| /* Target-dependent code for GDB, the GNU debugger. |
| |
| Copyright (C) 1986-2022 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "frame.h" |
| #include "inferior.h" |
| #include "symtab.h" |
| #include "target.h" |
| #include "gdbcore.h" |
| #include "gdbcmd.h" |
| #include "symfile.h" |
| #include "objfiles.h" |
| #include "regcache.h" |
| #include "value.h" |
| #include "osabi.h" |
| #include "regset.h" |
| #include "solib-svr4.h" |
| #include "solib.h" |
| #include "solist.h" |
| #include "ppc-tdep.h" |
| #include "ppc64-tdep.h" |
| #include "ppc-linux-tdep.h" |
| #include "arch/ppc-linux-common.h" |
| #include "arch/ppc-linux-tdesc.h" |
| #include "glibc-tdep.h" |
| #include "trad-frame.h" |
| #include "frame-unwind.h" |
| #include "tramp-frame.h" |
| #include "observable.h" |
| #include "auxv.h" |
| #include "elf/common.h" |
| #include "elf/ppc64.h" |
| #include "arch-utils.h" |
| #include "xml-syscall.h" |
| #include "linux-tdep.h" |
| #include "linux-record.h" |
| #include "record-full.h" |
| #include "infrun.h" |
| #include "expop.h" |
| |
| #include "stap-probe.h" |
| #include "ax.h" |
| #include "ax-gdb.h" |
| #include "cli/cli-utils.h" |
| #include "parser-defs.h" |
| #include "user-regs.h" |
| #include <ctype.h> |
| #include "elf-bfd.h" |
| |
| #include "features/rs6000/powerpc-32l.c" |
| #include "features/rs6000/powerpc-altivec32l.c" |
| #include "features/rs6000/powerpc-vsx32l.c" |
| #include "features/rs6000/powerpc-isa205-32l.c" |
| #include "features/rs6000/powerpc-isa205-altivec32l.c" |
| #include "features/rs6000/powerpc-isa205-vsx32l.c" |
| #include "features/rs6000/powerpc-isa205-ppr-dscr-vsx32l.c" |
| #include "features/rs6000/powerpc-isa207-vsx32l.c" |
| #include "features/rs6000/powerpc-isa207-htm-vsx32l.c" |
| #include "features/rs6000/powerpc-64l.c" |
| #include "features/rs6000/powerpc-altivec64l.c" |
| #include "features/rs6000/powerpc-vsx64l.c" |
| #include "features/rs6000/powerpc-isa205-64l.c" |
| #include "features/rs6000/powerpc-isa205-altivec64l.c" |
| #include "features/rs6000/powerpc-isa205-vsx64l.c" |
| #include "features/rs6000/powerpc-isa205-ppr-dscr-vsx64l.c" |
| #include "features/rs6000/powerpc-isa207-vsx64l.c" |
| #include "features/rs6000/powerpc-isa207-htm-vsx64l.c" |
| #include "features/rs6000/powerpc-e500l.c" |
| |
| /* Shared library operations for PowerPC-Linux. */ |
| static struct target_so_ops powerpc_so_ops; |
| |
| /* The syscall's XML filename for PPC and PPC64. */ |
| #define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml" |
| #define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml" |
| |
| /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint |
| in much the same fashion as memory_remove_breakpoint in mem-break.c, |
| but is careful not to write back the previous contents if the code |
| in question has changed in between inserting the breakpoint and |
| removing it. |
| |
| Here is the problem that we're trying to solve... |
| |
| Once upon a time, before introducing this function to remove |
| breakpoints from the inferior, setting a breakpoint on a shared |
| library function prior to running the program would not work |
| properly. In order to understand the problem, it is first |
| necessary to understand a little bit about dynamic linking on |
| this platform. |
| |
| A call to a shared library function is accomplished via a bl |
| (branch-and-link) instruction whose branch target is an entry |
| in the procedure linkage table (PLT). The PLT in the object |
| file is uninitialized. To gdb, prior to running the program, the |
| entries in the PLT are all zeros. |
| |
| Once the program starts running, the shared libraries are loaded |
| and the procedure linkage table is initialized, but the entries in |
| the table are not (necessarily) resolved. Once a function is |
| actually called, the code in the PLT is hit and the function is |
| resolved. In order to better illustrate this, an example is in |
| order; the following example is from the gdb testsuite. |
| |
| We start the program shmain. |
| |
| [kev@arroyo testsuite]$ ../gdb gdb.base/shmain |
| [...] |
| |
| We place two breakpoints, one on shr1 and the other on main. |
| |
| (gdb) b shr1 |
| Breakpoint 1 at 0x100409d4 |
| (gdb) b main |
| Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44. |
| |
| Examine the instruction (and the immediatly following instruction) |
| upon which the breakpoint was placed. Note that the PLT entry |
| for shr1 contains zeros. |
| |
| (gdb) x/2i 0x100409d4 |
| 0x100409d4 <shr1>: .long 0x0 |
| 0x100409d8 <shr1+4>: .long 0x0 |
| |
| Now run 'til main. |
| |
| (gdb) r |
| Starting program: gdb.base/shmain |
| Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19. |
| |
| Breakpoint 2, main () |
| at gdb.base/shmain.c:44 |
| 44 g = 1; |
| |
| Examine the PLT again. Note that the loading of the shared |
| library has initialized the PLT to code which loads a constant |
| (which I think is an index into the GOT) into r11 and then |
| branches a short distance to the code which actually does the |
| resolving. |
| |
| (gdb) x/2i 0x100409d4 |
| 0x100409d4 <shr1>: li r11,4 |
| 0x100409d8 <shr1+4>: b 0x10040984 <sg+4> |
| (gdb) c |
| Continuing. |
| |
| Breakpoint 1, shr1 (x=1) |
| at gdb.base/shr1.c:19 |
| 19 l = 1; |
| |
| Now we've hit the breakpoint at shr1. (The breakpoint was |
| reset from the PLT entry to the actual shr1 function after the |
| shared library was loaded.) Note that the PLT entry has been |
| resolved to contain a branch that takes us directly to shr1. |
| (The real one, not the PLT entry.) |
| |
| (gdb) x/2i 0x100409d4 |
| 0x100409d4 <shr1>: b 0xffaf76c <shr1> |
| 0x100409d8 <shr1+4>: b 0x10040984 <sg+4> |
| |
| The thing to note here is that the PLT entry for shr1 has been |
| changed twice. |
| |
| Now the problem should be obvious. GDB places a breakpoint (a |
| trap instruction) on the zero value of the PLT entry for shr1. |
| Later on, after the shared library had been loaded and the PLT |
| initialized, GDB gets a signal indicating this fact and attempts |
| (as it always does when it stops) to remove all the breakpoints. |
| |
| The breakpoint removal was causing the former contents (a zero |
| word) to be written back to the now initialized PLT entry thus |
| destroying a portion of the initialization that had occurred only a |
| short time ago. When execution continued, the zero word would be |
| executed as an instruction an illegal instruction trap was |
| generated instead. (0 is not a legal instruction.) |
| |
| The fix for this problem was fairly straightforward. The function |
| memory_remove_breakpoint from mem-break.c was copied to this file, |
| modified slightly, and renamed to ppc_linux_memory_remove_breakpoint. |
| In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new |
| function. |
| |
| The differences between ppc_linux_memory_remove_breakpoint () and |
| memory_remove_breakpoint () are minor. All that the former does |
| that the latter does not is check to make sure that the breakpoint |
| location actually contains a breakpoint (trap instruction) prior |
| to attempting to write back the old contents. If it does contain |
| a trap instruction, we allow the old contents to be written back. |
| Otherwise, we silently do nothing. |
| |
| The big question is whether memory_remove_breakpoint () should be |
| changed to have the same functionality. The downside is that more |
| traffic is generated for remote targets since we'll have an extra |
| fetch of a memory word each time a breakpoint is removed. |
| |
| For the time being, we'll leave this self-modifying-code-friendly |
| version in ppc-linux-tdep.c, but it ought to be migrated somewhere |
| else in the event that some other platform has similar needs with |
| regard to removing breakpoints in some potentially self modifying |
| code. */ |
| static int |
| ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch, |
| struct bp_target_info *bp_tgt) |
| { |
| CORE_ADDR addr = bp_tgt->reqstd_address; |
| const unsigned char *bp; |
| int val; |
| int bplen; |
| gdb_byte old_contents[BREAKPOINT_MAX]; |
| |
| /* Determine appropriate breakpoint contents and size for this address. */ |
| bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen); |
| |
| /* Make sure we see the memory breakpoints. */ |
| scoped_restore restore_memory |
| = make_scoped_restore_show_memory_breakpoints (1); |
| val = target_read_memory (addr, old_contents, bplen); |
| |
| /* If our breakpoint is no longer at the address, this means that the |
| program modified the code on us, so it is wrong to put back the |
| old value. */ |
| if (val == 0 && memcmp (bp, old_contents, bplen) == 0) |
| val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen); |
| |
| return val; |
| } |
| |
| /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather |
| than the 32 bit SYSV R4 ABI structure return convention - all |
| structures, no matter their size, are put in memory. Vectors, |
| which were added later, do get returned in a register though. */ |
| |
| static enum return_value_convention |
| ppc_linux_return_value (struct gdbarch *gdbarch, struct value *function, |
| struct type *valtype, struct regcache *regcache, |
