with small stacks these are necessary |
| on Thumb. */ |
| regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7)); |
| else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */ |
| { |
| /* Constant pool loads, for the same reason. */ |
| unsigned int constant; |
| CORE_ADDR loc; |
| |
| loc = start + 4 + bits (insn, 0, 7) * 4; |
| constant = read_memory_unsigned_integer (loc, 4, byte_order); |
| regs[bits (insn, 8, 10)] = pv_constant (constant); |
| } |
| else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */ |
| { |
| unsigned short inst2; |
| |
| inst2 = read_code_unsigned_integer (start + 2, 2, |
| byte_order_for_code); |
| |
| if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800) |
| { |
| /* BL, BLX. Allow some special function calls when |
| skipping the prologue; GCC generates these before |
| storing arguments to the stack. */ |
| CORE_ADDR nextpc; |
| int j1, j2, imm1, imm2; |
| |
| imm1 = sbits (insn, 0, 10); |
| imm2 = bits (inst2, 0, 10); |
| j1 = bit (inst2, 13); |
| j2 = bit (inst2, 11); |
| |
| offset = ((imm1 << 12) + (imm2 << 1)); |
| offset ^= ((!j2) << 22) | ((!j1) << 23); |
| |
| nextpc = start + 4 + offset; |
| /* For BLX make sure to clear the low bits. */ |
| if (bit (inst2, 12) == 0) |
| nextpc = nextpc & 0xfffffffc; |
| |
| if (!skip_prologue_function (gdbarch, nextpc, |
| bit (inst2, 12) != 0)) |
| break; |
| } |
| |
| else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!}, |
| { registers } */ |
| && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
| { |
| pv_t addr = regs[bits (insn, 0, 3)]; |
| int regno; |
| |
| if (stack.store_would_trash (addr)) |
| break; |
| |
| /* Calculate offsets of saved registers. */ |
| for (regno = ARM_LR_REGNUM; regno >= 0; regno--) |
| if (inst2 & (1 << regno)) |
| { |
| addr = pv_add_constant (addr, -4); |
| stack.store (addr, 4, regs[regno]); |
| } |
| |
| if (insn & 0x0020) |
| regs[bits (insn, 0, 3)] = addr; |
| } |
| |
| else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2, |
| [Rn, #+/-imm]{!} */ |
| && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
| { |
| int regno1 = bits (inst2, 12, 15); |
| int regno2 = bits (inst2, 8, 11); |
| pv_t addr = regs[bits (insn, 0, 3)]; |
| |
| offset = inst2 & 0xff; |
| if (insn & 0x0080) |
| addr = pv_add_constant (addr, offset); |
| else |
| addr = pv_add_constant (addr, -offset); |
| |
| if (stack.store_would_trash (addr)) |
| break; |
| |
| stack.store (addr, 4, regs[regno1]); |
| stack.store (pv_add_constant (addr, 4), |
| 4, regs[regno2]); |
| |
| if (insn & 0x0020) |
| regs[bits (insn, 0, 3)] = addr; |
| } |
| |
| else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */ |
| && (inst2 & 0x0c00) == 0x0c00 |
| && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
| { |
| int regno = bits (inst2, 12, 15); |
| pv_t addr = regs[bits (insn, 0, 3)]; |
| |
| offset = inst2 & 0xff; |
| if (inst2 & 0x0200) |
| addr = pv_add_constant (addr, offset); |
| else |
| addr = pv_add_constant (addr, -offset); |
| |
| if (stack.store_would_trash (addr)) |
| break; |
| |
| stack.store (addr, 4, regs[regno]); |
| |
| if (inst2 & 0x0100) |
| regs[bits (insn, 0, 3)] = addr; |
| } |
| |
| else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */ |
| && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
| { |
| int regno = bits (inst2, 12, 15); |
| pv_t addr; |
| |
| offset = inst2 & 0xfff; |
| addr = pv_add_constant (regs[bits (insn, 0, 3)], offset); |
| |
| if (stack.store_would_trash (addr)) |
| break; |
| |
| stack.store (addr, 4, regs[regno]); |
| } |
| |
| else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */ |
| && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
| /* Ignore stores of argument registers to the stack. */ |
| ; |
| |
| else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */ |
| && (inst2 & 0x0d00) == 0x0c00 |
| && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
| /* Ignore stores of argument registers to the stack. */ |
| ; |
| |
| else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!], |
| { registers } */ |
| && (inst2 & 0x8000) == 0x0000 |
| && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
| /* Ignore block loads from the stack, potentially copying |
| parameters from memory. */ |
| ; |
| |
| else if ((insn & 0xff70) == 0xe950 /* ldrd Rt, Rt2, |
| [Rn, #+/-imm] */ |
| && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
| /* Similarly ignore dual loads from the stack. */ |
| ; |
| |
| else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */ |
| && (inst2 & 0x0d00) == 0x0c00 |
| && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
| /* Similarly ignore single loads from the stack. */ |
| ; |
| |
| else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */ |
| && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) |
| /* Similarly ignore single loads from the stack. */ |
| ; |
| |
| else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */ |
| && (inst2 & 0x8000) == 0x0000) |
| { |
| unsigned int imm = ((bits (insn, 10, 10) << 11) |
| | (bits (inst2, 12, 14) << 8) |
| | bits (inst2, 0, 7)); |
| |
| regs[bits (inst2, 8, 11)] |
| = pv_add_constant (regs[bits (insn, 0, 3)], |
| thumb_expand_immediate (imm)); |
| } |
| |
| else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */ |
| && (inst2 & 0x8000) == 0x0000) |
| { |
| unsigned int imm = ((bits (insn, 10, 10) << 11) |
| | (bits (inst2, 12, 14) << 8) |
| | bits (inst2, 0, 7)); |
| |
| regs[bits (inst2, 8, 11)] |
| = pv_add_constant (regs[bits (insn, 0, 3)], imm); |
| } |
| |
| else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */ |
| && (inst2 & 0x8000) == 0x0000) |
| { |
| unsigned int imm = ((bits (insn, 10, 10) << 11) |
| | (bits (inst2, 12, 14) << 8) |
| | bits (inst2, 0, 7)); |
| |
| regs[bits (inst2, 8, 11)] |
| = pv_add_constant (regs[bits (insn, 0, 3)], |
| - (CORE_ADDR) thumb_expand_immediate (imm)); |
| } |
| |
| else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */ |
| && (inst2 & 0x8000) == 0x0000) |
| { |
| unsigned int imm = ((bits (insn, 10, 10) << 11) |
| | (bits (inst2, 12, 14) << 8) |
| | bits (inst2, 0, 7)); |
| |
| regs[bits (inst2, 8, 11)] |
| = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm); |
| } |
| |
| else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */ |
| { |
| unsigned int imm = ((bits (insn, 10, 10) << 11) |
| | (bits (inst2, 12, 14) << 8) |
| | bits (inst2, 0, 7)); |
| |
| regs[bits (inst2, 8, 11)] |
| = pv_constant (thumb_expand_immediate (imm)); |
| } |
| |
| else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */ |
| { |
| unsigned int imm |
| = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2); |
| |
| regs[bits (inst2, 8, 11)] = pv_constant (imm); |
| } |
| |
| else if (insn == 0xea5f /* mov.w Rd,Rm */ |
| && (inst2 & 0xf0f0) == 0) |
| { |
| int dst_reg = (inst2 & 0x0f00) >> 8; |
| int src_reg = inst2 & 0xf; |
| regs[dst_reg] = regs[src_reg]; |
| } |
| |
| else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */ |
| { |
| /* Constant pool loads. */ |
| unsigned int constant; |
| CORE_ADDR loc; |
| |
| offset = bits (inst2, 0, 11); |
| if (insn & 0x0080) |
| loc = start + 4 + offset; |
| else |
| loc = start + 4 - offset; |
| |
| constant = read_memory_unsigned_integer (loc, 4, byte_order); |
| regs[bits (inst2, 12, 15)] = pv_constant (constant); |
| } |
| |
| else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */ |
| { |
| /* Constant pool loads. */ |
| unsigned int constant; |
| CORE_ADDR loc; |
| |
| offset = bits (inst2, 0, 7) << 2; |
| if (insn & 0x0080) |
| loc = start + 4 + offset; |
| else |
| loc = start + 4 - offset; |
| |
| constant = read_memory_unsigned_integer (loc, 4, byte_order); |
| regs[bits (inst2, 12, 15)] = pv_constant (constant); |
| |
| constant = read_memory_unsigned_integer (loc + 4, 4, byte_order); |
| regs[bits (inst2, 8, 11)] = pv_constant (constant); |
| } |
| |
| else if (thumb2_instruction_changes_pc (insn, inst2)) |
| { |
| /* Don't scan past anything that might change control flow. */ |
| break; |
| } |
| else |
| { |
| /* The optimizer might shove anything into the prologue, |
| so we just skip what we don't recognize. */ |
| unrecognized_pc = start; |
| } |
| |
| start += 2; |
| } |
| else if (thumb_instruction_changes_pc (insn)) |
| { |
| /* Don't scan past anything that might change control flow. */ |
| break; |
| } |
| else |
| { |
| /* The optimizer might shove anything into the prologue, |
| so we just skip what we don't recognize. */ |
| unrecognized_pc = start; |
| } |
| |
| start += 2; |
| } |
| |
| arm_debug_printf ("Prologue scan stopped at %s", |
| paddress (gdbarch, start)); |
| |
| if (unrecognized_pc == 0) |
| unrecognized_pc = start; |
| |
| if (cache == NULL) |
| return unrecognized_pc; |
| |
| if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM)) |
| { |
| /* Frame pointer is fp. Frame size is constant. */ |
| cache->framereg = ARM_FP_REGNUM; |
| cache->framesize = -regs[ARM_FP_REGNUM].k; |
| } |
| else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM)) |
| { |
| /* Frame pointer is r7. Frame size is constant. */ |
| cache->framereg = THUMB_FP_REGNUM; |
| cache->framesize = -regs[THUMB_FP_REGNUM].k; |
| } |
| else |
| { |
| /* Try the stack pointer... this is a bit desperate. */ |
| cache->framereg = ARM_SP_REGNUM; |
| cache->framesize = -regs[ARM_SP_REGNUM].k; |
| } |
| |
| for (i = 0; i < 16; i++) |
| if (stack.find_reg (gdbarch, i, &offset)) |
| cache->saved_regs[i].set_addr (offset); |
| |
| return unrecognized_pc; |
| } |
| |
| |
| /* Try to analyze the instructions starting from PC, which load symbol |
| __stack_chk_guard. Return the address of instruction after loading this |
| symbol, set the dest register number to *BASEREG, and set the size of |
| instructions for loading symbol in OFFSET. Return 0 if instructions are |
| not recognized. */ |
| |
| static CORE_ADDR |
| arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch, |
| unsigned int *destreg, int *offset) |
| { |
| enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
| int is_thumb = arm_pc_is_thumb (gdbarch, pc); |
| unsigned int low, high, address; |
| |
| address = 0; |
| if (is_thumb) |
| { |
| unsigned short insn1 |
| = read_code_unsigned_integer (pc, 2, byte_order_for_code); |
| |
| if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */ |
| { |
| *destreg = bits (insn1, 8, 10); |
| *offset = 2; |
| address = (pc & 0xfffffffc) + 4 + (bits (insn1, 0, 7) << 2); |
| address = read_memory_unsigned_integer (address, 4, |
| byte_order_for_code); |
| } |
| else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */ |
| { |
| unsigned short insn2 |
| = read_code_unsigned_integer (pc + 2, 2, byte_order_for_code); |
| |
| low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2); |
| |
| insn1 |
| = read_code_unsigned_integer (pc + 4, 2, byte_order_for_code); |
| insn2 |
| = read_code_unsigned_integer (pc + 6, 2, byte_order_for_code); |
| |
| /* movt Rd, #const */ |
| if ((insn1 & 0xfbc0) == 0xf2c0) |
| { |
| high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2); |
| *destreg = bits (insn2, 8, 11); |
| *offset = 8; |
| address = (high << 16 | low); |
| } |
| } |
| } |
| else |
| { |
| unsigned int insn |
| = read_code_unsigned_integer (pc, 4, byte_order_for_code); |
| |
| if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, [PC, #immed] */ |
| { |
| address = bits (insn, 0, 11) + pc + 8; |
| address = read_memory_unsigned_integer (address, 4, |
| byte_order_for_code); |
| |
| *destreg = bits (insn, 12, 15); |
| *offset = 4; |
| } |
| else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */ |
| { |
| low = EXTRACT_MOVW_MOVT_IMM_A (insn); |
| |
| insn |
| = read_code_unsigned_integer (pc + 4, 4, byte_order_for_code); |
| |
| if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */ |
| { |
| high = EXTRACT_MOVW_MOVT_IMM_A (insn); |
| *destreg = bits (insn, 12, 15); |
| *offset = 8; |
| address = (high << 16 | low); |
| } |
| } |
| } |
| |
| return address; |
| } |
| |
| /* Try to skip a sequence of instructions used for stack protector. If PC |
| points to the first instruction of this sequence, return the address of |
| first instruction after this sequence, otherwise, return original PC. |
| |
| On arm, this sequence of instructions is composed of mainly three steps, |
| Step 1: load symbol __stack_chk_guard, |
| Step 2: load from address of __stack_chk_guard, |
| Step 3: store it to somewhere else. |
| |
| Usually, instructions on step 2 and step 3 are the same on various ARM |
| architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and |
| on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However, |
| instructions in step 1 vary from different ARM architectures. On ARMv7, |
| they are, |
| |
| movw Rn, #:lower16:__stack_chk_guard |
| movt Rn, #:upper16:__stack_chk_guard |
| |
| On ARMv5t, it is, |
| |
| ldr Rn, .Label |
| .... |
| .Lable: |
| .word __stack_chk_guard |
| |
| Since ldr/str is a very popular instruction, we can't use them as |
| 'fingerprint' or 'signature' of stack protector sequence. Here we choose |
| sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not |
| stripped, as the 'fingerprint' of a stack protector cdoe sequence. */ |
| |
| static CORE_ADDR |
| arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch) |
| { |
| enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
| unsigned int basereg; |
| struct bound_minimal_symbol stack_chk_guard; |
| int offset; |
| int is_thumb = arm_pc_is_thumb (gdbarch, pc); |
| CORE_ADDR addr; |
| |
| /* Try to parse the instructions in Step 1. */ |
| addr = arm_analyze_load_stack_chk_guard (pc, gdbarch, |
| &basereg, &offset); |
| if (!addr) |
| return pc; |
| |
| stack_chk_guard = lookup_minimal_symbol_by_pc (addr); |
| /* ADDR must correspond to a symbol whose name is __stack_chk_guard. |
| Otherwise, this sequence cannot be for stack protector. */ |
| if (stack_chk_guard.minsym == NULL |
| || !startswith (stack_chk_guard.minsym->linkage_name (), "__stack_chk_guard")) |
| return pc; |
| |
| if (is_thumb) |
| { |
| unsigned int destreg; |
| unsigned short insn |
| = read_code_unsigned_integer (pc + offset, 2, byte_order_for_code); |
| |
| /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */ |
| if ((insn & 0xf800) != 0x6800) |
| return pc; |
| if (bits (insn, 3, 5) != basereg) |
| return pc; |
| destreg = bits (insn, 0, 2); |
| |
| insn = read_code_unsigned_integer (pc + offset + 2, 2, |
| byte_order_for_code); |
| /* Step 3: str Rd, [Rn, #immed], encoding T1. */ |
| if ((insn & 0xf800) != 0x6000) |
| return pc; |
| if (destreg != bits (insn, 0, 2)) |
| return pc; |
| } |
| else |
| { |
| unsigned int destreg; |
| unsigned int insn |
| = read_code_unsigned_integer (pc + offset, 4, byte_order_for_code); |
| |
| /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */ |
| if ((insn & 0x0e500000) != 0x04100000) |
| return pc; |
| if (bits (insn, 16, 19) != basereg) |
| return pc; |
| destreg = bits (insn, 12, 15); |
| /* Step 3: str Rd, [Rn, #immed], encoding A1. */ |
| insn = read_code_unsigned_integer (pc + offset + 4, |
| 4, byte_order_for_code); |
| if ((insn & 0x0e500000) != 0x04000000) |
| return pc; |
| if (bits (insn, 12, 15) != destreg) |
| return pc; |
| } |
| /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8 |
| on arm. */ |
| if (is_thumb) |
| return pc + offset + 4; |
| else |
| return pc + offset + 8; |
| } |
| |
| /* Advance the PC across any function entry prologue instructions to |
| reach some "real" code. |
| |
| The APCS (ARM Procedure Call Standard) defines the following |
| prologue: |
| |
| mov ip, sp |
| [stmfd sp!, {a1,a2,a3,a4}] |
| stmfd sp!, {...,fp,ip,lr,pc} |
| [stfe f7, [sp, #-12]!] |
| [stfe f6, [sp, #-12]!] |
| [stfe f5, [sp, #-12]!] |
| [stfe f4, [sp, #-12]!] |
| sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */ |
| |
| static CORE_ADDR |
| arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| CORE_ADDR func_addr, limit_pc; |
| |
| /* See if we can determine the end of the prologue via the symbol table. |
| If so, then return either PC, or the PC after the prologue, whichever |
| is greater. */ |
| if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) |
| { |
| CORE_ADDR post_prologue_pc |
| = skip_prologue_using_sal (gdbarch, func_addr); |
| struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr); |
| |
| if (post_prologue_pc) |
| post_prologue_pc |
| = arm_skip_stack_protector (post_prologue_pc, gdbarch); |
| |
| |
| /* GCC always emits a line note before the prologue and another |
| one after, even if the two are at the same address or on the |
| same line. Take advantage of this so that we do not need to |
| know every instruction that might appear in the prologue. We |
| will have producer information for most binaries; if it is |
| missing (e.g. for -gstabs), assuming the GNU tools. */ |
| if (post_prologue_pc |
| && (cust == NULL |
| || COMPUNIT_PRODUCER (cust) == NULL |
| || startswith (COMPUNIT_PRODUCER (cust), "GNU ") |
| || producer_is_llvm (COMPUNIT_PRODUCER (cust)))) |
| return post_prologue_pc; |
| |
| if (post_prologue_pc != 0) |
| { |
| CORE_ADDR analyzed_limit; |
| |
| /* For non-GCC compilers, make sure the entire line is an |
| acceptable prologue; GDB will round this function's |
| return value up to the end of the following line so we |
| can not skip just part of a line (and we do not want to). |
| |
| RealView does not treat the prologue specially, but does |
| associate prologue code with the opening brace; so this |
| lets us skip the first line if we think it is the opening |
| brace. */ |
| if (arm_pc_is_thumb (gdbarch, func_addr)) |
| analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr, |
| post_prologue_pc, NULL); |
| else |
| analyzed_limit |
| = arm_analyze_prologue (gdbarch, func_addr, post_prologue_pc, |
| NULL, target_arm_instruction_reader ()); |
| |
| if (analyzed_limit != post_prologue_pc) |
| return func_addr; |
| |
| return post_prologue_pc; |
| } |
| } |
| |
| /* Can't determine prologue from the symbol table, need to examine |
| instructions. */ |
| |
| /* Find an upper limit on the function prologue using the debug |
| information. If the debug information could not be used to provide |
| that bound, then use an arbitrary large number as the upper bound. */ |
| /* Like arm_scan_prologue, stop no later than pc + 64. */ |
| limit_pc = skip_prologue_using_sal (gdbarch, pc); |
| if (limit_pc == 0) |
| limit_pc = pc + 64; /* Magic. */ |
| |
| |
| /* Check if this is Thumb code. */ |
| if (arm_pc_is_thumb (gdbarch, pc)) |
| return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL); |
| else |
| return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL, |
| target_arm_instruction_reader ()); |
| } |
| |
| /* *INDENT-OFF* */ |
| /* Function: thumb_scan_prologue (helper function for arm_scan_prologue) |
| This function decodes a Thumb function prologue to determine: |
| 1) the size of the stack frame |
| 2) which registers are saved on it |
| 3) the offsets of saved regs |
| 4) the offset from the stack pointer to the frame pointer |
| |
| A typical Thumb function prologue would create this stack frame |
| (offsets relative to FP) |
| old SP -> 24 stack parameters |
| 20 LR |
| 16 R7 |
| R7 -> 0 local variables (16 bytes) |
| SP -> -12 additional stack space (12 bytes) |
| The frame size would thus be 36 bytes, and the frame offset would be |
| 12 bytes. The frame register is R7. |
| |
| The comments for thumb_skip_prolog() describe the algorithm we use |
| to detect the end of the prolog. */ |
| /* *INDENT-ON* */ |
| |
| static void |
| thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc, |
| CORE_ADDR block_addr, struct arm_prologue_cache *cache) |
| { |
| CORE_ADDR prologue_start; |
| CORE_ADDR prologue_end; |
| |
| if (find_pc_partial_function (block_addr, NULL, &prologue_start, |
| &prologue_end)) |
| { |
| /* See comment in arm_scan_prologue for an explanation of |
| this heuristics. */ |
| if (prologue_end > prologue_start + 64) |
| { |
| prologue_end = prologue_start + 64; |
| } |
| } |
| else |
| /* We're in the boondocks: we have no idea where the start of the |
| function is. */ |
| return; |
| |
| prologue_end = std::min (prologue_end, prev_pc); |
| |
| thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache); |
| } |
| |
| /* Return 1 if the ARM instruction INSN restores SP in epilogue, 0 |
| otherwise. */ |
| |
| static int |
| arm_instruction_restores_sp (unsigned int insn) |
| { |
| if (bits (insn, 28, 31) != INST_NV) |
| { |
| if ((insn & 0x0df0f000) == 0x0080d000 |
| /* ADD SP (register or immediate). */ |
| || (insn & 0x0df0f000) == 0x0040d000 |
| /* SUB SP (register or immediate). */ |
| || (insn & 0x0ffffff0) == 0x01a0d000 |
| /* MOV SP. */ |
| || (insn & 0x0fff0000) == 0x08bd0000 |
| /* POP (LDMIA). */ |
| || (insn & 0x0fff0000) == 0x049d0000) |
| /* POP of a single register. */ |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Implement immediate value decoding, as described in section A5.2.4 |
| (Modified immediate constants in ARM instructions) of the ARM Architecture |
| Reference Manual (ARMv7-A and ARMv7-R edition). */ |
| |
| static uint32_t |
| arm_expand_immediate (uint32_t imm) |
| { |
| /* Immediate values are 12 bits long. */ |
| gdb_assert ((imm & 0xfffff000) == 0); |
| |
| uint32_t unrotated_value = imm & 0xff; |
| uint32_t rotate_amount = (imm & 0xf00) >> 7; |
| |
| if (rotate_amount == 0) |
| return unrotated_value; |
| |
| return ((unrotated_value >> rotate_amount) |
| | (unrotated_value << (32 - rotate_amount))); |
| } |
| |
| /* Analyze an ARM mode prologue starting at PROLOGUE_START and |
| continuing no further than PROLOGUE_END. If CACHE is non-NULL, |
| fill it in. Return the first address not recognized as a prologue |
| instruction. |
| |
| We recognize all the instructions typically found in ARM prologues, |
| plus harmless instructions which can be skipped (either for analysis |
| purposes, or a more restrictive set that can be skipped when finding |
| the end of the prologue). */ |
| |
| static CORE_ADDR |
| arm_analyze_prologue (struct gdbarch *gdbarch, |
| CORE_ADDR prologue_start, CORE_ADDR prologue_end, |
| struct arm_prologue_cache *cache, |
| const arm_instruction_reader &insn_reader) |
| { |
| enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
| int regno; |
| CORE_ADDR offset, current_pc; |
| pv_t regs[ARM_FPS_REGNUM]; |
| CORE_ADDR unrecognized_pc = 0; |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| /* Search the prologue looking for instructions that set up the |
| frame pointer, adjust the stack pointer, and save registers. |
| |
| Be careful, however, and if it doesn't look like a prologue, |
| don't try to scan it. If, for instance, a frameless function |
| begins with stmfd sp!, then we will tell ourselves there is |
| a frame, which will confuse stack traceback, as well as "finish" |
| and other operations that rely on a knowledge of the stack |
| traceback. */ |
| |
| for (regno = 0; regno < ARM_FPS_REGNUM; regno++) |
| regs[regno] = pv_register (regno, 0); |
| pv_area stack (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
| |
| for (current_pc = prologue_start; |
| current_pc < prologue_end; |
| current_pc += 4) |
| { |
| uint32_t insn = insn_reader.read (current_pc, byte_order_for_code); |
| |
| if (insn == 0xe1a0c00d) /* mov ip, sp */ |
| { |
| regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM]; |
| continue; |
| } |
| else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */ |
| && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) |
| { |
| uint32_t imm = arm_expand_immediate (insn & 0xfff); |
| int rd = bits (insn, 12, 15); |
| regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm); |
| continue; |
| } |
| else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */ |
| && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) |
| { |
| uint32_t imm = arm_expand_immediate (insn & 0xfff); |
| int rd = bits (insn, 12, 15); |
| regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm); |
| continue; |
| } |
| else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd, |
| [sp, #-4]! */ |
| { |
| if (stack.store_would_trash (regs[ARM_SP_REGNUM])) |
| break; |
| regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4); |
| stack.store (regs[ARM_SP_REGNUM], 4, |
| regs[bits (insn, 12, 15)]); |
| continue; |
| } |
| else if ((insn & 0xffff0000) == 0xe92d0000) |
| /* stmfd sp!, {..., fp, ip, lr, pc} |
| or |
| stmfd sp!, {a1, a2, a3, a4} */ |
| { |
| int mask = insn & 0xffff; |
| |
| if (stack.store_would_trash (regs[ARM_SP_REGNUM])) |
| break; |
| |
| /* Calculate offsets of saved registers. */ |
| for (regno = ARM_PC_REGNUM; regno >= 0; regno--) |
| if (mask & (1 << regno)) |
| { |
| regs[ARM_SP_REGNUM] |
| = pv_add_constant (regs[ARM_SP_REGNUM], -4); |
| stack.store (regs[ARM_SP_REGNUM], 4, regs[regno]); |
| } |
| } |
| else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */ |
| || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */ |
| || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */ |
| { |
| /* No need to add this to saved_regs -- it's just an arg reg. */ |
| continue; |
| } |
| else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */ |
| || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */ |
| || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */ |
| { |
| /* No need to add this to saved_regs -- it's just an arg reg. */ |
| continue; |
| } |
| else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn, |
| { registers } */ |
| && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) |
| { |
| /* No need to add this to saved_regs -- it's just arg regs. */ |
| continue; |
| } |
| else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */ |
| { |
| uint32_t imm = arm_expand_immediate (insn & 0xfff); |
| regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm); |
| } |
| else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */ |
| { |
| uint32_t imm = arm_expand_immediate(insn & 0xfff); |
| regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm); |
| } |
| else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, |
| [sp, -#c]! */ |
| && tdep->have_fpa_registers) |
| { |
| if (stack.store_would_trash (regs[ARM_SP_REGNUM])) |
| break; |
| |
| regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12); |
| regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07); |
| stack.store (regs[ARM_SP_REGNUM], 12, regs[regno]); |
| } |
| else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, |
| [sp!] */ |
| && tdep->have_fpa_registers) |
| { |
| int n_saved_fp_regs; |
| unsigned int fp_start_reg, fp_bound_reg; |
| |
| if (stack.store_would_trash (regs[ARM_SP_REGNUM])) |
| break; |
| |
| if ((insn & 0x800) == 0x800) /* N0 is set */ |
| { |
| if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
| n_saved_fp_regs = 3; |
| else |
| n_saved_fp_regs = 1; |
| } |
| else |
| { |
| if ((insn & 0x40000) == 0x40000) /* N1 is set */ |
| n_saved_fp_regs = 2; |
| else |
| n_saved_fp_regs = 4; |
| } |
| |
| fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7); |
| fp_bound_reg = fp_start_reg + n_saved_fp_regs; |
| for (; fp_start_reg < fp_bound_reg; fp_start_reg++) |
| { |
| regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12); |
| stack.store (regs[ARM_SP_REGNUM], 12, |
| regs[fp_start_reg++]); |
| } |
| } |
| else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */ |
| { |
| /* Allow some special function calls when skipping the |
| prologue; GCC generates these before storing arguments to |
| the stack. */ |
| CORE_ADDR dest = BranchDest (current_pc, insn); |
| |
| if (skip_prologue_function (gdbarch, dest, 0)) |
| continue; |
| else |
| break; |
| } |
| else if ((insn & 0xf0000000) != 0xe0000000) |
| break; /* Condition not true, exit early. */ |
| else if (arm_instruction_changes_pc (insn)) |
| /* Don't scan past anything that might change control flow. */ |
| break; |
| else if (arm_instruction_restores_sp (insn)) |
| { |
| /* Don't scan past the epilogue. */ |
| break; |
| } |
| else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */ |
| && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) |
| /* Ignore block loads from the stack, potentially copying |
| parameters from memory. */ |
| continue; |
| else if ((insn & 0xfc500000) == 0xe4100000 |
| && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) |
| /* Similarly ignore single loads from the stack. */ |
| continue; |
| else if ((insn & 0xffff0ff0) == 0xe1a00000) |
| /* MOV Rd, Rm. Skip register copies, i.e. saves to another |
| register instead of the stack. */ |
| continue; |
| else |
| { |
| /* The optimizer might shove anything into the prologue, if |
| we build up cache (cache != NULL) from scanning prologue, |
| we just skip what we don't recognize and scan further to |
| make cache as complete as possible. However, if we skip |
| prologue, we'll stop immediately on unrecognized |
| instruction. */ |
| unrecognized_pc = current_pc; |
| if (cache != NULL) |
| continue; |
| else |
| break; |
| } |
| } |
| |
| if (unrecognized_pc == 0) |
| unrecognized_pc = current_pc; |
| |
| if (cache) |
| { |
| int framereg, framesize; |
| |
| /* The frame size is just the distance from the frame register |
| to the original stack pointer. */ |
| if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM)) |
| { |
| /* Frame pointer is fp. */ |
| framereg = ARM_FP_REGNUM; |
| framesize = -regs[ARM_FP_REGNUM].k; |
| } |
| else |
| { |
| /* Try the stack pointer... this is a bit desperate. */ |
| framereg = ARM_SP_REGNUM; |
| framesize = -regs[ARM_SP_REGNUM].k; |
| } |
| |
| cache->framereg = framereg; |
| cache->framesize = framesize; |
| |
| for (regno = 0; regno < ARM_FPS_REGNUM; regno++) |
| if (stack.find_reg (gdbarch, regno, &offset)) |
| cache->saved_regs[regno].set_addr (offset); |
| } |
| |
| arm_debug_printf ("Prologue scan stopped at %s", |
| paddress (gdbarch, unrecognized_pc)); |
| |
| return unrecognized_pc; |
| } |
| |
| static void |
| arm_scan_prologue (struct frame_info *this_frame, |
| struct arm_prologue_cache *cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| CORE_ADDR prologue_start, prologue_end; |
| CORE_ADDR prev_pc = get_frame_pc (this_frame); |
| CORE_ADDR block_addr = get_frame_address_in_block (this_frame); |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| /* Assume there is no frame until proven otherwise. */ |
| cache->framereg = ARM_SP_REGNUM; |
| cache->framesize = 0; |
| |
| /* Check for Thumb prologue. */ |
| if (arm_frame_is_thumb (this_frame)) |
| { |
| thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache); |
| return; |
| } |
| |
| /* Find the function prologue. If we can't find the function in |
| the symbol table, peek in the stack frame to find the PC. */ |
| if (find_pc_partial_function (block_addr, NULL, &prologue_start, |
| &prologue_end)) |
| { |
| /* One way to find the end of the prologue (which works well |
| for unoptimized code) is to do the following: |
| |
| struct symtab_and_line sal = find_pc_line (prologue_start, 0); |
| |
| if (sal.line == 0) |
| prologue_end = prev_pc; |
| else if (sal.end < prologue_end) |
| prologue_end = sal.end; |
| |
| This mechanism is very accurate so long as the optimizer |
| doesn't move any instructions from the function body into the |
| prologue. If this happens, sal.end will be the last |
| instruction in the first hunk of prologue code just before |
| the first instruction that the scheduler has moved from |
| the body to the prologue. |
| |
| In order to make sure that we scan all of the prologue |
| instructions, we use a slightly less accurate mechanism which |
| may scan more than necessary. To help compensate for this |
| lack of accuracy, the prologue scanning loop below contains |
| several clauses which'll cause the loop to terminate early if |
| an implausible prologue instruction is encountered. |
| |
| The expression |
| |
| prologue_start + 64 |
| |
| is a suitable endpoint since it accounts for the largest |
| possible prologue plus up to five instructions inserted by |
| the scheduler. */ |
| |
| if (prologue_end > prologue_start + 64) |
| { |
| prologue_end = prologue_start + 64; /* See above. */ |
| } |
| } |
| else |
| { |
| /* We have no symbol information. Our only option is to assume this |
| function has a standard stack frame and the normal frame register. |
| Then, we can find the value of our frame pointer on entrance to |
| the callee (or at the present moment if this is the innermost frame). |
| The value stored there should be the address of the stmfd + 8. */ |
| CORE_ADDR frame_loc; |
| ULONGEST return_value; |
| |
| /* AAPCS does not use a frame register, so we can abort here. */ |
| if (tdep->arm_abi == ARM_ABI_AAPCS) |
| return; |
| |
| frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM); |
| if (!safe_read_memory_unsigned_integer (frame_loc, 4, byte_order, |
| &return_value)) |
| return; |
| else |
| { |
| prologue_start = gdbarch_addr_bits_remove |
| (gdbarch, return_value) - 8; |
| prologue_end = prologue_start + 64; /* See above. */ |
| } |
| } |
| |
| if (prev_pc < prologue_end) |
| prologue_end = prev_pc; |
| |
| arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache, |
| target_arm_instruction_reader ()); |
| } |
| |
| static struct arm_prologue_cache * |
| arm_make_prologue_cache (struct frame_info *this_frame) |
| { |
| int reg; |
| struct arm_prologue_cache *cache; |
| CORE_ADDR unwound_fp; |
| |
| cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
| cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| |
| arm_scan_prologue (this_frame, cache); |
| |
| unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg); |
| if (unwound_fp == 0) |
| return cache; |
| |
| cache->prev_sp = unwound_fp + cache->framesize; |
| |
| /* Calculate actual addresses of saved registers using offsets |
| determined by arm_scan_prologue. */ |
| for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++) |
| if (cache->saved_regs[reg].is_addr ()) |
| cache->saved_regs[reg].set_addr (cache->saved_regs[reg].addr () |
| + cache->prev_sp); |
| |
| return cache; |
| } |
| |
| /* Implementation of the stop_reason hook for arm_prologue frames. */ |
| |
| static enum unwind_stop_reason |
| arm_prologue_unwind_stop_reason (struct frame_info *this_frame, |
| void **this_cache) |
| { |
| struct arm_prologue_cache *cache; |
| CORE_ADDR pc; |
| |
| if (*this_cache == NULL) |
| *this_cache = arm_make_prologue_cache (this_frame); |
| cache = (struct arm_prologue_cache *) *this_cache; |
| |
| /* This is meant to halt the backtrace at "_start". */ |
| pc = get_frame_pc (this_frame); |
| gdbarch *arch = get_frame_arch (this_frame); |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (arch); |
| if (pc <= tdep->lowest_pc) |
| return UNWIND_OUTERMOST; |
| |
| /* If we've hit a wall, stop. */ |
| if (cache->prev_sp == 0) |
| return UNWIND_OUTERMOST; |
| |
| return UNWIND_NO_REASON; |
| } |
| |
| /* Our frame ID for a normal frame is the current function's starting PC |
| and the caller's SP when we were called. */ |
| |
| static void |
| arm_prologue_this_id (struct frame_info *this_frame, |
| void **this_cache, |
| struct frame_id *this_id) |
| { |
| struct arm_prologue_cache *cache; |
| struct frame_id id; |
| CORE_ADDR pc, func; |
| |
| if (*this_cache == NULL) |
| *this_cache = arm_make_prologue_cache (this_frame); |
| cache = (struct arm_prologue_cache *) *this_cache; |
| |
| /* Use function start address as part of the frame ID. If we cannot |
| identify the start address (due to missing symbol information), |
| fall back to just using the current PC. */ |
| pc = get_frame_pc (this_frame); |
| func = get_frame_func (this_frame); |
| if (!func) |
| func = pc; |
| |
| id = frame_id_build (cache->prev_sp, func); |
| *this_id = id; |
| } |
| |
| static struct value * |
| arm_prologue_prev_register (struct frame_info *this_frame, |
| void **this_cache, |
| int prev_regnum) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| struct arm_prologue_cache *cache; |
| |
| if (*this_cache == NULL) |
| *this_cache = arm_make_prologue_cache (this_frame); |
| cache = (struct arm_prologue_cache *) *this_cache; |
| |
| /* If we are asked to unwind the PC, then we need to return the LR |
| instead. The prologue may save PC, but it will point into this |
| frame's prologue, not the next frame's resume location. Also |
| strip the saved T bit. A valid LR may have the low bit set, but |
| a valid PC never does. */ |
| if (prev_regnum == ARM_PC_REGNUM) |
| { |
| CORE_ADDR lr; |
| |
| lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); |
| return frame_unwind_got_constant (this_frame, prev_regnum, |
| arm_addr_bits_remove (gdbarch, lr)); |
| } |
| |
| /* SP is generally not saved to the stack, but this frame is |
| identified by the next frame's stack pointer at the time of the call. |
| The value was already reconstructed into PREV_SP. */ |
| if (prev_regnum == ARM_SP_REGNUM) |
| return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp); |
| |
| /* The CPSR may have been changed by the call instruction and by the |
| called function. The only bit we can reconstruct is the T bit, |
| by checking the low bit of LR as of the call. This is a reliable |
| indicator of Thumb-ness except for some ARM v4T pre-interworking |
| Thumb code, which could get away with a clear low bit as long as |
| the called function did not use bx. Guess that all other |
| bits are unchanged; the condition flags are presumably lost, |
| but the processor status is likely valid. */ |
| if (prev_regnum == ARM_PS_REGNUM) |
| { |
| CORE_ADDR lr, cpsr; |
| ULONGEST t_bit = arm_psr_thumb_bit (gdbarch); |
| |
| cpsr = get_frame_register_unsigned (this_frame, prev_regnum); |
| lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); |
| if (IS_THUMB_ADDR (lr)) |
| cpsr |= t_bit; |
| else |
| cpsr &= ~t_bit; |
| return frame_unwind_got_constant (this_frame, prev_regnum, cpsr); |
| } |
| |
| return trad_frame_get_prev_register (this_frame, cache->saved_regs, |
| prev_regnum); |
| } |
| |
| static frame_unwind arm_prologue_unwind = { |
| "arm prologue", |
| NORMAL_FRAME, |
| arm_prologue_unwind_stop_reason, |
| arm_prologue_this_id, |
| arm_prologue_prev_register, |
| NULL, |
| default_frame_sniffer |
| }; |
| |
| /* Maintain a list of ARM exception table entries per objfile, similar to the |
| list of mapping symbols. We only cache entries for standard ARM-defined |
| personality routines; the cache will contain only the frame unwinding |
| instructions associated with the entry (not the descriptors). */ |
| |
| struct arm_exidx_entry |
| { |
| CORE_ADDR addr; |
| gdb_byte *entry; |
| |
| bool operator< (const arm_exidx_entry &other) const |
| { |
| return addr < other.addr; |
| } |
| }; |
| |
| struct arm_exidx_data |
| { |
| std::vector<std::vector<arm_exidx_entry>> section_maps; |
| }; |
| |
| /* Per-BFD key to store exception handling information. */ |
| static const struct bfd_key<arm_exidx_data> arm_exidx_data_key; |
| |
| static struct obj_section * |
| arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma) |
| { |
| struct obj_section *osect; |
| |
| ALL_OBJFILE_OSECTIONS (objfile, osect) |
| if (bfd_section_flags (osect->the_bfd_section) & SEC_ALLOC) |
| { |
| bfd_vma start, size; |
| start = bfd_section_vma (osect->the_bfd_section); |
| size = bfd_section_size (osect->the_bfd_section); |
| |
| if (start <= vma && vma < start + size) |
| return osect; |
| } |
| |
| return NULL; |
| } |
| |
| /* Parse contents of exception table and exception index sections |
| of OBJFILE, and fill in the exception table entry cache. |
| |
| For each entry that refers to a standard ARM-defined personality |
| routine, extract the frame unwinding instructions (from either |
| the index or the table section). The unwinding instructions |
| are normalized by: |
| - extracting them from the rest of the table data |
| - converting to host endianness |
| - appending the implicit 0xb0 ("Finish") code |
| |
| The extracted and normalized instructions are stored for later |
| retrieval by the arm_find_exidx_entry routine. */ |
| |
| static void |
| arm_exidx_new_objfile (struct objfile *objfile) |
| { |
| struct arm_exidx_data *data; |
| asection *exidx, *extab; |
| bfd_vma exidx_vma = 0, extab_vma = 0; |
| LONGEST i; |
| |
| /* If we've already touched this file, do nothing. */ |
| if (!objfile || arm_exidx_data_key.get (objfile->obfd) != NULL) |
| return; |
| |
| /* Read contents of exception table and index. */ |
| exidx = bfd_get_section_by_name (objfile->obfd, ELF_STRING_ARM_unwind); |
| gdb::byte_vector exidx_data; |
| if (exidx) |
| { |
| exidx_vma = bfd_section_vma (exidx); |
| exidx_data.resize (bfd_section_size (exidx)); |
| |
| if (!bfd_get_section_contents (objfile->obfd, exidx, |
| exidx_data.data (), 0, |
| exidx_data.size ())) |
| return; |
| } |
| |
| extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab"); |
| gdb::byte_vector extab_data; |
| if (extab) |
| { |
| extab_vma = bfd_section_vma (extab); |
| extab_data.resize (bfd_section_size (extab)); |
| |
| if (!bfd_get_section_contents (objfile->obfd, extab, |
| extab_data.data (), 0, |
| extab_data.size ())) |
| return; |
| } |
| |
| /* Allocate exception table data structure. */ |
| data = arm_exidx_data_key.emplace (objfile->obfd); |
| data->section_maps.resize (objfile->obfd->section_count); |
| |
| /* Fill in exception table. */ |
| for (i = 0; i < exidx_data.size () / 8; i++) |
| { |
| struct arm_exidx_entry new_exidx_entry; |
| bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data.data () + i * 8); |
| bfd_vma val = bfd_h_get_32 (objfile->obfd, |
| exidx_data.data () + i * 8 + 4); |
| bfd_vma addr = 0, word = 0; |
| int n_bytes = 0, n_words = 0; |
| struct obj_section *sec; |
| gdb_byte *entry = NULL; |
| |
| /* Extract address of start of function. */ |
| idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000; |
| idx += exidx_vma + i * 8; |
| |
| /* Find section containing function and compute section offset. */ |
| sec = arm_obj_section_from_vma (objfile, idx); |
| if (sec == NULL) |
| continue; |
| idx -= bfd_section_vma (sec->the_bfd_section); |
| |
| /* Determine address of exception table entry. */ |
| if (val == 1) |
| { |
| /* EXIDX_CANTUNWIND -- no exception table entry present. */ |
| } |
| else if ((val & 0xff000000) == 0x80000000) |
| { |
| /* Exception table entry embedded in .ARM.exidx |
| -- must be short form. */ |
| word = val; |
| n_bytes = 3; |
| } |
| else if (!(val & 0x80000000)) |
| { |
| /* Exception table entry in .ARM.extab. */ |
| addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000; |
| addr += exidx_vma + i * 8 + 4; |
| |
| if (addr >= extab_vma && addr + 4 <= extab_vma + extab_data.size ()) |
| { |
| word = bfd_h_get_32 (objfile->obfd, |
| extab_data.data () + addr - extab_vma); |
| addr += 4; |
| |
| if ((word & 0xff000000) == 0x80000000) |
| { |
| /* Short form. */ |
| n_bytes = 3; |
| } |
| else if ((word & 0xff000000) == 0x81000000 |
| || (word & 0xff000000) == 0x82000000) |
| { |
| /* Long form. */ |
| n_bytes = 2; |
| n_words = ((word >> 16) & 0xff); |
| } |
| else if (!(word & 0x80000000)) |
| { |
| bfd_vma pers; |
| struct obj_section *pers_sec; |
| int gnu_personality = 0; |
| |
| /* Custom personality routine. */ |
| pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000; |
| pers = UNMAKE_THUMB_ADDR (pers + addr - 4); |
| |
| /* Check whether we've got one of the variants of the |
| GNU personality routines. */ |
| pers_sec = arm_obj_section_from_vma (objfile, pers); |
| if (pers_sec) |
| { |
| static const char *personality[] = |
| { |
| "__gcc_personality_v0", |
| "__gxx_personality_v0", |
| "__gcj_personality_v0", |
| "__gnu_objc_personality_v0", |
| NULL |
| }; |
| |
| CORE_ADDR pc = pers + pers_sec->offset (); |
| int k; |
| |
| for (k = 0; personality[k]; k++) |
| if (lookup_minimal_symbol_by_pc_name |
| (pc, personality[k], objfile)) |
| { |
| gnu_personality = 1; |
| break; |
| } |
| } |
| |
| /* If so, the next word contains a word count in the high |
| byte, followed by the same unwind instructions as the |
| pre-defined forms. */ |
| if (gnu_personality |
| && addr + 4 <= extab_vma + extab_data.size ()) |
| { |
| word = bfd_h_get_32 (objfile->obfd, |
| (extab_data.data () |
| + addr - extab_vma)); |
| addr += 4; |
| n_bytes = 3; |
| n_words = ((word >> 24) & 0xff); |
| } |
| } |
| } |
| } |
| |
| /* Sanity check address. */ |
| if (n_words) |
| if (addr < extab_vma |
| || addr + 4 * n_words > extab_vma + extab_data.size ()) |
| n_words = n_bytes = 0; |
| |
| /* The unwind instructions reside in WORD (only the N_BYTES least |
| significant bytes are valid), followed by N_WORDS words in the |
| extab section starting at ADDR. */ |
| if (n_bytes || n_words) |
| { |
| gdb_byte *p = entry |
| = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, |
| n_bytes + n_words * 4 + 1); |
| |
| while (n_bytes--) |
| *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff); |
| |
| while (n_words--) |
| { |
| word = bfd_h_get_32 (objfile->obfd, |
| extab_data.data () + addr - extab_vma); |
| addr += 4; |
| |
| *p++ = (gdb_byte) ((word >> 24) & 0xff); |
| *p++ = (gdb_byte) ((word >> 16) & 0xff); |
| *p++ = (gdb_byte) ((word >> 8) & 0xff); |
| *p++ = (gdb_byte) (word & 0xff); |
| } |
| |
| /* Implied "Finish" to terminate the list. */ |
| *p++ = 0xb0; |
| } |
| |
| /* Push entry onto vector. They are guaranteed to always |
| appear in order of increasing addresses. */ |
| new_exidx_entry.addr = idx; |
| new_exidx_entry.entry = entry; |
| data->section_maps[sec->the_bfd_section->index].push_back |
| (new_exidx_entry); |
| } |
| } |
| |
| /* Search for the exception table entry covering MEMADDR. If one is found, |
| return a pointer to its data. Otherwise, return 0. If START is non-NULL, |
| set *START to the start of the region covered by this entry. */ |
| |
| static gdb_byte * |
| arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start) |
| { |
| struct obj_section *sec; |
| |
| sec = find_pc_section (memaddr); |
| if (sec != NULL) |
| { |
| struct arm_exidx_data *data; |
| struct arm_exidx_entry map_key = { memaddr - sec->addr (), 0 }; |
| |
| data = arm_exidx_data_key.get (sec->objfile->obfd); |
| if (data != NULL) |
| { |
| std::vector<arm_exidx_entry> &map |
| = data->section_maps[sec->the_bfd_section->index]; |
| if (!map.empty ()) |
| { |
| auto idx = std::lower_bound (map.begin (), map.end (), map_key); |
| |
| /* std::lower_bound finds the earliest ordered insertion |
| point. If the following symbol starts at this exact |
| address, we use that; otherwise, the preceding |
| exception table entry covers this address. */ |
| if (idx < map.end ()) |
| { |
| if (idx->addr == map_key.addr) |
| { |
| if (start) |
| *start = idx->addr + sec->addr (); |
| return idx->entry; |
| } |
| } |
| |
| if (idx > map.begin ()) |
| { |
| idx = idx - 1; |
| if (start) |
| *start = idx->addr + sec->addr (); |
| return idx->entry; |
| } |
| } |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* Given the current frame THIS_FRAME, and its associated frame unwinding |
| instruction list from the ARM exception table entry ENTRY, allocate and |