| gdb_byte *readbuf, const gdb_byte *writebuf) |
| { |
| if ((valtype->code () == TYPE_CODE_STRUCT |
| || valtype->code () == TYPE_CODE_UNION) |
| && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8) |
| && valtype->is_vector ())) |
| return RETURN_VALUE_STRUCT_CONVENTION; |
| else |
| return ppc_sysv_abi_return_value (gdbarch, function, valtype, regcache, |
| readbuf, writebuf); |
| } |
| |
| /* PLT stub in an executable. */ |
| static const struct ppc_insn_pattern powerpc32_plt_stub[] = |
| { |
| { 0xffff0000, 0x3d600000, 0 }, /* lis r11, xxxx */ |
| { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */ |
| { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */ |
| { 0xffffffff, 0x4e800420, 0 }, /* bctr */ |
| { 0, 0, 0 } |
| }; |
| |
| /* PLT stubs in a shared library or PIE. |
| The first variant is used when the PLT entry is within +/-32k of |
| the GOT pointer (r30). */ |
| static const struct ppc_insn_pattern powerpc32_plt_stub_so_1[] = |
| { |
| { 0xffff0000, 0x817e0000, 0 }, /* lwz r11, xxxx(r30) */ |
| { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */ |
| { 0xffffffff, 0x4e800420, 0 }, /* bctr */ |
| { 0, 0, 0 } |
| }; |
| |
| /* The second variant is used when the PLT entry is more than +/-32k |
| from the GOT pointer (r30). */ |
| static const struct ppc_insn_pattern powerpc32_plt_stub_so_2[] = |
| { |
| { 0xffff0000, 0x3d7e0000, 0 }, /* addis r11, r30, xxxx */ |
| { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */ |
| { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */ |
| { 0xffffffff, 0x4e800420, 0 }, /* bctr */ |
| { 0, 0, 0 } |
| }; |
| |
| /* The max number of insns we check using ppc_insns_match_pattern. */ |
| #define POWERPC32_PLT_CHECK_LEN (ARRAY_SIZE (powerpc32_plt_stub) - 1) |
| |
| /* Check if PC is in PLT stub. For non-secure PLT, stub is in .plt |
| section. For secure PLT, stub is in .text and we need to check |
| instruction patterns. */ |
| |
| static int |
| powerpc_linux_in_dynsym_resolve_code (CORE_ADDR pc) |
| { |
| struct bound_minimal_symbol sym; |
| |
| /* Check whether PC is in the dynamic linker. This also checks |
| whether it is in the .plt section, used by non-PIC executables. */ |
| if (svr4_in_dynsym_resolve_code (pc)) |
| return 1; |
| |
| /* Check if we are in the resolver. */ |
| sym = lookup_minimal_symbol_by_pc (pc); |
| if (sym.minsym != NULL |
| && (strcmp (sym.minsym->linkage_name (), "__glink") == 0 |
| || strcmp (sym.minsym->linkage_name (), "__glink_PLTresolve") == 0)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Follow PLT stub to actual routine. |
| |
| When the execution direction is EXEC_REVERSE, scan backward to |
| check whether we are in the middle of a PLT stub. Currently, |
| we only look-behind at most 4 instructions (the max length of a PLT |
| stub sequence. */ |
| |
| static CORE_ADDR |
| ppc_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) |
| { |
| unsigned int insnbuf[POWERPC32_PLT_CHECK_LEN]; |
| struct gdbarch *gdbarch = get_frame_arch (frame); |
| ppc_gdbarch_tdep *tdep = (ppc_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| CORE_ADDR target = 0; |
| int scan_limit, i; |
| |
| scan_limit = 1; |
| /* When reverse-debugging, scan backward to check whether we are |
| in the middle of trampoline code. */ |
| if (execution_direction == EXEC_REVERSE) |
| scan_limit = 4; /* At most 4 instructions. */ |
| |
| for (i = 0; i < scan_limit; i++) |
| { |
| if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub, insnbuf)) |
| { |
| /* Calculate PLT entry address from |
| lis r11, xxxx |
| lwz r11, xxxx(r11). */ |
| target = ((ppc_insn_d_field (insnbuf[0]) << 16) |
| + ppc_insn_d_field (insnbuf[1])); |
| } |
| else if (i < ARRAY_SIZE (powerpc32_plt_stub_so_1) - 1 |
| && ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_1, |
| insnbuf)) |
| { |
| /* Calculate PLT entry address from |
| lwz r11, xxxx(r30). */ |
| target = (ppc_insn_d_field (insnbuf[0]) |
| + get_frame_register_unsigned (frame, |
| tdep->ppc_gp0_regnum + 30)); |
| } |
| else if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_2, |
| insnbuf)) |
| { |
| /* Calculate PLT entry address from |
| addis r11, r30, xxxx |
| lwz r11, xxxx(r11). */ |
| target = ((ppc_insn_d_field (insnbuf[0]) << 16) |
| + ppc_insn_d_field (insnbuf[1]) |
| + get_frame_register_unsigned (frame, |
| tdep->ppc_gp0_regnum + 30)); |
| } |
| else |
| { |
| /* Scan backward one more instruction if it doesn't match. */ |
| pc -= 4; |
| continue; |
| } |
| |
| target = read_memory_unsigned_integer (target, 4, byte_order); |
| return target; |
| } |
| |
| return 0; |
| } |
| |
| /* Wrappers to handle Linux-only registers. */ |
| |
| static void |
| ppc_linux_supply_gregset (const struct regset *regset, |
| struct regcache *regcache, |
| int regnum, const void *gregs, size_t len) |
| { |
| const struct ppc_reg_offsets *offsets |
| = (const struct ppc_reg_offsets *) regset->regmap; |
| |
| ppc_supply_gregset (regset, regcache, regnum, gregs, len); |
| |
| if (ppc_linux_trap_reg_p (regcache->arch ())) |
| { |
| /* "orig_r3" is stored 2 slots after "pc". */ |
| if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM) |
| ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, (const gdb_byte *) gregs, |
| offsets->pc_offset + 2 * offsets->gpr_size, |
| offsets->gpr_size); |
| |
| /* "trap" is stored 8 slots after "pc". */ |
| if (regnum == -1 || regnum == PPC_TRAP_REGNUM) |
| ppc_supply_reg (regcache, PPC_TRAP_REGNUM, (const gdb_byte *) gregs, |
| offsets->pc_offset + 8 * offsets->gpr_size, |
| offsets->gpr_size); |
| } |
| } |
| |
| static void |
| ppc_linux_collect_gregset (const struct regset *regset, |
| const struct regcache *regcache, |
| int regnum, void *gregs, size_t len) |
| { |
| const struct ppc_reg_offsets *offsets |
| = (const struct ppc_reg_offsets *) regset->regmap; |
| |
| /* Clear areas in the linux gregset not written elsewhere. */ |
| if (regnum == -1) |
| memset (gregs, 0, len); |
| |
| ppc_collect_gregset (regset, regcache, regnum, gregs, len); |
| |
| if (ppc_linux_trap_reg_p (regcache->arch ())) |
| { |
| /* "orig_r3" is stored 2 slots after "pc". */ |
| if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM) |
| ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, (gdb_byte *) gregs, |
| offsets->pc_offset + 2 * offsets->gpr_size, |
| offsets->gpr_size); |
| |
| /* "trap" is stored 8 slots after "pc". */ |
| if (regnum == -1 || regnum == PPC_TRAP_REGNUM) |
| ppc_collect_reg (regcache, PPC_TRAP_REGNUM, (gdb_byte *) gregs, |
| offsets->pc_offset + 8 * offsets->gpr_size, |
| offsets->gpr_size); |
| } |
| } |
| |
| /* Regset descriptions. */ |
| static const struct ppc_reg_offsets ppc32_linux_reg_offsets = |
| { |
| /* General-purpose registers. */ |
| /* .r0_offset = */ 0, |
| /* .gpr_size = */ 4, |
| /* .xr_size = */ 4, |
| /* .pc_offset = */ 128, |
| /* .ps_offset = */ 132, |
| /* .cr_offset = */ 152, |
| /* .lr_offset = */ 144, |
| /* .ctr_offset = */ 140, |
| /* .xer_offset = */ 148, |
| /* .mq_offset = */ 156, |
| |
| /* Floating-point registers. */ |
| /* .f0_offset = */ 0, |
| /* .fpscr_offset = */ 256, |
| /* .fpscr_size = */ 8 |
| }; |
| |
| static const struct ppc_reg_offsets ppc64_linux_reg_offsets = |
| { |
| /* General-purpose registers. */ |
| /* .r0_offset = */ 0, |
| /* .gpr_size = */ 8, |
| /* .xr_size = */ 8, |
| /* .pc_offset = */ 256, |
| /* .ps_offset = */ 264, |
| /* .cr_offset = */ 304, |
| /* .lr_offset = */ 288, |
| /* .ctr_offset = */ 280, |
| /* .xer_offset = */ 296, |
| /* .mq_offset = */ 312, |
| |
| /* Floating-point registers. */ |
| /* .f0_offset = */ 0, |
| /* .fpscr_offset = */ 256, |
| /* .fpscr_size = */ 8 |
| }; |
| |
| static const struct regset ppc32_linux_gregset = { |
| &ppc32_linux_reg_offsets, |
| ppc_linux_supply_gregset, |
| ppc_linux_collect_gregset |
| }; |
| |
| static const struct regset ppc64_linux_gregset = { |
| &ppc64_linux_reg_offsets, |
| ppc_linux_supply_gregset, |
| ppc_linux_collect_gregset |
| }; |
| |
| static const struct regset ppc32_linux_fpregset = { |
| &ppc32_linux_reg_offsets, |
| ppc_supply_fpregset, |
| ppc_collect_fpregset |
| }; |
| |
| static const struct regcache_map_entry ppc32_le_linux_vrregmap[] = |
| { |
| { 32, PPC_VR0_REGNUM, 16 }, |
| { 1, PPC_VSCR_REGNUM, 4 }, |
| { 1, REGCACHE_MAP_SKIP, 12 }, |
| { 1, PPC_VRSAVE_REGNUM, 4 }, |
| { 1, REGCACHE_MAP_SKIP, 12 }, |
| { 0 } |
| }; |
| |
| static const struct regcache_map_entry ppc32_be_linux_vrregmap[] = |
| { |
| { 32, PPC_VR0_REGNUM, 16 }, |
| { 1, REGCACHE_MAP_SKIP, 12}, |
| { 1, PPC_VSCR_REGNUM, 4 }, |
| { 1, PPC_VRSAVE_REGNUM, 4 }, |
| { 1, REGCACHE_MAP_SKIP, 12 }, |
| { 0 } |
| }; |
| |
| static const struct regset ppc32_le_linux_vrregset = { |
| ppc32_le_linux_vrregmap, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| static const struct regset ppc32_be_linux_vrregset = { |
| ppc32_be_linux_vrregmap, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| static const struct regcache_map_entry ppc32_linux_vsxregmap[] = |
| { |
| { 32, PPC_VSR0_UPPER_REGNUM, 8 }, |
| { 0 } |
| }; |
| |
| static const struct regset ppc32_linux_vsxregset = { |
| ppc32_linux_vsxregmap, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| /* Program Priorty Register regmap. */ |