| return a prologue cache structure describing how to unwind this frame. |
| |
| Return NULL if the unwinding instruction list contains a "spare", |
| "reserved" or "refuse to unwind" instruction as defined in section |
| "9.3 Frame unwinding instructions" of the "Exception Handling ABI |
| for the ARM Architecture" document. */ |
| |
| static struct arm_prologue_cache * |
| arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry) |
| { |
| CORE_ADDR vsp = 0; |
| int vsp_valid = 0; |
| |
| struct arm_prologue_cache *cache; |
| cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
| cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| |
| for (;;) |
| { |
| gdb_byte insn; |
| |
| /* Whenever we reload SP, we actually have to retrieve its |
| actual value in the current frame. */ |
| if (!vsp_valid) |
| { |
| if (cache->saved_regs[ARM_SP_REGNUM].is_realreg ()) |
| { |
| int reg = cache->saved_regs[ARM_SP_REGNUM].realreg (); |
| vsp = get_frame_register_unsigned (this_frame, reg); |
| } |
| else |
| { |
| CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr (); |
| vsp = get_frame_memory_unsigned (this_frame, addr, 4); |
| } |
| |
| vsp_valid = 1; |
| } |
| |
| /* Decode next unwind instruction. */ |
| insn = *entry++; |
| |
| if ((insn & 0xc0) == 0) |
| { |
| int offset = insn & 0x3f; |
| vsp += (offset << 2) + 4; |
| } |
| else if ((insn & 0xc0) == 0x40) |
| { |
| int offset = insn & 0x3f; |
| vsp -= (offset << 2) + 4; |
| } |
| else if ((insn & 0xf0) == 0x80) |
| { |
| int mask = ((insn & 0xf) << 8) | *entry++; |
| int i; |
| |
| /* The special case of an all-zero mask identifies |
| "Refuse to unwind". We return NULL to fall back |
| to the prologue analyzer. */ |
| if (mask == 0) |
| return NULL; |
| |
| /* Pop registers r4..r15 under mask. */ |
| for (i = 0; i < 12; i++) |
| if (mask & (1 << i)) |
| { |
| cache->saved_regs[4 + i].set_addr (vsp); |
| vsp += 4; |
| } |
| |
| /* Special-case popping SP -- we need to reload vsp. */ |
| if (mask & (1 << (ARM_SP_REGNUM - 4))) |
| vsp_valid = 0; |
| } |
| else if ((insn & 0xf0) == 0x90) |
| { |
| int reg = insn & 0xf; |
| |
| /* Reserved cases. */ |
| if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM) |
| return NULL; |
| |
| /* Set SP from another register and mark VSP for reload. */ |
| cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg]; |
| vsp_valid = 0; |
| } |
| else if ((insn & 0xf0) == 0xa0) |
| { |
| int count = insn & 0x7; |
| int pop_lr = (insn & 0x8) != 0; |
| int i; |
| |
| /* Pop r4..r[4+count]. */ |
| for (i = 0; i <= count; i++) |
| { |
| cache->saved_regs[4 + i].set_addr (vsp); |
| vsp += 4; |
| } |
| |
| /* If indicated by flag, pop LR as well. */ |
| if (pop_lr) |
| { |
| cache->saved_regs[ARM_LR_REGNUM].set_addr (vsp); |
| vsp += 4; |
| } |
| } |
| else if (insn == 0xb0) |
| { |
| /* We could only have updated PC by popping into it; if so, it |
| will show up as address. Otherwise, copy LR into PC. */ |
| if (!cache->saved_regs[ARM_PC_REGNUM].is_addr ()) |
| cache->saved_regs[ARM_PC_REGNUM] |
| = cache->saved_regs[ARM_LR_REGNUM]; |
| |
| /* We're done. */ |
| break; |
| } |
| else if (insn == 0xb1) |
| { |
| int mask = *entry++; |
| int i; |
| |
| /* All-zero mask and mask >= 16 is "spare". */ |
| if (mask == 0 || mask >= 16) |
| return NULL; |
| |
| /* Pop r0..r3 under mask. */ |
| for (i = 0; i < 4; i++) |
| if (mask & (1 << i)) |
| { |
| cache->saved_regs[i].set_addr (vsp); |
| vsp += 4; |
| } |
| } |
| else if (insn == 0xb2) |
| { |
| ULONGEST offset = 0; |
| unsigned shift = 0; |
| |
| do |
| { |
| offset |= (*entry & 0x7f) << shift; |
| shift += 7; |
| } |
| while (*entry++ & 0x80); |
| |
| vsp += 0x204 + (offset << 2); |
| } |
| else if (insn == 0xb3) |
| { |
| int start = *entry >> 4; |
| int count = (*entry++) & 0xf; |
| int i; |
| |
| /* Only registers D0..D15 are valid here. */ |
| if (start + count >= 16) |
| return NULL; |
| |
| /* Pop VFP double-precision registers D[start]..D[start+count]. */ |
| for (i = 0; i <= count; i++) |
| { |
| cache->saved_regs[ARM_D0_REGNUM + start + i].set_addr (vsp); |
| vsp += 8; |
| } |
| |
| /* Add an extra 4 bytes for FSTMFDX-style stack. */ |
| vsp += 4; |
| } |
| else if ((insn & 0xf8) == 0xb8) |
| { |
| int count = insn & 0x7; |
| int i; |
| |
| /* Pop VFP double-precision registers D[8]..D[8+count]. */ |
| for (i = 0; i <= count; i++) |
| { |
| cache->saved_regs[ARM_D0_REGNUM + 8 + i].set_addr (vsp); |
| vsp += 8; |
| } |
| |
| /* Add an extra 4 bytes for FSTMFDX-style stack. */ |
| vsp += 4; |
| } |
| else if (insn == 0xc6) |
| { |
| int start = *entry >> 4; |
| int count = (*entry++) & 0xf; |
| int i; |
| |
| /* Only registers WR0..WR15 are valid. */ |
| if (start + count >= 16) |
| return NULL; |
| |
| /* Pop iwmmx registers WR[start]..WR[start+count]. */ |
| for (i = 0; i <= count; i++) |
| { |
| cache->saved_regs[ARM_WR0_REGNUM + start + i].set_addr (vsp); |
| vsp += 8; |
| } |
| } |
| else if (insn == 0xc7) |
| { |
| int mask = *entry++; |
| int i; |
| |
| /* All-zero mask and mask >= 16 is "spare". */ |
| if (mask == 0 || mask >= 16) |
| return NULL; |
| |
| /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */ |
| for (i = 0; i < 4; i++) |
| if (mask & (1 << i)) |
| { |
| cache->saved_regs[ARM_WCGR0_REGNUM + i].set_addr (vsp); |
| vsp += 4; |
| } |
| } |
| else if ((insn & 0xf8) == 0xc0) |
| { |
| int count = insn & 0x7; |
| int i; |
| |
| /* Pop iwmmx registers WR[10]..WR[10+count]. */ |
| for (i = 0; i <= count; i++) |
| { |
| cache->saved_regs[ARM_WR0_REGNUM + 10 + i].set_addr (vsp); |
| vsp += 8; |
| } |
| } |
| else if (insn == 0xc8) |
| { |
| int start = *entry >> 4; |
| int count = (*entry++) & 0xf; |
| int i; |
| |
| /* Only registers D0..D31 are valid. */ |
| if (start + count >= 16) |
| return NULL; |
| |
| /* Pop VFP double-precision registers |
| D[16+start]..D[16+start+count]. */ |
| for (i = 0; i <= count; i++) |
| { |
| cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].set_addr (vsp); |
| vsp += 8; |
| } |
| } |
| else if (insn == 0xc9) |
| { |
| int start = *entry >> 4; |
| int count = (*entry++) & 0xf; |
| int i; |
| |
| /* Pop VFP double-precision registers D[start]..D[start+count]. */ |
| for (i = 0; i <= count; i++) |
| { |
| cache->saved_regs[ARM_D0_REGNUM + start + i].set_addr (vsp); |
| vsp += 8; |
| } |
| } |
| else if ((insn & 0xf8) == 0xd0) |
| { |
| int count = insn & 0x7; |
| int i; |
| |
| /* Pop VFP double-precision registers D[8]..D[8+count]. */ |
| for (i = 0; i <= count; i++) |
| { |
| cache->saved_regs[ARM_D0_REGNUM + 8 + i].set_addr (vsp); |
| vsp += 8; |
| } |
| } |
| else |
| { |
| /* Everything else is "spare". */ |
| return NULL; |
| } |
| } |
| |
| /* If we restore SP from a register, assume this was the frame register. |
| Otherwise just fall back to SP as frame register. */ |
| if (cache->saved_regs[ARM_SP_REGNUM].is_realreg ()) |
| cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg (); |
| else |
| cache->framereg = ARM_SP_REGNUM; |
| |
| /* Determine offset to previous frame. */ |
| cache->framesize |
| = vsp - get_frame_register_unsigned (this_frame, cache->framereg); |
| |
| /* We already got the previous SP. */ |
| cache->prev_sp = vsp; |
| |
| return cache; |
| } |
| |
| /* Unwinding via ARM exception table entries. Note that the sniffer |
| already computes a filled-in prologue cache, which is then used |
| with the same arm_prologue_this_id and arm_prologue_prev_register |
| routines also used for prologue-parsing based unwinding. */ |
| |
| static int |
| arm_exidx_unwind_sniffer (const struct frame_unwind *self, |
| struct frame_info *this_frame, |
| void **this_prologue_cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
| CORE_ADDR addr_in_block, exidx_region, func_start; |
| struct arm_prologue_cache *cache; |
| gdb_byte *entry; |
| |
| /* See if we have an ARM exception table entry covering this address. */ |
| addr_in_block = get_frame_address_in_block (this_frame); |
| entry = arm_find_exidx_entry (addr_in_block, &exidx_region); |
| if (!entry) |
| return 0; |
| |
| /* The ARM exception table does not describe unwind information |
| for arbitrary PC values, but is guaranteed to be correct only |
| at call sites. We have to decide here whether we want to use |
| ARM exception table information for this frame, or fall back |
| to using prologue parsing. (Note that if we have DWARF CFI, |
| this sniffer isn't even called -- CFI is always preferred.) |
| |
| Before we make this decision, however, we check whether we |
| actually have *symbol* information for the current frame. |
| If not, prologue parsing would not work anyway, so we might |
| as well use the exception table and hope for the best. */ |
| if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL)) |
| { |
| int exc_valid = 0; |
| |
| /* If the next frame is "normal", we are at a call site in this |
| frame, so exception information is guaranteed to be valid. */ |
| if (get_next_frame (this_frame) |
| && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME) |
| exc_valid = 1; |
| |
| /* We also assume exception information is valid if we're currently |
| blocked in a system call. The system library is supposed to |
| ensure this, so that e.g. pthread cancellation works. */ |
| if (arm_frame_is_thumb (this_frame)) |
| { |
| ULONGEST insn; |
| |
| if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 2, |
| 2, byte_order_for_code, &insn) |
| && (insn & 0xff00) == 0xdf00 /* svc */) |
| exc_valid = 1; |
| } |
| else |
| { |
| ULONGEST insn; |
| |
| if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 4, |
| 4, byte_order_for_code, &insn) |
| && (insn & 0x0f000000) == 0x0f000000 /* svc */) |
| exc_valid = 1; |
| } |
| |
| /* Bail out if we don't know that exception information is valid. */ |
| if (!exc_valid) |
| return 0; |
| |
| /* The ARM exception index does not mark the *end* of the region |
| covered by the entry, and some functions will not have any entry. |
| To correctly recognize the end of the covered region, the linker |
| should have inserted dummy records with a CANTUNWIND marker. |
| |
| Unfortunately, current versions of GNU ld do not reliably do |
| this, and thus we may have found an incorrect entry above. |
| As a (temporary) sanity check, we only use the entry if it |
| lies *within* the bounds of the function. Note that this check |
| might reject perfectly valid entries that just happen to cover |
| multiple functions; therefore this check ought to be removed |
| once the linker is fixed. */ |
| if (func_start > exidx_region) |
| return 0; |
| } |
| |
| /* Decode the list of unwinding instructions into a prologue cache. |
| Note that this may fail due to e.g. a "refuse to unwind" code. */ |
| cache = arm_exidx_fill_cache (this_frame, entry); |
| if (!cache) |
| return 0; |
| |
| *this_prologue_cache = cache; |
| return 1; |
| } |
| |
| struct frame_unwind arm_exidx_unwind = { |
| "arm exidx", |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| arm_prologue_this_id, |
| arm_prologue_prev_register, |
| NULL, |
| arm_exidx_unwind_sniffer |
| }; |
| |
| static struct arm_prologue_cache * |
| arm_make_epilogue_frame_cache (struct frame_info *this_frame) |
| { |
| struct arm_prologue_cache *cache; |
| int reg; |
| |
| cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
| cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| |
| /* Still rely on the offset calculated from prologue. */ |
| arm_scan_prologue (this_frame, cache); |
| |
| /* Since we are in epilogue, the SP has been restored. */ |
| cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM); |
| |
| /* Calculate actual addresses of saved registers using offsets |
| determined by arm_scan_prologue. */ |
| for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++) |
| if (cache->saved_regs[reg].is_addr ()) |
| cache->saved_regs[reg].set_addr (cache->saved_regs[reg].addr () |
| + cache->prev_sp); |
| |
| return cache; |
| } |
| |
| /* Implementation of function hook 'this_id' in |
| 'struct frame_uwnind' for epilogue unwinder. */ |
| |
| static void |
| arm_epilogue_frame_this_id (struct frame_info *this_frame, |
| void **this_cache, |
| struct frame_id *this_id) |
| { |
| struct arm_prologue_cache *cache; |
| CORE_ADDR pc, func; |
| |
| if (*this_cache == NULL) |
| *this_cache = arm_make_epilogue_frame_cache (this_frame); |
| cache = (struct arm_prologue_cache *) *this_cache; |
| |
| /* Use function start address as part of the frame ID. If we cannot |
| identify the start address (due to missing symbol information), |
| fall back to just using the current PC. */ |
| pc = get_frame_pc (this_frame); |
| func = get_frame_func (this_frame); |
| if (func == 0) |
| func = pc; |
| |
| (*this_id) = frame_id_build (cache->prev_sp, pc); |
| } |
| |
| /* Implementation of function hook 'prev_register' in |
| 'struct frame_uwnind' for epilogue unwinder. */ |
| |
| static struct value * |
| arm_epilogue_frame_prev_register (struct frame_info *this_frame, |
| void **this_cache, int regnum) |
| { |
| if (*this_cache == NULL) |
| *this_cache = arm_make_epilogue_frame_cache (this_frame); |
| |
| return arm_prologue_prev_register (this_frame, this_cache, regnum); |
| } |
| |
| static int arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, |
| CORE_ADDR pc); |
| static int thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, |
| CORE_ADDR pc); |
| |
| /* Implementation of function hook 'sniffer' in |
| 'struct frame_uwnind' for epilogue unwinder. */ |
| |
| static int |
| arm_epilogue_frame_sniffer (const struct frame_unwind *self, |
| struct frame_info *this_frame, |
| void **this_prologue_cache) |
| { |
| if (frame_relative_level (this_frame) == 0) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| CORE_ADDR pc = get_frame_pc (this_frame); |
| |
| if (arm_frame_is_thumb (this_frame)) |
| return thumb_stack_frame_destroyed_p (gdbarch, pc); |
| else |
| return arm_stack_frame_destroyed_p_1 (gdbarch, pc); |
| } |
| else |
| return 0; |
| } |
| |
| /* Frame unwinder from epilogue. */ |
| |
| static const struct frame_unwind arm_epilogue_frame_unwind = |
| { |
| "arm epilogue", |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| arm_epilogue_frame_this_id, |
| arm_epilogue_frame_prev_register, |
| NULL, |
| arm_epilogue_frame_sniffer, |
| }; |
| |
| /* Recognize GCC's trampoline for thumb call-indirect. If we are in a |
| trampoline, return the target PC. Otherwise return 0. |
| |
| void call0a (char c, short s, int i, long l) {} |
| |
| int main (void) |
| { |
| (*pointer_to_call0a) (c, s, i, l); |
| } |
| |
| Instead of calling a stub library function _call_via_xx (xx is |
| the register name), GCC may inline the trampoline in the object |
| file as below (register r2 has the address of call0a). |
| |
| .global main |
| .type main, %function |
| ... |
| bl .L1 |
| ... |
| .size main, .-main |
| |
| .L1: |
| bx r2 |
| |
| The trampoline 'bx r2' doesn't belong to main. */ |
| |
| static CORE_ADDR |
| arm_skip_bx_reg (struct frame_info *frame, CORE_ADDR pc) |
| { |
| /* The heuristics of recognizing such trampoline is that FRAME is |
| executing in Thumb mode and the instruction on PC is 'bx Rm'. */ |
| if (arm_frame_is_thumb (frame)) |
| { |
| gdb_byte buf[2]; |
| |
| if (target_read_memory (pc, buf, 2) == 0) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (frame); |
| enum bfd_endian byte_order_for_code |
| = gdbarch_byte_order_for_code (gdbarch); |
| uint16_t insn |
| = extract_unsigned_integer (buf, 2, byte_order_for_code); |
| |
| if ((insn & 0xff80) == 0x4700) /* bx <Rm> */ |
| { |
| CORE_ADDR dest |
| = get_frame_register_unsigned (frame, bits (insn, 3, 6)); |
| |
| /* Clear the LSB so that gdb core sets step-resume |
| breakpoint at the right address. */ |
| return UNMAKE_THUMB_ADDR (dest); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static struct arm_prologue_cache * |
| arm_make_stub_cache (struct frame_info *this_frame) |
| { |
| struct arm_prologue_cache *cache; |
| |
| cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
| cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| |
| cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM); |
| |
| return cache; |
| } |
| |
| /* Our frame ID for a stub frame is the current SP and LR. */ |
| |
| static void |
| arm_stub_this_id (struct frame_info *this_frame, |
| void **this_cache, |
| struct frame_id *this_id) |
| { |
| struct arm_prologue_cache *cache; |
| |
| if (*this_cache == NULL) |
| *this_cache = arm_make_stub_cache (this_frame); |
| cache = (struct arm_prologue_cache *) *this_cache; |
| |
| *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame)); |
| } |
| |
| static int |
| arm_stub_unwind_sniffer (const struct frame_unwind *self, |
| struct frame_info *this_frame, |
| void **this_prologue_cache) |
| { |
| CORE_ADDR addr_in_block; |
| gdb_byte dummy[4]; |
| CORE_ADDR pc, start_addr; |
| const char *name; |
| |
| addr_in_block = get_frame_address_in_block (this_frame); |
| pc = get_frame_pc (this_frame); |
| if (in_plt_section (addr_in_block) |
| /* We also use the stub winder if the target memory is unreadable |
| to avoid having the prologue unwinder trying to read it. */ |
| || target_read_memory (pc, dummy, 4) != 0) |
| return 1; |
| |
| if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0 |
| && arm_skip_bx_reg (this_frame, pc) != 0) |
| return 1; |
| |
| return 0; |
| } |
| |
| struct frame_unwind arm_stub_unwind = { |
| "arm stub", |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| arm_stub_this_id, |
| arm_prologue_prev_register, |
| NULL, |
| arm_stub_unwind_sniffer |
| }; |
| |
| /* Put here the code to store, into CACHE->saved_regs, the addresses |
| of the saved registers of frame described by THIS_FRAME. CACHE is |
| returned. */ |
| |
| static struct arm_prologue_cache * |
| arm_m_exception_cache (struct frame_info *this_frame) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct arm_prologue_cache *cache; |
| CORE_ADDR lr; |
| CORE_ADDR sp; |
| CORE_ADDR unwound_sp; |
| LONGEST xpsr; |
| uint32_t exc_return; |
| uint32_t process_stack_used; |
| uint32_t extended_frame_used; |
| uint32_t secure_stack_used; |
| |
| cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); |
| cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| |
| /* ARMv7-M Architecture Reference "B1.5.6 Exception entry behavior" |
| describes which bits in LR that define which stack was used prior |
| to the exception and if FPU is used (causing extended stack frame). */ |
| |
| lr = get_frame_register_unsigned (this_frame, ARM_LR_REGNUM); |
| sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM); |
| |
| /* Check EXC_RETURN indicator bits. */ |
| exc_return = (((lr >> 28) & 0xf) == 0xf); |
| |
| /* Check EXC_RETURN bit SPSEL if Main or Thread (process) stack used. */ |
| process_stack_used = ((lr & (1 << 2)) != 0); |
| if (exc_return && process_stack_used) |
| { |
| /* Thread (process) stack used. |
| Potentially this could be other register defined by target, but PSP |
| can be considered a standard name for the "Process Stack Pointer". |
| To be fully aware of system registers like MSP and PSP, these could |
| be added to a separate XML arm-m-system-profile that is valid for |
| ARMv6-M and ARMv7-M architectures. Also to be able to debug eg a |
| corefile off-line, then these registers must be defined by GDB, |
| and also be included in the corefile regsets. */ |
| |
| int psp_regnum = user_reg_map_name_to_regnum (gdbarch, "psp", -1); |
| if (psp_regnum == -1) |
| { |
| /* Thread (process) stack could not be fetched, |
| give warning and exit. */ |
| |
| warning (_("no PSP thread stack unwinding supported.")); |
| |
| /* Terminate any further stack unwinding by refer to self. */ |
| cache->prev_sp = sp; |
| return cache; |
| } |
| else |
| { |
| /* Thread (process) stack used, use PSP as SP. */ |
| unwound_sp = get_frame_register_unsigned (this_frame, psp_regnum); |
| } |
| } |
| else |
| { |
| /* Main stack used, use MSP as SP. */ |
| unwound_sp = sp; |
| } |
| |
| /* The hardware saves eight 32-bit words, comprising xPSR, |
| ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in |
| "B1.5.6 Exception entry behavior" in |
| "ARMv7-M Architecture Reference Manual". */ |
| cache->saved_regs[0].set_addr (unwound_sp); |
| cache->saved_regs[1].set_addr (unwound_sp + 4); |
| cache->saved_regs[2].set_addr (unwound_sp + 8); |
| cache->saved_regs[3].set_addr (unwound_sp + 12); |
| cache->saved_regs[ARM_IP_REGNUM].set_addr (unwound_sp + 16); |
| cache->saved_regs[ARM_LR_REGNUM].set_addr (unwound_sp + 20); |
| cache->saved_regs[ARM_PC_REGNUM].set_addr (unwound_sp + 24); |
| cache->saved_regs[ARM_PS_REGNUM].set_addr (unwound_sp + 28); |
| |
| /* Check EXC_RETURN bit FTYPE if extended stack frame (FPU regs stored) |
| type used. */ |
| extended_frame_used = ((lr & (1 << 4)) == 0); |
| if (exc_return && extended_frame_used) |
| { |
| int i; |
| int fpu_regs_stack_offset; |
| |
| /* This code does not take into account the lazy stacking, see "Lazy |
| context save of FP state", in B1.5.7, also ARM AN298, supported |
| by Cortex-M4F architecture. |
| To fully handle this the FPCCR register (Floating-point Context |
| Control Register) needs to be read out and the bits ASPEN and LSPEN |
| could be checked to setup correct lazy stacked FP registers. |
| This register is located at address 0xE000EF34. */ |
| |
| /* Extended stack frame type used. */ |
| fpu_regs_stack_offset = unwound_sp + 0x20; |
| for (i = 0; i < 16; i++) |
| { |
| cache->saved_regs[ARM_D0_REGNUM + i].set_addr (fpu_regs_stack_offset); |
| fpu_regs_stack_offset += 4; |
| } |
| cache->saved_regs[ARM_FPSCR_REGNUM].set_addr (unwound_sp + 0x60); |
| |
| /* Offset 0x64 is reserved. */ |
| cache->prev_sp = unwound_sp + 0x68; |
| } |
| else |
| { |
| /* Standard stack frame type used. */ |
| cache->prev_sp = unwound_sp + 0x20; |
| } |
| |
| /* Check EXC_RETURN bit S if Secure or Non-secure stack used. */ |
| secure_stack_used = ((lr & (1 << 6)) != 0); |
| if (exc_return && secure_stack_used) |
| { |
| /* ARMv8-M Exception and interrupt handling is not considered here. |
| In the ARMv8-M architecture also EXC_RETURN bit S is controlling if |
| the Secure or Non-secure stack was used. To separate Secure and |
| Non-secure stacks, processors that are based on the ARMv8-M |
| architecture support 4 stack pointers: MSP_S, PSP_S, MSP_NS, PSP_NS. |
| In addition, a stack limit feature is provided using stack limit |
| registers (accessible using MSR and MRS instructions) in Privileged |
| level. */ |
| } |
| |
| /* If bit 9 of the saved xPSR is set, then there is a four-byte |
| aligner between the top of the 32-byte stack frame and the |
| previous context's stack pointer. */ |
| if (safe_read_memory_integer (unwound_sp + 28, 4, byte_order, &xpsr) |
| && (xpsr & (1 << 9)) != 0) |
| cache->prev_sp += 4; |
| |
| return cache; |
| } |
| |
| /* Implementation of function hook 'this_id' in |
| 'struct frame_uwnind'. */ |
| |
| static void |
| arm_m_exception_this_id (struct frame_info *this_frame, |
| void **this_cache, |
| struct frame_id *this_id) |
| { |
| struct arm_prologue_cache *cache; |
| |
| if (*this_cache == NULL) |
| *this_cache = arm_m_exception_cache (this_frame); |
| cache = (struct arm_prologue_cache *) *this_cache; |
| |
| /* Our frame ID for a stub frame is the current SP and LR. */ |
| *this_id = frame_id_build (cache->prev_sp, |
| get_frame_pc (this_frame)); |
| } |
| |
| /* Implementation of function hook 'prev_register' in |
| 'struct frame_uwnind'. */ |
| |
| static struct value * |
| arm_m_exception_prev_register (struct frame_info *this_frame, |
| void **this_cache, |
| int prev_regnum) |
| { |
| struct arm_prologue_cache *cache; |
| |
| if (*this_cache == NULL) |
| *this_cache = arm_m_exception_cache (this_frame); |
| cache = (struct arm_prologue_cache *) *this_cache; |
| |
| /* The value was already reconstructed into PREV_SP. */ |
| if (prev_regnum == ARM_SP_REGNUM) |
| return frame_unwind_got_constant (this_frame, prev_regnum, |
| cache->prev_sp); |
| |
| return trad_frame_get_prev_register (this_frame, cache->saved_regs, |
| prev_regnum); |
| } |
| |
| /* Implementation of function hook 'sniffer' in |
| 'struct frame_uwnind'. */ |
| |
| static int |
| arm_m_exception_unwind_sniffer (const struct frame_unwind *self, |
| struct frame_info *this_frame, |
| void **this_prologue_cache) |
| { |
| CORE_ADDR this_pc = get_frame_pc (this_frame); |
| |
| /* No need to check is_m; this sniffer is only registered for |
| M-profile architectures. */ |
| |
| /* Check if exception frame returns to a magic PC value. */ |
| return arm_m_addr_is_magic (this_pc); |
| } |
| |
| /* Frame unwinder for M-profile exceptions. */ |
| |
| struct frame_unwind arm_m_exception_unwind = |
| { |
| "arm m exception", |
| SIGTRAMP_FRAME, |
| default_frame_unwind_stop_reason, |
| arm_m_exception_this_id, |
| arm_m_exception_prev_register, |
| NULL, |
| arm_m_exception_unwind_sniffer |
| }; |
| |
| static CORE_ADDR |
| arm_normal_frame_base (struct frame_info *this_frame, void **this_cache) |
| { |
| struct arm_prologue_cache *cache; |
| |
| if (*this_cache == NULL) |
| *this_cache = arm_make_prologue_cache (this_frame); |
| cache = (struct arm_prologue_cache *) *this_cache; |
| |
| return cache->prev_sp - cache->framesize; |
| } |
| |
| struct frame_base arm_normal_base = { |
| &arm_prologue_unwind, |
| arm_normal_frame_base, |
| arm_normal_frame_base, |
| arm_normal_frame_base |
| }; |
| |
| static struct value * |
| arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache, |
| int regnum) |
| { |
| struct gdbarch * gdbarch = get_frame_arch (this_frame); |
| CORE_ADDR lr, cpsr; |
| ULONGEST t_bit = arm_psr_thumb_bit (gdbarch); |
| |
| switch (regnum) |
| { |
| case ARM_PC_REGNUM: |
| /* The PC is normally copied from the return column, which |
| describes saves of LR. However, that version may have an |
| extra bit set to indicate Thumb state. The bit is not |
| part of the PC. */ |
| lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); |
| return frame_unwind_got_constant (this_frame, regnum, |
| arm_addr_bits_remove (gdbarch, lr)); |
| |
| case ARM_PS_REGNUM: |
| /* Reconstruct the T bit; see arm_prologue_prev_register for details. */ |
| cpsr = get_frame_register_unsigned (this_frame, regnum); |
| lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); |
| if (IS_THUMB_ADDR (lr)) |
| cpsr |= t_bit; |
| else |
| cpsr &= ~t_bit; |
| return frame_unwind_got_constant (this_frame, regnum, cpsr); |
| |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("Unexpected register %d"), regnum); |
| } |
| } |
| |
| static void |
| arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, |
| struct dwarf2_frame_state_reg *reg, |
| struct frame_info *this_frame) |
| { |
| switch (regnum) |
| { |
| case ARM_PC_REGNUM: |
| case ARM_PS_REGNUM: |
| reg->how = DWARF2_FRAME_REG_FN; |
| reg->loc.fn = arm_dwarf2_prev_register; |
| break; |
| case ARM_SP_REGNUM: |
| reg->how = DWARF2_FRAME_REG_CFA; |
| break; |
| } |
| } |
| |
| /* Implement the stack_frame_destroyed_p gdbarch method. */ |
| |
| static int |
| thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
| unsigned int insn, insn2; |
| int found_return = 0, found_stack_adjust = 0; |
| CORE_ADDR func_start, func_end; |
| CORE_ADDR scan_pc; |
| gdb_byte buf[4]; |
| |
| if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) |
| return 0; |
| |
| /* The epilogue is a sequence of instructions along the following lines: |
| |
| - add stack frame size to SP or FP |
| - [if frame pointer used] restore SP from FP |
| - restore registers from SP [may include PC] |
| - a return-type instruction [if PC wasn't already restored] |
| |
| In a first pass, we scan forward from the current PC and verify the |
| instructions we find as compatible with this sequence, ending in a |
| return instruction. |
| |
| However, this is not sufficient to distinguish indirect function calls |
| within a function from indirect tail calls in the epilogue in some cases. |
| Therefore, if we didn't already find any SP-changing instruction during |
| forward scan, we add a backward scanning heuristic to ensure we actually |
| are in the epilogue. */ |
| |
| scan_pc = pc; |
| while (scan_pc < func_end && !found_return) |
| { |
| if (target_read_memory (scan_pc, buf, 2)) |
| break; |
| |
| scan_pc += 2; |
| insn = extract_unsigned_integer (buf, 2, byte_order_for_code); |
| |
| if ((insn & 0xff80) == 0x4700) /* bx <Rm> */ |
| found_return = 1; |
| else if (insn == 0x46f7) /* mov pc, lr */ |
| found_return = 1; |
| else if (thumb_instruction_restores_sp (insn)) |
| { |
| if ((insn & 0xff00) == 0xbd00) /* pop <registers, PC> */ |
| found_return = 1; |
| } |
| else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */ |
| { |
| if (target_read_memory (scan_pc, buf, 2)) |
| break; |
| |
| scan_pc += 2; |
| insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code); |
| |
| if (insn == 0xe8bd) /* ldm.w sp!, <registers> */ |
| { |
| if (insn2 & 0x8000) /* <registers> include PC. */ |
| found_return = 1; |
| } |
| else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */ |
| && (insn2 & 0x0fff) == 0x0b04) |
| { |
| if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */ |
| found_return = 1; |
| } |
| else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */ |
| && (insn2 & 0x0e00) == 0x0a00) |
| ; |
| else |
| break; |
| } |
| else |
| break; |
| } |
| |
| if (!found_return) |
| return 0; |
| |
| /* Since any instruction in the epilogue sequence, with the possible |
| exception of return itself, updates the stack pointer, we need to |
| scan backwards for at most one instruction. Try either a 16-bit or |
| a 32-bit instruction. This is just a heuristic, so we do not worry |
| too much about false positives. */ |
| |
| if (pc - 4 < func_start) |
| return 0; |
| if (target_read_memory (pc - 4, buf, 4)) |
| return 0; |
| |
| insn = extract_unsigned_integer (buf, 2, byte_order_for_code); |
| insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code); |
| |
| if (thumb_instruction_restores_sp (insn2)) |
| found_stack_adjust = 1; |
| else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */ |
| found_stack_adjust = 1; |
| else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */ |
| && (insn2 & 0x0fff) == 0x0b04) |
| found_stack_adjust = 1; |
| else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */ |
| && (insn2 & 0x0e00) == 0x0a00) |
| found_stack_adjust = 1; |
| |
| return found_stack_adjust; |
| } |
| |
| static int |
| arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
| unsigned int insn; |
| int found_return; |
| CORE_ADDR func_start, func_end; |
| |
| if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) |
| return 0; |
| |
| /* We are in the epilogue if the previous instruction was a stack |
| adjustment and the next instruction is a possible return (bx, mov |
| pc, or pop). We could have to scan backwards to find the stack |
| adjustment, or forwards to find the return, but this is a decent |
| approximation. First scan forwards. */ |
| |
| found_return = 0; |
| insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code); |
| if (bits (insn, 28, 31) != INST_NV) |
| { |
| if ((insn & 0x0ffffff0) == 0x012fff10) |
| /* BX. */ |
| found_return = 1; |
| else if ((insn & 0x0ffffff0) == 0x01a0f000) |
| /* MOV PC. */ |
| found_return = 1; |
| else if ((insn & 0x0fff0000) == 0x08bd0000 |
| && (insn & 0x0000c000) != 0) |
| /* POP (LDMIA), including PC or LR. */ |
| found_return = 1; |
| } |
| |
| if (!found_return) |
| return 0; |
| |
| /* Scan backwards. This is just a heuristic, so do not worry about |
| false positives from mode changes. */ |
| |
| if (pc < func_start + 4) |
| return 0; |
| |
| insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code); |
| if (arm_instruction_restores_sp (insn)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Implement the stack_frame_destroyed_p gdbarch method. */ |
| |
| static int |
| arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| if (arm_pc_is_thumb (gdbarch, pc)) |
| return thumb_stack_frame_destroyed_p (gdbarch, pc); |
| else |
| return arm_stack_frame_destroyed_p_1 (gdbarch, pc); |
| } |
| |
| /* When arguments must be pushed onto the stack, they go on in reverse |
| order. The code below implements a FILO (stack) to do this. */ |
| |
| struct stack_item |
| { |
| int len; |
| struct stack_item *prev; |
| gdb_byte *data; |
| }; |
| |
| static struct stack_item * |
| push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len) |
| { |
| struct stack_item *si; |
| si = XNEW (struct stack_item); |
| si->data = (gdb_byte *) xmalloc (len); |
| si->len = len; |
| si->prev = prev; |
| memcpy (si->data, contents, len); |
| return si; |
| } |
| |
| static struct stack_item * |
| pop_stack_item (struct stack_item *si) |
| { |
| struct stack_item *dead = si; |
| si = si->prev; |
| xfree (dead->data); |
| xfree (dead); |
| return si; |
| } |
| |
| /* Implement the gdbarch type alignment method, overrides the generic |
| alignment algorithm for anything that is arm specific. */ |
| |
| static ULONGEST |
| arm_type_align (gdbarch *gdbarch, struct type *t) |
| { |
| t = check_typedef (t); |
| if (t->code () == TYPE_CODE_ARRAY && t->is_vector ()) |
| { |
| /* Use the natural alignment for vector types (the same for |
| scalar type), but the maximum alignment is 64-bit. */ |
| if (TYPE_LENGTH (t) > 8) |
| return 8; |
| else |
| return TYPE_LENGTH (t); |
| } |
| |
| /* Allow the common code to calculate the alignment. */ |
| return 0; |
| } |
| |
| /* Possible base types for a candidate for passing and returning in |
| VFP registers. */ |
| |
| enum arm_vfp_cprc_base_type |
| { |
| VFP_CPRC_UNKNOWN, |
| VFP_CPRC_SINGLE, |
| VFP_CPRC_DOUBLE, |
| VFP_CPRC_VEC64, |
| VFP_CPRC_VEC128 |
| }; |
| |
| /* The length of one element of base type B. */ |
| |
| static unsigned |
| arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b) |
| { |
| switch (b) |
| { |
| case VFP_CPRC_SINGLE: |
| return 4; |
| case VFP_CPRC_DOUBLE: |
| return 8; |
| case VFP_CPRC_VEC64: |
| return 8; |
| case VFP_CPRC_VEC128: |
| return 16; |
| default: |
| internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."), |
| (int) b); |
| } |
| } |
| |
| /* The character ('s', 'd' or 'q') for the type of VFP register used |
| for passing base type B. */ |
| |
| static int |
| arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b) |
| { |
| switch (b) |
| { |
| case VFP_CPRC_SINGLE: |
| return 's'; |
| case VFP_CPRC_DOUBLE: |
| return 'd'; |
| case VFP_CPRC_VEC64: |
| return 'd'; |
| case VFP_CPRC_VEC128: |
| return 'q'; |
| default: |
| internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."), |
| (int) b); |
| } |
| } |
| |
| /* Determine whether T may be part of a candidate for passing and |
| returning in VFP registers, ignoring the limit on the total number |
| of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the |
| classification of the first valid component found; if it is not |
| VFP_CPRC_UNKNOWN, all components must have the same classification |
| as *BASE_TYPE. If it is found that T contains a type not permitted |
| for passing and returning in VFP registers, a type differently |
| classified from *BASE_TYPE, or two types differently classified |
| from each other, return -1, otherwise return the total number of |
| base-type elements found (possibly 0 in an empty structure or |
| array). Vector types are not currently supported, matching the |
| generic AAPCS support. */ |
| |
| static int |
| arm_vfp_cprc_sub_candidate (struct type *t, |
| enum arm_vfp_cprc_base_type *base_type) |
| { |
| t = check_typedef (t); |
| switch (t->code ()) |
| { |
| case TYPE_CODE_FLT: |
| switch (TYPE_LENGTH (t)) |
| { |
| case 4: |
| if (*base_type == VFP_CPRC_UNKNOWN) |
| *base_type = VFP_CPRC_SINGLE; |
| else if (*base_type != VFP_CPRC_SINGLE) |
| return -1; |
| return 1; |
| |
| case 8: |
| if (*base_type == VFP_CPRC_UNKNOWN) |
| *base_type = VFP_CPRC_DOUBLE; |
| else if (*base_type != VFP_CPRC_DOUBLE) |
| return -1; |
| return 1; |
| |
| default: |
| return -1; |
| } |
| break; |
| |
| case TYPE_CODE_COMPLEX: |
| /* Arguments of complex T where T is one of the types float or |
| double get treated as if they are implemented as: |
| |
| struct complexT |
| { |
| T real; |
| T imag; |
| }; |
| |
| */ |
| switch (TYPE_LENGTH (t)) |
| { |
| case 8: |
| if (*base_type == VFP_CPRC_UNKNOWN) |
| *base_type = VFP_CPRC_SINGLE; |
| else if (*base_type != VFP_CPRC_SINGLE) |
| return -1; |
| return 2; |
| |
| case 16: |
| if (*base_type == VFP_CPRC_UNKNOWN) |
| *base_type = VFP_CPRC_DOUBLE; |
| else if (*base_type != VFP_CPRC_DOUBLE) |
| return -1; |
| return 2; |
| |
| default: |
| return -1; |
| } |
| break; |
| |
| case TYPE_CODE_ARRAY: |
| { |
| if (t->is_vector ()) |
| { |
| /* A 64-bit or 128-bit containerized vector type are VFP |
| CPRCs. */ |
| switch (TYPE_LENGTH (t)) |
| { |
| case 8: |
| if (*base_type == VFP_CPRC_UNKNOWN) |
| *base_type = VFP_CPRC_VEC64; |
| return 1; |
| case 16: |
| if (*base_type == VFP_CPRC_UNKNOWN) |
| *base_type = VFP_CPRC_VEC128; |
| return 1; |
| default: |
| return -1; |
| } |
| } |
| else |
| { |
| int count; |
| unsigned unitlen; |
| |
| count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t), |
| base_type); |
| if (count == -1) |
| return -1; |
| if (TYPE_LENGTH (t) == 0) |
| { |
| gdb_assert (count == 0); |
| return 0; |
| } |
| else if (count == 0) |
| return -1; |
| unitlen = arm_vfp_cprc_unit_length (*base_type); |
| gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0); |
| return TYPE_LENGTH (t) / unitlen; |
| } |
| } |
| break; |
| |
| case TYPE_CODE_STRUCT: |
| { |
| int count = 0; |
| unsigned unitlen; |
| int i; |
| for (i = 0; i < t->num_fields (); i++) |
| { |
| int sub_count = 0; |
| |
| if (!field_is_static (&t->field (i))) |
| sub_count = arm_vfp_cprc_sub_candidate (t->field (i).type (), |
| base_type); |
| if (sub_count == -1) |
| return -1; |
| count += sub_count; |
| } |
| if (TYPE_LENGTH (t) == 0) |
| { |
| gdb_assert (count == 0); |
| return 0; |
| } |
| else if (count == 0) |
| return -1; |
| unitlen = arm_vfp_cprc_unit_length (*base_type); |
| if (TYPE_LENGTH (t) != unitlen * count) |
| return -1; |
| return count; |
| } |
| |
| case TYPE_CODE_UNION: |
| { |
| int count = 0; |
| unsigned unitlen; |
| int i; |
| for (i = 0; i < t->num_fields (); i++) |
| { |
| int sub_count = arm_vfp_cprc_sub_candidate (t->field (i).type (), |
| base_type); |
| if (sub_count == -1) |
| return -1; |
| count = (count > sub_count ? count : sub_count); |
| } |
| if (TYPE_LENGTH (t) == 0) |
| { |
| gdb_assert (count == 0); |
| return 0; |
| } |
| else if (count == 0) |
| return -1; |
| unitlen = arm_vfp_cprc_unit_length (*base_type); |
| if (TYPE_LENGTH (t) != unitlen * count) |
| return -1; |
| return count; |
| } |
| |
| default: |
| break; |
| } |
| |
| return -1; |
| } |
| |
| /* Determine whether T is a VFP co-processor register candidate (CPRC) |
| if passed to or returned from a non-variadic function with the VFP |
| ABI in effect. Return 1 if it is, 0 otherwise. If it is, set |
| *BASE_TYPE to the base type for T and *COUNT to the number of |
| elements of that base type before returning. */ |
| |
| static int |
| arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type, |
| int *count) |
| { |
| enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN; |
| int c = arm_vfp_cprc_sub_candidate (t, &b); |
| if (c <= 0 || c > 4) |
| return 0; |
| *base_type = b; |
| *count = c; |
| return 1; |
| } |
| |
| /* Return 1 if the VFP ABI should be used for passing arguments to and |
| returning values from a function of type FUNC_TYPE, 0 |
| otherwise. */ |
| |
| static int |
| arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| /* Variadic functions always use the base ABI. Assume that functions |
| without debug info are not variadic. */ |
| if (func_type && check_typedef (func_type)->has_varargs ()) |
| return 0; |
| |
| /* The VFP ABI is only supported as a variant of AAPCS. */ |
| if (tdep->arm_abi != ARM_ABI_AAPCS) |
| return 0; |
| |
| return tdep->fp_model == ARM_FLOAT_VFP; |
| } |
| |
| /* We currently only support passing parameters in integer registers, which |
| conforms with GCC's default model, and VFP argument passing following |
| the VFP variant of AAPCS. Several other variants exist and |
| we should probably support some of them based on the selected ABI. */ |
| |
| static CORE_ADDR |
| arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
| struct regcache *regcache, CORE_ADDR bp_addr, int nargs, |
| struct value **args, CORE_ADDR sp, |
| function_call_return_method return_method, |
| CORE_ADDR struct_addr) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int argnum; |
| int argreg; |
| int nstack; |
| struct stack_item *si = NULL; |
| int use_vfp_abi; |
| struct type *ftype; |
| unsigned vfp_regs_free = (1 << 16) - 1; |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| /* Determine the type of this function and whether the VFP ABI |
| applies. */ |
| ftype = check_typedef (value_type (function)); |
| if (ftype->code () == TYPE_CODE_PTR) |
| ftype = check_typedef (TYPE_TARGET_TYPE (ftype)); |
| use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype); |
| |
| /* Set the return address. For the ARM, the return breakpoint is |
| always at BP_ADDR. */ |
| if (arm_pc_is_thumb (gdbarch, bp_addr)) |
| bp_addr |= 1; |
| regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr); |
| |
| /* Walk through the list of args and determine how large a temporary |
| stack is required. Need to take care here as structs may be |
| passed on the stack, and we have to push them. */ |
| nstack = 0; |
| |
| argreg = ARM_A1_REGNUM; |
| nstack = 0; |
| |
| /* The struct_return pointer occupies the first parameter |
| passing register. */ |
| if (return_method == return_method_struct) |
| { |
| arm_debug_printf ("struct return in %s = %s", |
| gdbarch_register_name (gdbarch, argreg), |
| paddress (gdbarch, struct_addr)); |
| |
| regcache_cooked_write_unsigned (regcache, argreg, struct_addr); |
| argreg++; |
| } |
| |
| for (argnum = 0; argnum < nargs; argnum++) |
| { |
| int len; |
| struct type *arg_type; |
| struct type *target_type; |
| enum type_code typecode; |
| const bfd_byte *val; |
| int align; |
| enum arm_vfp_cprc_base_type vfp_base_type; |
| int vfp_base_count; |
| int may_use_core_reg = 1; |
| |
| arg_type = check_typedef (value_type (args[argnum])); |
| len = TYPE_LENGTH (arg_type); |
| target_type = TYPE_TARGET_TYPE (arg_type); |
| typecode = arg_type->code (); |
| val = value_contents (args[argnum]).data (); |
| |
| align = type_align (arg_type); |
| /* Round alignment up to a whole number of words. */ |
| align = (align + ARM_INT_REGISTER_SIZE - 1) |
| & ~(ARM_INT_REGISTER_SIZE - 1); |
| /* Different ABIs have different maximum alignments. */ |
| if (tdep->arm_abi == ARM_ABI_APCS) |
| { |
| /* The APCS ABI only requires word alignment. */ |
| align = ARM_INT_REGISTER_SIZE; |
| } |
| else |
| { |
| /* The AAPCS requires at most doubleword alignment. */ |
| if (align > ARM_INT_REGISTER_SIZE * 2) |
| align = ARM_INT_REGISTER_SIZE * 2; |
| } |
| |
| if (use_vfp_abi |
| && arm_vfp_call_candidate (arg_type, &vfp_base_type, |
| &vfp_base_count)) |
| { |
| int regno; |
| int unit_length; |
| int shift; |
| unsigned mask; |
| |
| /* Because this is a CPRC it cannot go in a core register or |
| cause a core register to be skipped for alignment. |
| Either it goes in VFP registers and the rest of this loop |
| iteration is skipped for this argument, or it goes on the |
| stack (and the stack alignment code is correct for this |
| case). */ |
| may_use_core_reg = 0; |
| |
| unit_length = arm_vfp_cprc_unit_length (vfp_base_type); |
| shift = unit_length / 4; |
| mask = (1 << (shift * vfp_base_count)) - 1; |
| for (regno = 0; regno < 16; regno += shift) |
| if (((vfp_regs_free >> regno) & mask) == mask) |
| break; |
| |
| if (regno < 16) |
| { |
| int reg_char; |
| int reg_scaled; |
| int i; |
| |
| vfp_regs_free &= ~(mask << regno); |
| reg_scaled = regno / shift; |
| reg_char = arm_vfp_cprc_reg_char (vfp_base_type); |
| for (i = 0; i < vfp_base_count; i++) |
| { |
| char name_buf[4]; |
| int regnum; |
| if (reg_char == 'q') |
| arm_neon_quad_write (gdbarch, regcache, reg_scaled + i, |
| val + i * unit_length); |
| else |
| { |
| xsnprintf (name_buf, sizeof (name_buf), "%c%d", |
| reg_char, reg_scaled + i); |
| regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
| strlen (name_buf)); |
| regcache->cooked_write (regnum, val + i * unit_length); |
| } |
| } |
| continue; |
| } |
| else |
| { |
| /* This CPRC could not go in VFP registers, so all VFP |
| registers are now marked as used. */ |
| vfp_regs_free = 0; |
| } |
| } |
| |
| /* Push stack padding for doubleword alignment. */ |
| if (nstack & (align - 1)) |
| { |
| si = push_stack_item (si, val, ARM_INT_REGISTER_SIZE); |
| nstack += ARM_INT_REGISTER_SIZE; |
| } |
| |
| /* Doubleword aligned quantities must go in even register pairs. */ |
| if (may_use_core_reg |
| && argreg <= ARM_LAST_ARG_REGNUM |
| && align > ARM_INT_REGISTER_SIZE |
| && argreg & 1) |
| argreg++; |
| |
| /* If the argument is a pointer to a function, and it is a |
| Thumb function, create a LOCAL copy of the value and set |
| the THUMB bit in it. */ |
| if (TYPE_CODE_PTR == typecode |
| && target_type != NULL |
| && TYPE_CODE_FUNC == check_typedef (target_type)->code ()) |
| { |
| CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order); |
| if (arm_pc_is_thumb (gdbarch, regval)) |
| { |
| bfd_byte *copy = (bfd_byte *) alloca (len); |
| store_unsigned_integer (copy, len, byte_order, |
| MAKE_THUMB_ADDR (regval)); |
| val = copy; |
| } |
| } |
| |
| /* Copy the argument to general registers or the stack in |
| register-sized pieces. Large arguments are split between |
| registers and stack. */ |
| while (len > 0) |
| { |
| int partial_len = len < ARM_INT_REGISTER_SIZE |
| ? len : ARM_INT_REGISTER_SIZE; |
| CORE_ADDR regval |
| = extract_unsigned_integer (val, partial_len, byte_order); |
| |
| if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM) |
| { |
| /* The argument is being passed in a general purpose |
| register. */ |
| if (byte_order == BFD_ENDIAN_BIG) |
| regval <<= (ARM_INT_REGISTER_SIZE - partial_len) * 8; |
| |
| arm_debug_printf ("arg %d in %s = 0x%s", argnum, |
| gdbarch_register_name (gdbarch, argreg), |
| phex (regval, ARM_INT_REGISTER_SIZE)); |
| |
| regcache_cooked_write_unsigned (regcache, argreg, regval); |
| argreg++; |
| } |
| else |
| { |
| gdb_byte buf[ARM_INT_REGISTER_SIZE]; |
| |
| memset (buf, 0, sizeof (buf)); |
| store_unsigned_integer (buf, partial_len, byte_order, regval); |
| |
| /* Push the arguments onto the stack. */ |
| arm_debug_printf ("arg %d @ sp + %d", argnum, nstack); |
| si = push_stack_item (si, buf, ARM_INT_REGISTER_SIZE); |
| nstack += ARM_INT_REGISTER_SIZE; |
| } |
| |
| len -= partial_len; |
| val += partial_len; |
| } |
| } |
| /* If we have an odd number of words to push, then decrement the stack |
| by one word now, so first stack argument will be dword aligned. */ |
| if (nstack & 4) |
| sp -= 4; |
| |
| while (si) |
| { |
| sp -= si->len; |
| write_memory (sp, si->data, si->len); |
| si = pop_stack_item (si); |
| } |
| |
| /* Finally, update teh SP register. */ |
| regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp); |
| |
| return sp; |
| } |
| |
| |
| /* Always align the frame to an 8-byte boundary. This is required on |
| some platforms and harmless on the rest. */ |
| |
| static CORE_ADDR |
| arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
| { |
| /* Align the stack to eight bytes. */ |
| return sp & ~ (CORE_ADDR) 7; |
| } |
| |
| static void |
| print_fpu_flags (struct ui_file *file, int flags) |
| { |
| if (flags & (1 << 0)) |
| fputs_filtered ("IVO ", file); |
| if (flags & (1 << 1)) |
| fputs_filtered ("DVZ ", file); |
| if (flags & (1 << 2)) |
| fputs_filtered ("OFL ", file); |
| if (flags & (1 << 3)) |
| fputs_filtered ("UFL ", file); |
| if (flags & (1 << 4)) |
| fputs_filtered ("INX ", file); |
| fputc_filtered ('\n', file); |
| } |
| |
| /* Print interesting information about the floating point processor |
| (if present) or emulator. */ |
| static void |
| arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, |
| struct frame_info *frame, const char *args) |
| { |
| unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM); |
| int type; |
| |
| type = (status >> 24) & 127; |
| if (status & (1 << 31)) |
| fprintf_filtered (file, _("Hardware FPU type %d\n"), type); |
| else |
| fprintf_filtered (file, _("Software FPU type %d\n"), type); |
| /* i18n: [floating point unit] mask */ |
| fputs_filtered (_("mask: "), file); |
| print_fpu_flags (file, status >> 16); |
| /* i18n: [floating point unit] flags */ |
| fputs_filtered (_("flags: "), file); |
| print_fpu_flags (file, status); |
| } |
| |
| /* Construct the ARM extended floating point type. */ |
| static struct type * |
| arm_ext_type (struct gdbarch *gdbarch) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| if (!tdep->arm_ext_type) |
| tdep->arm_ext_type |
| = arch_float_type (gdbarch, -1, "builtin_type_arm_ext", |
| floatformats_arm_ext); |
| |
| return tdep->arm_ext_type; |
| } |
| |
| static struct type * |
| arm_neon_double_type (struct gdbarch *gdbarch) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| if (tdep->neon_double_type == NULL) |
| { |
| struct type *t, *elem; |
| |
| t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d", |
| TYPE_CODE_UNION); |
| elem = builtin_type (gdbarch)->builtin_uint8; |
| append_composite_type_field (t, "u8", init_vector_type (elem, 8)); |
| elem = builtin_type (gdbarch)->builtin_uint16; |
| append_composite_type_field (t, "u16", init_vector_type (elem, 4)); |
| elem = builtin_type (gdbarch)->builtin_uint32; |
| append_composite_type_field (t, "u32", init_vector_type (elem, 2)); |
| elem = builtin_type (gdbarch)->builtin_uint64; |
| append_composite_type_field (t, "u64", elem); |
| elem = builtin_type (gdbarch)->builtin_float; |
| append_composite_type_field (t, "f32", init_vector_type (elem, 2)); |
| elem = builtin_type (gdbarch)->builtin_double; |
| append_composite_type_field (t, "f64", elem); |
| |
| t->set_is_vector (true); |
| t->set_name ("neon_d"); |
| tdep->neon_double_type = t; |
| } |
| |
| return tdep->neon_double_type; |
| } |
| |
| /* FIXME: The vector types are not correctly ordered on big-endian |
| targets. Just as s0 is the low bits of d0, d0[0] is also the low |
| bits of d0 - regardless of what unit size is being held in d0. So |
| the offset of the first uint8 in d0 is 7, but the offset of the |
| first float is 4. This code works as-is for little-endian |
| targets. */ |
| |
| static struct type * |
| arm_neon_quad_type (struct gdbarch *gdbarch) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| if (tdep->neon_quad_type == NULL) |
| { |
| struct type *t, *elem; |
| |
| t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q", |
| TYPE_CODE_UNION); |
| elem = builtin_type (gdbarch)->builtin_uint8; |
| append_composite_type_field (t, "u8", init_vector_type (elem, 16)); |
| elem = builtin_type (gdbarch)->builtin_uint16; |
| append_composite_type_field (t, "u16", init_vector_type (elem, 8)); |
| elem = builtin_type (gdbarch)->builtin_uint32; |
| append_composite_type_field (t, "u32", init_vector_type (elem, 4)); |
| elem = builtin_type (gdbarch)->builtin_uint64; |
| append_composite_type_field (t, "u64", init_vector_type (elem, 2)); |
| elem = builtin_type (gdbarch)->builtin_float; |
| append_composite_type_field (t, "f32", init_vector_type (elem, 4)); |
| elem = builtin_type (gdbarch)->builtin_double; |
| append_composite_type_field (t, "f64", init_vector_type (elem, 2)); |
| |
| t->set_is_vector (true); |
| t->set_name ("neon_q"); |
| tdep->neon_quad_type = t; |
| } |
| |
| return tdep->neon_quad_type; |
| } |
| |
| /* Return true if REGNUM is a Q pseudo register. Return false |
| otherwise. |
| |
| REGNUM is the raw register number and not a pseudo-relative register |
| number. */ |
| |
| static bool |
| is_q_pseudo (struct gdbarch *gdbarch, int regnum) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| /* Q pseudo registers are available for both NEON (Q0~Q15) and |
| MVE (Q0~Q7) features. */ |
| if (tdep->have_q_pseudos |
| && regnum >= tdep->q_pseudo_base |
| && regnum < (tdep->q_pseudo_base + tdep->q_pseudo_count)) |
| return true; |
| |
| return false; |
| } |
| |
| /* Return true if REGNUM is a VFP S pseudo register. Return false |
| otherwise. |
| |
| REGNUM is the raw register number and not a pseudo-relative register |
| number. */ |
| |
| static bool |
| is_s_pseudo (struct gdbarch *gdbarch, int regnum) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| if (tdep->have_s_pseudos |
| && regnum >= tdep->s_pseudo_base |
| && regnum < (tdep->s_pseudo_base + tdep->s_pseudo_count)) |
| return true; |
| |
| return false; |
| } |
| |
| /* Return true if REGNUM is a MVE pseudo register (P0). Return false |
| otherwise. |
| |
| REGNUM is the raw register number and not a pseudo-relative register |
| number. */ |
| |
| static bool |
| is_mve_pseudo (struct gdbarch *gdbarch, int regnum) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| if (tdep->have_mve |
| && regnum >= tdep->mve_pseudo_base |
| && regnum < tdep->mve_pseudo_base + tdep->mve_pseudo_count) |
| return true; |
| |
| return false; |
| } |
| |
| /* Return the GDB type object for the "standard" data type of data in |
| register N. */ |
| |
| static struct type * |
| arm_register_type (struct gdbarch *gdbarch, int regnum) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| if (is_s_pseudo (gdbarch, regnum)) |
| return builtin_type (gdbarch)->builtin_float; |
| |
| if (is_q_pseudo (gdbarch, regnum)) |
| return arm_neon_quad_type (gdbarch); |
| |
| if (is_mve_pseudo (gdbarch, regnum)) |
| return builtin_type (gdbarch)->builtin_int16; |
| |
| /* If the target description has register information, we are only |
| in this function so that we can override the types of |
| double-precision registers for NEON. */ |
| if (tdesc_has_registers (gdbarch_target_desc (gdbarch))) |
| { |
| struct type *t = tdesc_register_type (gdbarch, regnum); |
| |
| if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32 |
| && t->code () == TYPE_CODE_FLT |
| && tdep->have_neon) |
| return arm_neon_double_type (gdbarch); |
| else |
| return t; |
| } |
| |
| if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS) |
| { |
| if (!tdep->have_fpa_registers) |
| return builtin_type (gdbarch)->builtin_void; |
| |
| return arm_ext_type (gdbarch); |
| } |
| else if (regnum == ARM_SP_REGNUM) |
| return builtin_type (gdbarch)->builtin_data_ptr; |
| else if (regnum == ARM_PC_REGNUM) |
| return builtin_type (gdbarch)->builtin_func_ptr; |
| else if (regnum >= ARRAY_SIZE (arm_register_names)) |
| /* These registers are only supported on targets which supply |
| an XML description. */ |
| return builtin_type (gdbarch)->builtin_int0; |
| else |
| return builtin_type (gdbarch)->builtin_uint32; |
| } |
| |
| /* Map a DWARF register REGNUM onto the appropriate GDB register |
| number. */ |
| |
| static int |
| arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
| { |
| /* Core integer regs. */ |
| if (reg >= 0 && reg <= 15) |
| return reg; |
| |
| /* Legacy FPA encoding. These were once used in a way which |
| overlapped with VFP register numbering, so their use is |
| discouraged, but GDB doesn't support the ARM toolchain |
| which used them for VFP. */ |
| if (reg >= 16 && reg <= 23) |
| return ARM_F0_REGNUM + reg - 16; |
| |
| /* New assignments for the FPA registers. */ |
| if (reg >= 96 && reg <= 103) |
| return ARM_F0_REGNUM + reg - 96; |
| |
| /* WMMX register assignments. */ |
| if (reg >= 104 && reg <= 111) |
| return ARM_WCGR0_REGNUM + reg - 104; |
| |
| if (reg >= 112 && reg <= 127) |
| return ARM_WR0_REGNUM + reg - 112; |
| |
| if (reg >= 192 && reg <= 199) |
| return ARM_WC0_REGNUM + reg - 192; |
| |
| /* VFP v2 registers. A double precision value is actually |
| in d1 rather than s2, but the ABI only defines numbering |
| for the single precision registers. This will "just work" |
| in GDB for little endian targets (we'll read eight bytes, |
| starting in s0 and then progressing to s1), but will be |
| reversed on big endian targets with VFP. This won't |
| be a problem for the new Neon quad registers; you're supposed |
| to use DW_OP_piece for those. */ |
| if (reg >= 64 && reg <= 95) |
| { |
| char name_buf[4]; |
| |
| xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64); |
| return user_reg_map_name_to_regnum (gdbarch, name_buf, |
| strlen (name_buf)); |
| } |
| |
| /* VFP v3 / Neon registers. This range is also used for VFP v2 |
| registers, except that it now describes d0 instead of s0. */ |
| if (reg >= 256 && reg <= 287) |
| { |
| char name_buf[4]; |
| |
| xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256); |
| return user_reg_map_name_to_regnum (gdbarch, name_buf, |
| strlen (name_buf)); |
| } |
| |
| return -1; |
| } |
| |
| /* Map GDB internal REGNUM onto the Arm simulator register numbers. */ |
| static int |
| arm_register_sim_regno (struct gdbarch *gdbarch, int regnum) |
| { |
| int reg = regnum; |
| gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch)); |
| |
| if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM) |
| return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM; |
| |
| if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM) |
| return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM; |
| |
| if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM) |
| return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM; |
| |
| if (reg < NUM_GREGS) |
| return SIM_ARM_R0_REGNUM + reg; |
| reg -= NUM_GREGS; |
| |
| if (reg < NUM_FREGS) |
| return SIM_ARM_FP0_REGNUM + reg; |
| reg -= NUM_FREGS; |
| |
| if (reg < NUM_SREGS) |
| return SIM_ARM_FPS_REGNUM + reg; |
| reg -= NUM_SREGS; |
| |
| internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum); |
| } |
| |
| /* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand |
| the buffer to be NEW_LEN bytes ending at ENDADDR. Return |
| NULL if an error occurs. BUF is freed. */ |
| |
| static gdb_byte * |
| extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr, |
| int old_len, int new_len) |
| { |
| gdb_byte *new_buf; |
| int bytes_to_read = new_len - old_len; |
| |
| new_buf = (gdb_byte *) xmalloc (new_len); |
| memcpy (new_buf + bytes_to_read, buf, old_len); |
| xfree (buf); |
| if (target_read_code (endaddr - new_len, new_buf, bytes_to_read) != 0) |
| { |
| xfree (new_buf); |
| return NULL; |
| } |
| return new_buf; |
| } |
| |
| /* An IT block is at most the 2-byte IT instruction followed by |
| four 4-byte instructions. The furthest back we must search to |
| find an IT block that affects the current instruction is thus |
| 2 + 3 * 4 == 14 bytes. */ |
| #define MAX_IT_BLOCK_PREFIX 14 |
| |
| /* Use a quick scan if there are more than this many bytes of |
| code. */ |
| #define IT_SCAN_THRESHOLD 32 |
| |
| /* Adjust a breakpoint's address to move breakpoints out of IT blocks. |
| A breakpoint in an IT block may not be hit, depending on the |
| condition flags. */ |
| static CORE_ADDR |
| arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr) |
| { |
| gdb_byte *buf; |
| char map_type; |
| CORE_ADDR boundary, func_start; |
| int buf_len; |
| enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch); |
| int i, any, last_it, last_it_count; |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| /* If we are using BKPT breakpoints, none of this is necessary. */ |
| if (tdep->thumb2_breakpoint == NULL) |
| return bpaddr; |
| |
| /* ARM mode does not have this problem. */ |
| if (!arm_pc_is_thumb (gdbarch, bpaddr)) |
| return bpaddr; |
| |
| /* We are setting a breakpoint in Thumb code that could potentially |
| contain an IT block. The first step is to find how much Thumb |
| code there is; we do not need to read outside of known Thumb |
| sequences. */ |
| map_type = arm_find_mapping_symbol (bpaddr, &boundary); |
| if (map_type == 0) |
| /* Thumb-2 code must have mapping symbols to have a chance. */ |
| return bpaddr; |
| |
| bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr); |
| |
| if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL) |
| && func_start > boundary) |
| boundary = func_start; |
| |
| /* Search for a candidate IT instruction. We have to do some fancy |
| footwork to distinguish a real IT instruction from the second |
| half of a 32-bit instruction, but there is no need for that if |
| there's no candidate. */ |
| buf_len = std::min (bpaddr - boundary, (CORE_ADDR) MAX_IT_BLOCK_PREFIX); |
| if (buf_len == 0) |
| /* No room for an IT instruction. */ |
| return bpaddr; |
| |
| buf = (gdb_byte *) xmalloc (buf_len); |
| if (target_read_code (bpaddr - buf_len, buf, buf_len) != 0) |
| return bpaddr; |
| any = 0; |
| for (i = 0; i < buf_len; i += 2) |
| { |
| unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); |
| if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) |
| { |
| any = 1; |
| break; |
| } |
| } |
| |
| if (any == 0) |
| { |
| xfree (buf); |
| return bpaddr; |
| } |
| |
| /* OK, the code bytes before this instruction contain at least one |
| halfword which resembles an IT instruction. We know that it's |
| Thumb code, but there are still two possibilities. Either the |
| halfword really is an IT instruction, or it is the second half of |
| a 32-bit Thumb instruction. The only way we can tell is to |
| scan forwards from a known instruction boundary. */ |
| if (bpaddr - boundary > IT_SCAN_THRESHOLD) |
| { |
| int definite; |
| |
| /* There's a lot of code before this instruction. Start with an |
| optimistic search; it's easy to recognize halfwords that can |
| not be the start of a 32-bit instruction, and use that to |
| lock on to the instruction boundaries. */ |
| buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD); |
| if (buf == NULL) |
| return bpaddr; |
| buf_len = IT_SCAN_THRESHOLD; |
| |
| definite = 0; |
| for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2) |
| { |
| unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); |
| if (thumb_insn_size (inst1) == 2) |
| { |
| definite = 1; |
| break; |
| } |
| } |
| |
| /* At this point, if DEFINITE, BUF[I] is the first place we |
| are sure that we know the instruction boundaries, and it is far |
| enough from BPADDR that we could not miss an IT instruction |
| affecting BPADDR. If ! DEFINITE, give up - start from a |
| known boundary. */ |
| if (! definite) |
| { |
| buf = extend_buffer_earlier (buf, bpaddr, buf_len, |
| bpaddr - boundary); |
| if (buf == NULL) |
| return bpaddr; |
| buf_len = bpaddr - boundary; |
| i = 0; |
| } |
| } |
| else |
| { |
| buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary); |
| if (buf == NULL) |
| return bpaddr; |
| buf_len = bpaddr - boundary; |
| i = 0; |
| } |
| |
| /* Scan forwards. Find the last IT instruction before BPADDR. */ |
| last_it = -1; |
| last_it_count = 0; |
| while (i < buf_len) |
| { |
| unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); |
| last_it_count--; |
| if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) |
| { |
| last_it = i; |
| if (inst1 & 0x0001) |
| last_it_count = 4; |
| else if (inst1 & 0x0002) |
| last_it_count = 3; |
| else if (inst1 & 0x0004) |
| last_it_count = 2; |
| else |
| last_it_count = 1; |
| } |
| i += thumb_insn_size (inst1); |
| } |
| |
| xfree (buf); |
| |
| if (last_it == -1) |
| /* There wasn't really an IT instruction after all. */ |
| return bpaddr; |
| |
| if (last_it_count < 1) |
| /* It was too far away. */ |
| return bpaddr; |
| |
| /* This really is a trouble spot. Move the breakpoint to the IT |
| instruction. */ |
| return bpaddr - buf_len + last_it; |
| } |
| |
| /* ARM displaced stepping support. |
| |
| Generally ARM displaced stepping works as follows: |
| |
| 1. When an instruction is to be single-stepped, it is first decoded by |
| arm_process_displaced_insn. Depending on the type of instruction, it is |
| then copied to a scratch location, possibly in a modified form. The |
| copy_* set of functions performs such modification, as necessary. A |
| breakpoint is placed after the modified instruction in the scratch space |
| to return control to GDB. Note in particular that instructions which |
| modify the PC will no longer do so after modification. |
| |
| 2. The instruction is single-stepped, by setting the PC to the scratch |
| location address, and resuming. Control returns to GDB when the |
| breakpoint is hit. |
| |
| 3. A cleanup function (cleanup_*) is called corresponding to the copy_* |
| function used for the current instruction. This function's job is to |
| put the CPU/memory state back to what it would have been if the |
| instruction had been executed unmodified in its original location. */ |
| |
| /* NOP instruction (mov r0, r0). */ |
| #define ARM_NOP 0xe1a00000 |
| #define THUMB_NOP 0x4600 |
| |
| /* Helper for register reads for displaced stepping. In particular, this |
| returns the PC as it would be seen by the instruction at its original |
| location. */ |
| |
| ULONGEST |
| displaced_read_reg (regcache *regs, arm_displaced_step_copy_insn_closure *dsc, |
| int regno) |
| { |
| ULONGEST ret; |
| CORE_ADDR from = dsc->insn_addr; |
| |
| if (regno == ARM_PC_REGNUM) |
| { |
| /* Compute pipeline offset: |
| - When executing an ARM instruction, PC reads as the address of the |
| current instruction plus 8. |
| - When executing a Thumb instruction, PC reads as the address of the |
| current instruction plus 4. */ |
| |
| if (!dsc->is_thumb) |
| from += 8; |
| else |
| from += 4; |
| |
| displaced_debug_printf ("read pc value %.8lx", |
| (unsigned long) from); |
| return (ULONGEST) from; |
| } |
| else |
| { |
| regcache_cooked_read_unsigned (regs, regno, &ret); |
| |
| displaced_debug_printf ("read r%d value %.8lx", |
| regno, (unsigned long) ret); |
| |
| return ret; |
| } |
| } |
| |
| static int |
| displaced_in_arm_mode (struct regcache *regs) |
| { |
| ULONGEST ps; |
| ULONGEST t_bit = arm_psr_thumb_bit (regs->arch ()); |
| |
| regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps); |
| |
| return (ps & t_bit) == 0; |
| } |
| |
| /* Write to the PC as from a branch instruction. */ |
| |
| static void |
| branch_write_pc (regcache *regs, arm_displaced_step_copy_insn_closure *dsc, |
| ULONGEST val) |
| { |
| if (!dsc->is_thumb) |
| /* Note: If bits 0/1 are set, this branch would be unpredictable for |
| architecture versions < 6. */ |
| regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, |
| val & ~(ULONGEST) 0x3); |
| else |
| regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, |
| val & ~(ULONGEST) 0x1); |
| } |
| |
| /* Write to the PC as from a branch-exchange instruction. */ |
| |
| static void |
| bx_write_pc (struct regcache *regs, ULONGEST val) |
| { |
| ULONGEST ps; |
| ULONGEST t_bit = arm_psr_thumb_bit (regs->arch ()); |
| |
| regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps); |
| |
| if ((val & 1) == 1) |
| { |
| regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit); |
| regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe); |
| } |
| else if ((val & 2) == 0) |
| { |
| regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit); |
| regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val); |
| } |
| else |
| { |
| /* Unpredictable behaviour. Try to do something sensible (switch to ARM |
| mode, align dest to 4 bytes). */ |
| warning (_("Single-stepping BX to non-word-aligned ARM instruction.")); |
| regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit); |
| regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc); |
| } |
| } |
| |
| /* Write to the PC as if from a load instruction. */ |
| |
| static void |
| load_write_pc (regcache *regs, arm_displaced_step_copy_insn_closure *dsc, |
| ULONGEST val) |
| { |
| if (DISPLACED_STEPPING_ARCH_VERSION >= 5) |
| bx_write_pc (regs, val); |
| else |
| branch_write_pc (regs, dsc, val); |
| } |
| |
| /* Write to the PC as if from an ALU instruction. */ |
| |
| static void |
| alu_write_pc (regcache *regs, arm_displaced_step_copy_insn_closure *dsc, |
| ULONGEST val) |
| { |
| if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb) |
| bx_write_pc (regs, val); |
| else |
| branch_write_pc (regs, dsc, val); |
| } |
| |
| /* Helper for writing to registers for displaced stepping. Writing to the PC |
| has a varying effects depending on the instruction which does the write: |
| this is controlled by the WRITE_PC argument. */ |
| |
| void |
| displaced_write_reg (regcache *regs, arm_displaced_step_copy_insn_closure *dsc, |
| int regno, ULONGEST val, enum pc_write_style write_pc) |
| { |
| if (regno == ARM_PC_REGNUM) |
| { |
| displaced_debug_printf ("writing pc %.8lx", (unsigned long) val); |
| |
| switch (write_pc) |
| { |
| case BRANCH_WRITE_PC: |
| branch_write_pc (regs, dsc, val); |
| break; |
| |
| case BX_WRITE_PC: |
| bx_write_pc (regs, val); |
| break; |
| |
| case LOAD_WRITE_PC: |
| load_write_pc (regs, dsc, val); |
| break; |
| |
| case ALU_WRITE_PC: |
| alu_write_pc (regs, dsc, val); |
| break; |
| |
| case CANNOT_WRITE_PC: |
| warning (_("Instruction wrote to PC in an unexpected way when " |
| "single-stepping")); |
| break; |
| |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("Invalid argument to displaced_write_reg")); |
| } |
| |
| dsc->wrote_to_pc = 1; |
| } |
| else |
| { |
| displaced_debug_printf ("writing r%d value %.8lx", |
| regno, (unsigned long) val); |
| regcache_cooked_write_unsigned (regs, regno, val); |
| } |
| } |
| |
| /* This function is used to concisely determine if an instruction INSN |
| references PC. Register fields of interest in INSN should have the |
| corresponding fields of BITMASK set to 0b1111. The function |
| returns return 1 if any of these fields in INSN reference the PC |
| (also 0b1111, r15), else it returns 0. */ |
| |
| static int |
| insn_references_pc (uint32_t insn, uint32_t bitmask) |
| { |
| uint32_t lowbit = 1; |
| |
| while (bitmask != 0) |
| { |
| uint32_t mask; |
| |
| for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1) |
| ; |
| |
| if (!lowbit) |
| break; |
| |
| mask = lowbit * 0xf; |
| |
| if ((insn & mask) == mask) |
| return 1; |
| |
| bitmask &= ~mask; |
| } |
| |
| return 0; |
| } |
| |
| /* The simplest copy function. Many instructions have the same effect no |
| matter what address they are executed at: in those cases, use this. */ |
| |
| static int |
| arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn, const char *iname, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| displaced_debug_printf ("copying insn %.8lx, opcode/class '%s' unmodified", |
| (unsigned long) insn, iname); |
| |
| dsc->modinsn[0] = insn; |
| |
| return 0; |
| } |
| |
| static int |
| thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1, |
| uint16_t insn2, const char *iname, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| displaced_debug_printf ("copying insn %.4x %.4x, opcode/class '%s' " |
| "unmodified", insn1, insn2, iname); |
| |
| dsc->modinsn[0] = insn1; |
| dsc->modinsn[1] = insn2; |
| dsc->numinsns = 2; |
| |
| return 0; |
| } |
| |
| /* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any |
| modification. */ |
| static int |
| thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, uint16_t insn, |
| const char *iname, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| displaced_debug_printf ("copying insn %.4x, opcode/class '%s' unmodified", |
| insn, iname); |
| |
| dsc->modinsn[0] = insn; |
| |
| return 0; |
| } |
| |
| /* Preload instructions with immediate offset. */ |
| |
| static void |
| cleanup_preload (struct gdbarch *gdbarch, regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); |
| if (!dsc->u.preload.immed) |
| displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); |
| } |
| |
| static void |
| install_preload (struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc, unsigned int rn) |
| { |
| ULONGEST rn_val; |
| /* Preload instructions: |
| |
| {pli/pld} [rn, #+/-imm] |
| -> |
| {pli/pld} [r0, #+/-imm]. */ |
| |
| dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
| rn_val = displaced_read_reg (regs, dsc, rn); |
| displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); |
| dsc->u.preload.immed = 1; |
| |
| dsc->cleanup = &cleanup_preload; |
| } |
| |
| static int |
| arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int rn = bits (insn, 16, 19); |
| |
| if (!insn_references_pc (insn, 0x000f0000ul)) |
| return arm_copy_unmodified (gdbarch, insn, "preload", dsc); |
| |
| displaced_debug_printf ("copying preload insn %.8lx", (unsigned long) insn); |
| |
| dsc->modinsn[0] = insn & 0xfff0ffff; |
| |
| install_preload (gdbarch, regs, dsc, rn); |
| |
| return 0; |
| } |
| |
| static int |
| thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, |
| regcache *regs, arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int rn = bits (insn1, 0, 3); |
| unsigned int u_bit = bit (insn1, 7); |
| int imm12 = bits (insn2, 0, 11); |
| ULONGEST pc_val; |
| |
| if (rn != ARM_PC_REGNUM) |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc); |
| |
| /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and |
| PLD (literal) Encoding T1. */ |
| displaced_debug_printf ("copying pld/pli pc (0x%x) %c imm12 %.4x", |
| (unsigned int) dsc->insn_addr, u_bit ? '+' : '-', |
| imm12); |
| |
| if (!u_bit) |
| imm12 = -1 * imm12; |
| |
| /* Rewrite instruction {pli/pld} PC imm12 into: |
| Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12 |
| |
| {pli/pld} [r0, r1] |
| |
| Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */ |
| |
| dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
| dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); |
| |
| pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); |
| |
| displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC); |
| displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC); |
| dsc->u.preload.immed = 0; |
| |
| /* {pli/pld} [r0, r1] */ |
| dsc->modinsn[0] = insn1 & 0xfff0; |
| dsc->modinsn[1] = 0xf001; |
| dsc->numinsns = 2; |
| |
| dsc->cleanup = &cleanup_preload; |
| return 0; |
| } |
| |
| /* Preload instructions with register offset. */ |
| |
| static void |
| install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc, unsigned int rn, |
| unsigned int rm) |
| { |
| ULONGEST rn_val, rm_val; |
| |
| /* Preload register-offset instructions: |
| |
| {pli/pld} [rn, rm {, shift}] |
| -> |
| {pli/pld} [r0, r1 {, shift}]. */ |
| |
| dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
| dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); |
| rn_val = displaced_read_reg (regs, dsc, rn); |
| rm_val = displaced_read_reg (regs, dsc, rm); |
| displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); |
| displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC); |
| dsc->u.preload.immed = 0; |
| |
| dsc->cleanup = &cleanup_preload; |
| } |
| |
| static int |
| arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int rn = bits (insn, 16, 19); |
| unsigned int rm = bits (insn, 0, 3); |
| |
| |
| if (!insn_references_pc (insn, 0x000f000ful)) |
| return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc); |
| |
| displaced_debug_printf ("copying preload insn %.8lx", |
| (unsigned long) insn); |
| |
| dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1; |
| |
| install_preload_reg (gdbarch, regs, dsc, rn, rm); |
| return 0; |
| } |
| |
| /* Copy/cleanup coprocessor load and store instructions. */ |
| |
| static void |
| cleanup_copro_load_store (struct gdbarch *gdbarch, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| ULONGEST rn_val = displaced_read_reg (regs, dsc, 0); |
| |
| displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); |
| |
| if (dsc->u.ldst.writeback) |
| displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC); |
| } |
| |
| static void |
| install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc, |
| int writeback, unsigned int rn) |
| { |
| ULONGEST rn_val; |
| |
| /* Coprocessor load/store instructions: |
| |
| {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes) |
| -> |
| {stc/stc2} [r0, #+/-imm]. |
| |
| ldc/ldc2 are handled identically. */ |
| |
| dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
| rn_val = displaced_read_reg (regs, dsc, rn); |
| /* PC should be 4-byte aligned. */ |
| rn_val = rn_val & 0xfffffffc; |
| displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); |
| |
| dsc->u.ldst.writeback = writeback; |
| dsc->u.ldst.rn = rn; |
| |
| dsc->cleanup = &cleanup_copro_load_store; |
| } |
| |
| static int |
| arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int rn = bits (insn, 16, 19); |
| |
| if (!insn_references_pc (insn, 0x000f0000ul)) |
| return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc); |
| |
| displaced_debug_printf ("copying coprocessor load/store insn %.8lx", |
| (unsigned long) insn); |
| |
| dsc->modinsn[0] = insn & 0xfff0ffff; |
| |
| install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn); |
| |
| return 0; |
| } |
| |
| static int |
| thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1, |
| uint16_t insn2, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int rn = bits (insn1, 0, 3); |
| |
| if (rn != ARM_PC_REGNUM) |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "copro load/store", dsc); |
| |
| displaced_debug_printf ("copying coprocessor load/store insn %.4x%.4x", |
| insn1, insn2); |
| |
| dsc->modinsn[0] = insn1 & 0xfff0; |
| dsc->modinsn[1] = insn2; |
| dsc->numinsns = 2; |
| |
| /* This function is called for copying instruction LDC/LDC2/VLDR, which |
| doesn't support writeback, so pass 0. */ |
| install_copro_load_store (gdbarch, regs, dsc, 0, rn); |
| |
| return 0; |
| } |
| |
| /* Clean up branch instructions (actually perform the branch, by setting |
| PC). */ |
| |
| static void |
| cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
| int branch_taken = condition_true (dsc->u.branch.cond, status); |
| enum pc_write_style write_pc = dsc->u.branch.exchange |
| ? BX_WRITE_PC : BRANCH_WRITE_PC; |
| |
| if (!branch_taken) |
| return; |
| |
| if (dsc->u.branch.link) |
| { |
| /* The value of LR should be the next insn of current one. In order |
| not to confuse logic handling later insn `bx lr', if current insn mode |
| is Thumb, the bit 0 of LR value should be set to 1. */ |
| ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size; |
| |
| if (dsc->is_thumb) |
| next_insn_addr |= 0x1; |
| |
| displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr, |
| CANNOT_WRITE_PC); |
| } |
| |
| displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc); |
| } |
| |
| /* Copy B/BL/BLX instructions with immediate destinations. */ |
| |
| static void |
| install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc, |
| unsigned int cond, int exchange, int link, long offset) |
| { |
| /* Implement "BL<cond> <label>" as: |
| |
| Preparation: cond <- instruction condition |
| Insn: mov r0, r0 (nop) |
| Cleanup: if (condition true) { r14 <- pc; pc <- label }. |
| |
| B<cond> similar, but don't set r14 in cleanup. */ |
| |
| dsc->u.branch.cond = cond; |
| dsc->u.branch.link = link; |
| dsc->u.branch.exchange = exchange; |
| |
| dsc->u.branch.dest = dsc->insn_addr; |
| if (link && exchange) |
| /* For BLX, offset is computed from the Align (PC, 4). */ |
| dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc; |
| |
| if (dsc->is_thumb) |
| dsc->u.branch.dest += 4 + offset; |
| else |
| dsc->u.branch.dest += 8 + offset; |
| |
| dsc->cleanup = &cleanup_branch; |
| } |
| static int |
| arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn, |
| regcache *regs, arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int cond = bits (insn, 28, 31); |
| int exchange = (cond == 0xf); |
| int link = exchange || bit (insn, 24); |
| long offset; |
| |
| displaced_debug_printf ("copying %s immediate insn %.8lx", |
| (exchange) ? "blx" : (link) ? "bl" : "b", |
| (unsigned long) insn); |
| if (exchange) |
| /* For BLX, set bit 0 of the destination. The cleanup_branch function will |
| then arrange the switch into Thumb mode. */ |
| offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1; |
| else |
| offset = bits (insn, 0, 23) << 2; |
| |
| if (bit (offset, 25)) |
| offset = offset | ~0x3ffffff; |
| |
| dsc->modinsn[0] = ARM_NOP; |
| |
| install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset); |
| return 0; |
| } |
| |
| static int |
| thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1, |
| uint16_t insn2, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| int link = bit (insn2, 14); |
| int exchange = link && !bit (insn2, 12); |
| int cond = INST_AL; |
| long offset = 0; |
| int j1 = bit (insn2, 13); |
| int j2 = bit (insn2, 11); |
| int s = sbits (insn1, 10, 10); |
| int i1 = !(j1 ^ bit (insn1, 10)); |
| int i2 = !(j2 ^ bit (insn1, 10)); |
| |
| if (!link && !exchange) /* B */ |
| { |
| offset = (bits (insn2, 0, 10) << 1); |
| if (bit (insn2, 12)) /* Encoding T4 */ |
| { |
| offset |= (bits (insn1, 0, 9) << 12) |
| | (i2 << 22) |
| | (i1 << 23) |
| | (s << 24); |
| cond = INST_AL; |
| } |
| else /* Encoding T3 */ |
| { |
| offset |= (bits (insn1, 0, 5) << 12) |
| | (j1 << 18) |
| | (j2 << 19) |
| | (s << 20); |
| cond = bits (insn1, 6, 9); |
| } |
| } |
| else |
| { |
| offset = (bits (insn1, 0, 9) << 12); |
| offset |= ((i2 << 22) | (i1 << 23) | (s << 24)); |
| offset |= exchange ? |
| (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1); |
| } |
| |
| displaced_debug_printf ("copying %s insn %.4x %.4x with offset %.8lx", |
| link ? (exchange) ? "blx" : "bl" : "b", |
| insn1, insn2, offset); |
| |
| dsc->modinsn[0] = THUMB_NOP; |
| |
| install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset); |
| return 0; |
| } |
| |
| /* Copy B Thumb instructions. */ |
| static int |
| thumb_copy_b (struct gdbarch *gdbarch, uint16_t insn, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int cond = 0; |
| int offset = 0; |
| unsigned short bit_12_15 = bits (insn, 12, 15); |
| CORE_ADDR from = dsc->insn_addr; |
| |
| if (bit_12_15 == 0xd) |
| { |
| /* offset = SignExtend (imm8:0, 32) */ |
| offset = sbits ((insn << 1), 0, 8); |
| cond = bits (insn, 8, 11); |
| } |
| else if (bit_12_15 == 0xe) /* Encoding T2 */ |
| { |
| offset = sbits ((insn << 1), 0, 11); |
| cond = INST_AL; |
| } |
| |
| displaced_debug_printf ("copying b immediate insn %.4x with offset %d", |
| insn, offset); |
| |
| dsc->u.branch.cond = cond; |
| dsc->u.branch.link = 0; |
| dsc->u.branch.exchange = 0; |
| dsc->u.branch.dest = from + 4 + offset; |
| |
| dsc->modinsn[0] = THUMB_NOP; |
| |
| dsc->cleanup = &cleanup_branch; |
| |
| return 0; |
| } |
| |
| /* Copy BX/BLX with register-specified destinations. */ |
| |
| static void |
| install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc, int link, |
| unsigned int cond, unsigned int rm) |
| { |
| /* Implement {BX,BLX}<cond> <reg>" as: |
| |
| Preparation: cond <- instruction condition |
| Insn: mov r0, r0 (nop) |
| Cleanup: if (condition true) { r14 <- pc; pc <- dest; }. |
| |
| Don't set r14 in cleanup for BX. */ |
| |
| dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm); |
| |
| dsc->u.branch.cond = cond; |
| dsc->u.branch.link = link; |
| |
| dsc->u.branch.exchange = 1; |
| |
| dsc->cleanup = &cleanup_branch; |
| } |
| |
| static int |
| arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn, |
| regcache *regs, arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int cond = bits (insn, 28, 31); |
| /* BX: x12xxx1x |
| BLX: x12xxx3x. */ |
| int link = bit (insn, 5); |
| unsigned int rm = bits (insn, 0, 3); |
| |
| displaced_debug_printf ("copying insn %.8lx", (unsigned long) insn); |
| |
| dsc->modinsn[0] = ARM_NOP; |
| |
| install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm); |
| return 0; |
| } |
| |
| static int |
| thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| int link = bit (insn, 7); |
| unsigned int rm = bits (insn, 3, 6); |
| |
| displaced_debug_printf ("copying insn %.4x", (unsigned short) insn); |
| |
| dsc->modinsn[0] = THUMB_NOP; |
| |
| install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm); |
| |
| return 0; |
| } |
| |
| |
| /* Copy/cleanup arithmetic/logic instruction with immediate RHS. */ |
| |
| static void |
| cleanup_alu_imm (struct gdbarch *gdbarch, |
| regcache *regs, arm_displaced_step_copy_insn_closure *dsc) |
| { |
| ULONGEST rd_val = displaced_read_reg (regs, dsc, 0); |
| displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); |
| displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); |
| displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); |
| } |
| |
| static int |
| arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int rn = bits (insn, 16, 19); |
| unsigned int rd = bits (insn, 12, 15); |
| unsigned int op = bits (insn, 21, 24); |
| int is_mov = (op == 0xd); |
| ULONGEST rd_val, rn_val; |
| |
| if (!insn_references_pc (insn, 0x000ff000ul)) |
| return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc); |
| |
| displaced_debug_printf ("copying immediate %s insn %.8lx", |
| is_mov ? "move" : "ALU", |
| (unsigned long) insn); |
| |
| /* Instruction is of form: |
| |
| <op><cond> rd, [rn,] #imm |
| |
| Rewrite as: |
| |
| Preparation: tmp1, tmp2 <- r0, r1; |
| r0, r1 <- rd, rn |
| Insn: <op><cond> r0, r1, #imm |
| Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2 |
| */ |
| |
| dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
| dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); |
| rn_val = displaced_read_reg (regs, dsc, rn); |
| rd_val = displaced_read_reg (regs, dsc, rd); |
| displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); |
| displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); |
| dsc->rd = rd; |
| |
| if (is_mov) |
| dsc->modinsn[0] = insn & 0xfff00fff; |
| else |
| dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000; |
| |
| dsc->cleanup = &cleanup_alu_imm; |
| |
| return 0; |
| } |
| |
| static int |
| thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1, |
| uint16_t insn2, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int op = bits (insn1, 5, 8); |
| unsigned int rn, rm, rd; |
| ULONGEST rd_val, rn_val; |
| |
| rn = bits (insn1, 0, 3); /* Rn */ |
| rm = bits (insn2, 0, 3); /* Rm */ |
| rd = bits (insn2, 8, 11); /* Rd */ |
| |
| /* This routine is only called for instruction MOV. */ |
| gdb_assert (op == 0x2 && rn == 0xf); |
| |
| if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM) |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc); |
| |
| displaced_debug_printf ("copying reg %s insn %.4x%.4x", "ALU", insn1, insn2); |
| |
| /* Instruction is of form: |
| |
| <op><cond> rd, [rn,] #imm |
| |
| Rewrite as: |
| |
| Preparation: tmp1, tmp2 <- r0, r1; |
| r0, r1 <- rd, rn |
| Insn: <op><cond> r0, r1, #imm |
| Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2 |
| */ |
| |
| dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
| dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); |
| rn_val = displaced_read_reg (regs, dsc, rn); |
| rd_val = displaced_read_reg (regs, dsc, rd); |
| displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); |
| displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); |
| dsc->rd = rd; |
| |
| dsc->modinsn[0] = insn1; |
| dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1); |
| dsc->numinsns = 2; |
| |
| dsc->cleanup = &cleanup_alu_imm; |
| |
| return 0; |
| } |
| |
| /* Copy/cleanup arithmetic/logic insns with register RHS. */ |
| |
| static void |
| cleanup_alu_reg (struct gdbarch *gdbarch, |
| regcache *regs, arm_displaced_step_copy_insn_closure *dsc) |
| { |
| ULONGEST rd_val; |
| int i; |
| |
| rd_val = displaced_read_reg (regs, dsc, 0); |
| |
| for (i = 0; i < 3; i++) |
| displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC); |
| |
| displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); |
| } |
| |
| static void |
| install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc, |
| unsigned int rd, unsigned int rn, unsigned int rm) |
| { |
| ULONGEST rd_val, rn_val, rm_val; |
| |
| /* Instruction is of form: |
| |
| <op><cond> rd, [rn,] rm [, <shift>] |
| |
| Rewrite as: |
| |
| Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2; |
| r0, r1, r2 <- rd, rn, rm |
| Insn: <op><cond> r0, [r1,] r2 [, <shift>] |
| Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3 |
| */ |
| |
| dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
| dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); |
| dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); |
| rd_val = displaced_read_reg (regs, dsc, rd); |
| rn_val = displaced_read_reg (regs, dsc, rn); |
| rm_val = displaced_read_reg (regs, dsc, rm); |
| displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); |
| displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); |
| displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC); |
| dsc->rd = rd; |
| |
| dsc->cleanup = &cleanup_alu_reg; |
| } |
| |
| static int |
| arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int op = bits (insn, 21, 24); |
| int is_mov = (op == 0xd); |
| |
| if (!insn_references_pc (insn, 0x000ff00ful)) |
| return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc); |
| |
| displaced_debug_printf ("copying reg %s insn %.8lx", |
| is_mov ? "move" : "ALU", (unsigned long) insn); |
| |
| if (is_mov) |
| dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2; |
| else |
| dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002; |
| |
| install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19), |
| bits (insn, 0, 3)); |
| return 0; |
| } |
| |
| static int |
| thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned rm, rd; |
| |
| rm = bits (insn, 3, 6); |
| rd = (bit (insn, 7) << 3) | bits (insn, 0, 2); |
| |
| if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM) |
| return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc); |
| |
| displaced_debug_printf ("copying ALU reg insn %.4x", (unsigned short) insn); |
| |
| dsc->modinsn[0] = ((insn & 0xff00) | 0x10); |
| |
| install_alu_reg (gdbarch, regs, dsc, rd, rd, rm); |
| |
| return 0; |
| } |
| |
| /* Cleanup/copy arithmetic/logic insns with shifted register RHS. */ |
| |
| static void |
| cleanup_alu_shifted_reg (struct gdbarch *gdbarch, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| ULONGEST rd_val = displaced_read_reg (regs, dsc, 0); |
| int i; |
| |
| for (i = 0; i < 4; i++) |
| displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC); |
| |
| displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); |
| } |
| |
| static void |
| install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc, |
| unsigned int rd, unsigned int rn, unsigned int rm, |
| unsigned rs) |
| { |
| int i; |
| ULONGEST rd_val, rn_val, rm_val, rs_val; |
| |
| /* Instruction is of form: |
| |
| <op><cond> rd, [rn,] rm, <shift> rs |
| |
| Rewrite as: |
| |
| Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3 |
| r0, r1, r2, r3 <- rd, rn, rm, rs |
| Insn: <op><cond> r0, r1, r2, <shift> r3 |
| Cleanup: tmp5 <- r0 |
| r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4 |
| rd <- tmp5 |
| */ |
| |
| for (i = 0; i < 4; i++) |
| dsc->tmp[i] = displaced_read_reg (regs, dsc, i); |
| |
| rd_val = displaced_read_reg (regs, dsc, rd); |
| rn_val = displaced_read_reg (regs, dsc, rn); |
| rm_val = displaced_read_reg (regs, dsc, rm); |
| rs_val = displaced_read_reg (regs, dsc, rs); |
| displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); |
| displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); |
| displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC); |
| displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC); |
| dsc->rd = rd; |
| dsc->cleanup = &cleanup_alu_shifted_reg; |
| } |
| |
| static int |
| arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int op = bits (insn, 21, 24); |
| int is_mov = (op == 0xd); |
| unsigned int rd, rn, rm, rs; |
| |
| if (!insn_references_pc (insn, 0x000fff0ful)) |
| return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc); |
| |
| displaced_debug_printf ("copying shifted reg %s insn %.8lx", |
| is_mov ? "move" : "ALU", |
| (unsigned long) insn); |
| |
| rn = bits (insn, 16, 19); |
| rm = bits (insn, 0, 3); |
| rs = bits (insn, 8, 11); |
| rd = bits (insn, 12, 15); |
| |
| if (is_mov) |
| dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302; |
| else |
| dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302; |
| |
| install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs); |
| |
| return 0; |
| } |
| |
| /* Clean up load instructions. */ |
| |
| static void |
| cleanup_load (struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| ULONGEST rt_val, rt_val2 = 0, rn_val; |
| |
| rt_val = displaced_read_reg (regs, dsc, 0); |
| if (dsc->u.ldst.xfersize == 8) |
| rt_val2 = displaced_read_reg (regs, dsc, 1); |
| rn_val = displaced_read_reg (regs, dsc, 2); |
| |
| displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); |
| if (dsc->u.ldst.xfersize > 4) |
| displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); |
| displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC); |
| if (!dsc->u.ldst.immed) |
| displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC); |
| |
| /* Handle register writeback. */ |
| if (dsc->u.ldst.writeback) |
| displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC); |
| /* Put result in right place. */ |
| displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC); |
| if (dsc->u.ldst.xfersize == 8) |
| displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC); |
| } |
| |
| /* Clean up store instructions. */ |
| |
| static void |
| cleanup_store (struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| ULONGEST rn_val = displaced_read_reg (regs, dsc, 2); |
| |
| displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); |
| if (dsc->u.ldst.xfersize > 4) |
| displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); |
| displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC); |
| if (!dsc->u.ldst.immed) |
| displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC); |
| if (!dsc->u.ldst.restore_r4) |
| displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC); |
| |
| /* Writeback. */ |