| |
| static const struct regcache_map_entry ppc32_regmap_ppr[] = |
| { |
| { 1, PPC_PPR_REGNUM, 8 }, |
| { 0 } |
| }; |
| |
| /* Program Priorty Register regset. */ |
| |
| const struct regset ppc32_linux_pprregset = { |
| ppc32_regmap_ppr, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| /* Data Stream Control Register regmap. */ |
| |
| static const struct regcache_map_entry ppc32_regmap_dscr[] = |
| { |
| { 1, PPC_DSCR_REGNUM, 8 }, |
| { 0 } |
| }; |
| |
| /* Data Stream Control Register regset. */ |
| |
| const struct regset ppc32_linux_dscrregset = { |
| ppc32_regmap_dscr, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| /* Target Address Register regmap. */ |
| |
| static const struct regcache_map_entry ppc32_regmap_tar[] = |
| { |
| { 1, PPC_TAR_REGNUM, 8 }, |
| { 0 } |
| }; |
| |
| /* Target Address Register regset. */ |
| |
| const struct regset ppc32_linux_tarregset = { |
| ppc32_regmap_tar, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| /* Event-Based Branching regmap. */ |
| |
| static const struct regcache_map_entry ppc32_regmap_ebb[] = |
| { |
| { 1, PPC_EBBRR_REGNUM, 8 }, |
| { 1, PPC_EBBHR_REGNUM, 8 }, |
| { 1, PPC_BESCR_REGNUM, 8 }, |
| { 0 } |
| }; |
| |
| /* Event-Based Branching regset. */ |
| |
| const struct regset ppc32_linux_ebbregset = { |
| ppc32_regmap_ebb, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| /* Performance Monitoring Unit regmap. */ |
| |
| static const struct regcache_map_entry ppc32_regmap_pmu[] = |
| { |
| { 1, PPC_SIAR_REGNUM, 8 }, |
| { 1, PPC_SDAR_REGNUM, 8 }, |
| { 1, PPC_SIER_REGNUM, 8 }, |
| { 1, PPC_MMCR2_REGNUM, 8 }, |
| { 1, PPC_MMCR0_REGNUM, 8 }, |
| { 0 } |
| }; |
| |
| /* Performance Monitoring Unit regset. */ |
| |
| const struct regset ppc32_linux_pmuregset = { |
| ppc32_regmap_pmu, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| /* Hardware Transactional Memory special-purpose register regmap. */ |
| |
| static const struct regcache_map_entry ppc32_regmap_tm_spr[] = |
| { |
| { 1, PPC_TFHAR_REGNUM, 8 }, |
| { 1, PPC_TEXASR_REGNUM, 8 }, |
| { 1, PPC_TFIAR_REGNUM, 8 }, |
| { 0 } |
| }; |
| |
| /* Hardware Transactional Memory special-purpose register regset. */ |
| |
| const struct regset ppc32_linux_tm_sprregset = { |
| ppc32_regmap_tm_spr, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| /* Regmaps for the Hardware Transactional Memory checkpointed |
| general-purpose regsets for 32-bit, 64-bit big-endian, and 64-bit |
| little endian targets. The ptrace and core file buffers for 64-bit |
| targets use 8-byte fields for the 4-byte registers, and the |
| position of the register in the fields depends on the endianness. |
| The 32-bit regmap is the same for both endian types because the |
| fields are all 4-byte long. |
| |
| The layout of checkpointed GPR regset is the same as a regular |
| struct pt_regs, but we skip all registers that are not actually |
| checkpointed by the processor (e.g. msr, nip), except when |
| generating a core file. The 64-bit regset is 48 * 8 bytes long. |
| In some 64-bit kernels, the regset for a 32-bit inferior has the |
| same length, but all the registers are squeezed in the first half |
| (48 * 4 bytes). The pt_regs struct calls the regular cr ccr, but |
| we use ccr for "checkpointed condition register". Note that CR |
| (condition register) field 0 is not checkpointed, but the kernel |
| returns all 4 bytes. The skipped registers should not be touched |
| when writing the regset to the inferior (with |
| PTRACE_SETREGSET). */ |
| |
| static const struct regcache_map_entry ppc32_regmap_cgpr[] = |
| { |
| { 32, PPC_CR0_REGNUM, 4 }, |
| { 3, REGCACHE_MAP_SKIP, 4 }, /* nip, msr, orig_gpr3. */ |
| { 1, PPC_CCTR_REGNUM, 4 }, |
| { 1, PPC_CLR_REGNUM, 4 }, |
| { 1, PPC_CXER_REGNUM, 4 }, |
| { 1, PPC_CCR_REGNUM, 4 }, |
| { 9, REGCACHE_MAP_SKIP, 4 }, /* All the rest. */ |
| { 0 } |
| }; |
| |
| static const struct regcache_map_entry ppc64_le_regmap_cgpr[] = |
| { |
| { 32, PPC_CR0_REGNUM, 8 }, |
| { 3, REGCACHE_MAP_SKIP, 8 }, |
| { 1, PPC_CCTR_REGNUM, 8 }, |
| { 1, PPC_CLR_REGNUM, 8 }, |
| { 1, PPC_CXER_REGNUM, 4 }, |
| { 1, REGCACHE_MAP_SKIP, 4 }, /* CXER padding. */ |
| { 1, PPC_CCR_REGNUM, 4 }, |
| { 1, REGCACHE_MAP_SKIP, 4}, /* CCR padding. */ |
| { 9, REGCACHE_MAP_SKIP, 8}, |
| { 0 } |
| }; |
| |
| static const struct regcache_map_entry ppc64_be_regmap_cgpr[] = |
| { |
| { 32, PPC_CR0_REGNUM, 8 }, |
| { 3, REGCACHE_MAP_SKIP, 8 }, |
| { 1, PPC_CCTR_REGNUM, 8 }, |
| { 1, PPC_CLR_REGNUM, 8 }, |
| { 1, REGCACHE_MAP_SKIP, 4}, /* CXER padding. */ |
| { 1, PPC_CXER_REGNUM, 4 }, |
| { 1, REGCACHE_MAP_SKIP, 4}, /* CCR padding. */ |
| { 1, PPC_CCR_REGNUM, 4 }, |
| { 9, REGCACHE_MAP_SKIP, 8}, |
| { 0 } |
| }; |
| |
| /* Regsets for the Hardware Transactional Memory checkpointed |
| general-purpose registers for 32-bit, 64-bit big-endian, and 64-bit |
| little endian targets. |
| |
| Some 64-bit kernels generate a checkpointed gpr note section with |
| 48*8 bytes for a 32-bit thread, of which only 48*4 are actually |
| used, so we set the variable size flag in the corresponding regset |
| to accept this case. */ |
| |
| static const struct regset ppc32_linux_cgprregset = { |
| ppc32_regmap_cgpr, |
| regcache_supply_regset, |
| regcache_collect_regset, |
| REGSET_VARIABLE_SIZE |
| }; |
| |
| static const struct regset ppc64_be_linux_cgprregset = { |
| ppc64_be_regmap_cgpr, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| static const struct regset ppc64_le_linux_cgprregset = { |
| ppc64_le_regmap_cgpr, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| /* Hardware Transactional Memory checkpointed floating-point regmap. */ |
| |
| static const struct regcache_map_entry ppc32_regmap_cfpr[] = |
| { |
| { 32, PPC_CF0_REGNUM, 8 }, |
| { 1, PPC_CFPSCR_REGNUM, 8 }, |
| { 0 } |
| }; |
| |
| /* Hardware Transactional Memory checkpointed floating-point regset. */ |
| |
| const struct regset ppc32_linux_cfprregset = { |
| ppc32_regmap_cfpr, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| /* Regmaps for the Hardware Transactional Memory checkpointed vector |
| regsets, for big and little endian targets. The position of the |
| 4-byte VSCR in its 16-byte field depends on the endianness. */ |
| |
| static const struct regcache_map_entry ppc32_le_regmap_cvmx[] = |
| { |
| { 32, PPC_CVR0_REGNUM, 16 }, |
| { 1, PPC_CVSCR_REGNUM, 4 }, |
| { 1, REGCACHE_MAP_SKIP, 12 }, |
| { 1, PPC_CVRSAVE_REGNUM, 4 }, |
| { 1, REGCACHE_MAP_SKIP, 12 }, |
| { 0 } |
| }; |
| |
| static const struct regcache_map_entry ppc32_be_regmap_cvmx[] = |
| { |
| { 32, PPC_CVR0_REGNUM, 16 }, |
| { 1, REGCACHE_MAP_SKIP, 12 }, |
| { 1, PPC_CVSCR_REGNUM, 4 }, |
| { 1, PPC_CVRSAVE_REGNUM, 4 }, |
| { 1, REGCACHE_MAP_SKIP, 12}, |
| { 0 } |
| }; |
| |
| /* Hardware Transactional Memory checkpointed vector regsets, for little |
| and big endian targets. */ |
| |
| static const struct regset ppc32_le_linux_cvmxregset = { |
| ppc32_le_regmap_cvmx, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| static const struct regset ppc32_be_linux_cvmxregset = { |
| ppc32_be_regmap_cvmx, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| /* Hardware Transactional Memory checkpointed vector-scalar regmap. */ |
| |
| static const struct regcache_map_entry ppc32_regmap_cvsx[] = |
| { |
| { 32, PPC_CVSR0_UPPER_REGNUM, 8 }, |
| { 0 } |
| }; |
| |
| /* Hardware Transactional Memory checkpointed vector-scalar regset. */ |
| |
| const struct regset ppc32_linux_cvsxregset = { |
| ppc32_regmap_cvsx, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| /* Hardware Transactional Memory checkpointed Program Priority Register |
| regmap. */ |
| |
| static const struct regcache_map_entry ppc32_regmap_cppr[] = |
| { |
| { 1, PPC_CPPR_REGNUM, 8 }, |
| { 0 } |
| }; |
| |
| /* Hardware Transactional Memory checkpointed Program Priority Register |
| regset. */ |
| |
| const struct regset ppc32_linux_cpprregset = { |
| ppc32_regmap_cppr, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| /* Hardware Transactional Memory checkpointed Data Stream Control |
| Register regmap. */ |
| |
| static const struct regcache_map_entry ppc32_regmap_cdscr[] = |
| { |
| { 1, PPC_CDSCR_REGNUM, 8 }, |
| { 0 } |
| }; |
| |
| /* Hardware Transactional Memory checkpointed Data Stream Control |
| Register regset. */ |
| |
| const struct regset ppc32_linux_cdscrregset = { |
| ppc32_regmap_cdscr, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| /* Hardware Transactional Memory checkpointed Target Address Register |
| regmap. */ |
| |
| static const struct regcache_map_entry ppc32_regmap_ctar[] = |
| { |
| { 1, PPC_CTAR_REGNUM, 8 }, |
| { 0 } |
| }; |
| |
| /* Hardware Transactional Memory checkpointed Target Address Register |
| regset. */ |
| |
| const struct regset ppc32_linux_ctarregset = { |
| ppc32_regmap_ctar, |
| regcache_supply_regset, |
| regcache_collect_regset |
| }; |
| |
| const struct regset * |
| ppc_linux_gregset (int wordsize) |
| { |
| return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset; |
| } |
| |
| const struct regset * |
| ppc_linux_fpregset (void) |
| { |
| return &ppc32_linux_fpregset; |
| } |
| |
| const struct regset * |