| if (dsc->u.ldst.writeback) |
| displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC); |
| } |
| |
| /* Copy "extra" load/store instructions. These are halfword/doubleword |
| transfers, which have a different encoding to byte/word transfers. */ |
| |
| static int |
| arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unprivileged, |
| regcache *regs, arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int op1 = bits (insn, 20, 24); |
| unsigned int op2 = bits (insn, 5, 6); |
| unsigned int rt = bits (insn, 12, 15); |
| unsigned int rn = bits (insn, 16, 19); |
| unsigned int rm = bits (insn, 0, 3); |
| char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1}; |
| char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2}; |
| int immed = (op1 & 0x4) != 0; |
| int opcode; |
| ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0; |
| |
| if (!insn_references_pc (insn, 0x000ff00ful)) |
| return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc); |
| |
| displaced_debug_printf ("copying %sextra load/store insn %.8lx", |
| unprivileged ? "unprivileged " : "", |
| (unsigned long) insn); |
| |
| opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4; |
| |
| if (opcode < 0) |
| internal_error (__FILE__, __LINE__, |
| _("copy_extra_ld_st: instruction decode error")); |
| |
| dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
| dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); |
| dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); |
| if (!immed) |
| dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); |
| |
| rt_val = displaced_read_reg (regs, dsc, rt); |
| if (bytesize[opcode] == 8) |
| rt_val2 = displaced_read_reg (regs, dsc, rt + 1); |
| rn_val = displaced_read_reg (regs, dsc, rn); |
| if (!immed) |
| rm_val = displaced_read_reg (regs, dsc, rm); |
| |
| displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC); |
| if (bytesize[opcode] == 8) |
| displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC); |
| displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC); |
| if (!immed) |
| displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC); |
| |
| dsc->rd = rt; |
| dsc->u.ldst.xfersize = bytesize[opcode]; |
| dsc->u.ldst.rn = rn; |
| dsc->u.ldst.immed = immed; |
| dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0; |
| dsc->u.ldst.restore_r4 = 0; |
| |
| if (immed) |
| /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm] |
| -> |
| {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */ |
| dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000; |
| else |
| /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm] |
| -> |
| {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */ |
| dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003; |
| |
| dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store; |
| |
| return 0; |
| } |
| |
| /* Copy byte/half word/word loads and stores. */ |
| |
| static void |
| install_load_store (struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc, int load, |
| int immed, int writeback, int size, int usermode, |
| int rt, int rm, int rn) |
| { |
| ULONGEST rt_val, rn_val, rm_val = 0; |
| |
| dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
| dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); |
| if (!immed) |
| dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); |
| if (!load) |
| dsc->tmp[4] = displaced_read_reg (regs, dsc, 4); |
| |
| rt_val = displaced_read_reg (regs, dsc, rt); |
| rn_val = displaced_read_reg (regs, dsc, rn); |
| if (!immed) |
| rm_val = displaced_read_reg (regs, dsc, rm); |
| |
| displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC); |
| displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC); |
| if (!immed) |
| displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC); |
| dsc->rd = rt; |
| dsc->u.ldst.xfersize = size; |
| dsc->u.ldst.rn = rn; |
| dsc->u.ldst.immed = immed; |
| dsc->u.ldst.writeback = writeback; |
| |
| /* To write PC we can do: |
| |
| Before this sequence of instructions: |
| r0 is the PC value got from displaced_read_reg, so r0 = from + 8; |
| r2 is the Rn value got from displaced_read_reg. |
| |
| Insn1: push {pc} Write address of STR instruction + offset on stack |
| Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset |
| Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc |
| = addr(Insn1) + offset - addr(Insn3) - 8 |
| = offset - 16 |
| Insn4: add r4, r4, #8 r4 = offset - 8 |
| Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8 |
| = from + offset |
| Insn6: str r0, [r2, #imm] (or str r0, [r2, r3]) |
| |
| Otherwise we don't know what value to write for PC, since the offset is |
| architecture-dependent (sometimes PC+8, sometimes PC+12). More details |
| of this can be found in Section "Saving from r15" in |
| http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */ |
| |
| dsc->cleanup = load ? &cleanup_load : &cleanup_store; |
| } |
| |
| |
| static int |
| thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1, |
| uint16_t insn2, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc, int size) |
| { |
| unsigned int u_bit = bit (insn1, 7); |
| unsigned int rt = bits (insn2, 12, 15); |
| int imm12 = bits (insn2, 0, 11); |
| ULONGEST pc_val; |
| |
| displaced_debug_printf ("copying ldr pc (0x%x) R%d %c imm12 %.4x", |
| (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-', |
| imm12); |
| |
| if (!u_bit) |
| imm12 = -1 * imm12; |
| |
| /* Rewrite instruction LDR Rt imm12 into: |
| |
| Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12 |
| |
| LDR R0, R2, R3, |
| |
| Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */ |
| |
| |
| dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
| dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); |
| dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); |
| |
| pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); |
| |
| pc_val = pc_val & 0xfffffffc; |
| |
| displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC); |
| displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC); |
| |
| dsc->rd = rt; |
| |
| dsc->u.ldst.xfersize = size; |
| dsc->u.ldst.immed = 0; |
| dsc->u.ldst.writeback = 0; |
| dsc->u.ldst.restore_r4 = 0; |
| |
| /* LDR R0, R2, R3 */ |
| dsc->modinsn[0] = 0xf852; |
| dsc->modinsn[1] = 0x3; |
| dsc->numinsns = 2; |
| |
| dsc->cleanup = &cleanup_load; |
| |
| return 0; |
| } |
| |
| static int |
| thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1, |
| uint16_t insn2, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc, |
| int writeback, int immed) |
| { |
| unsigned int rt = bits (insn2, 12, 15); |
| unsigned int rn = bits (insn1, 0, 3); |
| unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */ |
| /* In LDR (register), there is also a register Rm, which is not allowed to |
| be PC, so we don't have to check it. */ |
| |
| if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM) |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load", |
| dsc); |
| |
| displaced_debug_printf ("copying ldr r%d [r%d] insn %.4x%.4x", |
| rt, rn, insn1, insn2); |
| |
| install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4, |
| 0, rt, rm, rn); |
| |
| dsc->u.ldst.restore_r4 = 0; |
| |
| if (immed) |
| /* ldr[b]<cond> rt, [rn, #imm], etc. |
| -> |
| ldr[b]<cond> r0, [r2, #imm]. */ |
| { |
| dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2; |
| dsc->modinsn[1] = insn2 & 0x0fff; |
| } |
| else |
| /* ldr[b]<cond> rt, [rn, rm], etc. |
| -> |
| ldr[b]<cond> r0, [r2, r3]. */ |
| { |
| dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2; |
| dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3; |
| } |
| |
| dsc->numinsns = 2; |
| |
| return 0; |
| } |
| |
| |
| static int |
| arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc, |
| int load, int size, int usermode) |
| { |
| int immed = !bit (insn, 25); |
| int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0); |
| unsigned int rt = bits (insn, 12, 15); |
| unsigned int rn = bits (insn, 16, 19); |
| unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */ |
| |
| if (!insn_references_pc (insn, 0x000ff00ful)) |
| return arm_copy_unmodified (gdbarch, insn, "load/store", dsc); |
| |
| displaced_debug_printf ("copying %s%s r%d [r%d] insn %.8lx", |
| load ? (size == 1 ? "ldrb" : "ldr") |
| : (size == 1 ? "strb" : "str"), |
| usermode ? "t" : "", |
| rt, rn, |
| (unsigned long) insn); |
| |
| install_load_store (gdbarch, regs, dsc, load, immed, writeback, size, |
| usermode, rt, rm, rn); |
| |
| if (load || rt != ARM_PC_REGNUM) |
| { |
| dsc->u.ldst.restore_r4 = 0; |
| |
| if (immed) |
| /* {ldr,str}[b]<cond> rt, [rn, #imm], etc. |
| -> |
| {ldr,str}[b]<cond> r0, [r2, #imm]. */ |
| dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000; |
| else |
| /* {ldr,str}[b]<cond> rt, [rn, rm], etc. |
| -> |
| {ldr,str}[b]<cond> r0, [r2, r3]. */ |
| dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003; |
| } |
| else |
| { |
| /* We need to use r4 as scratch. Make sure it's restored afterwards. */ |
| dsc->u.ldst.restore_r4 = 1; |
| dsc->modinsn[0] = 0xe92d8000; /* push {pc} */ |
| dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */ |
| dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */ |
| dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */ |
| dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */ |
| |
| /* As above. */ |
| if (immed) |
| dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000; |
| else |
| dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003; |
| |
| dsc->numinsns = 6; |
| } |
| |
| dsc->cleanup = load ? &cleanup_load : &cleanup_store; |
| |
| return 0; |
| } |
| |
| /* Cleanup LDM instructions with fully-populated register list. This is an |
| unfortunate corner case: it's impossible to implement correctly by modifying |
| the instruction. The issue is as follows: we have an instruction, |
| |
| ldm rN, {r0-r15} |
| |
| which we must rewrite to avoid loading PC. A possible solution would be to |
| do the load in two halves, something like (with suitable cleanup |
| afterwards): |
| |
| mov r8, rN |
| ldm[id][ab] r8!, {r0-r7} |
| str r7, <temp> |
| ldm[id][ab] r8, {r7-r14} |
| <bkpt> |
| |
| but at present there's no suitable place for <temp>, since the scratch space |
| is overwritten before the cleanup routine is called. For now, we simply |
| emulate the instruction. */ |
| |
| static void |
| cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| int inc = dsc->u.block.increment; |
| int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0; |
| int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4); |
| uint32_t regmask = dsc->u.block.regmask; |
| int regno = inc ? 0 : 15; |
| CORE_ADDR xfer_addr = dsc->u.block.xfer_addr; |
| int exception_return = dsc->u.block.load && dsc->u.block.user |
| && (regmask & 0x8000) != 0; |
| uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
| int do_transfer = condition_true (dsc->u.block.cond, status); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| if (!do_transfer) |
| return; |
| |
| /* If the instruction is ldm rN, {...pc}^, I don't think there's anything |
| sensible we can do here. Complain loudly. */ |
| if (exception_return) |
| error (_("Cannot single-step exception return")); |
| |
| /* We don't handle any stores here for now. */ |
| gdb_assert (dsc->u.block.load != 0); |
| |
| displaced_debug_printf ("emulating block transfer: %s %s %s", |
| dsc->u.block.load ? "ldm" : "stm", |
| dsc->u.block.increment ? "inc" : "dec", |
| dsc->u.block.before ? "before" : "after"); |
| |
| while (regmask) |
| { |
| uint32_t memword; |
| |
| if (inc) |
| while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0) |
| regno++; |
| else |
| while (regno >= 0 && (regmask & (1 << regno)) == 0) |
| regno--; |
| |
| xfer_addr += bump_before; |
| |
| memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order); |
| displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC); |
| |
| xfer_addr += bump_after; |
| |
| regmask &= ~(1 << regno); |
| } |
| |
| if (dsc->u.block.writeback) |
| displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr, |
| CANNOT_WRITE_PC); |
| } |
| |
| /* Clean up an STM which included the PC in the register list. */ |
| |
| static void |
| cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
| int store_executed = condition_true (dsc->u.block.cond, status); |
| CORE_ADDR pc_stored_at, transferred_regs |
| = count_one_bits (dsc->u.block.regmask); |
| CORE_ADDR stm_insn_addr; |
| uint32_t pc_val; |
| long offset; |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| /* If condition code fails, there's nothing else to do. */ |
| if (!store_executed) |
| return; |
| |
| if (dsc->u.block.increment) |
| { |
| pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs; |
| |
| if (dsc->u.block.before) |
| pc_stored_at += 4; |
| } |
| else |
| { |
| pc_stored_at = dsc->u.block.xfer_addr; |
| |
| if (dsc->u.block.before) |
| pc_stored_at -= 4; |
| } |
| |
| pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order); |
| stm_insn_addr = dsc->scratch_base; |
| offset = pc_val - stm_insn_addr; |
| |
| displaced_debug_printf ("detected PC offset %.8lx for STM instruction", |
| offset); |
| |
| /* Rewrite the stored PC to the proper value for the non-displaced original |
| instruction. */ |
| write_memory_unsigned_integer (pc_stored_at, 4, byte_order, |
| dsc->insn_addr + offset); |
| } |
| |
| /* Clean up an LDM which includes the PC in the register list. We clumped all |
| the registers in the transferred list into a contiguous range r0...rX (to |
| avoid loading PC directly and losing control of the debugged program), so we |
| must undo that here. */ |
| |
| static void |
| cleanup_block_load_pc (struct gdbarch *gdbarch, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); |
| int load_executed = condition_true (dsc->u.block.cond, status); |
| unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM; |
| unsigned int regs_loaded = count_one_bits (mask); |
| unsigned int num_to_shuffle = regs_loaded, clobbered; |
| |
| /* The method employed here will fail if the register list is fully populated |
| (we need to avoid loading PC directly). */ |
| gdb_assert (num_to_shuffle < 16); |
| |
| if (!load_executed) |
| return; |
| |
| clobbered = (1 << num_to_shuffle) - 1; |
| |
| while (num_to_shuffle > 0) |
| { |
| if ((mask & (1 << write_reg)) != 0) |
| { |
| unsigned int read_reg = num_to_shuffle - 1; |
| |
| if (read_reg != write_reg) |
| { |
| ULONGEST rval = displaced_read_reg (regs, dsc, read_reg); |
| displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC); |
| displaced_debug_printf ("LDM: move loaded register r%d to r%d", |
| read_reg, write_reg); |
| } |
| else |
| displaced_debug_printf ("LDM: register r%d already in the right " |
| "place", write_reg); |
| |
| clobbered &= ~(1 << write_reg); |
| |
| num_to_shuffle--; |
| } |
| |
| write_reg--; |
| } |
| |
| /* Restore any registers we scribbled over. */ |
| for (write_reg = 0; clobbered != 0; write_reg++) |
| { |
| if ((clobbered & (1 << write_reg)) != 0) |
| { |
| displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg], |
| CANNOT_WRITE_PC); |
| displaced_debug_printf ("LDM: restored clobbered register r%d", |
| write_reg); |
| clobbered &= ~(1 << write_reg); |
| } |
| } |
| |
| /* Perform register writeback manually. */ |
| if (dsc->u.block.writeback) |
| { |
| ULONGEST new_rn_val = dsc->u.block.xfer_addr; |
| |
| if (dsc->u.block.increment) |
| new_rn_val += regs_loaded * 4; |
| else |
| new_rn_val -= regs_loaded * 4; |
| |
| displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val, |
| CANNOT_WRITE_PC); |
| } |
| } |
| |
| /* Handle ldm/stm, apart from some tricky cases which are unlikely to occur |
| in user-level code (in particular exception return, ldm rn, {...pc}^). */ |
| |
| static int |
| arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| int load = bit (insn, 20); |
| int user = bit (insn, 22); |
| int increment = bit (insn, 23); |
| int before = bit (insn, 24); |
| int writeback = bit (insn, 21); |
| int rn = bits (insn, 16, 19); |
| |
| /* Block transfers which don't mention PC can be run directly |
| out-of-line. */ |
| if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0) |
| return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc); |
| |
| if (rn == ARM_PC_REGNUM) |
| { |
| warning (_("displaced: Unpredictable LDM or STM with " |
| "base register r15")); |
| return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc); |
| } |
| |
| displaced_debug_printf ("copying block transfer insn %.8lx", |
| (unsigned long) insn); |
| |
| dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn); |
| dsc->u.block.rn = rn; |
| |
| dsc->u.block.load = load; |
| dsc->u.block.user = user; |
| dsc->u.block.increment = increment; |
| dsc->u.block.before = before; |
| dsc->u.block.writeback = writeback; |
| dsc->u.block.cond = bits (insn, 28, 31); |
| |
| dsc->u.block.regmask = insn & 0xffff; |
| |
| if (load) |
| { |
| if ((insn & 0xffff) == 0xffff) |
| { |
| /* LDM with a fully-populated register list. This case is |
| particularly tricky. Implement for now by fully emulating the |
| instruction (which might not behave perfectly in all cases, but |
| these instructions should be rare enough for that not to matter |
| too much). */ |
| dsc->modinsn[0] = ARM_NOP; |
| |
| dsc->cleanup = &cleanup_block_load_all; |
| } |
| else |
| { |
| /* LDM of a list of registers which includes PC. Implement by |
| rewriting the list of registers to be transferred into a |
| contiguous chunk r0...rX before doing the transfer, then shuffling |
| registers into the correct places in the cleanup routine. */ |
| unsigned int regmask = insn & 0xffff; |
| unsigned int num_in_list = count_one_bits (regmask), new_regmask; |
| unsigned int i; |
| |
| for (i = 0; i < num_in_list; i++) |
| dsc->tmp[i] = displaced_read_reg (regs, dsc, i); |
| |
| /* Writeback makes things complicated. We need to avoid clobbering |
| the base register with one of the registers in our modified |
| register list, but just using a different register can't work in |
| all cases, e.g.: |
| |
| ldm r14!, {r0-r13,pc} |
| |
| which would need to be rewritten as: |
| |
| ldm rN!, {r0-r14} |
| |
| but that can't work, because there's no free register for N. |
| |
| Solve this by turning off the writeback bit, and emulating |
| writeback manually in the cleanup routine. */ |
| |
| if (writeback) |
| insn &= ~(1 << 21); |
| |
| new_regmask = (1 << num_in_list) - 1; |
| |
| displaced_debug_printf ("LDM r%d%s, {..., pc}: original reg list " |
| "%.4x, modified list %.4x", |
| rn, writeback ? "!" : "", |
| (int) insn & 0xffff, new_regmask); |
| |
| dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff); |
| |
| dsc->cleanup = &cleanup_block_load_pc; |
| } |
| } |
| else |
| { |
| /* STM of a list of registers which includes PC. Run the instruction |
| as-is, but out of line: this will store the wrong value for the PC, |
| so we must manually fix up the memory in the cleanup routine. |
| Doing things this way has the advantage that we can auto-detect |
| the offset of the PC write (which is architecture-dependent) in |
| the cleanup routine. */ |
| dsc->modinsn[0] = insn; |
| |
| dsc->cleanup = &cleanup_block_store_pc; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| int rn = bits (insn1, 0, 3); |
| int load = bit (insn1, 4); |
| int writeback = bit (insn1, 5); |
| |
| /* Block transfers which don't mention PC can be run directly |
| out-of-line. */ |
| if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0) |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc); |
| |
| if (rn == ARM_PC_REGNUM) |
| { |
| warning (_("displaced: Unpredictable LDM or STM with " |
| "base register r15")); |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "unpredictable ldm/stm", dsc); |
| } |
| |
| displaced_debug_printf ("copying block transfer insn %.4x%.4x", |
| insn1, insn2); |
| |
| /* Clear bit 13, since it should be always zero. */ |
| dsc->u.block.regmask = (insn2 & 0xdfff); |
| dsc->u.block.rn = rn; |
| |
| dsc->u.block.load = load; |
| dsc->u.block.user = 0; |
| dsc->u.block.increment = bit (insn1, 7); |
| dsc->u.block.before = bit (insn1, 8); |
| dsc->u.block.writeback = writeback; |
| dsc->u.block.cond = INST_AL; |
| dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn); |
| |
| if (load) |
| { |
| if (dsc->u.block.regmask == 0xffff) |
| { |
| /* This branch is impossible to happen. */ |
| gdb_assert (0); |
| } |
| else |
| { |
| unsigned int regmask = dsc->u.block.regmask; |
| unsigned int num_in_list = count_one_bits (regmask), new_regmask; |
| unsigned int i; |
| |
| for (i = 0; i < num_in_list; i++) |
| dsc->tmp[i] = displaced_read_reg (regs, dsc, i); |
| |
| if (writeback) |
| insn1 &= ~(1 << 5); |
| |
| new_regmask = (1 << num_in_list) - 1; |
| |
| displaced_debug_printf ("LDM r%d%s, {..., pc}: original reg list " |
| "%.4x, modified list %.4x", |
| rn, writeback ? "!" : "", |
| (int) dsc->u.block.regmask, new_regmask); |
| |
| dsc->modinsn[0] = insn1; |
| dsc->modinsn[1] = (new_regmask & 0xffff); |
| dsc->numinsns = 2; |
| |
| dsc->cleanup = &cleanup_block_load_pc; |
| } |
| } |
| else |
| { |
| dsc->modinsn[0] = insn1; |
| dsc->modinsn[1] = insn2; |
| dsc->numinsns = 2; |
| dsc->cleanup = &cleanup_block_store_pc; |
| } |
| return 0; |
| } |
| |
| /* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs. |
| This is used to avoid a dependency on BFD's bfd_endian enum. */ |
| |
| ULONGEST |
| arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len, |
| int byte_order) |
| { |
| return read_memory_unsigned_integer (memaddr, len, |
| (enum bfd_endian) byte_order); |
| } |
| |
| /* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs. */ |
| |
| CORE_ADDR |
| arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self, |
| CORE_ADDR val) |
| { |
| return gdbarch_addr_bits_remove (self->regcache->arch (), val); |
| } |
| |
| /* Wrapper over syscall_next_pc for use in get_next_pcs. */ |
| |
| static CORE_ADDR |
| arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self) |
| { |
| return 0; |
| } |
| |
| /* Wrapper over arm_is_thumb for use in arm_get_next_pcs. */ |
| |
| int |
| arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self) |
| { |
| return arm_is_thumb (self->regcache); |
| } |
| |
| /* single_step() is called just before we want to resume the inferior, |
| if we want to single-step it but there is no hardware or kernel |
| single-step support. We find the target of the coming instructions |
| and breakpoint them. */ |
| |
| std::vector<CORE_ADDR> |
| arm_software_single_step (struct regcache *regcache) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| struct arm_get_next_pcs next_pcs_ctx; |
| |
| arm_get_next_pcs_ctor (&next_pcs_ctx, |
| &arm_get_next_pcs_ops, |
| gdbarch_byte_order (gdbarch), |
| gdbarch_byte_order_for_code (gdbarch), |
| 0, |
| regcache); |
| |
| std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx); |
| |
| for (CORE_ADDR &pc_ref : next_pcs) |
| pc_ref = gdbarch_addr_bits_remove (gdbarch, pc_ref); |
| |
| return next_pcs; |
| } |
| |
| /* Cleanup/copy SVC (SWI) instructions. These two functions are overridden |
| for Linux, where some SVC instructions must be treated specially. */ |
| |
| static void |
| cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size; |
| |
| displaced_debug_printf ("cleanup for svc, resume at %.8lx", |
| (unsigned long) resume_addr); |
| |
| displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC); |
| } |
| |
| |
| /* Common copy routine for svc instruction. */ |
| |
| static int |
| install_svc (struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| /* Preparation: none. |
| Insn: unmodified svc. |
| Cleanup: pc <- insn_addr + insn_size. */ |
| |
| /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next |
| instruction. */ |
| dsc->wrote_to_pc = 1; |
| |
| /* Allow OS-specific code to override SVC handling. */ |
| if (dsc->u.svc.copy_svc_os) |
| return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc); |
| else |
| { |
| dsc->cleanup = &cleanup_svc; |
| return 0; |
| } |
| } |
| |
| static int |
| arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn, |
| regcache *regs, arm_displaced_step_copy_insn_closure *dsc) |
| { |
| |
| displaced_debug_printf ("copying svc insn %.8lx", |
| (unsigned long) insn); |
| |
| dsc->modinsn[0] = insn; |
| |
| return install_svc (gdbarch, regs, dsc); |
| } |
| |
| static int |
| thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn, |
| regcache *regs, arm_displaced_step_copy_insn_closure *dsc) |
| { |
| |
| displaced_debug_printf ("copying svc insn %.4x", insn); |
| |
| dsc->modinsn[0] = insn; |
| |
| return install_svc (gdbarch, regs, dsc); |
| } |
| |
| /* Copy undefined instructions. */ |
| |
| static int |
| arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| displaced_debug_printf ("copying undefined insn %.8lx", |
| (unsigned long) insn); |
| |
| dsc->modinsn[0] = insn; |
| |
| return 0; |
| } |
| |
| static int |
| thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| |
| displaced_debug_printf ("copying undefined insn %.4x %.4x", |
| (unsigned short) insn1, (unsigned short) insn2); |
| |
| dsc->modinsn[0] = insn1; |
| dsc->modinsn[1] = insn2; |
| dsc->numinsns = 2; |
| |
| return 0; |
| } |
| |
| /* Copy unpredictable instructions. */ |
| |
| static int |
| arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| displaced_debug_printf ("copying unpredictable insn %.8lx", |
| (unsigned long) insn); |
| |
| dsc->modinsn[0] = insn; |
| |
| return 0; |
| } |
| |
| /* The decode_* functions are instruction decoding helpers. They mostly follow |
| the presentation in the ARM ARM. */ |
| |
| static int |
| arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7); |
| unsigned int rn = bits (insn, 16, 19); |
| |
| if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0x1) == 0x0) |
| return arm_copy_unmodified (gdbarch, insn, "cps", dsc); |
| else if (op1 == 0x10 && op2 == 0x0 && (rn & 0x1) == 0x1) |
| return arm_copy_unmodified (gdbarch, insn, "setend", dsc); |
| else if ((op1 & 0x60) == 0x20) |
| return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc); |
| else if ((op1 & 0x71) == 0x40) |
| return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store", |
| dsc); |
| else if ((op1 & 0x77) == 0x41) |
| return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc); |
| else if ((op1 & 0x77) == 0x45) |
| return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */ |
| else if ((op1 & 0x77) == 0x51) |
| { |
| if (rn != 0xf) |
| return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */ |
| else |
| return arm_copy_unpred (gdbarch, insn, dsc); |
| } |
| else if ((op1 & 0x77) == 0x55) |
| return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */ |
| else if (op1 == 0x57) |
| switch (op2) |
| { |
| case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc); |
| case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc); |
| case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc); |
| case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc); |
| default: return arm_copy_unpred (gdbarch, insn, dsc); |
| } |
| else if ((op1 & 0x63) == 0x43) |
| return arm_copy_unpred (gdbarch, insn, dsc); |
| else if ((op2 & 0x1) == 0x0) |
| switch (op1 & ~0x80) |
| { |
| case 0x61: |
| return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc); |
| case 0x65: |
| return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */ |
| case 0x71: case 0x75: |
| /* pld/pldw reg. */ |
| return arm_copy_preload_reg (gdbarch, insn, regs, dsc); |
| case 0x63: case 0x67: case 0x73: case 0x77: |
| return arm_copy_unpred (gdbarch, insn, dsc); |
| default: |
| return arm_copy_undef (gdbarch, insn, dsc); |
| } |
| else |
| return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */ |
| } |
| |
| static int |
| arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| if (bit (insn, 27) == 0) |
| return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc); |
| /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */ |
| else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20)) |
| { |
| case 0x0: case 0x2: |
| return arm_copy_unmodified (gdbarch, insn, "srs", dsc); |
| |
| case 0x1: case 0x3: |
| return arm_copy_unmodified (gdbarch, insn, "rfe", dsc); |
| |
| case 0x4: case 0x5: case 0x6: case 0x7: |
| return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc); |
| |
| case 0x8: |
| switch ((insn & 0xe00000) >> 21) |
| { |
| case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7: |
| /* stc/stc2. */ |
| return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
| |
| case 0x2: |
| return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc); |
| |
| default: |
| return arm_copy_undef (gdbarch, insn, dsc); |
| } |
| |
| case 0x9: |
| { |
| int rn_f = (bits (insn, 16, 19) == 0xf); |
| switch ((insn & 0xe00000) >> 21) |
| { |
| case 0x1: case 0x3: |
| /* ldc/ldc2 imm (undefined for rn == pc). */ |
| return rn_f ? arm_copy_undef (gdbarch, insn, dsc) |
| : arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
| |
| case 0x2: |
| return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc); |
| |
| case 0x4: case 0x5: case 0x6: case 0x7: |
| /* ldc/ldc2 lit (undefined for rn != pc). */ |
| return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc) |
| : arm_copy_undef (gdbarch, insn, dsc); |
| |
| default: |
| return arm_copy_undef (gdbarch, insn, dsc); |
| } |
| } |
| |
| case 0xa: |
| return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc); |
| |
| case 0xb: |
| if (bits (insn, 16, 19) == 0xf) |
| /* ldc/ldc2 lit. */ |
| return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
| else |
| return arm_copy_undef (gdbarch, insn, dsc); |
| |
| case 0xc: |
| if (bit (insn, 4)) |
| return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc); |
| else |
| return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); |
| |
| case 0xd: |
| if (bit (insn, 4)) |
| return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc); |
| else |
| return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); |
| |
| default: |
| return arm_copy_undef (gdbarch, insn, dsc); |
| } |
| } |
| |
| /* Decode miscellaneous instructions in dp/misc encoding space. */ |
| |
| static int |
| arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int op2 = bits (insn, 4, 6); |
| unsigned int op = bits (insn, 21, 22); |
| |
| switch (op2) |
| { |
| case 0x0: |
| return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc); |
| |
| case 0x1: |
| if (op == 0x1) /* bx. */ |
| return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc); |
| else if (op == 0x3) |
| return arm_copy_unmodified (gdbarch, insn, "clz", dsc); |
| else |
| return arm_copy_undef (gdbarch, insn, dsc); |
| |
| case 0x2: |
| if (op == 0x1) |
| /* Not really supported. */ |
| return arm_copy_unmodified (gdbarch, insn, "bxj", dsc); |
| else |
| return arm_copy_undef (gdbarch, insn, dsc); |
| |
| case 0x3: |
| if (op == 0x1) |
| return arm_copy_bx_blx_reg (gdbarch, insn, |
| regs, dsc); /* blx register. */ |
| else |
| return arm_copy_undef (gdbarch, insn, dsc); |
| |
| case 0x5: |
| return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc); |
| |
| case 0x7: |
| if (op == 0x1) |
| return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc); |
| else if (op == 0x3) |
| /* Not really supported. */ |
| return arm_copy_unmodified (gdbarch, insn, "smc", dsc); |
| /* Fall through. */ |
| |
| default: |
| return arm_copy_undef (gdbarch, insn, dsc); |
| } |
| } |
| |
| static int |
| arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| if (bit (insn, 25)) |
| switch (bits (insn, 20, 24)) |
| { |
| case 0x10: |
| return arm_copy_unmodified (gdbarch, insn, "movw", dsc); |
| |
| case 0x14: |
| return arm_copy_unmodified (gdbarch, insn, "movt", dsc); |
| |
| case 0x12: case 0x16: |
| return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc); |
| |
| default: |
| return arm_copy_alu_imm (gdbarch, insn, regs, dsc); |
| } |
| else |
| { |
| uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7); |
| |
| if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0) |
| return arm_copy_alu_reg (gdbarch, insn, regs, dsc); |
| else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1) |
| return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc); |
| else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0) |
| return arm_decode_miscellaneous (gdbarch, insn, regs, dsc); |
| else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8) |
| return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc); |
| else if ((op1 & 0x10) == 0x00 && op2 == 0x9) |
| return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc); |
| else if ((op1 & 0x10) == 0x10 && op2 == 0x9) |
| return arm_copy_unmodified (gdbarch, insn, "synch", dsc); |
| else if (op2 == 0xb || (op2 & 0xd) == 0xd) |
| /* 2nd arg means "unprivileged". */ |
| return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs, |
| dsc); |
| } |
| |
| /* Should be unreachable. */ |
| return 1; |
| } |
| |
| static int |
| arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| int a = bit (insn, 25), b = bit (insn, 4); |
| uint32_t op1 = bits (insn, 20, 24); |
| |
| if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02) |
| || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b)) |
| return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0); |
| else if ((!a && (op1 & 0x17) == 0x02) |
| || (a && (op1 & 0x17) == 0x02 && !b)) |
| return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1); |
| else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03) |
| || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b)) |
| return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0); |
| else if ((!a && (op1 & 0x17) == 0x03) |
| || (a && (op1 & 0x17) == 0x03 && !b)) |
| return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1); |
| else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06) |
| || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b)) |
| return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0); |
| else if ((!a && (op1 & 0x17) == 0x06) |
| || (a && (op1 & 0x17) == 0x06 && !b)) |
| return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1); |
| else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07) |
| || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b)) |
| return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0); |
| else if ((!a && (op1 & 0x17) == 0x07) |
| || (a && (op1 & 0x17) == 0x07 && !b)) |
| return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1); |
| |
| /* Should be unreachable. */ |
| return 1; |
| } |
| |
| static int |
| arm_decode_media (struct gdbarch *gdbarch, uint32_t insn, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| switch (bits (insn, 20, 24)) |
| { |
| case 0x00: case 0x01: case 0x02: case 0x03: |
| return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc); |
| |
| case 0x04: case 0x05: case 0x06: case 0x07: |
| return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc); |
| |
| case 0x08: case 0x09: case 0x0a: case 0x0b: |
| case 0x0c: case 0x0d: case 0x0e: case 0x0f: |
| return arm_copy_unmodified (gdbarch, insn, |
| "decode/pack/unpack/saturate/reverse", dsc); |
| |
| case 0x18: |
| if (bits (insn, 5, 7) == 0) /* op2. */ |
| { |
| if (bits (insn, 12, 15) == 0xf) |
| return arm_copy_unmodified (gdbarch, insn, "usad8", dsc); |
| else |
| return arm_copy_unmodified (gdbarch, insn, "usada8", dsc); |
| } |
| else |
| return arm_copy_undef (gdbarch, insn, dsc); |
| |
| case 0x1a: case 0x1b: |
| if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */ |
| return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc); |
| else |
| return arm_copy_undef (gdbarch, insn, dsc); |
| |
| case 0x1c: case 0x1d: |
| if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */ |
| { |
| if (bits (insn, 0, 3) == 0xf) |
| return arm_copy_unmodified (gdbarch, insn, "bfc", dsc); |
| else |
| return arm_copy_unmodified (gdbarch, insn, "bfi", dsc); |
| } |
| else |
| return arm_copy_undef (gdbarch, insn, dsc); |
| |
| case 0x1e: case 0x1f: |
| if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */ |
| return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc); |
| else |
| return arm_copy_undef (gdbarch, insn, dsc); |
| } |
| |
| /* Should be unreachable. */ |
| return 1; |
| } |
| |
| static int |
| arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, uint32_t insn, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| if (bit (insn, 25)) |
| return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc); |
| else |
| return arm_copy_block_xfer (gdbarch, insn, regs, dsc); |
| } |
| |
| static int |
| arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int opcode = bits (insn, 20, 24); |
| |
| switch (opcode) |
| { |
| case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */ |
| return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc); |
| |
| case 0x08: case 0x0a: case 0x0c: case 0x0e: |
| case 0x12: case 0x16: |
| return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc); |
| |
| case 0x09: case 0x0b: case 0x0d: case 0x0f: |
| case 0x13: case 0x17: |
| return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc); |
| |
| case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */ |
| case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */ |
| /* Note: no writeback for these instructions. Bit 25 will always be |
| zero though (via caller), so the following works OK. */ |
| return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
| } |
| |
| /* Should be unreachable. */ |
| return 1; |
| } |
| |
| /* Decode shifted register instructions. */ |
| |
| static int |
| thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1, |
| uint16_t insn2, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| /* PC is only allowed to be used in instruction MOV. */ |
| |
| unsigned int op = bits (insn1, 5, 8); |
| unsigned int rn = bits (insn1, 0, 3); |
| |
| if (op == 0x2 && rn == 0xf) /* MOV */ |
| return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc); |
| else |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "dp (shift reg)", dsc); |
| } |
| |
| |
| /* Decode extension register load/store. Exactly the same as |
| arm_decode_ext_reg_ld_st. */ |
| |
| static int |
| thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1, |
| uint16_t insn2, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int opcode = bits (insn1, 4, 8); |
| |
| switch (opcode) |
| { |
| case 0x04: case 0x05: |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "vfp/neon vmov", dsc); |
| |
| case 0x08: case 0x0c: /* 01x00 */ |
| case 0x0a: case 0x0e: /* 01x10 */ |
| case 0x12: case 0x16: /* 10x10 */ |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "vfp/neon vstm/vpush", dsc); |
| |
| case 0x09: case 0x0d: /* 01x01 */ |
| case 0x0b: case 0x0f: /* 01x11 */ |
| case 0x13: case 0x17: /* 10x11 */ |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "vfp/neon vldm/vpop", dsc); |
| |
| case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */ |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "vstr", dsc); |
| case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */ |
| return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc); |
| } |
| |
| /* Should be unreachable. */ |
| return 1; |
| } |
| |
| static int |
| arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn, |
| regcache *regs, arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int op1 = bits (insn, 20, 25); |
| int op = bit (insn, 4); |
| unsigned int coproc = bits (insn, 8, 11); |
| |
| if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa) |
| return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc); |
| else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00 |
| && (coproc & 0xe) != 0xa) |
| /* stc/stc2. */ |
| return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
| else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00 |
| && (coproc & 0xe) != 0xa) |
| /* ldc/ldc2 imm/lit. */ |
| return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); |
| else if ((op1 & 0x3e) == 0x00) |
| return arm_copy_undef (gdbarch, insn, dsc); |
| else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa) |
| return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc); |
| else if (op1 == 0x04 && (coproc & 0xe) != 0xa) |
| return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc); |
| else if (op1 == 0x05 && (coproc & 0xe) != 0xa) |
| return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc); |
| else if ((op1 & 0x30) == 0x20 && !op) |
| { |
| if ((coproc & 0xe) == 0xa) |
| return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc); |
| else |
| return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); |
| } |
| else if ((op1 & 0x30) == 0x20 && op) |
| return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc); |
| else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa) |
| return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc); |
| else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa) |
| return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc); |
| else if ((op1 & 0x30) == 0x30) |
| return arm_copy_svc (gdbarch, insn, regs, dsc); |
| else |
| return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */ |
| } |
| |
| static int |
| thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1, |
| uint16_t insn2, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int coproc = bits (insn2, 8, 11); |
| unsigned int bit_5_8 = bits (insn1, 5, 8); |
| unsigned int bit_9 = bit (insn1, 9); |
| unsigned int bit_4 = bit (insn1, 4); |
| |
| if (bit_9 == 0) |
| { |
| if (bit_5_8 == 2) |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2", |
| dsc); |
| else if (bit_5_8 == 0) /* UNDEFINED. */ |
| return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc); |
| else |
| { |
| /*coproc is 101x. SIMD/VFP, ext registers load/store. */ |
| if ((coproc & 0xe) == 0xa) |
| return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs, |
| dsc); |
| else /* coproc is not 101x. */ |
| { |
| if (bit_4 == 0) /* STC/STC2. */ |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "stc/stc2", dsc); |
| else /* LDC/LDC2 {literal, immediate}. */ |
| return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, |
| regs, dsc); |
| } |
| } |
| } |
| else |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc); |
| |
| return 0; |
| } |
| |
| static void |
| install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc, int rd) |
| { |
| /* ADR Rd, #imm |
| |
| Rewrite as: |
| |
| Preparation: Rd <- PC |
| Insn: ADD Rd, #imm |
| Cleanup: Null. |
| */ |
| |
| /* Rd <- PC */ |
| int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); |
| displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC); |
| } |
| |
| static int |
| thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc, |
| int rd, unsigned int imm) |
| { |
| |
| /* Encoding T2: ADDS Rd, #imm */ |
| dsc->modinsn[0] = (0x3000 | (rd << 8) | imm); |
| |
| install_pc_relative (gdbarch, regs, dsc, rd); |
| |
| return 0; |
| } |
| |
| static int |
| thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int rd = bits (insn, 8, 10); |
| unsigned int imm8 = bits (insn, 0, 7); |
| |
| displaced_debug_printf ("copying thumb adr r%d, #%d insn %.4x", |
| rd, imm8, insn); |
| |
| return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8); |
| } |
| |
| static int |
| thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1, |
| uint16_t insn2, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int rd = bits (insn2, 8, 11); |
| /* Since immediate has the same encoding in ADR ADD and SUB, so we simply |
| extract raw immediate encoding rather than computing immediate. When |
| generating ADD or SUB instruction, we can simply perform OR operation to |
| set immediate into ADD. */ |
| unsigned int imm_3_8 = insn2 & 0x70ff; |
| unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */ |
| |
| displaced_debug_printf ("copying thumb adr r%d, #%d:%d insn %.4x%.4x", |
| rd, imm_i, imm_3_8, insn1, insn2); |
| |
| if (bit (insn1, 7)) /* Encoding T2 */ |
| { |
| /* Encoding T3: SUB Rd, Rd, #imm */ |
| dsc->modinsn[0] = (0xf1a0 | rd | imm_i); |
| dsc->modinsn[1] = ((rd << 8) | imm_3_8); |
| } |
| else /* Encoding T3 */ |
| { |
| /* Encoding T3: ADD Rd, Rd, #imm */ |
| dsc->modinsn[0] = (0xf100 | rd | imm_i); |
| dsc->modinsn[1] = ((rd << 8) | imm_3_8); |
| } |
| dsc->numinsns = 2; |
| |
| install_pc_relative (gdbarch, regs, dsc, rd); |
| |
| return 0; |
| } |
| |
| static int |
| thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, uint16_t insn1, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned int rt = bits (insn1, 8, 10); |
| unsigned int pc; |
| int imm8 = (bits (insn1, 0, 7) << 2); |
| |
| /* LDR Rd, #imm8 |
| |
| Rwrite as: |
| |
| Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8; |
| |
| Insn: LDR R0, [R2, R3]; |
| Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */ |
| |
| displaced_debug_printf ("copying thumb ldr r%d [pc #%d]", rt, imm8); |
| |
| dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); |
| dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); |
| dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); |
| pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); |
| /* The assembler calculates the required value of the offset from the |
| Align(PC,4) value of this instruction to the label. */ |
| pc = pc & 0xfffffffc; |
| |
| displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC); |
| displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC); |
| |
| dsc->rd = rt; |
| dsc->u.ldst.xfersize = 4; |
| dsc->u.ldst.rn = 0; |
| dsc->u.ldst.immed = 0; |
| dsc->u.ldst.writeback = 0; |
| dsc->u.ldst.restore_r4 = 0; |
| |
| dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/ |
| |
| dsc->cleanup = &cleanup_load; |
| |
| return 0; |
| } |
| |
| /* Copy Thumb cbnz/cbz instruction. */ |
| |
| static int |
| thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| int non_zero = bit (insn1, 11); |
| unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1); |
| CORE_ADDR from = dsc->insn_addr; |
| int rn = bits (insn1, 0, 2); |
| int rn_val = displaced_read_reg (regs, dsc, rn); |
| |
| dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero); |
| /* CBNZ and CBZ do not affect the condition flags. If condition is true, |
| set it INST_AL, so cleanup_branch will know branch is taken, otherwise, |
| condition is false, let it be, cleanup_branch will do nothing. */ |
| if (dsc->u.branch.cond) |
| { |
| dsc->u.branch.cond = INST_AL; |
| dsc->u.branch.dest = from + 4 + imm5; |
| } |
| else |
| dsc->u.branch.dest = from + 2; |
| |
| dsc->u.branch.link = 0; |
| dsc->u.branch.exchange = 0; |
| |
| displaced_debug_printf ("copying %s [r%d = 0x%x] insn %.4x to %.8lx", |
| non_zero ? "cbnz" : "cbz", |
| rn, rn_val, insn1, dsc->u.branch.dest); |
| |
| dsc->modinsn[0] = THUMB_NOP; |
| |
| dsc->cleanup = &cleanup_branch; |
| return 0; |
| } |
| |
| /* Copy Table Branch Byte/Halfword */ |
| static int |
| thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1, |