| ppc_linux_vrregset (struct gdbarch *gdbarch) |
| { |
| if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
| return &ppc32_be_linux_vrregset; |
| else |
| return &ppc32_le_linux_vrregset; |
| } |
| |
| const struct regset * |
| ppc_linux_vsxregset (void) |
| { |
| return &ppc32_linux_vsxregset; |
| } |
| |
| const struct regset * |
| ppc_linux_cgprregset (struct gdbarch *gdbarch) |
| { |
| ppc_gdbarch_tdep *tdep = (ppc_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| if (tdep->wordsize == 4) |
| { |
| return &ppc32_linux_cgprregset; |
| } |
| else |
| { |
| if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
| return &ppc64_be_linux_cgprregset; |
| else |
| return &ppc64_le_linux_cgprregset; |
| } |
| } |
| |
| const struct regset * |
| ppc_linux_cvmxregset (struct gdbarch *gdbarch) |
| { |
| if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
| return &ppc32_be_linux_cvmxregset; |
| else |
| return &ppc32_le_linux_cvmxregset; |
| } |
| |
| /* Collect function used to generate the core note for the |
| checkpointed GPR regset. Here, we don't want to skip the |
| "checkpointed" NIP and MSR, so that the note section we generate is |
| similar to the one generated by the kernel. To avoid having to |
| define additional registers in GDB which are not actually |
| checkpointed in the architecture, we copy TFHAR to the checkpointed |
| NIP slot, which is what the kernel does, and copy the regular MSR |
| to the checkpointed MSR slot, which will have a similar value in |
| most cases. */ |
| |
| static void |
| ppc_linux_collect_core_cpgrregset (const struct regset *regset, |
| const struct regcache *regcache, |
| int regnum, void *buf, size_t len) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| ppc_gdbarch_tdep *tdep = (ppc_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| |
| const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch); |
| |
| /* We collect the checkpointed GPRs already defined in the regular |
| regmap, then overlay TFHAR/MSR on the checkpointed NIP/MSR |
| slots. */ |
| cgprregset->collect_regset (cgprregset, regcache, regnum, buf, len); |
| |
| /* Check that we are collecting all the registers, which should be |
| the case when generating a core file. */ |
| if (regnum != -1) |
| return; |
| |
| /* PT_NIP and PT_MSR are 32 and 33 for powerpc. Don't redefine |
| these symbols since this file can run on clients in other |
| architectures where they can already be defined to other |
| values. */ |
| int pt_offset = 32; |
| |
| /* Check that our buffer is long enough to hold two slots at |
| pt_offset * wordsize, one for NIP and one for MSR. */ |
| gdb_assert ((pt_offset + 2) * tdep->wordsize <= len); |
| |
| /* TFHAR is 8 bytes wide, but the NIP slot for a 32-bit thread is |
| 4-bytes long. We use raw_collect_integer which handles |
| differences in the sizes for the source and destination buffers |
| for both endian modes. */ |
| (regcache->raw_collect_integer |
| (PPC_TFHAR_REGNUM, ((gdb_byte *) buf) + pt_offset * tdep->wordsize, |
| tdep->wordsize, false)); |
| |
| pt_offset = 33; |
| |
| (regcache->raw_collect_integer |
| (PPC_MSR_REGNUM, ((gdb_byte *) buf) + pt_offset * tdep->wordsize, |
| tdep->wordsize, false)); |
| } |
| |
| /* Iterate over supported core file register note sections. */ |
| |
| static void |
| ppc_linux_iterate_over_regset_sections (struct gdbarch *gdbarch, |
| iterate_over_regset_sections_cb *cb, |
| void *cb_data, |
| const struct regcache *regcache) |
| { |
| ppc_gdbarch_tdep *tdep = (ppc_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| int have_altivec = tdep->ppc_vr0_regnum != -1; |
| int have_vsx = tdep->ppc_vsr0_upper_regnum != -1; |
| int have_ppr = tdep->ppc_ppr_regnum != -1; |
| int have_dscr = tdep->ppc_dscr_regnum != -1; |
| int have_tar = tdep->ppc_tar_regnum != -1; |
| |
| if (tdep->wordsize == 4) |
| cb (".reg", 48 * 4, 48 * 4, &ppc32_linux_gregset, NULL, cb_data); |
| else |
| cb (".reg", 48 * 8, 48 * 8, &ppc64_linux_gregset, NULL, cb_data); |
| |
| cb (".reg2", 264, 264, &ppc32_linux_fpregset, NULL, cb_data); |
| |
| if (have_altivec) |
| { |
| const struct regset *vrregset = ppc_linux_vrregset (gdbarch); |
| cb (".reg-ppc-vmx", PPC_LINUX_SIZEOF_VRREGSET, PPC_LINUX_SIZEOF_VRREGSET, |
| vrregset, "ppc Altivec", cb_data); |
| } |
| |
| if (have_vsx) |
| cb (".reg-ppc-vsx", PPC_LINUX_SIZEOF_VSXREGSET, PPC_LINUX_SIZEOF_VSXREGSET, |
| &ppc32_linux_vsxregset, "POWER7 VSX", cb_data); |
| |
| if (have_ppr) |
| cb (".reg-ppc-ppr", PPC_LINUX_SIZEOF_PPRREGSET, |
| PPC_LINUX_SIZEOF_PPRREGSET, |
| &ppc32_linux_pprregset, "Priority Program Register", cb_data); |
| |
| if (have_dscr) |
| cb (".reg-ppc-dscr", PPC_LINUX_SIZEOF_DSCRREGSET, |
| PPC_LINUX_SIZEOF_DSCRREGSET, |
| &ppc32_linux_dscrregset, "Data Stream Control Register", |
| cb_data); |
| |
| if (have_tar) |
| cb (".reg-ppc-tar", PPC_LINUX_SIZEOF_TARREGSET, |
| PPC_LINUX_SIZEOF_TARREGSET, |
| &ppc32_linux_tarregset, "Target Address Register", cb_data); |
| |
| /* EBB registers are unavailable when ptrace returns ENODATA. Check |
| availability when generating a core file (regcache != NULL). */ |
| if (tdep->have_ebb) |
| if (regcache == NULL |
| || REG_VALID == regcache->get_register_status (PPC_BESCR_REGNUM)) |
| cb (".reg-ppc-ebb", PPC_LINUX_SIZEOF_EBBREGSET, |
| PPC_LINUX_SIZEOF_EBBREGSET, |
| &ppc32_linux_ebbregset, "Event-based Branching Registers", |
| cb_data); |
| |
| if (tdep->ppc_mmcr0_regnum != -1) |
| cb (".reg-ppc-pmu", PPC_LINUX_SIZEOF_PMUREGSET, |
| PPC_LINUX_SIZEOF_PMUREGSET, |
| &ppc32_linux_pmuregset, "Performance Monitor Registers", |
| cb_data); |
| |
| if (tdep->have_htm_spr) |
| cb (".reg-ppc-tm-spr", PPC_LINUX_SIZEOF_TM_SPRREGSET, |
| PPC_LINUX_SIZEOF_TM_SPRREGSET, |
| &ppc32_linux_tm_sprregset, |
| "Hardware Transactional Memory Special Purpose Registers", |
| cb_data); |
| |
| /* Checkpointed registers can be unavailable, don't call back if |
| we are generating a core file. */ |
| |
| if (tdep->have_htm_core) |
| { |
| /* Only generate the checkpointed GPR core note if we also have |
| access to the HTM SPRs, because we need TFHAR to fill the |
| "checkpointed" NIP slot. We can read a core file without it |
| since GDB is not aware of this NIP as a visible register. */ |
| if (regcache == NULL || |
| (REG_VALID == regcache->get_register_status (PPC_CR0_REGNUM) |
| && tdep->have_htm_spr)) |
| { |
| int cgpr_size = (tdep->wordsize == 4? |
| PPC32_LINUX_SIZEOF_CGPRREGSET |
| : PPC64_LINUX_SIZEOF_CGPRREGSET); |
| |
| const struct regset *cgprregset = |
| ppc_linux_cgprregset (gdbarch); |
| |
| if (regcache != NULL) |
| { |
| struct regset core_cgprregset = *cgprregset; |
| |
| core_cgprregset.collect_regset |
| = ppc_linux_collect_core_cpgrregset; |
| |
| cb (".reg-ppc-tm-cgpr", |
| cgpr_size, cgpr_size, |
| &core_cgprregset, |
| "Checkpointed General Purpose Registers", cb_data); |
| } |
| else |
| { |
| cb (".reg-ppc-tm-cgpr", |
| cgpr_size, cgpr_size, |
| cgprregset, |
| "Checkpointed General Purpose Registers", cb_data); |
| } |
| } |
| } |
| |
| if (tdep->have_htm_fpu) |
| { |
| if (regcache == NULL || |
| REG_VALID == regcache->get_register_status (PPC_CF0_REGNUM)) |
| cb (".reg-ppc-tm-cfpr", PPC_LINUX_SIZEOF_CFPRREGSET, |
| PPC_LINUX_SIZEOF_CFPRREGSET, |
| &ppc32_linux_cfprregset, |
| "Checkpointed Floating Point Registers", cb_data); |
| } |
| |
| if (tdep->have_htm_altivec) |
| { |
| if (regcache == NULL || |
| REG_VALID == regcache->get_register_status (PPC_CVR0_REGNUM)) |
| { |
| const struct regset *cvmxregset = |
| ppc_linux_cvmxregset (gdbarch); |
| |
| cb (".reg-ppc-tm-cvmx", PPC_LINUX_SIZEOF_CVMXREGSET, |
| PPC_LINUX_SIZEOF_CVMXREGSET, |
| cvmxregset, |
| "Checkpointed Altivec (VMX) Registers", cb_data); |
| } |
| } |
| |
| if (tdep->have_htm_vsx) |
| { |
| if (regcache == NULL || |
| (REG_VALID |
| == regcache->get_register_status (PPC_CVSR0_UPPER_REGNUM))) |
| cb (".reg-ppc-tm-cvsx", PPC_LINUX_SIZEOF_CVSXREGSET, |
| PPC_LINUX_SIZEOF_CVSXREGSET, |
| &ppc32_linux_cvsxregset, |
| "Checkpointed VSX Registers", cb_data); |
| } |
| |
| if (tdep->ppc_cppr_regnum != -1) |
| { |
| if (regcache == NULL || |
| REG_VALID == regcache->get_register_status (PPC_CPPR_REGNUM)) |
| cb (".reg-ppc-tm-cppr", PPC_LINUX_SIZEOF_CPPRREGSET, |
| PPC_LINUX_SIZEOF_CPPRREGSET, |
| &ppc32_linux_cpprregset, |
| "Checkpointed Priority Program Register", cb_data); |
| } |
| |
| if (tdep->ppc_cdscr_regnum != -1) |
| { |
| if (regcache == NULL || |
| REG_VALID == regcache->get_register_status (PPC_CDSCR_REGNUM)) |
| cb (".reg-ppc-tm-cdscr", PPC_LINUX_SIZEOF_CDSCRREGSET, |
| PPC_LINUX_SIZEOF_CDSCRREGSET, |
| &ppc32_linux_cdscrregset, |
| "Checkpointed Data Stream Control Register", cb_data); |
| } |
| |
| if (tdep->ppc_ctar_regnum) |
| { |
| if ( regcache == NULL || |
| REG_VALID == regcache->get_register_status (PPC_CTAR_REGNUM)) |
| cb (".reg-ppc-tm-ctar", PPC_LINUX_SIZEOF_CTARREGSET, |
| PPC_LINUX_SIZEOF_CTARREGSET, |
| &ppc32_linux_ctarregset, |
| "Checkpointed Target Address Register", cb_data); |
| } |
| } |
| |
| static void |
| ppc_linux_sigtramp_cache (struct frame_info *this_frame, |
| struct trad_frame_cache *this_cache, |
| CORE_ADDR func, LONGEST offset, |
| int bias) |
| { |
| CORE_ADDR base; |
| CORE_ADDR regs; |
| CORE_ADDR gpregs; |
| CORE_ADDR fpregs; |
| int i; |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| ppc_gdbarch_tdep *tdep = (ppc_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| base = get_frame_register_unsigned (this_frame, |
| gdbarch_sp_regnum (gdbarch)); |
| if (bias > 0 && get_frame_pc (this_frame) != func) |
| /* See below, some signal trampolines increment the stack as their |
| first instruction, need to compensate for that. */ |
| base -= bias; |
| |
| /* Find the address of the register buffer pointer. */ |
| regs = base + offset; |
| /* Use that to find the address of the corresponding register |
| buffers. */ |
| gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order); |
| fpregs = gpregs + 48 * tdep->wordsize; |
| |
| /* General purpose. */ |
| for (i = 0; i < 32; i++) |
| { |
| int regnum = i + tdep->ppc_gp0_regnum; |
| trad_frame_set_reg_addr (this_cache, |
| regnum, gpregs + i * tdep->wordsize); |
| } |
| trad_frame_set_reg_addr (this_cache, |
| gdbarch_pc_regnum (gdbarch), |
| gpregs + 32 * tdep->wordsize); |
| trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum, |
| gpregs + 35 * tdep->wordsize); |
| trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum, |
| gpregs + 36 * tdep->wordsize); |
| trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum, |
| gpregs + 37 * tdep->wordsize); |
| trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum, |
| gpregs + 38 * tdep->wordsize); |
| |
| if (ppc_linux_trap_reg_p (gdbarch)) |
| { |
| trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM, |
| gpregs + 34 * tdep->wordsize); |
| trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM, |
| gpregs + 40 * tdep->wordsize); |
| } |
| |
| if (ppc_floating_point_unit_p (gdbarch)) |
| { |
| /* Floating point registers. */ |
| for (i = 0; i < 32; i++) |
| { |
| int regnum = i + gdbarch_fp0_regnum (gdbarch); |
| trad_frame_set_reg_addr (this_cache, regnum, |
| fpregs + i * tdep->wordsize); |
| } |
| trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum, |
| fpregs + 32 * tdep->wordsize); |
| } |
| trad_frame_set_id (this_cache, frame_id_build (base, func)); |
| } |
| |
| static void |
| ppc32_linux_sigaction_cache_init (const struct tramp_frame *self, |
| struct frame_info *this_frame, |
| struct trad_frame_cache *this_cache, |
| CORE_ADDR func) |
| { |
| ppc_linux_sigtramp_cache (this_frame, this_cache, func, |
| 0xd0 /* Offset to ucontext_t. */ |
| + 0x30 /* Offset to .reg. */, |
| 0); |
| } |
| |
| static void |
| ppc64_linux_sigaction_cache_init (const struct tramp_frame *self, |
| struct frame_info *this_frame, |
| struct trad_frame_cache *this_cache, |
| CORE_ADDR func) |
| { |
| ppc_linux_sigtramp_cache (this_frame, this_cache, func, |
| 0x80 /* Offset to ucontext_t. */ |
| + 0xe0 /* Offset to .reg. */, |
| 128); |
| } |
| |
| static void |
| ppc32_linux_sighandler_cache_init (const struct tramp_frame *self, |
| struct frame_info *this_frame, |
| struct trad_frame_cache *this_cache, |
| CORE_ADDR func) |
| { |
| ppc_linux_sigtramp_cache (this_frame, this_cache, func, |
| 0x40 /* Offset to ucontext_t. */ |
| + 0x1c /* Offset to .reg. */, |
| 0); |
| } |
| |
| static void |
| ppc64_linux_sighandler_cache_init (const struct tramp_frame *self, |
| struct frame_info *this_frame, |
| struct trad_frame_cache *this_cache, |
| CORE_ADDR func) |
| { |
| ppc_linux_sigtramp_cache (this_frame, this_cache, func, |
| 0x80 /* Offset to struct sigcontext. */ |
| + 0x38 /* Offset to .reg. */, |
| 128); |
| } |
| |
| static struct tramp_frame ppc32_linux_sigaction_tramp_frame = { |
| SIGTRAMP_FRAME, |
| 4, |
| { |
| { 0x380000ac, ULONGEST_MAX }, /* li r0, 172 */ |
| { 0x44000002, ULONGEST_MAX }, /* sc */ |
| { TRAMP_SENTINEL_INSN }, |
| }, |
| ppc32_linux_sigaction_cache_init |
| }; |
| static struct tramp_frame ppc64_linux_sigaction_tramp_frame = { |
| SIGTRAMP_FRAME, |
| 4, |
| { |
| { 0x38210080, ULONGEST_MAX }, /* addi r1,r1,128 */ |
| { 0x380000ac, ULONGEST_MAX }, /* li r0, 172 */ |
| { 0x44000002, ULONGEST_MAX }, /* sc */ |
| { TRAMP_SENTINEL_INSN }, |
| }, |
| ppc64_linux_sigaction_cache_init |
| }; |
| static struct tramp_frame ppc32_linux_sighandler_tramp_frame = { |
| SIGTRAMP_FRAME, |
| 4, |
| { |
| { 0x38000077, ULONGEST_MAX }, /* li r0,119 */ |
| { 0x44000002, ULONGEST_MAX }, /* sc */ |
| { TRAMP_SENTINEL_INSN }, |
| }, |
| ppc32_linux_sighandler_cache_init |
| }; |
| static struct tramp_frame ppc64_linux_sighandler_tramp_frame = { |
| SIGTRAMP_FRAME, |
| 4, |
| { |
| { 0x38210080, ULONGEST_MAX }, /* addi r1,r1,128 */ |
| { 0x38000077, ULONGEST_MAX }, /* li r0,119 */ |
| { 0x44000002, ULONGEST_MAX }, /* sc */ |
| { TRAMP_SENTINEL_INSN }, |
| }, |
| ppc64_linux_sighandler_cache_init |
| }; |
| |
| /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */ |
| int |
| ppc_linux_trap_reg_p (struct gdbarch *gdbarch) |
| { |
| /* If we do not have a target description with registers, then |
| the special registers will not be included in the register set. */ |
| if (!tdesc_has_registers (gdbarch_target_desc (gdbarch))) |
| return 0; |
| |
| /* If we do, then it is safe to check the size. */ |
| return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0 |
| && register_size (gdbarch, PPC_TRAP_REGNUM) > 0; |
| } |
| |
| /* Return the current system call's number present in the |
| r0 register. When the function fails, it returns -1. */ |
| static LONGEST |
| ppc_linux_get_syscall_number (struct gdbarch *gdbarch, |
| thread_info *thread) |
| { |
| struct regcache *regcache = get_thread_regcache (thread); |
| ppc_gdbarch_tdep *tdep = (ppc_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| /* Make sure we're in a 32- or 64-bit machine */ |
| gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8); |
| |
| /* The content of a register */ |
| gdb::byte_vector buf (tdep->wordsize); |
| |
| /* Getting the system call number from the register. |
| When dealing with PowerPC architecture, this information |
| is stored at 0th register. */ |
| regcache->cooked_read (tdep->ppc_gp0_regnum, buf.data ()); |
| |
| return extract_signed_integer (buf.data (), tdep->wordsize, byte_order); |
| } |
| |
| /* PPC process record-replay */ |
| |
| static struct linux_record_tdep ppc_linux_record_tdep; |
| static struct linux_record_tdep ppc64_linux_record_tdep; |
| |
| /* ppc_canonicalize_syscall maps from the native PowerPC Linux set of |
| syscall ids into a canonical set of syscall ids used by process |
| record. (See arch/powerpc/include/uapi/asm/unistd.h in kernel tree.) |
| Return -1 if this system call is not supported by process record. |
| Otherwise, return the syscall number for process record of given |
| SYSCALL. */ |
| |
| static enum gdb_syscall |
| ppc_canonicalize_syscall (int syscall, int wordsize) |
| { |
| int result = -1; |
| |
| if (syscall <= 165) |
| result = syscall; |
| else if (syscall >= 167 && syscall <= 190) /* Skip query_module 166 */ |
| result = syscall + 1; |
| else if (syscall >= 192 && syscall <= 197) /* mmap2 */ |
| result = syscall; |
| else if (syscall == 208) /* tkill */ |
| result = gdb_sys_tkill; |
| else if (syscall >= 207 && syscall <= 220) /* gettid */ |
| result = syscall + 224 - 207; |
| else if (syscall >= 234 && syscall <= 239) /* exit_group */ |
| result = syscall + 252 - 234; |
| else if (syscall >= 240 && syscall <= 248) /* timer_create */ |
| result = syscall += 259 - 240; |
| else if (syscall >= 250 && syscall <= 251) /* tgkill */ |
| result = syscall + 270 - 250; |
| else if (syscall == 286) |
| result = gdb_sys_openat; |
| else if (syscall == 291) |
| { |
| if (wordsize == 64) |
| result = gdb_sys_newfstatat; |
| else |
| result = gdb_sys_fstatat64; |
| } |
| else if (syscall == 336) |
| result = gdb_sys_recv; |
| else if (syscall == 337) |
| result = gdb_sys_recvfrom; |
| else if (syscall == 342) |
| result = gdb_sys_recvmsg; |
| |
| return (enum gdb_syscall) result; |
| } |
| |
| /* Record registers which might be clobbered during system call. |
| Return 0 if successful. */ |
| |
| static int |
| ppc_linux_syscall_record (struct regcache *regcache) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| ppc_gdbarch_tdep *tdep = (ppc_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| ULONGEST scnum; |
| enum gdb_syscall syscall_gdb; |
| int ret; |
| |
| regcache_raw_read_unsigned (regcache, tdep->ppc_gp0_regnum, &scnum); |
| syscall_gdb = ppc_canonicalize_syscall (scnum, tdep->wordsize); |
| |
| if (syscall_gdb < 0) |
| { |
| fprintf_unfiltered (gdb_stderr, |
| _("Process record and replay target doesn't " |
| "support syscall number %d\n"), (int) scnum); |
| return 0; |
| } |
| |
| if (syscall_gdb == gdb_sys_sigreturn |
| || syscall_gdb == gdb_sys_rt_sigreturn) |
| { |
| int i, j; |
| int regsets[] = { tdep->ppc_gp0_regnum, |
| tdep->ppc_fp0_regnum, |
| tdep->ppc_vr0_regnum, |
| tdep->ppc_vsr0_upper_regnum }; |
| |
| for (j = 0; j < 4; j++) |
| { |
| if (regsets[j] == -1) |
| continue; |
| for (i = 0; i < 32; i++) |
| { |
| if (record_full_arch_list_add_reg (regcache, regsets[j] + i)) |
| return -1; |
| } |
| } |
| |
| if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum)) |
| return -1; |
| if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum)) |