| uint16_t insn2, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| ULONGEST rn_val, rm_val; |
| int is_tbh = bit (insn2, 4); |
| CORE_ADDR halfwords = 0; |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3)); |
| rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3)); |
| |
| if (is_tbh) |
| { |
| gdb_byte buf[2]; |
| |
| target_read_memory (rn_val + 2 * rm_val, buf, 2); |
| halfwords = extract_unsigned_integer (buf, 2, byte_order); |
| } |
| else |
| { |
| gdb_byte buf[1]; |
| |
| target_read_memory (rn_val + rm_val, buf, 1); |
| halfwords = extract_unsigned_integer (buf, 1, byte_order); |
| } |
| |
| displaced_debug_printf ("%s base 0x%x offset 0x%x offset 0x%x", |
| is_tbh ? "tbh" : "tbb", |
| (unsigned int) rn_val, (unsigned int) rm_val, |
| (unsigned int) halfwords); |
| |
| dsc->u.branch.cond = INST_AL; |
| dsc->u.branch.link = 0; |
| dsc->u.branch.exchange = 0; |
| dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords; |
| |
| dsc->cleanup = &cleanup_branch; |
| |
| return 0; |
| } |
| |
| static void |
| cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| /* PC <- r7 */ |
| int val = displaced_read_reg (regs, dsc, 7); |
| displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC); |
| |
| /* r7 <- r8 */ |
| val = displaced_read_reg (regs, dsc, 8); |
| displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC); |
| |
| /* r8 <- tmp[0] */ |
| displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC); |
| |
| } |
| |
| static int |
| thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, uint16_t insn1, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| dsc->u.block.regmask = insn1 & 0x00ff; |
| |
| /* Rewrite instruction: POP {rX, rY, ...,rZ, PC} |
| to : |
| |
| (1) register list is full, that is, r0-r7 are used. |
| Prepare: tmp[0] <- r8 |
| |
| POP {r0, r1, ...., r6, r7}; remove PC from reglist |
| MOV r8, r7; Move value of r7 to r8; |
| POP {r7}; Store PC value into r7. |
| |
| Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0] |
| |
| (2) register list is not full, supposing there are N registers in |
| register list (except PC, 0 <= N <= 7). |
| Prepare: for each i, 0 - N, tmp[i] <- ri. |
| |
| POP {r0, r1, ...., rN}; |
| |
| Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN |
| from tmp[] properly. |
| */ |
| displaced_debug_printf ("copying thumb pop {%.8x, pc} insn %.4x", |
| dsc->u.block.regmask, insn1); |
| |
| if (dsc->u.block.regmask == 0xff) |
| { |
| dsc->tmp[0] = displaced_read_reg (regs, dsc, 8); |
| |
| dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */ |
| dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */ |
| dsc->modinsn[2] = 0xbc80; /* POP {r7} */ |
| |
| dsc->numinsns = 3; |
| dsc->cleanup = &cleanup_pop_pc_16bit_all; |
| } |
| else |
| { |
| unsigned int num_in_list = count_one_bits (dsc->u.block.regmask); |
| unsigned int i; |
| unsigned int new_regmask; |
| |
| for (i = 0; i < num_in_list + 1; i++) |
| dsc->tmp[i] = displaced_read_reg (regs, dsc, i); |
| |
| new_regmask = (1 << (num_in_list + 1)) - 1; |
| |
| displaced_debug_printf ("POP {..., pc}: original reg list %.4x, " |
| "modified list %.4x", |
| (int) dsc->u.block.regmask, new_regmask); |
| |
| dsc->u.block.regmask |= 0x8000; |
| dsc->u.block.writeback = 0; |
| dsc->u.block.cond = INST_AL; |
| |
| dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff); |
| |
| dsc->cleanup = &cleanup_block_load_pc; |
| } |
| |
| return 0; |
| } |
| |
| static void |
| thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| unsigned short op_bit_12_15 = bits (insn1, 12, 15); |
| unsigned short op_bit_10_11 = bits (insn1, 10, 11); |
| int err = 0; |
| |
| /* 16-bit thumb instructions. */ |
| switch (op_bit_12_15) |
| { |
| /* Shift (imme), add, subtract, move and compare. */ |
| case 0: case 1: case 2: case 3: |
| err = thumb_copy_unmodified_16bit (gdbarch, insn1, |
| "shift/add/sub/mov/cmp", |
| dsc); |
| break; |
| case 4: |
| switch (op_bit_10_11) |
| { |
| case 0: /* Data-processing */ |
| err = thumb_copy_unmodified_16bit (gdbarch, insn1, |
| "data-processing", |
| dsc); |
| break; |
| case 1: /* Special data instructions and branch and exchange. */ |
| { |
| unsigned short op = bits (insn1, 7, 9); |
| if (op == 6 || op == 7) /* BX or BLX */ |
| err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc); |
| else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */ |
| err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc); |
| else |
| err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data", |
| dsc); |
| } |
| break; |
| default: /* LDR (literal) */ |
| err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc); |
| } |
| break; |
| case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */ |
| err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc); |
| break; |
| case 10: |
| if (op_bit_10_11 < 2) /* Generate PC-relative address */ |
| err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc); |
| else /* Generate SP-relative address */ |
| err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc); |
| break; |
| case 11: /* Misc 16-bit instructions */ |
| { |
| switch (bits (insn1, 8, 11)) |
| { |
| case 1: case 3: case 9: case 11: /* CBNZ, CBZ */ |
| err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc); |
| break; |
| case 12: case 13: /* POP */ |
| if (bit (insn1, 8)) /* PC is in register list. */ |
| err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc); |
| else |
| err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc); |
| break; |
| case 15: /* If-Then, and hints */ |
| if (bits (insn1, 0, 3)) |
| /* If-Then makes up to four following instructions conditional. |
| IT instruction itself is not conditional, so handle it as a |
| common unmodified instruction. */ |
| err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then", |
| dsc); |
| else |
| err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc); |
| break; |
| default: |
| err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc); |
| } |
| } |
| break; |
| case 12: |
| if (op_bit_10_11 < 2) /* Store multiple registers */ |
| err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc); |
| else /* Load multiple registers */ |
| err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc); |
| break; |
| case 13: /* Conditional branch and supervisor call */ |
| if (bits (insn1, 9, 11) != 7) /* conditional branch */ |
| err = thumb_copy_b (gdbarch, insn1, dsc); |
| else |
| err = thumb_copy_svc (gdbarch, insn1, regs, dsc); |
| break; |
| case 14: /* Unconditional branch */ |
| err = thumb_copy_b (gdbarch, insn1, dsc); |
| break; |
| default: |
| err = 1; |
| } |
| |
| if (err) |
| internal_error (__FILE__, __LINE__, |
| _("thumb_process_displaced_16bit_insn: Instruction decode error")); |
| } |
| |
| static int |
| decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch, |
| uint16_t insn1, uint16_t insn2, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| int rt = bits (insn2, 12, 15); |
| int rn = bits (insn1, 0, 3); |
| int op1 = bits (insn1, 7, 8); |
| |
| switch (bits (insn1, 5, 6)) |
| { |
| case 0: /* Load byte and memory hints */ |
| if (rt == 0xf) /* PLD/PLI */ |
| { |
| if (rn == 0xf) |
| /* PLD literal or Encoding T3 of PLI(immediate, literal). */ |
| return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc); |
| else |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "pli/pld", dsc); |
| } |
| else |
| { |
| if (rn == 0xf) /* LDRB/LDRSB (literal) */ |
| return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, |
| 1); |
| else |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "ldrb{reg, immediate}/ldrbt", |
| dsc); |
| } |
| |
| break; |
| case 1: /* Load halfword and memory hints. */ |
| if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */ |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "pld/unalloc memhint", dsc); |
| else |
| { |
| if (rn == 0xf) |
| return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, |
| 2); |
| else |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "ldrh/ldrht", dsc); |
| } |
| break; |
| case 2: /* Load word */ |
| { |
| int insn2_bit_8_11 = bits (insn2, 8, 11); |
| |
| if (rn == 0xf) |
| return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4); |
| else if (op1 == 0x1) /* Encoding T3 */ |
| return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc, |
| 0, 1); |
| else /* op1 == 0x0 */ |
| { |
| if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9) |
| /* LDR (immediate) */ |
| return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, |
| dsc, bit (insn2, 8), 1); |
| else if (insn2_bit_8_11 == 0xe) /* LDRT */ |
| return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "ldrt", dsc); |
| else |
| /* LDR (register) */ |
| return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, |
| dsc, 0, 0); |
| } |
| break; |
| } |
| default: |
| return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc); |
| break; |
| } |
| return 0; |
| } |
| |
| static void |
| thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1, |
| uint16_t insn2, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| int err = 0; |
| unsigned short op = bit (insn2, 15); |
| unsigned int op1 = bits (insn1, 11, 12); |
| |
| switch (op1) |
| { |
| case 1: |
| { |
| switch (bits (insn1, 9, 10)) |
| { |
| case 0: |
| if (bit (insn1, 6)) |
| { |
| /* Load/store {dual, exclusive}, table branch. */ |
| if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1 |
| && bits (insn2, 5, 7) == 0) |
| err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs, |
| dsc); |
| else |
| /* PC is not allowed to use in load/store {dual, exclusive} |
| instructions. */ |
| err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "load/store dual/ex", dsc); |
| } |
| else /* load/store multiple */ |
| { |
| switch (bits (insn1, 7, 8)) |
| { |
| case 0: case 3: /* SRS, RFE */ |
| err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "srs/rfe", dsc); |
| break; |
| case 1: case 2: /* LDM/STM/PUSH/POP */ |
| err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc); |
| break; |
| } |
| } |
| break; |
| |
| case 1: |
| /* Data-processing (shift register). */ |
| err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs, |
| dsc); |
| break; |
| default: /* Coprocessor instructions. */ |
| err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc); |
| break; |
| } |
| break; |
| } |
| case 2: /* op1 = 2 */ |
| if (op) /* Branch and misc control. */ |
| { |
| if (bit (insn2, 14) /* BLX/BL */ |
| || bit (insn2, 12) /* Unconditional branch */ |
| || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */ |
| err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc); |
| else |
| err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "misc ctrl", dsc); |
| } |
| else |
| { |
| if (bit (insn1, 9)) /* Data processing (plain binary imm). */ |
| { |
| int dp_op = bits (insn1, 4, 8); |
| int rn = bits (insn1, 0, 3); |
| if ((dp_op == 0 || dp_op == 0xa) && rn == 0xf) |
| err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2, |
| regs, dsc); |
| else |
| err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "dp/pb", dsc); |
| } |
| else /* Data processing (modified immediate) */ |
| err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "dp/mi", dsc); |
| } |
| break; |
| case 3: /* op1 = 3 */ |
| switch (bits (insn1, 9, 10)) |
| { |
| case 0: |
| if (bit (insn1, 4)) |
| err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2, |
| regs, dsc); |
| else /* NEON Load/Store and Store single data item */ |
| err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "neon elt/struct load/store", |
| dsc); |
| break; |
| case 1: /* op1 = 3, bits (9, 10) == 1 */ |
| switch (bits (insn1, 7, 8)) |
| { |
| case 0: case 1: /* Data processing (register) */ |
| err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "dp(reg)", dsc); |
| break; |
| case 2: /* Multiply and absolute difference */ |
| err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "mul/mua/diff", dsc); |
| break; |
| case 3: /* Long multiply and divide */ |
| err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, |
| "lmul/lmua", dsc); |
| break; |
| } |
| break; |
| default: /* Coprocessor instructions */ |
| err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc); |
| break; |
| } |
| break; |
| default: |
| err = 1; |
| } |
| |
| if (err) |
| internal_error (__FILE__, __LINE__, |
| _("thumb_process_displaced_32bit_insn: Instruction decode error")); |
| |
| } |
| |
| static void |
| thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from, |
| struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
| uint16_t insn1 |
| = read_memory_unsigned_integer (from, 2, byte_order_for_code); |
| |
| displaced_debug_printf ("process thumb insn %.4x at %.8lx", |
| insn1, (unsigned long) from); |
| |
| dsc->is_thumb = 1; |
| dsc->insn_size = thumb_insn_size (insn1); |
| if (thumb_insn_size (insn1) == 4) |
| { |
| uint16_t insn2 |
| = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code); |
| thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc); |
| } |
| else |
| thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc); |
| } |
| |
| void |
| arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from, |
| CORE_ADDR to, struct regcache *regs, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| int err = 0; |
| enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
| uint32_t insn; |
| |
| /* Most displaced instructions use a 1-instruction scratch space, so set this |
| here and override below if/when necessary. */ |
| dsc->numinsns = 1; |
| dsc->insn_addr = from; |
| dsc->scratch_base = to; |
| dsc->cleanup = NULL; |
| dsc->wrote_to_pc = 0; |
| |
| if (!displaced_in_arm_mode (regs)) |
| return thumb_process_displaced_insn (gdbarch, from, regs, dsc); |
| |
| dsc->is_thumb = 0; |
| dsc->insn_size = 4; |
| insn = read_memory_unsigned_integer (from, 4, byte_order_for_code); |
| displaced_debug_printf ("stepping insn %.8lx at %.8lx", |
| (unsigned long) insn, (unsigned long) from); |
| |
| if ((insn & 0xf0000000) == 0xf0000000) |
| err = arm_decode_unconditional (gdbarch, insn, regs, dsc); |
| else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24)) |
| { |
| case 0x0: case 0x1: case 0x2: case 0x3: |
| err = arm_decode_dp_misc (gdbarch, insn, regs, dsc); |
| break; |
| |
| case 0x4: case 0x5: case 0x6: |
| err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc); |
| break; |
| |
| case 0x7: |
| err = arm_decode_media (gdbarch, insn, dsc); |
| break; |
| |
| case 0x8: case 0x9: case 0xa: case 0xb: |
| err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc); |
| break; |
| |
| case 0xc: case 0xd: case 0xe: case 0xf: |
| err = arm_decode_svc_copro (gdbarch, insn, regs, dsc); |
| break; |
| } |
| |
| if (err) |
| internal_error (__FILE__, __LINE__, |
| _("arm_process_displaced_insn: Instruction decode error")); |
| } |
| |
| /* Actually set up the scratch space for a displaced instruction. */ |
| |
| void |
| arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from, |
| CORE_ADDR to, |
| arm_displaced_step_copy_insn_closure *dsc) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| unsigned int i, len, offset; |
| enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
| int size = dsc->is_thumb? 2 : 4; |
| const gdb_byte *bkp_insn; |
| |
| offset = 0; |
| /* Poke modified instruction(s). */ |
| for (i = 0; i < dsc->numinsns; i++) |
| { |
| if (size == 4) |
| displaced_debug_printf ("writing insn %.8lx at %.8lx", |
| dsc->modinsn[i], (unsigned long) to + offset); |
| else if (size == 2) |
| displaced_debug_printf ("writing insn %.4x at %.8lx", |
| (unsigned short) dsc->modinsn[i], |
| (unsigned long) to + offset); |
| |
| write_memory_unsigned_integer (to + offset, size, |
| byte_order_for_code, |
| dsc->modinsn[i]); |
| offset += size; |
| } |
| |
| /* Choose the correct breakpoint instruction. */ |
| if (dsc->is_thumb) |
| { |
| bkp_insn = tdep->thumb_breakpoint; |
| len = tdep->thumb_breakpoint_size; |
| } |
| else |
| { |
| bkp_insn = tdep->arm_breakpoint; |
| len = tdep->arm_breakpoint_size; |
| } |
| |
| /* Put breakpoint afterwards. */ |
| write_memory (to + offset, bkp_insn, len); |
| |
| displaced_debug_printf ("copy %s->%s", paddress (gdbarch, from), |
| paddress (gdbarch, to)); |
| } |
| |
| /* Entry point for cleaning things up after a displaced instruction has been |
| single-stepped. */ |
| |
| void |
| arm_displaced_step_fixup (struct gdbarch *gdbarch, |
| struct displaced_step_copy_insn_closure *dsc_, |
| CORE_ADDR from, CORE_ADDR to, |
| struct regcache *regs) |
| { |
| arm_displaced_step_copy_insn_closure *dsc |
| = (arm_displaced_step_copy_insn_closure *) dsc_; |
| |
| if (dsc->cleanup) |
| dsc->cleanup (gdbarch, regs, dsc); |
| |
| if (!dsc->wrote_to_pc) |
| regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, |
| dsc->insn_addr + dsc->insn_size); |
| |
| } |
| |
| #include "bfd-in2.h" |
| #include "libcoff.h" |
| |
| static int |
| gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info) |
| { |
| gdb_disassembler *di |
| = static_cast<gdb_disassembler *>(info->application_data); |
| struct gdbarch *gdbarch = di->arch (); |
| |
| if (arm_pc_is_thumb (gdbarch, memaddr)) |
| { |
| static asymbol *asym; |
| static combined_entry_type ce; |
| static struct coff_symbol_struct csym; |
| static struct bfd fake_bfd; |
| static bfd_target fake_target; |
| |
| if (csym.native == NULL) |
| { |
| /* Create a fake symbol vector containing a Thumb symbol. |
| This is solely so that the code in print_insn_little_arm() |
| and print_insn_big_arm() in opcodes/arm-dis.c will detect |
| the presence of a Thumb symbol and switch to decoding |
| Thumb instructions. */ |
| |
| fake_target.flavour = bfd_target_coff_flavour; |
| fake_bfd.xvec = &fake_target; |
| ce.u.syment.n_sclass = C_THUMBEXTFUNC; |
| csym.native = &ce; |
| csym.symbol.the_bfd = &fake_bfd; |
| csym.symbol.name = "fake"; |
| asym = (asymbol *) & csym; |
| } |
| |
| memaddr = UNMAKE_THUMB_ADDR (memaddr); |
| info->symbols = &asym; |
| } |
| else |
| info->symbols = NULL; |
| |
| /* GDB is able to get bfd_mach from the exe_bfd, info->mach is |
| accurate, so mark USER_SPECIFIED_MACHINE_TYPE bit. Otherwise, |
| opcodes/arm-dis.c:print_insn reset info->mach, and it will trigger |
| the assert on the mismatch of info->mach and |
| bfd_get_mach (current_program_space->exec_bfd ()) in |
| default_print_insn. */ |
| if (current_program_space->exec_bfd () != NULL |
| && (current_program_space->exec_bfd ()->arch_info |
| == gdbarch_bfd_arch_info (gdbarch))) |
| info->flags |= USER_SPECIFIED_MACHINE_TYPE; |
| |
| return default_print_insn (memaddr, info); |
| } |
| |
| /* The following define instruction sequences that will cause ARM |
| cpu's to take an undefined instruction trap. These are used to |
| signal a breakpoint to GDB. |
| |
| The newer ARMv4T cpu's are capable of operating in ARM or Thumb |
| modes. A different instruction is required for each mode. The ARM |
| cpu's can also be big or little endian. Thus four different |
| instructions are needed to support all cases. |
| |
| Note: ARMv4 defines several new instructions that will take the |
| undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does |
| not in fact add the new instructions. The new undefined |
| instructions in ARMv4 are all instructions that had no defined |
| behaviour in earlier chips. There is no guarantee that they will |
| raise an exception, but may be treated as NOP's. In practice, it |
| may only safe to rely on instructions matching: |
| |
| 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 |
| 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 |
| C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x |
| |
| Even this may only true if the condition predicate is true. The |
| following use a condition predicate of ALWAYS so it is always TRUE. |
| |
| There are other ways of forcing a breakpoint. GNU/Linux, RISC iX, |
| and NetBSD all use a software interrupt rather than an undefined |
| instruction to force a trap. This can be handled by by the |
| abi-specific code during establishment of the gdbarch vector. */ |
| |
| #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7} |
| #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE} |
| #define THUMB_LE_BREAKPOINT {0xbe,0xbe} |
| #define THUMB_BE_BREAKPOINT {0xbe,0xbe} |
| |
| static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT; |
| static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT; |
| static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT; |
| static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT; |
| |
| /* Implement the breakpoint_kind_from_pc gdbarch method. */ |
| |
| static int |
| arm_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); |
| |
| if (arm_pc_is_thumb (gdbarch, *pcptr)) |
| { |
| *pcptr = UNMAKE_THUMB_ADDR (*pcptr); |
| |
| /* If we have a separate 32-bit breakpoint instruction for Thumb-2, |
| check whether we are replacing a 32-bit instruction. */ |
| if (tdep->thumb2_breakpoint != NULL) |
| { |
| gdb_byte buf[2]; |
| |
| if (target_read_memory (*pcptr, buf, 2) == 0) |
| { |
| unsigned short inst1; |
| |
| inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code); |
| if (thumb_insn_size (inst1) == 4) |
| return ARM_BP_KIND_THUMB2; |
| } |
| } |
| |
| return ARM_BP_KIND_THUMB; |
| } |
| else |
| return ARM_BP_KIND_ARM; |
| |
| } |
| |
| /* Implement the sw_breakpoint_from_kind gdbarch method. */ |
| |
| static const gdb_byte * |
| arm_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| switch (kind) |
| { |
| case ARM_BP_KIND_ARM: |
| *size = tdep->arm_breakpoint_size; |
| return tdep->arm_breakpoint; |
| case ARM_BP_KIND_THUMB: |
| *size = tdep->thumb_breakpoint_size; |
| return tdep->thumb_breakpoint; |
| case ARM_BP_KIND_THUMB2: |
| *size = tdep->thumb2_breakpoint_size; |
| return tdep->thumb2_breakpoint; |
| default: |
| gdb_assert_not_reached ("unexpected arm breakpoint kind"); |
| } |
| } |
| |
| /* Implement the breakpoint_kind_from_current_state gdbarch method. */ |
| |
| static int |
| arm_breakpoint_kind_from_current_state (struct gdbarch *gdbarch, |
| struct regcache *regcache, |
| CORE_ADDR *pcptr) |
| { |
| gdb_byte buf[4]; |
| |
| /* Check the memory pointed by PC is readable. */ |
| if (target_read_memory (regcache_read_pc (regcache), buf, 4) == 0) |
| { |
| struct arm_get_next_pcs next_pcs_ctx; |
| |
| arm_get_next_pcs_ctor (&next_pcs_ctx, |
| &arm_get_next_pcs_ops, |
| gdbarch_byte_order (gdbarch), |
| gdbarch_byte_order_for_code (gdbarch), |
| 0, |
| regcache); |
| |
| std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx); |
| |
| /* If MEMADDR is the next instruction of current pc, do the |
| software single step computation, and get the thumb mode by |
| the destination address. */ |
| for (CORE_ADDR pc : next_pcs) |
| { |
| if (UNMAKE_THUMB_ADDR (pc) == *pcptr) |
| { |
| if (IS_THUMB_ADDR (pc)) |
| { |
| *pcptr = MAKE_THUMB_ADDR (*pcptr); |
| return arm_breakpoint_kind_from_pc (gdbarch, pcptr); |
| } |
| else |
| return ARM_BP_KIND_ARM; |
| } |
| } |
| } |
| |
| return arm_breakpoint_kind_from_pc (gdbarch, pcptr); |
| } |
| |
| /* Extract from an array REGBUF containing the (raw) register state a |
| function return value of type TYPE, and copy that, in virtual |
| format, into VALBUF. */ |
| |
| static void |
| arm_extract_return_value (struct type *type, struct regcache *regs, |
| gdb_byte *valbuf) |
| { |
| struct gdbarch *gdbarch = regs->arch (); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| if (TYPE_CODE_FLT == type->code ()) |
| { |
| switch (tdep->fp_model) |
| { |
| case ARM_FLOAT_FPA: |
| { |
| /* The value is in register F0 in internal format. We need to |
| extract the raw value and then convert it to the desired |
| internal type. */ |
| bfd_byte tmpbuf[ARM_FP_REGISTER_SIZE]; |
| |
| regs->cooked_read (ARM_F0_REGNUM, tmpbuf); |
| target_float_convert (tmpbuf, arm_ext_type (gdbarch), |
| valbuf, type); |
| } |
| break; |
| |
| case ARM_FLOAT_SOFT_FPA: |
| case ARM_FLOAT_SOFT_VFP: |
| /* ARM_FLOAT_VFP can arise if this is a variadic function so |
| not using the VFP ABI code. */ |
| case ARM_FLOAT_VFP: |
| regs->cooked_read (ARM_A1_REGNUM, valbuf); |
| if (TYPE_LENGTH (type) > 4) |
| regs->cooked_read (ARM_A1_REGNUM + 1, |
| valbuf + ARM_INT_REGISTER_SIZE); |
| break; |
| |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("arm_extract_return_value: " |
| "Floating point model not supported")); |
| break; |
| } |
| } |
| else if (type->code () == TYPE_CODE_INT |
| || type->code () == TYPE_CODE_CHAR |
| || type->code () == TYPE_CODE_BOOL |
| || type->code () == TYPE_CODE_PTR |
| || TYPE_IS_REFERENCE (type) |
| || type->code () == TYPE_CODE_ENUM |
| || is_fixed_point_type (type)) |
| { |
| /* If the type is a plain integer, then the access is |
| straight-forward. Otherwise we have to play around a bit |
| more. */ |
| int len = TYPE_LENGTH (type); |
| int regno = ARM_A1_REGNUM; |
| ULONGEST tmp; |
| |
| while (len > 0) |
| { |
| /* By using store_unsigned_integer we avoid having to do |
| anything special for small big-endian values. */ |
| regcache_cooked_read_unsigned (regs, regno++, &tmp); |
| store_unsigned_integer (valbuf, |
| (len > ARM_INT_REGISTER_SIZE |
| ? ARM_INT_REGISTER_SIZE : len), |
| byte_order, tmp); |
| len -= ARM_INT_REGISTER_SIZE; |
| valbuf += ARM_INT_REGISTER_SIZE; |
| } |
| } |
| else |
| { |
| /* For a structure or union the behaviour is as if the value had |
| been stored to word-aligned memory and then loaded into |
| registers with 32-bit load instruction(s). */ |
| int len = TYPE_LENGTH (type); |
| int regno = ARM_A1_REGNUM; |
| bfd_byte tmpbuf[ARM_INT_REGISTER_SIZE]; |
| |
| while (len > 0) |
| { |
| regs->cooked_read (regno++, tmpbuf); |
| memcpy (valbuf, tmpbuf, |
| len > ARM_INT_REGISTER_SIZE ? ARM_INT_REGISTER_SIZE : len); |
| len -= ARM_INT_REGISTER_SIZE; |
| valbuf += ARM_INT_REGISTER_SIZE; |
| } |
| } |
| } |
| |
| |
| /* Will a function return an aggregate type in memory or in a |
| register? Return 0 if an aggregate type can be returned in a |
| register, 1 if it must be returned in memory. */ |
| |
| static int |
| arm_return_in_memory (struct gdbarch *gdbarch, struct type *type) |
| { |
| enum type_code code; |
| |
| type = check_typedef (type); |
| |
| /* Simple, non-aggregate types (ie not including vectors and |
| complex) are always returned in a register (or registers). */ |
| code = type->code (); |
| if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code |
| && TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code) |
| return 0; |
| |
| if (TYPE_CODE_ARRAY == code && type->is_vector ()) |
| { |
| /* Vector values should be returned using ARM registers if they |
| are not over 16 bytes. */ |
| return (TYPE_LENGTH (type) > 16); |
| } |
| |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| if (tdep->arm_abi != ARM_ABI_APCS) |
| { |
| /* The AAPCS says all aggregates not larger than a word are returned |
| in a register. */ |
| if (TYPE_LENGTH (type) <= ARM_INT_REGISTER_SIZE) |
| return 0; |
| |
| return 1; |
| } |
| else |
| { |
| int nRc; |
| |
| /* All aggregate types that won't fit in a register must be returned |
| in memory. */ |
| if (TYPE_LENGTH (type) > ARM_INT_REGISTER_SIZE) |
| return 1; |
| |
| /* In the ARM ABI, "integer" like aggregate types are returned in |
| registers. For an aggregate type to be integer like, its size |
| must be less than or equal to ARM_INT_REGISTER_SIZE and the |
| offset of each addressable subfield must be zero. Note that bit |
| fields are not addressable, and all addressable subfields of |
| unions always start at offset zero. |
| |
| This function is based on the behaviour of GCC 2.95.1. |
| See: gcc/arm.c: arm_return_in_memory() for details. |
| |
| Note: All versions of GCC before GCC 2.95.2 do not set up the |
| parameters correctly for a function returning the following |
| structure: struct { float f;}; This should be returned in memory, |
| not a register. Richard Earnshaw sent me a patch, but I do not |
| know of any way to detect if a function like the above has been |
| compiled with the correct calling convention. */ |
| |
| /* Assume all other aggregate types can be returned in a register. |
| Run a check for structures, unions and arrays. */ |
| nRc = 0; |
| |
| if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code)) |
| { |
| int i; |
| /* Need to check if this struct/union is "integer" like. For |
| this to be true, its size must be less than or equal to |
| ARM_INT_REGISTER_SIZE and the offset of each addressable |
| subfield must be zero. Note that bit fields are not |
| addressable, and unions always start at offset zero. If any |
| of the subfields is a floating point type, the struct/union |
| cannot be an integer type. */ |
| |
| /* For each field in the object, check: |
| 1) Is it FP? --> yes, nRc = 1; |
| 2) Is it addressable (bitpos != 0) and |
| not packed (bitsize == 0)? |
| --> yes, nRc = 1 |
| */ |
| |
| for (i = 0; i < type->num_fields (); i++) |
| { |
| enum type_code field_type_code; |
| |
| field_type_code |
| = check_typedef (type->field (i).type ())->code (); |
| |
| /* Is it a floating point type field? */ |
| if (field_type_code == TYPE_CODE_FLT) |
| { |
| nRc = 1; |
| break; |
| } |
| |
| /* If bitpos != 0, then we have to care about it. */ |
| if (type->field (i).loc_bitpos () != 0) |
| { |
| /* Bitfields are not addressable. If the field bitsize is |
| zero, then the field is not packed. Hence it cannot be |
| a bitfield or any other packed type. */ |
| if (TYPE_FIELD_BITSIZE (type, i) == 0) |
| { |
| nRc = 1; |
| break; |
| } |
| } |
| } |
| } |
| |
| return nRc; |
| } |
| } |
| |
| /* Write into appropriate registers a function return value of type |
| TYPE, given in virtual format. */ |
| |
| static void |
| arm_store_return_value (struct type *type, struct regcache *regs, |
| const gdb_byte *valbuf) |
| { |
| struct gdbarch *gdbarch = regs->arch (); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| if (type->code () == TYPE_CODE_FLT) |
| { |
| gdb_byte buf[ARM_FP_REGISTER_SIZE]; |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| switch (tdep->fp_model) |
| { |
| case ARM_FLOAT_FPA: |
| |
| target_float_convert (valbuf, type, buf, arm_ext_type (gdbarch)); |
| regs->cooked_write (ARM_F0_REGNUM, buf); |
| break; |
| |
| case ARM_FLOAT_SOFT_FPA: |
| case ARM_FLOAT_SOFT_VFP: |
| /* ARM_FLOAT_VFP can arise if this is a variadic function so |
| not using the VFP ABI code. */ |
| case ARM_FLOAT_VFP: |
| regs->cooked_write (ARM_A1_REGNUM, valbuf); |
| if (TYPE_LENGTH (type) > 4) |
| regs->cooked_write (ARM_A1_REGNUM + 1, |
| valbuf + ARM_INT_REGISTER_SIZE); |
| break; |
| |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("arm_store_return_value: Floating " |
| "point model not supported")); |
| break; |
| } |
| } |
| else if (type->code () == TYPE_CODE_INT |
| || type->code () == TYPE_CODE_CHAR |
| || type->code () == TYPE_CODE_BOOL |
| || type->code () == TYPE_CODE_PTR |
| || TYPE_IS_REFERENCE (type) |
| || type->code () == TYPE_CODE_ENUM) |
| { |
| if (TYPE_LENGTH (type) <= 4) |
| { |
| /* Values of one word or less are zero/sign-extended and |
| returned in r0. */ |
| bfd_byte tmpbuf[ARM_INT_REGISTER_SIZE]; |
| LONGEST val = unpack_long (type, valbuf); |
| |
| store_signed_integer (tmpbuf, ARM_INT_REGISTER_SIZE, byte_order, val); |
| regs->cooked_write (ARM_A1_REGNUM, tmpbuf); |
| } |
| else |
| { |
| /* Integral values greater than one word are stored in consecutive |
| registers starting with r0. This will always be a multiple of |
| the regiser size. */ |
| int len = TYPE_LENGTH (type); |
| int regno = ARM_A1_REGNUM; |
| |
| while (len > 0) |
| { |
| regs->cooked_write (regno++, valbuf); |
| len -= ARM_INT_REGISTER_SIZE; |
| valbuf += ARM_INT_REGISTER_SIZE; |
| } |
| } |
| } |
| else |
| { |
| /* For a structure or union the behaviour is as if the value had |
| been stored to word-aligned memory and then loaded into |
| registers with 32-bit load instruction(s). */ |
| int len = TYPE_LENGTH (type); |
| int regno = ARM_A1_REGNUM; |
| bfd_byte tmpbuf[ARM_INT_REGISTER_SIZE]; |
| |
| while (len > 0) |
| { |
| memcpy (tmpbuf, valbuf, |
| len > ARM_INT_REGISTER_SIZE ? ARM_INT_REGISTER_SIZE : len); |
| regs->cooked_write (regno++, tmpbuf); |
| len -= ARM_INT_REGISTER_SIZE; |
| valbuf += ARM_INT_REGISTER_SIZE; |
| } |
| } |
| } |
| |
| |
| /* Handle function return values. */ |
| |
| static enum return_value_convention |
| arm_return_value (struct gdbarch *gdbarch, struct value *function, |
| struct type *valtype, struct regcache *regcache, |
| gdb_byte *readbuf, const gdb_byte *writebuf) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| struct type *func_type = function ? value_type (function) : NULL; |
| enum arm_vfp_cprc_base_type vfp_base_type; |
| int vfp_base_count; |
| |
| if (arm_vfp_abi_for_function (gdbarch, func_type) |
| && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count)) |
| { |
| int reg_char = arm_vfp_cprc_reg_char (vfp_base_type); |
| int unit_length = arm_vfp_cprc_unit_length (vfp_base_type); |
| int i; |
| for (i = 0; i < vfp_base_count; i++) |
| { |
| if (reg_char == 'q') |
| { |
| if (writebuf) |
| arm_neon_quad_write (gdbarch, regcache, i, |
| writebuf + i * unit_length); |
| |
| if (readbuf) |
| arm_neon_quad_read (gdbarch, regcache, i, |
| readbuf + i * unit_length); |
| } |
| else |
| { |
| char name_buf[4]; |
| int regnum; |
| |
| xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i); |
| regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
| strlen (name_buf)); |
| if (writebuf) |
| regcache->cooked_write (regnum, writebuf + i * unit_length); |
| if (readbuf) |
| regcache->cooked_read (regnum, readbuf + i * unit_length); |
| } |
| } |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| |
| if (valtype->code () == TYPE_CODE_STRUCT |
| || valtype->code () == TYPE_CODE_UNION |
| || valtype->code () == TYPE_CODE_ARRAY) |
| { |
| if (tdep->struct_return == pcc_struct_return |
| || arm_return_in_memory (gdbarch, valtype)) |
| return RETURN_VALUE_STRUCT_CONVENTION; |
| } |
| else if (valtype->code () == TYPE_CODE_COMPLEX) |
| { |
| if (arm_return_in_memory (gdbarch, valtype)) |
| return RETURN_VALUE_STRUCT_CONVENTION; |
| } |
| |
| if (writebuf) |
| arm_store_return_value (valtype, regcache, writebuf); |
| |
| if (readbuf) |
| arm_extract_return_value (valtype, regcache, readbuf); |
| |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| |
| |
| static int |
| arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (frame); |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| CORE_ADDR jb_addr; |
| gdb_byte buf[ARM_INT_REGISTER_SIZE]; |
| |
| jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM); |
| |
| if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf, |
| ARM_INT_REGISTER_SIZE)) |
| return 0; |
| |
| *pc = extract_unsigned_integer (buf, ARM_INT_REGISTER_SIZE, byte_order); |
| return 1; |
| } |
| /* A call to cmse secure entry function "foo" at "a" is modified by |
| GNU ld as "b". |
| a) bl xxxx <foo> |
| |
| <foo> |
| xxxx: |
| |
| b) bl yyyy <__acle_se_foo> |
| |
| section .gnu.sgstubs: |
| <foo> |
| yyyy: sg // secure gateway |
| b.w xxxx <__acle_se_foo> // original_branch_dest |
| |
| <__acle_se_foo> |
| xxxx: |
| |
| When the control at "b", the pc contains "yyyy" (sg address) which is a |
| trampoline and does not exist in source code. This function returns the |
| target pc "xxxx". For more details please refer to section 5.4 |
| (Entry functions) and section 3.4.4 (C level development flow of secure code) |
| of "armv8-m-security-extensions-requirements-on-development-tools-engineering-specification" |
| document on www.developer.arm.com. */ |
| |
| static CORE_ADDR |
| arm_skip_cmse_entry (CORE_ADDR pc, const char *name, struct objfile *objfile) |
| { |
| int target_len = strlen (name) + strlen ("__acle_se_") + 1; |
| char *target_name = (char *) alloca (target_len); |
| xsnprintf (target_name, target_len, "%s%s", "__acle_se_", name); |
| |
| struct bound_minimal_symbol minsym |
| = lookup_minimal_symbol (target_name, NULL, objfile); |
| |
| if (minsym.minsym != nullptr) |
| return BMSYMBOL_VALUE_ADDRESS (minsym); |
| |
| return 0; |
| } |
| |
| /* Return true when SEC points to ".gnu.sgstubs" section. */ |
| |
| static bool |
| arm_is_sgstubs_section (struct obj_section *sec) |
| { |
| return (sec != nullptr |
| && sec->the_bfd_section != nullptr |
| && sec->the_bfd_section->name != nullptr |
| && streq (sec->the_bfd_section->name, ".gnu.sgstubs")); |
| } |
| |
| /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline, |
| return the target PC. Otherwise return 0. */ |
| |
| CORE_ADDR |
| arm_skip_stub (struct frame_info *frame, CORE_ADDR pc) |
| { |
| const char *name; |
| int namelen; |
| CORE_ADDR start_addr; |
| |
| /* Find the starting address and name of the function containing the PC. */ |
| if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) |
| { |
| /* Trampoline 'bx reg' doesn't belong to any functions. Do the |
| check here. */ |
| start_addr = arm_skip_bx_reg (frame, pc); |
| if (start_addr != 0) |
| return start_addr; |
| |
| return 0; |
| } |
| |
| /* If PC is in a Thumb call or return stub, return the address of the |
| target PC, which is in a register. The thunk functions are called |
| _call_via_xx, where x is the register name. The possible names |
| are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar |
| functions, named __ARM_call_via_r[0-7]. */ |
| if (startswith (name, "_call_via_") |
| || startswith (name, "__ARM_call_via_")) |
| { |
| /* Use the name suffix to determine which register contains the |
| target PC. */ |
| static const char *table[15] = |
| {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "sl", "fp", "ip", "sp", "lr" |
| }; |
| int regno; |
| int offset = strlen (name) - 2; |
| |
| for (regno = 0; regno <= 14; regno++) |
| if (strcmp (&name[offset], table[regno]) == 0) |
| return get_frame_register_unsigned (frame, regno); |
| } |
| |
| /* GNU ld generates __foo_from_arm or __foo_from_thumb for |
| non-interworking calls to foo. We could decode the stubs |
| to find the target but it's easier to use the symbol table. */ |
| namelen = strlen (name); |
| if (name[0] == '_' && name[1] == '_' |
| && ((namelen > 2 + strlen ("_from_thumb") |
| && startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb")) |
| || (namelen > 2 + strlen ("_from_arm") |
| && startswith (name + namelen - strlen ("_from_arm"), "_from_arm")))) |
| { |
| char *target_name; |
| int target_len = namelen - 2; |
| struct bound_minimal_symbol minsym; |
| struct objfile *objfile; |
| struct obj_section *sec; |
| |
| if (name[namelen - 1] == 'b') |
| target_len -= strlen ("_from_thumb"); |
| else |
| target_len -= strlen ("_from_arm"); |
| |
| target_name = (char *) alloca (target_len + 1); |
| memcpy (target_name, name + 2, target_len); |
| target_name[target_len] = '\0'; |
| |
| sec = find_pc_section (pc); |
| objfile = (sec == NULL) ? NULL : sec->objfile; |
| minsym = lookup_minimal_symbol (target_name, NULL, objfile); |
| if (minsym.minsym != NULL) |
| return BMSYMBOL_VALUE_ADDRESS (minsym); |
| else |
| return 0; |
| } |
| |
| struct obj_section *section = find_pc_section (pc); |
| |
| /* Check whether SECTION points to the ".gnu.sgstubs" section. */ |
| if (arm_is_sgstubs_section (section)) |
| return arm_skip_cmse_entry (pc, name, section->objfile); |
| |
| return 0; /* not a stub */ |
| } |
| |
| static void |
| arm_update_current_architecture (void) |
| { |
| /* If the current architecture is not ARM, we have nothing to do. */ |
| if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_arm) |
| return; |
| |
| /* Update the architecture. */ |
| gdbarch_info info; |
| if (!gdbarch_update_p (info)) |
| internal_error (__FILE__, __LINE__, _("could not update architecture")); |
| } |
| |
| static void |
| set_fp_model_sfunc (const char *args, int from_tty, |
| struct cmd_list_element *c) |
| { |
| int fp_model; |
| |
| for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++) |
| if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0) |
| { |
| arm_fp_model = (enum arm_float_model) fp_model; |
| break; |
| } |
| |
| if (fp_model == ARM_FLOAT_LAST) |
| internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."), |
| current_fp_model); |
| |
| arm_update_current_architecture (); |
| } |
| |
| static void |
| show_fp_model (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| arm_gdbarch_tdep *tdep |
| = (arm_gdbarch_tdep *) gdbarch_tdep (target_gdbarch ()); |
| |
| if (arm_fp_model == ARM_FLOAT_AUTO |
| && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm) |
| fprintf_filtered (file, _("\ |
| The current ARM floating point model is \"auto\" (currently \"%s\").\n"), |
| fp_model_strings[tdep->fp_model]); |
| else |
| fprintf_filtered (file, _("\ |
| The current ARM floating point model is \"%s\".\n"), |
| fp_model_strings[arm_fp_model]); |
| } |
| |
| static void |
| arm_set_abi (const char *args, int from_tty, |
| struct cmd_list_element *c) |
| { |
| int arm_abi; |
| |
| for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++) |
| if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0) |
| { |
| arm_abi_global = (enum arm_abi_kind) arm_abi; |
| break; |
| } |
| |
| if (arm_abi == ARM_ABI_LAST) |
| internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."), |
| arm_abi_string); |
| |
| arm_update_current_architecture (); |
| } |
| |
| static void |
| arm_show_abi (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| arm_gdbarch_tdep *tdep |
| = (arm_gdbarch_tdep *) gdbarch_tdep (target_gdbarch ()); |
| |
| if (arm_abi_global == ARM_ABI_AUTO |
| && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm) |
| fprintf_filtered (file, _("\ |
| The current ARM ABI is \"auto\" (currently \"%s\").\n"), |
| arm_abi_strings[tdep->arm_abi]); |
| else |
| fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"), |
| arm_abi_string); |
| } |
| |
| static void |
| arm_show_fallback_mode (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("The current execution mode assumed " |
| "(when symbols are unavailable) is \"%s\".\n"), |
| arm_fallback_mode_string); |
| } |
| |
| static void |
| arm_show_force_mode (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("The current execution mode assumed " |
| "(even when symbols are available) is \"%s\".\n"), |
| arm_force_mode_string); |
| } |
| |
| /* If the user changes the register disassembly style used for info |
| register and other commands, we have to also switch the style used |
| in opcodes for disassembly output. This function is run in the "set |
| arm disassembly" command, and does that. */ |
| |
| static void |
| set_disassembly_style_sfunc (const char *args, int from_tty, |
| struct cmd_list_element *c) |
| { |
| /* Convert the short style name into the long style name (eg, reg-names-*) |
| before calling the generic set_disassembler_options() function. */ |
| std::string long_name = std::string ("reg-names-") + disassembly_style; |
| set_disassembler_options (&long_name[0]); |
| } |
| |
| static void |
| show_disassembly_style_sfunc (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| struct gdbarch *gdbarch = get_current_arch (); |
| char *options = get_disassembler_options (gdbarch); |
| const char *style = ""; |
| int len = 0; |
| const char *opt; |
| |
| FOR_EACH_DISASSEMBLER_OPTION (opt, options) |
| if (startswith (opt, "reg-names-")) |
| { |
| style = &opt[strlen ("reg-names-")]; |
| len = strcspn (style, ","); |
| } |
| |
| fprintf_filtered (file, "The disassembly style is \"%.*s\".\n", len, style); |
| } |
| |
| /* Return the ARM register name corresponding to register I. */ |
| static const char * |
| arm_register_name (struct gdbarch *gdbarch, int i) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| if (is_s_pseudo (gdbarch, i)) |
| { |
| static const char *const s_pseudo_names[] = { |
| "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", |
| "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15", |
| "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23", |
| "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31", |
| }; |
| |
| return s_pseudo_names[i - tdep->s_pseudo_base]; |
| } |
| |
| if (is_q_pseudo (gdbarch, i)) |
| { |
| static const char *const q_pseudo_names[] = { |
| "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", |
| "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15", |
| }; |
| |
| return q_pseudo_names[i - tdep->q_pseudo_base]; |
| } |
| |
| if (is_mve_pseudo (gdbarch, i)) |
| return "p0"; |
| |
| if (i >= ARRAY_SIZE (arm_register_names)) |
| /* These registers are only supported on targets which supply |
| an XML description. */ |
| return ""; |
| |
| /* Non-pseudo registers. */ |
| return arm_register_names[i]; |
| } |
| |
| /* Test whether the coff symbol specific value corresponds to a Thumb |
| function. */ |
| |
| static int |
| coff_sym_is_thumb (int val) |
| { |
| return (val == C_THUMBEXT |
| || val == C_THUMBSTAT |
| || val == C_THUMBEXTFUNC |
| || val == C_THUMBSTATFUNC |
| || val == C_THUMBLABEL); |
| } |
| |
| /* arm_coff_make_msymbol_special() |
| arm_elf_make_msymbol_special() |
| |
| These functions test whether the COFF or ELF symbol corresponds to |
| an address in thumb code, and set a "special" bit in a minimal |
| symbol to indicate that it does. */ |
| |
| static void |
| arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym) |
| { |
| elf_symbol_type *elfsym = (elf_symbol_type *) sym; |
| |
| if (ARM_GET_SYM_BRANCH_TYPE (elfsym->internal_elf_sym.st_target_internal) |
| == ST_BRANCH_TO_THUMB) |
| MSYMBOL_SET_SPECIAL (msym); |
| } |
| |
| static void |
| arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym) |
| { |
| if (coff_sym_is_thumb (val)) |
| MSYMBOL_SET_SPECIAL (msym); |
| } |
| |
| static void |
| arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile, |
| asymbol *sym) |
| { |
| const char *name = bfd_asymbol_name (sym); |
| struct arm_per_bfd *data; |
| struct arm_mapping_symbol new_map_sym; |
| |
| gdb_assert (name[0] == '$'); |
| if (name[1] != 'a' && name[1] != 't' && name[1] != 'd') |
| return; |
| |
| data = arm_bfd_data_key.get (objfile->obfd); |
| if (data == NULL) |
| data = arm_bfd_data_key.emplace (objfile->obfd, |
| objfile->obfd->section_count); |
| arm_mapping_symbol_vec &map |
| = data->section_maps[bfd_asymbol_section (sym)->index]; |
| |
| new_map_sym.value = sym->value; |
| new_map_sym.type = name[1]; |
| |
| /* Insert at the end, the vector will be sorted on first use. */ |
| map.push_back (new_map_sym); |
| } |
| |
| static void |
| arm_write_pc (struct regcache *regcache, CORE_ADDR pc) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc); |
| |
| /* If necessary, set the T bit. */ |
| if (arm_apcs_32) |
| { |
| ULONGEST val, t_bit; |
| regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val); |
| t_bit = arm_psr_thumb_bit (gdbarch); |
| if (arm_pc_is_thumb (gdbarch, pc)) |
| regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, |
| val | t_bit); |
| else |
| regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, |
| val & ~t_bit); |
| } |
| } |
| |
| /* Read the contents of a NEON quad register, by reading from two |