| return -1; |
| if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum)) |
| return -1; |
| if (record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum)) |
| return -1; |
| |
| return 0; |
| } |
| |
| if (tdep->wordsize == 8) |
| ret = record_linux_system_call (syscall_gdb, regcache, |
| &ppc64_linux_record_tdep); |
| else |
| ret = record_linux_system_call (syscall_gdb, regcache, |
| &ppc_linux_record_tdep); |
| |
| if (ret != 0) |
| return ret; |
| |
| /* Record registers clobbered during syscall. */ |
| for (int i = 3; i <= 12; i++) |
| { |
| if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i)) |
| return -1; |
| } |
| if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + 0)) |
| return -1; |
| if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum)) |
| return -1; |
| if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum)) |
| return -1; |
| if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum)) |
| return -1; |
| |
| return 0; |
| } |
| |
| /* Record registers which might be clobbered during signal handling. |
| Return 0 if successful. */ |
| |
| static int |
| ppc_linux_record_signal (struct gdbarch *gdbarch, struct regcache *regcache, |
| enum gdb_signal signal) |
| { |
| /* See handle_rt_signal64 in arch/powerpc/kernel/signal_64.c |
| handle_rt_signal32 in arch/powerpc/kernel/signal_32.c |
| arch/powerpc/include/asm/ptrace.h |
| for details. */ |
| const int SIGNAL_FRAMESIZE = 128; |
| const int sizeof_rt_sigframe = 1440 * 2 + 8 * 2 + 4 * 6 + 8 + 8 + 128 + 512; |
| ULONGEST sp; |
| ppc_gdbarch_tdep *tdep = (ppc_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| int i; |
| |
| for (i = 3; i <= 12; i++) |
| { |
| if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i)) |
| return -1; |
| } |
| |
| if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum)) |
| return -1; |
| if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum)) |
| return -1; |
| if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum)) |
| return -1; |
| if (record_full_arch_list_add_reg (regcache, gdbarch_pc_regnum (gdbarch))) |
| return -1; |
| if (record_full_arch_list_add_reg (regcache, gdbarch_sp_regnum (gdbarch))) |
| return -1; |
| |
| /* Record the change in the stack. |
| frame-size = sizeof (struct rt_sigframe) + SIGNAL_FRAMESIZE */ |
| regcache_raw_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch), &sp); |
| sp -= SIGNAL_FRAMESIZE; |
| sp -= sizeof_rt_sigframe; |
| |
| if (record_full_arch_list_add_mem (sp, SIGNAL_FRAMESIZE + sizeof_rt_sigframe)) |
| return -1; |
| |
| if (record_full_arch_list_add_end ()) |
| return -1; |
| |
| return 0; |
| } |
| |
| static void |
| ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| |
| regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc); |
| |
| /* Set special TRAP register to -1 to prevent the kernel from |
| messing with the PC we just installed, if we happen to be |
| within an interrupted system call that the kernel wants to |
| restart. |
| |
| Note that after we return from the dummy call, the TRAP and |
| ORIG_R3 registers will be automatically restored, and the |
| kernel continues to restart the system call at this point. */ |
| if (ppc_linux_trap_reg_p (gdbarch)) |
| regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1); |
| } |
| |
| static const struct target_desc * |
| ppc_linux_core_read_description (struct gdbarch *gdbarch, |
| struct target_ops *target, |
| bfd *abfd) |
| { |
| struct ppc_linux_features features = ppc_linux_no_features; |
| asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx"); |
| asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx"); |
| asection *section = bfd_get_section_by_name (abfd, ".reg"); |
| asection *ppr = bfd_get_section_by_name (abfd, ".reg-ppc-ppr"); |
| asection *dscr = bfd_get_section_by_name (abfd, ".reg-ppc-dscr"); |
| asection *tar = bfd_get_section_by_name (abfd, ".reg-ppc-tar"); |
| asection *pmu = bfd_get_section_by_name (abfd, ".reg-ppc-pmu"); |
| asection *htmspr = bfd_get_section_by_name (abfd, ".reg-ppc-tm-spr"); |
| |
| if (! section) |
| return NULL; |
| |
| switch (bfd_section_size (section)) |
| { |
| case 48 * 4: |
| features.wordsize = 4; |
| break; |
| case 48 * 8: |
| features.wordsize = 8; |
| break; |
| default: |
| return NULL; |
| } |
| |
| if (altivec) |
| features.altivec = true; |
| |
| if (vsx) |
| features.vsx = true; |
| |
| CORE_ADDR hwcap = linux_get_hwcap (target); |
| |
| features.isa205 = ppc_linux_has_isa205 (hwcap); |
| |
| if (ppr && dscr) |
| { |
| features.ppr_dscr = true; |
| |
| /* We don't require the EBB note section to be present in the |
| core file to select isa207 because these registers could have |
| been unavailable when the core file was created. They will |
| be in the tdep but will show as unavailable. */ |
| if (tar && pmu) |
| { |
| features.isa207 = true; |
| if (htmspr) |
| features.htm = true; |
| } |
| } |
| |
| return ppc_linux_match_description (features); |
| } |
| |
| |
| /* Implementation of `gdbarch_elf_make_msymbol_special', as defined in |
| gdbarch.h. This implementation is used for the ELFv2 ABI only. */ |
| |
| static void |
| ppc_elfv2_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym) |
| { |
| elf_symbol_type *elf_sym = (elf_symbol_type *)sym; |
| |
| /* If the symbol is marked as having a local entry point, set a target |
| flag in the msymbol. We currently only support local entry point |
| offsets of 8 bytes, which is the only entry point offset ever used |
| by current compilers. If/when other offsets are ever used, we will |
| have to use additional target flag bits to store them. */ |
| switch (PPC64_LOCAL_ENTRY_OFFSET (elf_sym->internal_elf_sym.st_other)) |
| { |
| default: |
| break; |
| case 8: |
| MSYMBOL_TARGET_FLAG_1 (msym) = 1; |
| break; |
| } |
| } |
| |
| /* Implementation of `gdbarch_skip_entrypoint', as defined in |
| gdbarch.h. This implementation is used for the ELFv2 ABI only. */ |
| |
| static CORE_ADDR |
| ppc_elfv2_skip_entrypoint (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| struct bound_minimal_symbol fun; |
| int local_entry_offset = 0; |
| |
| fun = lookup_minimal_symbol_by_pc (pc); |
| if (fun.minsym == NULL) |
| return pc; |
| |
| /* See ppc_elfv2_elf_make_msymbol_special for how local entry point |
| offset values are encoded. */ |
| if (MSYMBOL_TARGET_FLAG_1 (fun.minsym)) |
| local_entry_offset = 8; |
| |
| if (BMSYMBOL_VALUE_ADDRESS (fun) <= pc |
| && pc < BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset) |
| return BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset; |
| |
| return pc; |
| } |
| |
| /* Implementation of `gdbarch_stap_is_single_operand', as defined in |
| gdbarch.h. */ |
| |
| static int |
| ppc_stap_is_single_operand (struct gdbarch *gdbarch, const char *s) |
| { |
| return (*s == 'i' /* Literal number. */ |
| || (isdigit (*s) && s[1] == '(' |
| && isdigit (s[2])) /* Displacement. */ |
| || (*s == '(' && isdigit (s[1])) /* Register indirection. */ |
| || isdigit (*s)); /* Register value. */ |
| } |
| |
| /* Implementation of `gdbarch_stap_parse_special_token', as defined in |
| gdbarch.h. */ |
| |
| static expr::operation_up |
| ppc_stap_parse_special_token (struct gdbarch *gdbarch, |
| struct stap_parse_info *p) |
| { |
| if (isdigit (*p->arg)) |
| { |
| /* This temporary pointer is needed because we have to do a lookahead. |
| We could be dealing with a register displacement, and in such case |
| we would not need to do anything. */ |
| const char *s = p->arg; |
| char *regname; |
| int len; |
| |
| while (isdigit (*s)) |
| ++s; |
| |
| if (*s == '(') |
| { |
| /* It is a register displacement indeed. Returning 0 means we are |
| deferring the treatment of this case to the generic parser. */ |
| return {}; |
| } |
| |
| len = s - p->arg; |
| regname = (char *) alloca (len + 2); |
| regname[0] = 'r'; |
| |
| strncpy (regname + 1, p->arg, len); |
| ++len; |
| regname[len] = '\0'; |
| |
| if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1) |
| error (_("Invalid register name `%s' on expression `%s'."), |
| regname, p->saved_arg); |
| |
| p->arg = s; |
| |
| return expr::make_operation<expr::register_operation> (regname); |
| } |
| |
| /* All the other tokens should be handled correctly by the generic |
| parser. */ |
| return {}; |
| } |
| |
| /* Initialize linux_record_tdep if not initialized yet. |
| WORDSIZE is 4 or 8 for 32- or 64-bit PowerPC Linux respectively. |
| Sizes of data structures are initialized accordingly. */ |
| |
| static void |
| ppc_init_linux_record_tdep (struct linux_record_tdep *record_tdep, |
| int wordsize) |
| { |
| /* Simply return if it had been initialized. */ |
| if (record_tdep->size_pointer != 0) |
| return; |
| |
| /* These values are the size of the type that will be used in a system |
| call. They are obtained from Linux Kernel source. */ |
| |
| if (wordsize == 8) |
| { |
| record_tdep->size_pointer = 8; |
| record_tdep->size__old_kernel_stat = 32; |
| record_tdep->size_tms = 32; |
| record_tdep->size_loff_t = 8; |
| record_tdep->size_flock = 32; |
| record_tdep->size_oldold_utsname = 45; |
| record_tdep->size_ustat = 32; |
| record_tdep->size_old_sigaction = 32; |