| double registers. This is used to implement the quad pseudo |
| registers, and for argument passing in case the quad registers are |
| missing; vectors are passed in quad registers when using the VFP |
| ABI, even if a NEON unit is not present. REGNUM is the index of |
| the quad register, in [0, 15]. */ |
| |
| static enum register_status |
| arm_neon_quad_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
| int regnum, gdb_byte *buf) |
| { |
| char name_buf[4]; |
| gdb_byte reg_buf[8]; |
| int offset, double_regnum; |
| enum register_status status; |
| |
| xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1); |
| double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
| strlen (name_buf)); |
| |
| /* d0 is always the least significant half of q0. */ |
| if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
| offset = 8; |
| else |
| offset = 0; |
| |
| status = regcache->raw_read (double_regnum, reg_buf); |
| if (status != REG_VALID) |
| return status; |
| memcpy (buf + offset, reg_buf, 8); |
| |
| offset = 8 - offset; |
| status = regcache->raw_read (double_regnum + 1, reg_buf); |
| if (status != REG_VALID) |
| return status; |
| memcpy (buf + offset, reg_buf, 8); |
| |
| return REG_VALID; |
| } |
| |
| /* Read the contents of the MVE pseudo register REGNUM and store it |
| in BUF. */ |
| |
| static enum register_status |
| arm_mve_pseudo_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
| int regnum, gdb_byte *buf) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| /* P0 is the first 16 bits of VPR. */ |
| return regcache->raw_read_part (tdep->mve_vpr_regnum, 0, 2, buf); |
| } |
| |
| static enum register_status |
| arm_pseudo_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
| int regnum, gdb_byte *buf) |
| { |
| const int num_regs = gdbarch_num_regs (gdbarch); |
| char name_buf[4]; |
| gdb_byte reg_buf[8]; |
| int offset, double_regnum; |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| gdb_assert (regnum >= num_regs); |
| |
| if (is_q_pseudo (gdbarch, regnum)) |
| { |
| /* Quad-precision register. */ |
| return arm_neon_quad_read (gdbarch, regcache, |
| regnum - tdep->q_pseudo_base, buf); |
| } |
| else if (is_mve_pseudo (gdbarch, regnum)) |
| return arm_mve_pseudo_read (gdbarch, regcache, regnum, buf); |
| else |
| { |
| enum register_status status; |
| |
| regnum -= tdep->s_pseudo_base; |
| /* Single-precision register. */ |
| gdb_assert (regnum < 32); |
| |
| /* s0 is always the least significant half of d0. */ |
| if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
| offset = (regnum & 1) ? 0 : 4; |
| else |
| offset = (regnum & 1) ? 4 : 0; |
| |
| xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1); |
| double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
| strlen (name_buf)); |
| |
| status = regcache->raw_read (double_regnum, reg_buf); |
| if (status == REG_VALID) |
| memcpy (buf, reg_buf + offset, 4); |
| return status; |
| } |
| } |
| |
| /* Store the contents of BUF to a NEON quad register, by writing to |
| two double registers. This is used to implement the quad pseudo |
| registers, and for argument passing in case the quad registers are |
| missing; vectors are passed in quad registers when using the VFP |
| ABI, even if a NEON unit is not present. REGNUM is the index |
| of the quad register, in [0, 15]. */ |
| |
| static void |
| arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache, |
| int regnum, const gdb_byte *buf) |
| { |
| char name_buf[4]; |
| int offset, double_regnum; |
| |
| xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1); |
| double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
| strlen (name_buf)); |
| |
| /* d0 is always the least significant half of q0. */ |
| if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
| offset = 8; |
| else |
| offset = 0; |
| |
| regcache->raw_write (double_regnum, buf + offset); |
| offset = 8 - offset; |
| regcache->raw_write (double_regnum + 1, buf + offset); |
| } |
| |
| /* Store the contents of BUF to the MVE pseudo register REGNUM. */ |
| |
| static void |
| arm_mve_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache, |
| int regnum, const gdb_byte *buf) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| /* P0 is the first 16 bits of VPR. */ |
| regcache->raw_write_part (tdep->mve_vpr_regnum, 0, 2, buf); |
| } |
| |
| static void |
| arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache, |
| int regnum, const gdb_byte *buf) |
| { |
| const int num_regs = gdbarch_num_regs (gdbarch); |
| char name_buf[4]; |
| gdb_byte reg_buf[8]; |
| int offset, double_regnum; |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| gdb_assert (regnum >= num_regs); |
| |
| if (is_q_pseudo (gdbarch, regnum)) |
| { |
| /* Quad-precision register. */ |
| arm_neon_quad_write (gdbarch, regcache, |
| regnum - tdep->q_pseudo_base, buf); |
| } |
| else if (is_mve_pseudo (gdbarch, regnum)) |
| arm_mve_pseudo_write (gdbarch, regcache, regnum, buf); |
| else |
| { |
| regnum -= tdep->s_pseudo_base; |
| /* Single-precision register. */ |
| gdb_assert (regnum < 32); |
| |
| /* s0 is always the least significant half of d0. */ |
| if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
| offset = (regnum & 1) ? 0 : 4; |
| else |
| offset = (regnum & 1) ? 4 : 0; |
| |
| xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1); |
| double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, |
| strlen (name_buf)); |
| |
| regcache->raw_read (double_regnum, reg_buf); |
| memcpy (reg_buf + offset, buf, 4); |
| regcache->raw_write (double_regnum, reg_buf); |
| } |
| } |
| |
| static struct value * |
| value_of_arm_user_reg (struct frame_info *frame, const void *baton) |
| { |
| const int *reg_p = (const int *) baton; |
| return value_of_register (*reg_p, frame); |
| } |
| |
| static enum gdb_osabi |
| arm_elf_osabi_sniffer (bfd *abfd) |
| { |
| unsigned int elfosabi; |
| enum gdb_osabi osabi = GDB_OSABI_UNKNOWN; |
| |
| elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI]; |
| |
| if (elfosabi == ELFOSABI_ARM) |
| /* GNU tools use this value. Check note sections in this case, |
| as well. */ |
| { |
| for (asection *sect : gdb_bfd_sections (abfd)) |
| generic_elf_osabi_sniff_abi_tag_sections (abfd, sect, &osabi); |
| } |
| |
| /* Anything else will be handled by the generic ELF sniffer. */ |
| return osabi; |
| } |
| |
| static int |
| arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
| struct reggroup *group) |
| { |
| /* FPS register's type is INT, but belongs to float_reggroup. Beside |
| this, FPS register belongs to save_regroup, restore_reggroup, and |
| all_reggroup, of course. */ |
| if (regnum == ARM_FPS_REGNUM) |
| return (group == float_reggroup |
| || group == save_reggroup |
| || group == restore_reggroup |
| || group == all_reggroup); |
| else |
| return default_register_reggroup_p (gdbarch, regnum, group); |
| } |
| |
| /* For backward-compatibility we allow two 'g' packet lengths with |
| the remote protocol depending on whether FPA registers are |
| supplied. M-profile targets do not have FPA registers, but some |
| stubs already exist in the wild which use a 'g' packet which |
| supplies them albeit with dummy values. The packet format which |
| includes FPA registers should be considered deprecated for |
| M-profile targets. */ |
| |
| static void |
| arm_register_g_packet_guesses (struct gdbarch *gdbarch) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| if (tdep->is_m) |
| { |
| const target_desc *tdesc; |
| |
| /* If we know from the executable this is an M-profile target, |
| cater for remote targets whose register set layout is the |
| same as the FPA layout. */ |
| tdesc = arm_read_mprofile_description (ARM_M_TYPE_WITH_FPA); |
| register_remote_g_packet_guess (gdbarch, |
| ARM_CORE_REGS_SIZE + ARM_FP_REGS_SIZE, |
| tdesc); |
| |
| /* The regular M-profile layout. */ |
| tdesc = arm_read_mprofile_description (ARM_M_TYPE_M_PROFILE); |
| register_remote_g_packet_guess (gdbarch, ARM_CORE_REGS_SIZE, |
| tdesc); |
| |
| /* M-profile plus M4F VFP. */ |
| tdesc = arm_read_mprofile_description (ARM_M_TYPE_VFP_D16); |
| register_remote_g_packet_guess (gdbarch, |
| ARM_CORE_REGS_SIZE + ARM_VFP2_REGS_SIZE, |
| tdesc); |
| /* M-profile plus MVE. */ |
| tdesc = arm_read_mprofile_description (ARM_M_TYPE_MVE); |
| register_remote_g_packet_guess (gdbarch, ARM_CORE_REGS_SIZE |
| + ARM_VFP2_REGS_SIZE |
| + ARM_INT_REGISTER_SIZE, tdesc); |
| } |
| |
| /* Otherwise we don't have a useful guess. */ |
| } |
| |
| /* Implement the code_of_frame_writable gdbarch method. */ |
| |
| static int |
| arm_code_of_frame_writable (struct gdbarch *gdbarch, struct frame_info *frame) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| if (tdep->is_m && get_frame_type (frame) == SIGTRAMP_FRAME) |
| { |
| /* M-profile exception frames return to some magic PCs, where |
| isn't writable at all. */ |
| return 0; |
| } |
| else |
| return 1; |
| } |
| |
| /* Implement gdbarch_gnu_triplet_regexp. If the arch name is arm then allow it |
| to be postfixed by a version (eg armv7hl). */ |
| |
| static const char * |
| arm_gnu_triplet_regexp (struct gdbarch *gdbarch) |
| { |
| if (strcmp (gdbarch_bfd_arch_info (gdbarch)->arch_name, "arm") == 0) |
| return "arm(v[^- ]*)?"; |
| return gdbarch_bfd_arch_info (gdbarch)->arch_name; |
| } |
| |
| /* Initialize the current architecture based on INFO. If possible, |
| re-use an architecture from ARCHES, which is a list of |
| architectures already created during this debugging session. |
| |
| Called e.g. at program startup, when reading a core file, and when |
| reading a binary file. */ |
| |
| static struct gdbarch * |
| arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
| { |
| struct gdbarch *gdbarch; |
| struct gdbarch_list *best_arch; |
| enum arm_abi_kind arm_abi = arm_abi_global; |
| enum arm_float_model fp_model = arm_fp_model; |
| tdesc_arch_data_up tdesc_data; |
| int i; |
| bool is_m = false; |
| int vfp_register_count = 0; |
| bool have_s_pseudos = false, have_q_pseudos = false; |
| bool have_wmmx_registers = false; |
| bool have_neon = false; |
| bool have_fpa_registers = true; |
| const struct target_desc *tdesc = info.target_desc; |
| bool have_vfp = false; |
| bool have_mve = false; |
| int mve_vpr_regnum = -1; |
| int register_count = ARM_NUM_REGS; |
| |
| /* If we have an object to base this architecture on, try to determine |
| its ABI. */ |
| |
| if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL) |
| { |
| int ei_osabi, e_flags; |
| |
| switch (bfd_get_flavour (info.abfd)) |
| { |
| case bfd_target_coff_flavour: |
| /* Assume it's an old APCS-style ABI. */ |
| /* XXX WinCE? */ |
| arm_abi = ARM_ABI_APCS; |
| break; |
| |
| case bfd_target_elf_flavour: |
| ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI]; |
| e_flags = elf_elfheader (info.abfd)->e_flags; |
| |
| if (ei_osabi == ELFOSABI_ARM) |
| { |
| /* GNU tools used to use this value, but do not for EABI |
| objects. There's nowhere to tag an EABI version |
| anyway, so assume APCS. */ |
| arm_abi = ARM_ABI_APCS; |
| } |
| else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU) |
| { |
| int eabi_ver = EF_ARM_EABI_VERSION (e_flags); |
| |
| switch (eabi_ver) |
| { |
| case EF_ARM_EABI_UNKNOWN: |
| /* Assume GNU tools. */ |
| arm_abi = ARM_ABI_APCS; |
| break; |
| |
| case EF_ARM_EABI_VER4: |
| case EF_ARM_EABI_VER5: |
| arm_abi = ARM_ABI_AAPCS; |
| /* EABI binaries default to VFP float ordering. |
| They may also contain build attributes that can |
| be used to identify if the VFP argument-passing |
| ABI is in use. */ |
| if (fp_model == ARM_FLOAT_AUTO) |
| { |
| #ifdef HAVE_ELF |
| switch (bfd_elf_get_obj_attr_int (info.abfd, |
| OBJ_ATTR_PROC, |
| Tag_ABI_VFP_args)) |
| { |
| case AEABI_VFP_args_base: |
| /* "The user intended FP parameter/result |
| passing to conform to AAPCS, base |
| variant". */ |
| fp_model = ARM_FLOAT_SOFT_VFP; |
| break; |
| case AEABI_VFP_args_vfp: |
| /* "The user intended FP parameter/result |
| passing to conform to AAPCS, VFP |
| variant". */ |
| fp_model = ARM_FLOAT_VFP; |
| break; |
| case AEABI_VFP_args_toolchain: |
| /* "The user intended FP parameter/result |
| passing to conform to tool chain-specific |
| conventions" - we don't know any such |
| conventions, so leave it as "auto". */ |
| break; |
| case AEABI_VFP_args_compatible: |
| /* "Code is compatible with both the base |
| and VFP variants; the user did not permit |
| non-variadic functions to pass FP |
| parameters/results" - leave it as |
| "auto". */ |
| break; |
| default: |
| /* Attribute value not mentioned in the |
| November 2012 ABI, so leave it as |
| "auto". */ |
| break; |
| } |
| #else |
| fp_model = ARM_FLOAT_SOFT_VFP; |
| #endif |
| } |
| break; |
| |
| default: |
| /* Leave it as "auto". */ |
| warning (_("unknown ARM EABI version 0x%x"), eabi_ver); |
| break; |
| } |
| |
| #ifdef HAVE_ELF |
| /* Detect M-profile programs. This only works if the |
| executable file includes build attributes; GCC does |
| copy them to the executable, but e.g. RealView does |
| not. */ |
| int attr_arch |
| = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC, |
| Tag_CPU_arch); |
| int attr_profile |
| = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC, |
| Tag_CPU_arch_profile); |
| |
| /* GCC specifies the profile for v6-M; RealView only |
| specifies the profile for architectures starting with |
| V7 (as opposed to architectures with a tag |
| numerically greater than TAG_CPU_ARCH_V7). */ |
| if (!tdesc_has_registers (tdesc) |
| && (attr_arch == TAG_CPU_ARCH_V6_M |
| || attr_arch == TAG_CPU_ARCH_V6S_M |
| || attr_arch == TAG_CPU_ARCH_V8_1M_MAIN |
| || attr_profile == 'M')) |
| is_m = true; |
| #endif |
| } |
| |
| if (fp_model == ARM_FLOAT_AUTO) |
| { |
| switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT)) |
| { |
| case 0: |
| /* Leave it as "auto". Strictly speaking this case |
| means FPA, but almost nobody uses that now, and |
| many toolchains fail to set the appropriate bits |
| for the floating-point model they use. */ |
| break; |
| case EF_ARM_SOFT_FLOAT: |
| fp_model = ARM_FLOAT_SOFT_FPA; |
| break; |
| case EF_ARM_VFP_FLOAT: |
| fp_model = ARM_FLOAT_VFP; |
| break; |
| case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT: |
| fp_model = ARM_FLOAT_SOFT_VFP; |
| break; |
| } |
| } |
| |
| if (e_flags & EF_ARM_BE8) |
| info.byte_order_for_code = BFD_ENDIAN_LITTLE; |
| |
| break; |
| |
| default: |
| /* Leave it as "auto". */ |
| break; |
| } |
| } |
| |
| /* Check any target description for validity. */ |
| if (tdesc_has_registers (tdesc)) |
| { |
| /* For most registers we require GDB's default names; but also allow |
| the numeric names for sp / lr / pc, as a convenience. */ |
| static const char *const arm_sp_names[] = { "r13", "sp", NULL }; |
| static const char *const arm_lr_names[] = { "r14", "lr", NULL }; |
| static const char *const arm_pc_names[] = { "r15", "pc", NULL }; |
| |
| const struct tdesc_feature *feature; |
| int valid_p; |
| |
| feature = tdesc_find_feature (tdesc, |
| "org.gnu.gdb.arm.core"); |
| if (feature == NULL) |
| { |
| feature = tdesc_find_feature (tdesc, |
| "org.gnu.gdb.arm.m-profile"); |
| if (feature == NULL) |
| return NULL; |
| else |
| is_m = true; |
| } |
| |
| tdesc_data = tdesc_data_alloc (); |
| |
| valid_p = 1; |
| for (i = 0; i < ARM_SP_REGNUM; i++) |
| valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i, |
| arm_register_names[i]); |
| valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (), |
| ARM_SP_REGNUM, |
| arm_sp_names); |
| valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (), |
| ARM_LR_REGNUM, |
| arm_lr_names); |
| valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (), |
| ARM_PC_REGNUM, |
| arm_pc_names); |
| if (is_m) |
| valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), |
| ARM_PS_REGNUM, "xpsr"); |
| else |
| valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), |
| ARM_PS_REGNUM, "cpsr"); |
| |
| if (!valid_p) |
| return NULL; |
| |
| feature = tdesc_find_feature (tdesc, |
| "org.gnu.gdb.arm.fpa"); |
| if (feature != NULL) |
| { |
| valid_p = 1; |
| for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++) |
| valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i, |
| arm_register_names[i]); |
| if (!valid_p) |
| return NULL; |
| } |
| else |
| have_fpa_registers = false; |
| |
| feature = tdesc_find_feature (tdesc, |
| "org.gnu.gdb.xscale.iwmmxt"); |
| if (feature != NULL) |
| { |
| static const char *const iwmmxt_names[] = { |
| "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7", |
| "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15", |
| "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "", |
| "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "", |
| }; |
| |
| valid_p = 1; |
| for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++) |
| valid_p |
| &= tdesc_numbered_register (feature, tdesc_data.get (), i, |
| iwmmxt_names[i - ARM_WR0_REGNUM]); |
| |
| /* Check for the control registers, but do not fail if they |
| are missing. */ |
| for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++) |
| tdesc_numbered_register (feature, tdesc_data.get (), i, |
| iwmmxt_names[i - ARM_WR0_REGNUM]); |
| |
| for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++) |
| valid_p |
| &= tdesc_numbered_register (feature, tdesc_data.get (), i, |
| iwmmxt_names[i - ARM_WR0_REGNUM]); |
| |
| if (!valid_p) |
| return NULL; |
| |
| have_wmmx_registers = true; |
| } |
| |
| /* If we have a VFP unit, check whether the single precision registers |
| are present. If not, then we will synthesize them as pseudo |
| registers. */ |
| feature = tdesc_find_feature (tdesc, |
| "org.gnu.gdb.arm.vfp"); |
| if (feature != NULL) |
| { |
| static const char *const vfp_double_names[] = { |
| "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", |
| "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", |
| "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", |
| "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31", |
| }; |
| |
| /* Require the double precision registers. There must be either |
| 16 or 32. */ |
| valid_p = 1; |
| for (i = 0; i < 32; i++) |
| { |
| valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), |
| ARM_D0_REGNUM + i, |
| vfp_double_names[i]); |
| if (!valid_p) |
| break; |
| } |
| if (!valid_p && i == 16) |
| valid_p = 1; |
| |
| /* Also require FPSCR. */ |
| valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), |
| ARM_FPSCR_REGNUM, "fpscr"); |
| if (!valid_p) |
| return NULL; |
| |
| have_vfp = true; |
| |
| if (tdesc_unnumbered_register (feature, "s0") == 0) |
| have_s_pseudos = true; |
| |
| vfp_register_count = i; |
| |
| /* If we have VFP, also check for NEON. The architecture allows |
| NEON without VFP (integer vector operations only), but GDB |
| does not support that. */ |
| feature = tdesc_find_feature (tdesc, |
| "org.gnu.gdb.arm.neon"); |
| if (feature != NULL) |
| { |
| /* NEON requires 32 double-precision registers. */ |
| if (i != 32) |
| return NULL; |
| |
| /* If there are quad registers defined by the stub, use |
| their type; otherwise (normally) provide them with |
| the default type. */ |
| if (tdesc_unnumbered_register (feature, "q0") == 0) |
| have_q_pseudos = true; |
| } |
| } |
| |
| /* Check for MVE after all the checks for GPR's, VFP and Neon. |
| MVE (Helium) is an M-profile extension. */ |
| if (is_m) |
| { |
| /* Do we have the MVE feature? */ |
| feature = tdesc_find_feature (tdesc,"org.gnu.gdb.arm.m-profile-mve"); |
| |
| if (feature != nullptr) |
| { |
| /* If we have MVE, we must always have the VPR register. */ |
| valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), |
| register_count, "vpr"); |
| if (!valid_p) |
| { |
| warning (_("MVE feature is missing required register vpr.")); |
| return nullptr; |
| } |
| |
| have_mve = true; |
| mve_vpr_regnum = register_count; |
| register_count++; |
| |
| /* We can't have Q pseudo registers available here, as that |
| would mean we have NEON features, and that is only available |
| on A and R profiles. */ |
| gdb_assert (!have_q_pseudos); |
| |
| /* Given we have a M-profile target description, if MVE is |
| enabled and there are VFP registers, we should have Q |
| pseudo registers (Q0 ~ Q7). */ |
| if (have_vfp) |
| have_q_pseudos = true; |
| } |
| } |
| } |
| |
| /* If there is already a candidate, use it. */ |
| for (best_arch = gdbarch_list_lookup_by_info (arches, &info); |
| best_arch != NULL; |
| best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) |
| { |
| arm_gdbarch_tdep *tdep |
| = (arm_gdbarch_tdep *) gdbarch_tdep (best_arch->gdbarch); |
| |
| if (arm_abi != ARM_ABI_AUTO && arm_abi != tdep->arm_abi) |
| continue; |
| |
| if (fp_model != ARM_FLOAT_AUTO && fp_model != tdep->fp_model) |
| continue; |
| |
| /* There are various other properties in tdep that we do not |
| need to check here: those derived from a target description, |
| since gdbarches with a different target description are |
| automatically disqualified. */ |
| |
| /* Do check is_m, though, since it might come from the binary. */ |
| if (is_m != tdep->is_m) |
| continue; |
| |
| /* Found a match. */ |
| break; |
| } |
| |
| if (best_arch != NULL) |
| return best_arch->gdbarch; |
| |
| arm_gdbarch_tdep *tdep = new arm_gdbarch_tdep; |
| gdbarch = gdbarch_alloc (&info, tdep); |
| |
| /* Record additional information about the architecture we are defining. |
| These are gdbarch discriminators, like the OSABI. */ |
| tdep->arm_abi = arm_abi; |
| tdep->fp_model = fp_model; |
| tdep->is_m = is_m; |
| tdep->have_fpa_registers = have_fpa_registers; |
| tdep->have_wmmx_registers = have_wmmx_registers; |
| gdb_assert (vfp_register_count == 0 |
| || vfp_register_count == 16 |
| || vfp_register_count == 32); |
| tdep->vfp_register_count = vfp_register_count; |
| tdep->have_s_pseudos = have_s_pseudos; |
| tdep->have_q_pseudos = have_q_pseudos; |
| tdep->have_neon = have_neon; |
| |
| /* Adjust the MVE feature settings. */ |
| if (have_mve) |
| { |
| tdep->have_mve = true; |
| tdep->mve_vpr_regnum = mve_vpr_regnum; |
| } |
| |
| arm_register_g_packet_guesses (gdbarch); |
| |
| /* Breakpoints. */ |
| switch (info.byte_order_for_code) |
| { |
| case BFD_ENDIAN_BIG: |
| tdep->arm_breakpoint = arm_default_arm_be_breakpoint; |
| tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint); |
| tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint; |
| tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint); |
| |
| break; |
| |
| case BFD_ENDIAN_LITTLE: |
| tdep->arm_breakpoint = arm_default_arm_le_breakpoint; |
| tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint); |
| tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint; |
| tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint); |
| |
| break; |
| |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("arm_gdbarch_init: bad byte order for float format")); |
| } |
| |
| /* On ARM targets char defaults to unsigned. */ |
| set_gdbarch_char_signed (gdbarch, 0); |
| |
| /* wchar_t is unsigned under the AAPCS. */ |
| if (tdep->arm_abi == ARM_ABI_AAPCS) |
| set_gdbarch_wchar_signed (gdbarch, 0); |
| else |
| set_gdbarch_wchar_signed (gdbarch, 1); |
| |
| /* Compute type alignment. */ |
| set_gdbarch_type_align (gdbarch, arm_type_align); |
| |
| /* Note: for displaced stepping, this includes the breakpoint, and one word |
| of additional scratch space. This setting isn't used for anything beside |
| displaced stepping at present. */ |
| set_gdbarch_max_insn_length (gdbarch, 4 * ARM_DISPLACED_MODIFIED_INSNS); |
| |
| /* This should be low enough for everything. */ |
| tdep->lowest_pc = 0x20; |
| tdep->jb_pc = -1; /* Longjump support not enabled by default. */ |
| |
| /* The default, for both APCS and AAPCS, is to return small |
| structures in registers. */ |
| tdep->struct_return = reg_struct_return; |
| |
| set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call); |
| set_gdbarch_frame_align (gdbarch, arm_frame_align); |
| |
| if (is_m) |
| set_gdbarch_code_of_frame_writable (gdbarch, arm_code_of_frame_writable); |
| |
| set_gdbarch_write_pc (gdbarch, arm_write_pc); |
| |
| frame_base_set_default (gdbarch, &arm_normal_base); |
| |
| /* Address manipulation. */ |
| set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove); |
| |
| /* Advance PC across function entry code. */ |
| set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue); |
| |
| /* Detect whether PC is at a point where the stack has been destroyed. */ |
| set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p); |
| |
| /* Skip trampolines. */ |
| set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub); |
| |
| /* The stack grows downward. */ |
| set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
| |
| /* Breakpoint manipulation. */ |
| set_gdbarch_breakpoint_kind_from_pc (gdbarch, arm_breakpoint_kind_from_pc); |
| set_gdbarch_sw_breakpoint_from_kind (gdbarch, arm_sw_breakpoint_from_kind); |
| set_gdbarch_breakpoint_kind_from_current_state (gdbarch, |
| arm_breakpoint_kind_from_current_state); |
| |
| /* Information about registers, etc. */ |
| set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM); |
| set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM); |
| set_gdbarch_num_regs (gdbarch, register_count); |
| set_gdbarch_register_type (gdbarch, arm_register_type); |
| set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p); |
| |
| /* This "info float" is FPA-specific. Use the generic version if we |
| do not have FPA. */ |
| if (tdep->have_fpa_registers) |
| set_gdbarch_print_float_info (gdbarch, arm_print_float_info); |
| |
| /* Internal <-> external register number maps. */ |
| set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum); |
| set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno); |
| |
| set_gdbarch_register_name (gdbarch, arm_register_name); |
| |
| /* Returning results. */ |
| set_gdbarch_return_value (gdbarch, arm_return_value); |
| |
| /* Disassembly. */ |
| set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm); |
| |
| /* Minsymbol frobbing. */ |
| set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special); |
| set_gdbarch_coff_make_msymbol_special (gdbarch, |
| arm_coff_make_msymbol_special); |
| set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol); |
| |
| /* Thumb-2 IT block support. */ |
| set_gdbarch_adjust_breakpoint_address (gdbarch, |
| arm_adjust_breakpoint_address); |
| |
| /* Virtual tables. */ |
| set_gdbarch_vbit_in_delta (gdbarch, 1); |
| |
| /* Hook in the ABI-specific overrides, if they have been registered. */ |
| gdbarch_init_osabi (info, gdbarch); |
| |
| dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg); |
| |
| /* Add some default predicates. */ |
| if (is_m) |
| frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind); |
| frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind); |
| dwarf2_append_unwinders (gdbarch); |
| frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind); |
| frame_unwind_append_unwinder (gdbarch, &arm_epilogue_frame_unwind); |
| frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind); |
| |
| /* Now we have tuned the configuration, set a few final things, |
| based on what the OS ABI has told us. */ |
| |
| /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI |
| binaries are always marked. */ |
| if (tdep->arm_abi == ARM_ABI_AUTO) |
| tdep->arm_abi = ARM_ABI_APCS; |
| |
| /* Watchpoints are not steppable. */ |
| set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); |
| |
| /* We used to default to FPA for generic ARM, but almost nobody |
| uses that now, and we now provide a way for the user to force |
| the model. So default to the most useful variant. */ |
| if (tdep->fp_model == ARM_FLOAT_AUTO) |
| tdep->fp_model = ARM_FLOAT_SOFT_FPA; |
| |
| if (tdep->jb_pc >= 0) |
| set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target); |
| |
| /* Floating point sizes and format. */ |
| set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
| if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA) |
| { |
| set_gdbarch_double_format |
| (gdbarch, floatformats_ieee_double_littlebyte_bigword); |
| set_gdbarch_long_double_format |
| (gdbarch, floatformats_ieee_double_littlebyte_bigword); |
| } |
| else |
| { |
| set_gdbarch_double_format (gdbarch, floatformats_ieee_double); |
| set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); |
| } |
| |
| if (tdesc_data != nullptr) |
| { |
| set_tdesc_pseudo_register_name (gdbarch, arm_register_name); |
| |
| tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data)); |
| register_count = gdbarch_num_regs (gdbarch); |
| |
| /* Override tdesc_register_type to adjust the types of VFP |
| registers for NEON. */ |
| set_gdbarch_register_type (gdbarch, arm_register_type); |
| } |
| |
| /* Initialize the pseudo register data. */ |
| int num_pseudos = 0; |
| if (tdep->have_s_pseudos) |
| { |
| /* VFP single precision pseudo registers (S0~S31). */ |
| tdep->s_pseudo_base = register_count; |
| tdep->s_pseudo_count = 32; |
| num_pseudos += tdep->s_pseudo_count; |
| |
| if (tdep->have_q_pseudos) |
| { |
| /* NEON quad precision pseudo registers (Q0~Q15). */ |
| tdep->q_pseudo_base = register_count + num_pseudos; |
| |
| if (have_neon) |
| tdep->q_pseudo_count = 16; |
| else if (have_mve) |
| tdep->q_pseudo_count = ARM_MVE_NUM_Q_REGS; |
| |
| num_pseudos += tdep->q_pseudo_count; |
| } |
| } |
| |
| /* Do we have any MVE pseudo registers? */ |
| if (have_mve) |
| { |
| tdep->mve_pseudo_base = register_count + num_pseudos; |
| tdep->mve_pseudo_count = 1; |
| num_pseudos += tdep->mve_pseudo_count; |
| } |
| |
| /* Set some pseudo register hooks, if we have pseudo registers. */ |
| if (tdep->have_s_pseudos || have_mve) |
| { |
| set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos); |
| set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read); |
| set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write); |
| } |
| |
| /* Add standard register aliases. We add aliases even for those |
| names which are used by the current architecture - it's simpler, |
| and does no harm, since nothing ever lists user registers. */ |
| for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++) |
| user_reg_add (gdbarch, arm_register_aliases[i].name, |
| value_of_arm_user_reg, &arm_register_aliases[i].regnum); |
| |
| set_gdbarch_disassembler_options (gdbarch, &arm_disassembler_options); |
| set_gdbarch_valid_disassembler_options (gdbarch, disassembler_options_arm ()); |
| |
| set_gdbarch_gnu_triplet_regexp (gdbarch, arm_gnu_triplet_regexp); |
| |
| return gdbarch; |
| } |
| |
| static void |
| arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
| { |
| arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| if (tdep == NULL) |
| return; |
| |
| fprintf_filtered (file, _("arm_dump_tdep: fp_model = %i\n"), |
| (int) tdep->fp_model); |
| fprintf_filtered (file, _("arm_dump_tdep: have_fpa_registers = %i\n"), |
| (int) tdep->have_fpa_registers); |
| fprintf_filtered (file, _("arm_dump_tdep: have_wmmx_registers = %i\n"), |
| (int) tdep->have_wmmx_registers); |
| fprintf_filtered (file, _("arm_dump_tdep: vfp_register_count = %i\n"), |
| (int) tdep->vfp_register_count); |
| fprintf_filtered (file, _("arm_dump_tdep: have_s_pseudos = %s\n"), |
| tdep->have_s_pseudos? "true" : "false"); |
| fprintf_filtered (file, _("arm_dump_tdep: s_pseudo_base = %i\n"), |
| (int) tdep->s_pseudo_base); |
| fprintf_filtered (file, _("arm_dump_tdep: s_pseudo_count = %i\n"), |
| (int) tdep->s_pseudo_count); |
| fprintf_filtered (file, _("arm_dump_tdep: have_q_pseudos = %s\n"), |
| tdep->have_q_pseudos? "true" : "false"); |
| fprintf_filtered (file, _("arm_dump_tdep: q_pseudo_base = %i\n"), |
| (int) tdep->q_pseudo_base); |
| fprintf_filtered (file, _("arm_dump_tdep: q_pseudo_count = %i\n"), |
| (int) tdep->q_pseudo_count); |
| fprintf_filtered (file, _("arm_dump_tdep: have_neon = %i\n"), |
| (int) tdep->have_neon); |
| fprintf_filtered (file, _("arm_dump_tdep: have_mve = %s\n"), |
| tdep->have_mve? "yes" : "no"); |
| fprintf_filtered (file, _("arm_dump_tdep: mve_vpr_regnum = %i\n"), |
| tdep->mve_vpr_regnum); |
| fprintf_filtered (file, _("arm_dump_tdep: mve_pseudo_base = %i\n"), |
| tdep->mve_pseudo_base); |
| fprintf_filtered (file, _("arm_dump_tdep: mve_pseudo_count = %i\n"), |
| tdep->mve_pseudo_count); |
| fprintf_filtered (file, _("arm_dump_tdep: Lowest pc = 0x%lx\n"), |
| (unsigned long) tdep->lowest_pc); |
| } |
| |
| #if GDB_SELF_TEST |
| namespace selftests |
| { |
| static void arm_record_test (void); |
| static void arm_analyze_prologue_test (); |
| } |
| #endif |
| |
| void _initialize_arm_tdep (); |
| void |
| _initialize_arm_tdep () |
| { |
| long length; |
| int i, j; |
| char regdesc[1024], *rdptr = regdesc; |
| size_t rest = sizeof (regdesc); |
| |
| gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep); |
| |
| /* Add ourselves to objfile event chain. */ |
| gdb::observers::new_objfile.attach (arm_exidx_new_objfile, "arm-tdep"); |
| |
| /* Register an ELF OS ABI sniffer for ARM binaries. */ |
| gdbarch_register_osabi_sniffer (bfd_arch_arm, |
| bfd_target_elf_flavour, |
| arm_elf_osabi_sniffer); |
| |
| /* Add root prefix command for all "set arm"/"show arm" commands. */ |
| add_setshow_prefix_cmd ("arm", no_class, |
| _("Various ARM-specific commands."), |
| _("Various ARM-specific commands."), |
| &setarmcmdlist, &showarmcmdlist, |
| &setlist, &showlist); |
| |
| arm_disassembler_options = xstrdup ("reg-names-std"); |
| const disasm_options_t *disasm_options |
| = &disassembler_options_arm ()->options; |
| int num_disassembly_styles = 0; |
| for (i = 0; disasm_options->name[i] != NULL; i++) |
| if (startswith (disasm_options->name[i], "reg-names-")) |
| num_disassembly_styles++; |
| |
| /* Initialize the array that will be passed to add_setshow_enum_cmd(). */ |
| valid_disassembly_styles = XNEWVEC (const char *, |
| num_disassembly_styles + 1); |
| for (i = j = 0; disasm_options->name[i] != NULL; i++) |
| if (startswith (disasm_options->name[i], "reg-names-")) |
| { |
| size_t offset = strlen ("reg-names-"); |
| const char *style = disasm_options->name[i]; |
| valid_disassembly_styles[j++] = &style[offset]; |
| length = snprintf (rdptr, rest, "%s - %s\n", &style[offset], |
| disasm_options->description[i]); |
| rdptr += length; |
| rest -= length; |
| } |
| /* Mark the end of valid options. */ |
| valid_disassembly_styles[num_disassembly_styles] = NULL; |
| |
| /* Create the help text. */ |
| std::string helptext = string_printf ("%s%s%s", |
| _("The valid values are:\n"), |
| regdesc, |
| _("The default is \"std\".")); |
| |
| add_setshow_enum_cmd("disassembler", no_class, |
| valid_disassembly_styles, &disassembly_style, |
| _("Set the disassembly style."), |
| _("Show the disassembly style."), |
| helptext.c_str (), |
| set_disassembly_style_sfunc, |
| show_disassembly_style_sfunc, |
| &setarmcmdlist, &showarmcmdlist); |
| |
| add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32, |
| _("Set usage of ARM 32-bit mode."), |
| _("Show usage of ARM 32-bit mode."), |
| _("When off, a 26-bit PC will be used."), |
| NULL, |
| NULL, /* FIXME: i18n: Usage of ARM 32-bit |
| mode is %s. */ |
| &setarmcmdlist, &showarmcmdlist); |
| |
| /* Add a command to allow the user to force the FPU model. */ |
| add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, ¤t_fp_model, |
| _("Set the floating point type."), |
| _("Show the floating point type."), |
| _("auto - Determine the FP typefrom the OS-ABI.\n\ |
| softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\ |
| fpa - FPA co-processor (GCC compiled).\n\ |
| softvfp - Software FP with pure-endian doubles.\n\ |
| vfp - VFP co-processor."), |
| set_fp_model_sfunc, show_fp_model, |
| &setarmcmdlist, &showarmcmdlist); |
| |
| /* Add a command to allow the user to force the ABI. */ |
| add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string, |
| _("Set the ABI."), |
| _("Show the ABI."), |
| NULL, arm_set_abi, arm_show_abi, |
| &setarmcmdlist, &showarmcmdlist); |
| |
| /* Add two commands to allow the user to force the assumed |
| execution mode. */ |
| add_setshow_enum_cmd ("fallback-mode", class_support, |
| arm_mode_strings, &arm_fallback_mode_string, |
| _("Set the mode assumed when symbols are unavailable."), |
| _("Show the mode assumed when symbols are unavailable."), |
| NULL, NULL, arm_show_fallback_mode, |
| &setarmcmdlist, &showarmcmdlist); |
| add_setshow_enum_cmd ("force-mode", class_support, |
| arm_mode_strings, &arm_force_mode_string, |
| _("Set the mode assumed even when symbols are available."), |
| _("Show the mode assumed even when symbols are available."), |
| NULL, NULL, arm_show_force_mode, |
| &setarmcmdlist, &showarmcmdlist); |
| |
| /* Debugging flag. */ |
| add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug, |
| _("Set ARM debugging."), |
| _("Show ARM debugging."), |
| _("When on, arm-specific debugging is enabled."), |
| NULL, |
| NULL, /* FIXME: i18n: "ARM debugging is %s. */ |
| &setdebuglist, &showdebuglist); |
| |
| #if GDB_SELF_TEST |
| selftests::register_test ("arm-record", selftests::arm_record_test); |
| selftests::register_test ("arm_analyze_prologue", selftests::arm_analyze_prologue_test); |
| #endif |
| |
| } |
| |
| /* ARM-reversible process record data structures. */ |
| |
| #define ARM_INSN_SIZE_BYTES 4 |
| #define THUMB_INSN_SIZE_BYTES 2 |
| #define THUMB2_INSN_SIZE_BYTES 4 |
| |
| |
| /* Position of the bit within a 32-bit ARM instruction |
| that defines whether the instruction is a load or store. */ |
| #define INSN_S_L_BIT_NUM 20 |
| |
| #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \ |
| do \ |
| { \ |
| unsigned int reg_len = LENGTH; \ |
| if (reg_len) \ |
| { \ |
| REGS = XNEWVEC (uint32_t, reg_len); \ |
| memcpy(®S[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \ |
| } \ |
| } \ |
| while (0) |
| |
| #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \ |
| do \ |
| { \ |
| unsigned int mem_len = LENGTH; \ |
| if (mem_len) \ |
| { \ |
| MEMS = XNEWVEC (struct arm_mem_r, mem_len); \ |
| memcpy(&MEMS->len, &RECORD_BUF[0], \ |
| sizeof(struct arm_mem_r) * LENGTH); \ |
| } \ |
| } \ |
| while (0) |
| |
| /* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */ |
| #define INSN_RECORDED(ARM_RECORD) \ |
| (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count) |
| |
| /* ARM memory record structure. */ |
| struct arm_mem_r |
| { |
| uint32_t len; /* Record length. */ |
| uint32_t addr; /* Memory address. */ |
| }; |
| |
| /* ARM instruction record contains opcode of current insn |
| and execution state (before entry to decode_insn()), |
| contains list of to-be-modified registers and |
| memory blocks (on return from decode_insn()). */ |
| |
| typedef struct insn_decode_record_t |
| { |
| struct gdbarch *gdbarch; |
| struct regcache *regcache; |
| CORE_ADDR this_addr; /* Address of the insn being decoded. */ |
| uint32_t arm_insn; /* Should accommodate thumb. */ |
| uint32_t cond; /* Condition code. */ |
| uint32_t opcode; /* Insn opcode. */ |
| uint32_t decode; /* Insn decode bits. */ |
| uint32_t mem_rec_count; /* No of mem records. */ |
| uint32_t reg_rec_count; /* No of reg records. */ |
| uint32_t *arm_regs; /* Registers to be saved for this record. */ |
| struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */ |
| } insn_decode_record; |
| |
| |
| /* Checks ARM SBZ and SBO mandatory fields. */ |
| |
| static int |
| sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo) |
| { |
| uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1)); |
| |
| if (!len) |
| return 1; |
| |
| if (!sbo) |
| ones = ~ones; |
| |
| while (ones) |
| { |
| if (!(ones & sbo)) |
| { |
| return 0; |
| } |
| ones = ones >> 1; |
| } |
| return 1; |
| } |
| |
| enum arm_record_result |
| { |
| ARM_RECORD_SUCCESS = 0, |
| ARM_RECORD_FAILURE = 1 |
| }; |
| |
| typedef enum |
| { |
| ARM_RECORD_STRH=1, |
| ARM_RECORD_STRD |
| } arm_record_strx_t; |
| |
| typedef enum |
| { |
| ARM_RECORD=1, |
| THUMB_RECORD, |
| THUMB2_RECORD |
| } record_type_t; |
| |
| |
| static int |
| arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf, |
| uint32_t *record_buf_mem, arm_record_strx_t str_type) |
| { |
| |
| struct regcache *reg_cache = arm_insn_r->regcache; |
| ULONGEST u_regval[2]= {0}; |
| |
| uint32_t reg_src1 = 0, reg_src2 = 0; |
| uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0; |
| |
| arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); |
| arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); |
| |
| if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode) |
| { |
| /* 1) Handle misc store, immediate offset. */ |
| immed_low = bits (arm_insn_r->arm_insn, 0, 3); |
| immed_high = bits (arm_insn_r->arm_insn, 8, 11); |
| reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); |
| regcache_raw_read_unsigned (reg_cache, reg_src1, |
| &u_regval[0]); |
| if (ARM_PC_REGNUM == reg_src1) |
| { |
| /* If R15 was used as Rn, hence current PC+8. */ |
| u_regval[0] = u_regval[0] + 8; |
| } |
| offset_8 = (immed_high << 4) | immed_low; |
| /* Calculate target store address. */ |
| if (14 == arm_insn_r->opcode) |
| { |
| tgt_mem_addr = u_regval[0] + offset_8; |
| } |
| else |
| { |
| tgt_mem_addr = u_regval[0] - offset_8; |
| } |
| if (ARM_RECORD_STRH == str_type) |
| { |
| record_buf_mem[0] = 2; |
| record_buf_mem[1] = tgt_mem_addr; |
| arm_insn_r->mem_rec_count = 1; |
| } |
| else if (ARM_RECORD_STRD == str_type) |
| { |
| record_buf_mem[0] = 4; |
| record_buf_mem[1] = tgt_mem_addr; |
| record_buf_mem[2] = 4; |
| record_buf_mem[3] = tgt_mem_addr + 4; |
| arm_insn_r->mem_rec_count = 2; |
| } |
| } |
| else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode) |
| { |
| /* 2) Store, register offset. */ |
| /* Get Rm. */ |
| reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); |
| /* Get Rn. */ |
| reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); |
| regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); |
| regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); |
| if (15 == reg_src2) |
| { |
| /* If R15 was used as Rn, hence current PC+8. */ |
| u_regval[0] = u_regval[0] + 8; |
| } |
| /* Calculate target store address, Rn +/- Rm, register offset. */ |
| if (12 == arm_insn_r->opcode) |
| { |
| tgt_mem_addr = u_regval[0] + u_regval[1]; |
| } |
| else |
| { |
| tgt_mem_addr = u_regval[1] - u_regval[0]; |
| } |
| if (ARM_RECORD_STRH == str_type) |
| { |
| record_buf_mem[0] = 2; |
| record_buf_mem[1] = tgt_mem_addr; |
| arm_insn_r->mem_rec_count = 1; |
| } |
| else if (ARM_RECORD_STRD == str_type) |
| { |
| record_buf_mem[0] = 4; |
| record_buf_mem[1] = tgt_mem_addr; |
| record_buf_mem[2] = 4; |
| record_buf_mem[3] = tgt_mem_addr + 4; |
| arm_insn_r->mem_rec_count = 2; |
| } |
| } |
| else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode |
| || 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode) |
| { |
| /* 3) Store, immediate pre-indexed. */ |
| /* 5) Store, immediate post-indexed. */ |
| immed_low = bits (arm_insn_r->arm_insn, 0, 3); |
| immed_high = bits (arm_insn_r->arm_insn, 8, 11); |
| offset_8 = (immed_high << 4) | immed_low; |
| reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); |
| regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); |
| /* Calculate target store address, Rn +/- Rm, register offset. */ |
| if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode) |
| { |
| tgt_mem_addr = u_regval[0] + offset_8; |
| } |
| else |
| { |
| tgt_mem_addr = u_regval[0] - offset_8; |
| } |
| if (ARM_RECORD_STRH == str_type) |
| { |
| record_buf_mem[0] = 2; |
| record_buf_mem[1] = tgt_mem_addr; |
| arm_insn_r->mem_rec_count = 1; |
| } |
| else if (ARM_RECORD_STRD == str_type) |
| { |
| record_buf_mem[0] = 4; |
| record_buf_mem[1] = tgt_mem_addr; |
| record_buf_mem[2] = 4; |
| record_buf_mem[3] = tgt_mem_addr + 4; |
| arm_insn_r->mem_rec_count = 2; |
| } |
| /* Record Rn also as it changes. */ |
| *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19); |
| arm_insn_r->reg_rec_count = 1; |
| } |
| else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode |
| || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode) |
| { |
| /* 4) Store, register pre-indexed. */ |
| /* 6) Store, register post -indexed. */ |
| reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); |
| reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); |
| regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); |
| regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); |
| /* Calculate target store address, Rn +/- Rm, register offset. */ |
| if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode) |
| { |
| tgt_mem_addr = u_regval[0] + u_regval[1]; |
| } |
| else |
| { |
| tgt_mem_addr = u_regval[1] - u_regval[0]; |
| } |
| if (ARM_RECORD_STRH == str_type) |
| { |
| record_buf_mem[0] = 2; |
| record_buf_mem[1] = tgt_mem_addr; |
| arm_insn_r->mem_rec_count = 1; |
| } |
| else if (ARM_RECORD_STRD == str_type) |
| { |
| record_buf_mem[0] = 4; |
| record_buf_mem[1] = tgt_mem_addr; |
| record_buf_mem[2] = 4; |
| record_buf_mem[3] = tgt_mem_addr + 4; |
| arm_insn_r->mem_rec_count = 2; |
| } |
| /* Record Rn also as it changes. */ |
| *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19); |
| arm_insn_r->reg_rec_count = 1; |
| } |
| return 0; |
| } |
| |
| /* Handling ARM extension space insns. */ |
| |
| static int |
| arm_record_extension_space (insn_decode_record *arm_insn_r) |
| { |
| int ret = 0; /* Return value: -1:record failure ; 0:success */ |
| uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0; |
| uint32_t record_buf[8], record_buf_mem[8]; |
| uint32_t reg_src1 = 0; |
| struct regcache *reg_cache = arm_insn_r->regcache; |
| ULONGEST u_regval = 0; |
| |
| gdb_assert (!INSN_RECORDED(arm_insn_r)); |
| /* Handle unconditional insn extension space. */ |
| |
| opcode1 = bits (arm_insn_r->arm_insn, 20, 27); |
| opcode2 = bits (arm_insn_r->arm_insn, 4, 7); |
| if (arm_insn_r->cond) |
| { |
| /* PLD has no affect on architectural state, it just affects |
| the caches. */ |
| if (5 == ((opcode1 & 0xE0) >> 5)) |
| { |
| /* BLX(1) */ |
| record_buf[0] = ARM_PS_REGNUM; |
| record_buf[1] = ARM_LR_REGNUM; |
| arm_insn_r->reg_rec_count = 2; |
| } |
| /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */ |
| } |
| |
| |
| opcode1 = bits (arm_insn_r->arm_insn, 25, 27); |
| if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4)) |
| { |
| ret = -1; |
| /* Undefined instruction on ARM V5; need to handle if later |
| versions define it. */ |
| } |
| |
| opcode1 = bits (arm_insn_r->arm_insn, 24, 27); |
| opcode2 = bits (arm_insn_r->arm_insn, 4, 7); |
| insn_op1 = bits (arm_insn_r->arm_insn, 20, 23); |
| |
| /* Handle arithmetic insn extension space. */ |
| if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond |
| && !INSN_RECORDED(arm_insn_r)) |
| { |
| /* Handle MLA(S) and MUL(S). */ |
| if (in_inclusive_range (insn_op1, 0U, 3U)) |
| { |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| record_buf[1] = ARM_PS_REGNUM; |
| arm_insn_r->reg_rec_count = 2; |
| } |
| else if (in_inclusive_range (insn_op1, 4U, 15U)) |
| { |
| /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19); |
| record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15); |
| record_buf[2] = ARM_PS_REGNUM; |
| arm_insn_r->reg_rec_count = 3; |
| } |
| } |
| |
| opcode1 = bits (arm_insn_r->arm_insn, 26, 27); |
| opcode2 = bits (arm_insn_r->arm_insn, 23, 24); |
| insn_op1 = bits (arm_insn_r->arm_insn, 21, 22); |
| |
| /* Handle control insn extension space. */ |
| |
| if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20) |
| && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r)) |
| { |
| if (!bit (arm_insn_r->arm_insn,25)) |
| { |
| if (!bits (arm_insn_r->arm_insn, 4, 7)) |
| { |
| if ((0 == insn_op1) || (2 == insn_op1)) |
| { |
| /* MRS. */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| arm_insn_r->reg_rec_count = 1; |
| } |
| else if (1 == insn_op1) |
| { |
| /* CSPR is going to be changed. */ |
| record_buf[0] = ARM_PS_REGNUM; |
| arm_insn_r->reg_rec_count = 1; |
| } |
| else if (3 == insn_op1) |
| { |
| /* SPSR is going to be changed. */ |
| /* We need to get SPSR value, which is yet to be done. */ |
| return -1; |
| } |
| } |
| else if (1 == bits (arm_insn_r->arm_insn, 4, 7)) |
| { |
| if (1 == insn_op1) |
| { |
| /* BX. */ |
| record_buf[0] = ARM_PS_REGNUM; |
| arm_insn_r->reg_rec_count = 1; |
| } |
| else if (3 == insn_op1) |
| { |
| /* CLZ. */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| arm_insn_r->reg_rec_count = 1; |
| } |
| } |
| else if (3 == bits (arm_insn_r->arm_insn, 4, 7)) |
| { |
| /* BLX. */ |
| record_buf[0] = ARM_PS_REGNUM; |
| record_buf[1] = ARM_LR_REGNUM; |
| arm_insn_r->reg_rec_count = 2; |
| } |
| else if (5 == bits (arm_insn_r->arm_insn, 4, 7)) |
| { |
| /* QADD, QSUB, QDADD, QDSUB */ |
| record_buf[0] = ARM_PS_REGNUM; |
| record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15); |
| arm_insn_r->reg_rec_count = 2; |
| } |
| else if (7 == bits (arm_insn_r->arm_insn, 4, 7)) |
| { |
| /* BKPT. */ |
| record_buf[0] = ARM_PS_REGNUM; |
| record_buf[1] = ARM_LR_REGNUM; |
| arm_insn_r->reg_rec_count = 2; |
| |
| /* Save SPSR also;how? */ |
| return -1; |
| } |
| else if(8 == bits (arm_insn_r->arm_insn, 4, 7) |
| || 10 == bits (arm_insn_r->arm_insn, 4, 7) |
| || 12 == bits (arm_insn_r->arm_insn, 4, 7) |
| || 14 == bits (arm_insn_r->arm_insn, 4, 7) |
| ) |
| { |
| if (0 == insn_op1 || 1 == insn_op1) |
| { |
| /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */ |
| /* We dont do optimization for SMULW<y> where we |
| need only Rd. */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| record_buf[1] = ARM_PS_REGNUM; |
| arm_insn_r->reg_rec_count = 2; |
| } |
| else if (2 == insn_op1) |
| { |
| /* SMLAL<x><y>. */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19); |
| arm_insn_r->reg_rec_count = 2; |
| } |
| else if (3 == insn_op1) |
| { |
| /* SMUL<x><y>. */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| arm_insn_r->reg_rec_count = 1; |
| } |
| } |
| } |
| else |
| { |
| /* MSR : immediate form. */ |
| if (1 == insn_op1) |
| { |
| /* CSPR is going to be changed. */ |
| record_buf[0] = ARM_PS_REGNUM; |
| arm_insn_r->reg_rec_count = 1; |
| } |
| else if (3 == insn_op1) |
| { |
| /* SPSR is going to be changed. */ |
| /* we need to get SPSR value, which is yet to be done */ |
| return -1; |
| } |
| } |
| } |
| |
| opcode1 = bits (arm_insn_r->arm_insn, 25, 27); |
| opcode2 = bits (arm_insn_r->arm_insn, 20, 24); |
| insn_op1 = bits (arm_insn_r->arm_insn, 5, 6); |
| |
| /* Handle load/store insn extension space. */ |
| |
| if (!opcode1 && bit (arm_insn_r->arm_insn, 7) |
| && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond |
| && !INSN_RECORDED(arm_insn_r)) |
| { |
| /* SWP/SWPB. */ |
| if (0 == insn_op1) |
| { |
| /* These insn, changes register and memory as well. */ |
| /* SWP or SWPB insn. */ |
| /* Get memory address given by Rn. */ |
| reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); |
| regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); |
| /* SWP insn ?, swaps word. */ |
| if (8 == arm_insn_r->opcode) |
| { |
| record_buf_mem[0] = 4; |
| } |
| else |
| { |
| /* SWPB insn, swaps only byte. */ |
| record_buf_mem[0] = 1; |
| } |
| record_buf_mem[1] = u_regval; |
| arm_insn_r->mem_rec_count = 1; |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| arm_insn_r->reg_rec_count = 1; |
| } |
| else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20)) |
| { |
| /* STRH. */ |
| arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0], |
| ARM_RECORD_STRH); |
| } |
| else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20)) |
| { |
| /* LDRD. */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| record_buf[1] = record_buf[0] + 1; |
| arm_insn_r->reg_rec_count = 2; |
| } |
| else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20)) |
| { |
| /* STRD. */ |
| arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0], |
| ARM_RECORD_STRD); |
| } |
| else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3) |
| { |
| /* LDRH, LDRSB, LDRSH. */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| arm_insn_r->reg_rec_count = 1; |
| } |
| |
| } |
| |
| opcode1 = bits (arm_insn_r->arm_insn, 23, 27); |
| if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21) |
| && !INSN_RECORDED(arm_insn_r)) |
| { |
| ret = -1; |
| /* Handle coprocessor insn extension space. */ |
| } |
| |
| /* To be done for ARMv5 and later; as of now we return -1. */ |
| if (-1 == ret) |
| return ret; |
| |
| REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); |
| MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); |
| |
| return ret; |
| } |
| |
| /* Handling opcode 000 insns. */ |
| |
| static int |
| arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r) |
| { |
| struct regcache *reg_cache = arm_insn_r->regcache; |
| uint32_t record_buf[8], record_buf_mem[8]; |
| ULONGEST u_regval[2] = {0}; |
| |
| uint32_t reg_src1 = 0; |
| uint32_t opcode1 = 0; |
| |
| arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); |
| arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); |
| opcode1 = bits (arm_insn_r->arm_insn, 20, 24); |
| |
| if (!((opcode1 & 0x19) == 0x10)) |
| { |
| /* Data-processing (register) and Data-processing (register-shifted |
| register */ |
| /* Out of 11 shifter operands mode, all the insn modifies destination |
| register, which is specified by 13-16 decode. */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| record_buf[1] = ARM_PS_REGNUM; |
| arm_insn_r->reg_rec_count = 2; |
| } |
| else if ((arm_insn_r->decode < 8) && ((opcode1 & 0x19) == 0x10)) |
| { |
| /* Miscellaneous instructions */ |
| |
| if (3 == arm_insn_r->decode && 0x12 == opcode1 |
| && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1)) |
| { |
| /* Handle BLX, branch and link/exchange. */ |
| if (9 == arm_insn_r->opcode) |
| { |
| /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm, |
| and R14 stores the return address. */ |
| record_buf[0] = ARM_PS_REGNUM; |
| record_buf[1] = ARM_LR_REGNUM; |
| arm_insn_r->reg_rec_count = 2; |
| } |
| } |
| else if (7 == arm_insn_r->decode && 0x12 == opcode1) |
| { |
| /* Handle enhanced software breakpoint insn, BKPT. */ |
| /* CPSR is changed to be executed in ARM state, disabling normal |
| interrupts, entering abort mode. */ |
| /* According to high vector configuration PC is set. */ |
| /* user hit breakpoint and type reverse, in |
| that case, we need to go back with previous CPSR and |
| Program Counter. */ |
| record_buf[0] = ARM_PS_REGNUM; |
| record_buf[1] = ARM_LR_REGNUM; |
| arm_insn_r->reg_rec_count = 2; |
| |
| /* Save SPSR also; how? */ |
| return -1; |
| } |
| else if (1 == arm_insn_r->decode && 0x12 == opcode1 |
| && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1)) |
| { |
| /* Handle BX, branch and link/exchange. */ |
| /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */ |
| record_buf[0] = ARM_PS_REGNUM; |
| arm_insn_r->reg_rec_count = 1; |
| } |
| else if (1 == arm_insn_r->decode && 0x16 == opcode1 |
| && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1) |
| && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)) |
| { |
| /* Count leading zeros: CLZ. */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| arm_insn_r->reg_rec_count = 1; |
| } |
| else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM) |
| && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode) |
| && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1) |
| && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0)) |
| { |
| /* Handle MRS insn. */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| arm_insn_r->reg_rec_count = 1; |
| } |
| } |
| else if (9 == arm_insn_r->decode && opcode1 < 0x10) |
| { |
| /* Multiply and multiply-accumulate */ |
| |
| /* Handle multiply instructions. */ |
| /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */ |
| if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode) |
| { |
| /* Handle MLA and MUL. */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19); |
| record_buf[1] = ARM_PS_REGNUM; |
| arm_insn_r->reg_rec_count = 2; |
| } |
| else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode) |
| { |
| /* Handle SMLAL, SMULL, UMLAL, UMULL. */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19); |
| record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15); |
| record_buf[2] = ARM_PS_REGNUM; |
| arm_insn_r->reg_rec_count = 3; |
| } |
| } |
| else if (9 == arm_insn_r->decode && opcode1 > 0x10) |
| { |
| /* Synchronization primitives */ |
| |
| /* Handling SWP, SWPB. */ |
| /* These insn, changes register and memory as well. */ |
| /* SWP or SWPB insn. */ |
| |
| reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); |
| regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); |
| /* SWP insn ?, swaps word. */ |
| if (8 == arm_insn_r->opcode) |
| { |
| record_buf_mem[0] = 4; |
| } |
| else |
| { |
| /* SWPB insn, swaps only byte. */ |
| record_buf_mem[0] = 1; |
| } |
| record_buf_mem[1] = u_regval[0]; |
| arm_insn_r->mem_rec_count = 1; |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| arm_insn_r->reg_rec_count = 1; |
| } |
| else if (11 == arm_insn_r->decode || 13 == arm_insn_r->decode |
| || 15 == arm_insn_r->decode) |
| { |
| if ((opcode1 & 0x12) == 2) |
| { |
| /* Extra load/store (unprivileged) */ |
| return -1; |
| } |
| else |
| { |
| /* Extra load/store */ |
| switch (bits (arm_insn_r->arm_insn, 5, 6)) |
| { |
| case 1: |
| if ((opcode1 & 0x05) == 0x0 || (opcode1 & 0x05) == 0x4) |
| { |
| /* STRH (register), STRH (immediate) */ |
| arm_record_strx (arm_insn_r, &record_buf[0], |
| &record_buf_mem[0], ARM_RECORD_STRH); |
| } |
| else if ((opcode1 & 0x05) == 0x1) |
| { |
| /* LDRH (register) */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| arm_insn_r->reg_rec_count = 1; |
| |
| if (bit (arm_insn_r->arm_insn, 21)) |
| { |
| /* Write back to Rn. */ |
| record_buf[arm_insn_r->reg_rec_count++] |
| = bits (arm_insn_r->arm_insn, 16, 19); |
| } |
| } |
| else if ((opcode1 & 0x05) == 0x5) |
| { |
| /* LDRH (immediate), LDRH (literal) */ |
| int rn = bits (arm_insn_r->arm_insn, 16, 19); |
| |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| arm_insn_r->reg_rec_count = 1; |
| |
| if (rn != 15) |
| { |
| /*LDRH (immediate) */ |
| if (bit (arm_insn_r->arm_insn, 21)) |
| { |
| /* Write back to Rn. */ |
| record_buf[arm_insn_r->reg_rec_count++] = rn; |
| } |
| } |
| } |
| else |
| return -1; |
| break; |
| case 2: |
| if ((opcode1 & 0x05) == 0x0) |
| { |
| /* LDRD (register) */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| record_buf[1] = record_buf[0] + 1; |
| arm_insn_r->reg_rec_count = 2; |
| |
| if (bit (arm_insn_r->arm_insn, 21)) |
| { |
| /* Write back to Rn. */ |
| record_buf[arm_insn_r->reg_rec_count++] |
| = bits (arm_insn_r->arm_insn, 16, 19); |
| } |
| } |
| else if ((opcode1 & 0x05) == 0x1) |
| { |
| /* LDRSB (register) */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| arm_insn_r->reg_rec_count = 1; |
| |
| if (bit (arm_insn_r->arm_insn, 21)) |
| { |
| /* Write back to Rn. */ |
| record_buf[arm_insn_r->reg_rec_count++] |
| = bits (arm_insn_r->arm_insn, 16, 19); |
| } |
| } |
| else if ((opcode1 & 0x05) == 0x4 || (opcode1 & 0x05) == 0x5) |
| { |
| /* LDRD (immediate), LDRD (literal), LDRSB (immediate), |
| LDRSB (literal) */ |
| int rn = bits (arm_insn_r->arm_insn, 16, 19); |
| |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| arm_insn_r->reg_rec_count = 1; |
| |
| if (rn != 15) |
| { |
| /*LDRD (immediate), LDRSB (immediate) */ |
| if (bit (arm_insn_r->arm_insn, 21)) |
| { |
| /* Write back to Rn. */ |
| record_buf[arm_insn_r->reg_rec_count++] = rn; |
| } |
| } |
| } |
| else |
| return -1; |
| break; |
| case 3: |
| if ((opcode1 & 0x05) == 0x0) |
| { |
| /* STRD (register) */ |
| arm_record_strx (arm_insn_r, &record_buf[0], |
| &record_buf_mem[0], ARM_RECORD_STRD); |
| } |
| else if ((opcode1 & 0x05) == 0x1) |
| { |
| /* LDRSH (register) */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| arm_insn_r->reg_rec_count = 1; |
| |
| if (bit (arm_insn_r->arm_insn, 21)) |
| { |
| /* Write back to Rn. */ |
| record_buf[arm_insn_r->reg_rec_count++] |
| = bits (arm_insn_r->arm_insn, 16, 19); |
| } |
| } |
| else if ((opcode1 & 0x05) == 0x4) |
| { |
| /* STRD (immediate) */ |
| arm_record_strx (arm_insn_r, &record_buf[0], |
| &record_buf_mem[0], ARM_RECORD_STRD); |
| } |
| else if ((opcode1 & 0x05) == 0x5) |
| { |
| /* LDRSH (immediate), LDRSH (literal) */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| arm_insn_r->reg_rec_count = 1; |
| |
| if (bit (arm_insn_r->arm_insn, 21)) |
| { |
| /* Write back to Rn. */ |
| record_buf[arm_insn_r->reg_rec_count++] |
| = bits (arm_insn_r->arm_insn, 16, 19); |
| } |
| } |
| else |
| return -1; |
| break; |
| default: |
| return -1; |
| } |
| } |
| } |
| else |
| { |
| return -1; |
| } |
| |
| REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); |
| MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); |
| return 0; |
| } |
| |
| /* Handling opcode 001 insns. */ |
| |
| static int |
| arm_record_data_proc_imm (insn_decode_record *arm_insn_r) |
| { |
| uint32_t record_buf[8], record_buf_mem[8]; |
| |
| arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); |
| arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); |
| |
| if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode) |
| && 2 == bits (arm_insn_r->arm_insn, 20, 21) |
| && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1) |
| ) |
| { |
| /* Handle MSR insn. */ |
| if (9 == arm_insn_r->opcode) |
| { |
| /* CSPR is going to be changed. */ |
| record_buf[0] = ARM_PS_REGNUM; |
| arm_insn_r->reg_rec_count = 1; |
| } |
| else |
| { |
| /* SPSR is going to be changed. */ |
| } |
| } |
| else if (arm_insn_r->opcode <= 15) |
| { |
| /* Normal data processing insns. */ |
| /* Out of 11 shifter operands mode, all the insn modifies destination |
| register, which is specified by 13-16 decode. */ |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| record_buf[1] = ARM_PS_REGNUM; |
| arm_insn_r->reg_rec_count = 2; |
| } |
| else |
| { |
| return -1; |
| } |
| |
| REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); |
| MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); |
| return 0; |
| } |
| |
| static int |
| arm_record_media (insn_decode_record *arm_insn_r) |
| { |
| uint32_t record_buf[8]; |
| |
| switch (bits (arm_insn_r->arm_insn, 22, 24)) |
| { |
| case 0: |
| /* Parallel addition and subtraction, signed */ |
| case 1: |
| /* Parallel addition and subtraction, unsigned */ |
| case 2: |
| case 3: |
| /* Packing, unpacking, saturation and reversal */ |
| { |
| int rd = bits (arm_insn_r->arm_insn, 12, 15); |
| |
| record_buf[arm_insn_r->reg_rec_count++] = rd; |
| } |
| break; |
| |
| case 4: |
| case 5: |
| /* Signed multiplies */ |
| { |
| int rd = bits (arm_insn_r->arm_insn, 16, 19); |
| unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 22); |
| |
| record_buf[arm_insn_r->reg_rec_count++] = rd; |
| if (op1 == 0x0) |
| record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM; |
| else if (op1 == 0x4) |
| record_buf[arm_insn_r->reg_rec_count++] |
| = bits (arm_insn_r->arm_insn, 12, 15); |
| } |
| break; |
| |
| case 6: |
| { |
| if (bit (arm_insn_r->arm_insn, 21) |
| && bits (arm_insn_r->arm_insn, 5, 6) == 0x2) |
| { |
| /* SBFX */ |
| record_buf[arm_insn_r->reg_rec_count++] |
| = bits (arm_insn_r->arm_insn, 12, 15); |
| } |
| else if (bits (arm_insn_r->arm_insn, 20, 21) == 0x0 |
| && bits (arm_insn_r->arm_insn, 5, 7) == 0x0) |
| { |
| /* USAD8 and USADA8 */ |
| record_buf[arm_insn_r->reg_rec_count++] |
| = bits (arm_insn_r->arm_insn, 16, 19); |
| } |
| } |
| break; |
| |
| case 7: |
| { |
| if (bits (arm_insn_r->arm_insn, 20, 21) == 0x3 |
| && bits (arm_insn_r->arm_insn, 5, 7) == 0x7) |
| { |
| /* Permanently UNDEFINED */ |
| return -1; |
| } |
| else |
| { |
| /* BFC, BFI and UBFX */ |
| record_buf[arm_insn_r->reg_rec_count++] |
| = bits (arm_insn_r->arm_insn, 12, 15); |
| } |
| } |
| break; |
| |
| default: |
| return -1; |
| } |
| |
| REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); |
| |
| return 0; |
| } |
| |
| /* Handle ARM mode instructions with opcode 010. */ |
| |
| static int |
| arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r) |
| { |
| struct regcache *reg_cache = arm_insn_r->regcache; |
| |
| uint32_t reg_base , reg_dest; |
| uint32_t offset_12, tgt_mem_addr; |
| uint32_t record_buf[8], record_buf_mem[8]; |
| unsigned char wback; |
| ULONGEST u_regval; |
| |
| /* Calculate wback. */ |
| wback = (bit (arm_insn_r->arm_insn, 24) == 0) |
| || (bit (arm_insn_r->arm_insn, 21) == 1); |
| |
| arm_insn_r->reg_rec_count = 0; |
| reg_base = bits (arm_insn_r->arm_insn, 16, 19); |
| |
| if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) |
| { |
| /* LDR (immediate), LDR (literal), LDRB (immediate), LDRB (literal), LDRBT |
| and LDRT. */ |
| |
| reg_dest = bits (arm_insn_r->arm_insn, 12, 15); |
| record_buf[arm_insn_r->reg_rec_count++] = reg_dest; |
| |
| /* The LDR instruction is capable of doing branching. If MOV LR, PC |
| preceeds a LDR instruction having R15 as reg_base, it |
| emulates a branch and link instruction, and hence we need to save |
| CPSR and PC as well. */ |
| if (ARM_PC_REGNUM == reg_dest) |
| record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM; |
| |
| /* If wback is true, also save the base register, which is going to be |
| written to. */ |
| if (wback) |
| record_buf[arm_insn_r->reg_rec_count++] = reg_base; |
| } |
| else |
| { |
| /* STR (immediate), STRB (immediate), STRBT and STRT. */ |
| |
| offset_12 = bits (arm_insn_r->arm_insn, 0, 11); |
| regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval); |
| |
| /* Handle bit U. */ |
| if (bit (arm_insn_r->arm_insn, 23)) |
| { |
| /* U == 1: Add the offset. */ |
| tgt_mem_addr = (uint32_t) u_regval + offset_12; |
| } |
| else |
| { |
| /* U == 0: subtract the offset. */ |
| tgt_mem_addr = (uint32_t) u_regval - offset_12; |
| } |
| |
| /* Bit 22 tells us whether the store instruction writes 1 byte or 4 |
| bytes. */ |
| if (bit (arm_insn_r->arm_insn, 22)) |
| { |
| /* STRB and STRBT: 1 byte. */ |
| record_buf_mem[0] = 1; |
| } |
| else |
| { |
| /* STR and STRT: 4 bytes. */ |
| record_buf_mem[0] = 4; |
| } |
| |
| /* Handle bit P. */ |
| if (bit (arm_insn_r->arm_insn, 24)) |
| record_buf_mem[1] = tgt_mem_addr; |
| else |
| record_buf_mem[1] = (uint32_t) u_regval; |
| |
| arm_insn_r->mem_rec_count = 1; |
| |
| /* If wback is true, also save the base register, which is going to be |
| written to. */ |
| if (wback) |
| record_buf[arm_insn_r->reg_rec_count++] = reg_base; |
| } |
| |
| REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); |
| MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); |
| return 0; |
| } |
| |
| /* Handling opcode 011 insns. */ |
| |
| static int |
| arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r) |
| { |
| struct regcache *reg_cache = arm_insn_r->regcache; |
| |
| uint32_t shift_imm = 0; |
| uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0; |
| uint32_t offset_12 = 0, tgt_mem_addr = 0; |
| uint32_t record_buf[8], record_buf_mem[8]; |
| |
| LONGEST s_word; |
| ULONGEST u_regval[2]; |
| |
| if (bit (arm_insn_r->arm_insn, 4)) |
| return arm_record_media (arm_insn_r); |
| |
| arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); |
| arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); |
| |
| /* Handle enhanced store insns and LDRD DSP insn, |
| order begins according to addressing modes for store insns |
| STRH insn. */ |
| |
| /* LDR or STR? */ |
| if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) |
| { |
| reg_dest = bits (arm_insn_r->arm_insn, 12, 15); |
| /* LDR insn has a capability to do branching, if |
| MOV LR, PC is preceded by LDR insn having Rn as R15 |
| in that case, it emulates branch and link insn, and hence we |
| need to save CSPR and PC as well. */ |
| if (15 != reg_dest) |
| { |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| arm_insn_r->reg_rec_count = 1; |
| } |
| else |
| { |
| record_buf[0] = reg_dest; |
| record_buf[1] = ARM_PS_REGNUM; |
| arm_insn_r->reg_rec_count = 2; |
| } |
| } |
| else |
| { |
| if (! bits (arm_insn_r->arm_insn, 4, 11)) |
| { |
| /* Store insn, register offset and register pre-indexed, |
| register post-indexed. */ |
| /* Get Rm. */ |
| reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); |
| /* Get Rn. */ |
| reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); |
| regcache_raw_read_unsigned (reg_cache, reg_src1 |
| , &u_regval[0]); |
| regcache_raw_read_unsigned (reg_cache, reg_src2 |
| , &u_regval[1]); |
| if (15 == reg_src2) |
| { |
| /* If R15 was used as Rn, hence current PC+8. */ |
| /* Pre-indexed mode doesnt reach here ; illegal insn. */ |
| u_regval[0] = u_regval[0] + 8; |
| } |
| /* Calculate target store address, Rn +/- Rm, register offset. */ |
| /* U == 1. */ |
| if (bit (arm_insn_r->arm_insn, 23)) |
| { |
| tgt_mem_addr = u_regval[0] + u_regval[1]; |
| } |
| else |
| { |
| tgt_mem_addr = u_regval[1] - u_regval[0]; |
| } |
| |
| switch (arm_insn_r->opcode) |
| { |
| /* STR. */ |
| case 8: |
| case 12: |
| /* STR. */ |
| case 9: |
| case 13: |
| /* STRT. */ |
| case 1: |
| case 5: |
| /* STR. */ |
| case 0: |
| case 4: |
| record_buf_mem[0] = 4; |
| break; |
| |
| /* STRB. */ |
| case 10: |
| case 14: |
| /* STRB. */ |
| case 11: |
| case 15: |
| /* STRBT. */ |
| case 3: |
| case 7: |
| /* STRB. */ |
| case 2: |
| case 6: |
| record_buf_mem[0] = 1; |
| break; |
| |
| default: |
| gdb_assert_not_reached ("no decoding pattern found"); |
| break; |
| } |
| record_buf_mem[1] = tgt_mem_addr; |
| arm_insn_r->mem_rec_count = 1; |
| |
| if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode |
| || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode |
| || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode |
| || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode |
| || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode |
| || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode |
| ) |
| { |
| /* Rn is going to be changed in pre-indexed mode and |
| post-indexed mode as well. */ |
| record_buf[0] = reg_src2; |
| arm_insn_r->reg_rec_count = 1; |
| } |
| } |
| else |
| { |
| /* Store insn, scaled register offset; scaled pre-indexed. */ |
| offset_12 = bits (arm_insn_r->arm_insn, 5, 6); |
| /* Get Rm. */ |
| reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); |
| /* Get Rn. */ |
| reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); |
| /* Get shift_imm. */ |
| shift_imm = bits (arm_insn_r->arm_insn, 7, 11); |
| regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); |
| regcache_raw_read_signed (reg_cache, reg_src1, &s_word); |
| regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); |
| /* Offset_12 used as shift. */ |
| switch (offset_12) |
| { |
| case 0: |
| /* Offset_12 used as index. */ |
| offset_12 = u_regval[0] << shift_imm; |
| break; |
| |
| case 1: |
| offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm; |
| break; |
| |
| case 2: |
| if (!shift_imm) |
| { |
| if (bit (u_regval[0], 31)) |
| { |
| offset_12 = 0xFFFFFFFF; |
| } |
| else |
| { |
| offset_12 = 0; |
| } |
| } |
| else |
| { |
| /* This is arithmetic shift. */ |
| offset_12 = s_word >> shift_imm; |
| } |
| break; |
| |
| case 3: |
| if (!shift_imm) |
| { |
| regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM, |
| &u_regval[1]); |
| /* Get C flag value and shift it by 31. */ |
| offset_12 = (((bit (u_regval[1], 29)) << 31) \ |
| | (u_regval[0]) >> 1); |
| } |
| else |
| { |
| offset_12 = (u_regval[0] >> shift_imm) \ |
| | (u_regval[0] << |
| (sizeof(uint32_t) - shift_imm)); |
| } |
| break; |
| |
| default: |
| gdb_assert_not_reached ("no decoding pattern found"); |
| break; |
| } |
| |
| regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); |
| /* bit U set. */ |
| if (bit (arm_insn_r->arm_insn, 23)) |
| { |
| tgt_mem_addr = u_regval[1] + offset_12; |
| } |
| else |
| { |
| tgt_mem_addr = u_regval[1] - offset_12; |
| } |
| |
| switch (arm_insn_r->opcode) |
| { |
| /* STR. */ |
| case 8: |
| case 12: |
| /* STR. */ |
| case 9: |
| case 13: |
| /* STRT. */ |
| case 1: |
| case 5: |
| /* STR. */ |
| case 0: |
| case 4: |
| record_buf_mem[0] = 4; |
| break; |
| |
| /* STRB. */ |
| case 10: |
| case 14: |
| /* STRB. */ |
| case 11: |
| case 15: |
| /* STRBT. */ |
| case 3: |
| case 7: |
| /* STRB. */ |
| case 2: |
| case 6: |
| record_buf_mem[0] = 1; |
| break; |
| |
| default: |
| gdb_assert_not_reached ("no decoding pattern found"); |
| break; |
| } |
| record_buf_mem[1] = tgt_mem_addr; |
| arm_insn_r->mem_rec_count = 1; |
| |
| if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode |
| || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode |
| || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode |
| || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode |
| || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode |
| || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode |
| ) |
| { |
| /* Rn is going to be changed in register scaled pre-indexed |
| mode,and scaled post indexed mode. */ |
| record_buf[0] = reg_src2; |
| arm_insn_r->reg_rec_count = 1; |
| } |
| } |
| } |
| |
| REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); |
| MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); |
| return 0; |
| } |
| |
| /* Handle ARM mode instructions with opcode 100. */ |
| |
| static int |
| arm_record_ld_st_multiple (insn_decode_record *arm_insn_r) |
| { |
| struct regcache *reg_cache = arm_insn_r->regcache; |
| uint32_t register_count = 0, register_bits; |
| uint32_t reg_base, addr_mode; |
| uint32_t record_buf[24], record_buf_mem[48]; |
| uint32_t wback; |
| ULONGEST u_regval; |
| |
| /* Fetch the list of registers. */ |
| register_bits = bits (arm_insn_r->arm_insn, 0, 15); |
| arm_insn_r->reg_rec_count = 0; |
| |
| /* Fetch the base register that contains the address we are loading data |
| to. */ |
| reg_base = bits (arm_insn_r->arm_insn, 16, 19); |
| |
| /* Calculate wback. */ |
| wback = (bit (arm_insn_r->arm_insn, 21) == 1); |
| |
| if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) |
| { |
| /* LDM/LDMIA/LDMFD, LDMDA/LDMFA, LDMDB and LDMIB. */ |
| |
| /* Find out which registers are going to be loaded from memory. */ |
| while (register_bits) |
| { |
| if (register_bits & 0x00000001) |
| record_buf[arm_insn_r->reg_rec_count++] = register_count; |
| register_bits = register_bits >> 1; |
| register_count++; |
| } |
| |
| |
| /* If wback is true, also save the base register, which is going to be |
| written to. */ |
| if (wback) |
| record_buf[arm_insn_r->reg_rec_count++] = reg_base; |
| |
| /* Save the CPSR register. */ |
| record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM; |
| } |
| else |
| { |
| /* STM (STMIA, STMEA), STMDA (STMED), STMDB (STMFD) and STMIB (STMFA). */ |
| |
| addr_mode = bits (arm_insn_r->arm_insn, 23, 24); |
| |
| regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval); |
| |
| /* Find out how many registers are going to be stored to memory. */ |
| while (register_bits) |
| { |
| if (register_bits & 0x00000001) |
| register_count++; |
| register_bits = register_bits >> 1; |
| } |
| |
| switch (addr_mode) |
| { |
| /* STMDA (STMED): Decrement after. */ |
| case 0: |
| record_buf_mem[1] = (uint32_t) u_regval |
| - register_count * ARM_INT_REGISTER_SIZE + 4; |
| break; |
| /* STM (STMIA, STMEA): Increment after. */ |
| case 1: |
| record_buf_mem[1] = (uint32_t) u_regval; |
| break; |
| /* STMDB (STMFD): Decrement before. */ |
| case 2: |
| record_buf_mem[1] = (uint32_t) u_regval |
| - register_count * ARM_INT_REGISTER_SIZE; |
| break; |
| /* STMIB (STMFA): Increment before. */ |
| case 3: |
| record_buf_mem[1] = (uint32_t) u_regval + ARM_INT_REGISTER_SIZE; |
| break; |
| default: |
| gdb_assert_not_reached ("no decoding pattern found"); |
| break; |
| } |
| |
| record_buf_mem[0] = register_count * ARM_INT_REGISTER_SIZE; |
| arm_insn_r->mem_rec_count = 1; |
| |
| /* If wback is true, also save the base register, which is going to be |
| written to. */ |
| if (wback) |
| record_buf[arm_insn_r->reg_rec_count++] = reg_base; |
| } |
| |
| REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); |
| MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); |
| return 0; |
| } |
| |
| /* Handling opcode 101 insns. */ |
| |
| static int |
| arm_record_b_bl (insn_decode_record *arm_insn_r) |
| { |
| uint32_t record_buf[8]; |
| |
| /* Handle B, BL, BLX(1) insns. */ |
| /* B simply branches so we do nothing here. */ |
| /* Note: BLX(1) doesnt fall here but instead it falls into |
| extension space. */ |
| if (bit (arm_insn_r->arm_insn, 24)) |
| { |
| record_buf[0] = ARM_LR_REGNUM; |
| arm_insn_r->reg_rec_count = 1; |
| } |
| |
| REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); |
| |
| return 0; |
| } |
| |
| static int |
| arm_record_unsupported_insn (insn_decode_record *arm_insn_r) |
| { |
| fprintf_unfiltered (gdb_stderr, |
| _("Process record does not support instruction " |
| "0x%0x at address %s.\n"),arm_insn_r->arm_insn, |
| paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr)); |
| |
| return -1; |
| } |
| |
| /* Record handler for vector data transfer instructions. */ |
| |
| static int |
| arm_record_vdata_transfer_insn (insn_decode_record *arm_insn_r) |
| { |
| uint32_t bits_a, bit_c, bit_l, reg_t, reg_v; |
| uint32_t record_buf[4]; |
| |
| reg_t = bits (arm_insn_r->arm_insn, 12, 15); |
| reg_v = bits (arm_insn_r->arm_insn, 21, 23); |
| bits_a = bits (arm_insn_r->arm_insn, 21, 23); |
| bit_l = bit (arm_insn_r->arm_insn, 20); |
| bit_c = bit (arm_insn_r->arm_insn, 8); |
| |
| /* Handle VMOV instruction. */ |
| if (bit_l && bit_c) |
| { |
| record_buf[0] = reg_t; |
| arm_insn_r->reg_rec_count = 1; |
| } |
| else if (bit_l && !bit_c) |
| { |
| /* Handle VMOV instruction. */ |
| if (bits_a == 0x00) |
| { |
| record_buf[0] = reg_t; |
| arm_insn_r->reg_rec_count = 1; |
| } |
| /* Handle VMRS instruction. */ |
| else if (bits_a == 0x07) |
| { |
| if (reg_t == 15) |
| reg_t = ARM_PS_REGNUM; |
| |
| record_buf[0] = reg_t; |
| arm_insn_r->reg_rec_count = 1; |
| } |
| } |
| else if (!bit_l && !bit_c) |
| { |
| /* Handle VMOV instruction. */ |
| if (bits_a == 0x00) |
| { |
| record_buf[0] = ARM_D0_REGNUM + reg_v; |
| |
| arm_insn_r->reg_rec_count = 1; |
| } |
| /* Handle VMSR instruction. */ |
| else if (bits_a == 0x07) |
| { |
| record_buf[0] = ARM_FPSCR_REGNUM; |
| arm_insn_r->reg_rec_count = 1; |
| } |
| } |
| else if (!bit_l && bit_c) |
| { |
| /* Handle VMOV instruction. */ |
| if (!(bits_a & 0x04)) |
| { |
| record_buf[0] = (reg_v | (bit (arm_insn_r->arm_insn, 7) << 4)) |
| + ARM_D0_REGNUM; |
| arm_insn_r->reg_rec_count = 1; |
| } |
| /* Handle VDUP instruction. */ |
| else |
| { |
| if (bit (arm_insn_r->arm_insn, 21)) |
| { |
| reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4); |
| record_buf[0] = reg_v + ARM_D0_REGNUM; |
| record_buf[1] = reg_v + ARM_D0_REGNUM + 1; |
| arm_insn_r->reg_rec_count = 2; |
| } |
| else |
| { |
| reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4); |
| record_buf[0] = reg_v + ARM_D0_REGNUM; |
| arm_insn_r->reg_rec_count = 1; |
| } |
| } |
| } |
| |
| REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); |
| return 0; |
| } |
| |
| /* Record handler for extension register load/store instructions. */ |
| |
| static int |
| arm_record_exreg_ld_st_insn (insn_decode_record *arm_insn_r) |
| { |
| uint32_t opcode, single_reg; |
| uint8_t op_vldm_vstm; |
| uint32_t record_buf[8], record_buf_mem[128]; |
| ULONGEST u_regval = 0; |
| |
| struct regcache *reg_cache = arm_insn_r->regcache; |
| |
| opcode = bits (arm_insn_r->arm_insn, 20, 24); |
| single_reg = !bit (arm_insn_r->arm_insn, 8); |
| op_vldm_vstm = opcode & 0x1b; |
| |
| /* Handle VMOV instructions. */ |
| if ((opcode & 0x1e) == 0x04) |
| { |
| if (bit (arm_insn_r->arm_insn, 20)) /* to_arm_registers bit 20? */ |
| { |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19); |
| arm_insn_r->reg_rec_count = 2; |
| } |
| else |
| { |
| uint8_t reg_m = bits (arm_insn_r->arm_insn, 0, 3); |
| uint8_t bit_m = bit (arm_insn_r->arm_insn, 5); |
| |
| if (single_reg) |
| { |
| /* The first S register number m is REG_M:M (M is bit 5), |
| the corresponding D register number is REG_M:M / 2, which |
| is REG_M. */ |
| record_buf[arm_insn_r->reg_rec_count++] = ARM_D0_REGNUM + reg_m; |
| /* The second S register number is REG_M:M + 1, the |
| corresponding D register number is (REG_M:M + 1) / 2. |
| IOW, if bit M is 1, the first and second S registers |
| are mapped to different D registers, otherwise, they are |
| in the same D register. */ |
| if (bit_m) |
| { |
| record_buf[arm_insn_r->reg_rec_count++] |
| = ARM_D0_REGNUM + reg_m + 1; |
| } |
| } |
| else |
| { |
| record_buf[0] = ((bit_m << 4) + reg_m + ARM_D0_REGNUM); |
| arm_insn_r->reg_rec_count = 1; |
| } |
| } |
| } |
| /* Handle VSTM and VPUSH instructions. */ |
| else if (op_vldm_vstm == 0x08 || op_vldm_vstm == 0x0a |
| || op_vldm_vstm == 0x12) |
| { |
| uint32_t start_address, reg_rn, imm_off32, imm_off8, memory_count; |
| uint32_t memory_index = 0; |
| |
| reg_rn = bits (arm_insn_r->arm_insn, 16, 19); |
| regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval); |
| imm_off8 = bits (arm_insn_r->arm_insn, 0, 7); |
| imm_off32 = imm_off8 << 2; |
| memory_count = imm_off8; |
| |
| if (bit (arm_insn_r->arm_insn, 23)) |
| start_address = u_regval; |
| else |
| start_address = u_regval - imm_off32; |
| |
| if (bit (arm_insn_r->arm_insn, 21)) |
| { |
| record_buf[0] = reg_rn; |
| arm_insn_r->reg_rec_count = 1; |
| } |
| |
| while (memory_count > 0) |
| { |
| if (single_reg) |
| { |
| record_buf_mem[memory_index] = 4; |
| record_buf_mem[memory_index + 1] = start_address; |
| start_address = start_address + 4; |
| memory_index = memory_index + 2; |
| } |
| else |
| { |
| record_buf_mem[memory_index] = 4; |
| record_buf_mem[memory_index + 1] = start_address; |
| record_buf_mem[memory_index + 2] = 4; |
| record_buf_mem[memory_index + 3] = start_address + 4; |
| start_address = start_address + 8; |
| memory_index = memory_index + 4; |
| } |
| memory_count--; |
| } |
| arm_insn_r->mem_rec_count = (memory_index >> 1); |
| } |
| /* Handle VLDM instructions. */ |
| else if (op_vldm_vstm == 0x09 || op_vldm_vstm == 0x0b |
| || op_vldm_vstm == 0x13) |
| { |
| uint32_t reg_count, reg_vd; |
| uint32_t reg_index = 0; |
| uint32_t bit_d = bit (arm_insn_r->arm_insn, 22); |
| |
| reg_vd = bits (arm_insn_r->arm_insn, 12, 15); |
| reg_count = bits (arm_insn_r->arm_insn, 0, 7); |
| |
| /* REG_VD is the first D register number. If the instruction |
| loads memory to S registers (SINGLE_REG is TRUE), the register |
| number is (REG_VD << 1 | bit D), so the corresponding D |
| register number is (REG_VD << 1 | bit D) / 2 = REG_VD. */ |
| if (!single_reg) |
| reg_vd = reg_vd | (bit_d << 4); |
| |
| if (bit (arm_insn_r->arm_insn, 21) /* write back */) |
| record_buf[reg_index++] = bits (arm_insn_r->arm_insn, 16, 19); |
| |
| /* If the instruction loads memory to D register, REG_COUNT should |
| be divided by 2, according to the ARM Architecture Reference |
| Manual. If the instruction loads memory to S register, divide by |
| 2 as well because two S registers are mapped to D register. */ |
| reg_count = reg_count / 2; |
| if (single_reg && bit_d) |
| { |
| /* Increase the register count if S register list starts from |
| an odd number (bit d is one). */ |
| reg_count++; |
| } |
| |
| while (reg_count > 0) |
| { |
| record_buf[reg_index++] = ARM_D0_REGNUM + reg_vd + reg_count - 1; |
| reg_count--; |
| } |
| arm_insn_r->reg_rec_count = reg_index; |
| } |
| /* VSTR Vector store register. */ |
| else if ((opcode & 0x13) == 0x10) |
| { |
| uint32_t start_address, reg_rn, imm_off32, imm_off8; |
| uint32_t memory_index = 0; |
| |
| reg_rn = bits (arm_insn_r->arm_insn, 16, 19); |
| regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval); |
| imm_off8 = bits (arm_insn_r->arm_insn, 0, 7); |
| imm_off32 = imm_off8 << 2; |
| |
| if (bit (arm_insn_r->arm_insn, 23)) |
| start_address = u_regval + imm_off32; |
| else |
| start_address = u_regval - imm_off32; |
| |
| if (single_reg) |
| { |
| record_buf_mem[memory_index] = 4; |
| record_buf_mem[memory_index + 1] = start_address; |
| arm_insn_r->mem_rec_count = 1; |
| } |
| else |
| { |
| record_buf_mem[memory_index] = 4; |
| record_buf_mem[memory_index + 1] = start_address; |
| record_buf_mem[memory_index + 2] = 4; |
| record_buf_mem[memory_index + 3] = start_address + 4; |
| arm_insn_r->mem_rec_count = 2; |
| } |
| } |
| /* VLDR Vector load register. */ |
| else if ((opcode & 0x13) == 0x11) |
| { |
| uint32_t reg_vd = bits (arm_insn_r->arm_insn, 12, 15); |
| |
| if (!single_reg) |
| { |
| reg_vd = reg_vd | (bit (arm_insn_r->arm_insn, 22) << 4); |
| record_buf[0] = ARM_D0_REGNUM + reg_vd; |
| } |
| else |
| { |
| reg_vd = (reg_vd << 1) | bit (arm_insn_r->arm_insn, 22); |
| /* Record register D rather than pseudo register S. */ |
| record_buf[0] = ARM_D0_REGNUM + reg_vd / 2; |
| } |
| arm_insn_r->reg_rec_count = 1; |
| } |
| |
| REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); |
| MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); |
| return 0; |
| } |
| |
| /* Record handler for arm/thumb mode VFP data processing instructions. */ |
| |
| static int |
| arm_record_vfp_data_proc_insn (insn_decode_record *arm_insn_r) |
| { |
| uint32_t opc1, opc2, opc3, dp_op_sz, bit_d, reg_vd; |
| uint32_t record_buf[4]; |
| enum insn_types {INSN_T0, INSN_T1, INSN_T2, INSN_T3, INSN_INV}; |
| enum insn_types curr_insn_type = INSN_INV; |
| |
| reg_vd = bits (arm_insn_r->arm_insn, 12, 15); |
| opc1 = bits (arm_insn_r->arm_insn, 20, 23); |
| opc2 = bits (arm_insn_r->arm_insn, 16, 19); |
| opc3 = bits (arm_insn_r->arm_insn, 6, 7); |
| dp_op_sz = bit (arm_insn_r->arm_insn, 8); |
| bit_d = bit (arm_insn_r->arm_insn, 22); |
| /* Mask off the "D" bit. */ |
| opc1 = opc1 & ~0x04; |
| |
| /* Handle VMLA, VMLS. */ |
| if (opc1 == 0x00) |
| { |
| if (bit (arm_insn_r->arm_insn, 10)) |
| { |
| if (bit (arm_insn_r->arm_insn, 6)) |
| curr_insn_type = INSN_T0; |
| else |
| curr_insn_type = INSN_T1; |
| } |
| else |
| { |
| if (dp_op_sz) |
| curr_insn_type = INSN_T1; |
| else |
| curr_insn_type = INSN_T2; |
| } |
| } |
| /* Handle VNMLA, VNMLS, VNMUL. */ |
| else if (opc1 == 0x01) |
| { |
| if (dp_op_sz) |
| curr_insn_type = INSN_T1; |
| else |
| curr_insn_type = INSN_T2; |
| } |
| /* Handle VMUL. */ |
| else if (opc1 == 0x02 && !(opc3 & 0x01)) |
| { |
| if (bit (arm_insn_r->arm_insn, 10)) |
| { |
| if (bit (arm_insn_r->arm_insn, 6)) |
| curr_insn_type = INSN_T0; |
| else |
| curr_insn_type = INSN_T1; |
| } |
| else |
| { |
| if (dp_op_sz) |
| curr_insn_type = INSN_T1; |
| else |
| curr_insn_type = INSN_T2; |
| } |
| } |
| /* Handle VADD, VSUB. */ |
| else if (opc1 == 0x03) |
| { |
| if (!bit (arm_insn_r->arm_insn, 9)) |
| { |
| if (bit (arm_insn_r->arm_insn, 6)) |
| curr_insn_type = INSN_T0; |
| else |
| curr_insn_type = INSN_T1; |
| } |
| else |
| { |
| if (dp_op_sz) |
| curr_insn_type = INSN_T1; |
| else |
| curr_insn_type = INSN_T2; |
| } |
| } |
| /* Handle VDIV. */ |
| else if (opc1 == 0x08) |
| { |
| if (dp_op_sz) |
| curr_insn_type = INSN_T1; |
| else |
| curr_insn_type = INSN_T2; |
| } |
| /* Handle all other vfp data processing instructions. */ |
| else if (opc1 == 0x0b) |
| { |
| /* Handle VMOV. */ |
| if (!(opc3 & 0x01) || (opc2 == 0x00 && opc3 == 0x01)) |
| { |
| if (bit (arm_insn_r->arm_insn, 4)) |
| { |
| if (bit (arm_insn_r->arm_insn, 6)) |
| curr_insn_type = INSN_T0; |
| else |
| curr_insn_type = INSN_T1; |
| } |
| else |
| { |
| if (dp_op_sz) |
| curr_insn_type = INSN_T1; |
| else |
| curr_insn_type = INSN_T2; |
| } |
| } |
| /* Handle VNEG and VABS. */ |
| else if ((opc2 == 0x01 && opc3 == 0x01) |
| || (opc2 == 0x00 && opc3 == 0x03)) |
| { |
| if (!bit (arm_insn_r->arm_insn, 11)) |
| { |
| if (bit (arm_insn_r->arm_insn, 6)) |
| curr_insn_type = INSN_T0; |
| else |
| curr_insn_type = INSN_T1; |
| } |
| else |
| { |
| if (dp_op_sz) |
| curr_insn_type = INSN_T1; |
| else |
| curr_insn_type = INSN_T2; |
| } |
| } |
| /* Handle VSQRT. */ |
| else if (opc2 == 0x01 && opc3 == 0x03) |
| { |
| if (dp_op_sz) |
| curr_insn_type = INSN_T1; |
| else |
| curr_insn_type = INSN_T2; |
| } |
| /* Handle VCVT. */ |
| else if (opc2 == 0x07 && opc3 == 0x03) |
| { |
| if (!dp_op_sz) |
| curr_insn_type = INSN_T1; |
| else |
| curr_insn_type = INSN_T2; |
| } |
| else if (opc3 & 0x01) |
| { |
| /* Handle VCVT. */ |
| if ((opc2 == 0x08) || (opc2 & 0x0e) == 0x0c) |
| { |
| if (!bit (arm_insn_r->arm_insn, 18)) |
| curr_insn_type = INSN_T2; |
| else |
| { |
| if (dp_op_sz) |
| curr_insn_type = INSN_T1; |
| else |
| curr_insn_type = INSN_T2; |
| } |
| } |
| /* Handle VCVT. */ |
| else if ((opc2 & 0x0e) == 0x0a || (opc2 & 0x0e) == 0x0e) |
| { |
| if (dp_op_sz) |
| curr_insn_type = INSN_T1; |
| else |
| curr_insn_type = INSN_T2; |
| } |
| /* Handle VCVTB, VCVTT. */ |
| else if ((opc2 & 0x0e) == 0x02) |
| curr_insn_type = INSN_T2; |
| /* Handle VCMP, VCMPE. */ |
| else if ((opc2 & 0x0e) == 0x04) |
| curr_insn_type = INSN_T3; |
| } |
| } |
| |
| switch (curr_insn_type) |
| { |
| case INSN_T0: |
| reg_vd = reg_vd | (bit_d << 4); |
| record_buf[0] = reg_vd + ARM_D0_REGNUM; |
| record_buf[1] = reg_vd + ARM_D0_REGNUM + 1; |
| arm_insn_r->reg_rec_count = 2; |
| break; |
| |
| case INSN_T1: |
| reg_vd = reg_vd | (bit_d << 4); |
| record_buf[0] = reg_vd + ARM_D0_REGNUM; |
| arm_insn_r->reg_rec_count = 1; |
| break; |
| |
| case INSN_T2: |
| reg_vd = (reg_vd << 1) | bit_d; |
| record_buf[0] = reg_vd + ARM_D0_REGNUM; |
| arm_insn_r->reg_rec_count = 1; |
| break; |
| |
| case INSN_T3: |
| record_buf[0] = ARM_FPSCR_REGNUM; |
| arm_insn_r->reg_rec_count = 1; |
| break; |
| |
| default: |
| gdb_assert_not_reached ("no decoding pattern found"); |
| break; |
| } |
| |
| REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); |
| return 0; |
| } |
| |
| /* Handling opcode 110 insns. */ |
| |
| static int |
| arm_record_asimd_vfp_coproc (insn_decode_record *arm_insn_r) |
| { |
| uint32_t op1, op1_ebit, coproc; |
| |
| coproc = bits (arm_insn_r->arm_insn, 8, 11); |
| op1 = bits (arm_insn_r->arm_insn, 20, 25); |
| op1_ebit = bit (arm_insn_r->arm_insn, 20); |
| |
| if ((coproc & 0x0e) == 0x0a) |
| { |
| /* Handle extension register ld/st instructions. */ |
| if (!(op1 & 0x20)) |
| return arm_record_exreg_ld_st_insn (arm_insn_r); |
| |
| /* 64-bit transfers between arm core and extension registers. */ |
| if ((op1 & 0x3e) == 0x04) |
| return arm_record_exreg_ld_st_insn (arm_insn_r); |
| } |
| else |
| { |
| /* Handle coprocessor ld/st instructions. */ |
| if (!(op1 & 0x3a)) |
| { |
| /* Store. */ |
| if (!op1_ebit) |
| return arm_record_unsupported_insn (arm_insn_r); |
| else |
| /* Load. */ |
| return arm_record_unsupported_insn (arm_insn_r); |
| } |
| |
| /* Move to coprocessor from two arm core registers. */ |
| if (op1 == 0x4) |
| return arm_record_unsupported_insn (arm_insn_r); |
| |
| /* Move to two arm core registers from coprocessor. */ |
| if (op1 == 0x5) |
| { |
| uint32_t reg_t[2]; |
| |
| reg_t[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| reg_t[1] = bits (arm_insn_r->arm_insn, 16, 19); |
| arm_insn_r->reg_rec_count = 2; |
| |
| REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, reg_t); |
| return 0; |
| } |
| } |
| return arm_record_unsupported_insn (arm_insn_r); |
| } |
| |
| /* Handling opcode 111 insns. */ |
| |
| static int |
| arm_record_coproc_data_proc (insn_decode_record *arm_insn_r) |
| { |
| uint32_t op, op1_ebit, coproc, bits_24_25; |
| arm_gdbarch_tdep *tdep |
| = (arm_gdbarch_tdep *) gdbarch_tdep (arm_insn_r->gdbarch); |
| struct regcache *reg_cache = arm_insn_r->regcache; |
| |
| arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27); |
| coproc = bits (arm_insn_r->arm_insn, 8, 11); |
| op1_ebit = bit (arm_insn_r->arm_insn, 20); |
| op = bit (arm_insn_r->arm_insn, 4); |
| bits_24_25 = bits (arm_insn_r->arm_insn, 24, 25); |
| |
| /* Handle arm SWI/SVC system call instructions. */ |
| if (bits_24_25 == 0x3) |
| { |
| if (tdep->arm_syscall_record != NULL) |
| { |
| ULONGEST svc_operand, svc_number; |
| |
| svc_operand = (0x00ffffff & arm_insn_r->arm_insn); |
| |
| if (svc_operand) /* OABI. */ |
| svc_number = svc_operand - 0x900000; |
| else /* EABI. */ |
| regcache_raw_read_unsigned (reg_cache, 7, &svc_number); |
| |
| return tdep->arm_syscall_record (reg_cache, svc_number); |
| } |
| else |
| { |
| fprintf_unfiltered (gdb_stderr, _("no syscall record support\n")); |
| return -1; |
| } |
| } |
| else if (bits_24_25 == 0x02) |
| { |
| if (op) |
| { |
| if ((coproc & 0x0e) == 0x0a) |
| { |
| /* 8, 16, and 32-bit transfer */ |
| return arm_record_vdata_transfer_insn (arm_insn_r); |
| } |
| else |
| { |
| if (op1_ebit) |
| { |
| /* MRC, MRC2 */ |
| uint32_t record_buf[1]; |
| |
| record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); |
| if (record_buf[0] == 15) |
| record_buf[0] = ARM_PS_REGNUM; |
| |
| arm_insn_r->reg_rec_count = 1; |
| REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, |
| record_buf); |
| return 0; |
| } |
| else |
| { |
| /* MCR, MCR2 */ |
| return -1; |
| } |
| } |
| } |
| else |
| { |
| if ((coproc & 0x0e) == 0x0a) |
| { |
| /* VFP data-processing instructions. */ |
| return arm_record_vfp_data_proc_insn (arm_insn_r); |
| } |
| else |
| { |
| /* CDP, CDP2 */ |
| return -1; |
| } |
| } |
| } |
| else |
| { |
| unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 25); |
| |
| if (op1 == 5) |
| { |
| if ((coproc & 0x0e) != 0x0a) |
| { |
| /* MRRC, MRRC2 */ |
| return -1; |
| } |
| } |
| else if (op1 == 4 || op1 == 5) |
| { |
| if ((coproc & 0x0e) == 0x0a) |
| { |
| /* 64-bit transfers between ARM core and extension */ |
| return -1; |
| } |
| else if (op1 == 4) |
| { |
| /* MCRR, MCRR2 */ |
| return -1; |
| } |
| } |
| else if (op1 == 0 || op1 == 1) |
| { |
| /* UNDEFINED */ |
| return -1; |
| } |
| else |
| { |
| if ((coproc & 0x0e) == 0x0a) |
| { |
| /* Extension register load/store */ |
| } |
| else |
| { |
| /* STC, STC2, LDC, LDC2 */ |
| } |
| return -1; |
| } |
| } |
| |
| return -1; |
| } |
| |
| /* Handling opcode 000 insns. */ |
| |
| static int |
| thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r) |