| record_tdep->size_old_sigset_t = 8; |
| record_tdep->size_rlimit = 16; |
| record_tdep->size_rusage = 144; |
| record_tdep->size_timeval = 16; |
| record_tdep->size_timezone = 8; |
| record_tdep->size_old_gid_t = 4; |
| record_tdep->size_old_uid_t = 4; |
| record_tdep->size_fd_set = 128; |
| record_tdep->size_old_dirent = 280; |
| record_tdep->size_statfs = 120; |
| record_tdep->size_statfs64 = 120; |
| record_tdep->size_sockaddr = 16; |
| record_tdep->size_int = 4; |
| record_tdep->size_long = 8; |
| record_tdep->size_ulong = 8; |
| record_tdep->size_msghdr = 56; |
| record_tdep->size_itimerval = 32; |
| record_tdep->size_stat = 144; |
| record_tdep->size_old_utsname = 325; |
| record_tdep->size_sysinfo = 112; |
| record_tdep->size_msqid_ds = 120; |
| record_tdep->size_shmid_ds = 112; |
| record_tdep->size_new_utsname = 390; |
| record_tdep->size_timex = 208; |
| record_tdep->size_mem_dqinfo = 24; |
| record_tdep->size_if_dqblk = 72; |
| record_tdep->size_fs_quota_stat = 80; |
| record_tdep->size_timespec = 16; |
| record_tdep->size_pollfd = 8; |
| record_tdep->size_NFS_FHSIZE = 32; |
| record_tdep->size_knfsd_fh = 132; |
| record_tdep->size_TASK_COMM_LEN = 16; |
| record_tdep->size_sigaction = 32; |
| record_tdep->size_sigset_t = 8; |
| record_tdep->size_siginfo_t = 128; |
| record_tdep->size_cap_user_data_t = 8; |
| record_tdep->size_stack_t = 24; |
| record_tdep->size_off_t = 8; |
| record_tdep->size_stat64 = 104; |
| record_tdep->size_gid_t = 4; |
| record_tdep->size_uid_t = 4; |
| record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */ |
| record_tdep->size_flock64 = 32; |
| record_tdep->size_io_event = 32; |
| record_tdep->size_iocb = 64; |
| record_tdep->size_epoll_event = 16; |
| record_tdep->size_itimerspec = 32; |
| record_tdep->size_mq_attr = 64; |
| record_tdep->size_termios = 44; |
| record_tdep->size_pid_t = 4; |
| record_tdep->size_winsize = 8; |
| record_tdep->size_serial_struct = 72; |
| record_tdep->size_serial_icounter_struct = 80; |
| record_tdep->size_size_t = 8; |
| record_tdep->size_iovec = 16; |
| record_tdep->size_time_t = 8; |
| } |
| else if (wordsize == 4) |
| { |
| record_tdep->size_pointer = 4; |
| record_tdep->size__old_kernel_stat = 32; |
| record_tdep->size_tms = 16; |
| record_tdep->size_loff_t = 8; |
| record_tdep->size_flock = 16; |
| record_tdep->size_oldold_utsname = 45; |
| record_tdep->size_ustat = 20; |
| record_tdep->size_old_sigaction = 16; |
| record_tdep->size_old_sigset_t = 4; |
| record_tdep->size_rlimit = 8; |
| record_tdep->size_rusage = 72; |
| record_tdep->size_timeval = 8; |
| record_tdep->size_timezone = 8; |
| record_tdep->size_old_gid_t = 4; |
| record_tdep->size_old_uid_t = 4; |
| record_tdep->size_fd_set = 128; |
| record_tdep->size_old_dirent = 268; |
| record_tdep->size_statfs = 64; |
| record_tdep->size_statfs64 = 88; |
| record_tdep->size_sockaddr = 16; |
| record_tdep->size_int = 4; |
| record_tdep->size_long = 4; |
| record_tdep->size_ulong = 4; |
| record_tdep->size_msghdr = 28; |
| record_tdep->size_itimerval = 16; |
| record_tdep->size_stat = 88; |
| record_tdep->size_old_utsname = 325; |
| record_tdep->size_sysinfo = 64; |
| record_tdep->size_msqid_ds = 68; |
| record_tdep->size_shmid_ds = 60; |
| record_tdep->size_new_utsname = 390; |
| record_tdep->size_timex = 128; |
| record_tdep->size_mem_dqinfo = 24; |
| record_tdep->size_if_dqblk = 72; |
| record_tdep->size_fs_quota_stat = 80; |
| record_tdep->size_timespec = 8; |
| record_tdep->size_pollfd = 8; |
| record_tdep->size_NFS_FHSIZE = 32; |
| record_tdep->size_knfsd_fh = 132; |
| record_tdep->size_TASK_COMM_LEN = 16; |
| record_tdep->size_sigaction = 20; |
| record_tdep->size_sigset_t = 8; |
| record_tdep->size_siginfo_t = 128; |
| record_tdep->size_cap_user_data_t = 4; |
| record_tdep->size_stack_t = 12; |
| record_tdep->size_off_t = 4; |
| record_tdep->size_stat64 = 104; |
| record_tdep->size_gid_t = 4; |
| record_tdep->size_uid_t = 4; |
| record_tdep->size_PAGE_SIZE = 0x10000; /* 64KB */ |
| record_tdep->size_flock64 = 32; |
| record_tdep->size_io_event = 32; |
| record_tdep->size_iocb = 64; |
| record_tdep->size_epoll_event = 16; |
| record_tdep->size_itimerspec = 16; |
| record_tdep->size_mq_attr = 32; |
| record_tdep->size_termios = 44; |
| record_tdep->size_pid_t = 4; |
| record_tdep->size_winsize = 8; |
| record_tdep->size_serial_struct = 60; |
| record_tdep->size_serial_icounter_struct = 80; |
| record_tdep->size_size_t = 4; |
| record_tdep->size_iovec = 8; |
| record_tdep->size_time_t = 4; |
| } |
| else |
| internal_error (__FILE__, __LINE__, _("unexpected wordsize")); |
| |
| /* These values are the second argument of system call "sys_fcntl" |
| and "sys_fcntl64". They are obtained from Linux Kernel source. */ |
| record_tdep->fcntl_F_GETLK = 5; |
| record_tdep->fcntl_F_GETLK64 = 12; |
| record_tdep->fcntl_F_SETLK64 = 13; |
| record_tdep->fcntl_F_SETLKW64 = 14; |
| |
| record_tdep->arg1 = PPC_R0_REGNUM + 3; |
| record_tdep->arg2 = PPC_R0_REGNUM + 4; |
| record_tdep->arg3 = PPC_R0_REGNUM + 5; |
| record_tdep->arg4 = PPC_R0_REGNUM + 6; |
| record_tdep->arg5 = PPC_R0_REGNUM + 7; |
| record_tdep->arg6 = PPC_R0_REGNUM + 8; |
| |
| /* These values are the second argument of system call "sys_ioctl". |
| They are obtained from Linux Kernel source. |
| See arch/powerpc/include/uapi/asm/ioctls.h. */ |
| record_tdep->ioctl_TCGETS = 0x403c7413; |
| record_tdep->ioctl_TCSETS = 0x803c7414; |
| record_tdep->ioctl_TCSETSW = 0x803c7415; |
| record_tdep->ioctl_TCSETSF = 0x803c7416; |
| record_tdep->ioctl_TCGETA = 0x40147417; |
| record_tdep->ioctl_TCSETA = 0x80147418; |
| record_tdep->ioctl_TCSETAW = 0x80147419; |
| record_tdep->ioctl_TCSETAF = 0x8014741c; |
| record_tdep->ioctl_TCSBRK = 0x2000741d; |
| record_tdep->ioctl_TCXONC = 0x2000741e; |
| record_tdep->ioctl_TCFLSH = 0x2000741f; |
| record_tdep->ioctl_TIOCEXCL = 0x540c; |
| record_tdep->ioctl_TIOCNXCL = 0x540d; |
| record_tdep->ioctl_TIOCSCTTY = 0x540e; |
| record_tdep->ioctl_TIOCGPGRP = 0x40047477; |
| record_tdep->ioctl_TIOCSPGRP = 0x80047476; |
| record_tdep->ioctl_TIOCOUTQ = 0x40047473; |
| record_tdep->ioctl_TIOCSTI = 0x5412; |
| record_tdep->ioctl_TIOCGWINSZ = 0x40087468; |
| record_tdep->ioctl_TIOCSWINSZ = 0x80087467; |
| record_tdep->ioctl_TIOCMGET = 0x5415; |
| record_tdep->ioctl_TIOCMBIS = 0x5416; |
| record_tdep->ioctl_TIOCMBIC = 0x5417; |
| record_tdep->ioctl_TIOCMSET = 0x5418; |
| record_tdep->ioctl_TIOCGSOFTCAR = 0x5419; |
| record_tdep->ioctl_TIOCSSOFTCAR = 0x541a; |
| record_tdep->ioctl_FIONREAD = 0x4004667f; |
| record_tdep->ioctl_TIOCINQ = 0x4004667f; |
| record_tdep->ioctl_TIOCLINUX = 0x541c; |
| record_tdep->ioctl_TIOCCONS = 0x541d; |
| record_tdep->ioctl_TIOCGSERIAL = 0x541e; |
| record_tdep->ioctl_TIOCSSERIAL = 0x541f; |
| record_tdep->ioctl_TIOCPKT = 0x5420; |
| record_tdep->ioctl_FIONBIO = 0x8004667e; |
| record_tdep->ioctl_TIOCNOTTY = 0x5422; |
| record_tdep->ioctl_TIOCSETD = 0x5423; |
| record_tdep->ioctl_TIOCGETD = 0x5424; |
| record_tdep->ioctl_TCSBRKP = 0x5425; |
| record_tdep->ioctl_TIOCSBRK = 0x5427; |
| record_tdep->ioctl_TIOCCBRK = 0x5428; |
| record_tdep->ioctl_TIOCGSID = 0x5429; |
| record_tdep->ioctl_TIOCGPTN = 0x40045430; |
| record_tdep->ioctl_TIOCSPTLCK = 0x80045431; |
| record_tdep->ioctl_FIONCLEX = 0x20006602; |
| record_tdep->ioctl_FIOCLEX = 0x20006601; |
| record_tdep->ioctl_FIOASYNC = 0x8004667d; |
| record_tdep->ioctl_TIOCSERCONFIG = 0x5453; |
| record_tdep->ioctl_TIOCSERGWILD = 0x5454; |
| record_tdep->ioctl_TIOCSERSWILD = 0x5455; |
| record_tdep->ioctl_TIOCGLCKTRMIOS = 0x5456; |
| record_tdep->ioctl_TIOCSLCKTRMIOS = 0x5457; |
| record_tdep->ioctl_TIOCSERGSTRUCT = 0x5458; |
| record_tdep->ioctl_TIOCSERGETLSR = 0x5459; |
| record_tdep->ioctl_TIOCSERGETMULTI = 0x545a; |
| record_tdep->ioctl_TIOCSERSETMULTI = 0x545b; |
| record_tdep->ioctl_TIOCMIWAIT = 0x545c; |
| record_tdep->ioctl_TIOCGICOUNT = 0x545d; |
| record_tdep->ioctl_FIOQSIZE = 0x40086680; |
| } |
| |
| /* Return a floating-point format for a floating-point variable of |
| length LEN in bits. If non-NULL, NAME is the name of its type. |
| If no suitable type is found, return NULL. */ |
| |
| static const struct floatformat ** |
| ppc_floatformat_for_type (struct gdbarch *gdbarch, |
| const char *name, int len) |
| { |
| if (len == 128 && name) |
| { |
| if (strcmp (name, "__float128") == 0 |
| || strcmp (name, "_Float128") == 0 |
| || strcmp (name, "_Float64x") == 0 |
| || strcmp (name, "complex _Float128") == 0 |
| || strcmp (name, "complex _Float64x") == 0) |
| return floatformats_ia64_quad; |
| |
| if (strcmp (name, "__ibm128") == 0) |
| return floatformats_ibm_long_double; |
| } |
| |
| return default_floatformat_for_type (gdbarch, name, len); |
| } |
| |
| /* Specify the powerpc64le target triplet. |
| This can be variations of |
| ppc64le-{distro}-linux-gcc |
| and |
| powerpc64le-{distro}-linux-gcc. */ |
| |
| static const char * |
| ppc64le_gnu_triplet_regexp (struct gdbarch *gdbarch) |
| { |
| return "p(ower)?pc64le"; |
| } |
| |
| /* Specify the powerpc64 target triplet. |
| This can be variations of |
| ppc64-{distro}-linux-gcc |
| and |
| powerpc64-{distro}-linux-gcc. */ |
| |
| static const char * |
| ppc64_gnu_triplet_regexp (struct gdbarch *gdbarch) |
| { |