| { |
| uint32_t record_buf[8]; |
| uint32_t reg_src1 = 0; |
| |
| reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); |
| |
| record_buf[0] = ARM_PS_REGNUM; |
| record_buf[1] = reg_src1; |
| thumb_insn_r->reg_rec_count = 2; |
| |
| REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); |
| |
| return 0; |
| } |
| |
| |
| /* Handling opcode 001 insns. */ |
| |
| static int |
| thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r) |
| { |
| uint32_t record_buf[8]; |
| uint32_t reg_src1 = 0; |
| |
| reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); |
| |
| record_buf[0] = ARM_PS_REGNUM; |
| record_buf[1] = reg_src1; |
| thumb_insn_r->reg_rec_count = 2; |
| |
| REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); |
| |
| return 0; |
| } |
| |
| /* Handling opcode 010 insns. */ |
| |
| static int |
| thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r) |
| { |
| struct regcache *reg_cache = thumb_insn_r->regcache; |
| uint32_t record_buf[8], record_buf_mem[8]; |
| |
| uint32_t reg_src1 = 0, reg_src2 = 0; |
| uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0; |
| |
| ULONGEST u_regval[2] = {0}; |
| |
| opcode1 = bits (thumb_insn_r->arm_insn, 10, 12); |
| |
| if (bit (thumb_insn_r->arm_insn, 12)) |
| { |
| /* Handle load/store register offset. */ |
| uint32_t opB = bits (thumb_insn_r->arm_insn, 9, 11); |
| |
| if (in_inclusive_range (opB, 4U, 7U)) |
| { |
| /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */ |
| reg_src1 = bits (thumb_insn_r->arm_insn,0, 2); |
| record_buf[0] = reg_src1; |
| thumb_insn_r->reg_rec_count = 1; |
| } |
| else if (in_inclusive_range (opB, 0U, 2U)) |
| { |
| /* STR(2), STRB(2), STRH(2) . */ |
| reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5); |
| reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8); |
| regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); |
| regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); |
| if (0 == opB) |
| record_buf_mem[0] = 4; /* STR (2). */ |
| else if (2 == opB) |
| record_buf_mem[0] = 1; /* STRB (2). */ |
| else if (1 == opB) |
| record_buf_mem[0] = 2; /* STRH (2). */ |
| record_buf_mem[1] = u_regval[0] + u_regval[1]; |
| thumb_insn_r->mem_rec_count = 1; |
| } |
| } |
| else if (bit (thumb_insn_r->arm_insn, 11)) |
| { |
| /* Handle load from literal pool. */ |
| /* LDR(3). */ |
| reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); |
| record_buf[0] = reg_src1; |
| thumb_insn_r->reg_rec_count = 1; |
| } |
| else if (opcode1) |
| { |
| /* Special data instructions and branch and exchange */ |
| opcode2 = bits (thumb_insn_r->arm_insn, 8, 9); |
| opcode3 = bits (thumb_insn_r->arm_insn, 0, 2); |
| if ((3 == opcode2) && (!opcode3)) |
| { |
| /* Branch with exchange. */ |
| record_buf[0] = ARM_PS_REGNUM; |
| thumb_insn_r->reg_rec_count = 1; |
| } |
| else |
| { |
| /* Format 8; special data processing insns. */ |
| record_buf[0] = ARM_PS_REGNUM; |
| record_buf[1] = (bit (thumb_insn_r->arm_insn, 7) << 3 |
| | bits (thumb_insn_r->arm_insn, 0, 2)); |
| thumb_insn_r->reg_rec_count = 2; |
| } |
| } |
| else |
| { |
| /* Format 5; data processing insns. */ |
| reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); |
| if (bit (thumb_insn_r->arm_insn, 7)) |
| { |
| reg_src1 = reg_src1 + 8; |
| } |
| record_buf[0] = ARM_PS_REGNUM; |
| record_buf[1] = reg_src1; |
| thumb_insn_r->reg_rec_count = 2; |
| } |
| |
| REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); |
| MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, |
| record_buf_mem); |
| |
| return 0; |
| } |
| |
| /* Handling opcode 001 insns. */ |
| |
| static int |
| thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r) |
| { |
| struct regcache *reg_cache = thumb_insn_r->regcache; |
| uint32_t record_buf[8], record_buf_mem[8]; |
| |
| uint32_t reg_src1 = 0; |
| uint32_t opcode = 0, immed_5 = 0; |
| |
| ULONGEST u_regval = 0; |
| |
| opcode = bits (thumb_insn_r->arm_insn, 11, 12); |
| |
| if (opcode) |
| { |
| /* LDR(1). */ |
| reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); |
| record_buf[0] = reg_src1; |
| thumb_insn_r->reg_rec_count = 1; |
| } |
| else |
| { |
| /* STR(1). */ |
| reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5); |
| immed_5 = bits (thumb_insn_r->arm_insn, 6, 10); |
| regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); |
| record_buf_mem[0] = 4; |
| record_buf_mem[1] = u_regval + (immed_5 * 4); |
| thumb_insn_r->mem_rec_count = 1; |
| } |
| |
| REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); |
| MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, |
| record_buf_mem); |
| |
| return 0; |
| } |
| |
| /* Handling opcode 100 insns. */ |
| |
| static int |
| thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r) |
| { |
| struct regcache *reg_cache = thumb_insn_r->regcache; |
| uint32_t record_buf[8], record_buf_mem[8]; |
| |
| uint32_t reg_src1 = 0; |
| uint32_t opcode = 0, immed_8 = 0, immed_5 = 0; |
| |
| ULONGEST u_regval = 0; |
| |
| opcode = bits (thumb_insn_r->arm_insn, 11, 12); |
| |
| if (3 == opcode) |
| { |
| /* LDR(4). */ |
| reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); |
| record_buf[0] = reg_src1; |
| thumb_insn_r->reg_rec_count = 1; |
| } |
| else if (1 == opcode) |
| { |
| /* LDRH(1). */ |
| reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); |
| record_buf[0] = reg_src1; |
| thumb_insn_r->reg_rec_count = 1; |
| } |
| else if (2 == opcode) |
| { |
| /* STR(3). */ |
| immed_8 = bits (thumb_insn_r->arm_insn, 0, 7); |
| regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval); |
| record_buf_mem[0] = 4; |
| record_buf_mem[1] = u_regval + (immed_8 * 4); |
| thumb_insn_r->mem_rec_count = 1; |
| } |
| else if (0 == opcode) |
| { |
| /* STRH(1). */ |
| immed_5 = bits (thumb_insn_r->arm_insn, 6, 10); |
| reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5); |
| regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); |
| record_buf_mem[0] = 2; |
| record_buf_mem[1] = u_regval + (immed_5 * 2); |
| thumb_insn_r->mem_rec_count = 1; |
| } |
| |
| REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); |
| MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, |
| record_buf_mem); |
| |
| return 0; |
| } |
| |
| /* Handling opcode 101 insns. */ |
| |
| static int |
| thumb_record_misc (insn_decode_record *thumb_insn_r) |
| { |
| struct regcache *reg_cache = thumb_insn_r->regcache; |
| |
| uint32_t opcode = 0; |
| uint32_t register_bits = 0, register_count = 0; |
| uint32_t index = 0, start_address = 0; |
| uint32_t record_buf[24], record_buf_mem[48]; |
| uint32_t reg_src1; |
| |
| ULONGEST u_regval = 0; |
| |
| opcode = bits (thumb_insn_r->arm_insn, 11, 12); |
| |
| if (opcode == 0 || opcode == 1) |
| { |
| /* ADR and ADD (SP plus immediate) */ |
| |
| reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); |
| record_buf[0] = reg_src1; |
| thumb_insn_r->reg_rec_count = 1; |
| } |
| else |
| { |
| /* Miscellaneous 16-bit instructions */ |
| uint32_t opcode2 = bits (thumb_insn_r->arm_insn, 8, 11); |
| |
| switch (opcode2) |
| { |
| case 6: |
| /* SETEND and CPS */ |
| break; |
| case 0: |
| /* ADD/SUB (SP plus immediate) */ |
| reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); |
| record_buf[0] = ARM_SP_REGNUM; |
| thumb_insn_r->reg_rec_count = 1; |
| break; |
| case 1: /* fall through */ |
| case 3: /* fall through */ |
| case 9: /* fall through */ |
| case 11: |
| /* CBNZ, CBZ */ |
| break; |
| case 2: |
| /* SXTH, SXTB, UXTH, UXTB */ |
| record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2); |
| thumb_insn_r->reg_rec_count = 1; |
| break; |
| case 4: /* fall through */ |
| case 5: |
| /* PUSH. */ |
| register_bits = bits (thumb_insn_r->arm_insn, 0, 7); |
| regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval); |
| while (register_bits) |
| { |
| if (register_bits & 0x00000001) |
| register_count++; |
| register_bits = register_bits >> 1; |
| } |
| start_address = u_regval - \ |
| (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count)); |
| thumb_insn_r->mem_rec_count = register_count; |
| while (register_count) |
| { |
| record_buf_mem[(register_count * 2) - 1] = start_address; |
| record_buf_mem[(register_count * 2) - 2] = 4; |
| start_address = start_address + 4; |
| register_count--; |
| } |
| record_buf[0] = ARM_SP_REGNUM; |
| thumb_insn_r->reg_rec_count = 1; |
| break; |
| case 10: |
| /* REV, REV16, REVSH */ |
| record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2); |
| thumb_insn_r->reg_rec_count = 1; |
| break; |
| case 12: /* fall through */ |
| case 13: |
| /* POP. */ |
| register_bits = bits (thumb_insn_r->arm_insn, 0, 7); |
| while (register_bits) |
| { |
| if (register_bits & 0x00000001) |
| record_buf[index++] = register_count; |
| register_bits = register_bits >> 1; |
| register_count++; |
| } |
| record_buf[index++] = ARM_PS_REGNUM; |
| record_buf[index++] = ARM_SP_REGNUM; |
| thumb_insn_r->reg_rec_count = index; |
| break; |
| case 0xe: |
| /* BKPT insn. */ |
| /* Handle enhanced software breakpoint insn, BKPT. */ |
| /* CPSR is changed to be executed in ARM state, disabling normal |
| interrupts, entering abort mode. */ |
| /* According to high vector configuration PC is set. */ |
| /* User hits breakpoint and type reverse, in that case, we need to go back with |
| previous CPSR and Program Counter. */ |
| record_buf[0] = ARM_PS_REGNUM; |
| record_buf[1] = ARM_LR_REGNUM; |
| thumb_insn_r->reg_rec_count = 2; |
| /* We need to save SPSR value, which is not yet done. */ |
| fprintf_unfiltered (gdb_stderr, |
| _("Process record does not support instruction " |
| "0x%0x at address %s.\n"), |
| thumb_insn_r->arm_insn, |
| paddress (thumb_insn_r->gdbarch, |
| thumb_insn_r->this_addr)); |
| return -1; |
| |
| case 0xf: |
| /* If-Then, and hints */ |
| break; |
| default: |
| return -1; |
| }; |
| } |
| |
| REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); |
| MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, |
| record_buf_mem); |
| |
| return 0; |
| } |
| |
| /* Handling opcode 110 insns. */ |
| |
| static int |
| thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r) |
| { |
| arm_gdbarch_tdep *tdep |
| = (arm_gdbarch_tdep *) gdbarch_tdep (thumb_insn_r->gdbarch); |
| struct regcache *reg_cache = thumb_insn_r->regcache; |
| |
| uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */ |
| uint32_t reg_src1 = 0; |
| uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0; |
| uint32_t index = 0, start_address = 0; |
| uint32_t record_buf[24], record_buf_mem[48]; |
| |
| ULONGEST u_regval = 0; |
| |
| opcode1 = bits (thumb_insn_r->arm_insn, 8, 12); |
| opcode2 = bits (thumb_insn_r->arm_insn, 11, 12); |
| |
| if (1 == opcode2) |
| { |
| |
| /* LDMIA. */ |
| register_bits = bits (thumb_insn_r->arm_insn, 0, 7); |
| /* Get Rn. */ |
| reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); |
| while (register_bits) |
| { |
| if (register_bits & 0x00000001) |
| record_buf[index++] = register_count; |
| register_bits = register_bits >> 1; |
| register_count++; |
| } |
| record_buf[index++] = reg_src1; |
| thumb_insn_r->reg_rec_count = index; |
| } |
| else if (0 == opcode2) |
| { |
| /* It handles both STMIA. */ |
| register_bits = bits (thumb_insn_r->arm_insn, 0, 7); |
| /* Get Rn. */ |
| reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); |
| regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); |
| while (register_bits) |
| { |
| if (register_bits & 0x00000001) |
| register_count++; |
| register_bits = register_bits >> 1; |
| } |
| start_address = u_regval; |
| thumb_insn_r->mem_rec_count = register_count; |
| while (register_count) |
| { |
| record_buf_mem[(register_count * 2) - 1] = start_address; |
| record_buf_mem[(register_count * 2) - 2] = 4; |
| start_address = start_address + 4; |
| register_count--; |
| } |
| } |
| else if (0x1F == opcode1) |
| { |
| /* Handle arm syscall insn. */ |
| if (tdep->arm_syscall_record != NULL) |
| { |
| regcache_raw_read_unsigned (reg_cache, 7, &u_regval); |
| ret = tdep->arm_syscall_record (reg_cache, u_regval); |
| } |
| else |
| { |
| fprintf_unfiltered (gdb_stderr, _("no syscall record support\n")); |
| return -1; |
| } |
| } |
| |
| /* B (1), conditional branch is automatically taken care in process_record, |
| as PC is saved there. */ |
| |
| REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); |
| MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, |
| record_buf_mem); |
| |
| return ret; |
| } |
| |
| /* Handling opcode 111 insns. */ |
| |
| static int |
| thumb_record_branch (insn_decode_record *thumb_insn_r) |
| { |
| uint32_t record_buf[8]; |
| uint32_t bits_h = 0; |
| |
| bits_h = bits (thumb_insn_r->arm_insn, 11, 12); |
| |
| if (2 == bits_h || 3 == bits_h) |
| { |
| /* BL */ |
| record_buf[0] = ARM_LR_REGNUM; |
| thumb_insn_r->reg_rec_count = 1; |
| } |
| else if (1 == bits_h) |
| { |
| /* BLX(1). */ |
| record_buf[0] = ARM_PS_REGNUM; |
| record_buf[1] = ARM_LR_REGNUM; |
| thumb_insn_r->reg_rec_count = 2; |
| } |
| |
| /* B(2) is automatically taken care in process_record, as PC is |
| saved there. */ |
| |
| REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); |
| |
| return 0; |
| } |
| |
| /* Handler for thumb2 load/store multiple instructions. */ |
| |
| static int |
| thumb2_record_ld_st_multiple (insn_decode_record *thumb2_insn_r) |
| { |
| struct regcache *reg_cache = thumb2_insn_r->regcache; |
| |
| uint32_t reg_rn, op; |
| uint32_t register_bits = 0, register_count = 0; |
| uint32_t index = 0, start_address = 0; |
| uint32_t record_buf[24], record_buf_mem[48]; |
| |
| ULONGEST u_regval = 0; |
| |
| reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); |
| op = bits (thumb2_insn_r->arm_insn, 23, 24); |
| |
| if (0 == op || 3 == op) |
| { |
| if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM)) |
| { |
| /* Handle RFE instruction. */ |
| record_buf[0] = ARM_PS_REGNUM; |
| thumb2_insn_r->reg_rec_count = 1; |
| } |
| else |
| { |
| /* Handle SRS instruction after reading banked SP. */ |
| return arm_record_unsupported_insn (thumb2_insn_r); |
| } |
| } |
| else if (1 == op || 2 == op) |
| { |
| if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM)) |
| { |
| /* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions. */ |
| register_bits = bits (thumb2_insn_r->arm_insn, 0, 15); |
| while (register_bits) |
| { |
| if (register_bits & 0x00000001) |
| record_buf[index++] = register_count; |
| |
| register_count++; |
| register_bits = register_bits >> 1; |
| } |
| record_buf[index++] = reg_rn; |
| record_buf[index++] = ARM_PS_REGNUM; |
| thumb2_insn_r->reg_rec_count = index; |
| } |
| else |
| { |
| /* Handle STM/STMIA/STMEA and STMDB/STMFD. */ |
| register_bits = bits (thumb2_insn_r->arm_insn, 0, 15); |
| regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval); |
| while (register_bits) |
| { |
| if (register_bits & 0x00000001) |
| register_count++; |
| |
| register_bits = register_bits >> 1; |
| } |
| |
| if (1 == op) |
| { |
| /* Start address calculation for LDMDB/LDMEA. */ |
| start_address = u_regval; |
| } |
| else if (2 == op) |
| { |
| /* Start address calculation for LDMDB/LDMEA. */ |
| start_address = u_regval - register_count * 4; |
| } |
| |
| thumb2_insn_r->mem_rec_count = register_count; |
| while (register_count) |
| { |
| record_buf_mem[register_count * 2 - 1] = start_address; |
| record_buf_mem[register_count * 2 - 2] = 4; |
| start_address = start_address + 4; |
| register_count--; |
| } |
| record_buf[0] = reg_rn; |
| record_buf[1] = ARM_PS_REGNUM; |
| thumb2_insn_r->reg_rec_count = 2; |
| } |
| } |
| |
| MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count, |
| record_buf_mem); |
| REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, |
| record_buf); |
| return ARM_RECORD_SUCCESS; |
| } |
| |
| /* Handler for thumb2 load/store (dual/exclusive) and table branch |
| instructions. */ |
| |
| static int |
| thumb2_record_ld_st_dual_ex_tbb (insn_decode_record *thumb2_insn_r) |
| { |
| struct regcache *reg_cache = thumb2_insn_r->regcache; |
| |
| uint32_t reg_rd, reg_rn, offset_imm; |
| uint32_t reg_dest1, reg_dest2; |
| uint32_t address, offset_addr; |
| uint32_t record_buf[8], record_buf_mem[8]; |
| uint32_t op1, op2, op3; |
| |
| ULONGEST u_regval[2]; |
| |
| op1 = bits (thumb2_insn_r->arm_insn, 23, 24); |
| op2 = bits (thumb2_insn_r->arm_insn, 20, 21); |
| op3 = bits (thumb2_insn_r->arm_insn, 4, 7); |
| |
| if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM)) |
| { |
| if(!(1 == op1 && 1 == op2 && (0 == op3 || 1 == op3))) |
| { |
| reg_dest1 = bits (thumb2_insn_r->arm_insn, 12, 15); |
| record_buf[0] = reg_dest1; |
| record_buf[1] = ARM_PS_REGNUM; |
| thumb2_insn_r->reg_rec_count = 2; |
| } |
| |
| if (3 == op2 || (op1 & 2) || (1 == op1 && 1 == op2 && 7 == op3)) |
| { |
| reg_dest2 = bits (thumb2_insn_r->arm_insn, 8, 11); |
| record_buf[2] = reg_dest2; |
| thumb2_insn_r->reg_rec_count = 3; |
| } |
| } |
| else |
| { |
| reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); |
| regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]); |
| |
| if (0 == op1 && 0 == op2) |
| { |
| /* Handle STREX. */ |
| offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7); |
| address = u_regval[0] + (offset_imm * 4); |
| record_buf_mem[0] = 4; |
| record_buf_mem[1] = address; |
| thumb2_insn_r->mem_rec_count = 1; |
| reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3); |
| record_buf[0] = reg_rd; |
| thumb2_insn_r->reg_rec_count = 1; |
| } |
| else if (1 == op1 && 0 == op2) |
| { |
| reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3); |
| record_buf[0] = reg_rd; |
| thumb2_insn_r->reg_rec_count = 1; |
| address = u_regval[0]; |
| record_buf_mem[1] = address; |
| |
| if (4 == op3) |
| { |
| /* Handle STREXB. */ |
| record_buf_mem[0] = 1; |
| thumb2_insn_r->mem_rec_count = 1; |
| } |
| else if (5 == op3) |
| { |
| /* Handle STREXH. */ |
| record_buf_mem[0] = 2 ; |
| thumb2_insn_r->mem_rec_count = 1; |
| } |
| else if (7 == op3) |
| { |
| /* Handle STREXD. */ |
| address = u_regval[0]; |
| record_buf_mem[0] = 4; |
| record_buf_mem[2] = 4; |
| record_buf_mem[3] = address + 4; |
| thumb2_insn_r->mem_rec_count = 2; |
| } |
| } |
| else |
| { |
| offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7); |
| |
| if (bit (thumb2_insn_r->arm_insn, 24)) |
| { |
| if (bit (thumb2_insn_r->arm_insn, 23)) |
| offset_addr = u_regval[0] + (offset_imm * 4); |
| else |
| offset_addr = u_regval[0] - (offset_imm * 4); |
| |
| address = offset_addr; |
| } |
| else |
| address = u_regval[0]; |
| |
| record_buf_mem[0] = 4; |
| record_buf_mem[1] = address; |
| record_buf_mem[2] = 4; |
| record_buf_mem[3] = address + 4; |
| thumb2_insn_r->mem_rec_count = 2; |
| record_buf[0] = reg_rn; |
| thumb2_insn_r->reg_rec_count = 1; |
| } |
| } |
| |
| REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, |
| record_buf); |
| MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count, |
| record_buf_mem); |
| return ARM_RECORD_SUCCESS; |
| } |
| |
| /* Handler for thumb2 data processing (shift register and modified immediate) |
| instructions. */ |
| |
| static int |
| thumb2_record_data_proc_sreg_mimm (insn_decode_record *thumb2_insn_r) |
| { |
| uint32_t reg_rd, op; |
| uint32_t record_buf[8]; |
| |
| op = bits (thumb2_insn_r->arm_insn, 21, 24); |
| reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11); |
| |
| if ((0 == op || 4 == op || 8 == op || 13 == op) && 15 == reg_rd) |
| { |
| record_buf[0] = ARM_PS_REGNUM; |
| thumb2_insn_r->reg_rec_count = 1; |
| } |
| else |
| { |
| record_buf[0] = reg_rd; |
| record_buf[1] = ARM_PS_REGNUM; |
| thumb2_insn_r->reg_rec_count = 2; |
| } |
| |
| REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, |
| record_buf); |
| return ARM_RECORD_SUCCESS; |
| } |
| |
| /* Generic handler for thumb2 instructions which effect destination and PS |
| registers. */ |
| |
| static int |
| thumb2_record_ps_dest_generic (insn_decode_record *thumb2_insn_r) |
| { |
| uint32_t reg_rd; |
| uint32_t record_buf[8]; |
| |
| reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11); |
| |
| record_buf[0] = reg_rd; |
| record_buf[1] = ARM_PS_REGNUM; |
| thumb2_insn_r->reg_rec_count = 2; |
| |
| REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, |
| record_buf); |
| return ARM_RECORD_SUCCESS; |
| } |
| |
| /* Handler for thumb2 branch and miscellaneous control instructions. */ |
| |
| static int |
| thumb2_record_branch_misc_cntrl (insn_decode_record *thumb2_insn_r) |
| { |
| uint32_t op, op1, op2; |
| uint32_t record_buf[8]; |
| |
| op = bits (thumb2_insn_r->arm_insn, 20, 26); |
| op1 = bits (thumb2_insn_r->arm_insn, 12, 14); |
| op2 = bits (thumb2_insn_r->arm_insn, 8, 11); |
| |
| /* Handle MSR insn. */ |
| if (!(op1 & 0x2) && 0x38 == op) |
| { |
| if (!(op2 & 0x3)) |
| { |
| /* CPSR is going to be changed. */ |
| record_buf[0] = ARM_PS_REGNUM; |
| thumb2_insn_r->reg_rec_count = 1; |
| } |
| else |
| { |
| arm_record_unsupported_insn(thumb2_insn_r); |
| return -1; |
| } |
| } |
| else if (4 == (op1 & 0x5) || 5 == (op1 & 0x5)) |
| { |
| /* BLX. */ |
| record_buf[0] = ARM_PS_REGNUM; |
| record_buf[1] = ARM_LR_REGNUM; |
| thumb2_insn_r->reg_rec_count = 2; |
| } |
| |
| REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, |
| record_buf); |
| return ARM_RECORD_SUCCESS; |
| } |
| |
| /* Handler for thumb2 store single data item instructions. */ |
| |
| static int |
| thumb2_record_str_single_data (insn_decode_record *thumb2_insn_r) |
| { |
| struct regcache *reg_cache = thumb2_insn_r->regcache; |
| |
| uint32_t reg_rn, reg_rm, offset_imm, shift_imm; |
| uint32_t address, offset_addr; |
| uint32_t record_buf[8], record_buf_mem[8]; |
| uint32_t op1, op2; |
| |
| ULONGEST u_regval[2]; |
| |
| op1 = bits (thumb2_insn_r->arm_insn, 21, 23); |
| op2 = bits (thumb2_insn_r->arm_insn, 6, 11); |
| reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); |
| regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]); |
| |
| if (bit (thumb2_insn_r->arm_insn, 23)) |
| { |
| /* T2 encoding. */ |
| offset_imm = bits (thumb2_insn_r->arm_insn, 0, 11); |
| offset_addr = u_regval[0] + offset_imm; |
| address = offset_addr; |
| } |
| else |
| { |
| /* T3 encoding. */ |
| if ((0 == op1 || 1 == op1 || 2 == op1) && !(op2 & 0x20)) |
| { |
| /* Handle STRB (register). */ |
| reg_rm = bits (thumb2_insn_r->arm_insn, 0, 3); |
| regcache_raw_read_unsigned (reg_cache, reg_rm, &u_regval[1]); |
| shift_imm = bits (thumb2_insn_r->arm_insn, 4, 5); |
| offset_addr = u_regval[1] << shift_imm; |
| address = u_regval[0] + offset_addr; |
| } |
| else |
| { |
| offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7); |
| if (bit (thumb2_insn_r->arm_insn, 10)) |
| { |
| if (bit (thumb2_insn_r->arm_insn, 9)) |
| offset_addr = u_regval[0] + offset_imm; |
| else |
| offset_addr = u_regval[0] - offset_imm; |
| |
| address = offset_addr; |
| } |
| else |
| address = u_regval[0]; |
| } |
| } |
| |
| switch (op1) |
| { |
| /* Store byte instructions. */ |
| case 4: |
| case 0: |
| record_buf_mem[0] = 1; |
| break; |
| /* Store half word instructions. */ |
| case 1: |
| case 5: |
| record_buf_mem[0] = 2; |
| break; |
| /* Store word instructions. */ |
| case 2: |
| case 6: |
| record_buf_mem[0] = 4; |
| break; |
| |
| default: |
| gdb_assert_not_reached ("no decoding pattern found"); |
| break; |
| } |
| |
| record_buf_mem[1] = address; |
| thumb2_insn_r->mem_rec_count = 1; |
| record_buf[0] = reg_rn; |
| thumb2_insn_r->reg_rec_count = 1; |
| |
| REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, |
| record_buf); |
| MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count, |
| record_buf_mem); |
| return ARM_RECORD_SUCCESS; |
| } |
| |
| /* Handler for thumb2 load memory hints instructions. */ |
| |
| static int |
| thumb2_record_ld_mem_hints (insn_decode_record *thumb2_insn_r) |
| { |
| uint32_t record_buf[8]; |
| uint32_t reg_rt, reg_rn; |
| |
| reg_rt = bits (thumb2_insn_r->arm_insn, 12, 15); |
| reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); |
| |
| if (ARM_PC_REGNUM != reg_rt) |
| { |
| record_buf[0] = reg_rt; |
| record_buf[1] = reg_rn; |
| record_buf[2] = ARM_PS_REGNUM; |
| thumb2_insn_r->reg_rec_count = 3; |
| |
| REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, |
| record_buf); |
| return ARM_RECORD_SUCCESS; |
| } |
| |
| return ARM_RECORD_FAILURE; |
| } |
| |
| /* Handler for thumb2 load word instructions. */ |
| |
| static int |
| thumb2_record_ld_word (insn_decode_record *thumb2_insn_r) |
| { |
| uint32_t record_buf[8]; |
| |
| record_buf[0] = bits (thumb2_insn_r->arm_insn, 12, 15); |
| record_buf[1] = ARM_PS_REGNUM; |
| thumb2_insn_r->reg_rec_count = 2; |
| |
| REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, |
| record_buf); |
| return ARM_RECORD_SUCCESS; |
| } |
| |
| /* Handler for thumb2 long multiply, long multiply accumulate, and |
| divide instructions. */ |
| |
| static int |
| thumb2_record_lmul_lmla_div (insn_decode_record *thumb2_insn_r) |
| { |
| uint32_t opcode1 = 0, opcode2 = 0; |
| uint32_t record_buf[8]; |
| |
| opcode1 = bits (thumb2_insn_r->arm_insn, 20, 22); |
| opcode2 = bits (thumb2_insn_r->arm_insn, 4, 7); |
| |
| if (0 == opcode1 || 2 == opcode1 || (opcode1 >= 4 && opcode1 <= 6)) |
| { |
| /* Handle SMULL, UMULL, SMULAL. */ |
| /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */ |
| record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19); |
| record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15); |
| record_buf[2] = ARM_PS_REGNUM; |
| thumb2_insn_r->reg_rec_count = 3; |
| } |
| else if (1 == opcode1 || 3 == opcode2) |
| { |
| /* Handle SDIV and UDIV. */ |
| record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19); |
| record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15); |
| record_buf[2] = ARM_PS_REGNUM; |
| thumb2_insn_r->reg_rec_count = 3; |
| } |
| else |
| return ARM_RECORD_FAILURE; |
| |
| REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, |
| record_buf); |
| return ARM_RECORD_SUCCESS; |
| } |
| |
| /* Record handler for thumb32 coprocessor instructions. */ |
| |
| static int |
| thumb2_record_coproc_insn (insn_decode_record *thumb2_insn_r) |
| { |
| if (bit (thumb2_insn_r->arm_insn, 25)) |
| return arm_record_coproc_data_proc (thumb2_insn_r); |
| else |
| return arm_record_asimd_vfp_coproc (thumb2_insn_r); |
| } |
| |
| /* Record handler for advance SIMD structure load/store instructions. */ |
| |
| static int |
| thumb2_record_asimd_struct_ld_st (insn_decode_record *thumb2_insn_r) |
| { |
| struct regcache *reg_cache = thumb2_insn_r->regcache; |
| uint32_t l_bit, a_bit, b_bits; |
| uint32_t record_buf[128], record_buf_mem[128]; |
| uint32_t reg_rn, reg_vd, address, f_elem; |
| uint32_t index_r = 0, index_e = 0, bf_regs = 0, index_m = 0, loop_t = 0; |
| uint8_t f_ebytes; |
| |
| l_bit = bit (thumb2_insn_r->arm_insn, 21); |
| a_bit = bit (thumb2_insn_r->arm_insn, 23); |
| b_bits = bits (thumb2_insn_r->arm_insn, 8, 11); |
| reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); |
| reg_vd = bits (thumb2_insn_r->arm_insn, 12, 15); |
| reg_vd = (bit (thumb2_insn_r->arm_insn, 22) << 4) | reg_vd; |
| f_ebytes = (1 << bits (thumb2_insn_r->arm_insn, 6, 7)); |
| f_elem = 8 / f_ebytes; |
| |
| if (!l_bit) |
| { |
| ULONGEST u_regval = 0; |
| regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval); |
| address = u_regval; |
| |
| if (!a_bit) |
| { |
| /* Handle VST1. */ |
| if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06) |
| { |
| if (b_bits == 0x07) |
| bf_regs = 1; |
| else if (b_bits == 0x0a) |
| bf_regs = 2; |
| else if (b_bits == 0x06) |
| bf_regs = 3; |
| else if (b_bits == 0x02) |
| bf_regs = 4; |
| else |
| bf_regs = 0; |
| |
| for (index_r = 0; index_r < bf_regs; index_r++) |
| { |
| for (index_e = 0; index_e < f_elem; index_e++) |
| { |
| record_buf_mem[index_m++] = f_ebytes; |
| record_buf_mem[index_m++] = address; |
| address = address + f_ebytes; |
| thumb2_insn_r->mem_rec_count += 1; |
| } |
| } |
| } |
| /* Handle VST2. */ |
| else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08) |
| { |
| if (b_bits == 0x09 || b_bits == 0x08) |
| bf_regs = 1; |
| else if (b_bits == 0x03) |
| bf_regs = 2; |
| else |
| bf_regs = 0; |
| |
| for (index_r = 0; index_r < bf_regs; index_r++) |
| for (index_e = 0; index_e < f_elem; index_e++) |
| { |
| for (loop_t = 0; loop_t < 2; loop_t++) |
| { |
| record_buf_mem[index_m++] = f_ebytes; |
| record_buf_mem[index_m++] = address + (loop_t * f_ebytes); |
| thumb2_insn_r->mem_rec_count += 1; |
| } |
| address = address + (2 * f_ebytes); |
| } |
| } |
| /* Handle VST3. */ |
| else if ((b_bits & 0x0e) == 0x04) |
| { |
| for (index_e = 0; index_e < f_elem; index_e++) |
| { |
| for (loop_t = 0; loop_t < 3; loop_t++) |
| { |
| record_buf_mem[index_m++] = f_ebytes; |
| record_buf_mem[index_m++] = address + (loop_t * f_ebytes); |
| thumb2_insn_r->mem_rec_count += 1; |
| } |
| address = address + (3 * f_ebytes); |
| } |
| } |
| /* Handle VST4. */ |
| else if (!(b_bits & 0x0e)) |
| { |
| for (index_e = 0; index_e < f_elem; index_e++) |
| { |
| for (loop_t = 0; loop_t < 4; loop_t++) |
| { |
| record_buf_mem[index_m++] = f_ebytes; |
| record_buf_mem[index_m++] = address + (loop_t * f_ebytes); |
| thumb2_insn_r->mem_rec_count += 1; |
| } |
| address = address + (4 * f_ebytes); |
| } |
| } |
| } |
| else |
| { |
| uint8_t bft_size = bits (thumb2_insn_r->arm_insn, 10, 11); |
| |
| if (bft_size == 0x00) |
| f_ebytes = 1; |
| else if (bft_size == 0x01) |
| f_ebytes = 2; |
| else if (bft_size == 0x02) |
| f_ebytes = 4; |
| else |
| f_ebytes = 0; |
| |
| /* Handle VST1. */ |
| if (!(b_bits & 0x0b) || b_bits == 0x08) |
| thumb2_insn_r->mem_rec_count = 1; |
| /* Handle VST2. */ |
| else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09) |
| thumb2_insn_r->mem_rec_count = 2; |
| /* Handle VST3. */ |
| else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a) |
| thumb2_insn_r->mem_rec_count = 3; |
| /* Handle VST4. */ |
| else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b) |
| thumb2_insn_r->mem_rec_count = 4; |
| |
| for (index_m = 0; index_m < thumb2_insn_r->mem_rec_count; index_m++) |
| { |
| record_buf_mem[index_m] = f_ebytes; |
| record_buf_mem[index_m] = address + (index_m * f_ebytes); |
| } |
| } |
| } |
| else |
| { |
| if (!a_bit) |
| { |
| /* Handle VLD1. */ |
| if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06) |
| thumb2_insn_r->reg_rec_count = 1; |
| /* Handle VLD2. */ |
| else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08) |
| thumb2_insn_r->reg_rec_count = 2; |
| /* Handle VLD3. */ |
| else if ((b_bits & 0x0e) == 0x04) |
| thumb2_insn_r->reg_rec_count = 3; |
| /* Handle VLD4. */ |
| else if (!(b_bits & 0x0e)) |
| thumb2_insn_r->reg_rec_count = 4; |
| } |
| else |
| { |
| /* Handle VLD1. */ |
| if (!(b_bits & 0x0b) || b_bits == 0x08 || b_bits == 0x0c) |
| thumb2_insn_r->reg_rec_count = 1; |
| /* Handle VLD2. */ |
| else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09 || b_bits == 0x0d) |
| thumb2_insn_r->reg_rec_count = 2; |
| /* Handle VLD3. */ |
| else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a || b_bits == 0x0e) |
| thumb2_insn_r->reg_rec_count = 3; |
| /* Handle VLD4. */ |
| else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b || b_bits == 0x0f) |
| thumb2_insn_r->reg_rec_count = 4; |
| |
| for (index_r = 0; index_r < thumb2_insn_r->reg_rec_count; index_r++) |
| record_buf[index_r] = reg_vd + ARM_D0_REGNUM + index_r; |
| } |
| } |
| |
| if (bits (thumb2_insn_r->arm_insn, 0, 3) != 15) |
| { |
| record_buf[index_r] = reg_rn; |
| thumb2_insn_r->reg_rec_count += 1; |
| } |
| |
| REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, |
| record_buf); |
| MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count, |
| record_buf_mem); |
| return 0; |
| } |
| |
| /* Decodes thumb2 instruction type and invokes its record handler. */ |
| |
| static unsigned int |
| thumb2_record_decode_insn_handler (insn_decode_record *thumb2_insn_r) |
| { |
| uint32_t op, op1, op2; |
| |
| op = bit (thumb2_insn_r->arm_insn, 15); |
| op1 = bits (thumb2_insn_r->arm_insn, 27, 28); |
| op2 = bits (thumb2_insn_r->arm_insn, 20, 26); |
| |
| if (op1 == 0x01) |
| { |
| if (!(op2 & 0x64 )) |
| { |
| /* Load/store multiple instruction. */ |
| return thumb2_record_ld_st_multiple (thumb2_insn_r); |
| } |
| else if ((op2 & 0x64) == 0x4) |
| { |
| /* Load/store (dual/exclusive) and table branch instruction. */ |
| return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r); |
| } |
| else if ((op2 & 0x60) == 0x20) |
| { |
| /* Data-processing (shifted register). */ |
| return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r); |
| } |
| else if (op2 & 0x40) |
| { |
| /* Co-processor instructions. */ |
| return thumb2_record_coproc_insn (thumb2_insn_r); |
| } |
| } |
| else if (op1 == 0x02) |
| { |
| if (op) |
| { |
| /* Branches and miscellaneous control instructions. */ |
| return thumb2_record_branch_misc_cntrl (thumb2_insn_r); |
| } |
| else if (op2 & 0x20) |
| { |
| /* Data-processing (plain binary immediate) instruction. */ |
| return thumb2_record_ps_dest_generic (thumb2_insn_r); |
| } |
| else |
| { |
| /* Data-processing (modified immediate). */ |
| return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r); |
| } |
| } |
| else if (op1 == 0x03) |
| { |
| if (!(op2 & 0x71 )) |
| { |
| /* Store single data item. */ |
| return thumb2_record_str_single_data (thumb2_insn_r); |
| } |
| else if (!((op2 & 0x71) ^ 0x10)) |
| { |
| /* Advanced SIMD or structure load/store instructions. */ |
| return thumb2_record_asimd_struct_ld_st (thumb2_insn_r); |
| } |
| else if (!((op2 & 0x67) ^ 0x01)) |
| { |
| /* Load byte, memory hints instruction. */ |
| return thumb2_record_ld_mem_hints (thumb2_insn_r); |
| } |
| else if (!((op2 & 0x67) ^ 0x03)) |
| { |
| /* Load halfword, memory hints instruction. */ |
| return thumb2_record_ld_mem_hints (thumb2_insn_r); |
| } |
| else if (!((op2 & 0x67) ^ 0x05)) |
| { |
| /* Load word instruction. */ |
| return thumb2_record_ld_word (thumb2_insn_r); |
| } |
| else if (!((op2 & 0x70) ^ 0x20)) |
| { |
| /* Data-processing (register) instruction. */ |
| return thumb2_record_ps_dest_generic (thumb2_insn_r); |
| } |
| else if (!((op2 & 0x78) ^ 0x30)) |
| { |
| /* Multiply, multiply accumulate, abs diff instruction. */ |
| return thumb2_record_ps_dest_generic (thumb2_insn_r); |
| } |
| else if (!((op2 & 0x78) ^ 0x38)) |
| { |
| /* Long multiply, long multiply accumulate, and divide. */ |
| return thumb2_record_lmul_lmla_div (thumb2_insn_r); |
| } |
| else if (op2 & 0x40) |
| { |
| /* Co-processor instructions. */ |
| return thumb2_record_coproc_insn (thumb2_insn_r); |
| } |
| } |
| |
| return -1; |
| } |
| |
| namespace { |
| /* Abstract memory reader. */ |
| |
| class abstract_memory_reader |
| { |
| public: |
| /* Read LEN bytes of target memory at address MEMADDR, placing the |
| results in GDB's memory at BUF. Return true on success. */ |
| |
| virtual bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) = 0; |
| }; |
| |
| /* Instruction reader from real target. */ |
| |
| class instruction_reader : public abstract_memory_reader |
| { |
| public: |
| bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) override |
| { |
| if (target_read_memory (memaddr, buf, len)) |
| return false; |
| else |
| return true; |
| } |
| }; |
| |
| } // namespace |
| |
| /* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success |
| and positive val on failure. */ |
| |
| static int |
| extract_arm_insn (abstract_memory_reader& reader, |
| insn_decode_record *insn_record, uint32_t insn_size) |
| { |
| gdb_byte buf[insn_size]; |
| |
| memset (&buf[0], 0, insn_size); |
| |
| if (!reader.read (insn_record->this_addr, buf, insn_size)) |
| return 1; |
| insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0], |
| insn_size, |
| gdbarch_byte_order_for_code (insn_record->gdbarch)); |
| return 0; |
| } |
| |
| typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*); |
| |
| /* Decode arm/thumb insn depending on condition cods and opcodes; and |
| dispatch it. */ |
| |
| static int |
| decode_insn (abstract_memory_reader &reader, insn_decode_record *arm_record, |
| record_type_t record_type, uint32_t insn_size) |
| { |
| |
| /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm |
| instruction. */ |
| static const sti_arm_hdl_fp_t arm_handle_insn[8] = |
| { |
| arm_record_data_proc_misc_ld_str, /* 000. */ |
| arm_record_data_proc_imm, /* 001. */ |
| arm_record_ld_st_imm_offset, /* 010. */ |
| arm_record_ld_st_reg_offset, /* 011. */ |
| arm_record_ld_st_multiple, /* 100. */ |
| arm_record_b_bl, /* 101. */ |
| arm_record_asimd_vfp_coproc, /* 110. */ |
| arm_record_coproc_data_proc /* 111. */ |
| }; |
| |
| /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb |
| instruction. */ |
| static const sti_arm_hdl_fp_t thumb_handle_insn[8] = |
| { \ |
| thumb_record_shift_add_sub, /* 000. */ |
| thumb_record_add_sub_cmp_mov, /* 001. */ |
| thumb_record_ld_st_reg_offset, /* 010. */ |
| thumb_record_ld_st_imm_offset, /* 011. */ |
| thumb_record_ld_st_stack, /* 100. */ |
| thumb_record_misc, /* 101. */ |
| thumb_record_ldm_stm_swi, /* 110. */ |
| thumb_record_branch /* 111. */ |
| }; |
| |
| uint32_t ret = 0; /* return value: negative:failure 0:success. */ |
| uint32_t insn_id = 0; |
| |
| if (extract_arm_insn (reader, arm_record, insn_size)) |
| { |
| if (record_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| _("Process record: error reading memory at " |
| "addr %s len = %d.\n"), |
| paddress (arm_record->gdbarch, |
| arm_record->this_addr), insn_size); |
| } |
| return -1; |
| } |
| else if (ARM_RECORD == record_type) |
| { |
| arm_record->cond = bits (arm_record->arm_insn, 28, 31); |
| insn_id = bits (arm_record->arm_insn, 25, 27); |
| |
| if (arm_record->cond == 0xf) |
| ret = arm_record_extension_space (arm_record); |
| else |
| { |
| /* If this insn has fallen into extension space |
| then we need not decode it anymore. */ |
| ret = arm_handle_insn[insn_id] (arm_record); |
| } |
| if (ret != ARM_RECORD_SUCCESS) |
| { |
| arm_record_unsupported_insn (arm_record); |
| ret = -1; |
| } |
| } |
| else if (THUMB_RECORD == record_type) |
| { |
| /* As thumb does not have condition codes, we set negative. */ |
| arm_record->cond = -1; |
| insn_id = bits (arm_record->arm_insn, 13, 15); |
| ret = thumb_handle_insn[insn_id] (arm_record); |
| if (ret != ARM_RECORD_SUCCESS) |
| { |
| arm_record_unsupported_insn (arm_record); |
| ret = -1; |
| } |
| } |
| else if (THUMB2_RECORD == record_type) |
| { |
| /* As thumb does not have condition codes, we set negative. */ |
| arm_record->cond = -1; |
| |
| /* Swap first half of 32bit thumb instruction with second half. */ |
| arm_record->arm_insn |
| = (arm_record->arm_insn >> 16) | (arm_record->arm_insn << 16); |
| |
| ret = thumb2_record_decode_insn_handler (arm_record); |
| |
| if (ret != ARM_RECORD_SUCCESS) |
| { |
| arm_record_unsupported_insn (arm_record); |
| ret = -1; |
| } |
| } |
| else |
| { |
| /* Throw assertion. */ |
| gdb_assert_not_reached ("not a valid instruction, could not decode"); |
| } |
| |
| return ret; |
| } |
| |
| #if GDB_SELF_TEST |
| namespace selftests { |
| |
| /* Provide both 16-bit and 32-bit thumb instructions. */ |
| |
| class instruction_reader_thumb : public abstract_memory_reader |
| { |
| public: |
| template<size_t SIZE> |
| instruction_reader_thumb (enum bfd_endian endian, |
| const uint16_t (&insns)[SIZE]) |
| : m_endian (endian), m_insns (insns), m_insns_size (SIZE) |
| {} |
| |
| bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) override |
| { |
| SELF_CHECK (len == 4 || len == 2); |
| SELF_CHECK (memaddr % 2 == 0); |
| SELF_CHECK ((memaddr / 2) < m_insns_size); |
| |
| store_unsigned_integer (buf, 2, m_endian, m_insns[memaddr / 2]); |
| if (len == 4) |
| { |
| store_unsigned_integer (&buf[2], 2, m_endian, |
| m_insns[memaddr / 2 + 1]); |
| } |
| return true; |
| } |
| |
| private: |
| enum bfd_endian m_endian; |
| const uint16_t *m_insns; |
| size_t m_insns_size; |
| }; |
| |
| static void |
| arm_record_test (void) |
| { |
| struct gdbarch_info info; |
| info.bfd_arch_info = bfd_scan_arch ("arm"); |
| |
| struct gdbarch *gdbarch = gdbarch_find_by_info (info); |
| |
| SELF_CHECK (gdbarch != NULL); |
| |
| /* 16-bit Thumb instructions. */ |
| { |
| insn_decode_record arm_record; |
| |
| memset (&arm_record, 0, sizeof (insn_decode_record)); |
| arm_record.gdbarch = gdbarch; |
| |
| static const uint16_t insns[] = { |
| /* db b2 uxtb r3, r3 */ |
| 0xb2db, |
| /* cd 58 ldr r5, [r1, r3] */ |
| 0x58cd, |
| }; |
| |
| enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch); |
| instruction_reader_thumb reader (endian, insns); |
| int ret = decode_insn (reader, &arm_record, THUMB_RECORD, |
| THUMB_INSN_SIZE_BYTES); |
| |
| SELF_CHECK (ret == 0); |
| SELF_CHECK (arm_record.mem_rec_count == 0); |
| SELF_CHECK (arm_record.reg_rec_count == 1); |
| SELF_CHECK (arm_record.arm_regs[0] == 3); |
| |
| arm_record.this_addr += 2; |
| ret = decode_insn (reader, &arm_record, THUMB_RECORD, |
| THUMB_INSN_SIZE_BYTES); |
| |
| SELF_CHECK (ret == 0); |
| SELF_CHECK (arm_record.mem_rec_count == 0); |
| SELF_CHECK (arm_record.reg_rec_count == 1); |
| SELF_CHECK (arm_record.arm_regs[0] == 5); |
| } |
| |
| /* 32-bit Thumb-2 instructions. */ |
| { |
| insn_decode_record arm_record; |
| |
| memset (&arm_record, 0, sizeof (insn_decode_record)); |
| arm_record.gdbarch = gdbarch; |
| |
| static const uint16_t insns[] = { |
| /* 1d ee 70 7f mrc 15, 0, r7, cr13, cr0, {3} */ |
| 0xee1d, 0x7f70, |
| }; |
| |
| enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch); |
| instruction_reader_thumb reader (endian, insns); |
| int ret = decode_insn (reader, &arm_record, THUMB2_RECORD, |
| THUMB2_INSN_SIZE_BYTES); |
| |
| SELF_CHECK (ret == 0); |
| SELF_CHECK (arm_record.mem_rec_count == 0); |
| SELF_CHECK (arm_record.reg_rec_count == 1); |
| SELF_CHECK (arm_record.arm_regs[0] == 7); |
| } |
| } |
| |
| /* Instruction reader from manually cooked instruction sequences. */ |
| |
| class test_arm_instruction_reader : public arm_instruction_reader |
| { |
| public: |
| explicit test_arm_instruction_reader (gdb::array_view<const uint32_t> insns) |
| : m_insns (insns) |
| {} |
| |
| uint32_t read (CORE_ADDR memaddr, enum bfd_endian byte_order) const override |
| { |
| SELF_CHECK (memaddr % 4 == 0); |
| SELF_CHECK (memaddr / 4 < m_insns.size ()); |
| |
| return m_insns[memaddr / 4]; |
| } |
| |
| private: |
| const gdb::array_view<const uint32_t> m_insns; |
| }; |
| |
| static void |
| arm_analyze_prologue_test () |
| { |
| for (bfd_endian endianness : {BFD_ENDIAN_LITTLE, BFD_ENDIAN_BIG}) |
| { |
| struct gdbarch_info info; |
| info.byte_order = endianness; |
| info.byte_order_for_code = endianness; |
| info.bfd_arch_info = bfd_scan_arch ("arm"); |
| |
| struct gdbarch *gdbarch = gdbarch_find_by_info (info); |
| |
| SELF_CHECK (gdbarch != NULL); |
| |
| /* The "sub" instruction contains an immediate value rotate count of 0, |
| which resulted in a 32-bit shift of a 32-bit value, caught by |
| UBSan. */ |
| const uint32_t insns[] = { |
| 0xe92d4ff0, /* push {r4, r5, r6, r7, r8, r9, sl, fp, lr} */ |
| 0xe1a05000, /* mov r5, r0 */ |
| 0xe5903020, /* ldr r3, [r0, #32] */ |
| 0xe24dd044, /* sub sp, sp, #68 ; 0x44 */ |
| }; |
| |
| test_arm_instruction_reader mem_reader (insns); |
| arm_prologue_cache cache; |
| cache.saved_regs = trad_frame_alloc_saved_regs (gdbarch); |
| |
| arm_analyze_prologue (gdbarch, 0, sizeof (insns) - 1, &cache, mem_reader); |
| } |
| } |
| |
| } // namespace selftests |
| #endif /* GDB_SELF_TEST */ |
| |
| /* Cleans up local record registers and memory allocations. */ |
| |
| static void |
| deallocate_reg_mem (insn_decode_record *record) |
| { |
| xfree (record->arm_regs); |
| xfree (record->arm_mems); |
| } |
| |
| |
| /* Parse the current instruction and record the values of the registers and |
| memory that will be changed in current instruction to record_arch_list". |
| Return -1 if something is wrong. */ |
| |
| int |
| arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache, |
| CORE_ADDR insn_addr) |
| { |
| |
| uint32_t no_of_rec = 0; |
| uint32_t ret = 0; /* return value: -1:record failure ; 0:success */ |
| ULONGEST t_bit = 0, insn_id = 0; |
| |
| ULONGEST u_regval = 0; |
| |
| insn_decode_record arm_record; |
| |
| memset (&arm_record, 0, sizeof (insn_decode_record)); |
| arm_record.regcache = regcache; |
| arm_record.this_addr = insn_addr; |
| arm_record.gdbarch = gdbarch; |
| |
| |
| if (record_debug > 1) |
| { |
| fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record " |
| "addr = %s\n", |
| paddress (gdbarch, arm_record.this_addr)); |
| } |
| |
| instruction_reader reader; |
| if (extract_arm_insn (reader, &arm_record, 2)) |
| { |
| if (record_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| _("Process record: error reading memory at " |
| "addr %s len = %d.\n"), |
| paddress (arm_record.gdbarch, |
| arm_record.this_addr), 2); |
| } |
| return -1; |
| } |
| |
| /* Check the insn, whether it is thumb or arm one. */ |
| |
| t_bit = arm_psr_thumb_bit (arm_record.gdbarch); |
| regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval); |
| |
| |
| if (!(u_regval & t_bit)) |
| { |
| /* We are decoding arm insn. */ |
| ret = decode_insn (reader, &arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES); |
| } |
| else |
| { |
| insn_id = bits (arm_record.arm_insn, 11, 15); |
| /* is it thumb2 insn? */ |
| if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id)) |
| { |
| ret = decode_insn (reader, &arm_record, THUMB2_RECORD, |
| THUMB2_INSN_SIZE_BYTES); |
| } |
| else |
| { |
| /* We are decoding thumb insn. */ |
| ret = decode_insn (reader, &arm_record, THUMB_RECORD, |
| THUMB_INSN_SIZE_BYTES); |
| } |
| } |
| |
| if (0 == ret) |
| { |
| /* Record registers. */ |
| record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM); |
| if (arm_record.arm_regs) |
| { |
| for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++) |
| { |
| if (record_full_arch_list_add_reg |
| (arm_record.regcache , arm_record.arm_regs[no_of_rec])) |
| ret = -1; |
| } |
| } |
| /* Record memories. */ |
| if (arm_record.arm_mems) |
| { |
| for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++) |
| { |
| if (record_full_arch_list_add_mem |
| ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr, |
| arm_record.arm_mems[no_of_rec].len)) |
| ret = -1; |
| } |
| } |
| |
| if (record_full_arch_list_add_end ()) |
| ret = -1; |
| } |
| |
| |
| deallocate_reg_mem (&arm_record); |
| |
| return ret; |
| } |
| |
| /* See arm-tdep.h. */ |
| |
| const target_desc * |
| arm_read_description (arm_fp_type fp_type) |
| { |
| struct target_desc *tdesc = tdesc_arm_list[fp_type]; |
| |
| if (tdesc == nullptr) |
| { |
| tdesc = arm_create_target_description (fp_type); |
| tdesc_arm_list[fp_type] = tdesc; |
| } |
| |
| return tdesc; |
| } |
| |
| /* See arm-tdep.h. */ |
| |
| const target_desc * |
| arm_read_mprofile_description (arm_m_profile_type m_type) |
| { |
| struct target_desc *tdesc = tdesc_arm_mprofile_list[m_type]; |
| |
| if (tdesc == nullptr) |
| { |
| tdesc = arm_create_mprofile_target_description (m_type); |
| tdesc_arm_mprofile_list[m_type] = tdesc; |
| } |
| |
| return tdesc; |
| } |