| return "p(ower)?pc64"; |
| } |
| |
| /* Implement the linux_gcc_target_options method. */ |
| |
| static std::string |
| ppc64_linux_gcc_target_options (struct gdbarch *gdbarch) |
| { |
| return ""; |
| } |
| |
| static displaced_step_prepare_status |
| ppc_linux_displaced_step_prepare (gdbarch *arch, thread_info *thread, |
| CORE_ADDR &displaced_pc) |
| { |
| ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf); |
| if (!per_inferior->disp_step_buf.has_value ()) |
| { |
| /* Figure out where the displaced step buffer is. */ |
| CORE_ADDR disp_step_buf_addr |
| = linux_displaced_step_location (thread->inf->gdbarch); |
| |
| per_inferior->disp_step_buf.emplace (disp_step_buf_addr); |
| } |
| |
| return per_inferior->disp_step_buf->prepare (thread, displaced_pc); |
| } |
| |
| static void |
| ppc_linux_init_abi (struct gdbarch_info info, |
| struct gdbarch *gdbarch) |
| { |
| ppc_gdbarch_tdep *tdep = (ppc_gdbarch_tdep *) gdbarch_tdep (gdbarch); |
| struct tdesc_arch_data *tdesc_data = info.tdesc_data; |
| static const char *const stap_integer_prefixes[] = { "i", NULL }; |
| static const char *const stap_register_indirection_prefixes[] = { "(", |
| NULL }; |
| static const char *const stap_register_indirection_suffixes[] = { ")", |
| NULL }; |
| |
| linux_init_abi (info, gdbarch, 0); |
| |
| /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where |
| 128-bit, they can be either IBM long double or IEEE quad long double. |
| The 64-bit long double case will be detected automatically using |
| the size specified in debug info. We use a .gnu.attribute flag |
| to distinguish between the IBM long double and IEEE quad cases. */ |
| set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); |
| if (tdep->long_double_abi == POWERPC_LONG_DOUBLE_IEEE128) |
| set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad); |
| else |
| set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double); |
| |
| /* Support for floating-point data type variants. */ |
| set_gdbarch_floatformat_for_type (gdbarch, ppc_floatformat_for_type); |
| |
| /* Handle inferior calls during interrupted system calls. */ |
| set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc); |
| |
| /* Get the syscall number from the arch's register. */ |
| set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number); |
| |
| /* SystemTap functions. */ |
| set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes); |
| set_gdbarch_stap_register_indirection_prefixes (gdbarch, |
| stap_register_indirection_prefixes); |
| set_gdbarch_stap_register_indirection_suffixes (gdbarch, |
| stap_register_indirection_suffixes); |
| set_gdbarch_stap_gdb_register_prefix (gdbarch, "r"); |
| set_gdbarch_stap_is_single_operand (gdbarch, ppc_stap_is_single_operand); |
| set_gdbarch_stap_parse_special_token (gdbarch, |
| ppc_stap_parse_special_token); |
| |
| if (tdep->wordsize == 4) |
| { |
| /* Until November 2001, gcc did not comply with the 32 bit SysV |
| R4 ABI requirement that structures less than or equal to 8 |
| bytes should be returned in registers. Instead GCC was using |
| the AIX/PowerOpen ABI - everything returned in memory |
| (well ignoring vectors that is). When this was corrected, it |
| wasn't fixed for GNU/Linux native platform. Use the |
| PowerOpen struct convention. */ |
| set_gdbarch_return_value (gdbarch, ppc_linux_return_value); |
| |
| set_gdbarch_memory_remove_breakpoint (gdbarch, |
| ppc_linux_memory_remove_breakpoint); |
| |
| /* Shared library handling. */ |
| set_gdbarch_skip_trampoline_code (gdbarch, ppc_skip_trampoline_code); |
| set_solib_svr4_fetch_link_map_offsets |
| (gdbarch, linux_ilp32_fetch_link_map_offsets); |
| |
| /* Setting the correct XML syscall filename. */ |
| set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC); |
| |
| /* Trampolines. */ |
| tramp_frame_prepend_unwinder (gdbarch, |
| &ppc32_linux_sigaction_tramp_frame); |
| tramp_frame_prepend_unwinder (gdbarch, |
| &ppc32_linux_sighandler_tramp_frame); |
| |
| /* BFD target for core files. */ |
| if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) |
| set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle"); |
| else |
| set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc"); |
| |
| if (powerpc_so_ops.in_dynsym_resolve_code == NULL) |
| { |
| powerpc_so_ops = svr4_so_ops; |
| /* Override dynamic resolve function. */ |
| powerpc_so_ops.in_dynsym_resolve_code = |
| powerpc_linux_in_dynsym_resolve_code; |
| } |
| set_solib_ops (gdbarch, &powerpc_so_ops); |
| |
| set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver); |
| } |
| |
| if (tdep->wordsize == 8) |
| { |
| if (tdep->elf_abi == POWERPC_ELF_V1) |
| { |
| /* Handle PPC GNU/Linux 64-bit function pointers (which are really |
| function descriptors). */ |
| set_gdbarch_convert_from_func_ptr_addr |
| (gdbarch, ppc64_convert_from_func_ptr_addr); |
| |
| set_gdbarch_elf_make_msymbol_special |
| (gdbarch, ppc64_elf_make_msymbol_special); |
| } |
| else |
| { |
| set_gdbarch_elf_make_msymbol_special |
| (gdbarch, ppc_elfv2_elf_make_msymbol_special); |
| |
| set_gdbarch_skip_entrypoint (gdbarch, ppc_elfv2_skip_entrypoint); |
| } |
| |
| /* Shared library handling. */ |
| set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code); |
| set_solib_svr4_fetch_link_map_offsets |
| (gdbarch, linux_lp64_fetch_link_map_offsets); |
| |
| /* Setting the correct XML syscall filename. */ |
| set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC64); |
| |
| /* Trampolines. */ |
| tramp_frame_prepend_unwinder (gdbarch, |
| &ppc64_linux_sigaction_tramp_frame); |
| tramp_frame_prepend_unwinder (gdbarch, |
| &ppc64_linux_sighandler_tramp_frame); |
| |
| /* BFD target for core files. */ |
| if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) |
| set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle"); |
| else |
| set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc"); |
| /* Set compiler triplet. */ |
| if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) |
| set_gdbarch_gnu_triplet_regexp (gdbarch, ppc64le_gnu_triplet_regexp); |
| else |
| set_gdbarch_gnu_triplet_regexp (gdbarch, ppc64_gnu_triplet_regexp); |
| /* Set GCC target options. */ |
| set_gdbarch_gcc_target_options (gdbarch, ppc64_linux_gcc_target_options); |
| } |
| |
| set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description); |
| set_gdbarch_iterate_over_regset_sections (gdbarch, |
| ppc_linux_iterate_over_regset_sections); |
| |
| /* Enable TLS support. */ |
| set_gdbarch_fetch_tls_load_module_address (gdbarch, |
| svr4_fetch_objfile_link_map); |
| |
| if (tdesc_data) |
| { |
| const struct tdesc_feature *feature; |
| |
| /* If we have target-described registers, then we can safely |
| reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM |
| (whether they are described or not). */ |
| gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM); |
| set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1); |
| |
| /* If they are present, then assign them to the reserved number. */ |
| feature = tdesc_find_feature (info.target_desc, |
| "org.gnu.gdb.power.linux"); |
| if (feature != NULL) |
| { |
| tdesc_numbered_register (feature, tdesc_data, |
| PPC_ORIG_R3_REGNUM, "orig_r3"); |
| tdesc_numbered_register (feature, tdesc_data, |
| PPC_TRAP_REGNUM, "trap"); |
| } |
| } |
| |
| /* Support reverse debugging. */ |
| set_gdbarch_process_record (gdbarch, ppc_process_record); |
| set_gdbarch_process_record_signal (gdbarch, ppc_linux_record_signal); |
| tdep->ppc_syscall_record = ppc_linux_syscall_record; |
| |
| ppc_init_linux_record_tdep (&ppc_linux_record_tdep, 4); |
| ppc_init_linux_record_tdep (&ppc64_linux_record_tdep, 8); |
| |
| /* Setup displaced stepping. */ |
| set_gdbarch_displaced_step_prepare (gdbarch, |
| ppc_linux_displaced_step_prepare); |
| |
| } |
| |
| void _initialize_ppc_linux_tdep (); |
| void |
| _initialize_ppc_linux_tdep () |
| { |
| /* Register for all sub-families of the POWER/PowerPC: 32-bit and |
| 64-bit PowerPC, and the older rs6k. */ |
| gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX, |
| ppc_linux_init_abi); |
| gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX, |
| ppc_linux_init_abi); |
| gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX, |
| ppc_linux_init_abi); |
| |
| /* Initialize the Linux target descriptions. */ |
| initialize_tdesc_powerpc_32l (); |
| initialize_tdesc_powerpc_altivec32l (); |
| initialize_tdesc_powerpc_vsx32l (); |
| initialize_tdesc_powerpc_isa205_32l (); |
| initialize_tdesc_powerpc_isa205_altivec32l (); |
| initialize_tdesc_powerpc_isa205_vsx32l (); |
| initialize_tdesc_powerpc_isa205_ppr_dscr_vsx32l (); |
| initialize_tdesc_powerpc_isa207_vsx32l (); |
| initialize_tdesc_powerpc_isa207_htm_vsx32l (); |
| initialize_tdesc_powerpc_64l (); |
| initialize_tdesc_powerpc_altivec64l (); |
| initialize_tdesc_powerpc_vsx64l (); |
| initialize_tdesc_powerpc_isa205_64l (); |
| initialize_tdesc_powerpc_isa205_altivec64l (); |
| initialize_tdesc_powerpc_isa205_vsx64l (); |
| initialize_tdesc_powerpc_isa205_ppr_dscr_vsx64l (); |
| initialize_tdesc_powerpc_isa207_vsx64l (); |
| initialize_tdesc_powerpc_isa207_htm_vsx64l (); |
| initialize_tdesc_powerpc_e500l (); |
| } |